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Prcface

This book 1s dcsusmd so that 1+ may be used
in several ways : 1t can be used for self study,
as a cswdz for fuform\lts directed work | or as
a suyylemcnfanj text or source of ?roblcms for
an ordnary first or second course n number
fkwms . The am of the book 1s similar o that
of Aufgaben und Lehrsdtze aus der Anaﬁjsw

b\j Pé|\3a and S,uﬂs .

A considerable part of the work consists
of sets of Problems culmmaﬂn% n well known
theorems. In this way much of +he material of
an elzmchfar\s course in number fheor\j s covered.
Moreover, many theorems not of ten met nsuch
e|emcn1'am3 courses, but which require li++le or
no %rw‘l'er so?htshcahon, are included.

A lar%e, port of the book may be read 5\3 a
student with little orno co“uyz mathematics .
In the carlier poarts of the book such a student
would only mfrcquzn-l'hg find it necessary to shp
a problem because of s dependence on some
sywa\ mathematics not in his bachc&rounc\.



i

Later in the book, especially n the last half of
and in xvi, xx1, xxin, xxiv the reader will need o fairly
3ood workmg knowkdcje of hmiting processes as met
n e|emen+am5 and advanced calculus. Some cha)mts,
such as w1, xv, and xix, are qurte technmical Thouﬁ‘ﬂ hot
advanced so far as the mathematical fechmqucs used
are concerned. Most cl«a]ofcrs are mcle]ozndzn‘r of
one another and even a mathematical baﬂmner
should find v rela‘hvel\j easy to leo and choose
at random. Nevertheless, cach chapter 1s
written with the thought that most readers
will wish to work it fhroucjh in detanl .

The solution section (pp15-3565 )1 des:gneA
10 serve two functions : the first is to complete
the }woblem section 1n a way 50 as to make of
the two sections together a self contained ex~
position of the topics discussed ; the second 1s to
offer to the student wishing towork on his own an
oyporfunmj to ( spar1n<3|5 Yuse it for hints and
ideas. This section should be well thumbed rather
than well read. After saying this 1t should be added

that many of the ProHems are of considerable
d'fftculhj and a reader unable +o make any hwdwa\j



with a problem should not feel quilty about turning
to the solutions for hely.

A}aymdal to the text 1s a rather extended hist
of references, most of which have some direct bearing
on of least one })roblem . Tt must, however, be
emthsvzcd +hat the hist 1s not intended to be
comy|¢+z and contains only those references
farmlar to the author and felt o be Joarhcu|ar|t3
relevant to the material presented. Turther
references on virtually every topic mav be found
n the e):fraordmarn|«?~‘usefu| compendium LeVeque
(19743 - Symbols suchas v, viz2, ViR appearing
at the end of @ reference indicate, respectively,
the reference 1s a general one for much or all of
Chapter v, 15 relevant to problem 22 of Chapter
wil, or 1s mentioned 1n the remarks ’for C |1a3:+e,r il

Finally , a word concerning +he forma‘l' and
style of the book 18 1n order. It has |on3be¢n'rhe
outhor's opinion +hat The forma‘r orf amathematics
book 15 of greater importance than 1s %enerq“vs
recoam,zecl . Consequenﬂ\s y when the om:or‘l'um‘hj
arose to have the manuscript hand calhcjmjohd it
was decided o proceed with this even though it

i
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Was necessary fo bagm before the entire manuscript

was completed. This has led to some stylistic

disoclvan'l'acy.s inthe final Toxt. However, fhou%k

thar occurrence is regretable, they donot seem

1o be a serious deterrent o the 3¢nzm| aims of
+he presentation.

Thoucs\w the author can make no claim to have
written a book ona por with that 5\3 Po|\3a and
S,zujS, mentioned above, that work has consrsfanflxj
been considered as a modal for excellence. 1+ has
been an inspiration from the buynnumﬁ .

Great thanks are due to Greﬁor\s Maskarinec
for undqr‘rahmcl the arduous rask of ca||uc3myhm‘j
the manuscript froma hand written manuscript
of quite different appearance. Throucjhouf, our
workmcS relotion has been excellent and left noﬂ\mcj
to be desired. Thanks also are due o my man
students who, over the years, have worked +|1roug|1
various versions of parts of this material and to
helpful col‘eacsuzs for thar criticisms .

All comments from readers desngned to hzlp inthe
mprovemant of the work will be csrqfefun\j received.

Joe Roberts
‘Porflanc',Oreo.\on 1975
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other notations used in the text.

for mfcgers :

a| b means there 1s an inteaer ¢ such
that bza-c ;

azb (modmY) means m)a-b;
nlz1.2:3.-on; olzy;
(g)= aB)‘ , osbsa;

Z 1s the set of posthive infegers ;

‘3“’ stands for qreatest common

dwtsor ”

[u,v] 15 the least common multiple

of uand v ;

LHS (RHS) left (ﬂcj‘ﬂ') hand side .
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I The Game of Euchid & the Euclidean Algorithm

Consider the sequance of sets (duplicate
Uements are permitted )«

(18,35 ] > {4335} >{s 35} —>{s,11} —
{s,3 1—>{2,31—>{2,1]—>{01}.

Each set inthe sequance may be obtaned
from the Pruedmc3 one by subtracting some
positive mncjrq\ mu\h})\c of one of s damaent's
fromthe other. Whena set {a, 63 of non~
negative integers arises in this way from another
such set {m,n} wesay itisa derwed set of
{m,n]. A sequence of sets, like the above,in
which each sef 1s a derved sef of the preceding
set and ih which the last set contains 4 zero
will be called o derived sequence .

1f {a,6 ] 15 a derwed set of {mmn] with
least value for a+b we call v+ a minimal derwed
set of {m,n]. Inthe above sequence {43,35]



15 not a mimimal derived set of {78,355 while
{2,33 15 a minimal derived set of {8,33.The
passage from any set toa derivedsef is colled

a move and a move to a set one damant of
which 1s 015 called a winmng move .
Throuq\woui- ,all Inteqers areto be non-negative
and msn . Further, T =1—‘;45- .

1. Noting that {m nl={n,m]foralimmn
we se that :
1) {m,n} has t derved sets , where t1s the
largest posiive inteqer forwhichtmsn 1s ¥rue;
i) im,n} has eractly one mimmal derwed
set,whichis {m n-tm} wheret1s asin (1) ;
i) f {a,b] 15 o derwed sef of {m,n3 then
the greatest common divisor of aand b 1s
equal Yo the greatest common divisor of m

and n ; n symbols, (a,6)=(m,n);



iv) every derwved sequance starting with
{m,n} ends with {o,(m,n)}.

2. 1§ two ?\axjers ,50Y A and B, start wrth
{m,n} and alternately make the moves of
a derwed sequence | A moving firs+ and each
desiring o make the winning move of the
sequence then we call the :Pia\j re,sul'l'tmj“'fhz
game of Euchid”. The fo\\owmg asserfions
are +rue of this game :

iyt at any staqe of the game a set occurs
in which one demaent 1s a positive integral
multiple of the other then +h¢y\a\jer next tomove
can win by moving to the minmal derved set ;
i) vk 15 not always +o a player’s advan+03¢
Yo move +o a minimal derived set ;

i) f hare s a winning strateqy for A then ot

each play he must sddect one or the other of :



the mimmal derived set, or, The derived set whose
only derved set 1s the minmal derived set

#) when 1<3<T Thare 1s a unique move
from {a,m} and that s toaset {r,m} whare

m
= >T.

3.9) The player moving first inthe qome
of Euchd starting from {m,n} ,o<m<n, can
force awin for himsdf if andonly \f 5T 5

1) when a qame starts with {m,n} +hen
player A may force awmnif Z-=1orlyt
while if nuther of these 1s +rue player Bmay

force a win .

4. An efficient method of computing the great-
est common diisor (hereafter denoted gcd)o’f
two positive inteqers a and b 1s Yo compute a

derwed sequence bujmnmcj with ia,E} and inwhich
wach other dement of the sequence 1s the miniml



derwed set of The ym&dm% one. Thusifasb
andazqb+r,0sr<b, whare g and rare
inteqers,the first move would be {a, 6}—>{6,r},
'Pu'\"\'mcs a=r, b=r 1 =qo,T=Ts ,ete. one
finds the qcd of a and b 1s 1, whan

To = ol + T O BTy
TyE Q1T Q< BT,
Te= QT+ Ty 0< r,<r,

Taea® QueeTnoi¥Th O < H<Tnoy

rn-1= qnqrn +0
This process s called the Euclidean Afgomtﬁm :
In the process the ged of the starting numbers

is the last non~zero “ramainder .

5. Using the Euchidean a\gorﬁ-hm s not hard
fosee that given any posrive integers a and b
there exist posttve infegers x and y for which

(a,b)= ax-Bﬂ .



We coll XPressions ke ax - 5\1 or ax + B\j

(inear combinations of a and b .

6. Itisinteresting to ask how efficient the
Euchidean algorithm s for the determinationof
the ged of two numbers . Information about
this question is qwenin a theorem due to Lamé.
To provz-rhe,-rhwmm we will make use of the
Fibonacct sequence U, Uy, Uy, -+ defined by:

U,=U, =1,
Up, o= Uy, 4 Uy, fOr nso .
iy Formz1, u,,,, 10", so u,,,, has
at least n+1 base 10 digits ;
#) 1f n steps are used in the Euchdean
algorithm defermining the gcc[ of r,andrn,
.37 >0,using 7, as the first dwisor then

Yi2U, 5



i) (Lamd (1844]) +he number of divisions
needed b\j the Euchidean a\%or\ﬂwm n ftndm%
the ged of +wo numbers does not excead five
fimes the number of base 10 digits in the
smaller of the +wo numbers ;

#) The maximum number of divisions
allowed by (1ii) 15 actually used in computing
the ged’s of (8,13),(89,144),(987,1597) by
the Euclidean algorithm; note that all
numbars involved are n the Fibonaces sequence;

v) if the Euchidean algorithm 1n computing
the ged of a and 6, a>b , b having t base
10 d\ﬂﬂ's,fahzs st steps Thenthe number of
base 10 digitsof u s = ¢ ;

V1) l '1%-‘5 | < 71;5 3

Vi)  Up,,>10u, for n2y4

viil) for t 24, U, >10% and, therefore ,
Uy has morethan t base 10 digits



L

ix) the Euclidean o\gorﬁ'\ﬂm when aPJohecl
o +wo numbers the smaller of which has at
least 4 base 10 d\%r\'s hever fakes as many
divisions as allowed 5\3 Lamé's theorem ;
he. Lame's theoram 1s not “best poss ble **
whan GPPlIQA +o numbers the smaller of

which 1s 2107 .

