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3. PROCESSES 
 
 

Introduction 
 
In this chapter we analyze combinatorial processes. In Chapter 1 
on algorithms, we often encountered combinatorial processes 
from a different viewpoint. Problems from both chapters are 
similar in that they typically specify an initial configuration and 
allowed set of moves. In the chapter on algorithms, we were asked 
to prove that a certain final configuration could be reached using 
these moves, and we solved these problems by constructing 
procedures to reach the desired final configuration. In this 
chapter, our job is not to construct our own procedures, but 
rather to analyze given ones. Some questions ask us to determine 
whether a process terminates, and if it does, what the final 
configuration looks like. Others may ask us to bound the number 
of steps it takes for a certain configuration to arise.  
 

Our main tools for this chapter are invariants, the extremal 
principle, induction and other clever ideas that we will develop as 
we go further, such as making transformations to a problem that 
simplify the problem but leave the end result invariant. It must 
also be stressed that experimentation, trial and error, 
observation, intuition and conjectures play a big role in solving 
problems related to processes (and combinatorics in general). We 
remind the reader that the ideas to solve combinatorial problems 
often arise from experimenting with small values.  
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Invariants 
 
Our first few examples use invariants, a technique we have 
already used in earlier chapters. The usefulness of invariants 
while analyzing combinatorial processes can hardly be overstated.   
 
Example 1 [Indian TST 2004] 
The game of pebbles is played as follows. Initially there is a pebble 
at (0, 0). In a move one can remove a pebble from (i, j) and place 
one pebble each on (i+1, j) and (i, j+1), provided (i, j) had a pebble 
to begin with and (i+1, j) and (i, j+1) did not have pebbles. Prove 
that at any point in the game there will be a pebble at some lattice 
point (a, b) with a+b ≤ 3. 
 
Answer:  
Clearly the pebbles will always be on lattice points in the first 
quadrant. How can we find an invariant? Just assign a weight of   

2-(i+j) to a pebble at (i, j). Then in each move one pebble is replaced 
by two pebbles, each having half its weight. So the total weight of 

pebbles is invariant. Initially the weight is 2
0
 = 1. Suppose at some 

stage no pebble is on a point (a, b) with a+b ≤ 3. Then the 
maximum possible total weight of all pebbles is the weight of the 
whole first quadrant minus that of the squares (a, b) with a+b ≤ 3, 
which is  
 

(∑ ∑   
   

 
   

-(i+j)
 ) – (1 + 2 × ½ + 3 × ¼ + 4 × ⅛) 

=  4 – (1 + 1+ ¾ + ½) = ¾ < 1.  
 
This is a contradiction as the weight should always be 1. ■ 
 
Remark: The double summation was computed by noticing 

∑ ∑   
   

 
   

-(i+j) = ∑     
    x ∑     

    = 2 x 2 = 4. The second 

parenthesis was the weight of all squares a, b with a+b ≤ 3. 
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Example 2 [IMO shortlist 2005, C5] 
There are n markers, each with one side white and the other side 
black, aligned in a row so that their white sides are up. In each 
step, if possible, we choose a marker with the white side up (but 
not one of the outermost markers), remove it and reverse the 
closest marker to the left and the closest marker to the right of it. 
Prove that one can achieve the state with only two markers 
remaining if and only if n−1 is not divisible by 3. 
 
Answer: 
If n–1 is not divisible by 3, it is easy to construct an inductive 
algorithm to make only two markers remain (chapter 2 FTW!). We 
leave this to the reader (just do it for n = 5, n = 6 and induct with 
step 3). Now we do the harder part: if (n–1) is divisible by 3, we 
need to show that this cannot be done.  
 

Call a marker black or B if its black side is up and white or W if 
its white side is up. One invariant we immediately find is that the 
number of black markers is always even since each move changes 
the number of black markers by 0, 2 or -2. Now we look for 
another invariant. 
 

We assign numbers to each white marker. If a white marker 

has t black markers to its left, we assign the number (-1)t to it. Let 

S be the sum of all the labels. Initially all labels are (-1)
0
 = 1, so S = 

n initially. The labels may keep changing, but we claim that S stays 
invariant mod 3. For example, suppose we have the substring 
…WWB… and remove the middle white marker. Then it becomes 
…BW…. If the 2 white markers had t black markers to their left 
initially, then the white marker now has (t+1) black markers to its 

left. Thus the two white markers both had labels (-1)
t
 initially, but 

now the white marker has label (-1)t+1. The sum of the labels has 

changed by (-1)
t+1

 – 2(-1)
t
 = 3(-1)

t+1
 ≡ 0 mod 3. The reader can 

verify that in the other cases (WWW, BWB, BWW) as well the sum 
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of labels S doesn’t change mod 3.  
 

