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PREFACE

In the original work, tile author endeavored to prepare a text-

book on the Calculus, based on the method of limits, that should

be within the capacity of students of average mathematical ability

and yet contain all that is essential to a working knowledge of the

subject.

In the revision of the book the same object has been kept in view.

Most of the text has been rewritten, the demonstrations have

been carefully revised, and, for the most part, new examples have

been substituted for the old. There has been some rearrangement

of subjects in a more natural order.

In the Differential Calculus, illustrations of the " derivative"

aave been introduced in Chapter II., and applications of differentia-

"ion will be found, also, among the examples in the chapter imme-

diately following.

Chapter VII.. on Series, is entirely new. In the Integral Calculus,

immediately after the integration of standard forms, Chapter XXI.

has been added, containing simple applications of integration.

In both the Differential and Integral Calculus, examples illustrat-

ing applications to Mechanics and Physics will be found, especially

in Chapter X. of the Differential Calculus, on Maxima and Minima,

and in Chapter XXXII. of the Integral Calculus. The latter chap-

ter has been prepared by my colleague, Assistant Professor N. It.

George, Jr.

The author also acknowledges his special obligation to his col-

leagues, Professor H. W. Tyler and Professor F. S. Woods, for

important suggestions and criticisms.
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DIFFERENTIAL CALCULUS

CHAPTER I

FUNCTIONS

1. Variables and Constants. A quantity which may assume an

unlimited number of values is called a variable.

A quantity whose value is unchanged is called a constant.

For example, in the equation of the circle

x 2+y° = a 2

,

x and y are variables, but a is a constant. For as the point whose

coordinates are x, y, moves along the curve, the values of x and y
are continually changing, while the value of the radius a remains

unchanged.

Constants are usually denoted by the first letters of the alphabet,

a, b, C, a, (3, y, etc.

Variables are usually denoted by the last letters of the alphabet,

*, y, z,
<t>, «A,

etc -

2. Function. When one variable quantity so depends upon an-

other that the value of the latter determines that of the former, the

former is said to be a function of the latter.

For example, the area of a square is a function of its side ; the

volume of a srjhere is a function of its radius ; the sine, cosine, and

tangent are functions of the angle ; the expressions

x2

, log (V9 + 1), V*(* + l),

are functions of x.
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A quantity may be a function of two or more variables. For
example, the area of a rectangle is a function of two adjacent sides;
either side of a right triangle is a function of the two other sides

;

the volume of a rectangular parallelopiped is a function of its three
dimensions.

The expressions

x2 + xy + y
2
, \ g(x2 + y

2
), ax+^,

are functions of x and y.

The expressions

xy + yz + zx, ^^~~f log(x2 + y~z),

are functions of x, y, and z.

3. Dependent and Independent Variables. If y is a function of x,

as in the equations

y = x2

, y = tan 4 a?, y = e
x
-f-

1

x is called the independent variable, and y the dependent variable.

It is evident that when y is a function of x, x may be also regarded

as a function of y, and the positions of dependent and independent

variables reversed. Thus, from the preceding equations,

x=Vy, x = ±tan- 1
y, x = log

e (y-l).

In equations involving more than two variables, as

z + x— y = 0, iv + wz + zx + y = 0,

one must be regarded as the dependent variable, and the others as

independent variables.

4. Algebraic and Transcendental Functions. An algebraic function

is one that involves only a finite number of the operations of addi-

tion, subtraction, multiplication, division, involution and evolution

with constant exponents.* All other functions are called transcen-

dental functions. Included in this class are exponential, logarithmic,

trigonometric or circular, and inverse trigonometric, functions.

Note.— The term "hyperbolic functions" is applied to certain

forms of exponential functions. See page 00.

* A more general definition of Algebraic Function is, a function whose rela-

tion to the variable is expressed by an algebraic equation.
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5. Rational Functions. A polynomial involving only positive

integral powers of x, is called an integral function of x\ as, for

example, 2 + x - 4 .r + 3 x\

A. rational fraction is a fraction whose numerator and denominator

are integral functions of the variable ; as, for example,

a,r3 + 2q;-l
x*+ x*-2x'

A rational function of x is an algebraic function involving no frac-

tional powers of x or of any function of x.

