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FOREWORD

The problems contained in this series have been collected over
many years with the aim of providing students and teachers
with material, the search for which would otherwise occupy much
valuable time. Hitherto this concentrated material has only
been accessible to the very restricted public able to read Serbian*.

I greatly welcome the appearance of the Tutorial Texts based
on my problem collection. Cooperation with colleagues in
Australia and theU.S.A. and theirinitiative have made it possible.
For the preparation of this Text, I wish to thank E. S. Barnes,
D. C. B. Marsh and J. R. M. Radok.

D. S. MrirriNoviC.

Belgrade, 23.111.1964.

* Zbornik matemati¢kih problema, Belgrade, Vol. I (1962), Vol. IT (1960),
Vol. IIT (1960), published in cooperation with D. Adamovi¢, V. Devidé,
D. Djokovi¢, D. Mihailovi¢, Z. Pop-Stojanovié, S. Predié, J. Ukar.
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INTRODUCTION

This tutorial text and problem collection is designed to intro-
duce the student, at undergraduate or senior high school level,
to the elementary properties of inequalities. A knowledge of
algebra, geometry and trigonometry, together with a first course
in calculus, provides a sufficient background for almost all the
material. It is hoped that, as a collection of problems, the book
will be a useful adjunct to regular course work, while the provision
of an introductory survey and numerous complete solutions
will give students an opportunity for independent study.

For ease of reference, the material has been roughly classified
according to subject matter or method of proof, although a
precise classification of inequalities appears to be virtually
impossible. For a careful development of the theory of inequali-
ties, the reader is referred to the first two monographs listed
below and to the comprehensive bibliographies given there.
Many of the problems given in this text are to be found in the
problem pages of periodicals such as the American Mathematical
Monthly which provides an abundant source of both elementary
and advanced problems.

G. H. Harpy, J. E. LittLEwoob, G. Porva: Inequalities, Cambridge
University Press, London, 1934.

E. F. BEcKENBACH — R. BELLMAN: Inequalities (Ergebnisse der Mathe-
matik), Julius Springer Verlag, Berlin, 1961.

E. F. BeEckENBACH — R. BELLMAN: An Introduction to Inequalities,
Random House New Mathematical Library, 1961.

N. D. KazarRINOFF: Analytic Inequalities, Holt-Rinehart and Winston,
New York, 1961.

N. D. KazariNorF: Geometric Inequalities, Wesleyan University Press
and Random House, 1961.

D. A. KrvzuanNovskir: Elements of the theory of Inmequalities, Moscow-
Leningrad, 1936.

G. L. NEvVIAZHSKIIL: [nequalities, Moscow, 1947.

P. P. KorovkiIN: Inequalities, Moscow-Leningrad, 1951.






MEAN VALUES 9

§ 0.1 Inequalities involving Mean Values

0.1.1 For every set of positive numbers A = {a,, ay, . . ., ,}:

] n
min (a,, a4y, . . ., @,) = ] ] 1
—_—t =+ .4 —
al g a,
=< (aya . . . a)H®
< atagt ... Ha,
- %
< (a12+a22—1— o —1—%2)1/2
= "
< max (a,, a4, . . ., @),
where
n

1s the harmonic mean of the numbers A

1 1 1
-+ — 4. =
a, a

@ n
(aray . .. a,)t" their geometric mean,
at+a+ ... +a . . .
* their arithmetic mean and
n
alta2+ ... a2\
( ) their root-mean-square.
n

1° Consider first the inequality
a+as+- ... +a,

"

A,

Il

> (0, . . . @) = G,. 1
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Proor 1. For » = 2, this inequality is seen to be true and can
be written in the form (4/a,—+/4,)% = 0. Assume that it is valid
for n =k, ie.,

4, =G,
By induction,

E—1A
4= Bt A M = (“k+1A§1})1/k =G.

\%

Thus, it follows that
Appr = 3(Apt4) = (4, A)2 = (GG = (G A

B+l es

3

1.e.,

E+1 A k—1\1/2k
Ak+1 = (GkilAk+1) !

>

whence
A Z Guy.©

This completes the inductive proof of the inequality (1).
On the basis of this proof, it is easy to show that equality holds
m (1) if and only if 4, =a,= ... = a,.
This result is obvious if » = 2. Assume that it holds for some
# = k = 2. From the above proof, we see that if 4,,, = G,,
then
A,=A4,4,=6G,, A =G.

Since 4, = G,, we have
)= Gy = ...= a,;
and since 4 = G, we have

O e el o o
k-1 ’

Uiy = Ay =
whence
Gy =By =...= ) = G-

Finally, (1) certainly holds with equality if all 4; are equal.
Thus our assertion is established by induction.

Proor 2. The validity of a statement P () can be established
by the method of regressive induction in the following manner:
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P(n) holds for infinitely many values of #;

P(n) implies P(n—1) for all » > 1.

Combine the methods of progressive and regressive induction 1.

It has just been seen that (1) holds for # = 2. Assume now
that for all positive numbers a,, a,, . . ., 4,, some of which may
be equal to each other, (1) holds for » = 2* (where % is some
natural number). \

Form the sum

a,+a,+ ... +a,

v

(v = 2F+1 = 2.2F = 2g3),

or

2 n . n

i (al—}—az—}— ...+a, n Ay Tt . 0. —|—a2n).

From the inequality

a,+a, —_
1—2—2 = \/azlaz2 (ay, a, > 0), (2)
we obtain
ﬁlﬁ (al—l—a2+ cevFa, X A1 Tzt - - —|—a2n)
2 ) n
- (al—}—a2—|— coo Tty Bty t .. —}—azn)%
= % % '

Using the assumption that the inequality (1) is valid for n = 2%,
the last inequality gives

atas+ ... Fa,,
2n

= {(@185 - - @)Y (A1 G - - - Gay) PR
= (a,8y . . . Ay,)Y*"

Thus, the relation (1) holds for every ne{2, 22, 23, .. .}. Assume
now that the inequality (1) has been proved for #, and replace
in it a, by (4 +ay+ . .. ~a,_,)/(1—1). Then

1 Alternatively, ascending and descending induction.
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a1 ta,+ ... +an—1—|—a1+a2+ e

n—1

7

a+agt ... —{—a,,_l)l/”

n—1

(3)

= (a1a2 R S
When the left-hand side is simplified this relation assumes the
form

a+axt- ... 4a,

n—1

ata,+ ... —}—an_l)l/”

= (a0 .. By 1/"(
Z (@ 00) "

whence

a,+a,+ ... Fa, \TU"
() @
and, finally,

a+a,+ ... +a,

n—1

= (@185 . . . @y o)D),

Thus it follows from the assumption of the truth of the relation
(1) for » that it also holds for n—1.
This completes the second proof of (1).

2° On the basis of the inequality (1) of 1°, we have for the
numbers 1/a,, 1/a,, . .., 1/a,,

1 1 1
Lo yrealel Ty
ay Ay a, n
This inequality becomes an equality if
4y =0y =...= G, (2
It follows from (1) that
i < (8,8 . .. a)V" (3)

11 1
—

a‘l “2 a,
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Consider now the relations:
(@ Fag+ ... a2 =al+ ... +a,?
+2(a ayt-aa3+ . .. +a,4a,), (4)
20,0; = a>+a? since (a;—a;)? = 0. (8)

Replacing 24,4, by @24 a,? on the right-hand side of the iden-
tity (4), we obtain the inequality

(@ +as+ ... +a,)? < nlad+alt+ ... +a2) (6)

which holds for all real a,. If all the a, are positive, it follows from
(6) that

a+apt .. e, = {nalPta?+ ... +a,2)}

whence .
aytayt ... ta, - (aﬁ—{—af—{— e -}—an2)1/2 ™)
n = n
It will now be shown that
. - n ®
in (a,d,, ..., a,) < .
m (al: 2 ’ n) = 1 1 )
—
“1 as an
Without loss of generality, suppose that
<y =a,=...=%a,, (9)
and hence
min (@,, 4, . . ., 4,) = 4.

Using (9), the inequality (8) becomes

a a
24+l
ag a

n

<

1
This inequality is valid, because, by (9),
aja, =1 (k=1,2,...,n).

Consequently, the inequality (8) has been proved.
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Next, consider the inequality

(a12+a22+ e +a?

7

1/2
) < max (@, @, . - ., &y). (10)

Again with the assumption (9), the inequality (10) becomes
(a12+a22+ e —Hz,,z)l/z§ .

7

whence
ai4a2+ ... +a,? = nal
This inequality is seen to hold, because, by (9),
a=a,(k=12,...,n).
Thus, the inequality (10) is valid.
If the g, are arbitrary real numbers, we have

n

. 1 1/2
min (Ia1|) I“zl: RS |an|) g (‘;’;Iglakz) é max(tall: [“2]: AR ] [anl)

0.1.2 Prove the inequality
min(al @y an) = a,+a,+ ... +a,

bbb T btb D,
ay, 4 Ay
= s e
max (bl, bzy :bn)

where by, by, . . ., b, are positive numbers.
If m is the smallest and M the largest of the numbers

a1/b1, axfbs, . . ., 4,0,
then

m<afb, <M, m<a)by, <M,...,m=<alb, <M,

whence it follows that

m ) b,

M=
fIA

_IA
R

n n n
ak MEbk) i'e') mézak/zbkéMx
k=1 k=1 k=1 | K=l

as was to be proved.
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0.1.3 Mean values are important in probability theory,
mathematical statistics, and the mathematical analysis of experi-
mental data.

§ 0.2 Bernoulli’s Inequality

If h> —1 and n is a natural number, then Bernoulli's in-
equality states that

(14+-A4)" = 1-+nh. (1)

Proor. Apply the method of mathematical induction. If » = 1,
the relation (1) holds as an equality. Suppose that the relation (1)
holds for » = k& (= 1), i.e. that

(1+h) = 1+Fh. (2)
Multiplying this inequality by 1+4 (> 0), we obtain
(1+h) = (14-A) (1 +kh) = 1+ (B+ 1) h+-kA?,
whence
(14-A)E1 = 1+ (k+1)A. (3)

Since (2) implies (3), the proof is essentially complete.
Next the generalized Bernoulli inequalities, required in differ-
ential calculus, will be established:

(14x)* > 14ax (—1 <x#0, a>1 or a <0), (4)
I+z) <ldaxr (—1 <2z +#0,0<a<l). (5)
In fact, using Taylor’s formula, we obtain

a(a—1)a?

(1+2)"—1—az = 5

(14-0z)*~> (0 < 6 < 1). (6)
Since, by assumption, 1+ 6z > 0, this gives

sgn {(1+x)*—1—ax} = sgn {a(a—1)} (x #0),

whence the'inequalilties (4) and (5) follow.
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§ 0.3 Chebychev’s Inequality
If
HhE=a=...Za,and b, =, =... 20

n

then Chebychev’s inequality states:

(En)(E 5 =t 5

v=1 % y=1
Proor 1. Let
Ya=da, Db=>0b, >ab=> a.b;
k=1 k=1 k=1
then
> (@ub,—a,b) =3 mab,—a,>b)=n3ab— Y a>b,
by p
> > @b, —ab,) =73 nab,—a,>b)=n>ab— 3 a>b.
s v v
Hence
nyab—Yadb=3%3>> (a a,b,+a,b,—a,b,)
pov
=322 (4,—a)(b,—0b)
gV
By (1),
(@,—ay)(b,~b,) =0 (u,v=1,2,...,n),
whence follows Chebychev’s inequality,
nyab—>a >b = 0.
If and only if
Gy =@ay=...=a, or by =b,=...=1b,,
the equality sign holds in (2).
Proor 2. Let
4 = 1’1: Ay—ay == 1’2: s By = pn’

by =gy, by—by = q5, ..+, by—by 1= Gn,
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with ,=0,¢9, =0 (v=2, 3, ..., n), whence (2) may be written
as

"2 (29)(3e) 2 (Ber1-9) (3 01
or
iégn[%—}—l—max (G 7)]1p:q, = = éz n+1—12)(n+1—75) p.q;.
S,ince

(n+1—i)(n+1—j) = [n+1—max (7, §)] [+ 1—min(s, 7)],

the last inequality becomes

3 [n+1—max (7, /)] [min(i, /)—1]p.g, = 0. (3)

#1l—max (s, 7) > 0, min(z, 1)—1> 0, %, ¢, =0

for 7, 1 = 2, 3, ..., n, the inequality (3) is obvious.
This second proof is due to D. Djokovic.

GENERALIZATION. If

0=, =0, = £, 002 ...50,,...

0§cl< <...=c¢,

then

Sa Ebu.EcgEab...c

n n n o n

ExampirE. If g, b, ¢, are positive numbers and if » is a natural
number, then

(a+b+c)" =< 3" a"+b"+c").

ReMARKs. 1I° From (3), it follows that equality holds in (2)
if and only if
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2° In the generalized Chebychev inequality, the conditions

0=a,0=b,...,0=c are essential. For instance, if ¢, = 1,
ay=3,b,=1b,=3, c;= —4, ¢, = —3, we have
a,+a, by-+b, c,+c¢ by ¢, +azb,¢
1+2 1+ 2 1+ 2=_14>_31/2=_111+ 222.
2 2 2 2

In many books (Cf., for instance, J. W. Archbold: Algebra, London
1958, pp. 51—52), the conclusions corresponding to 1° and 2° above are
incorrect. See also: C. V. Durell-A. Robson: Advanced Algebra, vol. 111,
London 1948, pp. 370—371.

§ 0.4 Abel’s Inequality

If {a,, as,...,a,} and {b;, 0y,...,0,} B, =0y = ... =b, = 0)
are two sets of real numbers and if M and m, respectively, are
the maximum and minimum of the numbers

k
S1)Sas+ v o, Sy (sk = z av) s
y=1
then
mby = 4,0, a0+ . . . +a,b, = Mb,.
Proor. The sum

a,by+ a0+ . .. +a,b, (E Ea,b,,)

v=1

may be written in the form

> a,b, = 81534 (S5—81)0s+ .+ (Sp—5,_1)0,
p=1
= 5;(by—b3)+52(b2—~b3) + . .. +5p-1(by1—0,) +5,0,.

Since M = max(sy, Sy, . . -, S5), 1.€.,
sléMrszéM:"':snng
and, by hypothesis,

by—by = 0, b,—by = 0,..., b, y—b, = 0,5, =0, (1)

we have the sequence of relations

$1(by—by) = M (by—bs), s2(by—bs) = M(by—b3), - . .
Sp—1 (bn——l_bn) = M(bn—l_bn): snbn = Mbn
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Adding these expressions we obtain
Sl(bl—b2)+82(b2—b3)+ e +sn—1(bn—1_bn)+snbn g Mbl
Consequently, one arrives at the inequality
>a,b, =< Mb,. (2)
y=]
Since m = min(s,, Sy, . . ., S,), it follows that m <s,, ...,
m = s,, and so from (1),

m(bl—bz) =<—— sl(bl_bz)’ ] m(bn—-l_bn) = sn—l(bn—l_—bn)l
mb, = s,b,.

Hence, summing once again, we obtain

mby < 3 a,b,. (3)

v=1

This result completes the proof of the double inequality
mby = a,b, < Mb,,
r=1

known as Abel’s inequality.

§ 0.5 The Cauchy-Schwarz-Buniakowski Inequality
Consider the two sets of real numbers
A={ay,ay ...,0,}, B={b, by, ..., 0,}
and form the polynomial in x:
(@ x+0y)2 4 (agx4-05)2+ . . . +(a,xc+0,)3% (1)
which is equal to
(a2+a2+ ... +a,2)x?4-2(a, b+ a0+ . .. +a,b,)x
+ (02 +02+ . .. +0,7). (2)

Since the quadratic trinomial (2) is the sum of squares of real
numbers, its value is non-negative for all values of the variable z;
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hence
(@2+Fat+ ... +a.2) (B2+b24 ... + b2
—(a by +a30,+ ... +a,0,)2 =0, (3)

ie.,

which is known as the Cauchy-Schwarz-Buniakowski inequality.
Equalityholds in (4) if and only if a; = #b,, a3 = 7b,,... > a, =
7b,, where 7 is a constant of proportionality.

§ 0.6 Young’s Inequality

Let f(x) be a continuous function on the interval [0, ¢] (¢ > 0)
which is strictly increasing over this interval. Further assume that
7(0) =0, ae[0,c] and b &[0, f(c)].

y

Fig. 1.

The area of the curvilinear triangle O4 P (Fig. 1) is given by the
integral [§ f(z)dx, while the area of ORB is given by [} f~!(x)dx,
where f~1(z) is the inverse of f(z). On the basis of Figs. 1 and 2,
we deduce the inequality

[ 1w+ [ P z a0, )
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known as Young’s inequality.
If and only if b = f(a), equality will hold.

y

0] A C x

Fig. 2

ExamPLES. I° The function f(z) = 2*1(p > 1) for all z (> 0)
satisfies the conditions under which Young’s inequality is valid.
In this case, the inequality (1) becomes

[
0 0

whence

i“p +£__lbp/(p—1) > gb.
p P

This inequality is usually written in the form

1 1 1 1
—a? + b =>aqb (a,bgo, >1,_4+—=1). 2
P q P y2 q @)

2° The function log(l+z) also satisfies the conditions of
Young’s inequality.
In this case, the inequality (1) becomes

a b
f log (1+4-x)dx —|—f (*—1)dx = ab,
0 0
whence

(1+a) log (1+a)— (1 +a)+ (e2—b) = ab (a, b = 0). (3)
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3° Starting from the inequality (2), we may derive Holder’s
inequality
n I/nf 7 1/q n
(z ak”) ( s b,c«) > S ab,, )
k=1 k=1 k=1
where

b, = 0,90 >1,1/p+1jg=1.
In (2), replace 4 and b by

n 1/p n 1/q
a:av/(zakﬁ) , b=by/(Zbk‘1)
k=1 k=1

1 arf 1 b - a,b,

n P n /p/ " 1/(1'
P3ar T 3ne (Sar)(30)
k=1 k=1 k=1

k=1

to obtain

Summing now over » from 1 to # we obtain

a, b
1o AN
b q= n 1yp/ n 1/¢’
(202) (2 20)
k=1

k=1

whence Holder’s inequality follows directly, because one may set
1/p+1jg = 1.
Equality holds in (4) if
b,=all »=12,...,n).
4° Holder’s inequality (4) may be used to derive Minkowski’s

inequality

(S @) = (Z02) "+ (307)" > vt 200

k=1 fo= k=1
(5)

Since

(@ +0y)? = ag (@ +0,)P 71+ by (@ -0,)7 7,
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we have (writing > for >7% ;)
> (ar+0)" = ap (@, +5,)" + > by (a4-0,)7 (6)

We now apply Hélder’s inequality to each of the sums on the
right-hand side obtaining

S @y (@ b)7 = (S a2) (S (4 +by) WD),
S by (@07 < (3 0,2)H (D (a,+by) @)/,

Inserting these inequalities in (6), and noting that g(p—1) = »,
we obtain

D (@ +0)? = [(Za”)V? + (2 0°)H7] (X (“k“‘bk)p)l/q'
Division of this inequality by (X (a,+b;)?)Y? now gives (5).
Notk. If p = 1, (5) is an equality. If, however, 0 << p < 1, the
inequality sign in (5) is reversed.
§ 0.7 Jensen’s Inequality

DEFINITION: A function f(z), defined on an interval [e, 8], is
said to be convex on this interval if for every a, b € [«, §]

/() = sw+ron (1)

TaeoREM: For every function f(x), convex on the interval [, ],
1 n

(P RERE @

where a, € (o, B] and n s a natural number.

PrOOF. Assume that the inequality (2) is valid for some natural
number # = 2%, ie., that

f(u1—|—a2+ - —|—an) = Fla)+fa)+ ... +f(a,)

n n

(= 2%). (3)

Consider now
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f(“1+“2+ ce +“2n) (20 = 2++1)
2n '

ie.,

n n
2

a+a,+ ... +a, o+ Api1+ Aot - o0+,

Using the definition (1) of a convex function, and the relation
(3), we obtain

EaE WG SRE

y=1 =1
2 2

S /) + 2 /@)
2n

Since the inequality (2) holds for # = 2*+! whenever it holds
for n = 2*, and since it holds for # == 2 (i.e., for £ = 1), one
arrives at the conclusion that it is valid for every %k eN.
Thus, the inequality (2) is valid for infinitely many numbers
n e {2, 22 23 | }

Next it will be shown that the assumption that the inequality
(2) is valid for some # implies its validity for n—1.

Assume (2) to be valid for some natural number # and for
every a, € [, 8]. In (2), replace the variable a, by (a,+a,+ ...+
a,_4)/(n—1), whence (2) becomes

f(a1+u2+ ceeFa, (@ tat .. —}—an_l)/(n——l))

n

f@a)+f@s)+ ... +f(-) _I_f(“1+a2+ - —|—an_1)

n—1

IIA

(4)

n
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The left-hand side of this inequality can now be rewritten as

f(u1—|—a2—|— A —|—un_1)

n—1

whence (4) assumes the form

f(al+“2+ cee Tty

n-—~1

) <= (i) ) + - )

n if(al—l—az-{- Ca -}—an_l),
n n—1

and it follows that
f(“1+“2+ e +“n—1) - Ha)+f(a)+ . .. +f(“n—1)_

n—1 - n—1

Accordingly, if (2) is valid for #, it is also valid for #—1.
Thus, under the above conditions, the inequality (2) has been
proved by the method of regressive induction.

GEOMETRIC INTERPRETATION.

Consider #,, ®,, 23 € [«, ], where z; << x, << z;, and the
corresponding functional values f(z,), f(z,), f(x;). The area of the
triangle M, M,M, with coordinates My(ay, f(x,)), My(x,, f(23)),
Mg(s, f(xs)) is given by + P, where

zy flxy) 1
P=3%iz, flz,) 1
g flxg) 1

The function shown in Fig. 3 is convex, whence P > 0, while
the function in Fig. 4 is concave and P < 0.

S(x) fx)
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The condition P > 0 corresponds to

zy f(®) 1
Lo f(xz) 1]>0,
xy flxs) 1
1.e.,
(x3—25) (1) — (3—21) (%) - (2 —2)f(23) > O,
ie.,
o) < = ) = )

since, by assumption, xg—x; > 0.
M a,=a, x;=20, x, = }(a+0b) (a, be [« B]), the preceding
inequality becomes

1(57) < 0@+,

because
i P e W
T3—y X3y .
In a similar manner, it may be shown that concave functions
(Fig. 4) satisfy the inequality

1(557) = 4000 +70).

For a convex function, points on a chord lie above the corre-
sponding points on the arc of the curve y = f(z) (see Fig. 5),

X) S

Fig. 5 Fig. 6

while for a concave function points on a chord lie below the
corresponding points on the arc of the curve (see Fig. 8).
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ExamprLEs. 1° Consider the function f(z) = z*, where % is a
natural number > 1, and show, first of all, that it is convex
for = 0.

For k= 2,
x 2,242,222, 2
f(xr; 2) _n 24 172 (21, 5 € [0, +00)).

