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4. EXISTENCE 
 

The devil’s finest trick is to persuade you that he does not exist. 
-Charles Baudelaire 

 
Introduction 
 
In this chapter, we focus on problems asking us to determine 
whether objects satisfying certain conditions exist. We 
encountered these types of problems in Chapter One, and solved 
them by creating algorithms that explicitly constructed the 
required objects. First of all, note that this approach does not give 
us any way to solve problems that ask us to prove that something 
does not exist. In addition, even when we want to prove existence, 
it may not always be possible to explicitly construct the required 
object. In these situations, we turn to less direct proof techniques, 
which are existential rather than constructive.  
 

Some of the ideas in the first two chapters, such as induction, 
invariants and the extremal principle, can be adapted to provide 
non-constructive proofs. We will also introduce several new 
techniques in this chapter, including discrete continuity, divide 
and conquer strategies, the “hostile neighbors” trick, injective 
mappings and two very powerful variants of the extremal 
principle. A key theme that will pervade the examples in this 
chapter is the notion of proofs by contradiction, which the 
mathematician G. H. Hardy described as “one of a mathematician’s 
finest weapons”.  
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Induction 
 

Our first example lies somewhere in between the inductive 
constructions of Chapter Two and the purely existential 
arguments of the rest of this chapter.  
 
Example 1 [IMO Shortlist 1985] 
A set of 1985 points is distributed around the circumference of a 
circle and each of the points is marked with 1 or -1. A point is 
called “good” if the partial sums that can be formed by starting at 
that point and proceeding around the circle for any distance in 
either direction are all strictly positive. Show that if the number of 
points marked with -1 is less than 662, there must be at least one 
good point. 
 
Answer: 
Note that 1985 = 3 x 661 + 2. This suggests that we try to show 
that for any n, if we have 3n+2 points and at most n (-1)s, then 
there will be a good point. The result is true for n = 1. Assume it is 
true for k. Now we are given 3(k+1) + 2 points, of which at most 
(k+1) are (-1)s. Take a chain of consecutive (-1)s, having at least 
one (-1) and surrounded by two 1s. For example, (1, -1, -1, -1, -1, 
1) or 1, -1, 1. Such a chain exists unless there are no (-1)s at any 
point, in which case we are trivially done. Now delete one (-1) 
from the chain as well as the bordering 1s. For example, 1, -1, -1, -
1, 1 becomes -1, -1. Now we have 3k+2 points and at most k (-1)s, 
so by induction there is a good point P. Note that P is obviously 
not part of the chain of (-1)s. Hence P is good in our original 
configuration as well, since after we add back the deleted points, 
each partial sum starting from P either doesn’t change or 
increases by 1. ■ 
 

This was an example of “top-down” induction: we started from 
a configuration of 3(k + 1) + 2 points, then reduced it to a 
configuration of 3k+2 points by deleting 3 points. We saw top 
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down induction in the chapter on processes as well, where we 
broke down n × n boards into (n-1) × (n-1) boards with an extra 
row and column in order to use induction. On the other hand, if in 
the above example we had started with 3k+2 points and then 
added 3 points, it would be “bottom up” induction. When applying 
induction, often one of the two approaches will work much better 
than the other. In the above example a top down approach works 
better since we can choose which points to delete, whereas in a 
bottom up approach we wouldn’t be able to choose where to add 
the points (as this would lead to a loss of generality).  
 

The next example uses a potent combination of induction, the 
pigeonhole principle and contradiction: we will essentially use the 
pigeonhole principle to inductively construct a contradiction.   

 
Example 2 [IMO shortlist 1990] 
Assume that the set of all positive integers is decomposed into r 
(disjoint) subsets A1 ∪ A2 ∪ … ∪ Ar = N. Prove that one of them, say 
Ai has the following property: There exists a positive m such that 
for any k one can find numbers a1, a2, …, ak in Ai with 0 < aj+1 – aj ≤ 
m (1 ≤ j ≤ k-1). 
 
Answer: 
Call a set with the given property good. Assume to the contrary 
that none of the sets is good. We will use this assumption to prove 
by induction that for each s ≤ r, As ∪ As+1 ∪ … Ar contains arbitrarily 
long sequences of consecutive integers. For s = r this will imply 
that Ar is good, contradicting our assumption.  
 