The most general form of such a function is the sum of an integral

function and a rational fraction ; as, for example,

3x2 -2x
2 ,r rf- x- 1 +

x- + l

6. Explicit and Implicit Functions. When one quantity is ex-

pressed directly in terms of another, the former is said to be an

explicit function of the latter.

For example, y is an explicit function of x in the equations

y = a?+ 2x, y = Va2 + 1.

"When the relation between y and x is given by an equation con-

taining these quantities, but not solved with reference to y, y is said

to be an implicit function of x, as in the equations

axy -f bx 4- cy+ d=
3 y -\- log y = x.

Sometimes, as in the first of these equations, we can solve the

equation with reference to y, and thus change the function from

implicit to explicit. Thus we find from this equation,

_bx±d
m

ax + c

7. Single-valued and Many-valued Functions. In the equation

y = X- - 2 .r,

for every value of x, there is one and only one value of y.

Expressing x in terms of y, we have

x = 1 ± Vy + 1-



4 DIFFERENTIAL CALCULUS

Here each value of y determines two values of x. In the former

case, y is a single-valued function of x.

In the latter case, x is a two-valued function of ?/.

An w-valued function of a variable x is a function that has n

values corresponding to each value of x.

The inverse trigonometric function, tan-1 x, has an unlimited num-

ber of values for each value of x.

8. Notation of Functions. The symbols F(x),f(x), <£(#), \f/(x),

and the like, are used to denote functions of x. Thus instead of " y
is a function of x," we may write

y=f(x), or y = <f>(x).

A functional symbol occurring more than once in the same prob-

lem or discussion is understood to denote the same function or

operation, although applied to different quantities. Thus if

•

f(x) = x*+ 5, (1)

then f(y)=y* + &, /(ft) = a2 + 5,

/(a + l) = (a + l) 2 + 5 = a* + 2a + 6,

/(2) = 2 2 + 5 = 9, /(1) = 6.

In all these expressions /( ) denotes the same operation as de-

fined by (1) ; that is, the operation of squaring the quantity and

adding 5 to the result.

Functions of two or more variables are expressed by commas be-

tween the variables.

Thus if / (x, y) = x2 + 3 xy - f,

then f(a, b) = a2 + 3 ab- b\ f(b, a) = b2 + 3 ba - a2
.

jf(3, 2) = 32 + 3-3-2 - 22 = 23. f(a, 0) = a2
.

If 4>(x, y, z) = xs + yz-y2 + 2,

then <f>(3, l,-l) = 33 + l(-l)-l 2 + 2 = 27;

*(a, 0, 0) = a3 - b
2 + 2 ; <K0, 0, 0) = 2.
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9. Inverse Function. If y is a given function of x, represented by

y = +(*), (i)

and if from this relation we express x in terms of y, so that

' = •/<(.'/), (2)

then each of the functions
<f>
and \p is said to be the inverse of the

other.

. For example, if V = * = <£<»>

then x =VS = ^O/)-

Here \p, the cube root function, is the inverse of cf>, the cube

function.

If V = a* = <Kx),

then x = log ay = xp(y).

Here «/r, the logarithmic function, is the inverse of
<f>,

the exponential

function. n
x -4- 2i

Again, suppose y =-, -=<f>(x) (3)
r — x

v — 2
From this we derive x = '

j = \p(y) (4)

Here xp as defined by (4) is the inverse of
<f>

as defined by (3).

The notation ^>
_1

is often employed for the inverse function of <j>.

Thus, if y = <£(#), x = <£
_1

0/).

if y=f(?), x=f~ 1
(y).

The student is already familiar with this notation for the inverse

trigonometric functions.

If y = sin x, x = sin
-1

?/.