Since 2z, %, =< z,2+x,%, the preceding inequality implies that

/ (751+x2) - 2,2 +2,°

= ’

2 )= 2
ie.,
() s = (1)
2 2

This shows that the function 2* is convex for x == 0 and % = 2.
Suppose now that the function z*(x = 0) is convex for

k = r (r any positive integer), i.e.,

(x1+x2) T ey

o) Lt (2)

Multiplication by the positive quantity }(x,+,) now brings
the inequality (2) into the form

(x1 —|—x2) T -« A I M S N P TN

2 = 4 ) (3)

It follows from the identity

By Xy 21" (X — %) (21 —5") = 2 T 2"
that i
" Lyt Ty = 2y,

because x;—, and x;"—x,” have the same sign.
Introducing this result into (3), we obtain

(x1+x2)r+1 - x1r+1+x2r+1

2 - 2
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This completes the proof that the function z* (& a natural
number > 1,z = 0) is convex.

On the basis of our theorem on convex functions, we may
write the inequality

(x1+x2+ .. —|—xn>’°£ R R T L

n n

where equality holds for ; =z, = ... = =,.

2° We will show that on the interval [0, a] the function
f(x) = sin z 15 concave.

For

flay)+F(x,) — sin x; +-sin x,
2 o 2
which may be written in the form
Hzey) +£(22) — sin T+, cos xl_x2;
2 2 2

(O g L1, Ly ——<: 7'6),

it follows that

1)+ (@) < sin x1+x2’
2 2
because for the range of z; and z, under consideration
0 < cos}(z,—x,) = 1.
Using this fact and the properties of concave functions, we arrive
at the relation

1 » |
— Y sinz, < sin (—va) 0=z, ..., 2, = 7@),
7 y=1 7 oy=1

where equality holds if and only if ; =2, = ... = z,.

SUFFICIENT CONDITIONS FOR CONVEXITY. The following theo-
rem permits one to determine readily whether a function is
convex (concave) over some interval.

THEOREM. If the function f(x) has a second derivative f'(x)
over the interval [a, B] which satisfies the inequality

'@ =20 (welw f]), (1)

then the fumction f(x) is convex over the interval [o, f].
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ProoF. Let z; and z, be any two points on the interval [a, £].
Applying Taylor’s formula in the neighbourhood of the point
1(x,+=,), we obtain

= (5= 1)

+ —12—(x1— xl—;—xz)zf”(f) {5 € (xl, x1+x2)} » (2)

2
=57 o= ()

1 $1+$2 2 17 a"‘1—‘_:1:2 \
5222 rw e (M w)). @
From (2) and (3), it follows that

f(xl);f(xz — f(x1+”z)+116( ~z )20+ W] (@)

It follows from (1) that f’(£) = 0 and /" () = 0, whence we
conclude from (4) that

flon) Hees) f(x-;x) (¢ < 2,2, < B),

i.e., that the function f(x) is convex on the interval [«, 8], as was
to be proved.

Since f(z) is concave if and only if —f(z) is convex, we deduce
that, if ///(z) < 0 over the interval [«, 8], then the function f(x)
is concave over this interval.

ExaMpLEs. 1° Since (2*)” = k(k—1)a*2 = 0 for £ =1 and
& = 0, the function z*(# = 1) is convex for x = 0.

2° Since (sin z)” = — sinz =< 0 for z € [0, #], the function
sin # is concave over the interval [0, &].
3° Since (log )" = —1/x? < 0 for z > 0, log z is concave on

(0, «o). It follows therefore that, ifa, > 0 (. =1,...,n),

log ( 2 a,c) =— z log a,, = log (@445 . . . &,)V/"
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Since log « is increasing, this gives

_ atas+ ... +a,

”

A, = (may...a )" =G

ne

This is an alternative proof of the inequality of the arithmetic
and geometric means (§ 0.1).

§ 0.8 The Fejér-Jackson Inequality

L. Vietoris ! has proved the inequalities:

n

Sasinkr >0, Yacoskr>0 (0<z<na), (1)
k=1 =0

provided that

ay=a,=...=2a, >0, (2)
2k—1 L
Ay = Z—k -y (1 =k =dn). (3)

If ap=1and a, = 1/k (k=1, 2, ..., n), the conditions (2)
and (3) are fulfilled and the inequalities (1) become

r 1
>—sinkx>0 (0<zx<a), (4)
i1k
LA |
1+Z—Ecoskx>0 0 <z <a). (5)
k=1

The inequality (4) is known as the Fejér-Jackson inequality.

§ 0.9 Jordan’s Inequality

Since sec2§ = 1 for 0 < 6 < }m, we have, integrating over
[0, 61,
tan 6 = 6for 0 < 6 < im.

R Uber das Vorzeichen gewisser trigonometrischer Summen (Sifz. Ber.
Ost. Ak. Wiss., Bd. 167, 1958, S. 125—135; ~ Anzeiger Ost. Ak. Wiss.,
1959, S. 192—193).
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Hence

d [sin 6 6
(Sm)=cos (0—tan 6) < 0 for 0 < 6 < .

ao\ ¢ 6
Thus, sin 6/6 is continuous and decreasing on (0, =], whence
in 6 2
s =— for 0 < 0= Ia.
6 7

This inequality is known as Jordan's inequality. Equality holds
only when 6 = in.
Combining this with the inequality

sinf =<6 (0 =0),
we deduce that
sin 6
7]

2
— = =<1 for 0] £ In.
T

§ 0.10 Some Integral Inequalities

The inequalities of Cauchy-Schwarz-Buniakowski and Hdélder
(§§ 0.5, 0.6) have integral analogues, which may be proved by
similar arguments. All functions occurring here are assumed to be
integrable over an interval [«, 8].

SCHWARZ’S INEQUALITY

f}‘ x) de

Proor. For all real ¢,

(t(@)+g(@))* = 0.

<f e |2dxf g (2) ]2 da. (1)

and so

B
[t +ewprw =0

tzfj 2 x) dx+2t£gf(x) dx—{—f z)de = 0, all ¢.

This quadratic in ¢ therefore has a non-negative discriminant,
from which (1) follows immediately.
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HOLDPER'S INEQUALITY
| reswa = | [ e [ leweas

(¢>>1,%+%=1). (2)

Proor. We again use the inequality (2) of § 0.6, namely,

1 1 1 1
ab £ —a? 1+ — b (a,bgo, >1,——}——=1). 3
y4 q P P g )

= fvmlpdx)m, B=( flg(w)lqdw)m

and replace a, b in (3) by |f(x)|/4, | g(x)|/B, respectively. We
obtain

Set

1

1p e )I_M,,lf( )I”+;§qlg( )M
whence by integration
1 6 11
13) @@= p+;§q =t =L
Thus
<f lf(x)g(x)|de < AB,

and this is Holder’s Inequality (2).

§ 0.11 Some Inequalities for symmetric functions !
1. Consider the function
@) = (x—a)?(@—b)* (x—c),
where a, b, ¢, p (=1),9(=1), (= 1) are real constants and
@ % b = ¢ #£a, and its first derivative

' D. S. Mitrinovié: O nekim nejednakostima, Publikacije Elektro-
tehmickog fakulteta u Beogradu, ser. Matematika i fizika, No. 29 (1959),
1—4.
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f@) = (@—a)™ @=b)z—e) {(p+q+7)2*
—[p(b+c)+g(c+a)+7(a+b)]x+ (pbc+gca+rabd)}.

Without loss of generality, it may be assumed that a < & < ¢.
The function f(x) has the three zeros x =a, x =5, v = c.
By Rolle’s Theorem, the derivative has a zero between a4 and &:

1

= W{i)(b—l—C)—l—q(c—l—d)—l—f(“-l-b)

—[(p(b-+¢)+g(e-+a)+7(a+D))?
—4(p4q+7)(pbc+qca+rad)]42}.
Another zero occurs between b and c:

e (p(o+e)Lg(cta)tr(atb)

2(p+q+7)
+[(B+e)+g(c+a)+7(a+0))?
—4(p+g-+7) (pbc+gca+-rab) ]2},

Since these Zeros of the derivative, which lie in the intervals
(a, b) and (b, ¢), are real and distinct, we have

[p(o+c)+q(c+a)+r(atb)]2—4(p+q+7) (pbc+qcat-rad) >
We also obtain the inequality
min(a, b, ¢) < « << med(a, b, ¢) < f < max(a, b, ¢),

where med (a, b, ¢) denotes that one of the numbers a, b, ¢ which
lies between max(a, b, ¢) and min(a, b, c).
2. Consider the function
g(®) = (x—a)(@—0)(x—c)(x—d)
= 2t— (3 a)x*+ (D, ab)x?— (3, abc)r+-abed,

where a, b, ¢, d are distinct real numbers, and its first derivative
g (x) —3(3 a)x*+2(3 ab)x—> abe,

where > a, > ab, Z abc are the elementary symmetric functions
of the variables g4, b, ¢, d of degrees 1, 2, 3, respectively. All three
zeros of the third order polynomial g’ (x) are realand distinct. The
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condition that all three zeros of a polynomial
ayx343a;, 22 4-3a, x4 ag
are real and distinct is G®4-4H3 < 0, where
H = aya,—a?, G = ay2a;—3aya,a,+2a2.
For the above function H and G are found to be
H=§3a-(Sap,
G = —163 abc+8(3 a)(3> ab)—2(3 a)d.

As a result we find the inequality

27[8 S abo—4(3. a) (S ab)+ (3 @) P+ [83 ab—3(S a)7]° < 0,
or

108(3 abc)2—9(3 ab)?(> a)2—108 > a > ab > abc

+27(3 a)® Y abc+4-32(3, ab)? < 0.

Hence we arrive at the following inequalities:

1° If 3 a =0, then 27(3 abc)?+8(3 ab)® < 0.

2° If 3 ab=0, then 4(3 abc)?+ (3 a)® Y abc < 0.

3° If 3 abc = 0, then 32 Y ab—9(3 a)? < 0.

3. Applying this procedure for forming inequalities to the
function

hiz) = (x—a)? (x—0)? (x—c)" (x—d)*,

where a, b, ¢, d are real, distinct numbers, p =1, ¢ = 1,7 =1
s = 1, one finds an inequality which contains the preceding

inequality as a special case.
The first derivative of the function k() is

W(x) = (x—a)* Y x—b)" Y r—c)  (x—d)*?
X {p(x—0)(@—c)(@—a)+q(x—c)(x—a)(@—a)
+7(x—d) (x—a)(@—0b)+s(x—a)(x—b) (x—c)},

or
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W) = (x—a)*(x—0b)*(x—c)Hax—d)*!

X {(p-+g-+r-+8)a8—[p(b-Fo-td)+q(c+d-+a)+r(d+a+b)
+s(a+-b4-c) ]z [p(cd+db+bc) +q(da+-ac+cd)
+7(ab4-bd-+da)—+-s(bc+ca+ab)lx
— (pbcd+-qcda+-rdab--sabc)}.

The third order polynomial P(x) = a,x®-+3a,22+3a,x+a,

contained within the braces has three real, distinct zeros, and
hence

G2+ 4H3 < 0, (1)

where H = aga,—a.% G = ag2a;—3aya,a,+2a,5.
It follows from this that

ay = p+-gq-+7+s,
—3a; = p(b+c+d)+q(c+d+a)+r(@+a+t-b)+s(a+b+-c),
3ay, = p(cd+db+bc)+q(da-+ac+cd)+r(ab+bd-da)

+-s{bc+ca-+abd),
—ay = pbed-+qcda-+rdab--sabe.

For instance, if
p(b+c+d)+q(c+d+a)+r(@d4ad-b)+s(a+-b+c) =0,
the condition (1) becomes

4ala+agta® < 0,
whence

4a,3+aqa5® < 0, because ay = p+q-+47+s > 0,
and
4[p(cd+db+-bc)+q(da+ ac+cd)+r(ab+bd+da)+s(bc+ca+ab)]?
—27(p+-q+7+s) (pbed+qgedatrdab+-sabc)? < 0.

If the zeros of the polynomial P(z) are denoted by x,, x,, %3
(x, < z, << x3) and we assume that

a<<b<c<d,

we have the inequalities
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a <2, <<b<wy<<c<wg<d,

where x;, ®,, x5 are functions of the parameters 4, ¢,7, s, a, b, ¢, d
which may be determined by Cardan’s formulae.

§ 1. Elementary Inequalities
1.1 Prove the inequality
(n)2 < RI(2n—F)!,
where # and & (< %) are natural numbers.
Proor. If the given inequality is divided by n!k!, we obtain
nn—1) ... (k+1) < (n4-1)(n42) ... (2n—F).

This inequality is obvious, for the products on the left- and
right-hand sides contain the same number of factors and each
factor on the left-hand side is less than each factor on the right-
hand side.

1.2 Prove that
fx) = 22034322 — 12047 > 0,
if > 1. For which values of x is f(x) < 0?
Hint. Express f(x) as a polynomial in (z—1).
1.3 Prove the inequality
(2k)! < 22¢(k1)2  (k a natural number). (1)

MetHOD 1. For % = 1, this inequality is valid. Consider any
k for which (1) holds. If the inequality

(2k+1)(2k+2) < 22(k4+1)2 (k=1) 2)
is true, it follows from (1) and (2) that
(2k42)! < 2%+2{(k4-1)1}2 (8)

The validity of (2) may be established without difficulty, for
it is equivalent to the inequality
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0 << 242
which holds for 2> —1. Thus an inductive proof is easily
constructed.

MeTHOD 2. Sincel
(2R)! = (2R)11(2E—1) 11, 22¢(R1)2 = {(2k)!1}2,

the given inequality may be written in the form

(2k)!! H
(E—1)11 55 2v—1
This last inequality is obvious, because
2y

>1 (v=12,...,k).

1.4 Prove the inequality
a0l =< 27 (Jal*+[0]?) (p =1).
Proor. Without loss of generality, suppose that |a| < |d].
Then
la+0] = 28],
whence
la+0l? = 2°[0|” = 2°(ja|”+b]?).
1.5 If a > b > 0, prove the inequality
f/;—f/g< Ja—b (n a natural number > 1). (1)

SoLUTION 1. Setting a—b = ¢ > 0, inequality (1) may be
rewritten

St < Yo+ (2)
Assume that the inequality (2) does not hold for some &, ¢
(b, ¢ > 0), i.e., that
Jot-o = Jb+e. (3)
Then
Wote) = {o+Je)n,

whence

P ull = n(n—2) (n—4) .. ., where the last factor is 1 or 2.
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b+c>b+c+z( ) (/B ()
and

O>Z()\/b )=t (). (4)

Thus, assuming (3) to be true, we are led to the false relation
(4). Accordingly, the inequality (1) holds subject to the stated
assumptions regarding the parameters #, a, b.

(This solution is due to D. Djokovid.)

SoLuTioN 2. Consider the function

f@) =a/"—(@x—1)Y" (n>1,2=1).
Then
nf' () = 2" 1—(z—1)V"1 <0 (x> 1).

Therefore f(x) ecreases for x > 1. Hence, since f(1) = 1, we
have f(z) <1 for z > 1, ie,

Zlr—1 < (@—1)V" (x> 1). (5)

The inequality (5) is satisfied for = = a/b > 1, because
a > b > 0. Therefore, setting x = a/b, we have

al/n ) a ll/n
G =G

al/"—pl" < (a—b)l",

ie.,

as was to be proved.
1.6 If a > 5> 0, then
Var4k—vVbpkt < a—b. (1)

Prove this inequality and find a bound for

f/a"—}—k”—f/b"—}—k" (n a natural number, £ = 0,a > b > 0).

Moreover, how must the inequality (1) be modified when a and
b are arbitrary real numbers?
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SoLuTION. Start with the identity
(x_y) (xn—1+xn—2y+ . +xyn—2+yn—1) — xn___yn (2)

and set

&= ar+k", y = Jb"+ k.

Since * = a and y = b (k= 0) and a > b > 0, we obtain
from (2)

(ar -k —Jbr -k (@m 1 a2b4- . . b abm2bml) < gn—bm

If the left- and right-hand members of the last inequality are
divided by the positive number

arl4-g"2h4 ... Fab" 24 pn 1,

we obtain

Jar+kr—J bk < a—b. (3)
For n = 2, the inequality (3) becomes
Var+r— Vg < a—b.

The inequality holds for 2 = b = 0, while £ may be an arbitrary
real number (positive, negative or zero).
If a, b, k are any arbitrary real numbers, then

|Var+ k2 — V222 < ||a]—|b]|.
(This solution is due to D. Djokovié.)

1.7 1If a, b, ¢, d are real numbers and if
ad—bc =1, (1)
prove that F = a?4-b24-c24-d?+ac+bd > 1.
SoruTioN. The expression E may be written in the form
E = 143[(a+c)2 4 (a—a)2 4 (b+d) 2+ (b+c)?).
The expression in brackets vanishes if and only if
at+c=0,a—d=0,b4+d=0,b4+c =0, (2)
ie., if a = b = ¢ = d = 0. But if this holds, (1) is not satisfied.



40 ELEMENTARY INEQUALITIES

Therefore E > 1 for all real a, b, ¢, d satisfying (1). (See 1.23).
1.8 Solve the pair of inequalities

20— 29—
xy<0’ Y—x

= <0 (z, y £ 0).

SoLUTION. Setting x/y = z, the given inequalities become
2
22—1 <0, ——1<0.
z

It follows from the first of these inequalities that
#<3, (1)
and from the second that
z2<0orz>2 2)

It follows from (1) and (2) that the given inequalities are
both satisfied only if z < 0, i.e., if z and y have opposite signs.

1.9 Solve graphically the inequality
|z —1| = a (& = 0).
1.10 Show that for all a
f(a) = cos 3a-+4 cos 2a+4-8 cos a+5 = 0.

SOLUTION. f(a) = 4 cos® a+8 cos? a+5 cos a+1
= (2 cos a+1)% (cos a+1) = (Va)f(a) = 0.

1.11 Prove the inequality
Yty < MLyt (£ Y,y > 0;m, 0 > 0).
Hint. Consider the expression
Zmtt— gyt — gty Y™, e, (@™ —y™) (" —y").
1.12 Prove the inequality
x4y < a?+1(x £ 1; > 0; » a natural number),

and hence the inequality
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1 1
a1 <"+ — (x # 1; 2 > 0; » a natural number).
x" x

~1

Hint. Consider the product (x**!—1)(@—1). — See the
preceding problem.

1.13 Prove that if a2+52 = ¢2+d? = 1, then
lac+bd| < 1.
HiNT. Write
a=-cosxz, b=sinx, c=cosy, d=-siny.

1.14 Given the function

f@) = o+1log 7, (1)
find the values of # and % for which the inequality
F(x, h) = fl@+h)+fx—h)—2f(x) <O (2)

holds.

Sovvution. The function f(z) is defined for x > 0, and for
x>0, x+h>0,2—h >0,
F(x, h) = log(x+h)+log(x—h)—2 log x.
Since
x2__h2

3
x2

F(x, h) =log

the inequality (2) holds for 0 < |A] < .
1.15 Prove the inequalities

f(2z) > flx) > f(—x) > [(—2=) (x> 0),
f(2x)—f(—2x) > 2{f(x)—f(—2)} (&> 0),

where f(x) = (a®*—1)jz (@ > 1).
What happens if z < 0?

1.16 Prove the inequality
Va2—b24+V2ab—*>a (0 <b < a). (1)
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HiNT. Assume that the relation (1) does not hold, i.e., that
for some a, b (0 << b < a)

Va2—b2+42ab—b% < a.

1.17 Prove the inequality
at+b—(2—V2)Vab < Var+b® (a, b= 0). 1)

SoLUTION. Suppose that (1) does not hold, but that for some
a,b(a,bz=0)

at+b—(2—V2)Vab > Va2t (= 0). )
Taking the square of (2) leads to
2ab— (a+b)Vab > 0
which implies (since, from (2), 4 # 0 and b # 0)
4a2b* > (a-+b)%ab <> 4ab > (a10b)2?

ie.,
0> (a—b)2. (3)

This relation does not hold for any values of a, b, Hence it
follows that (1) is always true.

1.18 Prove the inequality

a
l—i—cotagcotg (0 < a<a).

a
SOLUTION. cot 5 cota = coseca = 1.

1.19 Let
|x—al+|y—b] <& (a, b real; ¢ > 0).
Does it then follow that
jay—abl < (lal-+[5+¢)e?
1.20 For what values of x is

lax+b] <c (a % 0,c>0)?
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ANSWER.
—b b
E——>oc>—i (a > 0),
a a
b —b
—i>x>c— (@ < 0).
a a

1.21 For what values of x is

ale]+1

X

< 1?

ANSWER.

1 1
—— <r<0orze>— (a<—1),
l14-a l—a

x<0orax>% (@ = —1),
x <0 or x>1—i—a (—1 <a<<41),
x <0 (@ = 1).
122 Let
fla, b, ¢, d) = (a—b)2+ (b—c)*+ (c—d)*+ (d—a)2
If a < b < c<d, prove that
fla,c b, d) > fla, bc,d) > fla, b, d,c)
HinT. Begin by considering the differences
fla, b,¢c,dy—f(a, b, 4d,c),
fla, ¢, b,d)—f(a, b, c, d).
Generalise to the case
f@a, b, c, d, e)= (a—b)2+ (b—c)2+ (c—d)2+ (A—e)*+ (¢e—a)?,
where a < b<c<d <e.
Also treat the case
Hay, ay, .. ) a,) = (2—a5)*+ (a3 —ag)?

+ ... —I_(an—l__an)z_*— (an_al)z'
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1.23 Prove the inequality

S = @t pr et b @2 tactbd = V3, (1)

where a, b, ¢, d are real and ad—bc = 1.

SoruTtioN. The inequality (1) follows immediately from the
identity

. c ad ~\? c a\?

In (1), equality holds if
— _ 9 _
= 3V3, b=——g\/3, c=0 and d=—36—l\/3.

1.24 Find a natural number N such that

o N 1
0.02. 1
g —1—%3 n=1 M/—|—7L3 < ( )

SoLuTioN. We must choose N so that

o

< 0.02.

RN — 3
n=N+41 17

A Cauchy approximation of the sum of the series Yo, 1/(n4-n%)
by an integral gives

+0 dp +® /1
el

x oo
= log [\/902+1:\N

1 1
= 3 log (1+]v2).

Since log(14+x) < x (x > 0), we have

1

1
1
RN<210g(1+N§) <§Z—\72
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Hence (1) holds if N satisfies the inequality

Thus, N = 5 suffices.

1.25 Prove or disprove the following inequalities:

1°: [a]+4[b] = [a+0] < [a]4-[B] 41,

2°: [a][b] < [ab] < [a][b]+[a]+ 8],

3°: [Va] = [VIa]],

£ [Va < n < [VaP+2[Val,

5% [VnP < n < [VaP4-3[VnP+3[Vnl.
(In 1° and 2°, @, b are real numbers, in 3°, 2 = 0, in 4°, n =
0,1,2,..., in 5° % is integral).

1.26 1If a,b,t are positive numbers, show that at+b/t = 2/ ab.

1.27 By graphical methods, estimate the solutions of the
inequality
\/x—|—\/x——1 > \/x—l—l.

1.28 Show that the number
a--kb
T 11k
lies between a and b.

(@, b real; £ > 0)

1.29 Determine the region of the zy-plane in which the point
(z, y) must lie in order that its coordinates satisfy the inequality

(x®—4xy)/ (x2+ 3wy +2y*) < 0.
1.30 Find the region of the plane in a Cartesian coordinate
system whose points (x, y) satisfy the condition

lle4-a|—ly—all <a (a > 0).
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HiINT. Possible cases are

1°: z4+a>0,y—a > 0,
2°: x+a>0,y—a <0, (1)
3°: x4+a <0, y—a >0,
4°: x+a < 0,y—a < 0,

corresponding to the set of inequalities

1°: —a < x—y+2a < a,

2% —a < 2ty < a, @)
3% —a<axty <a,

4°; —a < x—y-+2a < a.

