
Olympiad
Combinatorics

Pranav A. Sriram

August 2014

Chapter 2: Algorithms - Part II 1

Copyright notices

All USAMO and USA Team Selection Test problems in this chapter are

copyrighted by the Mathematical Association of America’s American

Mathematics Competitions.

© Pranav A. Sriram. This document is copyrighted by Pranav A. Sriram,

and may not be reproduced in whole or part without express written

consent from the author.

About the Author

Pranav Sriram graduated from high school at The International

School Bangalore, India, and will be a Freshman at Stanford

University this Fall.

Chapter 2: Algorithms - Part II 1

2. ALGORITHMS – PART II

In this chapter we focus on some very important themes in the
study of algorithms: recursive algorithms, efficiency and
information. A recursive algorithm is one which performs a task
involving n objects by breaking it into smaller parts. This is known
as a “divide and conquer” strategy. Typically, we either do this by
splitting the task with n objects into two tasks with n/2 objects or
by first reducing the task to a task with (n-1) objects. The latter
approach, which is essentially induction, is very often used to
solve Olympiad problems.

Induction

We first look at two problems which use induction. In the first
one, we use the technique of ignoring one object and applying the
induction hypothesis on the remaining (n-1) objects. This
obviously needs some care: we cannot completely ignore the nth
object if it has some effect on the other objects!

Example 1 [China Girls Math Olympiad 2011-7]
There are n boxes B1, B2, …, Bn in a row. N balls are distributed
amongst them (not necessarily equally). If there is at least one ball

Olympiad Combinatorics 2

in B1, we can move one ball from B1 to B2. If there is at least 1 ball
in Bn, we can move one ball from Bn to Bn-1. For 2 ≤ k ≤ (n -1), if
there are at least two balls in Bk, we can remove two balls from Bk
and place one in Bk+1 and one in Bk-1. Show that whatever the
initial distribution of balls, we can make each box have exactly one
ball.

Answer:
We use induction and monovariants. The base cases n =1 and 2
are trivial. Suppose we have an algorithm An-1 for n-1 boxes; we
construct an algorithm An for n boxes. We use two steps. The first
step aims to get a ball into Bn and the second uses the induction
hypothesis.

Step 1: If Bn contains at least one ball, move to step two.

Otherwise, all n balls lie in the first (n-1) boxes. Assign a weight 2k
to box Bk. Now keep moving balls from the boxes B1, B2, …, Bn-1 as
long as possible. This cannot go on indefinitely as the total weight
of the balls is a positive integer and strictly increases in each move

but is bounded above by n2
n
. Thus at some point this operation

terminates. This can only happen if B1 has 0 balls and B2, B3, …, Bn-1
each has at most 1 ball. But then Bn will have at least 2 balls. Now
go to step 2.

Step 2: If Bn has k > 1 balls, move (k-1) balls from Bn to Bn-1. Now
Bn has exactly one ball and the remaining (n-1) boxes have (n-1)
balls. Color these (n-1) balls red and color the ball in Bn blue. Now
we apply the induction hypothesis. Use algorithm An-1 to make
each of the first (n-1) boxes have one ball each. The only time we
run into trouble is when a move needs to be made from Bn-1,
because in An-1, Bn-1 only needed 1 ball to make a move, but now it
needs 2. We can easily fix this. Whenever An-1 says we need to
move a ball from Bn-1 to Bn-2, we first move the blue ball to Bn-1.
Then we move a ball from Bn-1 to Bn-2 and pass the blue ball back to
Bn. This completes the proof. ■

Chapter 2: Algorithms - Part II 3

Example 2 [IMO Shortlist 2005, C1]
A house has an even number of lamps distributed among its
rooms in such a way that there are at least three lamps in every
room. Each lamp shares a switch with exactly one other lamp, not
necessarily from the same room. Each change in the switch shared
by two lamps changes their states simultaneously. Prove that for
every initial state of the lamps there exists a sequence of changes
in some of the switches at the end of which each room contains
lamps which are on as well as lamps which are off.