EXAM PLES

1. Given 2x* — 2 xy + y
2 = a2

;

change y from an implicit to an explicit function.

y = x ± Va2 — x2
.



6 DIFFERENTIAL CALCULUS

ft
2. Given sin (a; — y)~ m sin ?/

;

change y from an implicit to an explicit function,

Ans. y = tan' 1 —
m + cos x

^3. Given /(a?) = 2^-3^+^+2
;

find /(l), /(2), /(|), /(- 1), /(0).

Show that / (a + 1) -/(*) = 6 a;
2

,

fix + ft) =/(*) + (6 a;
2 - 6 i» + l)h + (6x- 3)/i

2 + 2 fc
s
.

H. Given F(x) = (x2 -1) 2
;

show that i^(a? + 1) - F(x — 1) = 8 Xs
.

h. Griven.f(x)=^t^l:
}
find/(0), /(*)+/(-«).

Show that / (2a?) -/(- 2 ag = [/ (a:)]
2 - [/ (- a?)]

2
.

%K^. If <£ (0) = c», <£ (a -\-b) = cj>(a)cj> (6).

Show that the same relation holds for the function

$(0) = cos 4- V"^ sin (9,

giving if/(a + b) = if, (a) ^(6).

"
7

-
If >«-sfey
show that the inverse function is of the same form.

8. If <f>(x) = X
, find the inverse function of <j>.

ax— c

Compare the two functions when b = c.

V9. If /(«) = log.(«+'V?=l),

show that /-1 (a;) = a* + *y •

10. If / (a^) = ax* + 2 toy + q/
2

;
find /(l, 2), / (y, - a?).

Show that

/ (a? + ft, y + ft) =/(«, 2/.) + 2(aa? + by)h + 2(bx + cy) ft +f(h, ft).
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FUNCTIONS

\m-\-n
«£(m,n)

\m |w

where m, », are positive integers; show that

<f>
(m, w + 1) + <£ (m + 1, ») = <Km + 1? ?i + !)•

12. Given / fe & »)

«, ?/, z

2, X, y

y» *> X

show that f{y + z,z + x, x+ y) = 2/ (a;, y, 0).



CHAPTER II

LIMIT. INCREMENT. DERIVATIVE

10. Limit. When the successive values of a variable x approach

nearer and nearer a fixed value a, in such a way that the difference

x — a becomes and remains as small as we please, the value a is

called the limit of the variable x.

The student is supposed to be already somewhat familiar with the

meaning of this term, of which the following illustrations may be

mentioned.

The limit of the value of the recurring decimal .3333 ..., as the

number of decimal places is indefinitely increased, is ^.

The limit of the sum of the series 1 +
-J-
+

-J-
+ -J-H— , as the number

of terms is indefinitely increased, is 2.

The limit of the fraction - ~ a
, as x approaches a, is 3 a2

.

x — a

The circle is the limit of a regular polygon, as the number of sides

is indefinitely increased.

The limit of the fraction ——, as 6 approaches zero, is 1, provided
6

6 is expressed in circular measure.

11. Notation of Limit. The following notation will be used

:

"Lim^" denotes "The limit, as x approaches a, of."

x 2 —a2

For example, Limz=a— == 2.
xr — ax

LimA=0 (2 x2 - hx + h2
) =2x>.

12. Some Special Limits. There are two important limits required

in the following chapter.

(a) Lim 0=o , 6 being in circular measure.



LIMIT

Let the angle ADA' = 2 0. and let a be the radius of the arc ACA!.

From geometry, ABA' < ACA'

;

sin
that is, 2 a sin < 2 aO, ^-v

(i)

Also from geometry, ACA' < ADA ;

that is, 2a0 <2 a tan 0,

sin

sin fl

cos
>e,

> cos 0. (2)

Hence by ^1) and (2), is inter-
u

mediate in value between 1 and cos 0.

As approaches zero, cos approaches 1.

sin 9 ..

Hence Lini„=0

The student will do well to compare the corresponding values of

and sin 6, taken from the tables, for angles of 5°, 1°, and 10'.

