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2. ALGORITHMS – PART II 
 
 

In this chapter we focus on some very important themes in the 
study of algorithms: recursive algorithms, efficiency and 
information. A recursive algorithm is one which performs a task 
involving n objects by breaking it into smaller parts. This is known 
as a “divide and conquer” strategy. Typically, we either do this by 
splitting the task with n objects into two tasks with n/2 objects or 
by first reducing the task to a task with (n-1) objects. The latter 
approach, which is essentially induction, is very often used to 
solve Olympiad problems.  
 

 
 

Induction 
 

We first look at two problems which use induction. In the first 
one, we use the technique of ignoring one object and applying the 
induction hypothesis on the remaining (n-1) objects. This 
obviously needs some care: we cannot completely ignore the nth 
object if it has some effect on the other objects!  
 
Example 1 [China Girls Math Olympiad 2011-7]  
There are n boxes B1, B2, …, Bn in a row. N balls are distributed 
amongst them (not necessarily equally). If there is at least one ball 



Olympiad Combinatorics  2 

in B1, we can move one ball from B1 to B2. If there is at least 1 ball 
in Bn, we can move one ball from Bn to Bn-1. For 2 ≤ k ≤ (n -1), if 
there are at least two balls in Bk, we can remove two balls from Bk 
and place one in Bk+1 and one in Bk-1. Show that whatever the 
initial distribution of balls, we can make each box have exactly one 
ball.  
 
Answer:  
We use induction and monovariants. The base cases n =1 and 2 
are trivial. Suppose we have an algorithm An-1 for n-1 boxes; we 
construct an algorithm An for n boxes. We use two steps. The first 
step aims to get a ball into Bn and the second uses the induction 
hypothesis. 
 
Step 1: If Bn contains at least one ball, move to step two. 

Otherwise, all n balls lie in the first (n-1) boxes. Assign a weight 2k 
to box Bk. Now keep moving balls from the boxes B1, B2, …, Bn-1 as 
long as possible. This cannot go on indefinitely as the total weight 
of the balls is a positive integer and strictly increases in each move 

but is bounded above by n2
n
. Thus at some point this operation 

terminates. This can only happen if B1 has 0 balls and B2, B3, …, Bn-1 
each has at most 1 ball. But then Bn will have at least 2 balls. Now 
go to step 2. 
 
Step 2: If Bn has k > 1 balls, move (k-1) balls from Bn to Bn-1. Now 
Bn has exactly one ball and the remaining (n-1) boxes have (n-1) 
balls. Color these (n-1) balls red and color the ball in Bn blue. Now 
we apply the induction hypothesis. Use algorithm An-1 to make 
each of the first (n-1) boxes have one ball each. The only time we 
run into trouble is when a move needs to be made from Bn-1, 
because in An-1, Bn-1 only needed 1 ball to make a move, but now it 
needs 2. We can easily fix this. Whenever An-1 says we need to 
move a ball from Bn-1 to Bn-2, we first move the blue ball to Bn-1. 
Then we move a ball from Bn-1 to Bn-2 and pass the blue ball back to 
Bn. This completes the proof. ■ 
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Example 2 [IMO Shortlist 2005, C1] 
A house has an even number of lamps distributed among its 
rooms in such a way that there are at least three lamps in every 
room. Each lamp shares a switch with exactly one other lamp, not 
necessarily from the same room. Each change in the switch shared 
by two lamps changes their states simultaneously. Prove that for 
every initial state of the lamps there exists a sequence of changes 
in some of the switches at the end of which each room contains 
lamps which are on as well as lamps which are off.  
 
Answer:  
Call a room bad if all its lamps are in the same state and good 
otherwise. We want to make all rooms good. We show that if k ≥ 1 
rooms are bad, then we can make a finite sequence of switches so 
that (k-1) rooms are bad. This will prove our result. 
 