Remarks .
The qame ofEuclnd is due to Cole & Davie [1969]
and has been fur%er ano\l\jsd B\j Sjaa'mnacjzl
[1973]. The theorem of Lame was first ]arovecl b\j
him 1n 1844, lee. re,su|1' n Fo(ix)Is f_ar from 1-|we,
best Rnown result of1|1|s kind.The interested
reader mncj\ﬁ‘l' consult Dubisch [1949], Dixon
[1971] , Brown [1967] , or Plankenstanes [ 1970 ]

fcr furﬂwzr mforma‘hon anA relarences.



1 The Golden Mean

_r ., m

The pont € dwides Iy t 4

aline su}m@m AB into “extreme and mean
rotio” (Euchid , Book v, Definition 3) when

m _ m+r
r ="m -

Such adision of a line segmant 1s sometimes
called a 3ofcfen sectionora gofd'm cut.The
ratio Ffor such a division 1s called the ﬁo[&n
mean or the go(c[en ratio. A mdqncjlz whose
sides are nthis ratiois a ﬂofcfm rectang&.
In the following we again use T for the

irrational number 252 and use T’ for s
« con}uga'i'e,” 1—'2[5- .

1. focr<mand Bz then B=x .

2. TP=14T, T'=T-1,and T = -T'.
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3. 1f randm are PosiTIve numbers with

Pod 0T then T hies strictly befween -

and XL Further, no other number shares
this property with T evenf randm are
constraned To be ntegers.

4. Consider the sequence

m m+1 2Mm+4+r Iam42r sm+3r .
Ty m )y M4y 4y 2Mm4r ) am+2r)

where each +erm has a numerator which isthe

sum of the previous numerator and denominator
and has a denominator which 1s the previous
numerator .

1) |f C= mm{r,m} e c=rif rem and
c=m if m<r thenthe numerator of the nté
term1s 2 nC and therefore , when 1+ and m
are positive both numerator and denominator

increase wthout bound

i) qven 3 consecutive ferms of +he sequence,



S04 5, ¢ TS true that
acf-Ec:-(cf-cfe) ;
1) |f & =|mt-mra-rt| then the sequence
of modul, ofﬂwz SUCCRSSIVR Juffexe,nce,s n

+he qiven sequence Is

i d u L X ] -
mry m(m+r) )y (m+ri(am+r) ) )

) the sequence converqes to T .

5, Cons‘cler 1-\««, sw\umcz of *uoin Tl\e
s3mwa| case m=r=1 .

1 2 3 5 8§ 13

The sequence 1,1,2,3,5,8,- of

denominators 1s the Fibonacct seczmnce

and Is o|eno+¢d b\j UoyUs, Uz, o+ (SR T ¥6).

1) U2 Upy, ¥ Un fcr nzo;
W) (U Un)=t for nzo;
1) unz-uh_luhﬁt(-i)n for nz1i

W) M, 2N

"



Unet S
V) |“L'u,: -T |< U7
vi) BT as n—»00 .

"Mzu,,+u,T fornzi g

6. i-a) T
by (-1)"T
i) (Binet 1843)

Uy =%{ t“”-tm“} fornzo.

-(n+1) -1

7. Consider thetriangle
nscribed ina rectangle
as shown.
1) |f‘rh¢,1'r|ahg\cs AB,C P
are Qqua\ in area then P and Q cut thar

respective sides in the golden ratio;
#) f ,in addihion, a =b then the large
rectangle 1s golden.

8. The dna%onal of o ruju\ar Pw+a3°n with
side 11T .



9. The |w3+|15 of the
segments of the dark
2132a3 lihe in fl'\e

“star- ;pen‘l'aajmm ”
are as indicated. Further,

the process may be continued mdeﬁmﬂl\j both
in the nward and outward directions. The

duagonal of the large pentagon is of |mc3141 ¢,

10. One may cut a square into four preces, as

|nc||ca1'ed, insucha way
thot the four preces may
be reassembled into a /

| non-~square reci'am}‘z.

e ( Sc|1|e3e| ) A'rnm}mna to carry out the
13 8

clecom})os ihion of #io with

cllmensnons as shown ot +l\e / #

3

ru3|—w+ leads to a surprising 8

result when one constructs a modeJ; o




/ 1 1 1
lz'i) t=1*-t_-1+1+'%-1+1+ 1 =...’

1
142
and the “pieces” of +he \tmmncj “ continued

1
fraction” 14 T are

1+
1++
1+.0-

_1_— 1 —l 1 -i R X ]
1, 1+1=2, 1+———4—14_1_-2, 1+F'1_—'3,
+—-
1

with +he cjv\ua\ one qucj Anes

Wy s mhre,M reasonable To write

1
1+ __11___
1 .
+ 14

T=1+

13, Formz21 n221:
1:) Umsn S Upm s Up 1+ U U, )
0 Un., divides U, _,

m, (un-l }um-i) = u(n,m)-i ¢

“. Using matrix mu\h?\awhon one has

(1 1 \" (un un,i) ¢ :
= orn2.,
10 Up.1 Uy



5. Let A, be the set of all those subsets
of {1,2,+ ,n} containing no pair of
consecutvg inteqers. Further, let ﬂ(n) be
the cardinality of A, and let f(n, k) be
the number of dements in A, having eractly
R dements. Then

1) cj(n)=cj(n-1)+3(n-2) fornsz ;

) §(n) = Uns, fornz1;

1) +the number of S‘hr'm%s of kR 7’s and
n-k 0’s in which no two 1°s are consecutive

is qust f(n,RY;

w) the number of ways of placing R1's
nto n-k+1 boxes so that no box has more
thon 1 dement 1s cxacﬂ\j f(n,ﬁ) ;

v f(n,kRY = (n'?;” ) whenzksn+s

and 1s 0 otherwise ;

vi) setting () =0 when s<t we have

un=§::(”;ﬁ ), fornz1,



vit) the sumsin the
indicated slant rows of

Pascal’s +mam3|e are .

051
152015 6 1
7 2125252171

consecutive +arms of

s

the Fibonacc 5QquUANCe.

16, Let U be the Power series
14 xrexieaxesxteaxenxte...
Then:

, 1 -
i) U converges o TTx-x? for Ix| <7

W) 1-7<1-7<2 = ris { 1-11:x - 1-ssx} y
whereg r4s=1=~v1s;
i) from (ii) one sees
U, = \/_1__‘5_{,:111'1_.(:: n+1} ;
(comJoore with  F6 (i) )

10000
W) ~5899

VY 1+2 43+ +USU, ., 2.

=1.0102030508132134559:-.



Remarks .

1. The Fibonaccs sequence seams to have
or'\ﬂmor\'e,d N connection with ‘szfamous
rabbit problem posed by Leonardo of Pisa
(Fibonacer) in 1202. One phrasing of the

]orob\m i1s as follows .

one places a powr of rabbits ina
confined area. How many pairs
of rabbits can be yroc\ucad Inayear
f ewery month cach pawr begefs a
NawW Pair which from the second

mon+h 1Fself becomes productwe ?

It will be noted +hot the sequence of numbers
obtained for the numbers of pairs of rabbits
at the ends of consecutive months 15 Just the

Fibonaccs sequence .



2. The P»}fkaﬂorwhs were @

50 Taken by the properties of

+he star-pentagqram ( see ¢.q%9) that they

used it as a sym bol ofreco%mﬁon and

brotherhood. In his book SctwceAwaﬁemnﬂ

[ 1954 p.101] van der Waerden +ells a charmmcj
story of this .

3. The “Parac‘omca"’ &uom?osﬁ-ncn of'
* 1l seems +o qo back to Schlegel [18¢87].

See also Coxeter [1953] .

4. The fmquzn‘\' oceurrence, in a wide vamehﬁ
of settings, of +he ﬂon meah and the Fibonaccs
numbers has lead in recent years to a new
mathematics )ourna| ,The Fibonaces Quor‘\'erhj.

Besides This Sourna\ +he interested reader



might consult any of the fc\lcwm% for

further information : Coxeter [19537,

Gardner [1959], Pacioli [1509, reprint 195¢],

HunHe\j [1970], Archibald (10187,
Tkomyson [1952].



T Prime Factorizations &~ Primes

A positive integer n which satisfies
an equation n=ab, where a and b are
inteqers |archx than 1, 15 calleda composite
mtege,r. If n s nauther com?osr\'e, nor
equal +o 1 ¥ 15 called prime.

1. Every infeqer larger than 1 has at least
one prime divisor. (This prime divisor may
be +he number 1+self . )

2. Each m‘l‘e%er \arﬂer than 1 1s ather prime
or a product of +wo or more primes ; 1.¢.each
infeger \aﬁjer rhan 1 has g prime factorization.

3. 1f a prime number divides a ?roclucf of
Two inteqers then that prime must diide
one or The other of The two inteqers.
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4. The prime factorization of an nteqer
larqex fhan 1 15 umque except for the order
in which +he factors occur.

5. Gwen any m+u3¢r n+haeisa Prame, fad’or
of 1+n! cxcudm(j n. Therefore there are
mfmt‘l'd\j mqn\j Pmmes .

6. The last conclusion of #5 also Tollows
from observing that every Jomme,facfor of
1+ p.-pg, where eachof Py Pe is prime,

differs from each oﬁm i Pe- (This proof
was qiven by Euclid in his Elements.)

7. Gwen a positive m‘\'eﬂer R 22 *here exists

a string of k consecutive composite integers.

8. 1f p,,+-,pg 15 any finrte collection of primes
The number 4p, -+ pe-1 contains aPﬂme,faC\'or



22

of the form 4k +3 and +his prime differs
from each of pi,+,pi. Therefore, there
are mfml-\'e,\\j many 4k+3 primes.

9. Let Foz2¥ 41 for n=0,1,2,++ ,These
numbers are called Fermat numbers .
) The base sounit’s diqt of 7 n22, 157
iy 1f 2™ 41 0s prime then m 1s a power
of 25 1e. 2™ +115 a Fermat number whenever
+tisa prime
) f\\ouc}\w Fermat *hou%h‘t oll F,, fobe
prime this s not the case since as Euler
first observed | 641 15 a prime divisor
of Fs;
#-0) T Fo=Fn-2;
BY (F.,Fm)=tfor ngm ;
V) (w-B) mplies the nfinitude of the

number of]ommes .



10. No mﬂgral Po\\jnomuq\has on\\j prime
values for all sufficiently largentegers. (By
“m+u3ra\ })o\\jnomna\” We mean a Fo\\jnom\q\

with inteqer weffraents.)