Angle sin 6

5° — = .0872605
36

.0871557

1°
-5- = .0174533
180

.0174524

10' ' =.0029089
1080

.0029089

(b) Lim 2=ae M + IV—
] Before deriving this limit

z )'
let us compute

the value of the. expression for increasing values of

(1 + 1)
2= 2.25

(1 + 1)
5 = 2.48832

z. Thus,

(1 + to)
10 = 2.59374 .

•

(1.01)
100 = 2.70481

(1.001)
1000 = 2.71692

(1.0001)
10000 = 2.71815

(1.00001) 100000 = 2.71827

(1.000001)1000000 = 2.71&18
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The required limit will be found to agree to five decimals with the

last number, 2.71828.

By the Binomial Theorem,

which may be written ^ / 1\ / 2

+
iy = i + i + izl + v

1 ~w~~z/
zj , [2 |3

When z increases, the fractions -, - etc., approach zero, and we
T z z
have

This quantity is usually denoted by e, so that

e = 1+7 +%+£ +£+ '—-

1 |2 [3 |4

The value of e can be easily calculated to any desired number of

decimals by computing the values of the successive terms of this

series. For seven decimal pi ices the calculation is as follows:

2)

1.

1.

3) .5

4) .166666667

5) .041666667

6) .008333333

7) .001388889

8) •000198413

9) .000024802

10) .000002756

11) .000000276

.000000025

e= 2.7182818--.

This quantity e is the base of the Napierian logarithms.

* For a rigorous derivation of this limit, the student is referred to more ex-

tensive treatises on the Differential Calculus.
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13. Increments. An increment of a variable quantity is any addi-

tion to its value, and is denoted by the symbol A written before this

quantity. Thus Ax denotes an increment of x, Ay, an increment of y.

For example, if we have given

y =A
and assume x = 10, then if we increase the value of x by 2, the value

of y is increased from 100 to 141, that is, by 41.

In other words, if we assume the increment of x to be A& = 2, we

shall find the increment of y to be A?/ = 44.

If an increment is negative, there is a decrease in value.

For example, calling x = 10 as before, in y = x 2

,

if Ax = - 2, then Ay = - 36.

14. Derivative. With the same equation,

y = x2
,

and the same initial value of x,

z = 10,

let us calculate the values of Ay corresponding to different values of

A.'-. We thus find results as in the following table.

If Ax = then Ay = and -^- =
Ax

3. 09. 23.

2. 44. 22.

1. 21. 21.

0.1 2.01 20.1

0.01 0.2001 20.01

0.001 0.020001 20.001

h 20 h + 1C- 20+ ft

The third column gives the value of the ratio between the incre-

ments of ./ and of y.

It appears from the table that, as Ax diminishes and approaches

zero. Ay also diminishes and approaches zero.
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The ratio —^ diminishes, but instead of approaching zero, ap-

proaches 20 as its limit.

This limit of —^ is called the derivative of y with respect to x,

and is denoted by -^. In this case, when x = 10, the derivative

^ = 20.
**

dx
It will be noticed that the value 20 depends partly on the func-

tion y = x2
, and partly on the initial value 10 assigned to x.

Without restricting ourselves to any one initial value, we may ob-

tain -^ from y = x2
.

dx
Increase x by Ax. Then the new value of y will be

y' = (x + Ax) 2

;

therefore, Ay = y
1 — y = (x + Ax) 2 — x2 = 2xAx + (Ax) 2

.

Dividing by Ax, Ay = 2 x +^
Ax

The limit of this, when Ax approaches zero, is 2x.

Hence, — = 2 x.
dx

The derivative of a function may then be defined as the limiting

value of the ratio of the increment of the function to the increment of the

variable, as the latter increment approaches zero.

It is to be noticed that -2 is not here defined as & fraction, but as
dx A

a single symbol denoting the limit of the fraction —^. The student

will find as he advances that — has many of the properties of an

ordinary fraction.

The derivative is sometimes called the differential coefficient.