Answer:
Call a room bad if all its lamps are in the same state and good
otherwise. We want to make all rooms good. We show that if k ≥ 1
rooms are bad, then we can make a finite sequence of switches so
that (k-1) rooms are bad. This will prove our result.

Call two lamps connected if they share a switch. Take a bad
room R1 and switch a lamp there. If this lamp is connected to a
lamp in R1, we are done since each room has at least 3 lamps. If
this lamp is connected to a lamp in another room R2, then R1
becomes good but R2 might become bad. If R2 doesn’t become bad,
we are done. If R2 does become bad, then repeat the procedure so
that R2 becomes good but some other room R3 becomes bad.
Continue in this manner. If we ever succeed in making a room
good without making any other room bad we are done, so assume
this is not the case. Then eventually we will reach a room we have
already visited before. We prove that at this stage, the final switch
we made would not have made any room bad.

Consider the first time this happens and let Rm = Rn for some m

> n. We claim that Rm is good at this stage. The first time we
switched a lamp in Rn, we converted it from bad to good by
switching one lamp. Now when we go to Rm (= Rn), we cannot
switch the same lamp, since this lamp was connected to a lamp in
room Rn-1, whereas the lamp we are about to switch is connected
to a lamp in Rm-1. So two distinct lamps have been switched in Rm
and hence Rm is good (since there are at least three lamps, at least

Olympiad Combinatorics 4

one lamp hasn’t been switched, and initially all lamps were in the
same state since the room was bad before). Thus our final switch
has made Rm-1 good without making Rm bad. Hence we have
reduced the number of bad rooms by one, and repeating this we
eventually make all rooms good. ■

The next two examples demonstrate how to construct objects
inductively.

Example 3:
Given a graph G in which each vertex has degree at least (n-1), and
a tree T with n vertices, show that there is a subgraph of G
isomorphic to T.

Answer:
We find such a subgraph inductively. Assume the result holds for
(n-1); we prove it holds for n. Delete a terminal vertex v from T. By
induction we can find a tree H isomorphic to T \ {v} as a subgraph
of G. This is because T \ {v} has (n-1) vertices and each vertex in G
has degree at least (n-1) > (n-1) - 1, so we can apply the induction
hypothesis. Now suppose v was adjacent to vertex u in T
(remember that v is adjacent to only one vertex). Let w be the
vertex in G corresponding to u. w has at least (n-1) neighbors in G,
and at most (n-2) of them are in H since H has (n-1) vertices and w
is one of them. Thus w has at least 1 neighbor in G that is not in H,
and we take this vertex as the vertex corresponding to v. ■

Figure 2.1: Finding H inductively

u

a b

v

T

w

a’ b’

G

This vertex can
be added to H

Chapter 2: Algorithms - Part II 5

Example 4 [USAMO 2002]
Let S be a set with 2002 elements, and let N be an integer with 0 ≤

N ≤ 22002. Prove that it is possible to color every subset of S black
or white, such that:

a) The union of two white subsets is white
b) The union of two black subsets is black
c) There are exactly N white subsets.

Answer
You may have thought of inducting on N, but instead we induct on
the number of elements of S. In this problem |S| = 2002, but we

prove the more general result with |S| = n and 0 ≤ N ≤ 2
n
. The

result trivially holds for n = 1, so suppose the result holds for n =

k. Now we prove the result for n = k+1. If N ≤ 2n-1, note that by
induction there is a coloring for the same value of N and n = k. We
use this coloring for all sets that do not contain the (k+1)th
element of S, and all subsets containing the (k+1)th element of S
(which were not there in the case |S| = k) are now colored black.
(Essentially, all “new” subsets are colored black while the old ones
maintain their original color). Clearly, this coloring works.

If N ≥ 2
n-1

, simply interchange the roles of white and black, and
then use the same argument as in the previous case. ■

Information, Efficiency and Recursions

The next few problems primarily deal with collecting information
and performing tasks efficiently, that is, with the minimum
possible number of moves. Determining certain information with
the least number of moves or questions is extremely important in
computer science.

The next example is a simple and well-known problem in

Olympiad Combinatorics 6

computer science.