W (Luthar) Weite x,, = p, ¥ Py
n21,where Py s the J‘ﬁ prime humber,
1) Prssd 2N+t for n4
i) x,sn* fornz1;
W) Prer®2 (n+RY)+1 \mj:\\q,s
a) Ryo ;
b) 'pn_jéz(n-rﬁ)-(zjn) for
osfn ;
¢) x,<(n+k)*;
w) (n+ﬁ)25xn< (n+ﬁ+1)2 'm]:hcs
Pn+l>2(n+ﬁ)+1 :
V) for nz1 theress a square s+mc,+\\3

between x4, ond x,,,, -

23
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2. (Grmm) For each l;., 25ksn , ]ou+
R if 2<ksn and ks prime ;
* an f + f nl +k
Y prime Jactor o] % +1 otherwise,
1) Cfﬁ, nl+k ;
#) qglh!‘t}' ) 25}’511, \myltes ]'=fz ;
) qz,w "1” are PQU‘W\S@ distinct ;
W) 14 s Poss:b]z +o select n-1 parwise
clnshnc‘l' Pr:mz c’wlsors, one from each of
n!+z, ~,*n!+‘n .
Remarf;s.

1. Results such as the one J:rove& IN¥ 8 are
vzmj SJDQ,CHJI caszsﬁefa 3er\<u~a| 1'|-\e,ore,m of
Dirichlet 4o the e’[fu‘l' that wu\j am+|wme+uc
Pmﬂmsswh a, a+5, a+2b , a+35,w for
which (a,6)=1 ontains Ihf]m‘i'eltj mamj

Prnmes (see XXIV ).



2. The ohM known prime F, (see o) are
those with n=0,1,2,3 4. There are 38 values
ofn fcr which T, 1s knownto be comyosri'e.
These are: 5 through 16,18,19, 23,36, 38,39,
55,58,63,73,77, 81 117,125 144,150,207, 226,
228,260,267, 268,284,316, 452 1945 . The
number T, has more than 30 000 ch%ﬁs ond its
character 1s hot known. until very mcm't"\j
(1911) 7 was known to be comPosd'e, but its
fac'i'omzahon was not Rnown . In 1971 +his
number was fac‘l’orecl b‘j Morrison and
Brillhart and it was founcl that F, =
340 282 366 920 938 46D 463 374 60T 431 768 211 457
2(59 649 589 127 497 217 )(5 104 689 200 685 129 054 721 ).
The humber ofc‘nad-s N Fous ceeds 10°% bu+t
nevertheless i+ 1s known thot 5§.2'947 41 s 1ts
smallest prime divisor, Turther mformahon

about Farmat Joramq,s may l:e, founcl N XX .T|'\e,

interested reader mujl-ﬂ' alse consult Smr]amslm [19644,6].

25
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3. Despire the truth of the result in "o 1
has recently been Provu\ , 05 0 CONseqULNCR
of Matijasevich’s solution of Hilbert’s
Tenth Problem that there do axist nteqral
polynomials whose]aosbéwe ranqe consists
precsddy of the prime numbers . ( S

Dawis [1973] .)

4. Problems #11,12 are duz,rzsloechvelxg,
to Luthar [19697 , and Grimm [1961,1969].
For related work +o #12 see Tust [1972] and

Cl}SOUW,Tt}dcman (1972].



IV Square Brackets

The largest integer not exceeding x 15
denoted by [x].Thus (7] =3, [+]=0,[-7]=-4,
ote. This funchion appears in a number of
dwerse settings . In this chapter we setforth
a number of 1+s properties aswallasuse it in
expressions for various other number theorehc
functions. Throughout the chapter weuse
m,n,k for nteqers and o and B for

arbitrary real numbers .

-

c x-t1<[a)saxand [o] s < [x]+1.

r

[xen]={x]+n .

. Mts[H-]+1, n>o.

4, [%] =[%] y N>0.
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5. Nontegeris doser o o than [+ 4] .

6. =[-oT1s the smallest inteqer not less than o,
7. [o]4[p] s[4 p)s[x]+[R]+1.
8. [ax+p]+[x]+[p)s[2x])+[2p].

o. [o][p) = [op] < [][p)+[] 48],

for x>0, pvo.

10. When o<ks o, [¥] 1s thenumber of
positve mwya\ multiples of k not sz,xoe,edmgo‘.

. When &> [&]-[ ] 15 the number
of nfeqers m Sa+\sf\3\nc3 Ppims.

12, [o<]+[-o‘] = { o if &isan m*‘«wyw :

-1 otherwise.



3. [a]-2[$) isatheroor 1,

4, [%]-[-—%‘—] =n.

7 ()4 [+ E)+ [°‘+n]*"'*[°‘*nT'1]=[“°‘]'

9. [mos[mo+R] s 4 [moy Botim]
=( no‘]+[no‘+%]+ e [ not L_m;nnn] .

20. When n and m are of opposite parity

S: (- l)fnx]+[mx] (?,;x% )( [mx]) C{X o.

29
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2. [Tn]=z[T[Tn]+1] , whnT= 1+

22, (Skolem) [ﬁ[(1+71—;)n+—5—]]=[(1+ﬁ)n] :

23. U, = [@r(—zi) +—2—] , whare u,, 1s

rhe n+13¥ Fibonacet number .

24, I pi1s a prime number +han the \’\\3‘1&6‘\'
power of pn nl s [-’};—].»[%]4.[%]*

25. Problem #24 may be used +o show :

iy () s aninteqer ;

(ny+-eng)l .
Al ngh IS an mi'eqe,r y

iy (Catalan) (M4mY) dwides (an{‘)(z,{l) .

)

26. NI APrIme f and on\sj o mzj([%]-["ﬁ"]) =2,

27. (R.A\%m) The number of primes not

zxc%dmcﬁ n1s :}i [ ag [1 AT] ] .

=z



W

o for X trmhona\ )

Zaml H
28, lim [cos*m!mx] {

1 for X rahona\.

29. If Nis leq, number ofsoluhons of‘rhe

system xysn, o<x o<\1 +hen

N=[a]sfa] e e[2] e £ 7] - [V DT

10. For b odd there 1s an nteqer such
that :
iy 05 %- 5‘1<T fahdor\ltﬁ f [¥] s even;;
i) -£<x Eq<o;fano| onluj f[“ 15 odd .

i) G{‘ (2] - (@136 d-1 where
J= (Q’B),

i) (Ersenstein)
6-1 a-1

$[2]+ L[] cenbon)

whzn a ond bare r'e,lqhveltj ]orwm odd

)

Posuhvz m'l'ech,rs .

3



N

32, Le¥ (a,0)= 1 and suppose ax.+ 6\3; 1.
Further, considar the equation
(X) ax + B\j =k .
A pair ofm'\'eojers X,y sa‘\'tsf\jmg (x) 15
called a solution of the equation and +f | 1n
addition, both x and Y are non-negqatve,
we call X,y a non-neﬁatwe solution .
i 1f x Y15 a solution of (*)then
there 1s an integer t such that
x =R%,+ bt ,
Y= fujc— at
¥y +he numbaer of honmu;a’rwe, solutions
of (%) 15 given by N'= 14 [22]4] EOE“] ;
iy for ko y (%) has no nonmcw_\a’rwe,

solutions preasedy when there exist 1, s,

osr<b,oss<a suchthat
R=ar+bs-ab ;



W) (X) a\wmﬁs has a non~neqative solution
when Ryab-a-b but does not have a non~

mcjahve so‘uhon when E:ag-a-g 3

v) for exactly ta-1)b-n) positive values of
k does (X) fonl to have a hon ~ neqative

So|u+10h .

Rcmargs.

1. There 1s a wide literature on square
brackets. The interested reader might
consult +he fo”owmﬁ : Bang [1957]; Beatty
[1927] ; Coxeter [1953] Fraenkel [1969] :
Fraenkel Levitt, Shimshoni [1972] ; Graham,
Pollack [1970] ; Graham [ 19737 X Skolem

[1957] ; Watson [1956].
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2. The result in #22 (i) qoes back +o Frobenus
ond Schur. Similar results have been soua\w‘t for
the cjweral linear for-ms

O, X, +AcXp =M
but even for k=3 the 3%0‘0[ solution 15 not
known. For an introduction +o +he literature
the reader m\%k‘l' consult Brauv‘,Sl‘iOCHuj [l%‘z])
Erclé's, Graham [1971] y Hofmushr [1966], Lewin
[1972,19737 | Roberts [195¢] , Bateman [ 19587,
and Note 14 E‘j S‘no‘e.m in Netto [1927] .



v Kronecker Theorams

Tor x a real numbar we write (%) for +he

fmctwna(_part- of x5 e, (XY= x-[x].

1. Let o be irrational and put Pu= (nax).
Then:
1) 0<Pn<1
) P # P for ngm ;
1) given €50 there are positve nteqers
nand r suchthat | P, -Po..|< € ;

W) qiven €0 thare 1s an » such that

n=1,2,...

P.o<eor1-e<P.
V) (Kronecker's one dimensional theorem)

{p”pz’...} 15 dense 1n the open unit inferval,

2. Define the mappIng \f of the Plane into
the urit square by f (x,y) = ((x),(xj)) :
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Further, suppose &,  irrational and
Pz f(nonp),n=1,2,--. Write PQ for
the vactor from P to Q and [PQ | for the

|zm3+h of this vector.
Then

i) Pi#R,forn#gm ;

i) f PaQ =B, Riur then f(Q)=Posr ;
i) f P,Q=mP, P, +nP, P,,s then
FIQY= Pivmrans ;

) f P, P, ond P, B,s are not Joaro\ld
and L1s the greatest of thar lengths +hen
wvary pont of the unit square 1s within £ of
some point of the form Piimrans , wherem

and n are nonm‘u}oﬁ-wc un-\'qczx‘s .

3. Let B,P;,+ be as in¥2 and suppose
that the only +r|]o\q, ofm'huaus r,s,t
for which ra+sp4t =015 0,0,0 5



e, &, (3,1 are ra.twnafij mc{zymcfmt—.
Then
i) & and (3 are irrational ;
i) given €50, there are integers n and
suchthot |, P, |<¢;

i) for 0<e< mm{(oc),1-(o<),(g3), 1-(p) ]
and n,r as i (1) the vector B R, Qqua\s P Rar;

w) for e as n (i) thare are mf\m‘\'e\\j many
posrhve, m‘rqqrs r such that | P, Piarl<e ;

v) i 15 not possible that mf\nﬂ-d\j many
of the vectors P, P, appaaring in (iv) be

paralld ;
v)( Kronecker’s two dimensional theorem)
{Pl ,Pz,m.i is dense inthe unit square .