Call two lamps connected if they share a switch. Take a bad 
room R1 and switch a lamp there. If this lamp is connected to a 
lamp in R1, we are done since each room has at least 3 lamps. If 
this lamp is connected to a lamp in another room R2, then R1 
becomes good but R2 might become bad. If R2 doesn’t become bad, 
we are done. If R2 does become bad, then repeat the procedure so 
that R2 becomes good but some other room R3 becomes bad. 
Continue in this manner. If we ever succeed in making a room 
good without making any other room bad we are done, so assume 
this is not the case. Then eventually we will reach a room we have 
already visited before. We prove that at this stage, the final switch 
we made would not have made any room bad.  

 
Consider the first time this happens and let Rm = Rn for some m 

> n. We claim that Rm is good at this stage. The first time we 
switched a lamp in Rn, we converted it from bad to good by 
switching one lamp. Now when we go to Rm (= Rn), we cannot 
switch the same lamp, since this lamp was connected to a lamp in 
room Rn-1, whereas the lamp we are about to switch is connected 
to a lamp in Rm-1. So two distinct lamps have been switched in Rm 
and hence Rm is good (since there are at least three lamps, at least 
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one lamp hasn’t been switched, and initially all lamps were in the 
same state since the room was bad before). Thus our final switch 
has made Rm-1 good without making Rm bad. Hence we have 
reduced the number of bad rooms by one, and repeating this we 
eventually make all rooms good. ■ 
 
The next two examples demonstrate how to construct objects 
inductively.  
 
Example 3:  
Given a graph G in which each vertex has degree at least (n-1), and 
a tree T with n vertices, show that there is a subgraph of G 
isomorphic to T.  
 
Answer:  
We find such a subgraph inductively. Assume the result holds for 
(n-1); we prove it holds for n. Delete a terminal vertex v from T. By 
induction we can find a tree H isomorphic to T \ {v} as a subgraph 
of G. This is because T \ {v} has (n-1) vertices and each vertex in G 
has degree at least (n-1) > (n-1) - 1, so we can apply the induction 
hypothesis. Now suppose v was adjacent to vertex u in T 
(remember that v is adjacent to only one vertex). Let w be the 
vertex in G corresponding to u. w has at least (n-1) neighbors in G, 
and at most (n-2) of them are in H since H has (n-1) vertices and w 
is one of them. Thus w has at least 1 neighbor in G that is not in H, 
and we take this vertex as the vertex corresponding to v. ■ 

 
Figure 2.1: Finding H inductively 
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Example 4 [USAMO 2002] 
Let S be a set with 2002 elements, and let N be an integer with 0 ≤ 

N ≤ 22002. Prove that it is possible to color every subset of S black 
or white, such that: 

a) The union of two white subsets is white 
b) The union of two black subsets is black 
c) There are exactly N white subsets.  

 
Answer 
You may have thought of inducting on N, but instead we induct on 
the number of elements of S. In this problem |S| = 2002, but we 

prove the more general result with |S| = n and 0 ≤ N ≤ 2
n
. The 

result trivially holds for n = 1, so suppose the result holds for n = 

k. Now we prove the result for n = k+1. If N ≤ 2n-1, note that by 
induction there is a coloring for the same value of N and n = k. We 
use this coloring for all sets that do not contain the (k+1)th 
element of S, and all subsets containing the (k+1)th element of S 
(which were not there in the case |S| = k) are now colored black. 
(Essentially, all “new” subsets are colored black while the old ones 
maintain their original color). Clearly, this coloring works. 
 

If N ≥ 2
n-1

, simply interchange the roles of white and black, and 
then use the same argument as in the previous case. ■ 
 

 
 

Information, Efficiency and Recursions 
 
The next few problems primarily deal with collecting information 
and performing tasks efficiently, that is, with the minimum 
possible number of moves. Determining certain information with 
the least number of moves or questions is extremely important in 
computer science.  

The next example is a simple and well-known problem in 
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computer science. 
 
Example 5 [Merge Sort Algorithm] 
Given n real numbers, we want to sort them (arrange them in non-
decreasing order) using as few comparisons as possible (in one 
comparison we can take two numbers a and b and check whether 
a < b, b < a or a = b). Clearly, we can sort them if we make all 
possible n(n-1)/2 comparisons. Can we do better? 
 
