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 1.  ALGORITHMS 
 
 
 
 

Introduction 
 
Put simply, an algorithm is a procedure or set of rules designed to 
accomplish some task. Mathematical algorithms are indispensable 
tools, and assist in financial risk minimization, traffic flow 
optimization, flight scheduling, automatic facial recognition, 
Google search, and several other services that impact our daily 
lives.  
 

Often, an algorithm can give us a deeper understanding of 
mathematics itself. For instance, the famous Euclidean algorithm 
essentially lays the foundation for the field of number theory. In 
this chapter, we will focus on using algorithms to prove 
combinatorial results. We can often prove the existence of an 
object (say, a graph with certain properties or a family of sets 
satisfying certain conditions) by giving a procedure to explicitly 
construct it. These proofs are hence known as constructive proofs. 
Our main goals in this chapter will be to study techniques for 
designing algorithms for constructive proofs, and proving that 
they actually work.  
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In this chapter, and throughout the book, the emphasis will be 
on ideas. What can we observe while solving a given problem? 
How can disparate ideas and observations be pieced together 
cohesively to motivate a solution? What can we learn from the 
solution of one problem, and how may we apply it to others in the 
future? Each problem in this book is intended to teach some 
lesson - this may be a combinatorial trick or a new way of looking 
at problems. We suggest that you keep a log of new ideas and 
insights into combinatorial structures and problems that you 
encounter or come up with yourself. 
 

 
 

Greedy Algorithms 
 

Be fearful when others are greedy and greedy when others are 
fearful - Warren Buffet 

 
Greedy algorithms are algorithms that make the best possible 
short term choices, hence in each step maximizing short term 
gain. They aren’t always the optimal algorithm in the long run, but 
often are still extremely useful. The idea of looking at extreme 
elements (that are biggest, smallest, best, or worst in some 
respect) is central to this approach.  
 
Example 1 
In a graph G with n vertices, no vertex has degree greater than Δ. 
Show that one can color the vertices using at most Δ+1 colors, 
such that no two neighboring vertices are the same color. 
 
Answer:  
We use the following greedy algorithm: arrange the vertices in an 
arbitrary order. Let the colors be 1, 2, 3… Color the first vertex 
with color 1. Then in each stage, take the next vertex in the order 
and color it with the smallest color that has not yet been used on 
any of its neighbors. Clearly this algorithm ensures that two 
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adjacent vertices won’t be the same color. It also ensures that at 
most Δ+1 colors are used: each vertex has at most Δ neighbors, so 
when coloring a particular vertex v, at most Δ colors have been 
used by its neighbors, so at least one color in the set {1, 2, 3, …, 
Δ+1} has not been used. The minimum such color will be used for 
the vertex v. Hence all vertices are colored using colors in the set 
{1, 2, 3,…, Δ+1} and the problem is solved. ■ 
 
Remark: The “greedy” step here lies in always choosing the color 
with the smallest number. Intuitively, we’re saving larger 
numbers only for when we really need them. 
 
Example 2 [Russia 2005, Indian TST 2012, France 2006] 
In a 2 x n array we have positive reals such that the sum of the 
numbers in each of the n columns is 1. Show that we can select 
one number in each column such that the sum of the selected 
numbers in each row is at most (n+1)/4.  
 

0.4 0.7 0.9 0.2 0.6 0.4 0.3 0.1 
0.6 0.3 0.1 0.8 0.4 0.6 0.7 0.9 

 
Figure 1.1: 2xn array of positive reals, n=8 

 
Answer:  
A very trivial greedy algorithm would be to select the smaller 
number in each column. Unfortunately, this won’t always work, as 
can easily be seen from an instance in which all numbers in the 
top row are 0.4. So we need to be more clever. Let the numbers in 
the top row in non-decreasing order be a1, a2, …., an and the 
corresponding numbers in the bottom row be b1, b2, …., bn (in non-
increasing order, since bi = 1 - ai). Further suppose that the sum of 
the numbers in the top row is less than or equal to that of the 
bottom row. The idea of ordering the variables is frequently used, 
since it provides some structure for us to work with.  
 

Our algorithm is as follows: Starting from a1, keep choosing the 
smallest remaining element in the top row as long as possible. In 
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other words, select a1, a2, …, ak such that a1 + a2 + … + ak ≤ 
   

 
 but 

a1 + a2 + … + ak + ak+1 > 
   

 
  Now we cannot select any more from 

the top row (as we would then violate the problem’s condition) so 
in the remaining columns choose elements from the bottom row. 
We just need to prove that the sum of the chosen elements in the 

bottom row is at most 
   

 
  Note that ak+1 is at least the average of 

a1, a2, …, ak, ak+1 which is more than 
   

      
   

 

Hence bk+1 = (1 - ak+1) < 1 - 
   

      
. But bk+1 is the largest of the 

chosen elements in the bottom row. So the sum of the chosen 

elements in the bottom row cannot exceed (1 - 
   

      
) x (n-k). We 

leave it to the reader to check that this quantity cannot exceed 
(n+1)/4. ■ 

 
Remark: One of the perks of writing a book is that I can leave 
boring calculations to my readers.  
 
Example 3 
In a graph G with V vertices and E edges, show that there exists an 
induced subgraph H with each vertex having degree at least E/V. 
(In other words, a graph with average degree d has an induced 
subgraph with minimum degree at least d/2).  
 