Is the desired region just the interior of the square in Fig. 77

y
3a

-3

0 \ p
/ \ A

13 [}
L]
Fig. 7

1.31 Determine graphically the solutions of jx+1|+|y—2| =1.

1.32 Show that if (1) a =1, (2) btc<atl, (3) b=,
then (4) b < a.

Proor 1. Suppose that (4) is false, so that
a < b. (5)
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From (2) and (5) it follows that

btc < b+1
or

¢ < L (6)
From (3) and (5) we find that a = ¢ and, by (6),
a<=c<l=a<l,

which contradicts (1). Thus, the inequality (4) holds under the
conditions (1), (2), (3).

Proor 2. By the condition (3), one has also
2b < bt-c.
By (2) and the preceding inequality, one finds

2b < a+1.
By (1) and this inequality

2h < 2a = b < a,
which is the desired result.

1.33 Show that if x is real, the function 4x(l—x)/(14x)2
cannot assume values greater than 1/2.

1.34 For what value or values of a is the condition
(e*+ax+1)/(x*+4x+8) < 8

satisfied for all real x?

1.35 Determine % such that for all real

t(xz—kx—{— 1)/ (x2+x+ 1)‘ < 3.
Hint. The given inequality is equivalent to

—3 < (@B—kx+1)/(x*+2+1) < +3.
RESULT. ke (—5, +1).
1.36 Solve the inequality {(3z—1)/(2—x)}1/2 > 1.
REsuLT. 2 € (3/4, 2).
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1.37 For what values of x is it true that
(1—y/T-80)(20) = 12
1.38 For what values of z is it true that
2 < (322—152416)/(x*—4x+3) < 3?

1.39 In a Cartesian coordinate system, find the region of the
plane for which

1°: ay(@®—y?) >0, 2% (22—1){x®—y?) < 0.

1.40 In a Cartesian coordinate system, find the region of the
plane

{@y) gy <z}n{ley)y>—1—3)}
i.e., find the region whose points (x, ¥) satisfy the conditions
y <z, y> —3x—3).

Similarly, find the following regions

{@ y): ¥ <=z} {(®y): 2*+y* > 1},
{@y): P <z}n{l@y):z<y?}

1.41 Determine the region of the xy-plane containing those
points (z, y) whose coordinates satisfy sin(z-+y) > 0.

1.42 Solve the inequality (sin 3x)/(sin x)® < 0.
1.43 Solve the inequality (tan 3x)/(tan z) > 0.

1.44 Solve the inequality cos ¢+sing > 1 (e.g., by setting
X = cos ¢, y = sin ¢).

1.45 For which values of z is the inequality

sinx > 2 cos? x—1 valid?
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Hint. Establish this first for « € [0, T], where T is the funda-
mental period of the function sin z—2 cos? z 1.

1.46  Solve the inequalities:

1°: |2 < 1, 2% r—lx| > 2,

3% |e*—z|tx > 1, 4°: sin x-|sin | > 1.
147  Solve the simultaneous inequalities:

y:*+4x—4 > 0, 822—2x—3y—6 > 0.

148 If atbtc=0anda =—% b= —1 ¢= —1, prove
that

(4a+-1) 4 (@b gc+1)t < 3.
HINT. (4a+1)* < 2a+41 (@ = —1}). Generalize this result.

1.49  Find the region of the xy-plane for which the following
inequalities are simultaneously satisfied:

x? < Ty, y* > bx, y? < 8x, % > 2y.

1.50  Find the region of the zy-plane for which the following
inequalities are simultaneously satisfied:

ey <bay=zay=mr,y=hkr(0<a<<b;0<hk<m).
1.51  For which values of a does the following inequality hold:
1 -
—1 <§—[1—a—\/(1—~a)2—4a2] < 412
a

RESULT. —1 < a < 1/3 (a # 0).

REMARK. May these results be obtained by considering the quadratic
equation whose roots are

L [1—a+V (1—a)*—4a?]?
2a

1.52 If a and & (ab # 0) are arbitrary real numbers, prove
that at least one of the following inequalities is valid:



50 ELEMENTARY INEQUALITIES

2.1 9p2 — A a2 22
a++Va2+t <1a \/a+b<l

>

2b 2b
Proor. Since
at+Vart 22| la— a2 252 .,
20 26 -

then at least one of these factors must be less than 1.

1.53 Prove the implication
—2x+3
x2—4x+3

Zl=x2=0.

1.54 Prove the inequality
ptm _ @ —2mxtpt_ p—m
p—m x2+2mx+p2 p+m

Proor. First of all, we have

—2max +;b2 ) 2 (2242
T + 2ma —|—¢>2 o 2%+ 2ma 1 p?
2

=T T )
1+

22 _l_pZ
From (2), we see that y assumes smaller values for z > 0
than for z < 0. Thus it suffices, when bounding y from below,

to examine only the case z > 0.
For > 0, we may write in succession

(b >m > 0). (1)

2.1 52 > 9 _1_<_1, _2mx m
S AR St iy T B
g e g m_ M 2 %
x2+p2 b b 14 2mx ~ pt+m
xZ_i_pZ
_ +__¢)_=M (3)

ptm  pim
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For << 0, we obtain, similarly,

b > oy L oL Pmm o oM
TS S T ga g B
1.}.22_”%_21_@:75—1"., 2 < 21’,
2P pob . e b
x2+?2
2 _pAm 4
y§_1+ﬁtm_ﬁ—m' (4)

Thus, (3) and (4) imply (1).

1.55 If 0 <a < 2, determine whether (x-+a)/(@*+-ax--c?)
lies between —(2¢4-a)~! and (2c—a)™2.

156 If a =cosa, ¢ =sina, % = sin 2« (0 < « < 7/4), and
fx) = (ax?+dax—+c)/(cx?+bx+-a),
prove that
(sec a—1)(cosec a+1) = f(z) = (sec a—+1)(cosec «—1).
1.57  Find lower and upper bounds for the function
(x> —2x cos a--1)/(x2—2x cos b-1).

1.58 Determine pairs of integers, # and y, which satisfy
simultaneously

y—la?—2e|+3 > 0, y+le—1] < 2.
SoLuTioN. We write the inequalities in the form
y+i > 22—, 2—y > |o—1]. (1)

Since the moduli |#2—2x| and |z—1| are non-negative, it
follows from (1) that y > —3% and y < 2; these inequalities yield
the integral values y = 0 or y = 1.

If we substitute ¥y = 0 in (1), we have the simultaneous
inequalities
|2 —2x] < %, jz—1| < 2.
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Integral solutions of the first inequality are # = 0, 2 and of
the second, # = 0, 1,2. Consequently, the common solutions
are z = 0, 2. Thus, pairs of integral solutions corresponding
to y = 0 are:

2, =0,9=0;, x,=2,9,=0.
Substituting ¥ = 1 in (1), we obtain
le2—22| < 3, |z—1] < 1

The integral solutions of the first inequality arex = 0, 1, 2 and
of the second just x = 1. Hence the third integral solution is

3 =1 y;=1
1.59 a?+b%24-¢c% = |bc+-ca-t+ab).
1.60 a(@a—b)(a—c)+b(b—c)(b—a)+tc(c—a)(c—b) =0
(@, b, ¢ = 0) (Schur).
ab cd (a+c)(b4-d)

1.61 a+b+c+d a-+btct-d

IIA

(a, b,¢c,d>0).

1
1.62 1+d+a2+ R A E (0 < a << 1)

163  Vatb<Vaivh (ab=0).
164 a+b—2Vab < Va+02 < atb (a,b=0).

b —_— b 1 /b5\2
1.65 — 21p — = 0).
@ 2a = Va +o>at 2a 2a (24) (@ 5>0)

1.66 {a—(n+1)(@a—b)ja" < b™* (a # b;ab > 0).
167 2°>n (n=1).

1.68 2" > 2n-+41 (n = 3).

1.69 2" > n? (n = 5).

1.70 2" > n?® (n = 10).

1.71 3" >nt (n = 8).

1.72 gt —a"| < wrvle—al (x| < 7; el = 7).
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1\" 1
1.73 (1__) >1—— (> 1)
n

I\ 5
1.74 (H——) >-—.
1.75 (I1—a)"=1l—na (0Za<]1).

176  (1—a)" <

(0<a<]).

1 1
1.77 (I+a)" < (0 <a< —) .
1—na n

P 1
1.78 \/1+a>—a—> 14
n(l4-a)

a
w(ita) (@ > 0;n>1).

§ 2. Inequalities Obtainable from Functional Considera-
tions

2.1 Prove the inequality

log(14-2) <:gjﬁ% (z > 0). (1)
SOLUTION. Let
2
Je) = log(142)— :gil; .
Since 7'(z) = —a2/2(1+2)2 < 0, f() < }(0) =0 (x> 0),

which is precisely the inequality (1).
2.2  Prove the inequality

x
5

14+= = (1+a)t5  (z = 0).

Does this inequality hold for negative values of x?

1 1 1
3 Let () = ¢t— -3+ —t4sin— .
2 et f(£y =t Gt +24t smt (¢>0)
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Prove that, if > 0,2 > 0,2+2 < 1,
fletz) < flx)+-7(2).
SoLuTiON. Let g(¢) = f(#)/¢. For 0 <<t < 1,

t 1 1
"(#) = — —{8—38¢tsin— +cos— 0.
g0 =51 - eosg) <

Note first that g(#) is decreasing in the interval (0,1). It
follows from « > 0,z > 0, z+2z < 1 that g(x+2) < g{z) and
g(x+2z) < g(2). Therefore

28 (@-+2)+agle-+2) < ag(w)Lag(z).
Using the definition of g(¢), we obtain from the last formula
Ho+e) < f@)+1().
(Solution due to D.C.B. Marsh).

2.4 Prove the inequality
la4-0]” < lal*+-[6]” (0 =p=1). (1)

Proor. If a and b have opposite signs the result is immediately
evident. Otherwise, let t = b/a (a 7% 0); the relation (1) becomes

(I+H? <1422 (0Zp 1),
For p = 0 or p = 1, this result is trivial. Consider the function
(A4+P—1—t7 (0 < p <)

which vanishes for £ = 0 and decreases as ¢increases. This yields
the inequality (1) for a 7% 0. (1) also holds when a = 0.

What modification should be made if p > 1?
2.5 Given the function

(i@l (0 < jal < 27),
re) = Li_rgf(w)/g(x) @ =0),

where
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f(x) = 2—2 cosx—x sinz and g(x) = x?—sin;
prove the inequality
hz) >0 (—2x <z < 2n). (1)
SoruTION. The value of the above limit is 1/4.
The function 4(z) is even and thus may be considered only for

0 < < 2m.
First of all, we have

g(xr) =at—sin?z >0 (0 <z < 2m).
Consider f(z) written in the form

f(x) = 4 sin? (3a) —4(3z) sin (=) cos (3z)

1
3%

= 4 sin®*(3z) {1— } (@ 5~ n).

tan(}x)
If 0<a<wm 3x<tan(dz); consequently,
—i——>0 0 << ).
tan (3x)
Then, for 0 <2 <7, f(z) > 0.
If # <2 < 2n, tan(3x) < 0 and, consequently,
i
tan(}x)
Thus, for # < x < 2z, f(z) > 0.
When & = #, one has

>0 (z<a<2m).

fx) = [2—2cosx—asinz], , = 4> 0.
This proves the inequality (1).
2.6 Prove the inequality

Tleayap 0<ay<y. (O
—

Yy logg +(1—y) log
Proo¥r. Consider the function

1—
fe) = ylog2 +(1—y) log T2 —2(y—=)* (0 <=y <1),
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where y is a parameter. Then
(2e—1)2
x(l—x)

Py = L Y i) — )
x 1—x
Since 0 < x < 1, we find

flz) =20 (x=y),
flo) =0 (=y),

whence it follows that min f(z) = f(y) = 0.

IA IV

This proves the inequality (1).
2.7 Prove the inequality
pat—qa? > p—q (x> 1), (1)
where 4 and ¢ are real numbers (0 < ¢ < ¢q).
SoLuTION. Consider the function
f(@) = pat—ga®—p+q
and its derivative
(%) = pgla®—ar7).

Taking into consideration the conditions on 4 and ¢, we see
that /’'(x) is positive for z > 1, i.e., the function is increasing on
the interval (1, 4-o00). The function f(x) therefore attains a
minimum at # = 1 which implies that fy;, = 0. Thus, f(z) > 0
for # > 1, which was to be proved.

2.8 Prove the inequality
(y—=x)a”loga < a¥—a* < (y—w)a’loga (z<y,a>1). (1)

SoLuTtioN. The function f(¢) = a'(a > 1) satisfies the condi-
tions for the Mean Value Theorem on the interval [z, y]. Hence
a’—a”

=a‘loga (@ <c<y). (2)
y—z

Since the function f(¢) (@ > 1) is increasing, it follows from (2)
that
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a¥—a”

a* log a < —
Y

<a'loga (x<y; a>1),
—X

which is equivalent to (1). This completes the proof.

29 Prove the inequality
1—x = =" (2| sufficiently small).

SoLUTION. We set f(x) = ¢*—" and determine the equation
of the tangent to the curve y = f(x) at the point (0,1).
Since f'(x) = — (1+2x)e—*—", the equation of this tangent is
Yy =1l—z.
Since
f/(x) = (4at+dx—1)e=*" < 0
for

e (—3(1+V2), }(va—1)),

we conclude that y = f(x) is convex upwards in the neigh-
bourhood of (0,1).
Consequently,

1—x = e for |¢| sufficiently small.

2.10  Prove the inequality

Using this result, prove that the integral

1
f x™ ogxdx f xlogx m=1)

x2—1 x—l

is not greater than 1/(2m).

SoruTtioN. Consider the function

fle) =
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Since

(x_x x? x): ’

the function f(z) is decreasing and, consequently,

2

210gx—x

<0 (z>1),

2

210gx—x >0 O<a<l).

Hence it follows that

x log
x2—1

IA

1
2 .

The inequality
xlogx
<

= x2—1

is obvious, because for x > 0,
sgn (x log x) = sgn (x®—1).
It follows from (1) that

1 m | 1
f ? ngdxé%f 2y = 1/(2m).

0o 22—1 0
(Revised from a solution by Z. Pop-Stojanovié.)
2.11  For which values of z is
logx < Va?
2.12  Sketch the graph of the function
Vz—Vr—a (@ > 0)
and find the values of « for which

Ve—Vr—a > 2.
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2.13  Find the values of « for which
Yz—l/x—a >0b (nanatural number > 1;a,b > 0).
2.14 Factor the polynomial 22®—32%2+41 and determine the
values of  for which it is positive. Hence prove the inequality
fl&) = 2cosztsectz—3 >0 (0 <z < in).

By considering the function

rf(t)dt 0 <z < 3n),
show that '
2sinzttane > 3z (0 < 2 < 37).
SoruTioN. First of all, we have
203 —3x2+1 = (z—1)2(2x+1).
Hence
20 —32*+1 >0 (x

> —5 and x # 1), (1)
2332241 <0 (v < —

)- (2)
Since 0 < cos 8 < 1 for 0 < 6 < iz, we find from (1)
2cost8—8cos?0+1>0 (0< 0 < 4m),

pof= M=

or
2 cos 0-1-sec2 0—3 > 0 (0 < 6 < 3n). (3)

Integrating the inequality (3) between the limits (0, x), we
obtain

2sinzttanz—3z >0 (0 <z < 37),

which was to be proved.

2,15 Prove
1 /By 1/(b—a)
a<;(ﬁ) <b (0<a<b). (1)

SoLuTIoN. Applying the Theorem of the Mean to the function
x log , we obtain
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blogb—aloga = (b—a)(l+logec) (0<a<c<b),

1 bb 1/(b—a)
) =

whence (1) follows immediately.

ie.,

2.16  Compare the magnitudes of the functions
(\/;L)‘/”—“ and (\/n——}——l)‘/; (n a natural number).

SOLUTION. Since
V;@log Vn - log Vnt1

iy _
(Vn) Vo > (V1) 7 a

o (1)

(Va)Vrtt < (V1) 7 < Vil

. @)

we compare the functions
log V/ n log Vn+1
and —_—.
vVn Vni1
Without difficulty, we establish that the function f(z) = (log z)/x

is increasing for 0 <<z < ¢ and decreasing for x > e. It follows
from this result that

log Vn < log Vnt1

— E— (” = ]-.v 2; 3; 4: 5: 6)1 (3)
vV \/n—}—l
log Vn log \/n—|—1
o o verr 77 @

since V7 < ¢ < /8. For n = 7, direct calculations show that
the inequality (4) holds.
From (1), (2), (3), (4), we have the inequalities

(Va)Vrt < (VarD)Vr (n
(Wa)Y™H > (yaF)Ve (n = 7).

]-: 2) 3: 4) 5: 6);
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2.17  Prove that x—tanh x > 0 (x > 0), and hence that

4 (Sinh x) ~0 (@>0).
dx x
SoruTioN. Consider the function
f(x) = x—tanh 2. (1)
Since
f(x) = tanh?2 >0 (2 5 0), (2)

the function f(x) increases for z > 0. It follows from f(0) = 0
and (2) that

f(x) =x—tanhx >0 (x> 0). (3)

By (3), it follows from the relation

dx

= (x—tanh z)

d (sinh x) . cosh x

X

and the inequality cosh # > 0 that

dx

d /sinh 2
( ) >0 (x> 0).
2.18 Prove the inequality
Ve < 2m+d @=0). (1)
SoLuTioN. Consider the function
flx) = a/4—22 (x = 0)

and its derivatives:

o) =tz ['@) = -2 (@>0).
For x# = %, the derivative j'(x) vanishes, while f’(z) < 0.
Therefore f(x) attains its maximum value of 2 at x =-1—1€.

Consequently,
Ve—22 <% (x> 0),

which was to be proved.
For = 0, the inequality obviously holds.
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2.19 DProve the inequality
t(24-cost) > 3sint (¢t > 0). (1)

SoLUTION. Since 2+ cos? > 0 for all {, we may write (1)
in the form

Ht) = ¢ 3sin ¢
() = 2--cost
Since
1—cos #\2
() = =0
) (2—}—005 t) ’

the function f(#) increases as ¢ increases. Since f(0) = 0, this
establishes the inequality (1).

2.20 For z(s~ 1) an arbitrary positive number, prove that
1° a?—1>pz—1) (p>1 or p <0),
2 2'—1 < plw—1) (0<p<1).
Proor. 1°: Consider the function
f(x) = 2*—1—p(x—1), for which f(1) =0, f'(x) = p(x?1—1).
If > 1, then
<0 (<<l
fay={=0 @=1),
>0 (x> 1)
Thus, the function f(x) attains a minimum at z = 1.
This is the proof of the inequality 1° for p > 1.
If p <0, then
2?1 >1 (0 <<l
1<l (z>1).
Hence
<0 (0<x<l),
fla){ =0 (==1),
l>0 (z>1).
Consequently, 1° also holds for p < 0.
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2 Ifo<p<l,
Pl >1 0<z<<]l),
2Pl <1 (x> 1).
Hence
>0 O<z<l),
fa) | =0 @=1)
<0 (x>1).
The function f(x) attains a maximum at z = 1.
This proves the inequality 2°.
221 If a and & (ja} =< 1,[b| =< 1) are real numbers, then
Vi-a2+V1—-0% < 2V1—{L(a+b) 2 (1)
SoLuTIioN. Assume that (1) does not hold, but that
V1—a?4+V1—02 > 2 V1—L(a+0b)

Then, squaring both sides, we find
Vi—a? V1—p > 1—ab,
i.e., squaring again,
(1—a?)(1—8%) > (1—ab)®? = 0 > (a—0b)2

On the basis of this contradiction, we conclude that the in-
equality (1) is true.

2.22 If f/(x) is an increasing function, then
fletl) > fla+1)—f(@) > f (=) (1)
Use this result to prove the inequality
2 (v (n+13—1} >k%1\/5 >2vVmE (n=1,23,..) (2)
SorutioN. By Lagrange’s theorem,

Ho+1)—f@) = [ @+0) (0<6<1).

From the hypothesis on /' (z) and the preceding equation, it
follows that
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fle+1) > fle+1)—f(z) > f(2),

as was to be proved.
The inequality (1) may be written in the form

Ha+1)—f(x) > [ (@) > f@)—fla—1). (3)
Let f(x) = %23/2 and write (3) with x successively replaced by
1, 2,..., #n. Sum to obtain the inequality (2). (Revised from

a solution by Z. Pop-Stojanovi¢.) Generalize the inequality (2).

223 Prove the inequality

1—x" >n(l—x)ze~/2 (0 <2 <1).

2.24 Prove the inequality

n n—1

o < e i (n a natural number, 0 < 2 < 1).

2.25 For what values of z (> 0), $ and g is

xp log q X é x(p—l)/Z?

2.26 For what values of x is

2
1—|—%—%§(1—|—x)1/2§1—}—%? (1)

SoLuTION. If # = —1, then, by Bernoulli’s inequality (§ 0.2),

Iy < 14 % 2)
For values of z for which
x x?
14— —— <0 > 1 3
575 < (= —1) (3)

the inequality 142/2 —2?/8 < (142)Y/2 holds.
The polynomial 14x/2—x?/8 assumes negative values for z
exterior to the interval

(—2(V3-1), 2(V3+1)). (A)
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Since, in addition, the condition x = —1 is satisfied, we con-
clude that

2 —
1+%—%< (L+2)12 for o = 2(V'34-1). (4)
If # =z —1 and if z is in the interval (A), i.e., if
—1 <2< 2(V3+1), (B)
then 41 = 0 and 1+x/2—x?/8 = 0, and after squaring the
inequality 14-2x/2—a?/8 = (1-4-x)Y/%, we obtain

2?*(x—8) =0
which holds for )
0=x<8 C)
Conditions (B) and (C) jointly require that 0 < 2 < 2(\/5—1—1).
Collecting these results, we conclude that the inequality
x  x?
14 = — = < (1ta)r2
+ o~ = (1te)

holds for « = 0.
Since, in addition, the inequality (2) holds for x = —1, we
conclude that (1) holds for z = 0.

2.27 Is the inequality 2* = 142 log x true for > 0?

2.28 Show that, if 2 is real, then
g < 2241
3 x24-x+41

Give a geometric interpretation of this result.

IIA

2.

2.29 For what values of z is
(a—x)8—3a(a—x)3+3a2(a—zx)*—Lat(a—=x)? < 0?
2.30 Prove the inequality

(a—H

m) R (ﬁ)b (@, b> 0; a # b). (1)

b
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Proor. Consider the function

a4-2\2+%
= —= > 2
=) @=o, @
and its derivative
b—a atx
! =|— 4+ log— . 3
o) = (o log o) 0 ®)
The sign of the derivative is the same as the sign of the function
b—a atzx
4
g@) = =+ log . ()
Since
(a—b)?
) = ———_ 7 0,
g @) (a+x)2(b+x)
the function g(x) is decreasing and, consequently,
g(x) > g(+0) = 0. (5)

On the basis of (5) and (3), we conclude that the function
f(z) is increasing, whence

a+x\"*®  ja\?
il o . 6
(b—}—x) >(b) (a,b,2> 0; a #b). (6)

The inequality (1) is the special case of (6) obtained when x = 1.
(Proof by D. Djokovic.)