Example 5 [Merge Sort Algorithm]
Given n real numbers, we want to sort them (arrange them in non-
decreasing order) using as few comparisons as possible (in one
comparison we can take two numbers a and b and check whether
a < b, b < a or a = b). Clearly, we can sort them if we make all
possible n(n-1)/2 comparisons. Can we do better?

Answer:
Yes. We use a recursive algorithm. Let f(n) be the number of
comparisons needed for a set of n numbers. Split the set of n
numbers into 2 sets of size n/2 (or if n is odd, sizes (n-1)/2 and
(n+1)/2. For the rest of this problem, suppose n is even for
simplicity). Now sort these two sets of numbers individually. This
requires 2f(n/2) comparisons. Suppose the resulting sorted lists
are a1 ≤ a2 ≤ … ≤ an/2 and b1 ≤ b2 ≤ … ≤ bn/2. Now we want to
combine or ‘merge’ these two lists. First compare a1 and b1. Thus
after a comparison between ai and bj, if ai ≤ bj, compare ai+1 and bj
and if bj < ai, compare bj+1 and ai in the next round. This process
terminates after at most n comparisons, after which we would
have completely sorted the list. We used a total of at most 2f(n/2)
+ n comparisons, so f(n) ≤ 2f(n/2) + n.

From this recursion, we can show by induction that f(2k) ≤ k x

2
k
 and in general, for n numbers the required number of

comparisons is of the order nlog2(n), which is much more efficient

than the trivial bound n(n-1)/2 which is of order n2. ■

Example 6
Suppose we are given n lamps and n switches, but we don’t know
which lamp corresponds to which switch. In one operation, we
can specify an arbitrary set of switches, and all of them will be
switched from off to on simultaneously. We will then see which
lamps come on (initially they are all off). For example, if n = 10
and we specify the set of switches {1, 2, 3} and lamps L6, L4 and L9

Chapter 2: Algorithms - Part II 7

come on, we know that switches {1, 2, 3} correspond to lamps L6,
L4 and L9 in some order. We want to determine which switch
corresponds to which lamp. Obviously by switching only one
switch per operation, we can achieve this in n operations. Can we
do better?

Answer:
Yes. We actually need only ⌈log2(n)⌉ operations, where ⌈ ⌉ is the

ceiling function. This is much better than n operations. For
example, if n is one million, individually testing switches requires
999,999 operations, whereas our solution only requires 20. We
give two solutions. For convenience assume n is even.

Solution 1:
In the first operation specify a set of n/2 switches. Now we have
two sets of n/2 switches, and we know which n/2 lamps they both
correspond to. Now we want to apply the algorithm for n/2 lamps
and switches to the two sets. Hence it initially appears that we
have the recursion f(n) = 2f(n/2)+1, where f(n) is the number of
steps taken by our algorithm for n lamps. However, note that we
can actually apply the algorithms for both sets simultaneously,
since we know which set of switches corresponds to which set of
lamps. Thus the actual recursion is f(n) = f(n/2)+1. Since f(1) = 0,
we inductively get f(n) = ⌈log2(n)⌉.

Solution 2:
The algorithm in this solution is essentially equivalent to that in
solution 1, but the thought process behind it is different. Label the
switches 1, 2, …, n. Now read their labels in binary. Each label has
at most ⌈log2(n)⌉ digits. Now in operation 1, flip all switches that

have a 1 in the units place of the binary representation of their
labels. In general, in operation k we flip all switches that have a 1
in the kth position of their binary representation. At the end of
⌈log2(n)⌉ operations, consider any lamp. Look at all the operations

in which it came on. For example, if a lamp comes on in the
second, third and fifth operations, but not in the first, fourth and

Olympiad Combinatorics 8

6th operations, then it must correspond to the switch with binary
representation 010110 (1s in the 2nd, 3rd and 5th positions from
the right). Thus each lamp can be uniquely matched to a switch
and we are done. ■

Example 7 [Generalization of IMO shortlist 1998, C3]
Cards numbered 1 to n are arranged at random in a row with n ≥
5. In a move, one may choose any block of consecutive cards
whose numbers are in ascending or descending order, and switch
the block around. For example, if n=9, then 91 6 5 3 2 7 4 8 may be
changed to 91 3 5 6 2 7 4 8. Prove that in at most 2n - 6 moves,
one can arrange the n cards so that their numbers are in
ascending or descending order.