A1 is not good, so for every k there exist k consecutive numbers 
not in A1. This means that A2 ∪ A3 ∪ … ∪ Ar contains arbitrarily 
long sequences of consecutive integers. Now suppose we have 
shown that As ∪ As+1 ∪ … Ar contains arbitrarily long sequences of 
consecutive integers. Since As is not good, for each m there exists a 
number km such that As doesn’t contain a sequence of km integers 
with consecutive terms differing by at most m. Now take mkm 
consecutive integers in As ∪ As+1 ∪ … An. If As contains fewer than 
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km of these numbers, then by the pigeonhole principle there are m 
consecutive numbers in As+1 ∪ As+2 ∪ … An, proving the inductive 
step. Otherwise, if As contains at least km of the numbers, by the 
definition of km some two of them differ by at least m. The m 
numbers in between then belong to As+1 ∪ As+2 ∪ … An. Since m is 
arbitrary, this proves the inductive step. By the first paragraph, 
the proof is complete. ■ 
 

 
 

The Extremal Principle and Infinite descent 
 
The extremal principle basically says that any finite set of real 
numbers has a smallest and a largest element. “Extremal 
arguments” in combinatorics come in various forms, but the 
general idea is to look at objects that are extreme in some sense: 
smallest or largest numbers in a finite set, leftmost or rightmost 
points in combinatorial geometry problems, objects that are best 
or worst in a sense, etc. This provides a good starting point to 
solving complicated problems, since extremal objects are likely to 
satisfy certain restrictions and conditions that make them easy to 
analyze.  
 
Example 3 [France 1997] 
Each vertex of a regular 1997-gon is labeled with an integer such 
that the sum of the integers is 1. Starting at some vertex, we write 
down the labels of the vertices reading counterclockwise around 
the polygon. Is it always possible to choose the starting vertex so 
that the sum of the first k integers written down is positive for k = 
1, 2, 3,…, 1997? 
 
Some Intuition: Let the vertices be V1, V2, …, V1997 in 
anticlockwise order. Suppose we place V1 at sea level, and for each 
Vi, define the altitude of Vi be equal to the altitude of Vi-1 plus the 
number at Vi. Then, if we start at Vj and walk around the polygon, 
the sum of all the integers we have encountered is the net gain or 
loss in our altitude. Obviously, if we start at the lowest point, we 
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can never have a net loss in altitude! In other words, the sum of 
numbers encountered can never be negative. (Note that this 
argument does not break down even when we cross from V1997 to 
V1, because since the sum of all numbers is 1, the sum of 
encountered numbers is actually even more than the net altitude 
gain.) Below we convert this intuitive proof to a more formal 
proof.  
 
Answer:  
Yes. Starting from V1, let the sum of the labels at the first k vertices 
in anticlockwise order be bk. Let m be the minimum of all the bk. 
Then take k such that bk = m (if there are many such k, take the 
largest such k). We claim that the vertex Vk+1 satisfies the required 
conditions. Indeed, if the sum of the labels from Vk+1 to Vj for some 
j > k+1 is negative, then the sum of the labels from V1 to Vj is 
strictly less than m, since the sum from V1 to Vj = sum from V1 to Vk 

+ (sum from Vk to Vj) = m + (a negative number). This contradicts 
the minimality of m. The only other case is if j < k+1, in which case 
we get a similar contradiction after using the fact that the sum of 
the 1997 labels is positive (since it is given to be 1). ■ 
 
Remark: Another intuitive interpretation of this solution is as 
follows: If we have had extremely bad luck until Vk, then by the 
“law of averages”, we must have pretty good luck from there 
onwards.  
 
The existence of extremal objects enables us to reach 
contradictions using a technique known as infinite descent, 
which you may have seen in the famous proof of the irrationality 

of √ . This technique works as follows: suppose we want to show 
that no number in a finite set S satisfies a certain property P. We 
assume to the contrary that some number in S does satisfy P, and 
use this assumption to show that there exists an even smaller 
number in S satisfying P.  
 

This immediately yields a contradiction as follows: the 
argument shows that for any x1 in S satisfying P, we can find x2 in S 
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satisfying P with x1 > x2. But repeating the same argument, we get 
a number x3 in S satisfying P with x2 > x3. We can continue this 
indefinitely, to get numbers x1 > x2 > x3 > x4 > … all in S and 
satisfying P. But S is finite, so we cannot have infinitely many 
numbers in S; contradiction.  
 

In the next example, infinite descent will provide a key lemma 
needed to solve the problem.  
 
Example 4 [Indian TST 2003] 
Let n be a positive integer and {A, B, C} a partition of (1, 2, 3, …, 
3n) such that |A| = |B| = |C| = n. Prove that there exist x є A, y є B, z 
є C such that one of x, y, z is the sum of the other two. 
 
Answer: 
Assume to the contrary that there exists a partition that does not 
have this property. WLOG suppose that 1 є A. Let k be the smallest 
number not in A, and suppose WLOG that k   B. Hence 1, …, k – 1 
are all in A and k is in B. Hence: 
(i) No elements from C and A can differ by k 
(ii) No elements from B and C can differ by less than k, since 1, 2, 

…, k-1 are in A. In particular no elements from B and C can 
differ by 1.  