Remark .
For expositions of the theorems in this
cha]oﬂr see Niven [1963] and Harcl‘j and Wrnjh-r

[1962].

L



Vi Beatty, Skolem Theorems

Let s() bethe sequence [ ,[2a], [304] -+
and let A(x) be the set of distinct ddements
of s(x). (Inthe following we use 2 for the
set of posifve nteqers and, as before |
for“’z—‘g.) Then ¢ for o<,§3}:>osn+|ve) :

1. A(x)1s Prwsd\j +he set of non~nu3q+w<b
nteqers when o<x< 1.

2. A(o‘)nA(m=¢\mP\‘es &1 and po1.
3. A(xysA().
b A(1+vE)EA(VE).

5. A() nA(gS) IS an mfmﬂ'e set when both
o ond Boare rational .



6. (BmH\p If XIS posqu, ond irrational
and &+ 4 =1 +hen avary positive integer 1s n
q,;coc-k\\g one of S(x), S(P) and These sequences

have no du};\lcoi'e Terms .

7. A(VI)NA(24+yz)=4 and
A(VE)UA(2+y3)= 2 .

8. A(TYNA(T*Y=d and -
A(TYVA(THY=27 .

9. (skolem) The three sequences (nz 1)

{(zlznm)}, {(c(=n))}, {[T*n]]

are mu+ua\\\3 chs]omi' and thar union 1s Z .

\

10. If AszA(T)and A, .= {[‘czn] \ n eAm}
'for mz0, +hen the A, are d|s3om+ n pairs
and thar union 1s 2 .
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we If i positive and irrational and
%.‘4-%:1 and f Aoz A(x), A,z {[531{_] ‘neAm}
for m2o,then the Ay are disjoint in pairs

and +har union is 2 .

2. 1§ A(x)NA(RY s finite and A UA(R) = 2

+\\w317+% =1,

3. A(u)nA(m non-e,myhj and 'f\m-\-q, IS
ncompatible with A(x)UA(3)= 2.

4. (Bang) A neccessary and sufficient
condrtion for S(ax), S B)tobe com}:\emm'i'qr\j
(e A(YNA(RY=d, AIUA(RY=Z) 15
thot o and @ be positive irrational numbers

such ‘Hﬂﬂ“‘—&--‘-% =1,



\L

I5. (Us'pms\z\g)Anm'\'ue,shn% result o\onc)
the lines of ¥6 and #9 1s the fo\\owmcs
+heorem ?rovgd b\j uspmsk\j n 1927,

There do not exist 3 or more numbars
v Oy suchthat S(ox, )+, S ()

are non-ampty d‘slomi- sequences

&y
which +aken +oc3@+\'\er contain each
posu-l-we m-\'use,r }:rectsq.l\j onee .

We prove +his fo\\owma Graham [1963]. In

fact we shall assume s m23, o < <o, and

S(X1),+++, S (On) are non~empty d|530m+

sefts exhaushm} +he inteqers without

duplication and shall show that this leads
to a con'i'mdtc'l'ton.'l'hroughom, m 1s the

least positive iInfeger not in S (o).

i) &, =1+J whare 0<J<1 ;
i) S(ox,) does not miss any pa of
consecutive m‘i'ujq,rs;

iy (Mm-1)J<1£md

L/
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w) m s the first dement of s(x,) and
X, =m+e, 05€<1 ;

0 if x1sa posthive integer not in 5 (o)
the nex+ )oosrhwz, m+u3qr not in S(x, ) Is
uther x+m or x+m+1 ;

viythe next dement ofter [na,]1n S(ex,)

s uther [nog]em or [no]smea g

vii) the ¥ :Posrhve, integer missing from
S(x,) 15 the Rt Joment in §(x,) ;

vii) the assumption is talse .

6. Lot  and (3 be posiive irrational
numbars and suppose a, b,c are infegers
5uc\‘\+ka‘\'§+—g—= C#1,a%0, (a,B,c): 1.
Vur+\wer, let o= (a, 6) 1 S
and denote the shaded -
rw%ancjk inthe c]m%ram

b\j S.

1-XT1
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iy if b<o and c=othen A()NA(RY# $ ;

#)1f b<othen ax+6tj=a+5qus¢,s fl«rouﬁhs;

iy if b>0and ¢>1 then a7¢+5\j= a+b-1
Passes '1'|'\rou<3h S.

7. Let &, 3,a,b,¢,d, s be as in F16. Then :

i) there are inteqers u and v such that

a(u+ gf):-ﬂ(w- %) ;

0 f oo 2er §)- [ur )],
Xn=—f bw Wy Yo - & W, then {wi,wz,m} is
dwse, in [0,1] whn\q,-rlr\zjamn#s (%nYn) are
dense on the line suﬁmmﬁ' jorning (0,0) fo

(85

i) |f c#0 and q 15 a fmed \Meﬂu thare

are nteqers s, uy,v; suchthat dt+sc=gq

ond au,+bv, -cft

W) tf Knm= K +%5+u > 0(,

Y nm= Yn = ME4v, + 5 *hm

(’“nm,\jjnm IS qlwa\js a ?omf on ﬂwq,hm ax+6§1:¢j;



44

v) the POINtS (Knm Ynm ) 97 dense on
ax+6uj=3 ;
viy if uther 6<o,c¢o or byo,c>1 then
there are mf\mi-d\j many points (%nm,\jnm)
S
viy f b<o orif b>0,cv1 then
ANA(R#¢ .

8. 1f 1,&,% are rohona“\j lhdejoend@ni'
(e f there does not exist a‘rrs})\e a,b,c
of integers not oll zaro such +hat

a+ 6%%—5‘3— =0)
then A()NA(R) # ¢ .

19, (skolem) If o and @ are posrtve irrational
numbers +hen A(a) NA(B) = § if and on\xj f
there are positive infeqers a and b such

+\wa’r—§+%=1.
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20. (Skolem) This spwq\ ase of \JsPensk\g’s

theorem (see ”15) was Provul B\j skolem [ 19517 .
There do not exist positive irrational numbers

*@3,¥ such that A(x), ACB),A(Y) are

]oonrwuse d!SjOlh‘i’.

21, (Ban%) If & and P are ]305|+'\’¢ rrational
numbers then A(x)N A(SB) # ¢ |fahé on‘% ‘f
the line seqmm‘l' jorning (,0) and ( O;P)

?asses 'l'l'\rouﬂh o |a++|csz, Pom'l'.

Remarks .
The material crf'fkns clwa}yhzr is drawn f"‘ma"‘l‘j
from Skolem [ 19577 ,‘Bancl [1957] and Graham
[1963] . The interested reader mncﬂhf also consult
Niven [ 19637, Connell [1959,1960], Us}amslzts
[1927] | Graham [1973)] and the refumces qven
inthe 1% remarlz at the end of (AN

For #10, 11 see Roberts [1973].

4§



vit The Game of wythoff

Consider the sequence of sets ( durlumﬂ,
elements are Pe,rmrffecl )
{78,38}—{70,35]— {10,257 —{50,5]
—{s5,5]—>{0.0}.
Each element n the sequence may be obtained
from the Pru&c‘mcj one b‘j 5ul:+r-ac+mc3 a
posifive inteqer from one or the other of the
two elements or \Dv_\ subfmchna one and the
same Posﬁ'wc m+u3¢r from each of‘rl-\q. Fwo
ddements . When a set {G,B} ofhon~nuﬂa+w¢,
Inteqers arises from a set {m,n} none of these
three ways we say {a, 53 is a derived set
cf fmmni. A sequence of sets, as above,
in which each set 1s o derived set of the
Prmdm% set and which ends wit+h {o,0}
IS ca”eé a c{zrwec[scquence. The ]aassaiq,
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fr-om any set to a derived set 1s called a
move and a move +o {o,o} 1s called a
winning move If two P|a\jus, A and B,
start with {m,ng and a|+zrna+e|tj make
the moves of a derived sequence, A moving
fn's‘r, and cach c]esmmj to mal:zflwzwmnmci
move of the sequence, +hen we call the P‘mj
r'e,suH'lmj the game of‘ijtﬁob’[. We are interested
I khowmg +he conditions under which +he
P|a\jzr moving fars+, A for us, can foru a
win For lﬂmsz|f. Nohmj that {m,n} = {n,m}
and assuming all integers are hon - neqative

WR I'Y\th Pt‘@\’@ :

1, If A can \wvz amj of.?l-\c 'FoHowmcj }NH’S

+o B then, mﬂardlzss of B’s move, A canwin :

{123, {353, {9,717, o0}, {8,133,
{9,153, {n,18].
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2. If {a,s} 1S a set of&nshnd' noNn~zZero
inteqers not in +he listn *1 and if the smaller of
a,b 15 < 12 then there 1s a move taking {a,b ]
Ihto one of the sets histed n *4 .

3. Inthe game ofW\jH-aoff s+ar+m% with
{m,n} ,ymsi8, n=18, A wnforczawm

for lmmszlf 1fomd onM |f {m,n} does not

k-4
aP]Dear n 'r‘w, list+1n®1.

4. There emists anmfinte sequence of sets,
of which the first 7 are these listed 1n * 1,
such+hat A can alwa\js foroz, 0 WIn for
hnmsdf tf'qné on|xj 1{: he starts from a set

not 1n +he sequence .

5. The sequence qven in ¥4 is just
{Ine],[nT")] n21, Tatp s,



Vil

Remarks.

The game of Wy ‘ﬁoﬁrwo\s fwsf introduced
b\j W\jfhoﬂ: [1907] as a variant ofﬂw qame
olem (see Bouton [1902] ). T+1s discussed 1n
Coxater [1953) and has been ajmuahzd by

He“adq\j [19¢8] and Connell [1959].
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v T,0, ¢

The number theoretic fur\chons T,0,9

are defined as fo\lows :

T (M) = humber ofposﬁ-wz mwaml
diwisors of n =}"ﬂ1 :
o (n)=s sum of‘\'\ﬂe. ?osv\-we m‘t'wjrql
divisors ofn =c§hcf ;
P(n)= nhumber of Poss‘hvz m+u)v-s
not excudmci n and rela'hvd\j

]m-tme ton= ¢ 1

]
(a,n)=1

1. If(a,6)=1+km:
1) ’t(aG)z‘C(a)t’(B);
iy o(ab)yzo(mo(b) ;
i) @ (ab)zP(a)p(b) .



2. If & 15 a non~neqative inteqer and p 1s
a ?"lm@ 1"’\@“ :
1) ‘C(P“) T+

i) o(pyr P

i) Qp™)= P 1~%) .