Answer:  
Note that the average degree of a vertex is 2E/V. Intuitively, we 
should get rid of ‘bad’ vertices: vertices that have degree < E/V. 
Thus a natural algorithm for finding such a subgraph is as follows: 
start with the graph G, and as long as there exists a vertex with 
degree < E/V, delete it. However, remember that while deleting a 
vertex we are also deleting the edges incident to it, and in the 
process vertices that were initially not ‘bad’ may become bad in 
the subgraph formed. What if we end up with a graph with all 
vertices bad? Fortunately, this won’t happen: notice that the ratio 
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of edges/vertices is strictly increasing (it started at E/V and each 
time we deleted a vertex, less than E/V edges were deleted by the 
condition of our algorithm). Hence, it is impossible to reach a 
stage when only 1 vertex is remaining, since in this case the 
edges/vertices ratio is 0. So at some point, our algorithm must 
terminate, leaving us with a graph with more than one vertex, all 
of whose vertices have degree at least E/V.  ■ 
 
Remark: This proof used the idea of monovariants, which we will 
explore further in the next section.  
 
The next problem initially appears to have nothing to do with 
algorithms, but visualizing what it actually means allows us to 
think about it algorithmically. The heuristics we develop lead us 
to a very simple algorithm, and proving that it works isn’t hard 
either.  
 
Example 4 [IMO shortlist 2001, C4] 
A set of three nonnegative integers {x, y, z} with x < y < z satisfying 
{z-y, y-x} = {1776, 2001} is called a historic set. Show that the set 
of all nonnegative integers can be written as a disjoint union of 
historic sets.  
 
Remark: The problem is still true if we replace {1776, 2001} with 
an arbitrary pair of distinct positive integers {a, b}. These 
numbers were chosen since IMO 2001 took place in USA, which 
won independence in the year 1776. 
 
Answer:   
Let 1776 = a, 2001 =b. A historic set is of the form {x, x+a, x+a+b} 
or {x, x+b, x+a+b}. Call these small sets and big sets respectively. 
Essentially, we want to cover the set of nonnegative integers using 
historic sets. To construct such a covering, we visualize the 
problem as follows: let the set of nonnegative integers be written 
in a line. In each move, we choose a historic set and cover these 
numbers on the line. Every number must be covered at the end of 
our infinite process, but no number can be covered twice (the 
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historic sets must be disjoint). We have the following heuristics, or 
intuitive guidelines our algorithm should follow: 
 
Heuristic 1: At any point, the smallest number not yet covered is 
the most “unsafe”- it may get trapped if we do not cover it (for 
example, if x is the smallest number not yet covered but x+a+b has 
been covered, we can never delete x). Thus in each move we 
should choose x as the smallest uncovered number.  
 
Heuristic 2: From heuristic 1, it follows that our algorithm should 
prefer small numbers to big numbers. Thus it should prefer small 
sets to big sets. 
 

Based on these two simple heuristics, we construct the 
following greedy algorithm that minimizes short run risk: in any 
move, choose x to be the smallest number not yet covered. Use 
the small set if possible; only otherwise use the big set. We now 
show that this simple algorithm indeed works: 
 

Suppose the algorithm fails (that is, we are stuck because using 
either the small or big set would cover a number that has already 
been covered) in the (n+1)th step. Let xi be the value chosen for x 
in step i. Before the (n+1)th step, xn+1 hasn’t yet been covered, by 
the way it is defined. xn+1 + a + b hasn’t yet been covered since it is 
larger than all the covered elements (xn+1 > xi by our algorithm). So 
the problem must arise due to xn+1 + a and xn+1 + b. Both of these 
numbers must already be covered. Further, xn+1 + b must have 
been the largest number in its set. Thus the smallest number in 
this set would be xn+1 + b – (a+b) = xn+1 – a. But at this stage, xn+1 
was not yet covered, so the small set should have been used and 
xn+1 should have been covered in that step. This is a contradiction. 
Thus our supposition is wrong and the algorithm indeed works. ■ 
 
Remark: In an official solution to this problem, the heuristics 
would be skipped. Reading such a solution would leave you 
thinking “Well that’s nice and everything, but how on earth would 
anyone come up with that?” One of the purposes of this book is to 



Chapter 1: Algorithms  7 

show that Olympiad solutions don’t just “come out of nowhere”. 
By including heuristics and observations in our solutions, we hope 
that readers will see the motivation and the key ideas behind 
them.  
 

 
 

Invariants and Monovariants 
 

Now we move on to two more extremely important concepts: 
invariants and monovariants. Recall that a monovariant is a 
quantity that changes monotonically (either it is non-increasing or 
non-decreasing), and an invariant is a quantity that doesn’t 
change. These concepts are especially useful when studying 
combinatorial processes. While constructing algorithms, they help 
us in several ways. Monovariants often help us answer the 
question “Well, what do we do now?” In the next few examples, 
invariants and monovariants play a crucial role in both 
constructing the algorithm and ensuring that it works.  
 
Example 5 [IMO shortlist 1989]  
A natural number is written in each square of an m x n 
chessboard. The allowed move is to add an integer k to each of 
two adjacent numbers in such a way that nonnegative numbers 
are obtained (two squares are adjacent if they share a common 
side). Find a necessary and sufficient condition for it to be 
possible for all the numbers to be zero after finitely many 
operations. 
 
Answer:  
Note that in each move, we are adding the same number to 2 
squares, one of which is white and one of which is black (if the 
chessboard is colored alternately black and white). If Sb and Sw 
denote the sum of numbers on black and white squares 
respectively, then Sb – Sw is an invariant. Thus if all numbers are 0 
at the end, Sb – Sw = 0 at the end and hence Sb – Sw = 0 in the 
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beginning as well. This condition is thus necessary; now we prove 
that it is sufficient. 
 