 
Let m be any element in C. By (ii), m-1 is not in B. What 

happens if m-1 is in C? First, m-k is not in A by (i). Further, m-k is 
not in B, since (m-1) – (m-k) = k-1, which is in A. So m-k must be in 
C. Also, m-k-1 is not in A, since (m-1) – (m-k-1) = k. By (ii), m-k-1 is 
not in B since m-k is in C. Hence m-k-1 is also in C.  
 

Thus starting with any pair of consecutive numbers in C, 
namely (m, m-1) we get a smaller pair, namely (m-k, m-k-1). This 
leads to an infinite descent, which is a contradiction. Hence if m is 
in C, m-1 has to be in A. Hence we have an injective 
correspondence between elements in C and elements in A. This 
correspondence must also be bijective (otherwise |A| > |C|, but we 
are given that |A| = |C| = n). Thus if t є A, t+1 є C. So 1   A implies 2 
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  C. This is a contradiction since we assumed that the smallest 
number not in A belongs to B. ■ 
 

Let us analyze the above proof. Essentially, we were given an 
abstract problem about sets and we simplified things by making a 
few assumptions. A natural starting point was to place 1 in one of 
the sets. Then using the extremal principle by assuming k was the 
least element not in A gave us some more structure. The infinite 
descent we used was almost accidental – even if we were not 
deliberately looking for an extremal argument, we were fortunate 
to find that given a pair of consecutive numbers in C, we could find 
a smaller such pair. These “accidental” infinite descents pop up 
very frequently in combinatorics, graph theory, number theory 
and algebra problems. So keep your eyes open while solving 
Olympiad problems – keep making observations, and you might 
just walk right into the solution! 
  
 
Example 5 [ELMO Shortlist 2012] 
Find all ordered pairs of positive integers (m, n) for which there 
exists a set C = {c1, c2, … ck) (k ≥ 1) of colors and an assignment of 
colors to each of the mn unit squares of an m × n grid such that for 
every color ci and unit square S of color ci, exactly two direct (non-
diagonal) neighbors of S have color ci. 
 
Answer: 
If m and n are both even, then we can partition the board into 2 × 
2 squares. Then color each 2 × 2 square with a different color. This 
clearly satisfies the problem’s conditions. 
 

Now suppose at least one of m and n is odd. WLOG suppose the 
width of the board is odd. Consider a horizontal chain of squares 
of the same color in the top row of the board of odd length. 
Define a good chain as a chain of squares of the same color C of 
odd length. For example, if the width is 7 and the top row consists 
of colors c1, c1, c4, c4, c4, c5, c5 then the 3 c4’s form a good chain. A 
good chain in the top row must exist since the width of the board 
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is odd. Note that there can be no good chain of length 1 in the top 
row, since then that square will have at most one neighbor with 
the same color (the square below it).  
 

Now look at the set of squares below the good chain in the top 
row. Let the good chain in the top row be x, ci, ci, … ci, y where 
there are an odd number of ci’s flanked by two colors that are 
different from ci (or by edges of the board). There are no squares 
above this chain. Thus there are no squares of color ci directly 
above, left or right of the chain. The leftmost and rightmost ci 
have only one neighboring square that is of color ci; hence the 
squares below these two squares must have color ci. The squares 
below the other squares in our chain of ci’s cannot have color ci 
(since these squares of our chain already have exactly 2 neighbors 
with color ci). Thus the set of squares below our row of ci’s must 
be of the form ci, X, Y, Z, …, W, ci where W, X, Y, Z stand for any 
colors other than ci. An example is shown below. 

 

X ci ci ci ci ci ci ci Y 
 ci c5 c4 c4 c4 c3 ci  
         

There are an odd number of squares between the two ci’s in the 
second row. Hence among these squares we can find a chain of 
odd length of squares having the same color ck (different from ci). 
Furthermore this chain is of smaller length than our original 
chain. Since all the squares above this chain are of color ci, which 
is different from ck, the new chain is bordered on 3 sides by 
squares not having color ck, which is just like the first good chain. 
Hence we can repeat the above argument to obtain an even 
smaller good chain, obtaining a descent. We obtain smaller and 
smaller good chains until finally we get a good chain of length 1. 
This is a contradiction, because we would then have a single 
square bordered on three sides by squares of other colors, and it 
would hence have at most one neighbor of the same color. ■ 
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Optimal Assumption 
Assume first, ask questions later 

 
Now we turn to an idea related to the extremal principle that I call 
the “optimal assumption” method. Suppose we want to find a set 
of size at least X satisfying some condition. Instead of constructing 
such a set using an algorithm, we merely prove its existence. We 
take the largest set S satisfying the required condition, and then 
use the assumption that S is as large as possible to prove that |S| 
must be at least X.  
 

Here is a simple example to demonstrate this idea. 
 
Example 6 
In a graph G, suppose all vertices have degree at least δ. Show that 
there exists a path of length at least δ + 1. 
 
