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“WLOG, diagram as shown.” – Everyone

This is a very brief note on what a directed angle is and how to use it to write olympiad
solutions which are impervious to configuration issues. It is short because I don’t actually
need to teach you how to solve problems, but only to rewrite proofs of problems you’ve
already essentially solved.

1 Introduction

Everyone hates configuration issues (both contestants and graders). Configuration issues
come up because the most fundamental theorem in olympiad geometry actually has two
cases.

Proposition 1.1 (Cyclic Quadrilaterals)

Let A, B, X, Y be any four points, no three collinear.

(i) If A and B lie on the same side of XY , then the four points are concyclic if
and only if ∠XAY = ∠XBY .

(ii) If A and B lie on different sides of XY , then the four points are concyclic if
and only if ∠XAY + ∠XBY = 180◦.

Doesn’t that just look annoying? Any time you want to invoke a cyclic quadrilateral,
you have to actually check the points lie on the correct side of some line.

In fact, you even have to worry about configuration issues for something as simple as
adding two angles.

A
B

X Y

A

B

X Y

Figure 1: The two cases for cyclic quadrilaterals.
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Question 1.2. When does the assertion

∠AOP + ∠POB = ∠AOB

fail?

Thus any time you want to add two angles, you technically need to also check that
point P lies “inside” ∠AOB.

Given all this disaster, you might wonder how we ever got any angle chasing done at all.
The secret is that configuration issues are the object of widespread scorn: they
are glossed over, swept under a carpet, or “left as an exercise”. I’ve almost never seen
them addressed seriously, except in the very rare circumstances in which they actually
matter.

Let’s fix this.

2 Directed Angles

In what follows I’m going to write ]AOB for a directed angle to distinguish it from
a “regular” angle ∠AOB. But I should warn that this notation is absolutely not
standard. Thus if you wish to use directed angles on an olympiad, you should explicitly
say so in your solution.

Here’s the very general definition.

Definition 2.1. Given any two non-parallel lines ` and m, we define the directed angle

](`,m)

to be the measure of the angle starting from ` and ending at m, measured counterclockwise.

`

m

50◦

Figure 2: The directed angle ](`,m) = 50◦.

Notice that
](`,m) + ](m, `) = 180◦ (1)

holds universally. This is kind of nice, but it’s a bit annoying to have that 180◦ lying
around there, and so we will also take all angle measures modulo 180◦. That means
that −70◦ = 110◦ = 290◦ = . . . . Once we take mod 180◦, (1) becomes the following very
important result.
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Proposition 2.2

For any lines ` and m, ](`,m) = −](m, `). (In other words, measuring the angle
clockwise instead of counterclockwise corresponds to negation.)

Observe why this is intuitively true in Figure 2.
You can verify now that with this identification, we have

](`,m) + ](m,n) = ](`, n)

for all concurrent lines `, m, and n, regardless of configuration.
With this definition in place, we can define ]AOB as the angle between the two lines

AO and BO.

Definition 2.3. Given three points A, O, B we define

]AOB
def
= ]

(
AO,BO

)
.

Equivalently, if ` and m are two lines which intersect at O, then ](`,m) = ]AOB for
any point A on ` and B on m.

(Note that by XY I mean “line XY ”, not “segment XY ”.)

`

m
A

B

O

50◦

−130◦

Figure 3: The directed angle ]AOB = −130◦ = 50◦.

Most of the time we will be using the ]AOB notation. But it is sometimes useful to
use the ](`,m) notation in problems where the intersection point O of ` and m is not
yet named.

3 Properties of Directed Angles

You might ask whether this strange convention is actually useful. Let me convince you it
is with the following theorem.

Theorem 3.1 (Directed Cyclic Quadrilaterals)

Let A, B, X, Y be four points, no three collinear. Then they are concyclic if and
only if

]XAY = ]XBY.
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Exercise 3.2. Go back to Figure 1 and verify that this theorem actually works for both
configurations.

Now you should be paying attention, because I just eliminated one of the biggest pains
in olympiad geometry for you. Unlike the Proposition 1.1 you grew up with, Theorem 3.1
has no case distinctions.

Many other things become vastly simpler.

Theorem 3.3 (Angle Addition Postulate)

We have ]AOP + ]POB = ]AOB.