2.31 Prove the inequalities
(I—ix®)sinz < (@—a)cosz (0 <z < m),
(1—322+Lat)sin e > (x—a+op2®)cosz (0 < & < 7).

What relation holds between the functions

(ké) (—1)* (;:; !) sin x, (ké) (—1)* (2;::*';) ) cosz (0 <z <m)?

2.32 Prove the inequality




FUNCTIONAL CONSIDERATIONS 67

sin? z

cosx < 2
x

(0 <z < z/2).

Sorution. This inequality is equivalent to
f@) > g@) (0 <z <af2), (1)

where f(z) = sin®xz/cos  and g(x) = x2 Without difficulty, we
find that

sin 2 (1-cos? )

f (@)

,8 () = 2z,
cos?x ¢ ()

1 2 sin? x

f(x) = cos x4-

’ —
cosx cosdz 8w =2

Since t—}—;g 2 (>0), f'llx) >g"(x) =2 (0<z<x/2).

Using this result we find

[ 1re-g@ i = re-ee-1ro-go)
= /@) ) >0,
[ =gt ax = (1) —gto] ~ [10)—e0)]
— /) —¢le) >

which was to be proved.
(Solution by D. Djokovié.)

REMARK by D. Adamovié. If we consider, instead of the given in-
equality, the equivalent inequality # < sin #/4/ cosz (0 < x < x/2), the
proof is simplified.

2.33 1°: Prove the inequality
zloge =22—1 (x> 0). (1)

2°: Starting with this inequality, derive the inequality

3 pilog .2 3 p.10g g @)

t=1

forp, > 0,9, >0@¢=1,2,...,n) and
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Z bi=2q: (3)
i=1 i=1
SoLuTION of 2°. Since p,/q; > 0, we deduce from (1) that
Pirogle = Py,
9. 9 9

Since ¢, > 0, the preceding inequality becomes, after multiplica-
tion by ¢,
b
pilog q_ = pi—9s

(2

Summing both sides of this inequality over #, one finds

Z s log—; = é:l (Pi—q:)-

With (3), this inequality gives

Zl p: log & = 0= '21 (pilog p,—p;logq;) =20

= > plogp, = Zl p:log q,,
i=1 i=
as was to be proved.
Equality holds in (2) ifand only if p, = ¢, ¢ = 1,2, ..., n).

The inequality (2) occurs in Information Theory. See, for example, L. Bril-
louin: Science and Information Theory, New York 1956, pp. 13—14.

2.34 Prove the inequality

0< Vito—l—tot+ia? < fad (2> 0).

Proor. Consider
flx) = Q/l—}—x—l—%x—}-%—wz (x > 0)
and its derivatives

@) = 3(1+2) P —§+3e,

() = %{1_ (—ﬁlxﬁ} >0
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Then
Pla) = f'(0)+f: /(@) de > j(0) = 0,

fa) = 1O)+ | 1 @)t > 1(0) = 0.

This proves the left-hand side of the inequality.
Next, let

g(@) = 1+jw—3*+gp2*— Y1tz (2> 0),

whence
g (@) = 5—du+ 5t —5(1+2) 7,
g (@) = —§+37e+5(1+a)7r,
11 _ 19 _
g (x) - 7 { 1 (1_{_%)8/3} > )
and so

(@) =" (0)+ f ¢ (@)dz > g"(0) = 0,
g =g O+ | &> g0 =0,

g(2) = g(0)+ f ¢ (#)dz > g(0) = .

This proves the right-hand side of the proposed inequality.
(Proof by D. Djokovié.)
235 Ifa>0b6>0,a4b=1, then
1\2 1 (s 1\2 - 25
a+— — =—.
() +s) =5
SorLuTION. It follows from 24/ab < a-+b = 1 that

1/(ab) = 4. (1)
Furthermore

L= (a-{— —;—)2 + (b+ %)2 > (a—i—%)(b-%-%),
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and hence

e )

From this result and (1), we obtain
1 12 1 1
L— (a—l—b—l—— +—) 2 (a—l— —) (b—|- —)
a b a b

(e e )
ab a b
> (14-4)2—L,
ie.,
2L =25 = L =2}
NotTe. The proof may be obtained in a different manner,

using the convex function f(z) = (x+1/2)% for > 0. In that
case we can prove the more general inequality

(a_[_l) _|_(b_|_i) > 5 (o> 0;a,0>0atb=1).
a b 271

The function
1 a
flx) = (x—l— ;) (o > 0)
for 0 < ¢ < 1 is convex, since

2 1 a2 _. 2 20 1 &-1
f'x) = afa—1) (x—l— ;) (l—x 2) —I—‘E (x—l— ;)
= (x-[— l)Dz*z{oc(l—90‘2)2—|—x—4—1—|—490—2} >0
x
O<z<l,a>0).

Consequently, for a, b > 0and a+b = 1,

H@)410) _, (atd) _
T2 () = 1),

ie.
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5«
= 20&—1 .

1 4 1 [«
2+ ) e
(This solution is due to D. Adamovié.)

2.36 Prove that

b=¢ mbtana< b 0=a<b<ix (
an b—tana <a 17).
cos?a cos2b - 2% (1)

Proor. By the Mean Value Theorem

tanb—tanae = (b—a) (@ < 0 <b).

cos?
Since

1 1 1

<< <
cos2a  cos? cos2 b

0=a<0<b<in),

(1) follows immediately.
2.37 Prove that
1

n—1 — 1

(» a natural number = 2; x > 0).

ProOF. Let us assume that for some « (> 0), the inequality
3 1
YT+e <142 (@>0) (2)
does not hold, but rather that
TFe =1+ (@> 0
x = —x (x .
YiFE=14- 0 @>0)
Then, raising both members to the #*t power, we obtain

1oz (14 20) =14 (§) sot (3) ot b+ () Lon

Since
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n\ 1 n\ 1 ]
( )—xz—l—...-[—( )—x”>0 (x > 0; » an integer = 2},
2/ n? n/ n"

the relation (3) is false and, consequently, (2) is valid.
Next, consider the function

n—1
2n?

x2

o) = YTFa—1— -zt

and its successive derivatives,

o) = [ 2],

@) == Tba)m],
fm(x) — (1——7’1«)7531—2%) (l—l—x)(l/")_s.

Since f"'(z) > 0, f'(0) =0, f(0) = 0 and f(0) = 0 for = >0
and # = 2, it follows successively that f'(z), /() and f(x) are
increasing functions, whence

f@) >0 (x>0n=2).

This proves the inequality

1 n—1 —
1—|—;x— o 2* < [/I+a (x> 0; » integral = 2).  (4)

The inequalities (2) and (4) together yield (1).
QuEestioN. What happens if # = 0 or n = 1?
2.38 Prove that
xlogxtevtl—ay =0 (x>0).
Proor. Consider the function
fly) = x log z+e't—xy (x> 0)
and its derivatives

F) = e 1 (y) = e
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Since f(y) > 0 for all y, the function f(y) attains a minimum of
zero for y = log z+1 (z > 0). Consequently
fy) =0 (>0),

as was to be proved.

2.39 Prove that

. 1 < g (1+ x x2 _I_ + xr® 0 .
B T S TR TR J) @>0. (1)
Proor. Consider Taylor’s formula,

G

¢ = 3 5 R, where R, = " et (0<6<1).

(n+1)
Multiplying by e one obtains
noogpy e(«?—l)m
1: — _ n+1. 2
‘ (v§0v1)+(n+1)1” @)

Since 0 << 6 <« 1land z > 0, 1 > ¢9~1¢ and thus

2+l 6(0—1)00
(n+1)! = (n+1)!
Now (1) follows from (2) and (3).

aH, 3)

2.40 Prove that a function f(x) having a second derivative
has no zero in the interval (a, b) if there exists ¢ e (a,b) such

that for every z € (a, b)
f2(e) =2/ (e)f"(z) < 0. (1)

SoLuTioN 1. Let us assume that the converse statement is
true. If y € (a, b) is a zero of f(x) and c e (a, b) satisfies the given
condition of our problem, then we have the following:

(y—c) ,

Dot T

) = fe)+ o1

f'(x) =0, xe(a, b),
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1) + of'(c)
2(e)—2f(c)f" () = 0.

From this contradiction it follows that f(x) has no zero in
the interval (a, 8).

1) ch implies:
+o — = 0(x = y—c), which implies:

SoruTtioN 2. From (1) it follows that f(c) £ 0. For x ¢
we obtain

2F)f (x) =2/ (0)f () = 2f()f" (€) (x—¢) Z (w—C)f*(c)

according as x = c¢. In both cases

24(0)1e) = 2 (0)+2/(0) 1 (@)

> 2p2(c) f " 20) (0)+ w—e)f2(e) e
— 12/(0)+ (w—0)f ()2

Hence, f{x) cannot vanish.
(Problem and solution 1 by S. Presic. Solution 2 by D. Djokovié.)

241 |asinz+-bcos x| = /a6
242 cos*xzsint x = 1.

r Y
243 &7°

> ehlety) (x - y)

— 1

245 0= (@4a)2/(@2-a+1) < $(a2—a+1).
246 2" 2l < (z,—a)lr—(x;—a)V" (0 =Za < < w,).

2.47

Y= S (l—x)? =1 0= =1;p>1).

248 y@'r—1) < z(@’”—1) (@>0;a#10<2 <y).
1—(sin )71 1—(sin z)?
(sinz)> _ 1—(sinz)
p—1 v
x™—1 x"—1
<<

m n

2.49

(?>1;O<x<%).

2.50 (m<m;z>0 and x £ 1).
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n—1
251 1214—29&—{—...4—%9& gi
1422 .. 2™t 7

n—1
252 4 > 122+ ... 4-nx -

1
“ntm—1zt ... Famt 3

(x> 0).

(x > 0).

T

k41
254 (e4x) > (e—x)*™* (0 <z <e).

2.53 (k+1)cos

> 144 cos% (B = 2).

2.55 o la? <log(ltz) <& (x> 0).
2.56 2x/(2+4x) <log(l4x) (x> 0).
2.57 22> (1+a)log2(14-a) (x> —1).
2.58 |log(l+4=z)—x| < 2% (jz| < 1).

2,59 14 loglx+V1i4a2) = V1422

2.60 log(l-+-x) > (arc tan z)/(14-x) (x> 0).
2,61 2z arc tan 2 = log(1-+2).

2,62 (z+1)loglx+1)—aloge >0 (x> 0).
2.63 a34-3x42+46xlogx > 622 (x> 1).

2,64 z2%logx] <1/{ae) (0 <z <1; a>0).

2.65 |log(1+4=)| g%ﬁ%') (& > —1).
’ 1 1 1 1
2.66 log(l—l—;)<;—|—x+l—x+% (z > 0).

log - 14173
x—1 = x4-al/?

2.67

(> 0 and = # 1).

1 x
2.68 x<—-<—10g(1—x)<T— (0 <a<1).
2 —
12
2
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2.69

2.70

2.71

2.72

2.73

2.74

2.75

2.76

2.77

2.78

2.79

2.80
2.81
2.82
2.83
2.84

2.85

ELEMENTARY INEQUALITIES

! 1 1 ! ! 0
——1< og( —|—;)<; (x > 0).
1 1 1 (1 1 1 1
(6] —_ B ——
x+1+2(x—|—1)2< § +x) 2x2+ z4-1
b 145
log — < log — b > 0).
Oga<0g1—|—a (@>0b>0)
1 -
em>gx’° (x>0k=0,12...).
x
— >1—e* (z<1;2£0).
1—2
1
li”-”>e2w 0 <z<1).
x
exp(—m)<l~x (x < 1;2 £ 0),

ae—be—2 < g—p

(@>5b>0;6>0).

‘ >(1+x)y>e Yo wy>0)
Xp X — xp —  (z, .
P y Pty

1
log (14+V1+a2) < . 4+ logx (x> 0).

a—b

< (14-x)it®
¥ > 1/(1—x)

262 < & — 1 < xe®

2
¥ /2 cos x

<1

—b
— < loga—logb < ——
, < log a—log < 5

(x> 0).
(0 << 1/2).

0 <b<a).

(x> 0).

0<z=4).

coshxzcosz <1

Oge—”(

x
1—-2
n

:

0 <z =m/2).

Sixz
— 2n

(x> 0).

(x> 0)
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2.86 |¢°(12—6x+f-2?)— (12--6x-+22)| < Fl— |,
2.87 z44-8x-122%log x > 82341 (x > 1).

—
— (O<z<lI).

T 1
288 1—Jl—a < —|log (1—2) <
n —

‘é’l&

2.89 log (1+coszx) <log2—12?2 (0 <2 <am).
290 log (14-2%) < warctanz <<a? (x> 0).

r—y"

291 ryl < <rg™t (x>y>0;7>1).
r—y

292 rarl < — <yt (@>y>0;0<r 1)

=Y

§ 3. Inequalities Involving Powers and Factorials

3.1  Prove the inequalities:
1°: n" > (2n—1)!, 2° (41" > (2n)!! (n > 1).
SorutioN 1. 1° For # = 2, the inequality
> (2n—1)!! (1)
is valid.
Assuming that (1) holds for » = &, i.e.,
EF > (2R—1)!1, (2)

then the inequality obtained by multiplying (2) by (k-4 1)*+1/k*
is also valid; thus,

(BH1)k > (2B—1)!! (R4 1)*+1/RF, (3)

If
E—1)!! (B4-1)sE* > (2k-+ 1)1, (4)

then
(B 1)%+ > (2k4-1)!! (5)
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The inequality (4) is valid. Indeed, instead of (4), we may
consider

(B4 1)1 — (2k+1)k* > 0. (6)

After application of the binomial expansion, the left-hand side
of (6) becomes

L A7 = = A (k—|—1 k+1
(2)k +(3)k ot k)k+(k+1)’

which is positive for all natural numbers Z.

From hypothesis (2), i.e., f(B) > g(k), we have shown that
f(B+1) > g(k+1). Since, in addition, (1) holds for » = 2, it
follows that it holds for every n e {2, 3, 4, .. .}. .

The second inequality may be proved in a similar manner.

SorutioN 2. 1°: From (a—b)* = 0, it follows that
a® = b(2a—b), (1)

with inequality if a 5 &.
If welet a=n and b=2k—1 (k=1, 2,..., n), we have
successively

n? > (2n—1) - 1.
Multiplication of these inequalities yields
w2 > {(2n—1)!1}2 = n" > (2n—1)!!
2°: Ifin(l)weseta = n+1,b =2k (k =1, 2,..., n), we obtain
(n+1)2 =2 2n,
(n41)2 = 4 (2n—2),
(n4-1)2 > 2 - 2.

After multiplication, we obtain
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(n+1)* > {2n)!1}2=> (n4-1)" > (2n)!!
(Solution by B. Mesihovié.)

3.2  Prove the inequality
(m4+1)"tn4-2)" > 3*n!)2 (v > 1).

HINT. Use the inequality (n+1)" > (2n)!! (n > 1) of the
preceding exercise and the inequality 22"+ > 37,

3.3  Prove the inequality
1 n
n! < (ﬁ%——) (» a natural number > 1). (1)

Proor. We start with the inequality
(ki'g)k+l — (1+ —I—)M >2(k=123,...).
k1 ki1 R
Setting # =1, 2, 3,..., n—1, we obtain the inequalities:

3\2 4\3 no\*1 n4-1\
(B =2 (&) a2 2 ()
2 3 n—1 n

After multiplication, we obtain

Fsa
whence the inequality (1) follows immediately.
3.4. Prove the inequality
4" 2n)!
n+1 = E%!))z
SoLuTioN. For # == 2, the relation (1) certainly holds, because

16/3 < 41/(21)2 = 6.

(n=234,...). (1)

Suppose that (1) is valid for some natural number #» = & (= 2),
that is to say
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4%/ (R+1) < (2R)!/(RY)?

or, alternatively,
(2R)!](R!)2 > 4*/(R-+1).

After multiplying both sides of (2) by

(2k+1)(2k42)/(R+1)2,

we have

(Rk4-2)1{(+1)!}2 > (2k41) (2k+2)4*/(R+1)3,
which may be written in the form

(2R42)! 454 (k42)(2k+1)
(G+1)IP "~ k2 2(h+1)

Since

(b+2)@h+1) _, k
2(k+1)2 2(k+1)2

> 1 (k> 0),

we have
(2k+4-2)! - 4F+1
{4+~ R+2°
The proof of the inequality (1) now follows by induction.

3.5 Prove the inequality
@n—1)!t 1

YA

SorutioN. Let
B Ly el 1-3-5... @n-1)
o@m)!! 2:4-6...(2n)

From the inequalities

2k—1 2k

_ —=1,2,3 ...
2k <2k—|—1 (% 023, )

it follows that
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2-4-6...(2n) 1/1-3-5 (2n—1)(2n+1)
3-5-17. (2n+1) 2:4-6...(2n)

1 1
= @n )N TN

Hence
N2 < 1/n = N < 1/4/n.
3.6  Prove the inequality

2141, .. 2n)! > {(r+1)!}" (» a natural number =2). (1)

SoruTIoN. For # = 2, the inequality (1) is valid. Let us suppose
now that it holds for n = k—1, i.e,

214! ... (2k—2)! > (R!)*?
Then,
214!, .. (2k—2)! (2R)! > (2k)!(R1)F!

_ @g(k—) @) .. (b1 (R
> (b1 (k1 = {(B41) 1,

because each of the factors 2%, 2k—1, ..., k42 is greater than
k+1. Consequently, the inequality (1) is proved by induction.

3.7 Prove that n! > »™?% (n a natural number > 2).

Proor. n!=1.2...n, (n!)2=1%2-2%. . #n?% which may be
written in the form

n)r={1-n}{2n—1)} B(n—2)}... p(n—r+1)}...{n-1}, (1)
where #(1 <7 < #) is a natural number. For all such 7,

r(n—r+1) = n, since (r—1)(r—n) < 0. (2)
If we set » =1, 2, ..., n successively, we obtain from (2)

l-n=mn;2m—1)>n;...;v(n—r+1) >n;...;0 1=mn.



82 ELEMENTARY INEQUALITIES

Hence it follows from (1) that

m)2>n"(n=3,4,...),

>

nl >n"?(n=234,...).
3.8 Prove the inequality
2n(=1)/2 > | (n a natural number > 2).
Hint. Write 27"-1)/2 in the form

91+2+...+(n~1) — 91. 92 . 2”—1’

and use the inequality 2" > »#+1 (» = 2) which may be proved
by the method of complete induction.

3.9 Show that if z, x,, . . ., @, are natural numbers satisfying
the equation

2+, . .. +x, = np (p a natural number),

then
2l tay L = n(pl).
3.10 If both sides of the inequality
2sinz—sin?z <1 (<« (1—sinz)? = 0)

are multiplied by

sin?~1z (0 < 2 < #/2, m a natural number)
and if the inequality thus obtained is integrated between the

limits (0, #/2), one obtains the inequality

/2 /2 LCI
2f sin?™ gz dx—f sin?™+1 x dx <f sin?"1z dzx.
0 0 0
Show that from this result we may derive
{2nm(2m+1);1/2 (2m)!!
4m-+1 (2m—1)11"
3.11  Starting with the inequalities

sin¥+lg < sin?'z < sin?**lz (0 <2 < 7/2),
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integrate between the limits (0, z/2) to prove Wallis’ inequality

2 (2n)t! 2 1 (2n)!1! )2
<a<— |l
2n+-1 {(2%—1)!!; n  (2n—1)!!
3.12  Prove the inequality

dnt3 [ @m)1l 2 4 @m)ll \2
(2n+1)2{(2n—1)l!} <”<4n+1{(2n_1)11; '

NortE. This stronger Wallis’ formula was given by J. Gurland
in The American Mathematical Monthly, vol. 63, 1956, pp. 643-645.

3.13  Prove the inequality
1 3 2n—1 1
A i (
2°4°6 2n (3n+1)1/2

# a natural number). (1)

SoLUTION. For # = 1, the relation is valid. Let us suppose that
it holds for » = k; i.e., that

135 2k—1< 1

IR =5 3% "2 =@t

Il

g(%).

Multiply both sides of the preceding inequality by the positive
number (2k4-1)/(2k42). Then we have

135 2k—1 2kl _ 1 2k+1

2°4°6 7 2 2p+27 (3R 1)V22k42°

If we can show that
1 2h41 _ 1
(Bk+1)1/22k+2 = [3(k++1)1]12’
then the hypothesis f(k) < g(k) implies that f(k+1) < g(k-+1).
Let us suppose that the relation (2) is not valid, i.e., that
(2R4+1)/{(8k+1)1/2(2k+2)} > 1/[3(R+1)41]¥2
Then we find that

(2)

1 (2k4-1)2 1
3k-+1 (2k+2)2 - 3k44’
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12734-28k2+ 19k 4-4 > 12731 28%2 120k -4, 19k > 20%,

which cannot be valid when %2 > 0. Consequently, the relation
(2) is valid. By induction, this proves (1).

k

3.14 If n = n, (n, natural numbers), then

v=1

nl/IkI (n,)) < n" /f[l (). (1)

=1

Proor. Since every term in the expansion of (#; 4%, .. .+n,)"
is positive and less than the sum of all the terms,
A .
T () S ame (1),

I (m,)"™

r=1

Equality holds in (1) if n = #,.
This solution is by Chih-yi Wang (Mathematics Magazine,
vol. 31, No. 2, 1957, p. 113).

3.15 Ifz, =z(@—1)(x—2)... (x—7+1) (»anatural number),
xy, = 1, prove the inequality
(2n—1), 1(2n—38), g(@2n—5), 5. .. > Hy 1My ghy 5.+,

where the products on both sides extend over all non-negative
indices of the same parity as n—1, and » > 1.

14

products on the left and right-hand sides may be written in the
forms

L= (2”—1) (n—1)! (2”_3) (n—3)! (2”“5) (n—5)! ...

SoLuTION. Since x, = (x)rl, if x is a positive integer, the

n—1 n—3 n—>5

) (n—2v—1)!,

(=D (99291
- ( n—2r—1

y=0
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R= (nf’_l) (n—1)! (nfs) (n—3)! (nﬁf)) (n—5)!. ..

[3n—1)] "
_ —2y—1)!
11 (n—2v—1) (n—2v—1) 1.
From these expressions we have
n
R 11 \y_92y 1 [3(n=1)] wl !
L o (2n—2v—1\ 5 (2n—20—1)1 (2v1)!
n—2v—1

(-1 1 ( on )

= I Giles

From the characteristic symmetry of the binomial coefficients
and the fact that the middle coefficient of an expansion is the
greatest, we have

2 2
(21)11) < ( Z) forv # L (n—1).
2n

n) = (2n)!/(n!)% we thus have R/L < 1,ie., L > R,
which proves the given inequality.
(This solution is by S. Pre&i¢).