Answer:  
Take the longest possible path (optimal assumption) and let v be 
its last vertex. By the assumption that this is the longest possible 
path, we cannot extend the path any further. This means that all of 
v’s neighbors must already lie in the path. But v has at least δ 
neighbors. Thus the path must contain at least δ + 1 vertices (v 
and all of its neighbors). ■ 
 

The next example shows the true power of this approach.  
 
Example 7 [Italy TST 1999] 
Let X be an n-element set and let A1, A2, …, Am be subsets of X such 
that: 
(i) |Ai| = 3 for i = 1, 2, …, m 
(ii) |Ai   Aj|   1 for any two distinct indices i, j. 

Show that there exists a subset of X with at least ⎿√  ⏌elements 
which does not contain any of the Ai’s. (Note: Here ⎿⏌ denotes 
the floor function).  
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Answer:  
Call the elements of X b1, b2, …, bn. Let S be the largest subset of X 
not containing any of the Ai’s. Let |S| = k. We want to show that k   

⎿√  ⏌. Now comes the crucial observation.  For any element x in 
X but not in S, there exists a pair of elements {y, z} in S such that 
{x, y, z} = Ai for some i. Otherwise we could add x to S, and the new 
set would still not contain any set Ai, contradicting our 
assumption that S is the largest set satisfying this property.  
 

Thus we can construct a mapping from elements in X \ S to 
pairs of elements in S such that the element in X \ S together with 
the pair of elements it is mapped to forms one of the sets Ai. 
Moreover, it cannot happen that two distinct elements in X \ S are 
mapped to the same pair of elements. If this happened, say x1 and 
x2 were both mapped to {y, z}, then {x1, y, z} = Ai and {x2, y, z} = Aj 

for some i and j, and then |Ai   Aj|= 2. This violates condition 2 of 
the problem. Thus the mapping we have constructed is injective. 
This implies that the number of elements in X \ S is cannot exceed 

the number of pairs of elements in S. Hence we get (n – k)   ( 
 
). 

This simplifies to k2 + k   2n, and from this the result easily 
follows (remember that k is an integer). ■ 
 
Example 8  
Show that it is possible to partition the vertex set V of a graph G 
on n vertices into two sets V1 and V2 such that any vertex in V1 has 
at least as many neighbors in V2 as in V1, and any vertex in V2 has 
at least as many neighbors in V1 as in V2. 
 
Answer:  
What properties would such a partition have? Intuitively, such a 
partition would have lots of ‘crossing edges’, that is, edges joining 
a vertex in V1 to a vertex in V2. This suggests the following idea: 
 

Take the partition maximizing the number of crossing edges. We 
claim that such a partition satisfies the problem conditions. 
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Suppose it doesn’t. Suppose there is a vertex v in V1 that has more 
neighbors in V1 than in V2. Consider a new partition V1’ = V1 \ {v}, 
V2’ = V2 ∪ {v} (in other words, we have just moved v from V1 to V2). 
This has more crossing edges than the original partition by the 
assumption on v. This contradicts our earlier assumption that we 
took the partition maximizing the number of crossing edges. 
Hence the initial partition indeed works. ■ 
 
Remark 1: A partition of the vertices into two sets is known as a 
cut. The partition maximizing the number of crossing edges is 
known as a max cut.  
 
Remark 2: The algorithmic problem of efficiently finding 
maximum or minimum cuts in general graphs is very difficult. 
Algorithms for finding approximate solutions to these and related 
problems have been extensively studied, and a rich combinatorial 
theory surrounding cuts, flows (the “dual” of a cut) and multicuts 
and multiway cuts (generalizations of cuts) has been developed. 
Several problems in this field remain open.  
 

 
 

Invariants  
(Again. Some things just don’t change.) 

 
Example 9 [Italy TST 1995] 
An 8 × 8 board is tiled with 21 trominoes (3 × 1 tiles), so that 
exactly one square is not covered by a tromino. No two trominoes 
can overlap and no tromino can stick out of the board. Determine 
all possible positions of the square not covered by a tromino. 
 
Answer: 
The idea is to color the board in 3 colors, such that each tromino 
covers one square of each color. The figure shown below 
demonstrates such a coloring, where 1, 2, 3 denote 3 colors.  
 



Olympiad Combinatorics  12 

1 2 3 1 2 3 1 2 

2 3 1 2 3 1 2 3 

 3 1 2 3 1 2 3 1 

1 2 3 1 2 3 1 2 

2 3 1 2 3 1 2 3 

3 1 2 3 1 2 3 1 

1 2 3 1 2 3 1 2 

2 3 1 2 3 1 2 3 
 

Figure 4.1: Coloring of the board 
 

Since any tromino covers one square of each color, in total 
exactly 21 squares of each color will be covered. However, in the 
figure there are 22 2s, 21 1s and 21 3s. So the uncovered square 
would contain a 2. Now for my favorite part: symmetry. Suppose 
we take the initial coloring and create a new coloring by reflecting 
the board across its vertical axis of symmetry. For example, the 
top row of the board would now be colored 2, 1, 3, 2, 1, 3, 2, 1- the 
same coloring “backwards”.  
 