15. General Expression for Derivative. In general, let

y -/(»)

Increase x by Ax, and we have the new value of y}

y'=f(x-\-Ax).
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Ay = y' - y =/(* + A^) —/(*)i

A?/ =/(* + A.r)-/(.r)

A.y A#

(f.i' A#

Geometrical Illustration. The process of finding the derivative

from y = x-, may be illustrated by a squared

Let x be the length of the side OP, and y the area of the square

on OP.

That is. y is the number of square units

corresponding to the linear unit of x.

When the side is increased by PP', the

area is increased by the space between the

squares.
Ay_

That is, Ay=2xAx+(Ax)* =^=2x+Ax,
Ax

dy T • A?/

ax Ax
2x.

Ay

y X

X Ax
p P'

16. From the definition of the derivative we have the following

process for obtaining it

:

(a) Increase x by Ax, and by substituting x -f- Ax for x, deter-

mine y + Ay, the new value of y.

(b) Find Ay by subtracting the initial value of y from the new
value.

(c) Divide by Ax, giving— •

Ax

(d) Determine the limit of _ _?, as Ax approaches zero. This

limit is the derivative —

.

dx
Apply this process to the following examples.

EXAMPLES
1 . y = 2 .r

3 — 6 x + 5.

Increasing x by Ax, we have

y + Ay = 2(x + Axf-6(x + Ax) + 5;

therefore, Ay = 2 (x + Ax) 3 — 6 (x + Ax) + 5 — 2 x' + 6x—5
= (6 x2 - 6) Ax + 6 x(Ax) 2 + 2(A x)3

.
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Dividing by Ax,

-^ = 6x2 -6 + 6xAx + 2(Ax) 2
.

Ax v }

* = LimA^/ = 6x2 -6.
dx Ax

2. y =

y + Ay =

Ay =

x + 1

x + Ax
x + Ax + 1

'

x + Ax x Ax
x + Ax + 1 z + 1 (x-f Ax-|-l)(x + l)

Ay = 1

Ax (x + Ax-fl)(x + l)'

^-Lira ^ = _J:
dx~ ^°Ax (x + 1)

2

3. 2/= Vx.

y -\- Ay = Vx -f Ax,

A?/ = Vx + Ax — Vx,

Ay _ Vx -f- Ax — V#
_

Ax Ax

The limit of this takes the indeterminate form -. But byJ

rationalizing the numerator, we have

Ay _ Ax 1

Ax Ax(Vx + Ax+Vx) Vx+Ax-fVx

dx Az=0Ax 2V
4. y = x4 -^4.

2/
= aj

4 -2x2 + 3x-4, ^ = 4x3 -4x+ 3.

dx

5. ?/=(x-a) 3
,

^/ = 3(x-a) 2
.

dx
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6. y=(«+ 2)(3-2«) J g = -4*-l.

mo;
11
=

x =

>

it — X

2.V-T.

»+ »*

.r + a2

(*-!)"

% mn
da \n-xf

dx 9

cty "<* + *>*

dx («j+ a)

dx _

dt
~

«+ l

dy _ 1

10. .-/
=

V ,=

*12. ^/=V^T2

8
13. y = x\

14. 2/=V«2 -^,

15. s=±

16. Show that the derivative of the area of a 'circle, with respect

to its radius, is its circumference.

17. Show that the derivative of the volume of a sphere, with,

respect to its radius, is the surface of the sphere.

"We shall now give some illustrations of the meaning of the deriva-

tive.

dx 2Vz-r-2

dy
=

dx

Zx%

2
'

dy _ X

dx -Vcr—x2

dx _

dt~

1

2$
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17. Direction of a Plane Curve. This is one of the simplest and

most useful interpretations of the derivative.

Let P be a point in a curve determined by its equation y = f(x),

and PT the tangent at P.

Let OM=x, MP = y.

If we give x the increment

Ax = MN, y will have the in-

crement Ay = PQ.
Draw PQ. Then

Now if Ax diminish and

approach zero, Ay will also

approach zero, the point Q
will move along the curve

towards P, and PQ will approach in direction PT as its limit.