8 7 6 4  8 7 2 0 

7 3 2 1 → 7 3 2 1 
5 2 5 6  5 2 5 6 

 
Figure 1.2: A move on the mxn board 

 
Suppose a, b, c are numbers in cells A, B, C respectively, where 

A, B, C are cells such that A and C are both adjacent to B. If a ≤ b, 
we can add (-a) to both a and b, making a 0. If a ≥ b, then add (a-b) 
to b and c. Then b becomes a, and now we can add (-a) to both of 
them, making them 0. Thus we have an algorithm for reducing a 
positive integer to 0. Apply this in each row, making all but the 
last 2 entries 0. Now all columns have only zeroes except the last 
two. Now apply the algorithm starting from the top of these 
columns, until only two adjacent nonzero numbers remain. These 
last two numbers must be equal since Sb = Sw . Thus we can reduce 
them to 0 as well. ■ 
 
The solution to the next example looks long and complicated, but 
it is actually quite intuitive and natural. We have tried to motivate 
each step, and show that each idea follows quite naturally from 
the previous ones. 
 
Example 6 [New Zealand IMO Training, 2011] 
There are 2n people seated around a circular table, and m cookies 
are distributed among them. The cookies can be passed under the 
following rules: 
(a) Each person can only pass cookies to his or her neighbors  
(b) Each time someone passes a cookie, he or she must also eat a 

cookie 
Let A be one of these people. Find the least m such that no matter 
how m cookies are distributed initially, there is a strategy to pass 
cookies so that A receives at least one cookie. 
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Answer:  
We begin by labeling the people A–n+1, A–n+2, …., A0, A1, A2, …, An, 
such that A = A0. Also denote A-n = An. We assign weight 1/2|i| to 
each cookie held by person Ai. Thus for example, if A3 passes a 
cookie to A2, that cookie’s weight increases from 1/8 to 1/4. Note that 
A3 must also eat a cookie (of weight 1/8) in this step. Thus we see in 
this case the sum of the weights of all the cookies has remained 
the same. More precisely, if Ai has ai cookies for each i, then the 
total weight of all cookies is  

W =∑
  
    

 
         

 
Whenever a cookie is passed towards A0 (from A±i to A±(i-1) for i 

positive) one cookie is eaten and another cookie doubles its 
weight, so the total weight remains invariant. If a cookie is passed 
away from A, then the total weight decreases. Thus the total 
weight is indeed a monovariant. 
 

 
 

Figure 1.3: Labeling scheme to create a monovariant (n=5) 
 

A 0 
A 1 

A 2 

A 3 

A 4 

A 5 
A 6 

A -5 

A -4 

A -3 

A -2 

A -1 
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If m < 2
n
, then if all the cookies are initially given to An, the 

initial total weight is m/2
n
 < 1. Therefore the total weight is 

always less than 1 (since it can never increase), so A0 cannot 
receive a cookie (if A0 received a cookie it would have weight 1). 

Thus we must have m ≥ 2n.  
 

We now show that for m ≥ 2
n
, we can always ensure that A0 

gets a cookie. Intuitively, we have the following heuristic:  
 
Our algorithm should never pass away from A0, otherwise we will 

decrease our monovariant. Thus in each step we should pass 
towards A0. 

 
This heuristic, however, does not tell us which way An should 

pass a cookie, as both directions are towards A0 (An and A0 are 
diametrically opposite). This leads us to consider a new quantity 
in order to distinguish between the two directions that An can pass 
to. Let W+ be the sum of the weights of cookies held by A0, A1, A2, 
…., An  and let W- be the sum of the weights of cookies held by A0,  
A-1, A-2, …., A-n. Assume WLOG W+ ≥ W-. Then this suggests that we 
should make An pass cookies only to An-1 and that we should only 
work in the semicircle containing nonnegative indices, since this 
is the semicircle having more weight. Thus our algorithm is to 
make An pass as many cookies as possible to An-1, then make An-1 
pass as many cookies as possible to An-2, and so on until A0 gets a 
cookie. But this works if and only if W+ ≥ 1: W+ ≥ 1 is certainly 
necessary since W+ is a monovariant under our algorithm, and we 
now show it is sufficient.  

 
Suppose W+ ≥ 1. Note that our algorithm leaves W+ invariant. 

Suppose our algorithm terminates, that is, we cannot pass 
anymore cookies from any of the Ai’s with i positive, and A0 

doesn’t have any cookies. Then A1, A2, …., An all have at most 1 
cookie at the end (if they had more than one, they could eat one 
and pass one and our algorithm wouldn’t have terminated). Then 
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at this point W+ ≤ ½ + ¼ + ….. + 1/2
n < 1, contradicting the fact that 

W+ is invariant and ≥ 1. Thus W+ ≥ 1 is a sufficient condition for 
our algorithm to work.  

 
Finally, we prove that we indeed have W+ ≥ 1. We assumed W+ ≥ 

W-. Now simply note that each cookie contributes at least 1/2n-1 to 

the sum (W+ + W-), because each cookie has weight at least 1/2
n-1 

except for cookies at An. However, cookies at An are counted twice 
since they contribute to both W+ and W-, so they also contribute 

1/2n-1 to the sum. Hence, since we have at least 2n cookies, W+ + W- 
≥ 2, so W+ ≥ 1 and we are done. ■ 
 
The next example demonstrates three very useful ideas: 
monovariants, binary representation and the Euclidean algorithm. 
All of these are very helpful tools.  

 
Example 7 [IMO shortlist 1994, C3] 
Peter has 3 accounts in a bank, each with an integral number of 
dollars. He is only allowed to transfer money from one account to 
another so that the amount of money in the latter is doubled. 
Prove that Peter can always transfer all his money into two 
accounts. Can he always transfer all his money into one account? 
 