In the new coloring also, the uncovered square should be 
colored with the number 2. So the uncovered square should be 
colored by a 2 in both colorings. The only such squares are the 
ones underlined in the figure, since when one of these 2s is 
reflected in the vertical axis the image is on another 2.  
 

Thus we have 4 possible positions of the uncovered square. To 
construct a tiling that works for these positions, first tile only the 
inner 4 × 4 square with one corner missing, and then tile the outer 
border. ■ 
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The Hostile Neighbors Principle 
(Yes, I made that name up) 

 
Suppose we have n objects, A1, A2, …, An. Suppose some of these 
objects are of type one, and the rest are of type two. Further 
suppose that there is at least one object of each type. Then there 
exists an index i such that Ai and Ai+1 are of opposite type. This 
statement is obvious, but as the next two examples demonstrate, 
it is surprisingly powerful.  
 
Example 10 [Redei’s theorem] 
A tournament on n vertices is a directed graph such that for any 
two vertices u and v, there is either a directed edge from u to v or 
from v to u. Show that in any tournament on n vertices, there 
exists a (directed) Hamiltonian path.  
(Note: a Hamiltonian path is a path passing through all the 
vertices. In other words we need to show that we can label the 
vertices v1, v2, …, vn such that for each i, 1 ≤ i ≤ n-1, there is a 
directed edge from vi to vi+1.)  

 
Answer: 

 
Figure 4.2: Illustration of how to extend the path to include V 

 
We use induction on n, with the base cases n = 1, 2 and 3 being 
trivial. Suppose the result is true for n-1 vertices. Delete a vertex 
and form a Hamiltonian path with the remaining n-1 vertices. Let 
the path be v1  v2  v3  …  vn-1. Let the remaining vertex be v. 

V1 V2 V3 Vk V
k+1

 V
n
 

V 

. . .  . . .  
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If vn-1  v, we are done, since we get the path v1  v2  v3  …  
vn-1  v. Similarly if v  v1 we are done. So suppose v  vn-1 and v1 
 v. Hence there must be an index k such that vk  v and v  vk+1. 
Then the path v1  v2  … vk  v  vk+1…  vn-1 is a Hamiltonian 
path and we are done. ■ 
 

The next example demonstrates the true power of this idea. 
 
Example 11 [IMO shortlist 1988] 

The numbers 1, 2, … , n2 are written in the squares of an n × n 
board, with each number appearing exactly once. Prove that there 
exist two adjacent squares whose numbers differ by at least n.   
 
Answer: 
Assume to the contrary that there exists a labeling such that the 
numbers in any pair of adjacent squares differ by at most n-1. 
 

Let Sk = {1, …, k} for each k ≥ 1. Let Nk = {k+1, k+2, … , k+n-1}. 
These are the numbers that can possibly neighbor a number in Sk. 

Let Tk = {k+n, k+n+1, …, n
2
}. No number from Sk can be next to a 

number from Tk.  
 

For each k, since |Nk| = n-1, there exists a row that contains no 
element of Nk. Similarly there exists a column containing no 
element of Nk. The union of this row and this column must contain 
either only elements from Sk or only elements from Tk, 
otherwise some element of Sk would be next to an element of Tk. 
Call the union of this row and column a cross.  

 
For k = 1, the cross cannot contain only elements from Sk (since 

there are 2n-1 squares in the cross and only one element in S1). 

Thus this cross contains only elements from Tk. But for k = n
2
–n, 

the cross will contain only elements from Sk, as       has only one 

element. Hence from some j with 1 ≤ j < n
2
 – n, the cross formed 

due to Nj will have elements only from Tk but the cross formed due 
to Nj+1 will have elements only from Sj+1. But these crosses 
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intersect at two squares. The numbers in these two squares 
belong to both Sj+1 and Tj. This is a contradiction since Sj+1 ⋂ j = Ø. 
■ 

 

 
Figure 4.3: The black squares illustrate a contradiction as they 

cannot simultaneously belong to Tj and Sj+1. 
 

 
 

Divide and Conquer 
 
In the next example, we use the following idea: we are asked the 
minimum number of tiles needed to cover some set of squares. 
What we do is that we take a certain subset of these squares, such 
that no tile can cover more than one of these squares. Then clearly 
we need at least as many tiles as the number of squares in our 
subset, which gives us a good bound. This type of idea is 
frequently used in tiling problems as well as in other 
combinatorics problems asking for bounds of some sort. 
 