Answer:  
Yes. We use a recursive algorithm. Let f(n) be the number of 
comparisons needed for a set of n numbers. Split the set of n 
numbers into 2 sets of size n/2 (or if n is odd, sizes (n-1)/2 and 
(n+1)/2. For the rest of this problem, suppose n is even for 
simplicity). Now sort these two sets of numbers individually. This 
requires 2f(n/2) comparisons. Suppose the resulting sorted lists 
are a1 ≤ a2 ≤ … ≤ an/2 and b1 ≤ b2 ≤ … ≤ bn/2. Now we want to 
combine or ‘merge’ these two lists. First compare a1 and b1. Thus 
after a comparison between ai and bj, if ai ≤ bj, compare ai+1 and bj 
and if bj < ai, compare bj+1 and ai in the next round. This process 
terminates after at most n comparisons, after which we would 
have completely sorted the list. We used a total of at most 2f(n/2) 
+ n comparisons, so f(n) ≤ 2f(n/2) + n.  
 

From this recursion, we can show by induction that f(2k) ≤ k x 

2
k
 and in general, for n numbers the required number of 

comparisons is of the order nlog2(n), which is much more efficient 

than the trivial bound n(n-1)/2 which is of order n2. ■ 
 
Example 6 
Suppose we are given n lamps and n switches, but we don’t know 
which lamp corresponds to which switch. In one operation, we 
can specify an arbitrary set of switches, and all of them will be 
switched from off to on simultaneously. We will then see which 
lamps come on (initially they are all off). For example, if n = 10 
and we specify the set of switches {1, 2, 3} and lamps L6, L4 and L9 
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come on, we know that switches {1, 2, 3} correspond to lamps L6, 
L4 and L9 in some order. We want to determine which switch 
corresponds to which lamp. Obviously by switching only one 
switch per operation, we can achieve this in n operations. Can we 
do better? 
 
Answer:  
Yes. We actually need only ⌈log2(n)⌉ operations, where ⌈  ⌉ is the 

ceiling function. This is much better than n operations. For 
example, if n is one million, individually testing switches requires 
999,999 operations, whereas our solution only requires 20.  We 
give two solutions. For convenience assume n is even. 
 
Solution 1:  
In the first operation specify a set of n/2 switches. Now we have 
two sets of n/2 switches, and we know which n/2 lamps they both 
correspond to. Now we want to apply the algorithm for n/2 lamps 
and switches to the two sets. Hence it initially appears that we 
have the recursion f(n) = 2f(n/2)+1, where f(n) is the number of 
steps taken by our algorithm for n lamps. However, note that we 
can actually apply the algorithms for both sets simultaneously, 
since we know which set of switches corresponds to which set of 
lamps. Thus the actual recursion is f(n) = f(n/2)+1. Since f(1) = 0, 
we inductively get f(n) = ⌈log2(n)⌉. 

 
Solution 2:  
The algorithm in this solution is essentially equivalent to that in 
solution 1, but the thought process behind it is different. Label the 
switches 1, 2, …, n. Now read their labels in binary. Each label has 
at most ⌈log2(n)⌉ digits. Now in operation 1, flip all switches that 

have a 1 in the units place of the binary representation of their 
labels. In general, in operation k we flip all switches that have a 1 
in the kth position of their binary representation. At the end of 
⌈log2(n)⌉ operations, consider any lamp. Look at all the operations 

in which it came on. For example, if a lamp comes on in the 
second, third and fifth operations, but not in the first, fourth and 
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6th operations, then it must correspond to the switch with binary 
representation 010110 (1s in the 2nd, 3rd and 5th positions from 
the right). Thus each lamp can be uniquely matched to a switch 
and we are done. ■ 
 
Example 7 [Generalization of IMO shortlist 1998, C3] 
Cards numbered 1 to n are arranged at random in a row with n ≥ 
5. In a move, one may choose any block of consecutive cards 
whose numbers are in ascending or descending order, and switch 
the block around. For example, if n=9, then 91 6 5 3 2 7 4 8 may be 
changed to 91 3 5 6 2 7 4 8. Prove that in at most 2n - 6 moves, 
one can arrange the n cards so that their numbers are in 
ascending or descending order.  
 