Now the rest is easy. If two markers remain, they are either 
both white or both black (number of black markers must be even). 
In the first case, both labels are 1 and S = 2. In the second case, S = 
0 as no markers are labeled. So S = 0 or 2 at the end and S = n in 
the beginning. Since S stays invariant mod 3, n ≡ 0 or 2 mod 3 and 
we are done. ■ 
 
Example 3 [IMO Shortlist 1998 C7] 
A solitaire game is played on an m × n board with markers having 
one white side and one black side. Each of the mn cells contains a 
marker with its white side up, except for one corner square which 
has a marker with its black side up. The allowed move is to select 
a marker with black side up, remove it, and turn over all markers 
in squares sharing a side with the square of the chosen marker. 
Determine all pairs (m, n) for which it is possible to remove all 
markers from the board. 
 
Answer:  
It is natural (but not essential) to rephrase the problem using 
graph theory. We take the markers as vertices. Each vertex is 
black or white. 2 vertices are connected by an edge if and only if 
the markers lie on adjacent squares. In each move, we are deleting 
one black vertex and all its incident edges, but all its white 
neighbors become black and all its white neighbors become black. 
Suppose in a move we delete a black vertex v and s edges, where s 
is the degree of v. Suppose w of v’s neighbors were white vertices, 
and (s–w) were black vertices. Then these w vertices become 
black and (s–w) become white, so the number of white vertices 
increases by s – 2w.  
 

This information alone does not immediately give us an 
invariant, since the quantity s – 2w is quite random. However, 
suppose we consider the quantity W + E, where W is the total 
number of remaining white vertices (don’t confuse this with w) 
and E is the number of edges. Then when E reduces by s and W 



Chapter 3: Processes 

changes by s – 2w, (W+E) decreases by 2w, which is always even. 
Hence the parity of (W+E) remains the same. So if W+E is 0 at 
the end (when all markers are gone), we need W+E to be even in 
the beginning. But initially  

 
W = mn-1, E = m(n-1) + n(m-1), and 

 
W+E = 3mn – m – n – 1 ≡ mn – m – n + 1 (mod 2) = (m-1)(n-1), 

 
so at least one of m and n must be odd. In this case the task is 
indeed possible and we leave it to the reader to find an algorithm. 
(Assume m is odd and use an inductive procedure that makes each 
column empty one by one). ■ 
 

 
 

Good and Bad Objects 
 
Another useful idea while analyzing processes is to distinguish 
between “good” and “bad” objects. For example, if at the end of a 
process we want to show that all objects satisfy a certain 
property, call objects with that property good and the other 
objects bad. We will use this idea in different forms several times 
throughout this chapter. The next example combines this idea 
with monovariants by showing that the number of “good” objects 
monotonically increases.  
 
Example 4 [Based on Canada 1994] 
There are 2n+1 lamps placed in a circle. Each day, some of the 
lamps change state (from on to off or off to on), according to the 
following rules. On the kth day, if a lamp is in the same state as at 
least one of its neighbors, then it will not change state the next 
day. If a lamp is in a different state from both of its neighbors on 
the kth day, then it will change its state the next day. Show that 
regardless of the initial states of each lamp, after some point none 
of the lamps will change state.  
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Answer: 
Call a lamp “good” if it is in the same state as at least one of its 
neighbors. Once a lamp is good, it will remain good forever (if two 
adjacent lamps are in the same state on the kth day, they will not 
change state the next day, and hence both remain good).  Hence 
the number of good lamps never decreases and is a monovariant. 
 

We show that in fact the number of good lamps strictly 
increases until it reaches 2n+1. Initially there must be 2 adjacent 
lamps with the same state since the number of lamps is odd. 
Suppose at some point there are j good lamps and 2 ≤  j < 2n+1. 
Then there must exist 2 adjacent lamps such that one is bad and 
one is good. Then the bad lamp will switch states the next day and 
the good lamp will remain in the same state. Then the bad lamp 
will now be good, so the number of good lamps has increased 
(remember all good lamps remain good). So the number of good 
lamps increases until all lamps are good, and at this point there 
will be no more changes of state. ■ 

 
Figure 3.1: Bad lamps next to good lamps become good 

 

 

Bounds on the number of steps 
 
Now we look at another class of problems, which ask us to bound 
the number of steps or moves it takes for a process to terminate. 
To bound the total number of moves, it is often useful to bound 

 

Good Bad 

 

Good Good 
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the number of times a particular object is involved in a move.  
 
