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5. COMBINATORIAL GAMES 
 

I’m afraid that sometimes,  
you’ll play lonely games too. 

Games you can’t win 
‘cause you’ll play against you. 

-Doctor Seuss  
 

 
Introduction 
 
In this chapter, we study combinatorial games involving two 
players. Typical problems describe a game, and ask us to find a 
winning strategy for one of the players or determine whether one 
exists.  
 

As in problems in the chapters on algorithms and processes, 
games are specified by a starting position, allowed move(s) and 
the final or winning position. These and other attributes make 
problems in this chapter seem superficially similar to those in the 
first three chapters, but a fundamental difference is that our 
algorithms or strategies now need to compete against those of an 
opponent. Some of the techniques we will develop in this chapter 
are hence significantly different from earlier ones. One simple yet 
surprisingly powerful technique we use is exploiting symmetry. 
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Others include coloring and invariants, recursion, induction, 
parity and a very important technique we will introduce known as 
positional analysis.  
 

The term “combinatorial games” is generally used to describe 
games with the following characteristics: 

 
(i) There are no elements of luck or chance (so no dice rolling or 

coin flipping involved). 

(ii) There is usually perfect information, unlike in card games, 
where I cannot see your hand (unless I peak). 

(iii) Players typically move alternately. In this chapter, all our 
games are played by Alice and Bob, whom we refer to as A 
and B respectively. In general A starts.  

(iv) There is no cheating (unfortunately). 
 

One more thing we will use frequently is that if a game is finite 
and does not have ties, then someone has to eventually lose. 
Because of the perfect information property and the absence of 
probabilistic elements, one player will hence have a winning 
strategy. In particular, one concept we will use frequently to 
develop strategies is that if one player can ensure that he always 
“stays alive”, the other player will eventually lose. 
 

 
  

Symmetry, Pairing and Copying 
 

They said no cheating, but we can still copy! 
 
This section is devoted to the very important technique of 
“copycat strategies” and pairing techniques. The next few 
examples should illustrate what these techniques are about.  
 
Example 1 
A and B each get an unlimited supply of identical circular coins. A 
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and B take turns placing the coins on a finite square table, in such 
a way that no two coins overlap and each coin is completely on 
the table (that is, it doesn’t stick out). The person who cannot 
legally place a coin loses. Assuming at least one coin can fit on the 
table, prove that A has a winning strategy.  
 
Answer: 
A first places a coin such that its center is at the center of the 
table. Then whenever B places a coin with center at a point X, A 
places a coin with center at the point X’, where X’ is the reflection 
of X in the center of the table. This ensures that after each of A’s 
moves, the board is completely symmetrical. Thus if B can make a 
legal move, then by symmetry, A’s next move is also legal. Since 
the area of the table is finite, eventually the game must terminate 
and someone must lose. Since A can always “stay alive”, B loses. ■ 
 
Example 2 [Saint Petersburg 1997] 
The number N is the product of k different primes (k ≥ 3). A and B 
take turns writing composite divisors of N on a board, according 
to the following rules. One may not write N. Also, there may never 
appear two coprime numbers or two numbers, one of which 
divides the other. The first player unable to move loses. If A starts, 
who has the winning strategy? 
 
Answer: 
A has a winning strategy. A first writes pq for some primes p and q 
dividing N. Then all the subsequent numbers written must be of 
the form pm or qm for some m dividing N, by the conditions of the 
problem. Whenever B writes qm, A writes qn. This “copying 
strategy” ensures that A always has a move. Since the game is 
finite (N has a finite number of divisors), A will eventually win. ■ 
 
Example 3 [USAMO 2004 – 4] 
Alice and Bob play a game on a 6 × 6 grid. On his or her turn, a 
player chooses a rational number not yet appearing in the grid 
and writes it in an empty square of the grid. Alice goes first and 
then the players alternate. When all of the squares have numbers 
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written in them, in each row, the square with the greatest number 
in that row is colored black. Alice wins if she can then draw a path 
from the top of the grid to the bottom of the grid that stays in 
black squares, and Bob wins if she can’t. (A path is a sequence of 
squares such that any two consecutive squares in the path share a 
vertex). Find, with proof, a winning strategy for one of the players. 
 