Answer: 
We use a recursive algorithm relating the situation with n cards to 
the situation with n-1 cards. Let f(n) be the minimum number of 
moves required to ‘monotonize’ any permutation of the n cards. 
Suppose we have a permutation with starting card k. In f(n-1) 
moves, we can monotonize the remaining (n-1) cards to get either 
the sequence (k, 1, 2, …, k-1, k+1, …, n) or (k, n, n-1, …, k+1, k–1, …, 
2, 1). In one move, we can make the former sequence (k, k-1, k-2, 
…, 1, k+1, k+2, …, n) and with one more move we get the sequence 
(1, 2, 3, …., n) and we are done. Similarly in the latter case we need 
only two additional moves to get (n, n-1, …., 1). Thus in either case, 
we can complete the task using f(n-1) + 2 moves, so f(n) ≤ f(n-1) + 
2.  
 

Now to prove the bound for general n ≥ 5, it suffices to prove it 
for n = 5 and then induct using f(n) ≤ f(n-1) + 2. To prove that f(5) 
≤ 4, first note that f(3) = 1 and f(4) = 3. With a little case work (do 
this), we can show that any permutation of 4 cards can be 
monotonized either way in at most 3 moves (thus both {1, 2, 3, 4} 
and {4, 3, 2, 1} can be reached after at most 3 moves, regardless of 
the initial permutation). Now given a permutation of {1, 2, 3, 4, 5}, 
use one move if necessary to ensure that either 1 or 5 is at an 
extreme position. Now monotonize the remaining 4 numbers in 3 
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moves, in such a way that the whole sequence is monotonized (we 
can do this by the previous statement). Hence at most 4 moves are 
required for 5 cards, and we are done. ■ 
 
Remark: Since we wanted a linear bound in this problem, we 
tried to relate f(n) to f(n-1). However, when we want a logarithmic 
bound, we generally relate f(n) to f(n/2), or use binary 
representations. Thus the question itself often gives us a hint as to 
what strategy we should use. 
 
Example 8 [Russia 2000]  
Tanya choses a natural number X ≤ 100, and Sasha is trying to 
guess this number. She can select two natural numbers M and N 
less than 100 and ask for the value of gcd (X+M, N). Show that 
Sasha can determine Tanya's number with at most seven 
questions (the numbers M and N can change each question). 
 
Answer:  

Since 26 < 100 < 27 we guess that more generally  ⌈log2(n)⌉ 

guesses are needed, where n is the maximum possible value of X 
and ⌈  ⌉ is the ceiling function.  
 

Our strategy is to determine the digits of X in binary notation; 
that is, the bits of X. First ask for gcd (X+2, 2). This will tell us 
whether X is even or odd, so we will know the units bit of X. If X is 
even, ask for gcd (X+4, 4). This tells us whether or not X is 
divisible by 4. Otherwise ask for gcd (X+1, 4). This tells us if X is 1 
or 3 mod 4 (if the gcd is 4, then X+1 is divisible by 4 and so X ≡ 3 
mod 4).  With this information we can determine the next bit of X. 
For example, if X is odd and is 3 mod 4, its last two bits will be 11. 
Now suppose X = i mod 4. To determine the next digit, ask for gcd 
(X + (4-i), 8). This gcd is either 4 or 8, according as X = i or 4+i mod 
8. This gives us the next bit. For example, if X = 3 mod 4 but X = 7 
mod 8, then the last 3 bits of X will be 111, but if X = 3 mod 8, then 
the last 3 bits would be 011. Now the pattern is clear. We continue 
in this manner until we obtain all the bits of X. This takes k 
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questions, where k is the number of bits of n (since X ≤ n, we don’t 
have to ask for further bits), which is at most equal to ⌈log2(n)⌉. ■ 

 
Example 9 [Generalization of Russia 2004, grade 9 problem 
3] 
On a table there are n boxes, where n is even and positive, and in 
each box there is one ball. Some of the balls are white and the 
number of white balls is even and greater than 0. In each turn we 
are allowed to point to two arbitrary boxes and ask whether there 
is at least one white ball in the two boxes (the answer is yes or 
no). Show that after (2n – 3) questions we can indicate two boxes 
which definitely contain white balls. 
 