Taking the limit of each member of (1), we have

tan TPR = Lim Ax _ ^ =^
Ax dx

That is, the derivative — , at any point of a curve, is the trigono
dx

metric tangent of the in-

clination to OX of the

tangent line at that

point.

This quantity is de-

noted by the term slope.

The slope of a straight

line is the tangent of its

inclination to the axis

of X
The slope of a plane

curve at any point is the

slope of its tangent at

that point.

Thus, -^, at any point of a curve, is the slope of the curve at that

point.
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x2

For example, consider the parabola x2 = ±py, y = -—

The slope of the curve is — =— •
1

dx 2p

At 0, where x = 0, the slope = 0, the direction being horizontal.

At L, where x = 2 p, the slope = 1, corresponding to an inclination

of 45° to the axis of X
Beyond L the slope increases towards oo, the inclination increasing

towards the limit 90°.

For all points on the left of Y", x is negative, and hence the slope

is negative, the corresponding inclinations to the axis of X being

negative.

18. Velocity in Terms of a Variable t denoting Time. A body moves
over the distance OP = s in the time t, s being a function of t; it is

required to express the velocity at the point P.

Let As denote

the distance ir £—-

—

±-,

PP traversed

in the interval At. If the velocity were uniform during this interval,

As
it would be equal to

As
For a variable velocity, — is the average or mean velocity between

P and P, and is more nearly equal to the velocity at P the less we
make At.

That is, the velocity at P — Lim Afe0 -r.— -r.'
At dt

ds
If v denote this velocity, v = — •

Thus, — is the rate of increase of s.

dt

Similarly, -vr and -rr are the rates of increase of x and y respectively.
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Then the velocity,

and the acceleration,

v = 3?

6t.

19. Acceleration. The rate of increase of the velocity v is called

acceleration.

If we denote this by a, we have by the preceding article,

dv
a ——

dt

For example, suppose a body moves so that

s = t\

ds
_

dt'

dv

dt'

20. Rates of Increase of Variables. For further illustrations of the

derivative, consider the two following problems

:

Problem 1. A man
walks across the street

from A to B at a uniform

rate of 5 feet per second.

A lamp at L throws his

shadow upon the wall

MN. AB is 36 feet, and

BL 4 feet. How fast is

the shadow moving when
he is 16 feet from A?
When 26 feet ? When
30 feet?

Let P and Q be si-

multaneous positions of man and shadow.

y _ BL 4 4 x

x~PB

Let AP = x, AQ = y.

Then V (1)
36 — x 36 —a;

When he walks from P to P', the shadow moves from Q to Q'.

That is, when Ax=PP', \y=QQ'.
Let At be the interval of time corresponding to Ax and Ay.

Ay = At^

Ax Ax
'

At

Then we may write (2)
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If now we suppose At to diminish indefinitely, Ay and A.i* will

also diminish indefinitely, and we have for the limits of the two

members of ^2), f?

dy dt rate of increase of ?/

dx
—

dx rate of increase of x

dt

Art. 18.

That is,
velocity of shadow at any point Q _ dy

velocity of man dx

Finding the derivative of (1), we have

dy= 144

dx (36 - xj
Hence,

velocity of shadow at any point Q =

144

144

(36 - x)

720

(36— x}2

(5 feet per second)

See Ex. 8, Art. 16.

(velocity of man)

- feet per second
(oo — X)-

= 1.8 feet per second, when x = 16
;

= 7.2 feet per second, when x = 26
;

= 20 feet per second, when x = 30.

Problem 2. The top of a ladder 20 feet long rests against a wall.

The foot of the ladder is moved away from the wall at a uniform

rate of 2 feet per second.

How fast is the top moving,

when the foot is 12 feet

from the wall ? AVhen 16

feet from the wall ?

Suppose PQ to be one

position of the ladder.

Let

AP= x, AQ = y.