Answer: 
 

X X X 
   X X X 
   X X 

  
X 

 

   
X X X 

   
X X X 

   
X X X 

 
Figure 5.1 

 
B has a winning strategy. The idea is to ensure that the largest 
number in each row is in one of the squares marked X in Figure 
5.1. Then clearly there will be no path and B will win.  
 

To do this, B pairs each square marked with an X with a square 
not marked with an X in the same row. Whenever A plays in a 
square marked with an X, B writes a smaller number in the paired 
square. Whenever A writes a number in a square not having an X, 
B writes a larger number in the paired square. This ensures that 
after each of B’s moves, the largest number in each row is in one 
of the squares marked with an X. ■ 
 
Example 4 [Tic Tac Toe for mathematicians] 
On a 5 × 5 board, A and B take turns marking squares. A always 
writes an X in a square and B always writes O. No square can be 
marked twice. A wins if she can make one full row, column or 
diagonal contain only Xs. Can B prevent A from winning? 
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Answer: 
Yes. Mark the board as shown.  
 

5 9 11 9 6 

8 1 1 2 7 

12 4 
 

2 12 

8 4 3 3 7 

6 10 11 10 5 
 

Figure 5.2: Squares with equal numbers are paired 

 
Since each number from 1 to 12 appears in 2 squares, B can 

ensure that he always marks at least one square of each number 
(if A marks an X in a square with number i, B puts an O in the 
other square marked i). Observe that each row, column and 
diagonal contains a pair of squares having equal numbers. Since B 
ensures that at least one number in each pair is marked, each row, 
column and diagonal would have been marked by B at least once. 
■ 
 
Remark 1: This is one of those solutions that initially appears to 
come out of nowhere, but actually has a very intuitive explanation. 
Here’s one way of thinking about it. There are 5 columns, 5 rows 
and 2 diagonals, for a total of 12 “winning lines”. We can only 
make 12 pairs of numbers (since there are 25 squares and 12 x 2 
= 24). Thus our idea is to construct a pairing strategy such that 
each row, column and diagonal is covered by exactly one pair. In 
this example, a natural way to construct the pairing is to start with 
the inner 3 x 3 square, covering its border, and then fill the outer 
layer, ensuring that the remaining winning lines are taken care of.  
 
Remark 2: The game of tic-tac-toe can be generalized to getting k 
squares in a row on an m × n board (regular tic-tac-toe has k = m = 
n = 3 and this problem has k = m = n = 5). For most values of k, m 
and n, the question of whether there exists a winning strategy for 



Olympiad Combinatorics  6 

the starting player remains an open problem. In addition, the 
game of tic-tac-toe in higher dimensions (such as on 3-D cubes or 
in general, n-dimensional hyperspaces) has strong connections to 
a branch of extremal combinatorics known as Ramsey theory.  
 
Example 5 [IMO Shortlist 1994, C1] 
A and B play alternately on a 5 × 5 board. A always enters a 1 into 
an empty square, and B always enters a 0 into an empty square. 
When the board is full, the sum of the numbers in each of the nine 
3 × 3 squares is calculated and A's score S is the largest such sum. 
What is the largest score A can make, regardless of the responses 
of B? 
 