Because (

3.16  Use mathematical induction to prove the inequality
nlog n—n < logn! < (n+3%)log n—n-+1 (1)

(n a natural number > 1).
SoLuTtIioN. We set

u(n) = nlog n—n, v(n) = (n4%)log n—n+1.
Let us first prove the inequality
u(n) < log n! (2)
This is valid for » = 1. Let us assume that (2) holds for some
natural number » = &, i.e., that
u(k) < log &!; (3)
then
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u(k)+log(k+1) < log kl4log(k+1) = log(k+1)!.
If we prove that
(k+1) log(k+1)— (k+1) < klog k—k+log(k+1), (4)
then we shall have established that
u(k+1) < log (R+1)!,

and thus that the relation (2) is valid for n = k41, if it is valid
for n = k.
Let us suppose that (4) is false for some %, so that

(k-+1) log(k-+1)— (k+1) = klog h—k+log(k+1).  (5)
Then

k41
k

1\ %
klog gl»log(l—l—}é) =1,

whence it follows that
1INk
(1+ E) = e (6)

Thus, starting with (5), we arrive at (6), which is false for all .
This proves the inequality (4), and thereby (2).
Next, consider the inequality

logn! < (n+%)logn—n—+1 = v(n). (7)

Forn = 2, we have log 2! < 3log2-1, since log2 = 0.6931 .. .-
Let us now suppose that (7) is valid for #» = &, i.e., that

log k! < w(k) (kR>1). (8)
It then follows that
log k!+log(k+1) < (k+3)log k—k-+1+4log(k+1).
If we show that
(k+3)logh—k+14log(k+1) < (k+3)log (k+1)— (A+1)+1, (9)

then we shall have shown that the inequality (7) holds for
n = k-1, if it holds for » = k.
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The inequality (9) may be written in the form

k
1
(k+3) logk 1+1 < 0,

or
k 2
I 10
logk+1+2k+1<0' (10)
Setting
— log —~ 2 >0
flx) = Ogﬁkl_ + ol (x )
we find that
, . 1
'@ T x(e+1)@e41)2°

For z > 0, it follows that f’'(x) is positive, whence f(z) is an
increasing function for positive . Asx — -+ 0, f(x) — 0. Hence
f(x) < 0 for = > 0.

This completes the proof of (10), and the proof of (1) follows
by induction.

3.17 Prove the inequality
%"+ > (n+41)" (n a natural number > 2). (1)

Proor. For n = 3, (1) is true. Let us suppose that (1) holds
for n = &, i.e., that

R > (R4+1)F (B> 2). (2)
Since
B4+1  k+2
(kt-1)2 > R(k+2) > ——> Ei1
it follows that
k-4-1\ %+ k-4-2\ B+
- S 3
( k ) >(k+1) : ®)
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From (2) and (3), after multiplying, we obtain
(1) > (R+2)H,
whence the truth of (1) follows by induction.
3.18 Prove J. van Hengel’s inequality
(n+4-7)" < w™*" (n, » natural numbers, » = 3 or» = 3).

Remark. Concerning this inequality see: Dickson: History of the
Theory of Numbers, vol. 2, p. 687.

3.19 Prove Goormaghtigh’s inequality
(n+47)" < nP(n+p)" (n, p, » natural numbers, n = 3, p < 7).
REMARK. See: Mathests, vol. 68, 1959, p. 374—375.

1
3. log n! —
20 logn! > (n43) log n—n-t TR

3.21 3(n+1) < (112233 gm0t < L2p 1 1) (n > 1).
322 2> 14nV2 1 (n> 1),
323 YnFl<™Yn (n=2)

324 ! g(f)" (n = 6).

)

3.25 (n!)?® <n"(

326 n < {(n+11TH—-11-U N2 < p4lln (n > 1).

327 ! 2k) ! E>1
T2k 4k(k <\/3k+I (& >1).

711, .. (4n—
328 37 (4n 1)<V 3
5-9-13... (4n4-1) 4n -3

1 1-3...(2n—1 1
en—1) _

3.29 =<
2v/n 2-4...2n Ven4-1

(n > 1).




3.30

3.31
3.32
3.33
3.34

3.35

3.36
3.37

3.38

3.39
3.40

3.41

3.42
3.43
3.44

3.45
3.46
3.47
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3n—1 . 1 I 2 . n—1 on
2 <(+;2)(+,;5)---(+ n2)<2?1

(n > 2).

4-7-10... (3n+44)
3-5-8...(3n+2)

a+b+tc < ad®=°4-bd*%4-¢cd*® (a, b, c,d > 0).
a’t?(c4-a)+? < c°d®(a-+0)°t% (a, b, c,d > 0).
abt (a+b)* < (a2+02)*+  (a, b > 0).

2\ 20
a2 < (a4-b)*+(a—b)o® < (a+ %)2 (0 < b < a).

> 13 (1 ),

a’+-6°>1 (a,b > 0).
a%® > ath® (a > b > 0).

PpPIPrarNGevratnyr/(vratn) > Lip 4 g4 y) (p, ¢, » natural
numbers).

(L+a)-2(1—a)t+e < 1 < (I4a)t+e(1—a)i=e (0 <a < 1)

@™ ta—1)". .. (a—n)"| = (n])™ (0 < a < n).

_ 2
T
VCERRY

2" nn
— < — <3 (n = 3).
n nl

n* = (2n—1)!11 = (2n—1)"2

m 2m—mn-+41\"

(n) Z(¥n+1 ) '

(@7 —07) (@45 > (@ —b)(@+57) (a>b5>0, p > g)
(

pa+-qb)P+e > (p+-q)* - a?t (a, b, p, 9 > 0,p # q).
achl—c 4 (1—a) (1—b)'—° <1 (0 <a,bc<1l).
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3.48

3.49

3.50

3.51

3.52

3.53

3.54

3.55

3.56

3.57

3.58

3.59

3.6

[—]

3.61
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1\ #+1
(y%) Zz* (x>0).

b a-+b
a’h® > (61:;———) (@, > 0,a 5 b).

At bo et (o0
( a-+b+tc )

(bed+cda-+dab--abe)s+v+e+d
= gbtetd—apetdia—b diatb—c Jatbdte—d (a+b+c+d)a+b+c+d
(al b’ C, d > 0)

1\™ 1\" n!\3/2
(2= () = 2 (2 e ne
m n n
1 n+1 1\27+1
() = 0s)
% 2n,

1 2n 1 n—1 1 n+1
e e
" n n
2ab(c+1) < a1 b+ c(a?t/ e p141e)  (a, b, ¢ > 0).

n* (Z—;—l)gn > (n)t (n > 1).

=a%b®c® (a,b,c>0).

ml4n! > (m—1)14+(n4+1)! (m—n > 1).

HETES

k=0 n—1

bpa_pl =pa—(p—1)b (a,b>0,p> 1)

1 1\" 1
(1+—+ —2) < (1+ —)e.
n n n,

(a1+a2—{— ... —{—a,,)“1+"2+"'+“"

"

S aMa, ... a, (a; > 0)
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1

2 m l’n
3.6 2<(1—|—m) <(1+ﬁ) <3 (1<m<n).

N

a\™ a\"
3.63 (l—l—;n—) <(1+;1,) (@ > 0;m < n).

a\—* a\ v
3.64 (1——) >(1——) O<a<a <y).
Z Y

3.65 (1+a)l/t—(1+a) 1t <a (a=0,¢=2).

§ 4. Inequalities Involving Finite Sums and Products

4.1 Prove the inequality

LI
V2 V3

SoLuTtioN 1. For # = 1, the inequality (1) certainly holds.
Let us suppose that (1) is valid for » = %, i.e., that

s 2(Vn+l1—1) (m=1). (1)
n

i_+ . +i_> 2(VE4+1—1).

le\/2 Vk

Then
. + ..+ ! + 1 > 2(VE+1-1)+ !
Ve T Ve VR Vi1l

If we can show that

14

2(VE+1-1)+A/VE+1) > 2(VE+2-1) (kZ=1), (2)

then the proof of (1) will follow by induction.
Now (2) is equivalent to

WhH14+ (1/VE+1) > 2VE+2.
If, on the contrary,
WVE+14+(1/VE+1) < 2VE+2, (3)
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then
2k+3 < 2V (k+1)(k+2) = 9 < 8.

Since hypothesis (3) leads to a contradiction, it follows that
the inequality (2) holds for 2 = 1.

SoLuTION 2. Since the function f(z) = 1/v/z is monotone
decreasing,

>J- x)dx orE\—/—>2(\/n—|—l—1)

v

which was to be proved.

4.2 Prove the inequality

m 1 2m 1 m 1
g (m+-k) (m+k“1) o g (m-k) (m+k41) (m > 1).
4.3 Prove the inequality
1 1
f(”)-m"l—m—l— +§;>2 (n > 1).

SorutioN. For 1 < v < #, nt+v < 2un. Thus, 1/(n+v) = 1/2n
for each of the # terms of f(n), whence f(n) > n/(2n) = 1/2.

4.4 Prove the inequality

1
f(”)=ﬁi+m+ +3n—|—1>

SoLuTION. Let us suppose that the given inequality is valid
for some natural number » = &, that is to say

H(k) > 1. (1)
If both sides of this inequality are increased by

1 1 1 1

k1 t sk 2 3513 t 3k+4’
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we obtain

1 1

2
k1) > 1— 3k+3 t 3k 2 t 3k4-4°

If

2 1 1

+ +

_ 3
s T ahre Takaa & ®)

it will follow from the induction hypothesis that f(k+1) > 1.

Now (3) is equivalent to

1 1 2
itz T 3kta 313
ie.,
2(3k+3) 2
(3h13)*—1  3kt3’
ie., '

1 1
(Bk1 3)—1° (3kh13)’

which holds for all 2 = 1.

Since, in addition, /(1) = 13/12 > 1, we conclude that f(») > 1
for all natural numbers #.

4.5 Starting with the inequalities

1 1
— r > 1),
1'(7—|—l)<1'2<1'2~1 ( )
prove that
m 2m ] m 3m-+-1

1) @Emt1) ,=§+1;5< (m—+1)(2m+1) + am(m—+1)(2m+1)

for m a natural number.
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4.6 Show that if 4, =a,=a;,=...=a, =0 and

k k
Z =30, (k=1,2,...,n), (1)
v=1 y=1
then
Sa2< 3 b2 (2)
y=1 y=1

ProoF. After multiplication by a,—a,.,, (1) becomes

k
@ = @—a) b (k=12....%), (3)

Ma'

(a—a541)

V; 1

where a,.; = 0. Summing both sides of the relation (3) from
k=1 to k= n, we obtain

IA

gla 2 21 a,b,. (4)

With Schwarz’s inequality

(o) = (50 (22).

the relation (4) yields

(Ze) = (B = (50 (309).

whence follows (2).

Equality holds in (2) ifand only if a, =8, (v =1, 2, ..., ).

4.7 Iz, =2, (<k),y; <y, d<k)orife,=x, (i <Rk),
Y; = ¥, (¢ << k), then prove that D, < D, ,,, where

p=r e (39) (Z0).

y=1
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4.8 Prove the inequality
ata*t ... +a* <n(@®+t1+1) (a =0,nanaturalnumber). (1)
SoruTiON. For # = 1, the relation (1) becomes
at+a? < a¥+1(a = 0) = ala+1) < (a®—a+1)(a+1), (2)
which is valid, because
a = (a—1)%4-a for all a.

Equality holds for a = 1.
Let us now suppose that (1) is valid for » = %, i.e., that

Hk) = atart ... a¥ < h@*41) =g(k) (@ =0), (3)
which may be more briefly written as
Hk) = gk) (a=0). (4)
Then
FR+1) < k(a?*+14-1)4- a2+l g2k+2,

Consequently, if

k(a1 1) g2 42842 < (k1) (a2*3+1) (@ = 0), (5)
then

fk41) = g(k+1) (@ =0),

whenever (4) holds.
The inequality (5) is equivalent to

(k+1)a?H(1—a2) < 1— (a2 (a = 0). (6)

We will prove that (6) is valid for a = 0. If 0 < a < 1, after
division by 1—a2, (6) is equivalent to

(k+1)a%+ < 14a%+ ... +a%. (7)
For 0 =< a < 1, we have the inequalities
APl < 1, g2 < g2 | g2kt o g2k,

from which follows the inequality (7). For a = 1, equality holds
in (7).
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If a > 1, then (6), after division by 1—a?, becomes
(B+1)a®+t = 1+a%+ . .. Fa%. (8)
Since @ > 1, we have the inequalities
a%tl > 1, g2+l > g2 | g2t > g2

whence follows (8).
Thus (5) holds for all @ = 0. This establishes the inequality (1).

4.9 Prove the inequality

3 () mepr oz < )

k=0

(» a natural number, x a real number).

Proor. We start with the binomial expansion

3 (3) e = aor &

k=0

After differentiating with respect to ¢ and multiplying by ¢,
we obtain

;Zo k(:) £ = nt(14+8)"1, (3)

After another differentiation with respect to ¢ and multiplica-
tion by ¢, this yields
S k2 (Z) tF = nt(14-£)"14-n(n—1)(141)"2
k=0
= nt(1-+nt) (1+£)"2.

If # # 1, the relations (2), (3), (4) with £ = x/(1—z) become,
respectively,

(4)

éo (Z) 2F(1l—g)rF = 1, (5)
’éok (:) 2k (1—z)"* = nax, (6)
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io k? (n) 2k (1—z)"* = ne(l—zx+nx). (7)

Direct verification shows that (5), (6), and (7) also hold forz = 1.
If we multiply both sides of (5) by #2%z?, (6) by (—2nx)and (7)

by 1, and add, we obtain
> (n2x2—2nxk—|—k2)x"(;:) (1—z)"* = nx(l—x-+nx)—nia?
k=0

1e.,

éo (nax—Fk)2ak (Z) (1—x)"* = nx(l—2x). (8)

Next, since
2(1—2) = }—(@—)"
we have
z(l—x) < 1/4. (9)
From (8) and (9), the inequality (1) follows.
4.10 Prove that

k=1 k=1

> [%_J - [%:l = n2—n (n a natural number),

where [a] represents the greatest integer not exceeding a.

4.11 From the graph of the function z7(p > 0) deduce the
inequality
b

1
a”<g~— x?dx <b? (0 <<a<<b)
__._.aa

and hence prove the inequality

i (n41)r1—1
" < 17427437+ .. 40P < 7‘_-1—
4.12 Show thatifa, = —1 (¢ =1,2,..., m),
b=1(Fk=12, , #),

and
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=3,

ﬁMs

then
([T a+a}{IT -0} =1
i=1 k=

4.13 Prove the inequality

1
_+m+ +n_2> 1 (n a natural number > 1)

Proor. Since, for #n > 1,

1 . 1 1 - 1 1 1
n+1” w2’ w2 R g
we find
1 1 - 1 nz—n_ .
—+n“+—1+ TET et e
4.14 Prove the inequality
1 _
1+ —+ — o= n = 2).
\/2 \/3 + i % ( )

Proor. If £ < n (= 2), then 1/4/k > 1/4/n. Setting k=1
2, ..., n, in succession, and adding the inequalities so obtained
we find

1 -
— =4+ = > n— = 14/n,
\/1 \/2 \/n Vn

which is the desired inequality.
(Solution by B. Mesihovié.)

n 1/2 n 1/3
4.15 (2 kZ) > (z k3)
k= k=

4.16 H 1+-a,) >1—{—Eak (ag>0o0r —1<a,<0;n>1)

k=1

n

417 [ (1—a) > 1— Eak (0 <a,<1; n>1).

k=1 k=1
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4.18 ﬁ (14a,) < 1/(1—’§1ak) (iak <1, a; > 0).

k=1 k=1

n

4.19. (1—a,) < l/(l—}—kz;ak) (1 > a; > 0).

2 n

(1+“k) = 1+s, + + + — (“k =0,s, :’Z,lak) :

£l
]
—

i

4.20

-l
i

3

4.21

]

a?) = 1—a+ (0

IA
fIA

a =< 1).

9n+1

>
It
=

3
1
—

422 I (144 < (1-a)/(1-2ata) (0 <a <)

>
II

1423 (1+ak)g > (1+ zak) (@ = 1),

r 1
4.24 exp(z%—) > n

425 exp ( >

4.26 exp(i (n > 1).

4.27 In? < E t(n+1)2

428 In® < k< {(nt1)3

k=1
429 1— — < m<l—-.

111
(n+k) ntp

4.30

T M's

1
PESERPET IS

431 3

1
St =
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4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

4.41

4.42

4.43
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< 2.

M=

1
it R

Do |

<k§1n+k< 5 (n>1)

0=

n 21l )
e - n (7 .
< 2 5 < (n>1)

k=1

n{(n+41)Y/"—1} <§1% < w{l4 (n4+1)"1— (n 1)1/}

2 mpk

X

k§)§> 0.
n—1 %Hk %(%+1)
iom—~k  2m—n+t1 (m >mn>1).

2n+1 2%—k+2 .
1 2 ?_*_1 n
— 7 >
?vglv =( 2 ) )
5 1 <1

e og n.
. g
2n (___1\k
(2%)!(2 (—1) ) > {2n—1)11}p.
=2 k!
s (n!)* VA
Z O —h P B = 2
1 9 3 "
PR e
ntl/l 1
W(% w1
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§ 5. Inequalities Involving Trigonometric Functions
5.1 Prove the inequality

sin (i x,,)

k=1

14
< Ysing, (0<a,<mkhk=12,..;v>1). (1)
k=1

SoLuTIioN. First of all, we have
sin(x,+®,) = sin x; cos x,-4cos x; sin x,
= |sin(x, +x,)| << |sin xy| 4 |sin ). (2)
Since, by hypothesis,
O<o <7z, 0 <y <,
it follows from (2) that
|sin (2, +42,)| << sin z;+sin z,.

Accordingly, the inequality (1) holds for » = 2. Let us suppose
that it is valid for some #(= 2) and consider the equality

n

n n
sin (x,,+1+ > xk) = sin %, COS (z xk) 4 cos 4 sin (z wk) .

k=1 k=1 k=1

Hence

sin (xn+1+ z xk) ‘ < [Sil’l xn+1| +

k=1

n
sin ( > xk)
k=1
n

< |sin &, 4|+ Y sinz,
k=1

by the induction hypothesis.
Since 0 < #,,; < &, the preceding inequality gives

n41 n4l
sin(Zxk) < Y sinaz, O<z,<mk=12..;0n>1).
k=1 E k=1

This completes the inductive proof.

5.2 Compute the sums

m

m
Sy= > coskx, S, = 3 sinkx (m a natural number > #).
k=n{l k=n+1
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Prove that
(S12+S,2)12 < 1/(sin 4z) (0 < z < 2n). (1)
ANSWER.
S; = {cos (m-+t-n+1)x sin § (m—n)z}/ (sin §z),
Sy = {sin ¥ (m+n--1)z sin L (m—n)z}/(sin $z).
Note. How does the inequality (1) change ifx € (— oo, 4 0)?

5.3 Solve the inequality sin z > sin 3z graphically.

54 If0<a, <ax(k=12,..., 1), isit true that
n 1 n n
TIsina, < {sin — > ak} ?
k=1 7 k=1

5.5 Prove the inequality

n

> cos(a,—a,;) = —3n (ay, ay, .. ., a, real). (1)
i<
PROOF.
n 2 n 2
(Z cos ai) + (z sin ai)
i=1 i=

= n+2 Y (cos a; cos a;+sin 4, sin a,)
i<d

= n+42 % cos(a,—a;),

i<d
whence the inequality (1) follows directly.
5.6 TFor what values of z is
sin x > 2 cos?z—1?
SoLuTioN. The given inequality may be written in the form
2sin?ztsinz—1 > 0

or
2(sinz+1)(sinz—3%) > 0.
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Since sinz > —1 for all % 3#/2+2kn, the above inequality
is satisfied provided that
sinz—% > 0=z e (n/642kn, 52/6-+2kn) (k= 0,4-1,+2,...).
5.7 Show that if # is a natural number, then

sin na

<n (xEkr k=0 +1, 42 ... (1)

sin x

SoLuTION 1. For # = 1, the relation is valid. Let us suppose
that (1) holds for #» = £, i.e., that

sin kz

sin x

IA
o

(2)

Consider the quotient

sin(k+ 1)z . sin kx

- ; cos x--cos k.
sin z sin z

It follows from this result that

sin (k4 1)z sin kz

. =
sin x

[cos x|+ |cos kz|.

sin
From (2) and the preceding relation, it follows that
sin(k41)z

. = k+1.
sin

This proves (1) by induction.

SoruTIioN 2. The inequality (1) may also be proved by starting
with the identities

‘Slr.l 2px = 2{cos z+4-cos 3x+ ... f-cos(2p—1)z} (p=1)
sin x

and

Sli(ii—gl)x = 14-2{cos 2z+-cos 4+ ... +cos 2px} (p=1).

From these it follows that
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sin 2px

9 sin(2p+ 1)z

sin z

< 2p+1.

sin z
5.8 Show that, if 2 is a natural number and if 4 and B are
real numbers, then

cos kB—cos kA ‘

< k2 A B). 1
cos B—cosA | (cos 4 7 cos B) (1)

Proor. Starting with the identity
cos p—cos ¢ = —2 sin 3(p4-¢)sin 3(p—q),
we find that

cos kB—cos kA sin }k(B+A) sin $k(B—A)
cos B—cos A sin $(B+44) sin }(B—A4)

cos kB—cos kA sin $k£(B+-4) | |sin $k(B—4)
cos B—cos 4 lz sin 3(B+-A) || sin 3(B—4) ’
Since
|sin #x/sin ] < # (» a natural number), (2)

the preceding inequality gives precisely the inequality (1).
The inequality (2) was proved in 5.7.

5.9 IfAand B (cos B # cos 4) are real numbers and if 2(> 1)
is a natural number, then

‘cos kB cos A—cos kA cos B
1 cos B—cos A

‘< k2—1. (1)

SorutioN. From the inequality
|sin rz| < 7 |sinz| (» a natural number)
it follows that

sin 7z sin sy sin 7z sin sy--sin sz sin 7y

= 7s > < 2rs

sin x sin y sin z sin ¥

(r, s natural numbers). If we now set r = %41, s = k—1,
z = }(A+B), y = $(4—B), we obtain the inequality (1).
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This solution was given by L. E. Bush (The American Mathe-
matical Monthly, vol. 64, 1957, p. 651).

5.10 Is there an a such that

tz t4 tz t4
l—— +-—>cost>1——-F— 0 <t 2)?
stz 2+a (0 < ¢t < 7/2)

5.11 What conditions must be satisfied by the positive
numbers a and & so that the following inequality is valid:

(a+b)sinx
> 7 > ?
v = a+b CcosS & (x = O)' (1)

SoLuTION. If we set b/a = & (> 0), the inequality (1) becomes

o> (14-k)sin z
~ 14+kcosx

v

0). (2)

We cannot have k2 > 1, because when z tends to a root of
the equality
1+kcosz =0,

(and such roots will exist), then the value of the function
(14+-%) sinz
14+% cos z

tends to infinity and (2) cannot hold.
For & = 1, the inequality (2) becomes

2sin x
x=_—————=2tan{x (z =0),
14 cosz

whieh is false. Consequently, we must take 2 < 1. Then (2)
may be written in the form:

z—sin z+k(x cos x—sin z) = 0,

z cos xr—sin x 1

fla) =

v

—_— = 0).
xr—sin x k (z=0)

Here we take f(0) = lim f(x).

-0
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If m denotes the minimum value of the function f(z), we seek
the conditions under which

m = —1/k = —alb,
ie.,
a-t+mb = 0. (3)
We shall show that m = f(0). First of all, we use L’Hépital’s
method to find

. xcosz—sinz . —xzsinz
f(0) =lim———— =lim —————
z=0 X—SInzx zo0l— CcOS
. —sinz—xcosx . xsinz—2cosx
=lim ——————=llm—
©a0 sin z Zo0 cos z
= —2.