Answer:
We use a recursive algorithm relating the situation with n cards to
the situation with n-1 cards. Let f(n) be the minimum number of
moves required to ‘monotonize’ any permutation of the n cards.
Suppose we have a permutation with starting card k. In f(n-1)
moves, we can monotonize the remaining (n-1) cards to get either
the sequence (k, 1, 2, …, k-1, k+1, …, n) or (k, n, n-1, …, k+1, k–1, …,
2, 1). In one move, we can make the former sequence (k, k-1, k-2,
…, 1, k+1, k+2, …, n) and with one more move we get the sequence
(1, 2, 3, …., n) and we are done. Similarly in the latter case we need
only two additional moves to get (n, n-1, …., 1). Thus in either case,
we can complete the task using f(n-1) + 2 moves, so f(n) ≤ f(n-1) +
2.

Now to prove the bound for general n ≥ 5, it suffices to prove it
for n = 5 and then induct using f(n) ≤ f(n-1) + 2. To prove that f(5)
≤ 4, first note that f(3) = 1 and f(4) = 3. With a little case work (do
this), we can show that any permutation of 4 cards can be
monotonized either way in at most 3 moves (thus both {1, 2, 3, 4}
and {4, 3, 2, 1} can be reached after at most 3 moves, regardless of
the initial permutation). Now given a permutation of {1, 2, 3, 4, 5},
use one move if necessary to ensure that either 1 or 5 is at an
extreme position. Now monotonize the remaining 4 numbers in 3

Chapter 2: Algorithms - Part II 9

moves, in such a way that the whole sequence is monotonized (we
can do this by the previous statement). Hence at most 4 moves are
required for 5 cards, and we are done. ■

Remark: Since we wanted a linear bound in this problem, we
tried to relate f(n) to f(n-1). However, when we want a logarithmic
bound, we generally relate f(n) to f(n/2), or use binary
representations. Thus the question itself often gives us a hint as to
what strategy we should use.

Example 8 [Russia 2000]
Tanya choses a natural number X ≤ 100, and Sasha is trying to
guess this number. She can select two natural numbers M and N
less than 100 and ask for the value of gcd (X+M, N). Show that
Sasha can determine Tanya's number with at most seven
questions (the numbers M and N can change each question).

Answer:

Since 26 < 100 < 27 we guess that more generally ⌈log2(n)⌉

guesses are needed, where n is the maximum possible value of X
and ⌈ ⌉ is the ceiling function.

Our strategy is to determine the digits of X in binary notation;
that is, the bits of X. First ask for gcd (X+2, 2). This will tell us
whether X is even or odd, so we will know the units bit of X. If X is
even, ask for gcd (X+4, 4). This tells us whether or not X is
divisible by 4. Otherwise ask for gcd (X+1, 4). This tells us if X is 1
or 3 mod 4 (if the gcd is 4, then X+1 is divisible by 4 and so X ≡ 3
mod 4). With this information we can determine the next bit of X.
For example, if X is odd and is 3 mod 4, its last two bits will be 11.
Now suppose X = i mod 4. To determine the next digit, ask for gcd
(X + (4-i), 8). This gcd is either 4 or 8, according as X = i or 4+i mod
8. This gives us the next bit. For example, if X = 3 mod 4 but X = 7
mod 8, then the last 3 bits of X will be 111, but if X = 3 mod 8, then
the last 3 bits would be 011. Now the pattern is clear. We continue
in this manner until we obtain all the bits of X. This takes k

Olympiad Combinatorics 10

questions, where k is the number of bits of n (since X ≤ n, we don’t
have to ask for further bits), which is at most equal to ⌈log2(n)⌉. ■

Example 9 [Generalization of Russia 2004, grade 9 problem
3]
On a table there are n boxes, where n is even and positive, and in
each box there is one ball. Some of the balls are white and the
number of white balls is even and greater than 0. In each turn we
are allowed to point to two arbitrary boxes and ask whether there
is at least one white ball in the two boxes (the answer is yes or
no). Show that after (2n – 3) questions we can indicate two boxes
which definitely contain white balls.