Answer: 

          

D D D D D 

D D D D D 

          

          
 

Figure 5.3: A pairing strategy for B 

 
Tile the board with 10 dominoes (marked D in the figure), leaving 
the bottom row untiled. B can ensure that each domino contains 
at least one 0, since whenever A plays in a domino B writes a 0 in 
the other square. Each 3 × 3 square has at least 3 full dominoes, 
and hence will have at least three 0s. Thus B can ensure that S is at 
most 6. Now we leave it to the reader to show that A can ensure 
that S is at least 6. ■ 
 

 
 

Parity Based Pairing 
 
We solved the last few examples by explicitly constructing pairing 
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strategies. But all we actually need to do sometimes is prove the 
existence of a pairing strategy. This is often remarkably easy- 
observe that if there are an even number of objects, there exists a 
way to pair them up. 
 
Example 6 [Based on Italy TST 2009, problem 6] 
A and B play the following game. First A writes a permutation of 
the numbers from 1 to n, where n is a fixed positive integer 
greater than 1. In each player’s turn, he or she must write a 
sequence of numbers that has not been written yet such that 
either:  
a) The sequence is a permutation of the sequence the previous 

player wrote, OR 
b) The sequence is obtained by deleting one number from the 

previous player’s sequence 
 

For example, if A first writes 4123, B could write 3124 or 413. 
The player who cannot write down a sequence loses. Determine 
who has the winning strategy. 
 
Answer: 
If n = 2, B wins: after A’s first move, B deletes the number 2 and is 
left with the sequence {1}. Then A has no move.  
 

The idea now is to construct an inductive strategy for B. 
Suppose B wins for n = k; we now want a strategy for n = k+1. B’s 
aim is to make A be the first player to delete a number from the 
sequence. Then from this point the game is reduced to a game 
with k numbers, and B will win this by induction. But this is very 
easy to do – whenever A writes a sequence of k+1 numbers, there 
will always exist at least one permutation of the k+1 numbers that 
has not been written yet, simply because the total number of 
permutations is even ((k+1)! is even). ■ 

 
Remark: You can also use an explicit pairing strategy. One 
example is that whenever A writes a sequence, B writes the same 
sequence backwards.  



Olympiad Combinatorics  8 

 
Example 7 [USAMO 1999-5] 
The Y2K Game is played on a 1 × 2000 grid as follows. Two players 
in turn write either an S or an O in an empty square. The first 
player who produces three consecutive boxes that spell SOS wins. 
If all boxes are filled without producing SOS then the game is a 
draw. Prove that the second player has a winning strategy.  
 
Answer: 
Call an empty square bad if playing in that square will let the other 
player form SOS in the next turn. We claim that an empty square is 
bad if and only if it is in a block of 4 squares of the form S_ _ S.  
 

It is easy to see that both these empty squares are bad, as 
playing either S or O will allow the other player to form SOS. 
Conversely, if a square is bad, then playing an O in it will allow the 
other player to win, so it must have an S next to it and an empty 
square on the other side. Also, playing an S in a bad square allows 
the other player to win, so there must be another S beyond the 
empty square. This forces the configuration to be S_ _S, proving 
our claim. 
 

Now after A’s first move, B writes an S at least 4 squares away 
from either end of the grid and A’s first move.  On B’s second 
move, he writes S three squares away from his first S so that the 
two squares in between are empty. These two squares are bad. 
Note that at any point in the game there will always be an even 
number of bad squares (since they come in pairs, by our claim 
above). So whenever it is B’s turn, an odd number of moves would 
have been made, so an odd number of squares would be empty, of 
which an even number would be bad. Hence there will always be 
at least one square that is not bad on B’s turn, so B won’t lose. 
Eventually the game will end since there are at least 2 bad 
squares, so B must win. ■ 
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Positional Analysis 
Heads I win, tails you lose. 

 
For the rest chapter, we will use the following convention: a 
position in a game is a P-position if the player who has just played 
can force a win (that is, if he has a winning strategy). A position is 
called an N-position if the player whose turn it is can force a win. 
P and N respectively stand for Player and Next player.  
 

This means that the starting player has a winning strategy if 
and only if the initial position of a game is an N-position (he is the 
“next player” as it is his turn at the start of the game). The second 
player has a winning strategy if and only if the initial position is a 
P-position (even though the game has not yet begun, by 
convention, he is the player who has “just played”, since it is not 
his turn).  
 