Answer:  
Label the boxes from 1 to n. Ask for the pairs of boxes (1, j), where 
j= 2, 3, …, n. If at some stage we get a no, this means box 1 contains 
a black ball. Then for all j such that we got a ‘yes’ for (1, j), box j 
contains a white ball and we are done. The only other possibility is 
if we got a yes for all boxes (1, j), in which case there are 2 
possibilities: either box 1 has a white ball or box 1 has a black ball 
and all the other (n-1) boxes have white balls. The latter case is 
ruled out since we are given that an even number or boxes have 
black balls, and (n-1) is odd. Hence box 1 has a white ball. Now ask 
for the pairs (2, j) where j =3, 4, …, n. Note that now we have asked 
a total of (n-1) + (n-2) = (2n-3) questions. Again if we get a ‘no’ 
somewhere, then box 2 has a black ball and all yeses tell us which 
boxes have white balls. In this case we are done. The other case is 
if all the answers are yes. The same argument we used earlier 
shows that box 2 has a white ball and we are done. ■ 
 
Now we look at a simple problem from computer science (part a 
of the next problem), which also happens to be a game I played 
when I was a little kid. Part b is a little trick question I just came 
up with.  
 
Example 10 a) [Binary Search Algorithm]  
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My friend thinks of a natural number X between 1 and 2
k
 inclusive. 

In one move I can ask the following question: I specify a number n 
and he says bigger, smaller or correct according as n < X, n > X, or 
n = X. Show that I can determine the number X using at most k 
moves. 
 
Answer: 

In my first move I say 2
k-1

. Either I win, or I have reduced number 

of possibilities to 2
k-1

. Repeat this process- in each stage reduce 
the number of possibilities by a factor of 2. Then in k moves there 
is only one possibility left. 
 
Example: If k = 6, first guess 32. If the answer is “smaller”, guess 
16. If the answer is now “bigger”, guess 24 (the average of 16 and 
32). If the answer is now “smaller”, guess 20. If the answer is again 
smaller, guess 18. If the answer is now “bigger”, the number is 19.  
 

In general if we replace 2
k
 with n, we need ⌈log2(n)⌉ questions. ■ 

 
Example 10 b) [Binary Search with noise – a little trick] 
We play the same game, but with a couple changes. First, I can 
now ask any yes or no question. Second, now my friend is allowed 
to lie - at most once in the whole game though. Now, from part a) I 
can win with 2k + 1 moves: I simply ask each question twice, and 
if the answer changes, that means my friend has lied. Then I ask 
the question again, and this time I get the true answer (he can 
only lie once). Thus I ask each question twice except for possibly 
one question which I ask thrice, for a total of 2k + 1 questions. Can 
I do better? 
 
Answer:  
First I ask about each of the k digits in the binary representation 
of X. If the game didn’t involve lying, I would be done. Now I need 
to account for the possibility that one answer was a lie. I ask the 
question, “did you ever lie this game?” If the answer is no, we are 
done (if he had lied, he would have to say yes now as he can’t lie 
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twice). If the answer is yes, I ask the question, “was the previous 
answer a lie?” If the answer to this is yes, then that means he 
never lied in the first k questions and again we are done. If the 
answer is no, then we can be sure that one of the first k answers 
we received (about the binary digits) was a lie. Note that he 
cannot lie anymore. We want to determine which answer was a 

lie. But using part a), we can do this in at most ⌈log2( )⌉ moves! 

This is because determining which of k moves was a lie is 
equivalent to guessing a number X’ with X’ ≤ k, and for this I use 
the algorithm in part a). After this, I know which digit in my 
original binary representation of X is wrong and I change it, and 
now I am done. I have used k + 2 + ⌈log2( )⌉ questions, which is 

much less than 2k + 1 questions for large k.  
 

In general, if 2k is replaced by n, this algorithm takes ⌈log2(n)⌉+ 

⌈log2 ⌈log2(n)⌉⌉ + 2 moves. ■ 

 
As in the previous chapter, we end this section with one of the 
hardest questions ever asked at the IMO. Only 3 out of over 550 
contestants managed to completely solve it. However, the 
difficulty of this now famous problem has been hotly debated on 
AOPS, with many people arguing that it is a lot easier that the 
statistics indicate. We’ll let the reader be the judge of that. The 
following solution is based on one found during the contest. The 
official solution is much more complicated.  
 