Then

y = V400 - x2
. (3)
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When the foot moves from Pto P', the top moves from Q to Q\
That is, if Ax = PP', Ay = QQ'.

In the same way as in Problem 1,

Ay
Ay _ At

Ax ~ Ax
At~

And from this,

that is,

From (3),

dy

dy _dt
dx~ dx'

dt

velocity of top at Q _ dy

velocity of foot dx

dy _ — x

<^~V400-;/
See Ex. 14, Art. 16.

Hence,

velocity of top at any point Q =
V400-X2

2x

V400-^2

= (velocity of foot)

feet per second.

The negative sign is explained by noticing from the figure that y
decreases when x increases. Hence the rates of increase of x and y
have different signs.

When x — 12, velocity of top = — 11 feet per second.

When x = 16, velocity of top = — 2| feet per second.

Aw
From these problems it appears that, while -^ is the ratio between

dv
the increments of y and x, — is the ratio betiveen the rates of increase*

' dx J

of these variables.
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21. Increasing and Decreasing Functions. If the derivative of a

junction of x is positive, the junction increases when x increases; and if

the derivative is negative, the function decreases ivhen x increases.

For if the derivative — , which is the ratio between the rates of
dx

increase of the variables (see conclusion of Art. 20), is positive, it

follows that these rates must have the same sign ; that is, y increases

when x increases, and decreases when x decreases.

But if -^ is negative, the rates must have different signs ; that is,

ax

y decreases when x increases, and increases when x decreases.

This is also evident geometrically by regarding -^ as the slope of

a curve.

As we pass from A to B, y increases as x increases, but from B to

C, y decreases as x in-

creases.

Between A and B the

slope — is positive ; be-

tween B and C, negative.

In the former case y is

said to be an increasing

function ; in the latter

case, a decreasing function.

For example, consider

the function y = x3
, from which we find -^ = 3x*.

rh
^x

Since — is positive for all values of x, the function y = x3
is an

dx
increasing function.

1
If we take y —

, we find —
x dx

1

Here we have a decreasing function with a negative derivative.

Another illustration is Ex. 1, Art. 16,

y = 2 ar
3 - 6 x + 5, ^= 6 (a? - 1).

ax

When x is numerically less than 1, y is a decreasing function.

When x is numerically greater than 1, y is an increasing function.
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22. Continuous Function. A function, y=f(x), is said to be

continuous for a certain value x , of x, when y = f (afc) is a definite

quantity, and A?/ approaches zero as AxQ approaches zero, Ax being

positive or negative.

The latter condition is sometimes expressed, "when an infinitely

small increment in x produces an infinitely small increment in y."

The most common case of discontinuity of the elementary functions

(algebraic, exponential, logarithmic, trigonometric and inverse trigo-

nometric, functions) is when the function is infinite.

Y

a
^

"-——
- °

\

A

For example, consider the function y = 1
which is continuous

for all values of x except x = a.

When x = a, y = oo, that is, y can be made as great as we please by

taking x sufficiently near a. Also when x<a, y is negative, and

when x>a, y is positive.

There is a break in the curve when x = a, and the function is said

to be discontinuous for the value x = a.
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The function y is likewise discontinuous when x = a.
(x-ay

This function being positive for all values of x, the -two branches

of the curve are above the axis of x.

Likewise the functions, tan x, sec x, are discontinuous when x = —

•

Z

In general, if/(.r) = oo, when x = a, there is a break in the curve

y=f(x) corresponding to x = a, and both the curve and the function

are then discontinuous. I

2
X
4- 2

Another form of discontinuity is seen in the function y = — ,

when a = 0. 2*+l
Here y approaches two limits, according as x approaches zero

through positive or negative values.

Lim z = + -^— =1.

2'+l

We see that when x = the

curve jumps from y=2 to y=l,

that is from B to A.

The function is discontinu-

ous for x = 0.

It is to be noticed that the

definition of the derivative

Lim

.

i

r+i
= 2.