Our definition of P- and N-positions also implies the following: 
From an N-position, the player whose turn it is can move into a P-
position. In other words, the player who has a winning strategy 
can move to a position in which he still has a winning strategy. 
From a P-position, the player whose turn it is must move into an 
N-position. The winning strategy for a player is to always 
move to P-positions.  
 
Example 8 
A and B play a game as follows. First A says 1, 2 or 3. Then B can 
add 1, 2 or 3 to the number the first player said. The game 
continues with the players playing alternately, in each turn adding 
1, 2 or 3 to the previous number. For example, A can say 2, then B 
can say 5, then A could say 6, and so on. The player who says 100 
wins. Who has the winning strategy? 
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Answer: 
Observe that B can always say a multiple of 4 in his turn. For 
example, consider the following sequence of moves: A-1; B-4; A-6; 
B-8 and so on. Regardless of what A says, B can always say a 
multiple of 4. This is fairly obvious, but if you want to be more 
rigorous you can prove it by induction – if B says 4k then A says 
4k+1, 4k+2 or 4k+3, and in all cases B can say 4k+4. Hence B will 
say 100 and will win. ■ 
 
Remark 1: Let’s analyze this proof. First of all, how would one 
come up with it? One idea is to work backwards. Clearly the player 
who says 100 wins. Hence 100 is a P-position – the person who 
has just played wins. Then 99, 98 and 97 are N-positions as the 
next player can reach 100 from these positions. But 96 is a P-
position, since from 96 only N-positions can be reached (97, 98 
and 99). Continuing in this manner, we see that every multiple of 
4 is a P-position, so the winning strategy is to always play 
multiples of 4. This type of analysis of P- and N-positions will be 
the central idea in the rest of this chapter. 
 
Remark 2: This game can be generalized- instead of 1, 2, or 3 we 
can allow a player to increase the number by 1, 2, …, or k for any 
positive integer k and we can replace 100 by n. If k+1 divides n, 
then all multiples of k+1 are P-positions, so 0 is a P-position and B 
has a winning strategy. Otherwise, suppose n ≡ r mod (k+1). Then 
all numbers that are congruent to r mod k+1 are P-positions, and 
A has a winning strategy by saying r in her first move. 
 
Note: In several problems, we will use arguments of the form “If 
one player does this, then the other player does that, then the first 
player does this…”. In order to avoid referring to the players as 
“one” or “the other” or the particularly ambiguous “the first 
player”, we will use X and Y in these situations. X could refer to 
either of the players A and B, and Y refers to the other one. (On the 
other hand this precludes the usage of personal pronouns… 
writing a book is just frustrating sometimes.) 
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Example 9 [Lithuania 2010] 
In an m × n rectangular chessboard there is a stone in the lower 
leftmost square. A and B move the stone alternately, starting with 
A. In each step one can move the stone upward or rightward any 
number of squares. The player who moves it into the upper 
rightmost square wins. Find all (m, n) such that A has a winning 
strategy. 
 
Answer: 
For convenience, lets flip the board upside down so that the stone 
starts in the upper rightmost square and the player who moves it 
to the lower leftmost square wins. All moves are now down or left. 
Now we label the squares by their coordinates, so that the lower 
leftmost square is (1, 1) and the upper rightmost square is (m, n). 
Note that the game must terminate – this is a key ingredient for 
positional analysis to work. 
 

            P    Start 
          P       
        P         
      P           
    P             
    P               
P                 

 
Figure 5.4: The P-positions 

 
The crucial observation is that the P-positions are squares with 

equal coordinates, that is, squares with coordinates (k, k) for 
some k. These are marked P in the figure. This is because if X 
moves to a square marked P, Y cannot reach any other P square in 
Y’s turn. Then X can move back to a P-position. This continues – X  
keeps moving to P-positions, and eventually reaches (1, 1) and 
wins. 
 