Example 11 [IMO 2009, Problem 6] 
Let n be a nonnegative integer. A grasshopper jumps along the 
real axis. He starts at point 0 and makes n + 1 jumps to the right 
with pairwise different positive integral lengths a1, a2, … an+1 in an 
arbitrary order. Let M be a set of n positive integers in the interval 
(0, s), where s = a1 + a2 + ··· + an+1. Prove that the grasshopper can 
arrange his jumps in such a way that he never lands on a point 
from M.  
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Answer:  
We construct an algorithm using induction and the extremal 
principle. The case n = 1 is trivial, so let us assume that n > 1 and 
that the statement holds for 1, 2, ..., n−1. Assume that a1 <···< an. 
Let m be the smallest element of M. Consider the following cases: 
 
Case 1: m < an+1: If an+1 does not belong to M then make the first 
jump of size an+1. The problem gets reduced to the sequence a1, ..., 
an and the set M\{m}, which immediately follows by induction. So 
now suppose that an+1 ∈ M. Consider the following n pairs: (a1, 
a1+an+1), ..., (an, an+an+1). All numbers from these pairs that are in 
M belong to the (n−1)-element set M\{an}, hence at least one of 
these pairs, say (ak, ak +an), has both of its members outside of M. 
If the first two jumps of the grasshopper are ak and ak +an+1, it has 
jumped over at least two members of M: m and an+1. There are at 
most n−2 more elements of M to jump over, and n−1 more jumps, 
so we are done by induction.  
 
Case 2: m ≥ an+1: Note that it is equivalent to solve the problem in 
reverse: start from s = a1 + a2 + ··· + an+1 and try to reach 0 without 
landing on any point in M. By the induction hypothesis, the 
grasshopper can start from s make n jumps of sizes a1, ..., an to the 
left, and avoid all the points of M\{m}. If it misses the point m as 
well, then we are done, since we can now make a jump of size an+1 
and reach 0. So suppose that after making the jump ak the 
grasshopper landed at m. If it changes the jump ak to the jump an, 
it will jump past m and all subsequent jumps will land outside of 
M because m is the left-most point. ■ 
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Exercises 
 

 
1. [Spain 1997] 

The exact quantity of gas needed for a car to complete a single 
loop around a track is distributed among n containers placed 
along the track. Show that there exists a point from which the 
car can start with an empty tank and complete the loop (by 
collecting gas from tanks it encounters along the way). [Note: 
assume that there is no limit to the amount of gas the car can 
carry].  

 
2. [Russia] 

Arutyun and Amayak perform a magic trick as follows. A 
spectator writes down on a board a sequence of N (decimal) 
digits. Amayak covers two adjacent digits by a black disc. Then 
Arutyun comes and says both closed digits (and their order). 
For which minimal N can this trick always work? 

  
3. [Generalization of Russia 2005] 

Consider a game in which one person thinks of a permutation 
of {1, 2, …, n} and the other’s task is to deduce this 
permutation (n is known to the guesser). In a turn, he is 
allowed to select three positions of the permutation and is 
told the relative order of the three numbers in those positions. 
For example, if the permutation is 2, 4, 3, 5, 1 and the guesser 
selects positions 1, 4 and 5, the other player will reveal that 5th 
number < 1st number < 4th number. Determine the minimum 
number of moves for the guesser to always be able to figure 
out the permutation.  

 
4. [IMO Shortlist 1990] 

Given n countries with three representatives each, m 
committees A1, A2, …, Am are called a cycle if 



Chapter 2: Algorithms - Part II  15 

i. each committee has n members, one from each country;  
ii. no two committees have the same membership;  

iii. for 1 ≤ i ≤ m, committee Ai and committee Ai+1 have no 
member in common, where Am+1 denotes A1 

iv. if 1 < |i-j| < m-1, then committees Ai and Aj have at least 
one member in common.  

 
 
Is it possible to have a cycle of 1990 committees with 11 
countries? 