Example 5 [USAMO 2010-2] 
There are n students standing in a circle, one behind the other, all 
facing clockwise. The students have heights h1 < h2 < … < hn. If a 
student with height hk is standing directly behind a student with 
height hk-2 or less, the two students are permitted to switch places. 
Prove that it is not possible to make more than nC3 such switches 
before reaching a position in which no further switches are 
possible.  
 
Answer:  
We bound the number of times an individual student can switch 
places with another student. Let sk denote the number of times the 
student with height k switches with someone shorter. Obviously s1 
= s2 = 0. Now consider the number of people between student k 
and student (k–1) (along the clockwise direction) of height less 
than hk-1. This number is at most (k–2). This quantity decreases by 
1 each time student k switches with someone shorter and 
increases by one each time student k–1 switches with someone 
shorter. This quantity doesn’t change when students taller than 
student k switch with either student k or student (k–1). Hence sk - 
sk-1 denotes the decrease from beginning to end in the number of 
students between student k and student (k–1), which cannot 
exceed (k–2). Thus we get the bound sk – sk-1   ≤ (k–2). Using this 
recursive bound and the initial values s1 = s2 = 0, we get s3 ≤ 1, s4 ≤ 

3, etc. In general it is easy to show by induction sk ≤ (   
 
). Hence 

the total number of moves cannot exceed ∑ (   
 
) 

    = nC3 and we 

are done. ■ 
 
Note: The last step uses a well-known binomial identity. More 
generally  

∑ (   
 
) 

    = (  
   

), where by convention ( 
 
) = 0 for j < r.  

 
Example 6 [Based on Canada 2012, IMO Shortlist 1994 C4] 
A bookshelf contains n volumes, labeled 1 to n, in some order. The 
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librarian wishes to put them in the correct order as follows. The 
librarian selects a volume that is too far to the right, say the 
volume with label k, takes it out, and inserts it in the kth position. 
For example, if the bookshelf contains the volumes 3, 1, 4, 2 in that 
order, the librarian could take out volume 2 and place it in the 
second position. The books will then be in the order 3, 2, 1, 4. 

Show that the sequence (1, 2, … , n) is reached in fewer than 2
n
 

moves.   

 
Answer: 
We bound the number of times book k can be selected by the 
librarian. Clearly, book n can never be selected since it will never 
be too far right. Book 1 can only be selected once, because once 
selected, it will move to the first position and never move again. 
Book 2 can be selected twice: it may be selected once and put in 
the correct position, but then it may move because of book 1.  
 

More generally, let f(k) denote the number of times book k is 
selected for 1 ≤ k ≤ (n–1). We have  

f(k) ≤ 1 + f(k – 1) + f(k – 2) + …+ f(1). 

This is because once k is in the correct position, it can only be 
displaced f(k – 1) + f(k – 2) + … + f(1) times, because the only way 
in which book k can be displaced is if one of the books with 
number less than k “pushes” k.  
 

For example: If we start from (4, 1, 3, 2, 5) and we choose book 
2, it becomes (4, 2, 1, 3, 5). Book 3 was in the correct position, but 
has been “pushed out” because of book 2 being chosen.  
 

Thus using this recursive bound on f(k) and the fact that f(1) = 

1, we obtain by a simple induction f(k) ≤ 2
k-1

. Hence the total 
number of moves required is at most  

f(1) + f(2) + … + f(n – 1) ≤ 1 + 2 + 4 + … + 2n-2 = 2n-1 – 1. ■  
 
Remark: A solution with monovariants is also possible. 
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Induction 
 
In the previous section, we essentially broke down the analysis of 
a process into the analysis of the individual entities involved. To 
find the total time for the process to terminate, we used recursive 
bounds to estimate the time a particular object could contribute to 
the total time. These essential elements of somehow “breaking 
down” a process and using induction and/or recursion will be 
central to this section as well. However, rather than the object-
centric approach of the previous section, a structure-centric 
approach will be taken here: the inductive proofs will rely on 
exploiting the nice combinatorial structure of n x n boards.   
 
Example 7 [Belarus 2001] 
Let n be a positive integer. Each unit square of a (2n-1) × (2n-1) 
square board contains an arrow, either pointing up, down left or 
right. A beetle sits in one of the squares. In one move, the beetle 
moves one unit in the direction of the arrow in the square it is 
sitting on, and either reaches an adjacent square or leaves the 

board. Then the arrow of the square the beetle left turns 90
o
 

clockwise. Prove that the beetle leaves the board in at most        

2
3n-1

(n-1)! – 3 moves.  
 