Thus if m ≠ n, the initial position is N, so A wins by always 
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moving to a square marked P. If  m = n, the initial position is P, so 
B wins. Hence A wins if and only if m ≠ n. ■ 
 

The previous two examples illustrate the general approach to 
problems in this section: characterize the N- and P-positions. If 
the starting position is an N-position, A wins; otherwise B wins. 
The next example is similar to example 8, but the inductive proof 
for characterizing N-positions is slightly trickier. There is also an 
important difference between this example and the previous two, 
discussed in the remark at the end.  
 
Example 10 [Saint Petersburg 2001] 
The number 1,000,000 is written on a board. A and B take turns, 
each turn consisting of replacing the number n on the board with 
n – 1  or ⌊       ⌋. The player who writes the number 1 wins. 
Who has the winning strategy? 
 
Answer: 
Note that the game eventually ends, so one of the players must 
have a winning strategy. After experimenting with 1,000,000 
replaced with smaller values, we see that A wins when the 
starting number is 2, 4, 6 and 8 and conjecture that A wins for any 
even starting number. In other words, we claim that all even 
numbers are N-positions. We prove this by induction. 
 

2 is an N-position, so now suppose that all even numbers less 
than 2k are N-positions. We show that 2k is also an N-position. If k 
is a P-position, A can write k in her first move and win. Otherwise 
A first writes 2k – 1. Then B must write 2k – 2 or k, both of which 
are N-positions by assumption, so A wins in this case as well. Thus 
all even numbers are N-positions, so 1,000,000 is an N-position 
and A has a winning strategy. ■ 
 
Remark: Note that unlike the solutions in examples 8 and 9, this 
solution does not characterize all positions as P or N. We proved 
all even numbers are N-positions, but didn’t prove anything about 
odd numbers since we didn’t need to. All we really cared about 
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was the number 1,000,000, so characterizing the positions of even 
numbers was sufficient. Another interesting thing to observe is 
the following: suppose N = 50. A’s strategy says to write 25 if 25 
is a P-position, and otherwise write 49. But we don’t know 
whether 25 is a P-position or an N-position! Does that mean 
our solution is incomplete or wrong? No. The problem only asked 
who has the winning strategy, not what the winning strategy is. 
We have guaranteed the existence of a winning strategy for A, 
without explicitly finding all its details – that’s Alice’s problem! 
(Well, actually, it’s kind of your problem too- exercise 6 asks you 
to characterize the odd positions of this problem.) 
 

An idea that has started to recur in this book is to take the 
techniques used in constructive proofs and use them for 
existential proofs. The next proof is a beautiful example of this 
idea, in which we use positional analysis to prove the existence of 
a winning strategy for one player by contradiction.  
 
Example 11 [Russia 2011, adapted] 

There are N > n
2
 stones on a table. A and B play a game. A begins, 

and then they alternate. In each turn a player can remove k stones, 
where k is a positive integer that is either less than n or a multiple 
of n. The player who takes the last stone wins. Prove that A has a 
winning strategy. 
 
Answer: 
The game is finite and deterministic so some player must have a 
winning strategy. Suppose to the contrary that B can win. A first 
removes kn stones. If B removes jn stones for some j, then that 
means N – (k + j) n is a P-position (since we are assuming B is 
playing his winning strategy). In this case A could have removed 
(k + j) n stones in her first move and won, meaning that A has a 
winning strategy, which is a contradiction.  
 

Thus if A removes kn stones in the first move, where 1 ≤ k ≤ n, 
let f(k) denote the number of stones B takes in response according 
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to his winning strategy. By the first paragraph, 1 ≤ f(k) ≤ n – 1. 
Hence by the pigeonhole principle, for some distinct k and j, f(k) = 
f(j). This means that both N – kn – f(k) and N – jn – f(k) are P-
positions, since these are the positions that arise after B’s move. 
 