Answer:  
The second part of the question is trivial - if the total number of 
dollars is odd, it is clearly not always possible to get all the money 
into one account. Now we solve the first part. Let A, B, C with A ≤ B 
≤ C be the number of dollars in the account 1, account 2 and 
account 3 respectively at a particular point of time. If A = 0 
initially, we are done so assume A > 0. As we perform any 
algorithm, the values of A, B and C keep changing. Our aim is to 
monotonically strictly decrease the value of min (A, B, C). This will 
ensure that we eventually end up with min (A, B, C) = 0 and we 
will be done. Now, we know a very simple and useful algorithm 
that monotonically reduces a number- the Euclidean algorithm. So 
let B = qA + r with 0   r < A. Our aim now is to reduce the number 



Olympiad Combinatorics  12 

of dollars in the second account from B to r. Since r < A, we would 
have reduced min (A, B, C), which was our aim. 
 

Now, since the question involves doubling certain numbers, it 
is a good idea to consider binary representations of numbers. Let 

q = m0 + 2m1 + …. + 2kmk be the binary representation of q, where 
mi = 0 or 1. To reduce B to r, in step i of our algorithm, we transfer 
money to account 1. The transfer is from account 2 if mi-1 = 1 and 
from account 3 if mi-1 = 0. The number of dollars in the first 
account starts with A and keeps doubling in each step. Thus we 

end up transferring A(m0 + 2m1 + …. + 2kmk) = Aq dollars from 
account 2 to account 1, and we are left with B – Aq = r dollars in 
account 2. We have thus succeeded in reducing min (A, B, C) and 
so we are done. ■ 
 
Now we look at a very challenging problem that can be solved 
using monovariants.  
 
Example 8 [APMO 1997, Problem 5]  
n people are seated in a circle. A total of nk coins have been 
distributed among them, but not necessarily equally. A move is the 
transfer of a single coin between two adjacent people. Find an 
algorithm for making the minimum possible number of moves 
which result in everyone ending up with the same number of 
coins. 
 
Answer:  
We want each person to end up with k coins. Let the people be 
labeled from 1, 2, …, n in order (note that n is next to 1 since they 
are sitting in a circle). Suppose person i has ci coins. We introduce 
the variable di = ci – k, since this indicates how close a person is to 
having the desired number of coins. Consider the quantity 
 

X = |d1| + |d1 + d2| + |d1 + d2 + d3| + … + |d1 + d2 + … + dn-1| 
 

Clearly X = 0 if and only if everyone has k coins, so our goal is to 
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make X = 0. The reason for this choice of X is that moving a coin 
between person j and person j + 1 for 1 ≤ j ≤ n -1 changes X by 
exactly 1 as only the term |d1 + d2 + … + dj| will be affected. Hence 
X is a monovariant and is fairly easy to control (except when 
moving a coin from 1 to n or vice versa). Let sj = d1 + d2 + … + dj.  

 
We claim that as long as X > 0 it is always possible to reduce X 

by 1 by a move between j and j +1 for some 1 ≤ j ≤ n -1. We use the 
following algorithm. Assume WLOG d1 ≥ 1. Take the first j such 
that dj+1 < 0. If sj > 0, then simply make a transfer from j to j + 1. 
This reduces X by one since it reduces the term |sj| by one. The 
other possibility is sj = 0, which means d1 = d2 = … = dj = 0 (recall 
that dj+1 is the first negative term). In this case, take the first m > 
i+1 such that dm ≥ 0. Then dm-1 < 0 by the assumption on m, so we 
move a coin from m to (m-1). Note that all terms before dm were 
either 0 or less than 0 and dm-1 < 0 , so sm-1 was less than 0. Our 
move has increased sm-1 by one, and has hence decreased |sm-1| by 
one, so we have decreased X by one.  

 
Thus at any stage we can always decrease X by at least one by 

moving between j and j +1 for some 1 ≤ j ≤ n -1. We have not yet 
considered the effect of a move between 1 and n. Thus our full 
algorithm is as follows: At any point of time, if we can decrease X 
by moving a coin from 1 to n or n to 1, do this. Otherwise, decrease 
X by 1 by the algorithm described in the above paragraph.  ■ 
 
Sometimes while creating algorithms that monotonically decrease 
(or increase) a quantity, we run into trouble in particular cases 
and our algorithm doesn’t work. We can often get around these 
difficulties as follows. Suppose we want to monotonically 
decrease a particular quantity. Call a position good if we can 
decrease the monovariant with our algorithm. Otherwise, call the 
position bad. Now create an algorithm that converts bad positions 
into good positions, without increasing our monovariant. We use 
the first algorithm when possible, and then if we are stuck in a bad 
position, use the second algorithm to get back to a good position. 
Then we can again use the first algorithm. The next example 
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(which is quite hard) demonstrates this idea.  
 
Example 9 [USAMO 2003-6] 
At the vertices of a regular hexagon are written 6 nonnegative 
integers whose sum is 2003. Bert is allowed to make moves of the 
following form: he may pick a vertex and replace the number 
written there by the absolute value of the difference between the 
numbers at the neighboring vertices. Prove that Bert can make a 
sequence of moves, after which the number 0 appears at all 6 
vertices.  
 
Remark: We advise the reader to follow this solution with a paper 
and pen, and fill in the details that have been left for the reader. 
We first suggest that the reader try some small cases (with 2003 
replaced by smaller numbers). 
 
Answer:  
Our algorithm uses the fact that 2003 is odd. Let the sum of a 
position be the sum of the 6 numbers and the maximum denote 
the value of the maximum of the 6 numbers. Let A, B, C, D, E, F be 
the numbers at the 6 vertices in that order. Our aim is to 
monotonically decrease the maximum. Note that the maximum 
can never increase.  
 