3. Let n=p S poe. Then:
iy TAny= (&, #1)(Ke+1) 5

. . ,0(3-)1“1 - ﬁj—l:—,l ,
i)y o (n) ﬁiﬁ—w ( }Tlrn p-1 ) ;

i)y P (n)= nﬁn(i-%) .
4. If T(n)is odd then n Is asquare .

5. d =nit™
] d“n [ ]

6. T(2"-1)2T(MY.

7. T(2"+1)> ‘C*(n), where T¥m) s the
humber of posrtive odd divisors of‘n .

51
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3 - 2 .
8. F % (dy= (cﬁntccf))

9. For nyo,

T(1)+T(2)+ -+ T (M) = [%] +[%]++[%]

vn]
=2 1 3]-[vA)
(x+1)t
0. If o, (n):dzlhc{‘t-r‘ﬁeh o.(n) =;;1: }")1-1

i 1f aso, 651 then

o), o@b)  c@ob)
a ab =  ab )

. 1f a0, b0 then
N ab_
o@o(byz I do(-3).

13. O(1)+0(2) 440 (n)= [ 42[ 44 n[ 1]

4. 9(5186)= P(5187)=P(5188) = 2592 .



Vil

5. 1) Fornzi, @(My=n(n);
i)y fornz2, ¢(ni<n ;

iy fornzs, Q(m)+P((n+)) <2n?.

6. For n>2 we have

)}
mb. M= TnPn) .

1emsh

7. If Q(n)|n then nis of one of +he forms
1,2%,2% 3P |

8. If @ and b are \arjer +han 1 and cisthe
product of the distinet prime factors of

(a,6) then $(ab) = 9(a)P(b) o3

§3
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22. The for-mu|a for' P(n) grvan in *3 |m:f>lws

fl-\a-i- 1-‘% numbu of Pmmes 1S ln‘f;m'l'q, .

23, (Sc“\mm\) Let N, be the num\m-ofsoluhons
af-rlﬁe, equahon Y(xY=m. Then +he sequence
Ny Nz, =+ 15 not Eoundd as can be seen
fr-om the fac‘l' +hat ¢ ]3 P Fi P ?g
IS mde}w«duﬁ' of] 1s 3< . Here f" Pe

are the fwsf R Prlmcs n 'rlwr natural orc]er .

24, Let n= ]31““ ~-~Pﬁ°‘ﬁ and write P(x,n) for
+he number oﬁaosﬁwe m'hu]e,rs not excuclumj

X ahd mla‘hve‘sj prime ton. Then :
t)(Lciznclre) P(x,n)=
(-1 [F 105 [ ) o0 [0 ]

1(1

it) the expression fer 9(n) given in 3(#1)

Is & SPQClal Case Of(t) )



vily

Wy TIxX) +he number of}ammes not
cxcudmﬂ x , satisfies :
TX) e T (VR) =1+ @ (%, PP,
Whe.m ]31,~~~,J:)t are all the Primes not

zxc.udmcj NI

25. If g(n)=zn, one calls n a
]Jerfecf number .
i) 6,28,496, 8128 are perfect ;
) 2"-1 prime and n prime lmJolsj
2™ (2" -1) s Fuf‘wf 3

i) 117 n Is even and ]w'fuf thenthere 1s
a k Jfor which n =z 2%7%(2% -4 ) and each of k

and 25-1 IS I:)mme,}

Wy n ahhﬂ”'h} it was offm stated +ha+
waery even ]oerfec-r numl:ex zncls in 6or 8 and
that no two consecutive even Pvfec‘k humbers
have the same base 10 fmal &lcjrl'; the 1% +}sou3h
hot the 2 of these assertions i1s true 3

55
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V) ﬁﬂ%: 2 +f and °n‘”3 nfn s yufeﬁ ;
V1) lf n 1s odd and has no more +han 2

c]tsfmcf prime fac-tcrs thenn s not }w'fed .

26. Let H(n) bz‘f‘n \'\armcmc mean of‘rlﬂ@

. 1 - 1 1 .
al\HSOi'S Ofﬂ, ‘OQN H‘n)-t(n’d'rln d’ . Tl"m .

V) H(n):”:‘;?’ and H 1s mu|+|]a|1ca+we;

)y H(n)v1 fcr nv1 and H(n)y2 e.xce}:'l'
for' n=i,4,60rmn prime |
) 11’: m=2" 7 (2"-1)1s }qu‘l"rl'\m H{m)=n;
) |f n= 242" 1y 15 even then
H(2"™M.1)< 2
) (Labowle,) lfh IS Qven and

na R (HML ) then n s Jozrfcc‘l-.

27. 1) If' f s & mu|1'|}3||ca+tvc arithmetic

fuhchon , e, nf f(aG) =f(a)f(5) for (a,ﬁ)ﬂ)
then +he f‘unc-hon 9 Jefmed b\j ﬂ(“) s Eﬂ f(cf)

is also mu|+sP\1mflvz ;



vily

1) sz mu\h}:luca*waﬁj ofa” offl«e follcwmﬂ
funchons fo”ews from (1) 2

T(M), o(ny, | T (d), oy(n), o%(n),

where o%(n) is +he sum ofﬂn odd divisors ofn.

Remargs.
1. The result in *23 will be feuncl n

Sierymslzn [19e4a] .

2. As seeh 1n ¥25 (1) the N }w'fu;f numbers
are oll cfﬂw form 2V (2" -1) where 2115 prime.
Primes of‘rkas form are called Mersermo}:mmzs
and will be discussed n xix . There are orwlu] 24
Mersenne primes khown and ‘rlwztj are for the
following values ofn 2,3,5,7,13,17,19,31,6l,
89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253,

4423, 9889, 9941, 11213 /19937,

5T
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It 1s m'l'e,ms*mq to note that until 1952 the
|ar<3¢s1‘ hnown prime was 2'*" -1, a humber of
39 dl%l‘l‘s, while the |ar<3q,s+ hnown prime ‘l'oclmj
is 2'99%-1 g number of 6012 cluid's.ﬂwzm are
on|\j the 24 even ]oe,rfch numbers corresyonc]mci
to these Mersenne primes known and 1t 1s not
kRnown |f odd Pe,rfwl' numbers exist. See
M¢ Car+|-v\j [1957] . The result of”zs(vi) may,
however y be c.ons\derabl\j \m]orovd. Also 1+
has been shown that no odd Perfed' hum ber

<10 exists (se Hags [1973] ).

3. Tkz marmn msuh- in#¥26 18 due to

Laborde [1955] .



X Farmat, Wilson, C‘«wo\lus

1. Let P be a prime. Then :

) pl(m+n)?-(m?+n?) :

) JDI mPeom ;fancl °n|\3 ‘FPI (m+1)P= (ma1) ;
W) ( Farmat’s [i+4]e ” 'rlnwmm)

?Im?’-m foro«“mz1.

2. ‘F'or']:) a ]omme,,
PI (m,+~~o+mﬁ)]°- (m,?+-~-+'mﬁ}’) ,
and Fermat's little +heorem 1s an immediate

consw]ue,nc.e, of?lﬂls .

3. When pis an odd prime then :
:p] mP+n? 1m}3||c,s le mPen?,

4. ( Golomb) Let there be given a collection
of l:cacjs th d)ﬂ:emn-l' colors from which we

w‘sh o malw non~onz-co|or' nulzlaces of
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exactly p, pen, beads . The number p s
to be a prime . Then
iy there are nf-n linear P |enq+\w strings
of non=~one-~color beads ;
i) The number ofélsﬂnqunshauc necklaces

-~

o} the desired Typets "1;;" ;

iy nfen (mocl}:) (Fermat’s theorem ) ;

w) nPzn (mod 2p) forja odd .

5. Let n be an arE|+|~ar\j m'mjzr larﬂe,r +han
1 and put N z(n!) . Then:
1) zve.r»s ]ornmq, fad'or ofN’ﬂ s odd and
cjr'w‘i"er than n ;
#) N+1 I N™ 41 for ™ any ]:)osrhve odd
m+qer ;
W) 'f-.P Is a 4G+3 Prlmz faci'or of.NH
+hen PI Nk and +his contradicts Fermat'’s
+heorem 5

i) there are mf;m-fz\uj many R+t primes .



6. Let p be a prime and suppose (n,p)=1.
iy f na sng(modp)-rlnm asb (mod]o) ;
) n]"-t(:P_l)[ s (P-1)| (mod?) )

#) nPrz1 (mod P) ( Fermat's theorem ) .

7o Lot Ay, Ggpm be re|q+wq,|\j Pmme,-l-o m
and also be mcon%ruem' module m in parrs .
rurﬂwu, Suppose (n,m)=1.

D) \f na;sna, (mo&m)f\nm 129

#) N, e Gy E By vt Ay (MOd MY
) (Eu'er) n¥msz ¢ (mo& m) fcr‘ (n,m)=1;
#) Farmat's theorem 15 a s]owq| case

of ().

8. when a 15 an odd inteqer
iy atz1 (mod 8);

i) ar* g1 (mod 2%) fer X952,

ol
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9. Defme X b\j
¥ (:p“) for p an odd prime
X(p™)= and for pr2, 0sxs2;
%kP(P“) for P2, X2,
%(P’d""Pﬁdﬁ)g lem f%(j’.d'),“‘, 'X(]Dad“)3°
For mvi,modd) (a,m)=1 :
iy q*™zy (moclm) ;
) m a prime |m3:|te,s ‘P(m), m-1 ;
1) *P(m),m-um]:hzs X(m)m-1 ;
W) 'X(m)l m-1 |m]:|lzs z"‘".-n(modm);
V) the converses of (it and () are fa‘%

as can Iae. s b\j +akmc3 m=5¢land m= 34y .

( No wamyle of ﬁP(m)Im-i for ccmj:osrl‘em

is known . )

10, If P IS an oc]d })r\me +|'w,n

21’%151 (Mmod p)or 27 s (mod]o) .
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i) Sumoosz nyeé ,n:ag with 1casb. Then:
a) b<n-3 3
G) \f'a=g+ken 2a<n-3
) ‘f“ IS comjaosrl'e and 26 then

-2yl
A8 15 an even integer .

12, SuPPose, (a,m)=1 and pisaprime. Then:
i) ax =1 (modm) has a unique solution
MO&UIOM;

) |f, I (1), agti (modm) ﬂ»m
x ¥ 21 (mod m) and x % a (moém))'
W) 2.3 (p-2) 51 (modjo) ;
w) (Wilson’s +|1wr'cm) (P-i) l=-1 (mo&P);
v) for n>1,nisa prime |fancf Ohlt) uf

nl(n-1ls1.