Answer: 
The base case n = 1 is trivial since the beetle leaves in the first 
move. Now suppose the result is true for n = k; we prove it for n = 
k+1. It is natural to distinguish between boundary squares 
(squares on the edge of the board) and interior squares, since the 
interior squares form a (2k-1) × (2k-1) board and we can use the 
induction hypothesis on this board. We further distinguish 
between corner squares and non-corner boundary squares.  
 

Suppose the beetle is still on the board after T moves. We want 

to show that T < 23(k+1)-1k! – 3. At this stage, if any non-corner 
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boundary square has been visited 4 times, then one of the four 
times the arrow would have been pointing out of the board (since 
its direction changes each time). Similarly if a corner square has 
been visited 3 times, then at least once it would have pointed out 
of the board. Hence in each of the cases, the beetle would have left 
the board, contradiction. Hence the beetle has visited each corner 
square at most twice and each non-corner boundary square at 
most thrice. Moreover, the beetle can move at most once from a 
non-corner boundary square to an interior square. Thus: 
 

i. The beetle has made at most 2 × 4 + 3(8k – 4) = 24k – 4 moves 
from boundary squares to other squares of the board (since 
there are 4 corner squares and 8k – 4 non-corner boundary 
squares).  

ii. The beetle has made at most 4(2k – 1) = 8k – 4 moves from a 
boundary square to an interior square, since there are 8k – 4 
non-corner boundary squares.  

iii. If a beetle is in the interior (2k – 1) × (2k – 1) square, it can 

make at most M = 23k-1(k – 1)! – 3 moves before reaching a 
boundary square, by the induction hypothesis. 

iv. From (ii), the beetle can stay in the interior square for at most 
8k – 3 periods of time (once in the beginning, then once for 
each time it moves from a boundary square back to the 

interior). Each period lasts at most 2
3k-1

(k – 1)! – 3 moves by 
(iii). Hence the number of moves made from interior squares 
is at most  

(23k-1(k – 1)! – 3) × (8k – 3)  

< 8k × (23k-1(k – 1)! – 3) 

= 23(k+1)-1k! – 24k. 
 

From (i) and (iv), we see that  

T ≤ (24k – 4) + (2
3(k+1)-1

k! – 24k) = 2
3(k+1)-1

k! – 4, as desired. ■ 

 
Now we look at another example using induction. This problem 

is different from the previous one in that we are not asked to 



Chapter 3: Processes 

bound the number of moves for a process to terminate. However, 
the idea of inducting by dividing an n×n board into an (n-1)×(n-1) 
sub board and an additional row and column is very similar to the 
idea in the previous example. This inductive technique is just one 
of many ways in which the structure of boards can be exploited.  
 
Example 8 [Russia 2010] 
On an n × n chart where n ≥ 4, stand n ‘+’ signs in cells of one 
diagonal and a ‘–’ sign in all the other cells. In a move, one can 
change all the signs in one row or in one column, (–  changes to + 
and + changes to –). Prove that it is impossible to reach a stage 
where there are fewer than n pluses on the board.  
 
Answer:  
Note that operating twice on a row is equivalent to not operating 
on it at all. So we can assume that each row and column has been 
operated upon 0 or 1 times. Now we use induction on n. The base 
case n = 4 is not entirely trivial, but is left to the reader in keeping 
with my general habit of dismissing base cases. 
 

Now passing to the induction step, given an n × n board there 
are at least (n – 1) pluses in the bottom right (n – 1) × (n – 1) 
square by the induction hypothesis. If we have a plus in the first 
row or column we are done. Suppose there is no plus in the first 
column or row. Then either the first row or the first column (but 
not both) has been operated upon (otherwise the top left square 
would have a plus). Suppose WLOG the first row has been 
operated upon. Then columns 2, 3, ..., n have all been operated 
upon (otherwise row 1 would have a plus). Also no other row has 
been operated upon (otherwise the first column would have a 
plus). But in this case, the lower right (n – 1) × (n – 1) square has 
had all its columns and none of its rows operated upon, and hence 
each column has (n – 2) pluses. In total it has (n – 2)(n – 1) > n 
pluses, so in this case as well we are done. ■ 
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Problem Alteration: Don’t play by the rules 
 
Next we look at a very powerful technique of solving problems 
related to processes. In the next three examples, we will alter the 
problem statement slightly in such a way that the result we need 
to show doesn’t change, but the process becomes much easier to 
analyze. In other words, we simplify the process to be analyzed 
while leaving the aspect of the process that we want to prove 
something about invariant. This may take some time to 
understand, so read through the next few examples slowly and 
carefully, and multiple times if necessary.  
 
