USA
 AMC 12/AHSME

1 The addition below is incorrect. What is the largest digit that can be changed to make the addition correct?

$$
\begin{array}{r}
641 \\
85 \\
8 \\
+\quad 9 \\
\hline 2
\end{array} \begin{array}{r}
6 \\
\hline 256
\end{array}
$$

(A) 4
(B) 5
(C) 6
(D) 7
(E) 8

Each day Walter gets $\$ 3$ for doing his chores or $\$ 5$ for doing them exceptionally well. After 10 days of doing his chores daily, Walter has received a total of $\$ 36$. On how many days did Walter do them exceptionally well?
A. 3 B. 4 C. 5 D. 6 E. 7
$\frac{(3!)!}{3!}=$
(A) 1
(B) 2
(C) 6
(D) 40
(E) 120

Six numbers from a list of nine integers are $7,8,3,5$, and 9 . The largest possible value of the median of all nine numbers in this list is
(A) 5
(B)
(C) 7
(D) 8
(E)

Given that $0<a<b<c<d$, which of the following is the largest?
A. $\frac{a+b}{c+d}$ B. $\frac{a+d}{b+c}$
C. $\frac{b+c}{a+d}$
D. $\frac{b+d}{a+c}$ E
E. $\frac{c+d}{a+b}$

If $f(x)=x^{(x+1)}(x+2)^{(x+3)}$ then $f(0)+f(-1)+f(-2)+f(-3)=$
A. $-8 / 9$ B. 0 C. $8 / 9$ D. 1 E. 10/9

A father takes his twins and a younger child out to dinner on the twins' birthday. The restaurant charges $\$ 4.95$ for the father and $\$ 0.45$ for each year of a child's age, where age is defined as the age at the most recent birthday. If the bill is $\$ 9.45$, which of the following could be the age of the youngest child?
A. 1 B. 2 C. 3 D. 4 E. 5

If $3=k \cdot 2^{r}$ and $15=k \cdot 4^{r}$, then $r=$
(A) $-\log _{2} 5$
(B) $\log _{5} 2$
(C) $\log _{10} 5$
(D) $\log _{2} 5$
(E) $\frac{5}{2}$

Triangle $P A B$ and square $A B C D$ are in perpendicular planes. Given that $P A=3, P B=4$, and $A B=5$, what is $P D$?
A. 5 B. $\sqrt{34}$ C. $\sqrt{41}$ D. $2 \sqrt{13}$ E. 8

USA
 AMC 12/AHSME

How many line segments have both their endpoints located at the vertices of a given cube?
(A) 12
(B) 15
(C) 24
(D) 28
(E) 56

Given a circle of raidus 2, there are many line segments of length 2 that are tangent to the circle at their midpoints. Find the area of the region consisting of all such line segments.
(A) $\frac{\pi}{4}$
(B) $4-\pi$
(C) $\frac{\pi}{2}$
(D) π
(E) 2π

A function f from the integers to the integers is defined as follows:

$$
f(x)= \begin{cases}n+3 & \text { if } \mathrm{n} \text { is odd } \\ n / 2 & \text { if } \mathrm{n} \text { is even }\end{cases}
$$

Suppose k is odd and $f(f(f(k)))=27$. What is the sum of the digits of k ?
(A) 3
(B) 6
(C) 9
(D) 12
(E) 15

Sunny runs at a steady rate, and Moonbeam runs m times as fast, where m is a number greater than 1. If Moonbeam gives Sunny a head start of h meters, how many meters must Moonbeam run to overtake Sunny?
(A) $h m$
(B) $\frac{h}{h+m}$
(C) $\frac{h}{m-1}$
(D) $\frac{h m}{m-1}$
(E) $\frac{h+m}{m-1}$

Let $E(n)$ denote the sum of the even digits of n. For example, $E(5681)=6+8=14$. Find $E(1)+E(2)+E(3)+\cdots+E(100)$.
(A) 200
(B) 360
(C) 400
(D) 900
(E) 2250

Two opposite sides of a rectangle are each divided into n congruent segments, and the endpoints of one segment are joined to the center to form triangle A. The other sides are each divided into m congruent segments, and the endpoints of one of these segments are joined to the center to form triangle B. [See figure for $n=5, m=7$.] What is the ratio of the area of triangle A to the area of triangle B ?
(A) 1
(B) m / n
(C) n / m
(D) $2 m / n$
(E) $2 n / m$

A fair standard six-sided dice is tossed three times. Given that the sum of the first two tosses equal the third, what is the probability that at least one " 2 " is tossed?
(A) $\frac{1}{6}$
(B) $\frac{91}{216}$
(C) $\frac{1}{2}$
(D) $\frac{8}{15}$
(E) $\frac{7}{12}$