Example 12 [IMO shortlist 2002, C2] 
For n an odd positive integer, the unit squares of an n × n 
chessboard are colored alternately black and white, with the four 
corners colored black. An L-tromino is an L-shape formed by three 
connected unit squares. For which values of n is it possible to 
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cover all the black squares with non-overlapping L-trominoes? 
When it is possible, what is the minimum number of L-trominoes 
needed?  

 
Figure 4.4: An L-tromino 

Answer:   
Let n = 2k+1. Consider the black squares at an odd height (that is, 
in rows 1, 3, 5, …, n). The key observation is that each L-tromino 

can cover at most one of these squares. There are (k+1)2 such 

squares, so at least (k+1)2 L-trominoes are needed. These L-

trominoes cover a total of 3(k+1)2 squares. For n = 1, 3 or 5 this 

exceeds n
2
 so we require n ≥ 7 and at least  (k+1)

2 = 
      

 
 L-

trominoes.  
 

To construct tilings, induct with step 2. The base case 7 is left to 
the reader (do it systematically: start with the corners and then 
keep covering black squares of odd height). Given a 2k+1 × 2k+1 
board, divide it into the top left (2k-1) × (2k-1) board along with a 
border of thickness 2. The (2k-1) × (2k-1) board can be tiled with 

k2 tiles by induction. Now tile the border with 2k+1 squares (this 

is left to the reader again). This shows that (k+1)
2
 L-trominoes are 

sufficient, so the answer is n ≥ 7 and (k+1)2 L-trominoes are 
necessary and sufficient.  

 

 
 

Discrete Continuity 
 
The following example uses an idea known as discrete continuity 
that is very similar to the hostile neighbors principle. Discrete 
continuity is a very intuitive concept: basically, suppose in a 
sequence of integers, each pair of consecutive terms differ by at 
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most 1. Then if a and b are members of the sequence, all integers 
between a and b will necessarily be members of the sequence. For 
instance, if 2 and 5 are in the sequence, then 3 and 4 must be as 
well. In particular, if we have such a sequence containing both a 
positive and a negative term, the sequence must contain 0 at some 
point. Such sequences where consecutive terms differ by at most 
one arise very often in combinatorics, and several problems can 
be solved by exploiting this “discrete continuity”.  
 
Example 13 [USAMO 2005, Problem 5] 
Let n be an integer greater than 1. Suppose 2n points are given in 
the plane, no three of which are collinear. Suppose n of the given 
2n points are colored blue and the other n colored red. A line in 
the plane is called a balancing line if it passes through one blue 
and one red point and, for each side of the line, the number of blue 
points on that side is equal to the number of red points on the 
same side.  
Prove that there exist at least two balancing lines.  
 
Answer: 
Take the convex hull of the 2n points. If it contains points of both 
colors, then there will be two pairs of adjacent points in the hull 
that are of different colors. Take the two lines through these two 
pairs of points. There will be 0 points on one side and n-1 points 
of each color on the other side, so we are done. From now suppose 
the convex hull contains points of only 1 color, WLOG blue.  
 

Take a point P that is part of this convex hull. Take a line L 
through P, such that all other points lie on the same side of L (this 
is possible since P lies on the convex hull). Now rotate L clockwise 
and let R1, R2, … Rn be the red points in the order in which they are 
encountered. Let bi be the number of blue points encountered 
before Ri (excluding P) and ri be the number of red points 
encountered before Ri (hence ri = i-1). Let f(i) = bi – ri  and note 
that f(i) = 0 if and only if PRi is a balancing line. Also f(1) = b1 – 0 ≥ 
0 and f(n) = bn – (n-1) ≤ 0, since bn is at most n-1. Thus f(i) goes 
from nonnegative to nonpositive as i goes from 1 to n. 
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Furthermore, f can decrease by at most 1 when going from i to i+1, 
since ri increases by only 1. Hence at some point f becomes 0, and 
we get a balancing line through P. 

 
Repeating this argument for each point on the convex hull, we 

get balancing lines for each point on the convex hull, so we get at 
least 3 balancing lines in this case (there are at least 3 points on 
the convex hull), so we are done. ■ 

 
Figure 4.5: A balancing line for f(i) = 0 

 
 

Miscellaneous Examples 
(Because I ran out of imaginative names) 

 
Example 14 [Romania 2001] 
Three schools each have 200 students. Every student has at least 
one friend in each school (friendship is assumed to be mutual and 
no one is his own friend). Suppose there exists a set E of 300 
students with the following property: for any school S and two 
students x, y   E who are not in school S, x and y do not have the 
same number of friends in S. Prove that there exist 3 students, one  
in each school, such that any two are friends with each other.  