We need two sub-algorithms:  
 

(i) “Good position” creation: from a position with odd sum, go to 
a position with exactly one odd number                                         

(ii) Monovariant reduction: from a position with exactly one odd 
number, go to a position with odd sum and strictly smaller 
maximum, or go to the all 0 position.                                                                                                                                    

 
For (i), since (A + B + C + D + E + F) is odd, assume WLOG that A 

+ C + E is odd. If exactly one of A, C, E is odd, suppose A is odd. 
Then make the following sequence of moves: B, F, D A, F (here we 
denote a move by the vertex at which the move is made). This 
way, we end up with a situation in which only B is odd and the 
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rest become even (check this), and we are done with step (i). The 
other possibility is that all of A, C and E are odd. In this case make 
the sequence of moves (B, D, F, C, E). After this only A is odd 
(check this). 

 
Now we are ready to apply step (ii), the step that actually 

decreases our monovariant. At this point, only one vertex contains 
an odd number; call this vertex A. Again we take two cases. If the 
maximum is even, then it is one of B, C, D, E or F. Now make moves 
at B, C, D, E and F in this order. (The reader should check that this 
works, that is, this sequence of moves decreases the maximum 
and ensures that the sum is odd). If the maximum is odd, then it is 
A. If C = E = 0, then the sequence of moves (B, F, D, A, B, F) leaves 
us with all numbers 0 and we are done. Otherwise, suppose at 
least one of C and E is nonzero so suppose C > 0 (the case E > 0 is 
similar). In this case, make the moves (B, F, A, F). The reader can 
check that this decreases the maximum and leaves us with odd 
sum. 
 

Thus starting with odd sum, we apply (i) if needed, after which 
we apply (ii). This decreases the maximum, and also leaves us 
again with odd sum (or in some cases it leaves us with all 0s and 
we are done), so we can repeat the entire procedure until the 
maximum eventually becomes 0. ■ 
 

 
 

Miscellaneous Examples 
 
Now we look at a few more problems involving moves that don’t 
directly use monovariants or greedy algorithms. These problems 
can often be solved by algorithms that build up the required 
configuration in steps. Sometimes, the required algorithm 
becomes easier to find after making some crucial observations or 
proving an auxiliary lemma. But in lots of cases, all a 
combinatorics problem needs is patience and straightforward 
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logic, as the next example shows. Here again the solution looks 
long but most of what is written is just intended to motivate the 
solution.  
 
Example 10 [China 2010, Problem 5] 
There are some (finite number of) cards placed at the points A1, 
A2, …, An and O, where n ≥ 3. We can perform one of the following 
operations in each step: 
 
(1) If there are more than 2 cards at some point Ai, we can remove 

3 cards from this point and place one each at Ai-1, Ai+1 and O 
(here A0 = An and An+1 = A1) 

(2) If there are at least n cards at O, we can remove n cards from O 
and place one each at A1, A2, …, An.  

 

Show that if the total number of cards is at least n2+3n+1, we can 
make the number of cards at each vertex at least n + 1 after 
finitely many steps.  
 
Answer:  
Note that the total number of cards stays the same. We make a few 
observations: 
 
(a) We should aim to make the number of cards at each Ai equal 

or close to equal, since if in the end some point has lots of 
cards, some other point won’t have enough.  

 
(b) We can make each of the Ai’s have 0, 1 or 2 cards.  

Proof: repeatedly apply operation (1) as long as there is a 
point with at least 3 cards. This process must terminate, since 
the number of coins in O increases in each step but cannot 
increase indefinitely. This is a good idea since the Ai’s would 
now have a ‘close to equal’ number of coins, which is a good 
thing by observation a).  

 
(c) From observation b), we see that it is also possible to make 
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each of the Ai‘s have 1, 2, or 3 cards (from the stage where 
each vertex has 0, 1 or 2 cards, just apply operation (2) once). 
This still preserves the ‘close to equal’ property, but gives us 
some more flexibility since we are now able to apply 
operation 1.  

 
(d) Based on observation c), we make each of the Ai’s have 1, 2 or 

3 cards. Suppose x of the Ai’s have 1 card, y of the Ai’s have 2 
cards and z of the Ai’s have 3 cards. The number of cards at O 

is then at least (n2+3n+1) - (x +2y + 3z). Since x + y + z = n, (x + 
2y + 3z) = (2x + 2y + 2z) + z – x = 2n + z – x ≤ 2n if x ≥ z. Thus if 

x ≥ z, O will have at least (n
2
+3n+1) – 2n = n

2
+n + 1 cards. Now 

we can apply operation (2) n times. Then all the Ai’s will now 
have at least n + 1 cards (they already each had at least 1 

card), and O will have at least n2 + n + 1 – n2 = n + 1 cards and 
we will be done. 

 
Thus, based on observation d), it suffices to find an algorithm 

that starts with a position in which each of the Ai’s have 1, 2, or 3 
cards and ends in a position in which each of the Ai’s have 1, 2, or 
3 cards but the number of points having 3 cards is not more than 
the number of points having 1 card. This is not very difficult- the 
basic idea is to ensure that between any two points having 3 
cards, there is a point containing 1 card. We can do this as follows: 
 

If there are consecutive 3’s in a chain, like (x, 3, 3, ….., 3, y) with 
(x, y ≠3), apply operation (1) on all the points with 3 cards to get 
(x + 1, 1, 2, 2, ……, 2, 1, y+1). Thus we can ensure that there are no 
adjacent 3’s. Now suppose there are two 3’s with only 2’s between 
them, like (x, 3, 2, 2, 2,…,2, 3, y) with x, y ≠3. After doing operation 
(1) first on the first 3, then on the point adjacent to it that has 
become a 3 and so on until the point before y, we get the sequence 
(x+1, 1, 1,…,1, y+1).  