 
5. [Canada 2012 – 4] 

A number of robots are placed on the squares of a finite, 
rectangular grid of squares. A square can hold any number of 
robots. Every edge of each square of the grid is classified as 
either passable or impassable. All edges on the boundary of 
the grid are impassable. A move consists of giving one of the 
commands up, down, left or right. All of the robots then 
simultaneously try to move in the specified direction. If the 
edge adjacent to a robot in that direction is passable, the robot 
moves across the edge and into the next square. Otherwise, 
the robot remains on its current square.  
 

Suppose that for any individual robot, and any square on 
the grid, there is a finite sequence of commands that will move 
that robot to that square. Prove that you can also give a finite 
sequence of commands such that all of the robots end up on 
the same square at the same time. 

 
6. [IMO Shortlist 2002, C4] 

Let T be the set of ordered triples (x, y, z), where x, y, z are 
integers with 0 ≤ x, y, z ≤ 9. Players A and B play the following 
guessing game. Player A chooses a triple in T (x, y, z), and 
Player B has to discover A’s triple in as few moves as possible. 
A move consists of the following: B gives A a triple (a, b, c) in T, 
and A replies by giving B the number |x + y – a – b| + |y + z – b 
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– c| + |z + x – c – a|. Find the minimum number of moves that B 
needs in order to determine A’s triple.  

 
7. Given a finite set of points in the plane,  

each with integer coordinates, is it always possible to color 
the points red or white so that for any straight line L parallel 
to one of the coordinate axes the difference (in absolute value) 
between the numbers of white and red points on L is not 
greater than 1?  

 
 
8. [Generalization of Russia 1993] 

There are n people sitting in a circle, of which some are 
truthful and others are liars (we don’t know who is a liar and 
who isn’t though). Each person states whether the person to 
in front of him is a liar or not. The truthful people always tell 
the truth, whereas the liars may either lie or tell the truth. The 
aim is for us to use the information provided to find one 
person who is definitely truthful. Show that if the number of 

liars is at most 2√  – 3, we can always do this. 
 

9. On each square of a chessboard is a light which has two states- 
on or off. A move consists of choosing a square and changing 
the state of the bulbs in that square and in its neighboring 
squares (squares that share a side with it). Show that starting 
from any configuration we can make finitely many moves to 
reach a point where all the bulbs are switched off 

 
10. [Indian Postal Coaching 2011] 

Let C be a circle, A1, A2, …, An be distinct points inside C and B1, 
B2, …, Bn be distinct points on C such that no two of the 
segments A1B1, …, AnBn intersect. A grasshopper can jump from 
Ar to As if the line segment ArAs does not intersect any line 
segment AtBt (t ≠ r, s). Prove that after a certain number of 
jumps, the grasshopper can jump from any Au to any Av. 
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11. [USAMO 2000, Problem 3] 

You are given R red cards, B blue cards and W white cards and 
asked to arrange them in a row from left to right. Once 
arranged, each card receives a score as follows. Each blue card 
receives a score equal to the number of white cards to its 
right. Each white card receives a score equal to twice the 
number of red cards to its right. Each red card receives a score 
equal to three times the number of blue cards to its right. For 
example, if the arrangement is Red Blue White Blue Red Blue, 
the total score will be 9 + 1 + 2 + 0 + 3 + 0 = 15. Determine, as 
a function of R, B and W, the minimum possible score that can 
obtained, and find all configurations that achieve this 
minimum.  

 
12. [IMO Shortlist 2005, C7] 

Suppose that a1, a2, …, an are integers such that n | (a1 + a2 + … 
+ an). Prove that there exist two permutations b1, b2, …, bn and 
c1, c2, …, cn of (1, 2, …, n) such that for each integer i with 1 ≤ i ≤ 
n, we have n | ai – bi – ci.  
 

13. [St. Petersburg 2001] 

In the parliament of the country of Alternativia, for any two 
deputies there exists a third who is acquainted with exactly 
one of the two. There are two parties, and each deputy 
belongs to exactly one of them. Each day the President (not a 
member of the parliament) selects a group of deputies and 
orders them to switch parties, at which time each deputy 
acquainted with at least one member of the group also 
switches parties. Show that the President can eventually 
ensure that all deputies belong to the same party.  

 