i-1 blue points 

i-1 red points 

n-i red points 

n-i blue points 

P 

Ri 
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Answer: 
Let S1, S2, S3 be the sets of students in the three schools. Since 
there are 300 students in E, one of the schools must have at most 
300/3 = 100 students in E. WLOG let |S1 ⋂ | ≤ 100. Then consider 
the 200 or more students in E \ S1.  Each of these students has at 
least one at and most 200 friends in S1, and moreover no two of 
them have the same number of friends in S1 (by the conditions of 
the problem and the condition on E). This implies that exactly one 
of them has 200 friends in S1. Let this student by X, and assume 
WLOG that X is in S2. Then X has a friend Y in S3 and Y has a friend 
Z in S1 (everyone has at least one friend in each school). But Z and 
X are friends since Z is friends with everyone in S1. So (X, Y, Z) is 
our required triple and we are done. ■ 
 
Example 15 [IMO shortlist 1988] 
Let n be an even positive integer. Let A1, A2, …, An+1 be sets having 
n elements each such that any two of them have exactly one 
element in common while every element of their union belongs to 
at least two of the given sets. For which n can one assign to every 
element of the union one of the numbers 0 and 1 in such a manner 
that each of the sets has exactly n/2 zeros? 
 
Answer: 
Let n = 2k. Observe that any set Aj has 2k elements and intersects 
each of the other 2k sets in exactly one element. Hence each of the 
2k elements in Aj belongs to at least one of the other 2k sets but 
each of the 2k sets contains at most one element from Aj. This 
implies that each of the 2k elements of Aj belongs to exactly one 
other set. This holds for each j, so every element in the union of 
the sets belongs to exactly two sets and any two sets intersect in 
exactly one element. 
 

Now suppose we count the number of elements labeled 0. Each 
set contains k zeros and there are 2k+1 sets. But each element 
labeled 0 is in two sets, and if we simply multiplied k and 2k+1 we 
would be counting each element twice. So the total number of 
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elements labeled 0 will be k(2k+1)/2. This quantity must be an 
integer, so k must be divisible by 2. Hence n must be divisible by 4.  
 

To show that such a coloring indeed exists when n is divisible 
by 4, incidence matrices provide an elegant construction. 
Incidence matrices will be introduced in the chapter on counting 
in two ways, and the rest of the proof of this example is left as an 
exercise in that chapter. ■ 
 
Example 16 [IMO shortlist 2001 C5] 
Find all finite sequences x0, x1, x2, … , xn such that for every j, 0 ≤ j ≤ 
n, xj equals the number of times j appears in the sequence. 
 
Answer: 
The terms of such a sequence are obviously nonnegative integers. 
Clearly x0 > 0, otherwise we get a contradiction. Suppose there are 
m nonzero terms in the sequence. Observe that the sum x1 + x2 … + 
xn counts the total number of nonzero terms in the sequence; 
hence x1 +… +xn = m. One of the nonzero terms is x0, so there are 
exactly m-1 nonzero terms among x1, x2, …, xn. These m-1 nonzero 
terms add up to m, so m-2 of these terms are equal to 1 and one 
term is equal to 2. This means that no term of the sequence is 
greater than two, except possibly x0. Hence at most one of x3, x4, … 
can be positive (For example, if x0 = 4, then x4 will be positive 
since 4 appears in the sequence). Thus the only terms that can be 
positive are x0, x1, x2 and at most one xk with k > 2. It follows that m 
≤ 4. Also m =1 is impossible. So we have 3 cases: 
 

(i) m = 2. Then there are m-2 = 0 1s and one 2 among the terms 
x1, x2, … xn. Hence x2 = 2 (as x1 = 2 is impossible) and the 
sequence is (2, 0, 2, 0). 

(ii) m = 3. Either x1 = 2 or x2 = 2. These cases give the sequences 
(1, 2, 1, 0) and (2, 1, 2, 0, 0) respectively. 

(iii) m = 4. Then the positive terms are x0, x1, x2 and xk for some k 
> 2. Then x0 = k and xk = 1. There are m-2 = 2 1s so x1 = 2, and 
hence x2 = 1. The final sequence is (k, 2, 1, 0, …., 0, 1, 0, 0, 0), 
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where there are k 0s between the two 1s.  
Hence the sequences listed in (i), (ii) and (iii) are the only 

possible sequences and we’re done. ■ 
 
 

 
 

Exercises 
 

 
1. [Russia 2001] 

Yura put 2001 coins of 1, 2 or 3 kopeykas in a row. It turned 
out that between any two 1-kopeyka coins there is at least one 
coin; between any two 2-kopeykas coins there are at least two 
coins; and between any two 3-kopeykas coins there are at 
least 3 coins. Let n be the number of 3-kopeyka coins in this 
row. Determine all possible values of n.  

 
2. [Indian TST 2001] 

Given that there are 168 primes between 1 and 1000, show 
that there exist 1000 consecutive numbers containing exactly 
100 primes.  