Now WLOG let k < j. A first removes kn stones, then B removes 
f(k) stones. Now A removes (k – j)n stones. There are now N – kn – 
f(k) stones remaining, which is a P-position by the second 
paragraph. Hence A will win, contradicting our assumption that B 
has a winning strategy. ■ 
 

In slightly harder problems recursion often proves to be a 
useful technique. This means that we relate the outcome of a game 
of size N to games of smaller size. 
 
Example 12 [IMO Shortlist 2004, C5] 
A and B take turns writing a number as follows. Let N be a fixed 
positive integer. First A writes the number 1, and then B writes 2. 
Hereafter, in each move, if the current number is k, then the player 
whose turn it is can either write k + 1 or 2k, but no player can 
write a number larger than N. The player who writes N wins. For 
each N, determine who has a winning strategy.  
 
Answer: 
Step 1: We quickly observe that if N is odd, A can win. A can 
always ensure that she writes an odd number, after which B 
would have to write an even number. Hence B cannot say N so A 
wins. Now suppose N is even. 
 
Step 2: The key observation is that all even numbers greater 
than N/2 are P-positions. This is because after this point neither 
player can double the number (otherwise it will exceed N). 
Hence they both must keep adding 1 in their turns, and one player 
will keep writing even numbers and the other will keep writing 
odd numbers. The player who wrote the even number greater 
than N/2 will hence write N since N is even. 
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Step 3: If N = 4k or N = 4k+2, then k is a P-position. This is 
because if X writes k, Y must write k+1 or 2k. Then X writes 2k+2 
if Y writes k and X writes 4k if Y writes 2k. X has thus written an 
even number greater than N/2 and by step 2, X wins.  
 
Steps 2 and 3 now give us the final critical lemma. 
 
Step 4: If X has a winning strategy for N = k, then X has a 
winning strategy for N = 4k and N = 4k+2. 
Proof: Consider a game where N = 4k or 4k + 2. If X writes k at 
some point during the game, we are done by step 3. So X’s aim is 
to write k, so X starts implementing the winning strategy for N = k. 
How can Y prevent X from writing k? By “jumping over” k at some 
point: after X says some number j with k/2 < j < k, Y doubles it, 
resulting in a number 2j with (k + 1) ≤ 2j ≤ N/2. But then X simply 
doubles this number, resulting in an even number at least equal to 
2(k+1) > N/2. So X wins by step 2.  
 

Finally, we have a recursive method of determining the answer 
for even N. The answer for N is the same as that for ⌊   ⌋. To 
convert this recursion into an explicit answer, write N in base 4. 
The function ⌊   ⌋ is equivalent to removing the last digit of N in 
base 4. Starting from the base 4 representation of N, keep 
removing the rightmost digit. The resulting numbers will all be 
winning for the same player by our recursion. If at some point we 
obtain an odd number, then A wins for this number and hence A 
wins for N. Hence if N has an odd digit in base 4, then A wins. 
Otherwise, suppose N has only 0s and 2s in its base 4 
representation. Then applying our procedure we eventually end 
up with the number 2, and since B wins for 2, B wins for N in this 
case. ■ 
 

The final example of this chapter is different in a few ways. 
First, it is asymmetrical, in the sense that the two players have 
different (in fact, opposite) objectives. Such games are typically 
called “maker-breaker” games. We cannot define P- and N-
positions the way we did before. However, similar ideas of 
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analyzing positions based on outcome still apply, and winning 
strategies are still based on always sticking to some particular 
type of position. These positions are typically characterized by 
some specific property or invariant, as the next example shows. 
 
Example 13 [IMO Shortlist 2009, C5] 
Five identical empty buckets of 2-liter capacity stand at the 
vertices of a regular pentagon. Cinderella and her wicked 
Stepmother go through a sequence of rounds: At the beginning of 
every round the Stepmother takes one liter of water from the 
nearby river and distributes it arbitrarily over the five buckets. 
Then Cinderella chooses a pair of neighboring buckets, empties 
them into the river, and puts them back. Then the next round 
begins. The Stepmother’s goal is to make one of these buckets 
overflow. Cinderella’s goal is to prevent this. Can the wicked 
Stepmother enforce a bucket overflow? 
 