Example 9 [warm up for example 11] 
There are n ants on a stick of length one unit, each facing left or 
right. At time t = 0, each ant starts moving with a speed of 1 unit 
per second in the direction it is facing. If an ant reaches the end of 
the stick, it falls off and doesn’t reappear. When two ants moving 
in opposite directions collide, they both turn around and continue 
moving with the same speed (but in the opposite direction). Show 
that all ants will fall off the stick in at most 1 second. (We will use 
a very similar idea in example 11, so make sure you understand 
this trick.) 
 
Answer:  
The key observation is that the problem doesn’t change if we alter 
it as follows: when two ants moving in opposite directions meet, 
they simply pass through each other and continue moving at the 
same speed. Thus instead of rebounding, if the ants pass through 
each other, the only difference from the original problem is that 
the identities of the ants get exchanged, which is inconsequential. 
Now the statement is obvious – each ant is unaffected by the 
others, and so each ant will fall of the stick of length one unit in at 
most 1 second. ■ 
 



Chapter 3: Processes 

Example 10 [Russia 1993 generalized] 
The integers from 1 to n are written in a line in some order. The 
following operation is performed with this line: if the first number 
is k then the first k numbers are rewritten in reverse order. Prove 
that after some finite number of these operations, the first 
number in the line of numbers will be 1. 
 
Answer: 
The base case n = 1 is trivial. Suppose the result is true for (n – 1). 
First observe that if n appears in the first position at some point, 
then in the next step n will be in the last position and will remain 
there permanently. Then we can effectively ignore n and we are 
done by induction. So suppose n never appears in the first 
position. Let j be the number in the last position. If we switch n 
and j, it has absolutely no effect on the problem, as j will never 
appear in the first position (since we assumed n will never appear 
in the first position). Now n is in the last position and as in the 
first case, we are done by induction. ■ 
 
Remark: Based on the above proof, it is not difficult to show that 
for n > 1 if the first number becomes 1 after at most f(n) 
operations, we have the recursive bound f(n+1) ≤ 2f(n)+1. I 
believe this bound can be further improved for most values of n. 
 
As if “cheating” once isn’t bad enough, we’ll cheat twice in the next 
problem. Combining the insights obtained from these two 
instances of “cheating” will greatly restrict the possible positions 
of otherwise very chaotic ants. 
   
Example 11 [IMO Shortlist 2011, C5] 
Let m be a positive integer and consider a checkerboard 
consisting of m × m unit squares. At the midpoints of some of 
these unit squares there is an ant. At time 0, each ant starts 
moving with speed 1 parallel to some edge of the checkerboard. 
When two ants moving in opposite directions meet, they both turn 
90◦ clockwise and continue moving with speed 1. When more than 
two ants meet, or when two ants moving in perpendicular 
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directions meet, the ants continue moving in the same direction as 
before they met. When an ant reaches one of the edges of the 
checkerboard, it falls off and will not reappear. Considering all 
possible starting positions, determine the latest possible moment 
at which the last ant falls off the checkerboard or prove that such 
a moment does not necessarily exist. 
 
Answer:  
After experimenting with small values of m, we conjecture that the 

answer is 
  

 
 -1. Clearly this is attainable if initially there are only 

2 ants, one in the bottom left square facing upwards and one in 
the top left square facing downward. Now we prove that it is the 
maximum possible. Let U, D, L, R represent the directions up, 
down, left and right respectively.  
 
Step 1: We use a modified version of the trick in example 7. Using 
the same reasoning, we can change the rules so that each ant 
travels in only two directions- either U and R or D and L. So if an 
ant travelling R meets an ant travelling L, they now move U and D 
respectively (even though in the original problem they should 
now move D and U respectively). This doesn’t affect the problem. 
Now based on their initial direction, each ant can be classified into 
two types: UR or DL. UR ants can only move up and right the 
whole time and DL ants only move down and left the whole time. 
Note that we can ignore collisions between two ants of the same 
type. From now on, “collision” only refers to collisions between 
two ants of opposite types.  
 
Step 2:  Choose a coordinate system such that the corners of the 
checkerboard are (0, 0), (m, 0), (m, m) and (0, m). At time t, there 
will be no UR ants in the region {(x, y): x + y < t + 1} and no DL ants 
in the region {(x, y): x + y > 2m−t−1}. So if a collision occurs at      
(x, y) at time t, we have t + 1 ≤ x + y ≤ 2m−t−1.  
 