We must prove that f(z) = —2, i.e., that
zcosxz—sinz = —2z42sinz  (x = 0),

z(24 cosz) =3sinz  (x = 0),

3sinz
Since
" 13 (24-cos x)cos xz+sin?z (l—cos x)2 =0
) =1— = =
¢@) (2-+cos x)? 2+4-cosz/ —

the function g() is increasing, so that
gl@) Zg(0) =0 (x=0),

which is identical with the inequality (4). Hence m = —2, and
the condition (3) may be writtenasa = 2b. Thus, we have proved
the inequality

- (a+-b)sin z

(a=2b>0,2=0).
a+t-bcosx

(Solution by D. Djokovic.)

5.12  Prove Everitt’s inequalities:
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sin @ 2(l—cos 6)

R TR
sinf 24-cos @

g~ 3

. (0 <0 =m).
sin 6 - 4—4 cos 6— 62

0 o2 ’

sin 0  cos 0+44-0%/3
> .
0 5

NotE. Concerning these inequalities and their generalizations
see: The Mathematical Gazette, vol. 44, 1960, p. 52—54.

5.13  Prove the inequality
VA+VB+4/C =43,

where
A = tan g tan y+-5, B = tan y tan «}-5, C = tan a tan §+5,
«>0,8>0,7>0a+p+y =1z
514 If 0 <2,y <=x/2 and 0 < x-+y < x/2, prove that
0 <tanztany << 1, tan(z+y) > tan z+4tan y.
5.15 Prove that
sin 04-4sin 26 >0 (0 <6 <wm), (1)
sin 043 sin204-1sin36 >0 (0 < 6 < 7). (2)
Proor. From the identity

sin 64-% sin 26 = sin 6(1+cos 6),
since

sin # > 0 and 14cosf >0 (0 <0 <),
(1) follows immediately.
In order to prove (2), we consider the identity

sin 643 sin 2044 sin 30 = sin §4-sin 0 cos 6+ sin 6 (4 cos26—1)
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= % sin 0(2+3 cos -4 cos? 6)
= % sin 6{(14-cos 0)24-(14-cos )43 cos? 6},

from which (2) follows at once.
The inequalities (1) and (2) are particular cases of Jackson’s
inequality (see § 0.8).

5.16 Prove that
sin @4-sin 20+ ... +sin n0+1sin(r+1)6 =0 (0 < 0 < 7). (1)
Proor. The left-hand side of (1) may be written in the form

n n41
1 (z sin k04 3 sin k@) . @)
k=1 k=1
Since
1
. sinZsin” Tl g
in k0 = 0<0
2,5 sin 10 0 <G<m),

the expression (2) is equal to

1 1 2
(smﬁ psin”Tlo  sin™Tlosn™T2 0)
1 2 2 2 2

2 +

sin 60 sin 16

n+41

1sin 2 0 12
n n

2 (. " . 0

3 “sin0 (sm26—1—51n 2 )

1
nr 0 cot 30.

I

= sin?

This expression is non-negative for all values of 6 e (0, x).
Finally, (1) is trivially true if § = 0 or .

5.17 Prove that
arc cos ¥ = V12 (—l1 =< 41).*

*) This assumes the principal-value branch of the inverse function.
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Proor. For £t = 0,
£=sint = V1—cos? ¢

If xe[—1, +1], we may set £ = arc cos z i.e., z = cos ¢. Conse-
quently,

arccosz = V1—azt (—1 =z

IA

+1).
5.18 Prove that
arcsinzg < z+Vae (0<az <1).

Proov. If we set x = sin ¢ (0 < ¢ < #/2), the given inequality
becomes
t—sint < Vsint. (1)

By Taylor’s formula,
13
sin ¢ = t———6—cos 6 (0<6<1),

1e.,
P 3
t—sin £t = —cos 0f << —.
6 6

The inequality (1) follows from the inequality

t3
— < Vsing,
6
ie.,
tG
%< sint (0 <t = =#n/2), (2)

which, follows from Jordan’s inequality
2¢

—=sint (0 <t=<m/2),
T

because in the interval under consideration
8 2t

— < —, le., & < 72/x.
36 7T /
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5.19 Prove the inequality
1-26/r < cos 0 =nf2—0 (0 =0 =< x/2).

Hint. Use Jordan’s inequality (§ 0.9).

n

520 tana; < (z sin ak)/(z cos ak) < tana,
k=1

=1
O<a <ay<...<a,<in).
5.21 Prove the inequality
2(cos a—sin a)? < [cos(a+6)+sin(a+6)]?
+ [cos(a—0)+sin(a—0) ]2 < 2(cos a-sin a)?
where 0 < @ < #/2 and 6 is arbitrary.
SorutioN. Taking into account that
[cos(a+0)+sin(a+0)]2+[cos(a—0)+sin(a—0) ]2
= 2+sin 2(a+0)+sin 2(a—0) = 242 sin 2a cos 26,
2(cos a—sin a)? = 2—2 sin 2a,
2(cos a+sin a)? = 242 sin 2a,
the given inequality reduces to
—1 =<cos20 < +1.
5.22 sinzttanz > 22 (0 <2 < #/2).
523 1=cosx = 1—%&:2.
524 tanz > z+ia® (0 <z < 7/2).
525 arctanz <x—%28 (0 <z <1).
526 x—%x® <arctanz (x> 0).
527 —logcosz < +sinztanz (0 <z < 7/2).
528 (b—a)cosb <sinb—sina < (b—a)cosa (0<a,b <m/2).

5.29

sin 7z <4 O<z<1)
= x .
x(l—x) —
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tana tand sina sinb

5. . 1.y
30 <y, > 5 (a<b;0<ab<zgn)
5.31 da» (Sinx') = 1
o |de"\ =z n+1
5.32 -d_”_(l—cosx) < 1 .
da” x n+1

5.33 coszdaxsinz >1 (0 <z =x2).
53¢ tanz <z+2® (0 <o < z/3).

_ 3 si _
535 —vV3=<_ 1% /3
2+4-cos x

§ 6. Geometric Inequalities

6.1  Show that if «, 8, y are the angles of a triangle 4 BC, then
cos a+ cos S+ cosy = 3/2.
Sorution. Let [BC| = a, |CA| = b, |AB| — c. Since

A%-B?J: —cacosﬁ,lﬁ‘-a‘l = —abcosy,C?l *AB = —bccos «,

we find

0

IA

BC CA AB\*
(—a- > - —) = 3—2(cos a+cos S+ cos y),
whence

cos a+cos 4 cos y < 3/2.
(Solution by D. C. B. Marsh.)
6.2 Show that if 4, B, C are the angles of a triangle, then
1°: (sinA4/2+sin B/2+sin C/2)? < cos? 4/2-4-cos? B/2+cos2C/2;

3
2°. cosA/2cosBf2cosCl2 = — V

3°: tan? 4/24-tan? B/24-tan? C/2 = 1.
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6.3 Let a, b, ¢ be the sides of a triangle 4 BC of area S.
Prove the inequality
45V'3 < a1 b2t 1)
SoLUTION. Let us suppose that (1) is false, so that
4SV/3 > a2 b2-c2, )
The inequality (2) is equivalent to

, 1
2bc sin o > —= (a®+b24-c%), (3)
V'3

where « is the angle opposite the side a. By the law of cosines,
2bc cos & = b2+ c2—a? 4)
Squaring (3) and (4) and adding, we obtain the inequality
a?b?4-b2ct+c2a? > at+ b+,
which is equivalent to
(@ =B+ (@) (12— < O,

which is false.
From this result it follows that the inequality (1) is valid.

6.4 Let P be any point in the interior of the triangle 4 BC and
let |PA| = «, |PB| =y, |PC| = 2. Let $, g, 7 be the distances of
P from the sides BC, CA, A B, respectively.

Prove the inequality
zyz Z (g+7)(r+p) (g+2).
6.5 With the notation of 6.4, prove that
r+y+z = 2(p+q+7).

SorutioN. If L, M, N are the feet of the perpendicular from
P to BC, CA, AB, respectively, we have

MN = (g+72-+2gr cos «)¥, MN = xsin «,
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where «, B, v are the angles of the triangle. We now have, in turn,

z+y+z= 2 (¢*+7r*+2gr cos «)'/?[sin a
a, B,y
= > [(g sin y+7 sin B)%4-(g cos y—7 cos §)*]1/3[sin «
= E (gsiny+7sin B)/sin o = z b (Sm B sin y)

siny = sinf
= 2(p+g+7)
(Solution by L. J. Mordell.)

6.6  With the notation of 6.4, prove that
prt-qy+rz = 2(gr+rp+p9), (1)
xyz = 8pqr. (2)

SorutioN. Denote the sides of the triangle by a, b, ¢ and its
area by 4. If &, is the altitude from 4,

a(x+p) = ah, = 24 = ap+bg+tcr,

whence
ax = bg-tcr. (3)
From (3)
b ¢
po = ;) pa+ ()
a a
whence

c

b
2pe = (—+b)9722297-
¢
This proves (1). For (2), we apply the inequality of the arith-
metic and geometric means to (3), obtaining
ax = 2(bcqr)/?

and two similar inequalities. Multiplying these yields (2).
(Note that (2) may also be deduced from the result of 6.4.)
(Problem and solution by A. Oppenheim.)

6.7 Show that a necessary and sufficient condition that line



114 ELEMENTARY INEQUALITIES

segments of lengths a, b, ¢ can form a triangle is:
b2c2-caa%h? > L (ad+brtc).
6.8 Show that if a,, a,, 45 are the sides of the triangle 4 BC and
hy, By, By the corresponding altitudes, then
.3 3
V3Sa=23 Iy
k=1 k=1
Equality holds if and only if A BC is equilateral.
6.9 Showthatif 4, B, C are the angles of a triangle A BC, then
sin 4/2 sin B/2sin C/2 = 1/8.
6.10 Show that if a, b, ¢ are the sides of any triangle, then
(a+-b—c)(b4c—a)(c+a—0b) < abe.
6.11 1If %, is the altitude to the side BC of the triangle 4 BC
(IBC| =a, |CA| = b, |AB| = ¢), prove that
at-b-tc
s = .
(=)

h, < \/s(s—a)

6.12 Show that if 7 is the radius of the inscribed circle of a
triangle and R the radius of the circumscribed circle, then

IA

|~
DO | -

6.13 A given point is at distances V' 2, 2 and V/3—1 from the
vertices of a triangle. Find the maximum area of the triangle.

SoLUTION. Label the given point P and the vertices 4, B, C

with PA = 2, PB = v/2, PC = V/3—1. Let z denote the length
of the perpendicular from P to 4 B. Then the optimum configura-
tion gives an area of

L(V3—14a){(d—a?) i 2—a?)12} (0 <o < 4/2).

This area has a maximum of $(3- \/5), at x = 1.
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(Solution by D. C. B. Marsh.)

6.14 Let A, (k= 1, 2, 3, 4) be the vertices of a square and P
a point in the same plane. Prove the inequality

4 —
S |4,P] = (14+V'2) max |4, P|+min|4, P|
k=1 k k

and determine the points P for which equality holds.

6.15 1If S, is the sum of all the perpendiculars from the center
to the sides of a regular polygon of % sides which is inscribed
in a circle of radius 7, prove that

Ser1—Sp > 7.

6.16 About an arbitrary circle there is circumscribed a regular
polygon of » sides each of length @,, and within this circle is
inscribed a regular polygon of k sides each of length 4,. Prove
the inequalities:

A, <b, (n=25,6,...),
Appy > b, (=3

20,4 < b,+b,, (m=910,...),

2y > byt bpyy (1= 3

This exercise may be found in the journal: Fiziko-matematicesko
spisanie, Sofija, v. 2, 1959, p. 239.

6.17 Given a circle C of circumference U. Let p, be the peri-
meter of the regular #-gon inscribed in C and P, the perimeter of
the circumscribed regular #-gon (# = 3). Prove that:
1°: The sequence {p,} is monotone increasing, and
the sequence {P,} is monotone decreasing;
2°: $p,+3 P, >U.
SoLuTION. 1°: The side of a regular inscribed #-gon measures

27 sin (z/n) and the side of a regular circumscribed #-gon is
27 tan (n/n), where 7 is the radius of the circle C. Therefore

b, = 2rn sin(w/n) = 2xr¢ (nj7)sin (z/n), (1)
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P, = 2rn tan(zn/n) = 207 (n/x) tan(z/n). (2)

sin x

For 0 <z < =/2, the function p(z) = is decreasing and

t
the function P(z) = —ov

is increasing, because

rcosx—sin & cosx
P’ (x) = - == (r—tanz) <0 (0 <2 << 7/2),

—tanx . .
cos 2x z—sinx cosx 2x—sin 2%

>0

x? T a2cosr  2aPcos®w
(0 < > << nf2).
Since 0 < @/n < n/2 (n = 3,4, ...), it follows that
po = 2ar p(wjn)t, P, =2 P(r/n)| (n=3,4,...).

2°: The inequality which we wish to prove may be written, by
means of (1) and (2), in the form

27 R/ 7
—n (2 sin — —l—tan—) >2nr (n=3,4,...),
3 n n,

or
JT
2sin” ftan= >3~ (n=3,4,...). (3)
n n n

Let us set f(x) = 2 sin x+tan z— 3. Since
7(0) =0, f'(x) = 2 cos x+sec?x—3,f(0) = 0,

" . 2sinx 2sinzx
f'(x) = —2sin a4 = (1—cos®z) > 0
cos’x cossx

0 <z <37,

the function f() is strictly monotone increasing on the interval
[0, 7/2), i.e.,

2sin z4-tanx > 32 (0 < & < 7/2). )
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The inequality (3) follows immediately from (4).
(Solution by D. Adamovic.)

6.18 Given a tetrahedron with vertices 4, B, C, D, let P be
any point in this tetrahedron. Let 4°, B’, C’, D’ be the orthogonal
projections of the points 4, B, C, D onto the faces BCD, CDA
DAB, ABC. Prove the relation

> |PA4| (area ABCD) = 33 |PA’| (area ABCD),
where, for example,

> |PA| (area ABCD) = |PA|(area ABCD)+|PB|(area ACDA)
+|PC|(area ADAB)+|PD|(area AABC).

Hint. Let H,, Hg, Hq, Hp be the altitudes of the tetrahedron
dropped to the triangular bases BCD, CDA, DAB, ABC. Then,

H, < |PA|+|PA’'|, Hz = |PB|+|PB’|, etc.
6.19 Let P be any point in the interior of an arbitrary tetra-
hedron. Let p,, $,, P35, P4 be the distances from this point to the
vertices of the tetrahedron, and let ¢,, ¢, g5, g, be the distances

from this point to the faces of the tetrahedron. Prove the in-
equality

PrtbetPstba = 3{i 995+ 94)-
(This problem was contributed by W. Gridasow.)
6.20 Let a, b, ¢ be the sides of a triangle; prove that

abc _a+b—|—c
5 =5

36
21 p21 o2 > 2
a6+ = 35 (S +
6.21 On the interval —1 =< 2 < +1, let there be given »

distinct points P,, P,,..., P,. Let T, be the product of the
distances of the point P, from the other points. Prove that

L |
27,

6.22 1°: If a, b, ¢ are the lengths of the sides of any triangle

v

2n-2,
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(which is nondegenerate), prove that
a2 < b24c? < 242 1)
where a = max(a, b, ¢).

2°: Are the conditions (1) sufficient for the existence of a
triangle (which is nondegenerate) with sides of lengths «, b, ¢?

SOLUTION. 1°:

{b<a,c=a}=>b2+c* < 2a? 2)
a < bdc = a? < b24-2bc+-c?, (3)
(b—c)? = 0 = 2bc < b4 4)

From (3) and (4) it follows that
a? < 2(b2+¢?) = %az < b24-c2, (5)
From (2) and (5), we obtain (1).

2°: 1f b = %a, ¢ = %a, the conditions (1) hold, but b+c¢ = a,
which contradicts the supposition that the triangle is non-
degenerate.

Now, if b = %a, ¢ = %a, the conditions (1) are again satisfied.
However, with the lengths a, 4, ¢ so chosen, it is not possible to
construct a triangle, because b-+-¢ << a. Thus, the conditions (1)
do not suffice.

6.23 Prove that if, with [BC| = q, |CA| =10, |AB| =c¢, it is
possible to construct a triangle 4 BC, then with

By = Ja, lya] = Jb, o] = Ve
(n a natural number > 1), one may construct a triangle «fy.
Proor. Without loss of generality, we may suppose that
0<asb=ec 1)
Since a, b, ¢ are the lengths of the sides of the triangle,
¢ << atb, (2)
¢c>b—a. (3)
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The relation (1) for the triangle «fy corresponds to
0 < Ja<JUb< e (4)
The problem may be solved if we can prove that the inequalities
(2) and (3) imply that
Ve < Ja+b, and, (5)
Je > Jo—Ya. (6)
Let us suppose that (5) is false, so that
Ve = Jato. (7)
Then, after raising both sides to the #% power, we find
c=atbt+M, (8)

where M is a positive number.

Since (8) contradicts (2) for all @ and 5, we have proved
that (5) is valid.

Let us assume now that (6) does not hold, but instead that
Je £ Jo—a.

Then, after raising to the »™ power, it follows that
atc+M < b, (9)

where M is a positive number.

Since (9) contradicts (3), we have proved the inequality (6).
Consequently, if the inequalities (2) and (3) are valid, (5) and
(6) follow.

Remark. For the six relations

at+b>c¢, bitc>a, ct+a>b,
a>|b—c¢|, b>lc—al, ¢> |a—b|,
which hold for the sides a, b, ¢ of a triangle, only three are independent,
the others following from these. If we use the assumption (1), onlya+b>¢

needs to be checked. This means that in the proof it is possible to omit
the relations (3) and (6).
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§ 7. Inequalities Involving Mean Values and Symmetric
Functions

7.1 Given positive numbers @ and b (> a), let

— 2ab
A = }(a+b),G = Vab, H = b

Prove the following inequalities:
1°: A >G> H,
2°. A—G > G—H,
3% A—G < (b—a)?/(8a),
4°: A—H < (b—a)?/(4a).

Proor. 1°: Since

A—G=31Va—Vb)2 >0, (1)
we have A > G. Since
H—G = — ‘ﬁ’é (\/a—\/b) (2)

we have H < G.
2°: From (1) and (2) it follows that

a b
A—2G+H = (\/( -I—\;)) >0=>A—G>G—H.
3°: From (1) we obtain
(a=b)*
T 2WatVe®

whence, by the assumption that a < &, it follows that
A—G < (a—b)?/(8a).
4°: In a similar manner, we have

I Gl e
A—H_m A—H < (a—b)*/(4a).
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7.2 Prove the inequality

1 1 1 84 5848
—F+ -+ —< arore (@, b, ¢ distinct and positive).
a b ¢ adbdc3

7.3 Let a4, a,, . . ., a, be positive numbers no two of which are
equal. Prove the inequalities

r1 7 1 =21 1

Lyl t s sy

n
(s =3 a,c) .
N gy Ay s n—15a, iS1s—ay fa}

k kLo oy 1/k
7.4 Ifal,a2,...,an>Oandﬁkz(al T +a") ,

%
then

bz p (7> 5).

7.5 Let the sum of four positive numbers be 4c and the sum
of their squares 8¢%; show that none of these numbers can exceed

(14++/3)c.

SOLUTION. Since the arithmetic mean of the squares is not less
than the square of the arithmetic mean,

(40_“1)2 _ (“2+“3+“4)2 - a’+ag®+a,®  8cr—a,®
3 ] 3 = 3 3

Le.
a2—2ca;—2c2 < 0 = a; < c(14++/3).

(Solution by D. Djokovié.)
7.6 Use Bernoulli’s inequality,

(14+a)* = 14na (a>—1,n=12,3,...), (1)

to prove
b—1
m <14+ —— (b>0m=1,2,3,...), and (2)
m

(m—1)a+b

m—-lb 1/m <
(am=toyim = .

(@>0,b > 0). (3)
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Proor. From (1) we have

1 b—1
(=t “
m
if (b—-1)m>—1andm=1,2 3,..., 1e,if b>1—m and
m =1,2,3,.... The inequality (2) follows at once.
To prove (3), we replace 4 in (2) by b/a to obtain
bla)—1
(playim < 14 HIL (5)
m

Multiplying both sides of (5) by a yields

b—a  (m—1)a+b

(am—1p)tm < a4
m

which is (3).
7.7 Prove the inequality

3(a3+b%4-c?) = (a?+b*+c?)(a+b+c) (a,b,¢>0)
and from this result deduce that

a b c >3 5 0
b+c+c—|—a+a—l—b:_2_ (@,8,¢>0).

7.8 Let by, by, . .., b, be any permutation of the positive num-
bersa,, da,, . . ., a,; then show that

E by, = n
=1

SoruTioN. This result is an immediate consequence of the
inequality between the arithmetic and geometric means, since

G",a

7.9 Prove the inequality
patqbtrc = a?bic" (a,b,¢,p, 9,7 > 0; pt+g+r=1). (1)
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Proor. Applying the inequality between the arithmetic and
geometric means, we obtain

n n 1/n n
=3 fle) 2 {[T1)] = exp (5 3 log (e,
whence, taking limits as # — oo,
B B
f fle)de = expf log f(x)dx, (2)

where we assume that f(x) is positive and piecewise continuous
over the interval [«, 8]. N
In particular, if we set

a (0 <z <p),
f(x)={b (p <=z <ptyg),
¢ (prg<=z<1),

in (2) we obtain the inequality (1).
(Proof by D. Djokovic.)

700 I py =1, b= % (k=1,2, ..., %), where g, is the ele-
n
)
mentary symmetric function of order % of the positive numbers
a,, 4, . . ., 4,, then show that

Pr1Pri1 =2 (1 =r = %—l),
PP Zp = = p

RemARK. For this result see: J. W. Archbold; Algebra, London 1958,
p. 53—55.
7.11 Prove the inequality
b P et @be=0. (1)
< i(a c a,0,c .
b-+c c¢t+a  atdb—

SorLuTioN. From the inequalities
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we obtain
1 1 1 1 1 1
e
b+c Vb cta Vea a+b
It follows that

be ca ab

b+-c T cta T a+b =

Using (2) again, this inequality yields

bc ca ab b+c cta a-+tbd
< 1
b+c+c+a+a+b_§(2 2 2

3(Vbe++/cat-+/ab)-

) = $(a+b+4c).
Equality holds in (1) only whena = b = c.

7.12 Prove the inequality

Ham+bm) < {3(a+b)" 0<m <1l;a,b>0;a # D).

Generalize.
7.13 Prove that if

AY—

, ay and p,= 3 aa,...a,

ay,03," "0y

&
AL

(i.e., p,is the r-th elementary symmetric function of a4, a,, ..., a,),
then

b - (n—1)!

= Ay, Ay, - .., a, > 0).
s, — vl(n—r)! (@1, 2, = 0)

7.14 If a, b, ¢ are three distinct real numbers, prove that
3min(a, b, ¢c) < ¥ a— (3 a*—-3 ab)/?

< Y a+ (3 a*—3 ab)'?2 < 3max(a, b, ¢),
where
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S a=a+b+tc, > a? = a*+-02+4c2, Y ab = ab+bc+ca.
Proor. The function
f@) = (z—a)@@—0)(x—c) = a®— (3 a)a?+ (3 ab)xz—abc

vanishes for = a, x = b, x = ¢. We deduce that /’(z) vanishes
for values of 2 which are solutions of

322—2(3 a)x+Y ab = 0.
These solutions lie between min (4, b, ¢) and max(a, b, ¢). From

this we obtain the proposed inequalities.