 
3. [Canada 1992] 

2n+1 cards consists of a joker and, for each number between 1 
and n inclusive, two cards marked with that number. The 
2n+1 cards are placed in a row, with the joker in the middle. 
For each k with 1 ≤ k ≤ n, the two cards numbered k have 
exactly (k–1) cards between them. Determine all the values of 
n not exceeding 10 for which this arrangement is possible. For 
which values of n is it impossible? 

 
4. [IMO 1997-4] 

An n × n matrix whose entries come from the set S = {1, 2, …, 
n} is called a silver matrix if, for each i = 1, 2, …, n, the i-th row 
and the i-th column together contain all elements of S. Show 
that: 
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a) there is no silver matrix for n = 1997; 
b) silver matrices exist for infinitely many values of n. 

 
5. [Russia 1996] 

Can a 5 × 7 board be tiled by L-trominoes (shown in the figure 
below) with overlaps such that no L-tromino sticks out of the 
board, and each square of the board is covered by the same 
number of L-trominoes?  

 
An L-tromino 

 
6. IMO Shortlist 2011, C2] 

Suppose that 1000 students are standing in a circle. Prove that 
there exists an integer k with 100 ≤ k ≤ 300 such that in this 
circle there exists a contiguous group of 2k students, for which 
the first half contains the same number of girls as the second 
half.  

 
7. [Bulgaria 2001] 

Let n be a given integer greater than 1. At each lattice point (i, 
j) we write the number k in {0, 1, …, n-1} such that k   (i+j) 
mod n. Find all pairs of positive integers (a, b) such that the 
rectangle with vertices (0,0), (a, 0), (a, b) and (0, b) has the 
following properties:  
(i) Each number 0, 1, …, n-1 appears in its interior an equal 

number of times 
(ii) Each of these numbers appear on the boundary an equal 

number of times 

 
8. [Russia 1998] 

Each square of a board contains either 1 or -1. Such an 
arrangement is called successful if each number is the product 
of its neighbors. Find the number of successful arrangements. 
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9. [IMO Shortlist 2010, C3] 
2500 chess kings have to be placed on a 100 × 100 chessboard 
so that  
i. no king can capture any other one (i.e. no two kings are 

placed in two squares sharing a common vertex); 
ii. each row and each column contains exactly 25 kings. 
 
Find the number of such arrangements. (Two arrangements 
differing by rotation or symmetry are supposed to be 
different.) 

 
10. [Russia 2011] 

There are some counters in some cells of 100 × 100 board. Call 
a cell nice if there are an even number of counters in adjacent 
cells. Is it possible for there to exist exactly one nice cell? 

 
11. [Bulgaria 1997] 

A triangulation of a convex n-gon is a division of the n-gon into 
triangles by diagonals with disjoint interiors. Call a 
triangulation even if each vertex of the n-gon is the endpoint 
of an even number of diagonals. Determine all natural 
numbers n for which an even triangulation of an n-gon exists.  

 
12. [India Postal Coaching 2011] 

On a circle there are n red and n blue arcs given in such a way 
that each red arc intersects each blue one. Prove that there 
exists a point contained by at least n of the given colored arcs. 

 
13. Call a rectangle integral if at least one of its dimensions is an 

integer. Let R be a rectangle such that there exists a tiling of R 
with smaller integral rectangles with sides parallel to the sides 
of R. Show that R is also integral.  

 
14. [IMO Shortlist 1999, C6] 

Suppose that every integer has been given one of the colors 
red, blue, green or yellow. Let x and y be odd integers so that 
|x| ≠ |y|. Show that there are two integers of the same color 
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whose difference has one of the following values: x, y, (x+y) or 
(x-y).  

 
15. [China TST 2011] 

Let l be a positive integer, and let m, n be positive integers 
with m ≥ n, such that A1, A2, …, Am, B1, B2, …, Bn are (m+n) 
pairwise distinct subsets of the set {1, 2, …, l}. It is known that 
Ai Δ Bj are pairwise distinct, for each 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 
run over all nonempty subsets of {1, 2, …, l}. Find all possible 
values of (m, n). 

 
16. [IMO 1996, Problem 6] 

Let p, q, n be three positive integers with p+q < n. Let (x0, x1, …, 
xn) be an (n+1)-tuple of integers satisfying the following 
conditions: :  
(a) x0 = xn = 0, and  
(b) For each i with 1 ≤ i ≤ n, either xi – xi-1 = p or xi – xi-1 = -q.  
 
Show that there exist indices i < j with (i, j) ≠ (0, n) such that xi 
= xj. 

 
17. [IMO 2004, Problem 3] 

Define a hook to be a figure made up of six unit squares as 
shown below in the picture, or any of the figures obtained by 
applying rotations and reflections to this figure. Determine all 
m × n rectangles that can be tiled with hooks without gaps, 
overlaps, and parts of any hook lying outside the rectangle.  

 
A hook 

 
 

 

 

   

 