Step 3: In a similar manner, we can change the rules of the original 
problem (without affecting it) by assuming that each ant can only 



Chapter 3: Processes 

move U and L or D and R, so each ant is UL or DR. Using the same 
logic as in step 2, we get a bound |x−y| ≤ m−t−1 for each collision 
at point (x, y) and time t. Thus we have shown that all collisions at 
time t are within the region bounded by the 4 lines represented by 
the equations t + 1 ≤ x + y ≤ 2m−t−1 and |x−y|≤ m−t−1. 

 
Figure 3.1: All collisions at time t must lie within the shaded region 

 
Step 4: We finish the proof for a UR ant; by symmetry the same 
final bound will hold for DL ants. Take a UR ant and suppose its 
last collision is at (x, y) at time t. Adding the bounds x+y ≥ t+1 and 

x – y ≥ – (m – t – 1), we get x ≥ t + 1 - 
 

 
. Similarly, y ≥ t + 1 - 

 

 
. 

Since this is the last collision, the ant will now move straight to an 
edge and fall off. This takes at most m−min{x, y} units of time. The 
total amount of time the ant stays on the board is hence at most 
 

t + m – min{x, y} ≤ t + m − {t + 1 − m/2} = 
  

 
 -1 

units of time. ■ 

L1 

L
2
 

L
3
 

L
4
 

(0, 0) 

(0, m) (m, m) 

(m, 0) (t, 0) 

(0, t) 
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Remark: Let’s reverse engineer the solution a little bit, to see how 
the main ideas fit together so nicely – did you notice how the 
parameter t disappeared so conveniently in the last step? The 
basic goal in the above solution was to obtain tight bounds on the 
location of an ant after its last collision because after this the ant 
travels straight off the board. The intuition behind getting rid of t 
was that the longer an ant has been wandering around till its last 
collision, the closer it must be to an edge, and so the less time it 
will take to fall off now. But for this to work we need the ants to be 
“well behaved” - and hence the cheating! 
 

 
 

Concluding Examples 
 
Our final two examples lie at the heart of this chapter. Example 12 
is a particular case of a more general and extensively studied 
process known as a “chip firing game”, and Example 13 is a distant 
cousin of the chip firing game. Through these problems we 
introduce some important ideas such as using the extremal 
principle in different ways and obtaining contradictions, and 
combine these with ideas we have already seen like invariants and 
making assumptions that don’t affect the problem. In example 12, 
we use the following idea: if a process never terminates, there 
must be some object that is moved or operated upon infinitely 
times. If we can find an object that is only operated upon finitely 
many times, we may be able to get a contradiction.  
 
Example 12 [IMO shortlist 1994, C5] 
1994 girls are seated in a circle. Initially one girl is given n coins. 
In one move, each girl with at least 2 coins passes one coin to each 
of her two neighbors.  

(a) Show that if n < 1994, the game must terminate. 
(b) Show that if n = 1994, the game cannot terminate.  

 
 



Chapter 3: Processes 

Answer: 
(a) Label the girls G1, G2, …, G1994 and let G1995 = G1, G0 = G1994. 

Suppose the game doesn’t terminate. Then some girl must 
pass coins infinitely times. If some girl passes only finitely 
many times, there exist two adjacent girls, one of whom has 
passed finitely many times and one of whom has passed 
infinitely many times. The girl who has passed finitely many 
times will then indefinitely accumulate coins after her final 
pass, which is impossible. Hence every girl must pass coins 
infinitely many times.  
 
Now the key idea is the following: For any two neighboring 
girls Gi and Gi+1, let ci be the first coin ever passed between 
them. After this, we may assume that ci always stays stuck 
between Gi and Gi+1, because whenever one of them has ci and 
makes a move, we can assume the coin passed to the other girl 
was ci. Therefore, each coin is eventually stuck between two 
girls. Since there are fewer than 1994 coins, this means there 
exist two adjacent girls who have never passed a coin to each 
other. This contradicts the result of the first paragraph.  
 