7.15 1f A, and G, are the arithmetic and geometric means of the
first £ numbers in the sequence a,, a,, . .. (¢, > 0), prove that

R(Ay—Gy) = (h—1)(Ayy—Gya).

(See the paper of L. Tchakaloff: Sur quelques inégalités entre la
moyenne arithmétique et la moyenne géométrique, Publications de
VInstitut mathémaiique, Beograd, v. 3(17)1963, p. 43).

7.16 Let o, (k=1, 2,..., n) be the elementary symmetric
functions of order % of the real numbers z,, z,, . .., #,. Prove
that

{o,>0,0,>0,...,0,>0}<> {2, >0,2,>0,...,2,> 0}.
ExampiE. If 2, y, z are real, then

{e4+y+2z >0, yztzx+tay > 0,2yz > 0} = {x > 0,y > 0,2>0}.
Proor. We see at once that

2, >0,2,>0,...,2, > 0 implies ¢, > 0,6, >0,...,0, > 0.

In order to prove that the converse holds, we form the poly-
nomial equation with roots z,, z,, . . ., #,, namely,

" —o 2" o2 2— ... +(—1)%0, = 0.
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We determine whether this equation may have negative roots
by replacing by -z, whence
2" +o "t Hoa" 2+ ... o, = 0.

If the conditions ¢y > 0,0, > 0, ..., 0, > 0 hold, the poly-
nomial

2"+ox" o™+ ... o,

does not vanish for any positive value of z. Thus, since this
polynomial vanishes for # = —z, (k= 1,2,...,#n), it follows
that

2, >0 (B=1,2,...,%n).
Thus
0, >0,0,>0,...,0, >0 implies &, > 0,2, >0, ..., 2, > 0.
7.17 1°: Does

(A) x>0,y>0,2>0
imply
(B) x+y+z >0, ayz > 0?

2°: Does (B) imply (A)?
3°: Are (A) and (B) equivalent?

7.18 Prove the inequality

Proor. This inequality follows directly from the identity

n

n 2 n
2 > w, = (Z xk) + >k
k=1 =1 K=l

7.19 Prove the inequality (a-+b-+c) (bc+ca+ab) > 9 abc, where
a, b, ¢ are positive numbers which are not all equal.

Proor. (a+b+-c)(bc+ca+tab)—9 abe
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= a(b?+c2)+b(c?+a?)+c(a?-+b%) —6 abc
= a(b—c)2+b(c—a)?®+c(a—b)2 > 0

ReEmARrRk. What changes must be made in the given inequality
if a, b, ¢ are negative numbers?

7.20

7.21

7.22
7.23

7.24

7.25
7.26

7.27
7.28

7.29

7.30

7.31

7.32

7.33

n—1 k

(é (n—k)d )Z>MIIEd (d, = 0).

k=0 v=0

kzxkgn (x,c>0,]_[xk=1).
—1

k=1
(b+c)(c+a)(a+b) = 8abc (a,b,c =0).
be(b+c)+ca(c+a)+abla+b) = 6abc  (a,b,c =0).

(l——l) (l—l) (l—l) =8 (a,b,¢>0;atbtc=1).

a b c
b%2c?4-c2a?+a%b* = abe(a+b-+-c).
(a®+ 02+ c2+-d%+e?) (aB 4 343+ d3+-e3) = 25 abede
(a,b,c,d, e = 0).
a*+b3+c3+16abc < 2(a-+b+-c)(a®+0%+c2) (a,b,¢c = 0).
(s—a)(s—b)(s—c)(s—d) = 8labcd (a, b, c,d > 0;
s = a+t+btc+d).
a b ¢

a
>
b+c+c+d+d+a+ﬂ+b:2 (#.8,¢,4 > 0).

Vab+vactvad+/bet+vbd+ed < F(atbtetd)
(a,b,¢c,d = 0).

n s %2

(a,c>0;s= Eak).
k=1

>
=1 S—a, #n—I1

3> (ak>0;s=za,c).
=1 S—a, n—l =1

n

S ()2 = 3(1—1) S ey (@ = 0).

k=1
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7.34

7.35

7.36

7.37

7.38

7.39

7.40

7.41

7.42

7.43

7.44

ELEMENTARY INEQUALITIES

at+bt+c = a?bic™+a"bPcl+a?b"c?
(@,b,¢, 9,9, 7> 0; p+g+r=1).

n+z" < 14z+22+ ... +2* (x = 0).

1—2% = 2n2"(1—2) (0 =2

[IA

1),

(abc)P (@3 + B3 +c3)5 < (B5c5+ c5 @+ adbd) (a5-+ b5+ c5)*
(a, b, c = 0).

1 = 1/p 1 » 1/q
(e =(53a) 0<t<gazo

ﬁ(;iﬂ ):%%a,-m(m:iai;a,-,a,.>0).

i=1 1 =1

2(n—1) (X 2.2) (2 3 2222+ d,2x.25)—n (3 2 2w,)?

(%, g, . . ., @, real numbers).

3 @ b n ¢
2:b+c+c+a a-tb

(where 4, b, ¢ are the sides of a triangle).

fIA

2

i n—1 . 1 2

“n—2



§ 8.

8.1
8.2

8.3
8.4

8.5

8.6

®
N

o
®

8.9

8.10

8.11

8.12

8.13

8.14
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The Inequalities of Cauchy-Schwarz-Buniakowski,
Hoélder, Minkowski and Chebychev.

(aa+0p)? = (a®+0%) («+ 7).
atb+b%c+c?a)(ab®-+bc*+-ca?) = 9a2b%c®  (a, b, ¢ = 0).

i a,c) (i l) =n? (a; > 0).

k=1 k=1 g

—

—

2
ay bk) z ka,? -
=1

M=

&
[
=

[ ZE
R
&
3
S ——
o
IA
o
3
o
3
T
S ——

P v e U e
M=
R
=
~l
=
3}
=

S ——
=3
IIA
-
M= )
R
&
[
M=
el
&
=3
N
M=
i}
=
(-]
S——
(-]

li

&

—
&
Ii

E3
I
-
£
]
-
=
I
-

k

M=
R
&
=al
)
=
S——
™)
IA
M
)
&
™)
M=
k=al
&
™)
M=
)
=
™)

B
il
-
£
1l
-
&
il
-
£
Il
-

M=
| —

&

If
LR
&4

2 n
) <> ka2
k

1

e
s
|,
o

n

> aby § z lagl?> 3 |02 (a3, b, complex numbers).
k=1 k=1 k=1

Sad =1 (3 lak= 3 me—1)

k=1 k=1 k=1

(ay, b, complex numbers).

(a1+ay+as) (e tcytc3) — (b +b,4-85)2 > 0

(a1, ag, as, a;0,—b,%, axco—by%, azc3—0b32 > 0).

(@11 81)%(@51+02)" = a1 a5+ b7 by
(P+g9= 10,9 &, b, = 0).
(It+z) (I+y)~" = 1+2"y'~" (2,9 = 0,0 <7 < 1).
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8.15

8.16

8.17

8.18
8.19

8.20

8.21

8.22

8.23

8.24

8.25

8.26
8.27
8.28

8.29
8.30

ELEMENTARY INEQUALITIES

[(@y01) 4 (aa+by) 1M = (ay"+ay") "+ (b, b,7) 2"
(r>1; a,, b, = 0).

ﬁuwgzmw“@>mﬁ%=ﬂ.

ﬁ(1+ak) = 2" (ak> O;ﬁakz 1).

k=1
[(a+0) (a+B)] 2 = (aa)2+ (BB)1/2 (a,b, 2, B = 0).
[(@1+01) (a2+05) (a3+85) 73 = (aya5a5) B4 (b 0,05)1 2

(A, b, = 0; k=1, 2, 3).
[(a1+01) (@51 b3) (a5+b3) (a4 -+0,) 1M/
= (31858304) 04 (b1babsby) 1t (4, b, 20,k =1,2,3,4).
1

LS (3 k) 32 =)

k=m

n
Z
k=m

(i a,cbkc,c)6 = 2:: 4kz a2 z bt z b2 z ck42 2.

k=1 Fe=1 k=1

lﬁ: arte = (% i akp) (l i ak") (p,g > 0; a;, = 0).

N p=1 k=1 " k=1
'] k 1 =

—DNa) =£—Saf (a, =0
(”;g1 V) ——ngl Y (V— )
n 2 n

(Zak) =y a?

k=1 k=1

be(b+c)+ca(c+a)+abla+d) < 2(a3+b3+c3) (a, b, c=0).
(bct+ca+ab) (at+-b+4c)t < 27(a®+02+c2)2  (a,b, ¢ = 0).

(at4-044-ct+-d4) (aB+- 8343 +d%) < 4(a"+ b7+ +4d7)
(@, b,¢c,d = 0).

(a-+b) (a2+5%) (a3 4-1%) < 4(aS+18) (a, b = 0).
(a-+D) (a3+1%) (a7 +b7) < 4(a'? b)) (a,b = 0).
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8.31 (a2-+5?)(a8-+b%) (ab+-0%) < 4(all4b11) (a, b = 0).
8.32 ab(a?-+b?) < attbt.
8.33 a2B(a5+H) < a¥Lb° (a, b= 0).

x"—1

8.34 n(l+am?) =2

po— (x> 0;n = 2).

835 (a+b)" <2 (a"+b") (n=2;a,b>0;a F#Db).
8.36 a"—1 = n(amth/2—gn-1/2) (g > 1).

a b _ _
837 —+—1= ,b>0).

Vit vis Va+vVb (a )
8.38 (a*+-0%)(aP+0%) < 2(a®+0°) (a,b > 0;a #D).
8.39 (a®-+03)(a2+02%) << 2(a®+8%) (a,b > 0;a #Db).

§ 9. Inequalities Involving Integrals.

9.1 et
I, = 2n cot® af

tan™ z dx (0 <a< % ; % a natural number) .
0

Prove the inequality

a a
f tan™ » dz gf tan” x sec? « dw, (1)
0 0
and hence deduce that

I, < 2tana. (2)

Will the inequalities (1) and (2) be valid if # is an arbitrary
real number?
9.2 Prove the inequality
g@*—1) =2 p(a®—1) (p>gq> 0,2 >0

and from this result, by integration, prove the inequality

%{(pj—pl)" ——1} = % {(q—T—ql)" —1} (» a natural number).
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9.3 Let
In:f tan"zde (n=2,3...; 0<a<in)
0

Prove the relation

In+In—2 =

tan"1q.
1

Compute I; and I,, and thereby deduce that
a-tlog sec a < tan a4} tan2a—L tana (0 < a < m=/4).

9.4 Prove Esseen’s inequality

¢(—a—0b) = 24(—a) $(=0) (2,0 20),
where
CVoml
Proor. Consider the function

Fla, b) = ¢$(—a—b)/¢(—a) (a,0=0).

e 3 ds.

¢ ()

Differentiating we obtain

oF
a ¢>7(1——a) {¢'(—a)p(—a—b)—¢' (—a—b)p(—a)}
e—a%/2
—_° g b)) p—RbP—ab f
Vi) PO
e—a2/2
ZWGM, b),

where we have set
G(a,b) = ¢p(—a—b)—e P~ ¢(—a) (a,b=0).
From this result we find

oG
— = be P (—g) =0
whence

G(a, b) <lim G(a, b) = 0,

a-» 400
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and thus (4) gives

Accordingly,

Fla, b) < F(0,b) = d 24 (—b),

$(0)
which completes the proof of Esseen’s inequality.
(Proof by D. Djokovic.)

ReMARK. Starting with Esseen’s inequality, prove that for the function

fl@) = i_ f : e~¥dt,
Vo Jo

we have the analogous inequality
f@)f(b) = fa)+f(b)—fla+b) (a, b =0).

9.5 Let f(x) be a continuous, non-negative function for all
real », and suppose that

Joo
flx)de = 1.

If
+o0
/

g(t) = (x)coswt dx (¢ real),

—00

prove the inequality

g(2t) > 2{g(H)P—1 (¢ # 0).
Proor. Since

cos 2wt = 2 cos?at—1,

Jo0
g(2t) = 2 f(x) cos? wt de—1,

whence the given inequality may be written in the form
J00 400 +00 2
f(x)dw f(z)cos? ot dx > { f(x)cos xt dx} .

—00
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Since the functions V#(%) and V/f(x) cos «t (¢ # 0) are linearly
independent, we see that the preceding inequality follows from

the Cauchy-Schwarz-Buniakowski inequality

[ s [ re@ar= { [ 1) hia) @]

where f,(x) and f,(x) are two continuous, linearly independent

functions, when we set

a=—w,b= 40w, @) = Vi), f(x) = Vi) cosat (t #0).

(Solution by D. Djokovi¢.)
9.6 Prove the inequality

2n 2(n-1)

0

7 72 2 7T
— > (f sin® GdG) > (» a natural number).

9.7 Let the function f(x) be positive and non-increasing over

the interval [1, 4 o0). Show that if

g ) =tft") (t>1,n=0,1,2..),
then
t—1 gt

el = | /@) dr = (g0,
tﬂ
9.8 Prove the inequality
o, — (2n)!!
= dr = —_— =12 ...).
fo erdezvng o L)

Proor. Start with the following pair of inequalities:

+o° 2 —_ ! 2 Vi 2
f e*”dxg\/nf e*"”dx:-f erde (n=1,2,...);
0 0

0
1—a? < ¢,
From (3) there follow in succession
(1—a2) < e (m=1,2,...),
1 1
f (1—a2?)* dz §f e da.
0

0
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From (2) and (5) we find

) 1 !
e \/ﬁfo (ownde = W(%%T”

9.9 Prove the inequality

400 n— !.7'[

Proor. Starting with the inequality

e < (x = 0),
1402
we obtain
1
e < r=0n=12...),
T !
+oo +oo 1 72 2n—3) 1!
f e dg éf . *'—2dx=f coszn—ztdtz(—)—ﬁ.
0 o (1+a?)" 0 (2n—2)11 2

If we set x4/n = y, the preceding inequality yields (1) at once.

9.10 Verify that
1Y/ 1—a2
J:, 1422
and from this result deduce the inequality

dw = Ln(y/2—1)

) T
1 — - 1
/i) < [ Tt < g

9.11 If fy(x) > O(x = 0) and f,(x) = [§/f, ()t (n=1,2,...),
prove the inequality
fn(x) fn+1(x)

" = artt

9.12 Prove the inequality

e s 1l e
f e dx<;e—“ (a > 0). (1)
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Proor. If x > a > 0, then

e < =% since x2 > ax.
Since
b 2 b
f e~ dw <f edx (b >a>0),
a a
one has
. b 2 °
lim | e*dr <lim | e~ dx (a>0),
b0 d a b-tooda

whence the inequality (1) follows.

9.13 Prove the inequality
+a
(2n)—1/2f e dy < (1—e=)12 (g > 0).

9.14 Prove the inequality

1 1 2
dr < — (O<it=1
fo (1—2x cos t4-x2)3/2 Y=o O<t=3m).

Hint. Start with the equality

1 1 1
d
f(1—2xcost+x2 8/2 o [sin®f+ (x—cos £)2]3/2 *
w=1 1

B w0 [sin? ¢+ (x—cos t)z]s/zd(w‘—-cos t) (¢t fixed)

r .
=ty (sin 3¢+-cos t).

ReEMARK. It is also true that

1 1 \
dr < 0 <t<an/2).
fo (1—2x COS t+x2)3/2 = 39 s ( <l = 7'[/ )

9.15 If

1
! =fo = (—aeyp®® @ <1,
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prove the inequality

V2 <I< (1—a?)1/2

as well as the sharper inequality

T <1 7 1
2 <2 (1—a2)t/2’

9.16 Let f(f) be a non-negative function defined on the interval
[0,1], and let

M) o | (‘1‘2”2) (b, 1, € [0, 1]).

Prove the inequalities:

flf(t) dt < 3"f1 PHOL (= 0,1,2,...),

2 1 1 2 1
mfo f)at gfot f(t)dt gmfo f()ar

These inequalities were stated and proved by B. Sendov and
D. Skordev in the journal: Fiziko-matematicesko spisanie, Sofija,
v.2, 1959, p.240 and v. 3, 1960, p. 55.

9.17 Prove the inequality

[t —s@rar =2 e —r@r iz @) —h@)e dn
(1)
HiNt.  f(x)—g(x) = {/(x)—h(z)}—{g(x) —A(x)},
/(@) —g(@)] = If () —h(x)|+1g(®)—h(z)l,
1) —g @)1 = lf(w)—h(o) -+ g (@) —h o)
+2/f(x) —h(x)| g (@) —A(x)].
Since 2{f (@) —h ()| [g(®)—h(x)] = |f(2)—h(x)|*+ g () —A (@)%,
the preceding inequality becomes
(@) —g @) = 2[f(w) —h(x)>+2lg (x) —A(x) >

ReEmMARK. What conditions must f(x), g(x), A(x) satisfy, in order
that the inequality (1) is meaningful?



138 ELEMENTARY INEQUALITIES
9.18 Prove the inequality
1
1.462 <f ¢ de < 1.463.
0

9.19 Starting with Jordan’s inequality
sinw 2

— > 0<z<af2), (1)

prove the inequality
" e i R
~Rslnz gy < — (1—e~ R > 0).
fo € <3 (I—e®) (R>0)
Proor. For 0 << & < #n/2, (1) implies each of the following:

sinz > (2[n)x, —Rsinx < — (2/7)xR, e Bsine < g-2R/m
w2

/2 /2
f e—Rsinz g, <f e~ 2RIT dpp — ¢—2R/(7 (——n/2R)
0

0 0

7T
— 2 (1—eF),
ar 1)

§ 10. Inequalities in the Complex Domain.

10.1 Prove the inequality
la+b] + la—b| = |a] + [b,
where a and b are complex numbers.
Proor. 2ja| = [(a-+b)+ (a—b)| < |a-+b|+|a—b|,
26 = [(a+b)—(a—b)| = la+b|+la—b];
adding and dividing by 2 gives the stated inequality.
10.2 Show that the inequalities

z

Re z < 1/2 and
1—z

<1

are equivalent.



THE COMPLEX DOMAIN 139
10.3 Show that the inequalities
1
Rel— < 1/2 and jz| > 1
—2

are équivalent.
10.4 Show that the relations

2—a | 2—a 2—a

1—

= >1 (la| <1)

1—az

1—az

R
N

are equivalent, respectively, to
o] < 1,02 = 1,12 > L.

10.5 Prove the inequality

n

2 %4

k=1

2§(§akz)-%(§lzk|2+

k=1

n
z Ay 2

k=1

).

REemARK. This inequality is stronger than Schwarz’s inequality

where the a, are real and the 2z, complex numbers.

n 2 n n
D 4| = (Z akz) (E Izlclz) s
k=1 k=1 k=1
since
n n
2R = PIEARE
k=1 k=1

10.6 Prove the inequality
llog(1+2)| = log(1+12]) (2 = z+ay),

where log z is the principal value of the logarithm.

10.7 Prove Kloosterman’s inequality

2
le*— (14-z/n)"| < ;ie"l (z = x-+7y # 0; » a natural number).
"

REMARK. See: Wiskundige opgaven met de oplossingen, Achttiende
Deel, eerste stuk, 1943, p. 70—72. ‘
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10.8 Prove or disprove the inequality
[ —1] > |z]" [+—1] (2 = x+2y; Rez = 1). (1)

Proor. Note that we must have z % 1. Let 7 = |z|, § = arg 2.

By reasons of symmetry, we may take 0 =< 6 << #/2. Since
2" =1 > JaH—Jzr (7> 1),
the inequality (1) holds if 2r— (n+1)6 = 0, i.e,, if
2
o< 2)
n4+2

For n =1 and » = 2, the condition (2) is satisfied for the
entire region D = {z|]Rez = 1, 2 7 1}, and for these cases the
inequality (1) has been proved.

If » > 2, the inequality (1) has been proved for the region

E={Rez=1,2%1,10] < 2nr/(n+2)} In polar coordinates,
(1) reads

2 72+ cos 6-+1 > »2"4-2 " cos(n+1)0 (rcos =1). (1"}
This relation certainly holds if
2741 > 2 L2 o fr) = 2" —2 41 >0. (3)

Since the polynomial f(») has only two positive zeros: » = 1 and
r =7, > 1, (3) holds for » > #,.
Since 7, > 1 and 2 »,2 > 1+#,, we have

73 =2 " 1) — (12 —1) = 0,
r2(r—1)(n" 2" L+ 1) = 14,
whence

2

14— =,
7 < +(n—1)2 7o

Consequently, we have proved that the inequality (1) holds for
the region F = {z|Rez = 1,7 = 7,}. Moreover, we may show
that £ v F = D. This relation is equivalent to the inequality

«< @
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Yy
o
a
O o0 1 X
n+2
\
Fig. 8.

where « is the angle shown in Fig. 8. Thus

1 2Vn2—2u12
sma:l/l—h: nt s (5)
—2n-13
whence
] 2 2
Sin o <<

— <C .
Vnt—2y13 n—1

Applying Jordan’s inequality sin 6 > 26/a, we obtain

<7T < T
*Sln —_—
R o

from which we deduce that (4) holds for n = 4, 5, 6, . . ..

For n = 3, we find from (5) that sin a = 4/5/3, so that
o < 49° and so (4) is satisfied. This completes the proof.
(Solution by D. Djokovié.)
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10.9 Prove the inequality

a-tb b
atdl _ el bl )
L+la+b] = 1+]a| = 140
Proor. Let us assume that (1) does not hold, but rather that
b b
atdl _ el B )

1-la+b] " 14]a]  14+5]°
Then we find that
la-+0] > |a|+|b]+2|ab| +|ab| |a--b], (3)
which is impossible because |a-4-b| < |a|4-b].

REemMARK. Is the generalization

n
Ta
k=1 * < n |llk|
n R NP
14| %4 + @]
valid? k=1

10.10 Prove that
lz—a| = |[1—az] < (1—|a]?)(]z]*—1) = 0.

10.11 If |a| << 1 prove the inequality
2(1—

|1/z—al?

Z—a

1—az
Proor. Making use of
lz—al? = [1—dz*+([2|?—1){1—la[*)

and
log(l42) <z (x=0)

we find for |2] = 1, [a] < 1

Z__—g = 11 [1
l—a'z‘ 0g | 1+

log (e —1)(_ja)]

|1 —adz|?
(l2*—1) (1 —la[*)
|1—az|?

1
=3

1—|a|
1/z—al*’
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Hence, (1) holds for |z = 1, |a| < 1. On the other hand, we
evidently have

lz—al

— << 1 for |2] < 1, ja] < 1. (3)
|1—az|

By (2) and (3) the given inequality is established.
10.12 Prove that

n 2

1
_zzv

1 n
<3 I
7 y=1 7 Vgl ”

where 24, 2,, . . ., 2, are arbitrary complex numbers.