3. Wilson's fk@omm may be used to show
rhat the congruence X" 4120 (mo&P) i

Solval:‘e whm ]3 IS a '4[;1'1 ?r‘tmz.
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4. Let p be an odd prime and mark P }:omi's
umfcrmhj sPa&d onacircle. Let Tand R be
the sets of all p-gons ond the recﬁular p-gons
msyuhvd\j. Then :

iy the carc,mall'hj of'!' IS %(P-l)! ;

i) +he cardmahhj ofR Is %(]3-1) ;

1) +he carclma]rl'\j ofT-R is disible B\j P
W) (P~1)!s -1 (mocl:p) (Wilson’s theorem ).

5. ( C|zme,n+) Let m,n be Posrhve, m+u]e,rs.
1) (m+n-1)!s(-1)"hl('m-1)'. (mod m+n) ;
iy (nhf((m-1)tea)a(nl-1)(n-1)Im=

nl((-1)"(m+n-1)l+1) (modm+n) ;
i :f P and ]94'[; are odd primes +hen
(P’£)=1> k IS ven, and

(R ((p-1yla)s (Rls)R-1)tp 2o (mod p(pehy)

) the converse of (1) may be fa|se wen

+‘wou3|1 (P’E)” and R 1s aven )



V) the converse o[: (W) s true when ]oancl
P+£ are prime +o R! ;
V1) let m be an odd m‘l'cwjzr 15 +hen
$((n-1ls1)4n 20 (mod n(n+2))

nf-and Oﬁl\j lfn ahd n+2 are Odd ]or:me,s.

6. Let (a,m)=1 and SUppose s 1s the
smallest m‘i'u)e,r t for which ats1(modm).

Then |fa"51 (moclm), s]n.

17.4) a" s (modm) for all a ,(a,m)=1 )dozs
not 'm}’l‘j m 1S prime, as one can see with
m=561

i) 1{: a" 21 (modm) for some g such that
at# 1 (modm) for any t, octam-1, t lm-1)

T"\m miIs Prume.

8. 2P51 (mod p?) for the primes p=1093
and P=35II .

o5
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19. A composite n which divides 2% -2 s
called a yswdo})rume.
i) 241, 561, and 161 038 are ]oswdo]ommzs;
#) every composite Fermat humber
F.z2t #1,n20,1sa jaswdo]ommz ;
W) |fn Is an odd Joswclojomme then 21 -1
IS & |m~<3zr one ;

W) (Erdss [1950]) |fn=

22P -1
3

y whare prsa
prime >3, then nis a ?swdoPmmz 5

v) there are mﬁmi’d\j many odd Pswc‘ormmzs.

20. Let Fand G be Polxjnomiak ihn variables
with |n+e43ra1 coeﬂ:ncneni's. We say F 15 congruent
to G mocfu&vy, and write F=g (mo&y ), |f
respective coefficients in Fand G are congruent
modulo p- We say Fis quwa@nf to G mocﬁ.«[o]a,
and write F~G (moc]y), if for all |n+¢3ra’ choces
Ci,**, Cn 1T IS +rue that

F(c,,,Cn)EG(Ca,om,Cn) (modja).
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We say that F 15 recfucec{mocfy ufho variable
appears in F to a power larqger than p-1. Here
p will always be a prime .
i-a) F£@Q (modja) |m]3|lq,s F~g (moclja);
by +he converse of( a s false ;
<) avery ]oolxjhom‘cﬂ Fis czquwalcmf
mod p to a reduced Joo|~jhomm| F* where
deq F's deg F ;
c[} sf F and G are reduced Pol\jnomaals
n one variable +hen FaG (mod P) |mjo|les
F2G (modp);
Q) |f Fand G are reduced Jooltjnomlqls
N any fmd'e, humber of variables the
|m5)||cq+lon n (cf) is valid ;
iy let F be aPo|jnomm| in 1 variables and
Suppose the ongruence F (%, %, )20 (mocl]o)
has exacﬂxj one solution (X520, %n) = (A4, G1)
modulo p (e +he components are faken

modulo:p).
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Defme H and g B») H
H (% %n) 2 T (2= (%200,
G (%, ¥n) = 1= FP g 0 %0).
Then
a-1) H(a, =, an)E1 (mod}:) ;
2) 1f for some {,157sn, x,¢ay
(mo&}o) then H (Xyye, X )20 (modJo) ;
b) #~G (modp) ;
) Hs C-;*(mocfp),wkm G* 1s the
reduced form ofG ;
dy deﬂ H:n(Pq):dwj q*sc’u] g
= (clecj FXp-1)sons duj F;

i) (chwa.||¢,\3) |f F s GPOI\jnomml hn
variables with c’ujru, smaller than n +hen
the congruence F (%:,+,%4) 20 (mod p) may not

have v:acﬂ\j one solution;

W) |f F I1s a non-constant form inn variables

(e, |fa|| the terms of.F' are of'-lil»é same dacjmz)
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and |f cluj}'<n then F(xl,-",x,,)so(modjo)
has a non~+rivial selution (e, a solution
with not all X80 (mod P) )5

v) (Warning ) let F be a ]ool\jhomml hn
\aarmb\es of olujrez T, wkv’e ren, and let ]o
be a prime . Sum:ose, F %y, Xn )zo(moJJo)
has quctlus s solutions, say ( a, M - a9,
15iss. Then:

a) uf H(Xy, o Xn) =1 -F?'i(xi,n-,x,,)
then the reduced form oF H,say H¥ s
MKy k) s £ (1 (-0 )P

by the I’\lch’\Q,S‘f dzﬂr’m termn H*i1s

(-1)"s x Pt xn}M}

¢) SIhck r<n and clegr% Her (]o-1)
# must be true that f’l s |

d) f Fisa polynomial in n variables
with c‘q F<n then the number ofsolu'hohs

of F(%y,0,X4) so(mod Jg) is divisible l"_] ]o

69
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Vi) B\S carzfu\ examination of (v-a) one
mav prove, as in Wy, the followmos +heorem.
If Fisa Pol‘jnomm\ in n varables with
du} F<n and (a, D we,a, 9y 1518 s,area”
the solutions of.‘F(x“m,x“)so (mod]o)
then for each por 1, R (15 fsn, oﬂés:p-z)
the prime p divides the sum é (ay " .

vity Let F, oo, F be ]oo|\3nomnq|s nn
variables with rq.qu,c‘I'wz clujrus T,y
Y4 dr,<n. SMJ)j:osz, fur-flwcu‘, +he
svssﬂm
(X) F(X, %, ) 50 (mod p), e | T, (%,,,%,,) 70 (mod p)
has at least one solution. Then :
ay the system has at leas+ +wo solutions;
6) +he number of’ solutions of (%) 1s

d\V!SI EIQ« b\j JD.



Remarks.

1. The arqument in *4 was qrven b\j Golomb

(1956] .

2. Inrespect to ¥o (i), as we observed | no
exam]oh ofa composite m for which ¢(m)|m-1
is Rnown . Howaever 1n 1932 Lehmer showed that
such an m would have to be odd | squarefru, and
have at least 7 prime facfors . The 7 has since
been raised to 11, If, in addition one assumes 3
divides m +hen m must have at leas+ 212 Pmme

fad'ors . ( See Lieuwens [ 19707 )

3. Gauss in his DLSCIMtStf’LO‘HzS Arithmeticae
had +he fo”owmc} to say about Wilson's theorem
(see ®1iz M),

It was Tirst }mblls‘ad E\j WarmOj and
attributed to Wilson .. But naither
of‘r"mm was able To Prove the +‘1eorem,
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and Waring confessed that the demon-~

stration was made more d |ﬁ:|cuH' because

no notation can be devised +o express

@ prime numbaer. But in our opinion

rruths ofﬂms kind should be clrawn

from the 1deas mvo|v¢d r'a+}1¢,r than

from notation.

The })roofof wilson's theorem in #iy qoes back +o
+he Danish mathematician T.Peterson who yrovzd
i inthis way 1n 1872, The En%‘lS\‘\ mathematician
A. Ca\jloj y amoamn‘tM mclz}oe,ndem'M yqove @ sitmlar
})rocf about 10 Years later. ( See Dickson's J-[tsforf]

V.T pp. 15-6 )

4. The result in #is(viy1s due to Clement [1949]
and that in #15(4i) +o Tkatev and shinzel (see
MR 32 1159, erratum p. 1154 ). There has been
considerable work on related Problems ( see

Le,\’e,ctuz [1974]v.1A50).



X

5. Primes P with 277z 1 (mocljo’) , S&® *18,
are of interest in connection with Fermat’s
last +heorem ( do there exi1st mﬂ%us x,4,%
with XYz #0 and X"’f\jn= z" for ns2)smnce
In 1907 Wn@fémch showed that nfjo 1 @ prime
and %% y=2*, xyz #0, then P satisfies this
congruence. For more recent information
and fur+h¢r references see Brillhart, Tomascia,

Wunbemﬁex [1971] -

6. for furflner mformahon on yswdm

]ornmes s Bchr [1951], LeVeque [1974 v.1 At8)],
and Rotkiewicz [1972].

7. Further extensions oF the Chwa“u@ -

Warning theorems, see #20, may be founcl
in Bomwc‘w, Sclwf'arwtch [1966] .
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X D!\’!Slb!‘t*\ﬁ Criteria

Let Sp(n) be the base k dacjrl' sum ofn .

1.1) 3] n-S,(n) ahcl,'szmf.ore,
3|n |fandor\|»3 nf3| S.o(n) ;
if) 9| n=S,(m) and, therefore
9|n lfand on|\3 afg]sm(n) ;
) su}a}aose C{I k-1 ; then cf]n- Se(ny, and,
-r%oxzfom, J]h |fand on‘v_‘ \f JI Se(ny.

2. (Alwis) Let P beaJomme la\'%o‘ than 7. Then:
) (6,S1(p))=1;
1) the sma”e.si'y with comjoosﬂ'e 57(33) IS 4801
141) for- P< 100000 the onlxj PosstU@ com}aosﬂ'e

value of S,(P) IS 25,

3 Let Eg(n) (0g(m)) be +he sum offlwe dlﬂﬁs
of the even (odd) powers of kinthe base k



X pansion of n .Then:
i) 11n=(Eom) =0, (n)) and ,+herefore ,
1| 1f and onlxj\f 11‘ Eom)=04(n);
i) Suppose cf] R+1 3 +hen c£|n-(Eﬁ(n)-Oﬁ(n))
and , therefore , d |n 1f and only 1f
d:\ Ei(nY-Og(n).