(b) This is simple using invariants. Let a coin with girl i have 
weight i, and let G1 have all coins initially. In each pass from Gi 
to her neighbors, the total weight either doesn’t change or 
changes by ±1994 (if G1 passes to G1994 or vice versa). So the 
total weight is invariant mod 1994. The initial weight is 1994, 
so the weight will always be divisible by 1994. If the game 
terminates, then each girl has one coin, so the final weight is 
1+2+3+…+ 1994 = (1994 x 1995)/2 which is not divisible by 
1994. Contradiction. ■ 

 
Before reading the solution to the next problem, we 

recommend that the reader experiment with small values of n and 
try to guess what the final configuration looks like. Several 
combinatorics problems require experimentation, observation 
and conjecturing before actually proving anything.  
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Example 13 [IMO shortlist 2001, C7] 
A pile of n pebbles is placed in a vertical column. This 
configuration is modified according to the following rules. A 
pebble can be moved if it is at the top of a column which contains 
at least two more pebbles than the column immediately to its 
right. (If there are no pebbles to the right, think of this as a column 
with 0 pebbles.) At each stage, choose a pebble from among those 
that can be moved (if there are any) and place it at the top of the 
column to its right. If no pebbles can be moved, the configuration 
is called a final configuration. For each n, show that, no matter 
what choices are made at each stage, the final configuration 
obtained is unique. Describe that configuration in terms of n. 
 
Answer: 
It is clear that if si denotes the number of stones in column i, then 
in the final configuration si+1 = si or si -1. After experimenting with 
small values of n, we are led to the following claim: 
 
Claim: In the final configuration, there is at most one index i such 
that si+1 = si (hence the remaining columns satisfy sj+1 = sj – 1).  
 
Proof: Call an index j bad if sj+1 = sj. Assume to the contrary that 
there exist (at least) 2 bad indices in the final configuration. Take 
k and m (k > m) to be consecutive bad indices. Then sk+1 = sk, sm+1 = 
sm and si+1 = si – 1 for m < i < k. Consider the earliest configuration, 
say C, with the 2 bad indices. Now look at the last move before C. 
Since C is the earliest such configuration, the last move was either 
from the kth or mth column. But then in either case the 
configuration before C also had 2 bad indices, contradicting our 
assumption. This proves the claim.  
 

Now it is easy to see that the claim uniquely determines the 
final configuration. For example, for n = 17 the final heights would 
be (5, 4, 3, 2, 2, 1). ■ 
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Exercises 
 
1. [Austrian-Polish Mathematical Competition 1997] 

The numbers 49/k for k = 1, 2, …, 97 are written on a 
blackboard. A move consists of choosing two number a and b, 
erasing them and writing the number 2ab – a – b + 1 in their 
place. After 96 moves, only one number remains. Find all 
possible values of this number. 

 
2. We have n(n+1)/2 stones in k piles. In each move we take one 

stone from each pile and form a new pile with these stones (if 
a pile has only one stone, after that stone is removed the pile 
vanishes). Show that regardless of the initial configuration, we 
always end up with n piles, having 1, 2, …, n stones 
respectively.  

 
3. [ELMO Shortlist 2013, C9, generalized] 

There are n people at a party. Each person holds some number 
of coins. Every minute, each person who has at least (n – 1) 
coins simultaneously gives one coin to every other person at 
the party. (So, it is possible that A gives B a coin and B gives A 
a coin at the same time.) Suppose that this process continues 
indefinitely. That is, for any positive integer m, there exists a 
person who will give away coins during the mth minute. What 
is the smallest number of coins that could be at the party? 

 
4. [China TST 2003] 

There is a frog in every vertex of a regular 2n-gon (n ≥ 2). At a 
certain time, all frogs jump simultaneously jump to one of 
their neighboring vertices. (There can be more than one frog 
in one vertex). Suppose after this jump, no line connecting any 
two distinct vertices having frogs on it after the jump passes 
through the circumcentre of the 2n-gon. Find all possible 
values of n for which this can occur. 
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5. [Chip firing lemma] 

Let G be a connected graph with m edges. Consider 2m+1 
frogs, each placed on some vertex of G. At each second, if a 
vertex v contains at least dv frogs, then dv of the frogs on v 
jump, one on each of the dv adjacent vertices. Show that every 
vertex will be visited by a frog at some point. 

 
6. [IMO 1986, Problem 3] 

An integer is assigned to each vertex of a regular pentagon, 
and the sum of all five integers is positive. If three consecutive 
vertices are assigned the numbers x, y, z respectively, and y < 
0, then the following operation is allowed: x, y, z are replaced 
by x+y, -y, z+y respectively. Such an operation is performed 
repeatedly as long as at least one of the five numbers is 
negative. Determine whether this procedure necessarily 
comes to an end after a finite number of steps.  

 
7. [Russia 1997] 

There are some stones placed on an infinite (in both 
directions) row of squares labeled by integers. (There may be 
more than one stone on a given square). There are two types 
of moves: 
(i) Remove one stone from each of the squares n and n – 1 

and place one stone on n + 1 
(ii) Remove two stones from square n and place one stone on 

each of the squares n + 1 and n – 2.   
Show that at some point no more moves can be made, and this 
final configuration is independent of the choice of moves.  