 
Thus we can repeat this procedure as long as there exist two 

3’s that do not have a 1 between them. Note that the procedure 
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preserves the property that all Ai’s have 1, 2 or 3 cards. But this 
cannot go on indefinitely since the number of coins at O is 
increasing. So eventually we end up with a situation where there 
is at least one 1 between any two 3’s, and we are done. ■ 
 
Example 11 [IMO 2010, Problem 5]  
Six boxes B1, B2, B3, B4, B5, B6 of coins are placed in a row. Each box 
initially contains exactly one coin. There are two types of allowed 
moves: 
 
Move 1: If Bk with 1 ≤ k ≤5 contains at least one coin, you may 
remove one coin from Bk and add two coins to Bk+1. 
Move 2: If Bk with 1 ≤ k ≤ 4 contains at least one coin, you may 
remove one coin from Bk and exchange the contents (possibly 
empty) of boxes Bk+1 and Bk+2.  
 
Determine if there exists a finite sequence of moves of the allowed 
types, such that the five boxes B1, B2, B3, B4, B5 become empty, 

while box B6 contains exactly 201020102010
   coins.  

Note: abc = a(bc) 

 
Answer:  

Surprisingly, the answer is yes. Let A = 2010
20102010

. We denote by 
(a1, a2, …, an)  (a1’, a2’, …, an’) the following: if some consecutive 
boxes have a1, a2, …, an coins respectively, we can make them have 
a1’, a2’, …, an’ coins by a legal sequence of moves, with all other 
boxes unchanged.  
 
Observations: 
a) Suppose we reach a stage where all boxes are empty, except 

for B4, which contains at least A/4 coins. Then we can apply 
move 2 if necessary until B4 contains exactly A/4 coins, and 
then apply move 1 twice and we will be done. Thus reaching 
this stage will be our key goal. 
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b) Move 1 is our only way of increasing the number of coins. 
Since it involves doubling, we should look for ways of 
generating powers of 2. In fact, since A is so large, we should 

try to generate towers of 2’s (numbers of the form 222
 ).  

 
Based on this, we construct two sub algorithms.  
 

Algorithm 1: (a, 0, 0)  (0, 2
a
, 0) for any positive integer a.  

Proof: First use move 1: (a, 0, 0)  (a–1, 2, 0).  
Now use move 1 on the middle box till it is empty: (a–1, 2, 0)  
(a–1, 0, 4) 
Use move 2 on the first box to get (a-2, 4, 0). 
Repeating this procedure (that is, alternately use move one on the 
second box till it is empty, followed by move one on the first box 

and so on), we eventually get (0, 2a, 0).  
Now, using this algorithm, we can construct an even more 
powerful algorithm that generates a large number of coins. 
 
Algorithm 2: Let Pn be a tower of n 2’s for each positive integer n 

(eg. P3 = 2
22

 = 16). Then  
(a, 0, 0, 0)  (0, Pa, 0, 0). 
Proof: We use algorithm 1. As in algorithm 1, the construction is 
stepwise. It is convenient to explain it using induction. 
 

We prove that (a, 0, 0, 0)  (a-k, Pk, 0, 0) for each 1 ≤ k ≤ a. For 
k = 1, simply apply move 1 to the first box. Suppose we have 
reached the stage (a-k, Pk, 0, 0). We want to reach (a- (k+1), Pk+1, 0, 

0). To do this, apply algorithm 1 to get (a-k, 0, 2Pk, 0). Note that 

2Pk = Pk+1. So now just apply move 2 to the first box and we get (a- 
k-1, Pk+1, 0, 0). Thus by induction, we finally reach (for k = a) (0, Pa, 
0, 0). 
 
With algorithm 2 and observation a), we are ready to solve the 
problem.  
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First apply move 1 to box 5, then move 2 to box 4, 3, 2 and 1 in 
this order: 
(1, 1, 1, 1, 1, 1)  (1, 1, 1, 1, 0, 3)  (1, 1, 1, 0, 3, 0)  (1, 1, 0, 3, 0, 
0) (1, 0, 3, 0, 0, 0)  (0, 3, 0, 0, 0, 0). 
 

Now we use algorithm 2 twice: 
(0, 3, 0, 0, 0, 0)  (0, 0, P3, 0, 0, 0)  (0, 0, 0, P16, 0, 0).  
 

Now we leave it to the reader to check that P16 > A/4 (in fact P16 

is much larger than A). By observation a), we are done.  
 
Remark: In the contest, several contestants thought the answer 
was no, and spent most of their time trying to prove that no such 
sequence exists. Make sure that you don’t ever jump to 
conclusions like that too quickly. On a lighter note, in a conference 
of the team leaders and deputy leaders after the contest, one 
deputy leader remarked “Even most of us thought that no such 
sequence existed”. To this, one leader replied, “That’s why you are 
deputy leaders and not team leaders!”  
 
We close this chapter with one of the hardest questions ever 
asked at the IMO. Only 2 out of over 500 contestants completely 
solved problem 3 in IMO 2007. Yup, that’s right- 2 high school 
students in the entire world.   
 
Example 12 [IMO 2007, Problem 3] 
In a mathematical competition some competitors are friends; 
friendship is always mutual. Call a group of competitors a clique if 
each two of them are friends. The number of members in a clique 
is called its size. It is known that the size of the largest clique(s) is 
even. Prove that the competitors can be arranged in two rooms 
such that the size of the largest cliques in one room is the same as 
the size of the largest cliques in the other room.  
 