Actually, this is a “special case” of the following result for three concurrent lines `, m,
n.

Theorem 3.4 (Triangles Sum to 180◦)

For any lines `, m, n we have

](`,m) + ](m,n) + ](n, `) = 0.

In particular, for any points A, B, C we have

]ABC + ]BCA + ]CAB = 0.

Proof. Check it yourself.

A

BC

]CAB

]ABC]BCA

Figure 4: Triangle Sum

Theorem 3.5 (Collinearity Criteria)

Let X be any point. Points A, B, C are collinear if and only if

]XBC = ]XBA.

Proof. Prove this yourself. (Show that the assertion is equivalent to ]ABC = 0.)

Also, note that right angles have the very nice property that if ` ⊥ m we have

](`,m) = ](m, `) = 90◦.

Hence any time you have perpendiculars, you can simply set the measure of the directed
angle as 90◦ without thinking or worrying about counterclockwise versus clockwise.
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Figure 5: Collinearity with directed angles.

4 Examples

Writing a solution using directed angles should, in theory, not take any more additional
effort. One simply solves the problem by looking at one particular diagram, but writes
the solution up using the above rules so that they hold for all diagrams.

Let me actually give an example now.

Example 4.1 (NIMO Winter 2013, Adapted)

Let ABC be a triangle with orthocenter H and let M be the midpoint of BC.
Denote by ωB the circle passing through B, H, and M , and denote by ωC the circle
passing through C, H, and M . Lines AB and AC meet ωB and ωC again at P and
Q, respectively. Rays PH and QH meet ωC and ωB again at R and S, respectively.
Prove that M , R, S are collinear.

This is just angle chasing. Unfortunately, the configurations when 4ABC is acute and
4ABC is obtuse look quite different from each other.

A

B C
M

H

P

Q

R

S

A

B C
M

H

P

Q

R

S

Follow along the proof in both diagrams, asking yourself why each equality is true.
The beauty of directed angles is that to write this proof, I only had to look at the first
diagram; it then works for the other diagram automatically.

Verbose Solution. Applying Miquel’s Theorem (in the exercises later), we find that
quadrilateral APHQ is cyclic. Also from Triangle Sum we have

]
(
HB,AB

)
+ ]

(
AB,AC

)
+ ]

(
AC,HB

)
= 0
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we derive that ]HBA + ]BAC = 90◦.
Taking these for granted, we can compute

]BPS = ]BHS Cyclic quads

= ]PHS + ]BHP Angle addition

= ]PHQ + ]BHP S, H, Q collinear

= ]PAQ + ]BHP Cyclic quads

= ]PAQ− (]HPB + ]PBH) Triangle Sum

= ]BAC − (]HPB + ]ABH) Collinearity

= ]BAC + ]BPH + ]HBA Negation

= 90◦ + ]BPH.

But
]BPS − ]BPH = ]BPS + ]HPB = ]HPS.

so we deduce that ]HPS = −90◦ = 90◦, hence ]HMS = 90◦ as well. In the same way,
]HMR = 90◦ as well. Hence ]HMS = ]HMR, so points M , R, S are collinear.

In an actual olympiad one need not be so explicit. In particular, you can omit the part
where I wrote out the explicit reasons for each step; I only provided this for reference.
Here is a second example (much harder) in which I will be much more succinct. See if
you can follow along the logic.

Example 4.2 (European Girl’s MO 2012, Problem 7)

Let ABC be an acute-angled triangle with circumcircle Γ and orthocenter H. Let K
be a point of Γ on the other side of BC from A. Let L be the reflection of K in the
line AB, and let M be the reflection of K in the line BC. Let E be the second point
of intersection of Γ with the circumcircle of triangle BLM . Show that the lines KH,
EM and BC are concurrent.

A

B C

H

HA

HC

K

M

L
E′ A

B
C

H

HA

HC

K

M
L

E′

Solution. Let HA and HC be the reflections of H across BC and BA; it is well-known that
these lie on Γ. Let E′ be the second intersection of line HAM with Γ. By construction,
lines E′M and HK concur on BC, and our goal is to show that B, L, E′, M are concyclic.