In rectangle $A B C D$, angle C is trisected by $\overline{C F}$ and $\overline{C E}$, where E is on $\overline{A B}, F$ is on $\overline{A D}, B E=6$, and $A F=2$. Which of the following is closest to the area of the rectangle $A B C D$?
(A) 110
(B) 120
(C) 130
(D) 140
(E) 150

A circle of radius 2 has center at (2,0). A circle of radius 1 has center at (5,0). A line is tangent to the two circles at points in the first quadrant. Which of the following is closest to the y-intercept of the line?
(A) $\sqrt{2} / 4$
(B) $8 / 3$
(C) $1+\sqrt{3}$
(D) $2 \sqrt{2}$
(E) 3

USA
 AMC 12/AHSME

The midpoints of the sides of a regular hexagon $A B C D E F$ are joined to form a smaller hexagon. What fraction of the area of $A B C D E F$ is enclosed by the smaller hexagon?
(A) $\frac{1}{2}$
(B) $\frac{\sqrt{3}}{3}$
(C) $\frac{2}{3}$
(D) $\frac{3}{4}$
(E) $\frac{\sqrt{3}}{2}$

In the xy-plane, what is the length of the shortest path from $(0,0)$ to $(12,16)$ that does not go inside the circle $(x-6)^{2}+(y-8)^{2}=25$?
(A) $10 \sqrt{3}$
(B) $10 \sqrt{5}$
(C) $10 \sqrt{3}+\frac{5 \pi}{3}$
(D) $40 \frac{\sqrt{3}}{3}$
(E) $10+5 \pi$

Triangles $A B C$ and $A B D$ are isosceles with $A B=A C=B D$, and $B D$ intersects $A C$ at E. If $B D$ is perpendicular to $A C$, then $\angle C+\angle D$ is
[img]http://www.artofproblemsolving.com/Forum/album ${ }_{p} i c . p h p ? p i c_{i} d=537[/ \mathrm{img}]$
(A) 115°
(B) 120°
(C) 130°
(D) 135°
(E) not uniquely determined

Four distinct points, A, B, C, and D, are to be selected from 1996 points evenly spaced around a circle. All quadruples are equally likely to be chosen. What is the probability that the chord $A B$ intersects the chord $C D$?
(A) $\frac{1}{4}$
(B) $\frac{1}{3}$
(C) $\frac{1}{2}$
(D) $\frac{2}{3}$
(E) $\frac{3}{4}$

The sum of the lengths of the twelve edges of a rectangular box is 140 , and the distance from one corner of the box to the farthest corner is 21 . The total surface area of the box is
(A) 776
(B) 784
(C) 798
(D) 800
(E) 812

The sequence $1,2,1,2,2,1,2,2,2,1,2,2,2,2,1,2,2,2,2,2,1,2, \ldots$ consists of 1 s separated by blocks of 2 s with n 2 s in the nth block. The sum of the first 1234 terms of this sequence is
(A) 1996
(B) 2419
(C) 2429
(D) 2439
(E) 2449

Given that $x^{2}+y^{2}=14 x+6 y+6$, what is the largest possible value that $3 x+4 y$ can have?
(A) 72
(B) 73
(C) 74
(D) 75
(E) 76

An urn contains marbles of four colors: red, white, blue, and green. When four marbles are drawn without replacement, the following events are equally likely:
(a) the selection of four red marbles; (b) the selection of one white and three red marbles; (c) the selection of one white, one blue, and two red marbles; and (d) the selection of one marble of each color.

What is the smallest number of marbles satisfying the given condition? (A) 19 (B) $21 \quad$ (C) 46 (D) 69
Consider two solid spherical balls, one centered at $\left(0,0, \frac{21}{2}\right)$ with radius 6 , and the other centered at $(0,0,1)$ with radius $\frac{9}{2}$. How many points (x, y, z) with only integer coordinates (lattice points) are there in the intersection of the balls?
(A) 7
(B) 9
(C) 11
(D) 13
(E) 15

On a $4 \times 4 \times 3$ rectangular parallelepiped, vertices A, B, and C are adjacent to vertex D. The perpendicular distance from D to the plane containing A, B, and C is closest to
(A) 1.6
(B) 1.9
(C) 2.1
(D) 2.7
(E) 2.9

USA
 AMC 12/AHSME

1996

If n is a positive integer such that $2 n$ has 28 positive divisors and $3 n$ has 30 positive divisors, then how many positive divisors does $6 n$ have?
(A) 32
(B) 34
(C) 35
(D) 36
(E) 38

A hexagon inscribed in a circle has three consecutive sides each of length 3 and three consecutive sides each of length 5 . The chord of the circle that divides the hexagon into two trapezoids, one with three sides each of length 3 and the other with three sides each of length 5 , has length equal to $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.
(A) 309
(B) 349
(C) 369
(D) 389
(E) 409