4. Gwen n write Q(n), R(n) forthe quotient
and remainder obtained when one dvides n
by 1000. Thus n=1000Q(n)+R(n),
0<R(NY<1000. Thwn:

) QY= 1555 y R(n) = n - 1000Q (1) ;
iy1f ¢=7,11,0r131hen ¢|n ‘fandon\“ if
c|Qn)-R(n);

i) the above leads to a workable disibility
criterion for dd’@rmmmc} the dvisibility of
anumber exceeding 1000 by 7,11, or 13,

T8
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5, Let Tﬁ(n)-ufi‘i, where Sﬁ(m 1 as

above . Then:

1) Tg(n) 1s an m+¢q¢r 3

iy if R s prime then T(n) 1s the highest

power ofﬁ d\\n&mﬂ nl

i) the highest powerof zin nlis n-w

where v 1s the number of 1's inthe base 2
expansion ofn ;
iy of R 15 a prime and nza+a,R4-4a,k

0say <k, then k|- - alall .



X Squams

I The fo\lowm% Qquah‘l'les are s’:ecnal cases
of a smple a|3ebm|c |den1'r|~\3.
32 + ql =5 2
102+ 13122 213241y
2% +22% 4230247 = 2574 2634 277
362+372+38%439% 440" = 412+ 427 + 4324442,

2. ( S.prague)
1) 128 IS hot a sum ofunequd squores ;
i) 1f 129 5 15 192 then n1s a sum of unequal
squares all 10% ;

i) 1f 129 sN €256 (=124 +10%-129) then
n IS 3 SUMm ofumquql squares all s10%;

W) 1f 29 sn <256+ 11° then n1sasum of
unqqua‘ squares all <n? ;

v) f 129 sn 2256 + 12 +122 then n1s asum

ofuneo‘ud squares all €122 5



viy every integer |arc3er than 128 15 a sum
of unequal squares.

3. Let € be the unit aircle with center at
the origin and let Ly be the s+r'mc3h+ hve of
slo_pe A passing 'rlwroucjh (-1,0). T’u\-fker, let C’
be ¢ with the point (-1,0) removed and let P
be the intersectionof C’and Ly . Then

iy as A runs over all rational numbers the
point Px runs in a oneto one fashion over all
points of €' both coordinates of whichare
rq-honal N f&cf +he corresj)onJmce IS

A H 11;)7:2 )HA’)’
#) of %,4,3 are non-zero integers with
%ccl umh3 and ufx’-nsz:%z thenthere exist
relatively prime nteqers 4, v of opposite

parrty, such that erther

x=vi-u?, Y= 2uv Z=us v’
or the same expressions wrth x and Y m‘hzrchonjecl .



4. T\we. sum cfz odcl somuams IS hVer a square.

5. (Thue) Suy]oosc, pisa prime not dwaclmﬂ
a and As{(mm) | osm<yp ,osn<@g.
Then

1) there are distinct elements of A, 50y (mn)
and (m'm"), suchthat am+nzam’+n'(modP) ;

ity there 1s an dement ofJ\,sow) (%:Y) such
that x\ﬁo and ather oY =¥ (mod?) or
oYz-¥ (mod P)yne. there exist x, Y such
that 0<x<vp, o<y<yp, ay=1x (mod p).

6. ( szm\tzaﬂon - Vihoqmdoff,
Scho\;& ~ Slﬂomb«m} )

1) If (a,m)=1 and e,farem‘huﬂers |ar<jer
+han 1 sa'\'nsf\jmcj eﬁm«af, fsme ef then
there exist XY such that o<x<e, o<y<f,

atja-"! x(modm);

ii) #5(fi)1sa syecml case of (i) .
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7. (Fermat) As we know from 1x #13 , when
pisa wR+1 prime, there 1s an a such that
at+1 20 (modp) ; selechn% such an a and
then c‘woosmg X, as in ¥s(ii) we conclude
xtuizp +hus ewery 4R+1 prime s the sum

of two squares.

8.i) If prsa 4ﬁ+3j:mme1-hen p=xtey’is
not solvable in inteqers X, Y
) |f' pisan odd prime then P IS rqyresen?able
as a sum of two squares 1f andonly 1f
})51 (mod4).

9. Let P be an odd prime and suppose
(a,0)=1, a’+6250(mod}3). Then :
1) for all U,V
(au-i-gv)z-iv(av-gu)zso (modj:) ;

iy %*+1 20 (mod p) s solvable ;
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i) all odd divisors o{a sum of +wo
m\ahve\»j prime squares are of the form

wk+t.

10. 1) The result in Fo(1ii) o‘!uaranfu,s the
existence ofm um+z|\3 many le+1 primes ;
ify all prime fac#ors of the Fermat humbers
F.=2° +1 are offhe, form 4k+1 and from
+his we may also conclude the existence of

mflm-i'd\3 many primes offhz fcrm k4t .

i ) The set ofPosrhvzmnﬁoxs which
are sums of-t-wo squares Is closed under
mu\ﬂ?lnmﬂon as can be seen l:\j mu |1~‘P|\3m03
out the ‘cf‘l' side of the congruence in (i)

and thaen fac‘i’orm ;
1) +he formulae of’z(ﬁ) may beob‘l’qm@d
from the nden'h-hj IMPllcﬂ' LYOR

&
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12. Let the canonical prime factorization of n
be qoen b\j neeSp S p g P g Bt
where the pi ore 4R+1 primes and the g; are
4R+3 primes. Then :

i) if n1s representable as the sumof 2
squares thenall By, 1245t are even;
iy of all 3y, 1{st, are even eachof 2%,
1oi,,... ’:Psots’ qlf’i’...’ Cttﬁt s a sum of 2
squares and, therefore, 1 1s a sum of 2 squares ;
iil) an ivteqer s the sum of 2 squares if ‘and
onlxj if its canonical prime factorization

contains ho 4£+3 yrumz to an odd power .

3. We write n=[@ 1f n 1s representable as
a sum of 4 squares. Thus 25=@ and 30 =
since 25 = 02+ 0%+ 0%+5%, 30= 12+ 2% ¢ 3%+ 4%,
The product of two sums of u squares 15
itself a sum of 4 squares, as can be seen bﬁ

veruﬁjmg the lden+l+\3 :
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(a2+a,% +a,2+a, A+ A +A A ) =
(63 A3+ GsA, +83A;+8,A 4 (4,A,-3,A - 2,A,+a,A,Y
+(3,A340,A4~0,A;~a,A, )+ (0,A4-A,A+0,A~3,A).

i, Let P be an odd prime. Then:

iy Az {n’lcsnsp—;!},Bz{-:-m’]osmsi?g

then there 1s an element of A which s congjruent
modulo P to on element of B,

) there exists an's, o<s<p, such that
sp=a,°+a,'+a,7+a,% for surtable a, y B2, 03,0,

i) for s and the aj n (i, f s> 1there exist
AL AL AL A such that aj EAS (mod s ) ,
-}s<A(sts, 15§54, and, for suitabler,

o<r<s, rs=A2+A T+ A LAY,

iv) for r and's as in (il (i), rs>p=0), where
the summands on the m%hf are all congruent
to o modulo s*and, therefore,, rp = [ ;

v) p=Ul;

vi) every posrtve integer may be represented

as @ sum of 4 squares.
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5. A fr\}:\z OfM‘i'Q%ers XY, % fcr which
'+ 22" 1 called a Pythagorean triple. when
the inteqers have qreatest common divisor 1 we
call the trip le Prumtw& A 'h-tan%le whose
side )wcjﬂws form such a +r\}a|e is called a
Ptjtﬁaﬂorwn tmanﬂ& T+ 15 clear that all
P\jﬂﬂaﬂcman +r1Jo|¢s are |n'|'e,‘jm| muH':jal@sof
j:rlmri'we, frl]ﬂzs. De.fmz the three matrices
U,A,D b\j :

w(433) M(311) o(377)
2213/, 2213/, 2213/,
show that (%, Y,2')1sa })rtmnhveP\j-rhacjorwn
1-r~|j)|e lfand onl\j |f 1,4,5) &,
where & 1s a fmhz, Produd' ofmq+ruc¢s each
factor of which 15 one of V,A,D. 1.¢.show
that every 'P\jﬂwa%oreah Tr\}ﬂe, 150 +the fo”owmcs
array where the lines \wc’ma tothe rtcjh'r from
any tri Ple corr'zs?oncl to a]:})kjm% to 'r\waﬁrn}a]e
ather the matrix U (for u,j)), A ( for across) or
D (for down).
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(9,40,41)
(",24,15)<(1os, 88,137)
(91,60,109)
/ __105,208,233)
(5,'7-,'3)—(55,%,73)<(297,304,425)
\\\\ (187, 84,205)
(95,168,193)
(45,25,53)4(107,214,305)

\(H‘r, 44 ,125)

(57,176,185)
(39,80,89)<—(377,336, 505)
(299,180,349)
(217,456, 505)

(3,4,5 —

\ (459,220,509)
(175,288,337)
- ) )

(77,36, 85)(319, 360, 481)
(165, 52,173)
(51,140,149)
(33,56,65)_(215,252,373)
(209,120, 241)
/(us, 252,277)
(15,8, 17)—( 65,72, 97)(403,396, 565)
\ (273,136, 305)
(85,132,157)
(35, '2,3'!)<(|33 ,156,205)

(63,16,65)

(21,20,29)—(119,120,169)<— (697, 696,985) —

8s

(X

.
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Remarks.

1. T m]ohcﬁ' ih the solution of*u IS an 1dcn+1+\3
showing that the product of +wo sums of 2
squares is |+s¢|fa sum ofz squares. In¥y3
there 1s an |d¢n+1+\j showmc} the samefhmafar
the Joroducf of‘rwo numbers cach ofw\mch 1sa
sum ofu squares . There 1s alsoan 8 square
|d¢h+|+\3,'rlwouqh , 0s Hurwitz f\rsi' ?rovzd in
1898 ,Tl'\zre can be no such ld@.hﬂ‘hj ;‘:o‘_ values
ofn other than n= 1,2,4,8. ( See Curtis[1963].)
Dickson [1919] cites Degen as Imvmcﬂ been the
flrsf to give (in1818) such an s square danhhj.
Coxeter [1946) formu\afe.s the |c]w+|+»3 as fo”ows :

“(al+alteerant( B 4B, et b, )

= (a,bo-a,b,-a,b, - --ab, )+
T (a,b, +a,b,+ a,b,+a;b,-a,b,+a.b, -ab, -a.b, ),
where the € tm?hzs summation of seven squares
gven b\j ujcluc permutation of the suffx numbers
1,2,3,4,5,6,7 |wvm05 o unchana«d Y
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2. For a number of other nteresting results
concerning sums ofsquams see Pall [1933]
Tauss k»s [ 1966,1910,1971], Zassenhaus, Erchhorn
[19¢6] ,and the mference,s at theend cfxv.