Answer:
Label the boxes from 1 to n. Ask for the pairs of boxes (1, j), where
j= 2, 3, …, n. If at some stage we get a no, this means box 1 contains
a black ball. Then for all j such that we got a ‘yes’ for (1, j), box j
contains a white ball and we are done. The only other possibility is
if we got a yes for all boxes (1, j), in which case there are 2
possibilities: either box 1 has a white ball or box 1 has a black ball
and all the other (n-1) boxes have white balls. The latter case is
ruled out since we are given that an even number or boxes have
black balls, and (n-1) is odd. Hence box 1 has a white ball. Now ask
for the pairs (2, j) where j =3, 4, …, n. Note that now we have asked
a total of (n-1) + (n-2) = (2n-3) questions. Again if we get a ‘no’
somewhere, then box 2 has a black ball and all yeses tell us which
boxes have white balls. In this case we are done. The other case is
if all the answers are yes. The same argument we used earlier
shows that box 2 has a white ball and we are done. ■

Now we look at a simple problem from computer science (part a
of the next problem), which also happens to be a game I played
when I was a little kid. Part b is a little trick question I just came
up with.

Example 10 a) [Binary Search Algorithm]

Chapter 2: Algorithms - Part II 11

My friend thinks of a natural number X between 1 and 2
k
 inclusive.

In one move I can ask the following question: I specify a number n
and he says bigger, smaller or correct according as n < X, n > X, or
n = X. Show that I can determine the number X using at most k
moves.

Answer:

In my first move I say 2
k-1

. Either I win, or I have reduced number

of possibilities to 2
k-1

. Repeat this process- in each stage reduce
the number of possibilities by a factor of 2. Then in k moves there
is only one possibility left.

Example: If k = 6, first guess 32. If the answer is “smaller”, guess
16. If the answer is now “bigger”, guess 24 (the average of 16 and
32). If the answer is now “smaller”, guess 20. If the answer is again
smaller, guess 18. If the answer is now “bigger”, the number is 19.

In general if we replace 2
k
 with n, we need ⌈log2(n)⌉ questions. ■

Example 10 b) [Binary Search with noise – a little trick]
We play the same game, but with a couple changes. First, I can
now ask any yes or no question. Second, now my friend is allowed
to lie - at most once in the whole game though. Now, from part a) I
can win with 2k + 1 moves: I simply ask each question twice, and
if the answer changes, that means my friend has lied. Then I ask
the question again, and this time I get the true answer (he can
only lie once). Thus I ask each question twice except for possibly
one question which I ask thrice, for a total of 2k + 1 questions. Can
I do better?

Answer:
First I ask about each of the k digits in the binary representation
of X. If the game didn’t involve lying, I would be done. Now I need
to account for the possibility that one answer was a lie. I ask the
question, “did you ever lie this game?” If the answer is no, we are
done (if he had lied, he would have to say yes now as he can’t lie

Olympiad Combinatorics 12

twice). If the answer is yes, I ask the question, “was the previous
answer a lie?” If the answer to this is yes, then that means he
never lied in the first k questions and again we are done. If the
answer is no, then we can be sure that one of the first k answers
we received (about the binary digits) was a lie. Note that he
cannot lie anymore. We want to determine which answer was a

lie. But using part a), we can do this in at most ⌈log2()⌉ moves!

This is because determining which of k moves was a lie is
equivalent to guessing a number X’ with X’ ≤ k, and for this I use
the algorithm in part a). After this, I know which digit in my
original binary representation of X is wrong and I change it, and
now I am done. I have used k + 2 + ⌈log2()⌉ questions, which is

much less than 2k + 1 questions for large k.