Answer: 
Let the volume of water in the buckets be B1, B2, B3, B4 and B5. 
Indices will be taken mod 5. Clearly if both Bi and Bi+2 are greater 
than one before one Cinderella’s moves, she cannot empty both of 
them and hence the stepmother will win enforce an overflow in 
her turn. Thus Cinderella’s aim is to prevent this from happening. 
To do this, clearly it is sufficient to ensure that Bi + Bi+2 is at most 
one for each i after each of Cinderella’s turns. Call such a situation 
good. 
 

Suppose after some round we have a good situation: two 
buckets are empty, say B4 = B5 = 0. Then B1 + B3 ≤ 1 and B2 ≤ 1 
(since B2 + B4 ≤ 1). After the stepmother’s turn, we will have B1 + 
B3 + B4 + B5 ≤ 2. Hence either B5 + B3 ≤ 1 or B4 + B1 ≤ 1. WLOG B5 + 
B3 ≤ 1. Then Cinderella empties B1 and B2. Now observe that the 
new configuration is still good, since B4 ≤ 1 and B5 + B3 ≤ 1.  
 

Hence starting from a good configuration, Cinderella can 
ensure that at the end of the round the new configuration is still 
good. Initially the buckets are all empty, so this configuration is 
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good. Hence Cinderella can prevent an overflow by always staying 
in a good position. ■  

 

 
 

Exercises 
 
1. [Cram] 

A and B take turns placing dominoes on an m × n rectangular 
grid, where mn is even. A must place dominoes vertically and 
B must place dominoes horizontally, and dominoes cannot 
overlap with each other or stick out of the board. The player 
who cannot make any legal move loses. Given m and n, 
determine who has a winning strategy, and find this strategy. 

 
2. [Double Chess]  

The game of double chess is played like regular chess, except 
each player makes two moves in their turn (white plays twice, 
then black plays twice, and so on). Show that white can always 
win or draw.  

 
3. [Russia 1999] 

There are 2000 devices in a circuit, every two of which were 
initially joined by a wire. The hooligans Vasya and Petya cut 
the wires one after another. Vasya, who starts, cuts one wire 
on his turn, while Petya cuts two or three. A device is said to 
be disconnected if all wires incident to it have been cut. The 
player who makes some device disconnected loses. Who has a 
winning strategy? 
 

4. [IMO Shortlist 2009, C1] 
Consider 2009 cards, each having one gold side and one black 
side, lying on parallel on a long table. Initially all cards show 
their gold sides. Two players, standing by the same long side 
of the table, play a game with alternating moves. Each move 
consists of choosing a block of 50 consecutive cards, the 
leftmost of which is showing gold, and turning them all over, 
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so those which showed gold now show black and vice versa. 
The last player who can make a legal move wins. 
a) Does the game necessarily end? 
b) Does there exist a winning strategy for the starting player?  

 

5. [Russia 1999] 
There are three empty jugs on a table. Winnie the Pooh, 
Rabbit, and Piglet put walnuts in the jugs one by one. They 
play successively, with the order chosen by Rabbit in the 
beginning. Thereby Winnie the Pooh plays either in the first or 
second jug, Rabbit in the second or third, and Piglet in the first 
or third. The player after whose move there are exactly 1999 
walnuts in some jug loses. Show that Winnie the Pooh and 
Piglet can cooperate so as to make Rabbit lose. 
 