3. As we showed in #2 (fc||owm3 Spraque
[1o47-9 (B)] ) T‘-\e lar%q,s‘l’ mhzcjer not +he sum
ofumqual squares 1s 128 . (See also Dressler

[1972,1973] .) A recent computer })roof (see

Dressler, Parker [19747 ) has been given Fo show "

that 12 758 I1s the |a\~c3es+ m+¢/.3¢r not +he sum
ofunw‘ud cubzs . T]wa'r a ssmnlar \ar%es*
m+u}q.r exists for Gé powers is Provac]m Xi .
4. The result of#e will be founc] n

scholz , Sl—»omlw-oj [19¢6].

5. The bmuhfu‘ cllsPla\j o{a” 'P\j't'haqorwn
Trn}:hs is due +o Hall [ 19707 .
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xit Sums of Powers

1 (Tarry) if b+--sb,’ ¢4 xc,t for all

t sahisfying o<t sm, we wrrte
B,y B By oor o
Tor examjok, 1,4,6,7 22,358 since
P44°46%4 702 2°43°45°48°%, 1 41446 47 2434548,
14ul4 6’ 47224374 5748% |

1) If 61,~~~,5n'-'-‘c1,~-,cn then for all ﬁ,
biyer, buycith o c ph ™ ¢, ¢ Byth e, buth ;

i) byyoer by, 2 €yyeery €y of and on\\j if for all x
(b 4xY 4+ 1'(6“47:)'" =(CAX) #oen(c 4x)" ;

fil) for every Joosrhve Inteqer m there exists
a posrtve integer n ond integers b,, -, by,

Cyyos*, Cn such that 61,-",6" 2cyy e, Cn

2. Define a sequence a,,a,,a,,--- by :

o if the base 2 representation of n
an = has an even c||3;+ sum ;
1 otherwise.
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using ¥ ,S'\'arﬂnqwﬂ'\'\ 12 2, and ?a\imcs h
succ.q,sswe,\»} zqua\ to 2, 25,23, -
one obtans
}H=2,3
1,4,6,7£2,3,5 8
1,4,6,7,10,11,131622,3,5,8,9,12,14,15
1,4,6,7,10,11,13,16,18,19,2,24,25,28,30,31 =
2,3,5.8,9,12,14,15,17,20,22,23,26,27,29 32 ;
an&lﬂ, " %mera\ L
£ (1-a,)nt =L a,,.n*, 1stsk.

nsi

3. i)y Withthe a,, as in*2 and ar'\wi'r'o,ms
nteqers T and s

R4 R+t

:}'1 (1-@p.)(rn +s)® =:§1 (1.,‘,1(1-11+sfc for 1stsk ;
Ay 0 (1) We mmﬁ m})\au (rn+s) 5\3 'P(n),
where P 15 any ]:o\»snom‘q\ of clq,cjr-u, not
wwzdmﬂ R .
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haz

4, 1) The odd m‘\'zo)crs from 1 1o 2R 1 inclusive

may be s:p‘rt' into +wo o|1530m1’ equinumesous classes

f&, ;g {B Ry 6 Gu so that for all x

(6147:) 4o -+(62r,4x)9' = (Bzﬁ“ﬂi') +~~-+(62a+:+x) ;

iy for all +he 55 of (i) there exist even m+e3ers
dy,e,dy so that notwo of‘rhe k- 25 numbers
, ke ysisk ;
wy let E' and d; be asin (i) e~ (i) and
J@fme L,,R, 1505k b\j
= (x+d,+b ) t o +(x+cf Bza)
Riz(md’”ﬁzg“) ot (x4 4D, e )F‘ ;
then L.=R, for each i, 1512k, ancl, furfher,

the 2k Produc‘l’s U,”'U&,W‘\U’Q each O; 1s

Si"c{' are u]ual,w}\em 151’52

erther Lior R;, are equa| ;

W) zac\w ofﬂwe Producl’s U, - Ug in (w) s
a sum of k¥ powers of terms of the form
(r+d:*5i)°~(x+d';+ 6;&) 5 each zj sa’nsﬁes

15i0s 2k
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further, for x suffucnm’rM larqe and even,

all of these terms are odd and distinct from
each other ;

) let b;,di,x beasin (iy-(ivy, ancl:pu'l'
s>l Lg; then s may be written as a sum
of odd £ % powers in 2k ways , no two of

W"\IC"\ s\'\arc a common summancl.

5. Let s be a number \wvmg 2oy com})]e‘l'el\j
distinct re]aresem‘ahons as a sum of odd kP
powers, and let these sums of odd R powers

be S;,e00, S,6, .
{y For eacht, osts 2k the number ts
is a sum of odd & powers ;
i) ‘f the base 2f m)orese,n‘fa‘hon of the
positive integer m 15 given by
m=t,+t, 2%t - 2Ry , ost <2k
then ms =15+ ts L t,s 2®4 ot 15 g sum

of R powers ;

9
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Wy n (%) in the rejomszn‘l'ahon of ms as a sum
of ﬁgspowers ho+wo summands are equal 5

W) Gven a Joosmve inteqer R there 1s a\wa\js
a Joosrl'm lrﬂ'ujer s such that all ]oosd'we m‘l'ujcr
mubts P\es of s are sums of unec’ual g powers .

6. Setting Srzs£+(s+1)ﬁ+m+(rs+1)ﬁ, 0sr<s,
where s 15 as 10 ¥5(w), we see +hat wery .15 a
sum of unequal kP powers, and, conse,qucnﬂty
sihce every sthiy S.zr (mods) and very
m'l'uju y gk may be written in the fovm
ms+S, , we conclude :

("Spfague) Given a ]oosrhw m+e:ju' R
there 15 a joosﬁ'nve inteqer N (= sher)
for which all |am3er integers are sums
of unaqua| kt powers ; 1.e. for cach k
all suffme,n+|t3 |ar3e inteqers are
representable asa sum of unequal

ﬁ”ﬁ powers .
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Remarks.
The results n #1-3 go back toProuhet [ 18517

and have been o_\enerall;w.cl COhS\dQJ‘aH\j In recent
Yars ~ see Lehmer [1047] , Roberts [t@éﬂ],erﬁhf
[1959]. The results in Fu-¢ are from S?raﬁue
{1947-9 (5)]. F'ur?lwx mformqhon alaouquud
sums of like powers , see ¥ 2, may be found in

Gloden [19u4], Lana‘er,?ar\zm,Sz\fr1c13z[|961].

9



xim Continued Fractions

J-rhz Jorodud' LoXyeXye 000 o X, b\j omrH'mS ZRIQ
or more disjomnt pairs of consecutve factors

‘\xj %5 from the product 1s denoted by E (X, %y).
This quantity, as a funchion of the %, 1scalled

’fhe Euler 5mck:d7functwn .

L ONe sars tmqulo,fd\j +hat ¢
\

o E(%) = %5
| E(xo,xt) = Xo X+ 1
L E(X Xy X2) = KK AKX,
E (Xoy Xy X2y X = XX, X, 5,4 KX, + X, X, 4%, %, +1 5

The sum of the products obtained from

| E(Xoy X1y X2, X3, Ky) = KX, 000,06, KX, X, +
- The number of summands appearng n

| E (%o, *+,%n) 15 denoted b\j Enii. Thus



E, =1
E,=2;
E,=33
E,=5;
Es=8.

1. Suppose nz 0. Then (]orov\dm3 n Wy, (vi), o
(vit) the presence of an X, or X, n E(-+) Is -~
ferpreted as making +hat bracket equaltol) :

1:) E(xo’ ...’x") = E‘xn,' ";Xo) p
#yfornzi,
E(xt’)"'yxmt) = Rnas E(xo,”' yxn) ¥ E(xo) * °:xn-1) )

#Wyfornz2,

E(’Q, ...’xn)E(x"...,xn_b_E(xc’...,xn_bg(xu. . xn)
= ("ﬂn-l ;

W) fornzs,

E(x% e ',XW)E(X',, "'»Xn-z)"s(xo ,’”;Xu.z)E(x“’",Xn)

=(-1)" %y, )

95
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v) for o<s<tn

E( %oy e, Xn)E (X500, %)= E(Xoye e+, X ) E (X5, * 2%, %)
=(- ”t SHE(xoy'";xs-z)E(xtm‘”,xn) ’
vi) for mzo,
E(Key++ XngXim* X0} = E (K22 X ¥ E XKoo+, Ximc) §
vit) for m2o, E(%e,**,XmXnes, Xm,+++,Xs )

= E(x°)"')xm) {E(xé)'";xmﬂ)" E ( xoyn.)xmﬂ.)} .

2.1) 'Pu++mﬂ Eo=1 we find
o=E, =1 E,=E, +E, fornzo;
#) E, = Uy, Where Uy, 15 the n+1% Fibonacu
number
W u, r { “4- et (1 J-)nn}
=% {C‘:‘)w(";‘)-vs "y s
WY @) Uy Uy, = Ut = (17
B) U= Uy Uy, = (1)

54'1

2
C‘) uwuut-sn-utﬂu =(~ 1) U Wty

n-s+4

for o<s<t<n

dy wr+u,2=u,,,, formzo;
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o7

) Uy, (UptUp) = U, L. form>o ;
f) Upes Upoy Uy, (3U, FU,) = US
9) U2y Py (3U ¥ U ) = Uy ;

v) Define the sequence a,,a,,d,, - by :
a,=a , a,=b ,a,,=a,+a,, fornzz,
b fornzz2.

Then a,=u_a+u

Tl-l n-i

Gvenan arbrtrary nfinite sequence
Aoy Qy,Q; -+ Of realnumbers suchthat a, %0
for 21, we definetwo new infinrte sequences
PP PorPis & G Gs{or iy

Qs fo\lows :

P2=0 ’P’l =1 ,’Pm=E(a°'...,a,,,) formzo ;

7.2=1, -1=°,<Zo=1 ,c{,,t:E(a«l,m,a.,.) for mz1 .
Noting that p, and G for msn depend only
onthe first n+1terms of the a 7 SRqULNCe We

seethat de, -, an deternine Paaye jPn and
VEIAARL A



Wewrite [d,,++, a,] for the (finite) continued

fraction

a°+ 1
a,+ 1

Q,+., 1
Q*a—,‘ ,

and write [a,,a,,a,, -] forthe mfum’cc continued

fro.ctwn

a.+

a+ !
a,+ 1
a3+ oo

1t should be noted that while it1s clearthata
finite continued frachon always denotesa real
number in an obvious wom it 1s notat all clear
that an nfimite continued fraction denotes a
real number in any reasonable way. In rtain
cases we will find that hm [a,, -, an] exists
and , inthose cases , we shall denote the imit
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