HinT. Use the identity

1z 1z
— > |52 = w4+ = |z—w]?
N N

y=1
where
1 n
w=—2 2,
7 El
10.13 Let zy, z,, . . ., 2, be complex numbers such that

a—0 <argz, < o0 (0<<0<m/2).
Prove the inequality

n
2, %

v=1

n
= cos 0 [,
v=1

SoruTioN. We have

n n
>z, ety 2,
y=1

v=1

= Re (e—"“ > z,,)
v=1

= |3,| cos(—a--arg z,) = cos 6 3 |3,/
p=1

v=1

Hence, the inequality is true.
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§ 11. Miscellaneous Inequalities.

11.1 Prove that the following proposition is valid:

Pn): f(n) = Vn+Vn—l+V. ) .+\/2+\/I< Vau41.
Proor. P(1) is valid, because certainly 1 << 2. Suppose now
that P(n) is valid. Then,
fnt+1) = Vat1+f(n)
< Vn4144/n+1 (by the induction hypothesis)

= V{WVnt1)

= y/n+1

< Vnt+1+1
Thus, P(n) = P(n+1).
This completes the inductive proof.
11.2 Prove the relation
(ca’—ac')? < 4(ab’—a’b) (bc’—b'c)

= (b*—ac > 0and &2—a'c’ > 0).

11.3 Determine the values of # for which the following inequality
is valid

x, xq x, 4 x, %
fuly, e, ., 2,) = -+ - = —
" " Tty T3+, T, TyFxy 2

(@, =0;242,,0>0,0=1,2,...,582,.47=2). (1)

Proor for n = 3. For this case (1) reads

x x X 3

=42 + =2 =— (xtay = ay, 23-+%; = ay, %+, = a3).  (2)
a, ay, @y 2

We have

(ﬁ + e + @) (X1 a1 +%2 05+ 3 a3)
3

a, a, a
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2 2 2 @z | M a3 | @y 4, | 23
= 2542, 2+ 0, X | — o+ | F 2 | A — ) 2% | —
a1 Gy @y ag as
212y oy N
= (2,2, 423)%+ — (a1—a2)2+ — (@4,—a3)%+ — (a3—ay)2
@14y Ay 3 a3y

Accordingly, it is sufficient to prove the inequality
(212 4-23)2 = § (21012285 F-2305) = 3(, 2y F2p25+2527).
Since the latter may be written in the form

(@1 —y) % (X3 —23) %4 (x3—2,)%} = O,

we conclude that it is valid. Equality holds in (2) only if x, =
xg == x3.

The inequality (1) may be similarly proved for » = 4, 5, 6.
(See 7.7 in reference to the case n = 3.)

ReMARK. This problem was proposed by H. S.j Shapiro (The American
Mathematical Monthly, v. 61, 1954, p. 571). He proved (1) for n = 3,
4 (unpublished).

However, the proof of this inequality for » = 3 predates Shapiro’s
proposal. See, for example, G. L. Neviazhskii, Inequalities, Moscow 1947,
pp. 130—131.

The challenge of the inequality (1) has created lively interest among
mathematicians, as may be seen from the historical sketch which follows.

That (1) is not valid for all » was shown, by means of a counter-
example, by Lighthill (The Mathematical Gazette, vol. 40, 1956, p. 266).
Here is his counter-example:

Let n = 20, x5 = are, oy = 1+ (A =1,2,...,10), where

a,=6,a,=5,a;=4,a,=3,a;=2,a,=1,a,=2, ay=3, a,=4, a,,=5,
by=258,b,=4,b;=3,b,=2,b;,=1,b,=2,b,=3,bg=4, by=15, b,y,=6.
and e is sufficiently small and positive.
We have
__-'752k—1 . ) 14-bee
Lop+Lap1 1+ (ar+besr)e
= (14-84¢) {1— (@5 +bpr1)e+ (@ +bir1) %2 +O(e8)}
= 14+ (Or—ar—bp)e+ (@p+ i) (@x+ by —bi)e?+0 (),




146 ELEMENTARY INEQUALITIES

Lor ae
= = ae{l — (@ri1+br1)e+0(e?
Lapr1+Tony2 14 (@g 41 +bipa)e { (@2 ) (e

= axe—ap(@y,1+br)e24+0E) (k=12 ...,10),

where we have set
gy = Xy, Ty == By, @y; = a1, by = by.
Summing these twenty equalities we find

feol®1, @4, -+ o, Xyp) = 10+ pe+qe2+0(e?).

The coefficients p and g are:

10 10

p=2 (bk_llk_bk+1)+ Ya,=0,
k=1 k=1
10 10

g = 2 (@utbi1) (@tbio—by)— T ap(@pa+bi) = —1,
k=1 =1

and so the above relation becomes
fzo(wp Lgs o v vy 1'20) = 10—82—}—0(83).
Thus, for sufficiently small e, fy (2, Zs, - - ., Ts) < 10, which means

that for » = 20 the inequality (1) is false.

Many writers have proved the truth of (1) for » = 3, 4, 5, 6 or for some
of these values. A short proof of all these cases was given by L. J. Mordell
(Abhandlungen aus dem Mathematischen Seminay dev Universitit Hamburg,
Band 22, Heft 3/4, 1958, p. 229—240). The proof given here for the case
n = 3 was taken from this source. These results of Mordell suggest the
conjecture that (1) is false for all » = 7.

In addition to the aforementioned article by Mordell, there is the proof
by A. Zulauf that (1) does not hold for even # = 14. Zulauf proved that
(1) fails for » = 14 by using Lighthill’s method, and then applied induc-
tion.

This method of proof cannot be applied to the cases » = 8, 10, 12,
because the coefficient ¢ is then a positive-definite quadratic form in the
variables a; and &,. On this point see: Dina Gladis S. Thomas (The Ameri-
can Mathematical Monthly, vol. 68, 1961, p. 472—473).

Here is Zulauf’s proof: Analogous to the counter-example quoted above,
we find that for » = 14 and sufficiently small e,

f1a(1+7e, Te, 1+4e, 6e, 1-+e, 5e, 1, 2¢, 1+e, 0, 1-+4e, e, 14 6e, 4e)
= T—2¢24+0(e?) < T.

We suppose that (1) does nothold for » = N and leta, (kR = 1,2, ..., N)
be numbers such that

In (@, s, . ., Zy) < 3N,
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Then

fvee(® Too oo BN Ty TN) = fn(@n %o - -, an) +1 < E(NH2),
ie., (1) fails for » = N+2 also. Since (1) does not hold for n = 14, it
follows that (1) fails to hold for all even n = 14.
R. A. Rankin (An Inequality, The Mathematical Gazette, vol. 42,
1958, p. 39—40) proved the relation

n 7
tim 20 g A0 1—7x 1078 < },
n-aoo M n=3 #
where u(») is the lower bound of the function f,(x,, @, . . ., 2,) fora, = O.

Thus it follows that (1) does not hold for all sufficiently large ».

In a second article (The Mathematical Gazette, 1959, vol. 43, p. 182 —184)
A. Zulauf proved that (1) does not hold for » = 53, whence it follows that
(1) is false for odd » = 53.

D. 7. Djokovi¢ has proved (Proceedings of the Glasgow Mathematical
Association, vol. 6, part 1, 1963, p. 1—-10) that (1) is true for » = 8.
On the basis of this result P. H. Diananda (Proceedings of the Glasgow
Mathematical Association, vol. 6, part 1, 1963, p. 11—13) and B. Bajsanski
(Publikacije Elektrotehnickog fakulteta Univevziteta w Beogradu, serija:
Matematika i fizika, No. 76, 1962) have proved independently of each
other that (1) is also true for # = 7. In the same paper P. H. Diananda
has proved that (1) does not hold for » = 27.

Hence, there is still undecided question whether (1) is true or not for
n =9, 10, 11, 12, 13, 15, 17, 19, 21, 23 and 25.

Equally interesting generalizations of this inequality are given by
P. H. Diananda (The Amervican Mathematical Monthly, vol. 66, 1959,
p. 489—491).

11.4 Tet
X @€ z x
Q(x11x2,--.,xn): L + 2 ++ n—1 n ’
X+, x2+x3 r, 1+, x,+a,
where Ly, Loy ooy Xy = 0; x1+x2; x2+x3, ce e, xn—1+xn, x, x> 0.
Show that
1 < Q@y, 2y, ..., 20,) <n—L

REMARK. This result was proved by A. Zulauf (The Mathematical
Gazette, vol. 43, 1959, p. 42).

11.5 Determine whether the inequality

0 < (z+a)?/(x2+xt1) < 5(a2—a+t1)
holds for all @ and =.
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11.6 If x = 2¢/(14-#%), y = (1—#%)/(14-#2), prove that
l < 7—6x—3y <1
2 " 9—-8x—3y

11.7 If a,, a,, . . . are distinct positive numbers, prove that
a*+ay® > ayas+atay,
a3 +a2tag® > a,2a,-Faztas+asta,

and that in general, for 2 <7,

r

”
kzl a® > (Z “k2“k+1) (@rs1 = ay)-

k=1
11.8 Prove the inequality

P p+q q
< <
ptm " ptgtmtn " gtn

m_ n
(— > —; m, #» natural numbers; 9, g > 0) .

? g
Deduce that
< P v 4 & pte
- [ < .
El ;b+7+sg'; q-+s gl p+q+t
In general, if f(x) is a monotonic increasing function, show that
> () 3G <2 G
— —) < .
2G) 21 <3 ek
11.9 Prove that

x" 1
= (x > 0).
I+axta?2t- ...+ 2n-1
Proor. Making use of
=2t =a"v=1,2,..., 1% > 0)
we obtain
x’ 1 1
W = z = 241
San 143 (@+a)
v=1 y=1

(Solution by R. Lucié.)
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11.10 Prove the inequality

1+a+ta24 ... +a” >n+1
atattadt ... fa1 " n—1

(@ > 0; nanatural number > 1).

(1)
Proor. For n = 2, (1) is valid. Suppose that it holds for » = &,
i.e., that

1+a-ta24+ ... +a* >k+1

atat+ad4 ... f a1 T B—1" (2)
Since @ > 0, (2) may be written in the form
k1
14a+ ... 4ad* = — (a+a®+ ... $a*1), (3)

- |
whence we have

14-a-- ... +a¥t-a*tt = /]:—i_—i (a+a2+ ... 4a* 1) f-ab+t,

We shall establish

k+1 k42
k—t—l (at+a?+ ... FaF1)faF+ g% (a+a*+ ... +a14ak),
(4)
proving that (1) is also valid for » = A2--1.
Let us assume that (4) does not hold, but instead that

k1 kL2

p— (a+a2+4 ... +a* 1) fab+ < —%— (ata%4 ... +aF14-ak).

Then we find that
2(a+a*+ ... +a*¥14ak)+ (B2 4-k)a*(a—1) < 0,

which is clearly impossible if @ = 1. Thus, by induction, (1) is
established if ¢ = 1.

If we set @ = 1/b (b > 0), the expression on the left-hand side
of (1) becomes

1402t ... 4bn

1) = bLbibst ... b1’
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The preceding proof shows that

f(0) = (n+1)/(n—-1) for » > 1 and & = 1.
Thus, (1) is now established for all real a (> 0).
11.11 Show that if @ > b > 0, then 4 < B, where:

1+a+t+ ... +a™ ! B 1+54+ ... +b1

>

T i4at .. tar I BT R
Proor
1 1 a® 1 ] b
4 +1—|—a—|—...+a”—i’ B Jr1+b+.‘.+b"~l’

1 1
— = 1+ y
A la*+1/a" '+ ... +1fa
1 1
B 1+ )
B 1/pn-1/0" 14 ...+ 1/b
whence it follows that
1/4 > 1/B, and so that 4 < B.

11.12 Prove that

NP n+1
(H— %) ( —l——+1) (n a natural number).

Proor. We apply the inequality

a+ay+...+a,+a 1
. s " \/ A8y .. 4 n®nt1 (alra2!"':an+1>0)
n-+-1
with -
GH=a=...=a,=14+1/na,,=1

to obtain

1
nil R (”WJ)" 1
(1+ ;) <

n+1 n1"
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ie.,

1\" 1 n-4+1
(1 + W) < (l—l— ~—) (n a natural number).
n n+1

ReMARK by D. C. B. Marsh. This result also follows from 2.30 by
setting b = »n,a = n4-1.
11.13 Let {a,} (k= 1,2, ..., 2m) be a set of positive numbers
and {a;'} (k=1,2, ..., 2m) be this same set of numbers arranged
in order of magnitude so that
a) Za), = ay = ... = a,,

Prove L. A. Le Cointe’s inequality
’ !/ ’ ’ ’ ’

aay . ) A B 2yt Byn - By -
Remarg. Concerning this generalized inequality see: T. Popoviciu,

Mathematica, vol. 23, 1947 —1948, p. 127—128.

11.14 Referred to a rectangular Cartesian coordinate system,
consider the two points with coordinates:

{Blo—u)—3v3(y—2), 3v/3(v—u)+}y—=)}, {w—u, z—x},
where z, y, 2z, #, v, w are arbitrary real numbers. Calculate the
square of the distance between these points and hence derive
the inequality
(@2 4-y2+22) — (2t +ay) + (424 v2-+w?)

uwaxl
—(vwtwu-tuv) = 4/3lvyl;.
wz 1l

What conditions must %, ¥, z, %, v, w satisfy in order for
equality to hold?

ReEMARK. See: H. Langman, The Awmerican Mathematical Monthly,
vol. 35, 1928, p. 207.

For two proofs of this inequality (loc. cit.), see: F. Ayres, vol. 36, 1919,
p- 238; and D. R. Curtiss, vol. 36, 1929, p. 289.

11.15 What conditions must be satisfied by the coefficients
A, B,C, D, E, F for the function

Aa?+2Bxy+ Cy?+-2Dx+2Ey+ F (1)
to be positive for all real values of x and »?
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ANswER. The function (1) is positive for all # and y if and only
if either

ABD
1°: A>0,lg€'>0, BCE|>0,
DEF
or
o. AB, _|AB|_ _|AD
2°: A>0,)BC1—O,DE1_O,1DFI>O,
or '
. O CE
3 A=B=D=0, C>O,‘EFI>0,
or

4°: A=B=C=D=E=0, F>0.

ReEMARK. The binomial az+b is positive for all z if ¢ = 0 and & > 0.
The trinomial ax?+-2bxz+c is positive for all x if either

a> 0 ac—b2 > 0,
or
a=b=20,¢c> 0.

GENERALIZATION. What conditions must be satisfied by the
coefficients of the function

A2+ 4,57+ A3224-2Byz+-2B, 220+ 2By
+2C,2+-2C,y+2C52+D
if it is to assume only positive values for all values of the variables
z,Y,2°?
11.16 Let f(z) = aytaz+ ... +a,2"(a, =0;1=0,1,2,...,n),
g@) = f2(x) = bp+-byz+ . . . by, 2™

Prove Moser’s inequality:
born < 3P2(1).
Proor. From the identity

% bz’ = (éo a,,x”)z, (1)

=0

by comparing the coefficients of 27+, we find that
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2r+1 r
byri1 = zava2r+1—v =2 z @y Aory1-—v (@; = 0 for 1> n). (2)
v=0 v=0

Note the relation

(1) = %“v = i (@4 1-) +S,, (3)

where

(n < 2r+2).

On the basis of (3) and (2), we have in succession

r
fZ(l) 2 zo (av+a2r+1—v)2
y=
r r
= z (av+a2r+1—v)2— z (av—a2r+1—v)2:
=0 v=0
r
f2(1) 2 4 zoava2'r+l—-v:
y=

37(1) = bapir-
(Solution by D. Djokovié.)
11.17 Prove the inequality
2=
where {a,} is the Fibonacci sequence defined by the relations
ay,=0,a,=1,a,,, = a,+a,, (k& an integer = 0).

RemARrk. Cf. P. S. Modenov: Sbornik zadach po spetsial’nomu kursu
elementarnot matematiki, Moscow 1957, p. 34, Problem 31.

11.18 If % is a natural number, prove that
% 1 - k42
1 (k) T (R HEHT)

ProOF. Since
(B+2)(B+3) ... (k+7) > (k+2)" (r=2),
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then
§ 1 *® 1 AtL2
= (B-+7)! k+1 e k+2 (k+1)!k+1’
which is the required result.
11.19 Prove that
o 1 pl—o

)3

k=n41 ka a—

(» a natural number; a > 1).

11.20 Prove that any real root x, of the equation
x3-+pr+qg =0 (p, g real numbers) 1)
satisfies the condition
p2—4x, 9 = 0. (2)

Proor. Let z; be a real root of equation (1). Then z, is a
root of the equation

z, 2:-+pr-+q = 0. (3)
Since equation (3) has real roots, its discriminant must be
non-negative, i.e., the condition (2) must hold.

GENERALIZATION. Instead of equation (1), consider a more
general equation, for example,

a4 patqg = 0 (m, n natural numbers; p, ¢ real numbers).
(Problem and proof by S. Presié.)
11.21 For what values of x is the following inequality valid:
Ve+6 > Vatl 4 Var—5?
ANswER. The functions V| m V. m V22 —5 are all real
if # = 5/2.

The sense of the inequality remains unchanged if both sides
are squared; thus,

z+6 > 3r—4+2V222—30—5 > V22 3r—5 < 5.
The preceding inequality is meaningful when 5—z > 0; i.e.,
x < b.
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After squaring, the preceding inequality becomes
(z—3) (x+10) < 0,

which requires # to satisfy, in addition to the earlier condition
x €[5/2, 5), the condition ze(—10, 3).

Concrusion: The relation (1) is valid for z €[5/2, 3).

11.22 Solve the inequality

Vie—13 — V3z—19 > Vbx—217.
ANSWER. 19/3 <z < 9.

11.23 Find the set of points (z, ) in the plane with coordinates
which satisfy the simultaneous system of inequalities:
20+4+3y—6 < 0, y+2 > 0,z4+1 > 0, 224+9y2—1 > 0.
11.24 Showthatifa =2 0,6 = 0,c = 0,d = O0andifc+d < min
(@, b), then
ad+bc < ab, ac-bd < ab.

Proor 1. If
a=b, (1)
the inequality
c+d = min(a, b) (2)
becomes
c+d < a. (3)

After multiplying the inequalities (1) and (3) by & and b,
respectively, we obtain

(ad < bd, be+bd =< ab) = ad+bc < ab.
If

b=a, (4)
the relafcion (2) becomes
c+d <b. (6)
From (4) and (5) we obtain

(bc =< ac, ac-ad < ab) = ad+bc = ab.
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In an analogous manner, we may prove that ac+bod =< ab.

Proor 2. Due to Underwood Dudley (The American M athe-
wmatical Monthly, vol. 65, 1958, p. 447):

ad+-bc = (c+d)max(a, b)
= min(a, b) max(a, b)
= ab.
ReMARK. Can this result be generalized?
11.25 Prove the equivalence

[b—c¢| < a < bdcwja—c| < b < adc
(@, b, ¢ real numbers).

11.26 Prove that

i’ 1+ ) < ~ 0 or 1. (1

Proor. (1) may be written in the form

1\*  2z+41
. . 2
<(1+x) <2x+25 (2)

e
2241
1°: Let us suppose first that z << —1 and setx = —y(y > 1).
Then (2) becomes

1

1 TCE
g<(l——) < ye. (3)

1 Y 1

1— — 1— =

2y Yy

If A<B<C (4, B, C>0), then log A <log B < log C.
Applying this result to (3), we obtain the equivalent inequality

1 1
1—log (1——-) < —ylo (1__)
2y & Yy

< 1-+4log (1—— 51?;) — log (1— %) . 4)
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Since
oo k

bg(l—a) = — 3% (al < 1),

k=1

(4) takes the form

2ile) <2 6) <35(6) - (5 Jw=n

(5)
The coefficients of (1/y)* in the respective sums are
1 1 1 1 1
k-2’°’k+1’7€( ?)
We shall prove that
1 1 1 1
— << —|1—-= kR=23,4,...). 6
k-2k<k+1<k( 2k) (f=234...) (6)
Consider first the relation
1 1 k41
—,ie, 2" > ——, 7
P S hr T T g ™

Since
1
2> 14 n (B> 1),
the inequality (7) is valid.

Let us now examine whether

1 1 1
k_—l—l < % (1—— ﬁ) . (8)
For £ = 2, (8) is true. Let us suppose that it holds for some
k(= 2), i.e., that 2* > k1. After multiplying by 2, we obtain
2k > 2542 > k42 (R = 2).

The proof of (8) for 2 = 2 may be completed by induction.
Hence, the proof of the validity of (6) implies that of (2) and
thence of (1) for all z << —1.
2°: Since
—1—2 < —1 for 2 > 0,
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(2) is true, if we set ¥ = —1—2z(z > 0). Thus
2242 . (1 B _{*) -1 2241
2z-1 241 2z

After multiplication by z/(z-+1) (> 0), we obtain

1\* 2241
22+1 < (1+ _z—) < 22+2

This proves that (1) is also valid for # > 0.

e (2> 0).

e (z>0).

11.27 Prove the inequality

Tty r—y
0). 1
2 log z—log y (®>y>0) (1)
SoruTioN. The inequality
1 —lo 2
kil gy> (x>y>0) (2)

z—Y Ty
is equivalent to (1). Putting x = y+z (2 > 0) (2) becomes
log(y-+2)—logy

p Sy (y > 0;z>0). (3)

Writing ¢ instead of z/y (> 0) we obtain
log (14£) > —- —3— = (=0 (4)

142 t12

The function
0 = log(1+)+ oy —2 (> 1)
is monotonically increasing since
f’(t)ZL— L g >0 (t> —1).
tH1 (t42)2 (1) ((+2)2
Therefore, we have
fe) >70) =0 (>0

which is identical to (4).

Remark. This solution is due to D. Djokovi¢. Another solution can
be found in the paper of B. Ostle and H. L. Terwilliger, Proceedings
of the Montana Academy of Sciences, vol. 17, p. 69—70, 1957.
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11.29

11.30

11.31
11.32

11.33

11.34

11.35

11.36

11.37

11.38

11.39

11.40

1141

MISCELLANEOUS INEQUALITIES 159

3ab < \/a24—\/b2—1—§(a3+b3) (a, b = 0).

min{(b—c)?, (c—a)?, b)2} < L(a4b24-c2).
”_W-m%1§%<—nw4w—maﬂénwéyy
rx—a

sinh™ re+4cosh”™ vz < cosh”(r+1)x (x> 0,7 > 1).

sinh! 7z --cosh™+1 7z > cosh"(r+ 1)z (x> 0,0 <7 < 1).

\/“1% =Vaa,. .. a, =} +a,)
{a, = a,+(k—1)d; a;, d = 0}.

’f[ (i—l)aké (n—1)° (ak > 0,s = % ak).

—1 \@ k=1

Va2 ta2+ ... +a,2 — Vortbr+ ... +b7
= |y —bl+]ag—by|+ . . . +la,—b,.

7 ® 1 t+1
2 <n§1 (n+1)y/n <y
7T 1 &, a
- —- <1 0).
2 a<n§1a2—l—n2<2n (@>10)
* 2 2 2
> - arctan—n—tgi—
p=nq1 B2ak+1 A/4—q2 4/4—g? V4—a?
1
—_— 0 < 2).
+n2—|—an—l—1 0<e<2
® 1 1 1
o2 B2l w2 T e
ad 1 1 2 2_4
s S nt24atva -4
=np REFak+1l " 4/a2—4 T out+24-a—+/a>—4
1
. - 2).
+n2—{—an+1 (@>2)
> 1 5
D