Answer:  
Let M be one of the cliques of largest size, |M| = 2m. First send all 
members of M to Room A and all other people to Room B. Let c(A) 
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and c(B) denote the sizes of the largest cliques in rooms A and B at 
a given point in time. Since M is a clique of the largest size, we 
initially have c(A) =|M|≥ c(B).  Now we want to “balance things 
out”. As long as c(A) > c(B), send one person from Room A to 
Room B. In each step, c(A) decreases by one and c(B) increases by 
at most one. So at the end we have c(A)≤ c(B) ≤ c(A) + 1. We also 
have c(A) = |A| ≥ m at the end. Otherwise we would have at least 
m+1 members of M in Room B and at most m−1 in Room A, 
implying c(B)−c(A) ≥ (m+1)−(m−1) = 2.  
 

Clearly if c(A) = c(B) we are done so at this stage the only case 
we need to consider is c(B) - c(A) = 1. Let c(A) = k, c(B) = k+1. Now 
if there is a competitor in B, who is also in M but is not in the 
biggest clique in B, then by sending her to A, c(B) doesn’t change 
but c(A) increases by 1 and we are done. Now suppose there is no 
such competitor. We do the following: take each clique of size k+1 
in B and send one competitor to A. At the end of this process, c(B) 
= k. Now we leave it to the reader to finish the proof by showing 
that c(A) is still k. (You will need to use the supposition that there 
is no competitor in B who is also in M but not in the biggest clique 
of B. This means that every clique in B of size (k+1) contains 
B∩M). ■ 
 

 
 

Exercises 
 

1. [Activity Selection Problem] 

On a particular day, there are n events (say, movies, classes, 
parties, etc.) you want to attend. Call the events E1, E2, …, En 
and let Ei start at time si and finish at time fi. You are only 
allowed to attend events that do not overlap (that is, one 
should finish before the other starts). Provide an efficient 
algorithm that selects as many events as possible while 
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satisfying this condition.  
(Note: We have not defined what “efficient” here means. Note 
that this problem can be solved by simply testing all 2n 
possible combinations of events, and taking the best 
combination that works. However, this uses a number of steps 
that is exponential in n. By efficient, we mean a procedure that 
is guaranteed to require at most a number of steps that is 
polynomial in n).  
 

2. [Weighted Activity Selection] 

Solve the following generalization of the previous problem: 
event Ei has now weight wi and the objective is not to 
maximize the number of activities attended, but the sum of the 
weights of all activities attended.  

 

3. [Russia 1961] 

Real numbers are written in an m × n table. It is permissible to 
reverse the signs of all the numbers in any row or column. 
Prove that after a number of these operations, we can make 
the sum of the numbers along each line (row or column) 
nonnegative. 
 

4. Given 2n points in the plane with no three collinear, show that 
it is possible to pair them up in such a way that the n line 
segments joining paired points do not intersect. 
 

5. [Czech and Slovak Republics 1997] 

Each side and diagonal of a regular n-gon (n ≥ 3) is colored 
blue or green. A move consists of choosing a vertex and 
switching the color of each segment incident to that vertex 
(from blue to green or vice versa). Prove that regardless of the 
initial coloring, it is possible to make the number of blue 
segments incident to each vertex even by following a sequence 
of moves. Also show that the final configuration obtained is 
uniquely determined by the initial coloring. 
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6. [Bulgaria 2001] 

Given a permutation of the numbers 1, 2, …, n, one may 
interchange two consecutive blocks to obtain a new 
permutation. For instance, 3 5 4 8 9 7 2 1 6 can be 
transformed to 3 9 7 2 5 4 8 1 6 by swapping the consecutive 
blocks 5 4 8 and 9 7 2. Find the least number of changes 
required to change n, n-1, n-2, …, 1 to 1, 2, …, n. 

 

7. [Minimum makespan scheduling] 

Given the times taken to complete n jobs, t1, t2, …, tn, and m 
identical machines, the task is to assign each job to a machine 
so that the total time taken to finish all jobs is minimized. For 
example, if n = 5, m = 3 and the times are 5, 4, 4, 6 and 7 hours, 
the best we can do is make machine 1 do jobs taking 4 and 5 
hours, machine 2 do jobs taking 4 and 6 hours, and machine 3 
do the job taking 7 hours. The total time will then be 10 hours 
since machine 2 takes (4 + 6) hours.  
 

Consider the following greedy algorithm: Order the jobs 
arbitrarily, and in this order assign to each job the machine 
that has been given the least work so far. Let TOPT be the total 
time taken by the best possible schedule, and TA the time 
taken by our algorithm. Show that TA/TOPT ≤ 2; in other words, 
our algorithm always finds a schedule that takes at most twice 
the time taken by an optimal schedule. (This is known as a 2-
factor approximation algorithm.) 

 

8. [USAMO 2011-2]  

An integer is written at each vertex of a regular pentagon. A 
solitaire game is played as follows: a turn consists of choosing 
an integer m and two adjacent vertices of the pentagon, and 
subtracting m from the numbers at these vertices and adding 
2m to the vertex opposite them. (Note that m and the vertices 
chosen can change from turn to turn). The game is said to be 
won at a vertex when the number 2011 is written at it and the 



Olympiad Combinatorics  24 

other four vertices have the number 0 written at them. Show 
that there is exactly one vertex at which the game can be won.  
 

9. [Chvatal’s set covering algorithm] 

Let S1, S2, …, Sk be subsets of {1, 2, …, n}. With each set Si is an 
associated cost ci. Given this information, the minimum set 
cover problem asks us to select certain sets among S1, …, Sk 
such that the union of the selected sets is {1, 2, …, n} (that is, 
each element is covered by some chosen set) and the total cost 
of the selected sets is minimized. For example, if n = 4, k = 3, S1 
= {1, 2}; S2 = {2, 3, 4} and S3 = {1, 3, 4} and the costs of S1, S2 
and S3 are 5, 6 and 4 respectively, the best solution would be 
to select S1 and S3. 
 