6. Solve the problem in example 10 with 1,000,000 replaced by 
n, an arbitrary odd number. Use this complete character-
ization of positions to provide a complete description of the 
winning strategy. If you have some programming experience, 
you could also write a program to play this game against you.  
Remark (for programmers): You could also write a program 
to solve this probem, that is, to determine for each n who has a 
winning strategy. A simple dynamic programming approach 
would run in O(n) time. Using this as a subroutine, the 
program to play the game against you would take O(n) time 
for each move. However, if you found the characterization of 
positions on your own first, the program to play the game 
would only take O(log n) time for each move.  
 

7. [Bulgaria 2005] 
For positive integers t, a, b, a (t, a, b)-game is a two player 
game defined by the following rules. Initially, the number t is 
written on a blackboard. In his first move, the first player 
replaces t with either t – a or t – b. Then, the second player 
subtracts either a or b from this number, and writes the result 
on the blackboard, erasing the old number. After this, the first 
player once again erases either a or b from the number 
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written on the blackboard, and so on. The player who first 
reaches a negative number loses the game. Prove that there 
exist infinitely many values of t for which the first player has a 
winning strategy for all pairs (a, b) with (a + b) = 2005. 

 
8. [Rioplatense Math Olympiad 2010] 

Alice and Bob play the following game. To start, Alice arranges 
the numbers 1, 2, …, n in some order in a row and then Bob 
chooses one of the numbers and places a pebble on it. A 
player's turn consists of picking up and placing the pebble on 
an adjacent number under the restriction that the pebble can 
be placed on the number k at most k times. The two players 
alternate taking turns beginning with Alice. The first player 
who cannot make a move loses. For each positive integer n, 
determine who has a winning strategy. 

 
9. [Russia 2007] 

Two players take turns drawing diagonals in a regular (2n+1)-
gon (n > 1). It is forbidden to draw a diagonal that has already 
been drawn or intersects an odd number of already drawn 
diagonals. The player who has no legal move loses. Who has a 
winning strategy? 
 

10. [Indian Practice TST 2013] 

A marker is placed at the origin of an integer lattice. Calvin 
and Hobbes play the following game. Calvin starts the game 
and each of them takes turns alternatively. At each turn, one 
can choose two (not necessarily distinct) integers a and b, 
neither of which was chosen earlier by any player and move 
the marker by a units in the horizontal direction and b units in 
the vertical direction. Hobbes wins if the marker is back at the 
origin any time after the first turn. Determine whether Calvin 
can prevent Hobbes from winning. 
Note: A move in the horizontal direction by a positive quantity 
will be towards the right, and by a negative quantity will be 
towards the left (and similarly in the vertical case as well). 
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11. [Based on South Korea 2009, Problem 5] 

Consider an m × (m+1) grid of points, where each point is 
joined by a line segment to is immediate neighbors (points 
immediately to the left, right, above or below). A stone is 
initially placed on one of the points in the bottom row. A and B 
alternately move the stone along line segments, according to 
the rule that no line segment may be used more than once. 
The player unable to make a legal move loses. Determine 
which player has a winning strategy.   

12. [IMO Shortlist 1994, C6] 
Two players play alternatively on an infinite square grid. The 
first player puts an X in an empty cell and the second player 
puts an O in an empty cell. The first player wins if he gets 11 
adjacent X's in a line - horizontally, vertically or diagonally. 
Show that the second player can always prevent the first 
player from winning. 
 

13. [Nim] 

There are k heaps of stones, containing a1, a2, …, ak stones 
respectively, where the ai’s are positive integers. Players A 
and B play alternately as follows: in each turn, a player 
chooses one non-empty heap and removes as many stones as 
he or she wants. The person who takes the last stone wins. 
Determine when each player has a winning strategy, and find 
this winning strategy. 

14. [The name of this problem would give the answer away] 
There is one pile of N counters. A and B play alternately as 
follows. In the first turn of the game, A may remove any 
positive number of counters, but not the whole pile. 
Thereafter, each player may remove at most twice the number 
of counters his opponent took on the previous move. The 
player who removes the last counter wins. Who has the 
winning strategy? 