In general, if 2k is replaced by n, this algorithm takes ⌈log2(n)⌉+

⌈log2 ⌈log2(n)⌉⌉ + 2 moves. ■

As in the previous chapter, we end this section with one of the
hardest questions ever asked at the IMO. Only 3 out of over 550
contestants managed to completely solve it. However, the
difficulty of this now famous problem has been hotly debated on
AOPS, with many people arguing that it is a lot easier that the
statistics indicate. We’ll let the reader be the judge of that. The
following solution is based on one found during the contest. The
official solution is much more complicated.

Example 11 [IMO 2009, Problem 6]
Let n be a nonnegative integer. A grasshopper jumps along the
real axis. He starts at point 0 and makes n + 1 jumps to the right
with pairwise different positive integral lengths a1, a2, … an+1 in an
arbitrary order. Let M be a set of n positive integers in the interval
(0, s), where s = a1 + a2 + ··· + an+1. Prove that the grasshopper can
arrange his jumps in such a way that he never lands on a point
from M.

Chapter 2: Algorithms - Part II 13

Answer:
We construct an algorithm using induction and the extremal
principle. The case n = 1 is trivial, so let us assume that n > 1 and
that the statement holds for 1, 2, ..., n−1. Assume that a1 <···< an.
Let m be the smallest element of M. Consider the following cases:

Case 1: m < an+1: If an+1 does not belong to M then make the first
jump of size an+1. The problem gets reduced to the sequence a1, ...,
an and the set M\{m}, which immediately follows by induction. So
now suppose that an+1 ∈ M. Consider the following n pairs: (a1,
a1+an+1), ..., (an, an+an+1). All numbers from these pairs that are in
M belong to the (n−1)-element set M\{an}, hence at least one of
these pairs, say (ak, ak +an), has both of its members outside of M.
If the first two jumps of the grasshopper are ak and ak +an+1, it has
jumped over at least two members of M: m and an+1. There are at
most n−2 more elements of M to jump over, and n−1 more jumps,
so we are done by induction.

Case 2: m ≥ an+1: Note that it is equivalent to solve the problem in
reverse: start from s = a1 + a2 + ··· + an+1 and try to reach 0 without
landing on any point in M. By the induction hypothesis, the
grasshopper can start from s make n jumps of sizes a1, ..., an to the
left, and avoid all the points of M\{m}. If it misses the point m as
well, then we are done, since we can now make a jump of size an+1
and reach 0. So suppose that after making the jump ak the
grasshopper landed at m. If it changes the jump ak to the jump an,
it will jump past m and all subsequent jumps will land outside of
M because m is the left-most point. ■

Olympiad Combinatorics 14

Exercises

1. [Spain 1997]

The exact quantity of gas needed for a car to complete a single
loop around a track is distributed among n containers placed
along the track. Show that there exists a point from which the
car can start with an empty tank and complete the loop (by
collecting gas from tanks it encounters along the way). [Note:
assume that there is no limit to the amount of gas the car can
carry].

2. [Russia]

Arutyun and Amayak perform a magic trick as follows. A
spectator writes down on a board a sequence of N (decimal)
digits. Amayak covers two adjacent digits by a black disc. Then
Arutyun comes and says both closed digits (and their order).
For which minimal N can this trick always work?

3. [Generalization of Russia 2005]

Consider a game in which one person thinks of a permutation
of {1, 2, …, n} and the other’s task is to deduce this
permutation (n is known to the guesser). In a turn, he is
allowed to select three positions of the permutation and is
told the relative order of the three numbers in those positions.
For example, if the permutation is 2, 4, 3, 5, 1 and the guesser
selects positions 1, 4 and 5, the other player will reveal that 5th
number < 1st number < 4th number. Determine the minimum
number of moves for the guesser to always be able to figure
out the permutation.

4. [IMO Shortlist 1990]

Given n countries with three representatives each, m
committees A1, A2, …, Am are called a cycle if

Chapter 2: Algorithms - Part II 15

i. each committee has n members, one from each country;
ii. no two committees have the same membership;

iii. for 1 ≤ i ≤ m, committee Ai and committee Ai+1 have no
member in common, where Am+1 denotes A1

iv. if 1 < |i-j| < m-1, then committees Ai and Aj have at least
one member in common.

Is it possible to have a cycle of 1990 committees with 11
countries?