Consider the following greedy algorithm for set cover: In each 
stage of the algorithm, we select the subset Si which 

maximizes the value of 
   ⋂    

  
 , where C’ denotes the set of 

elements not yet covered at that point. Intuitively, this 
algorithm maximizes (additional benefit)/cost in each step. 
This algorithm does not produce an optimal result, but it gets 
fairly close: let CA be the cost of the selected sets produced by 
the algorithm, and let COPT be the cost of the best possible 
selection of sets (the lowest cost). Prove that CA/COPT ≤ Hn, 
where Hn = 1 + ½ + … + 1/n. (In other words, this is an Hn-
factor approximation algorithm.)  
 

10. A matroid is an ordered pair (S, F) satisfying the following 
conditions: 
(i) S is a finite set 

(ii) F is a nonempty family of subsets of S, such that if A is a 
set in F, all subsets of A are also in F. The members of F 
are called independent sets 

(iii) If A and B belong to F but |A| > |B|, then there exists an 
element x   B\A such that A U {x}   F.  
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For example, if S = {1, 2, 3, 4} and F = { , {1}, {2}, {3}, {4}, {1, 
2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3,4}}, then you can easily verify 
that the above properties are satisfied. In general, note that if 
F contains all subsets of S with k or fewer elements for some k 
≤ |S|, {S, F} will be a matroid. 

An independent set A is said to be maximal if there does not 
exist any element x in S such that A U {x}   F. (In other words, 
adding any element to A destroys its independence.) Prove 
that all maximal independent sets have the same 
cardinality. 

11. Consider a matroid {S, F} where S = {a1, …, an}. Let element ai 
have weight wi, and define the weight of a set A to be the sum 
of the weights of its elements. A problem central to the theory 
of greedy algorithms is to find an independent set in this 
matroid of maximum weight. Consider the following greedy 
approach: starting from the null set, in each stage of the 
algorithm add an element (that has not been selected so far) 
with the highest weight possible while preserving the 
independence of the set of selected elements. When no more 
elements can be added, stop.  
Show that this greedy algorithm indeed produces a maximum 

weight independent set.  

 

12. [IMO Shortlist 2013, C3] 

A crazy physicist discovered a new kind of particle which he 
called an imon. Some pairs of imons in the lab can be 
entangled, and each imon can participate in many 
entanglement relations. The physicist has found a way to 
perform the following two kinds of operations with these 
particles, one operation at a time.  
(i) If some imon is entangled with an odd number of other 

imons in the lab, then the physicist can destroy it. 
(ii) At any moment, he may double the whole family of imons 

in the lab by creating a copy I’ of each imon I. During this 
procedure, the two copies I’ and J’ become entangled if and 
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only if the original imons I and J are entangled, and each 
copy I’ becomes entangled with its original imon I; no 
other entanglements occur or disappear at this moment. 

Show that after a finite number of operations, he can ensure 
that no pair of particles is entangled. 

 

13. [Japan 1998] 

Let n be a positive integer. At each of 2n points around a circle 
we place a disk with one white side and one black side. We 
may perform the following move: select a black disk, and flip 
over its two neighbors. Find all initial configurations from 
which some sequence of such moves leads to a position where 
all disks but one are white. 
 

14. [Based on IOI 2007] 

You are given n integers a1, a2, …, an and another set of n 
integers b1, b2, …, bn such that for each i, bi ≤ ai. For each i = 1, 
2, …, n, you must choose a set of bi distinct integers from the 
set {1, 2, …, ai}. In total, (b1 + b2 +…+ bn) integers are selected, 
but not all of these are distinct. Suppose k distinct integers 
have been selected, with multiplicities c1, c2, c3, …, ck. Your 
score is defined as ∑          

   . Give an efficient algorithm 
to select numbers in order to minimize your score.  
 

15. [Based on Asia Pacific Informatics Olympiad 2007] 

Given a set of n distinct positive real numbers S = {a1, a2, …, an} 
and an integer k < n/2, provide an efficient algorithm to form k 
pairs of numbers (b1, c1), (b2, c2), …, (bk, ck) such that these 2k 
numbers are all distinct and from S, and such that the sum 
∑        

 
    is minimized.  

Hint: A natural greedy algorithm is to form pairs sequentially 
by choosing the closest possible pair in each step. However, 
this doesn’t always work. Analyze where precisely the 
problem in this approach lies, and then accordingly adapt this 
algorithm so that it works.  
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16. [ELMO Shortlist 2010] 

You are given a deck of kn cards each with a number in {1, 2, 
…, n} such that there are k cards with each number. First, n 
piles numbered {1, 2, …, n} of k cards each are dealt out face 
down. You are allowed to look at the piles and rearrange the k 
cards in each pile. You now flip over a card from pile 1, place 
that card face up at the bottom of the pile, then next flip over a 
card from the pile whose number matches the number on the 
card just flipped. You repeat this until you reach a pile in 
which every card has already been flipped and wins if at that 
point every card has been flipped. Under what initial 
conditions (distributions of cards into piles) can you 
guarantee winning this game? 

17. [Russia 2005] 

100 people from 25 countries, four from each country, sit in a 
circle. Prove that one may partition them onto 4 groups in 
such way that no two countrymen, nor two neighboring 
people in the circle, are in the same group. 

18. [Saint Petersburg 1997] 

An Aztec diamond of rank n is a figure consisting of those 
squares of a gridded coordinate plane lying inside the square 
|x| + |y| ≤ n+1. For any covering of an Aztec diamond by 
dominoes, a move consists of selecting a 2x2 square covered 
by two dominoes and rotating it by 90 degrees. The aim is to 
convert the initial covering into the covering consisting of only 
horizontal dominoes. Show that this can be done using at most 
n(n+1)(2n+1)/6 moves. 