 
8. [APMO 2007, Problem 5] 

A regular 5×5 array of lights is defective, so that toggling the 
switch for one light causes each adjacent light in the same row 
and in the same column as well as the light itself to change 
state, from on to off, or from off to on. Initially all the lights are 
switched off. After a certain number of toggles, exactly one 
light is switched on. Find all the possible positions of this light. 
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9. [IMO Shortlist 2007, C4] 

Let A0 = {a1, a2, …, an} be a finite sequence of real numbers. For 
each k ≥ 0, from the sequence Ak = {x1, x2, …, xn}  we construct a 
new sequence Ak+1 in the following way: 
 
(i) We choose a partition {1, 2, …, n} =  ⋃  , where I and J are 

two disjoint sets, such that the expression |∑       - 
∑      | is minimized. (We allow I or J to be empty; in this 

case the corresponding sum is 0.) If there are several such 
partitions, one is chosen arbitrarily.  

 
(ii) We set Ak+1 = {y1, y2, …, yn}, where yi = xi + 1 if i   I, and yi = 

xi – 1 if i   J.  
 

Prove that for some k, the sequence Ak contains an element x 
such that |x| ≥ n/2. 

 
10. [Romanian TST 2002] 

After elections, every Member of Parliament (MP) has his own 
absolute rating. When the parliament is set up, he enters a 
group and gets a relative rating. The relative rating is the ratio 
of its own absolute rating to the sum of all absolute ratings of 
the MPs in the group. An MP can move from one group to 
another only if in his new group his relative rating is greater. 
In a given day, only one MP can change the group. Show that 
only a finite number of group moves is possible (that is, the 
process eventually terminates).  

 
11. [ELMO Shortlist 2013, C10] 

Let N > 1 be a fixed positive integer. There are 2N people, 
numbered 1, 2, …, 2N, participating in a tennis tournament. 
For any two positive integers i, j with 1 ≤ i < j ≤ 2N, player i has 
a higher skill level than player j. Prior to the first round, the 
players are paired arbitrarily and each pair is assigned a 
unique court among N courts, numbered 1, 2, …, N.  
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During a round, each player plays against the other person 
assigned to his court (so that exactly one match takes place 
per court), and the player with higher skill wins the match (in 
other words, there are no upsets). Afterwards, for i = 2, 3, …, N, 
the winner of court i moves to court (i – 1) and the loser of 
court i stays on court i; however, the winner of court 1 stays 
on court 1 and the loser of court 1 moves to court N. 

 
Find all positive integers M such that, regardless of the 

initial pairing, the players 2, 3, …, N+1 all change courts 
immediately after the Mth round. 

 
12. [IMO 1993, Problem 3] 

On an infinite chessboard, a solitaire game is played as 

follows: at the start, we have n2 pieces occupying a square of 
side n. The only allowed move is to jump over an occupied 
square to an unoccupied one, and the piece which has been 
jumped over is removed. For which n can the game end with 
only one piece remaining on the board? 

 
13. [South Korea TST 2009] 

2008 white stones and 1 black stone are in a row. A move 
consists of selecting one black stone and change the color of 
its neighboring stone(s). The goal is to make all stones black 
after a finite number of moves. Find all possible initial 
positions of the black stone for which this is possible.  

 
14. [IMO Shortlist 1996, C7] 

A finite number of coins are placed on an infinite (in both 
directions) row of squares. A sequence of moves is performed 
as follows: at each stage a square containing more than one 
coin is chosen. Two coins are taken from this square; one of 
them is placed on the square immediately to the left while the 
other is placed on the square immediately to the right of the 
chosen square. The sequence terminates if at some point there 
is at most one coin on each square. Given some initial 
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configuration, show that any legal sequence of moves will 
terminate after the same number of steps and with the same 
final configuration. 

 
15. [IMO Shortlist 2010, C6] 

Given a positive integer k and other two integers b > w > 1. 
There are two strings of pearls, a string of b black pearls and a 
string of w white pearls. The length of a string is the number 
of pearls on it. One cuts these strings in some steps by the 
following rules. In each step: 
 
i. The strings are ordered by their lengths in a non-

increasing order. If there are some strings of equal lengths, 
then the white ones precede the black ones. Then k first 
ones (if they consist of more than one pearl) are chosen; if 
there are less than k strings longer than 1, then one 
chooses all of them. 

 
ii. Next, one cuts each chosen string into two parts differing 

in length by at most one. The process stops immediately 
after the step when a first isolated white pearl appears. 

 
Prove that at this stage, there will still exist a string of at least 
two black pearls. 

 
 

 

 