5. [Canada 2012 – 4]

A number of robots are placed on the squares of a finite,
rectangular grid of squares. A square can hold any number of
robots. Every edge of each square of the grid is classified as
either passable or impassable. All edges on the boundary of
the grid are impassable. A move consists of giving one of the
commands up, down, left or right. All of the robots then
simultaneously try to move in the specified direction. If the
edge adjacent to a robot in that direction is passable, the robot
moves across the edge and into the next square. Otherwise,
the robot remains on its current square.

Suppose that for any individual robot, and any square on
the grid, there is a finite sequence of commands that will move
that robot to that square. Prove that you can also give a finite
sequence of commands such that all of the robots end up on
the same square at the same time.

6. [IMO Shortlist 2002, C4]

Let T be the set of ordered triples (x, y, z), where x, y, z are
integers with 0 ≤ x, y, z ≤ 9. Players A and B play the following
guessing game. Player A chooses a triple in T (x, y, z), and
Player B has to discover A’s triple in as few moves as possible.
A move consists of the following: B gives A a triple (a, b, c) in T,
and A replies by giving B the number |x + y – a – b| + |y + z – b

Olympiad Combinatorics 16

– c| + |z + x – c – a|. Find the minimum number of moves that B
needs in order to determine A’s triple.

7. Given a finite set of points in the plane,

each with integer coordinates, is it always possible to color
the points red or white so that for any straight line L parallel
to one of the coordinate axes the difference (in absolute value)
between the numbers of white and red points on L is not
greater than 1?

8. [Generalization of Russia 1993]

There are n people sitting in a circle, of which some are
truthful and others are liars (we don’t know who is a liar and
who isn’t though). Each person states whether the person to
in front of him is a liar or not. The truthful people always tell
the truth, whereas the liars may either lie or tell the truth. The
aim is for us to use the information provided to find one
person who is definitely truthful. Show that if the number of

liars is at most 2√ – 3, we can always do this.

9. On each square of a chessboard is a light which has two states-
on or off. A move consists of choosing a square and changing
the state of the bulbs in that square and in its neighboring
squares (squares that share a side with it). Show that starting
from any configuration we can make finitely many moves to
reach a point where all the bulbs are switched off

10. [Indian Postal Coaching 2011]

Let C be a circle, A1, A2, …, An be distinct points inside C and B1,
B2, …, Bn be distinct points on C such that no two of the
segments A1B1, …, AnBn intersect. A grasshopper can jump from
Ar to As if the line segment ArAs does not intersect any line
segment AtBt (t ≠ r, s). Prove that after a certain number of
jumps, the grasshopper can jump from any Au to any Av.

Chapter 2: Algorithms - Part II 17

11. [USAMO 2000, Problem 3]

You are given R red cards, B blue cards and W white cards and
asked to arrange them in a row from left to right. Once
arranged, each card receives a score as follows. Each blue card
receives a score equal to the number of white cards to its
right. Each white card receives a score equal to twice the
number of red cards to its right. Each red card receives a score
equal to three times the number of blue cards to its right. For
example, if the arrangement is Red Blue White Blue Red Blue,
the total score will be 9 + 1 + 2 + 0 + 3 + 0 = 15. Determine, as
a function of R, B and W, the minimum possible score that can
obtained, and find all configurations that achieve this
minimum.

12. [IMO Shortlist 2005, C7]

Suppose that a1, a2, …, an are integers such that n | (a1 + a2 + …
+ an). Prove that there exist two permutations b1, b2, …, bn and
c1, c2, …, cn of (1, 2, …, n) such that for each integer i with 1 ≤ i ≤
n, we have n | ai – bi – ci.

13. [St. Petersburg 2001]

In the parliament of the country of Alternativia, for any two
deputies there exists a third who is acquainted with exactly
one of the two. There are two parties, and each deputy
belongs to exactly one of them. Each day the President (not a
member of the parliament) selects a group of deputies and
orders them to switch parties, at which time each deputy
acquainted with at least one member of the group also
switches parties. Show that the President can eventually
ensure that all deputies belong to the same party.