6



Evan Chen 6 Practice Problems

First, we claim that L, HC , and E′ are collinear. Due to the reflections,

]LHCB = −]KHB = ]MHAB = ]E′HAB = ]E′HCB

which proves the claim. Then

]LE′M = ]HCE
′HA = ]HCBHA = 2]ABC

(the last equality following from reflections; verify it yourself) and

]LBM = ]LBK + ]KBM = 2]ABK + 2]KBC = 2]ABC

so B, L, E′, M are concyclic. Hence E = E′ and we are done.

5 A Word of Warning

Never take half of a directed angle – since we are working modulo 180◦, taking half of an
angle doesn’t make sense.

6 Practice Problems

Here are some famous lemmas from olympiad geometry that you should know. They are
not hard to prove (in fact, they are all direct angle chasing) but they do have configuration
issues. See if you can solve them and then write a single proof which does not need to
consider different cases.

A

B CD

E
F

Y

A

B

C

D
X

A

B CD

E

F

X

Y

Problem 6.1 (Miquel’s Theorem). Let ABC be a triangle. Consider any points D, E,
F on lines BC, CA, AB (distinct from the vertices of ABC, but not necessarily in the
interiors of the sides). Prove that the circumcircles of triangles AEF , BFD, and CDE
intersect at a single point.

Problem 6.2 (Spiral Similarity Lemma). Two circles ω1 and ω2 meet at points X and
Y . A line through X intersects ω1 and ω2 again at A and B. A second line through X
intersects ω1 and ω2 again at C and D. Show that 4AY C ∼ 4BYD.

Problem 6.3 (Right Angles on Intouch Chord). Let ABC be a triangle whose incircle
touches the opposite sides at D, E, F . The angle bisectors of ∠B and ∠C meet line EF
at points X and Y . Prove that X and Y lie on the circle with diameter BC.
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7 Contest Practice

Some of the following problems are much more nontrivial; the last one is infamously
difficult. Directed angles will help clean up a solution but as stressed before will not
actually help you find the solution in the first place.

Problem 7.1 (Folklore). Let C1, C2, C3, C4 be four distinct circles. For i = 1, 2, 3, 4,
suppose that Ci and Ci+1 intersect at two distinct points Ai and Bi (here C5 = C1). Prove
that if A1A2A3A4 is cyclic then so is B1B2B3B4.

Problem 7.2 (Shortlist 2010/G1). Let ABC be an acute triangle with D,E, F the feet
of the altitudes lying on BC,CA,AB respectively. One of the intersection points of the
line EF and the circumcircle is P . The lines BP and DF meet at point Q. Prove that
AP = AQ.

Problem 7.3 (USAMO 2013/1). In triangle ABC, points P , Q, R lie on sides BC,
CA, AB, respectively. Let ωA, ωB , ωC denote the circumcircles of triangles AQR, BRP ,
CPQ, respectively. Given the fact that segment AP intersects ωA, ωB, ωC again at X,
Y , Z respectively, prove that Y X/XZ = BP/PC.

Problem 7.4 (Balkan 2009). Let MN be a line parallel to the side BC of a triangle
ABC, with M on side AB and N on side AC. The lines BN and CM intersect at point P .
The circumcircles of 4BMP and 4CNP meet again at Q. Prove that ∠BAQ = ∠CAP .

Problem 7.5 (USA TST 2007/1). Circles ω1 and ω2 meet at P and Q. Segments AC
and BD are chords of ω1 and ω2 respectively, such that lines AB and CD meet at P .
Lines BD and AC meet at X. Point Y lies on ω1 such that PY ‖ BD. Point Z lies on
ω2 such that PZ ‖ AC. Prove that points Q, X, Y , Z are collinear.

Problem 7.6. Let ABC be a triangle with circumcircle Γ. Let ` be a line in the plane,
and let `a, `b, `c be the lines obtained by reflecting ` in the lines BC, CA, and AB,
respectively. Let 4A′B′C ′ denote the triangle determined by the lines `a, `b, `c.

(a) (Iran 1995) Prove that the incenter of the 4A′B′C ′ lies on Γ.

(b) (IMO 2011/6) Assume ` is tangent to Γ. Show that the circumcircle 4A′B′C ′ is
tangent to the circle Γ.
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