24 DIFFERENTIAL CALCULUS

implies the continuity of the function. For —^ cannot approach a
Ax

limit, unless Ay approaches zero when Ax approaches zero.

The converse is not true. There are continuous functions which
have no derivative, but they are never met with in ordinary

practice.

EXAMPLES

1. The equation of a curve is y x> + 2.

(a) Find its inclination to the axis of x, when x = 0, and
when x = 1. Ans. 0° and 135°.

(b) Find the

points where the

curve is parallel to

the axis of X.

Ans. x=0 and x=2.

(c) Find the

points where the

slope is unity.

Ans. £C= (1±V2).
(d) Find the

point where the direc-

tion is the same as

that at x = 3. Ans. x = — l.

>
2. In Problem 1, Art. 20, when will the velocity of the shadow

be the same as that of the man ? Ans. When AP= 24 ft.

When one quarter, and when nine times, that of the man ?

Ans. When AP = 12 ft., and 32 ft.

^3. A circular metal plate, radius r inches, is expanded by heat,

the radius being expanded m inches per second. At what rate is

the area expanded ? Ans. 2 irrm sq. in. per sec.

4. At what rate is the volume of a sphere increasing under the

conditions of Ex. 3 ? Ans. 4 Trrra cu. in. per sec.
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5. The radius of a spherical soap bubble is increasing uniformly

at the rate of y
L inch per second. Find the rate at which the

volume is increasing when the diameter is 3 inches.

Ans. ^ = 2.827 cu. in. per sec.

6. In Exs. 5, 7, Art. 16, is y an increasing or a decreasing function ?

Is
"

an increasing or a decreasing function of x ?
»+ l

o

7. In the Example 1, above, for what values of x is y an increas-

ing function of x, and for what values a decreasing function ?

8. Find where the rate of change of the ordinate of the curve

y = Xs — 6.i~ + 3.r + o, is equal to the rate of change of the slope of

the curve. Ans. x= 5 or 1.

x3

9. When is the fraction —-—- increasing at the same rate as a??
x2 + a2

Ans. When x2 = a2
.

10. If a body fall freely from rest in a vacuum, the distance

through which it falls is approximately s = 16 t
2
, where s is in feet,

and t in seconds. Find the velocity and acceleration. What is the

velocity after 1 second ? After 4 seconds ? After 10 seconds ?

Ans. 32, 128, and 320 ft. per sec.



CHAPTER III

DIFFERENTIATION

23. The process of finding the derivative of a given function is

called differentiation. The examples in the preceding chapter illus-

trate the meaning of the derivative, but the elementary method of

differentiation there used becomes very laborious for any but the

simplest functions.

Differentiation is more readily performed by means of certain

general rules or formulae expressing the derivatives of the standard

functions.

In these formulae u and v will denote variable quantities, func-

tions of x ; and c and n constant quantities.

It is frequently convenient to write the derivative of a quantity u,

— u instead of —

,

dx dx

the symbol — denoting " derivative of."

dx

Thus A^ ~r v)
^ tke derivative of (u -f- v\ may be written — (u-\- v),

dx dx

24. Formulae for Differentiation of Algebraic Functions.

i. ^=1.
dx

II. — = 0. .

dx

TTT — ( 4- } —— -l- —

.

dx dx dx

26
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TTT d f N du . dv
IV. — («r) = v h ?<

—

•

dx dx dx

V d , ^ __ du

dx dx

V u

vi A/
7^— .

dx dx

dx\vj v2

VII. — (vr)=nun~1—.
dx dx

These formulae express the following general rules of differenti-

ation :

I. TJie derivative of a variable with respect to itself is unity.

II. TJie derivative of a constant is zero.

III. TJie derivative of the sum of two variables is the sum of their

derivatives.

IV. TJie derivative of tJie product of two variables is tJie sum of

the products of eacJi variable by tJie derivative of the other.

V. TJie derivative of tJie product of a constant and a variable is

tJie product of the constant and.tJie derivative oftJie variable.

VI. TJie derivative of a fraction is tJie derivative of tJie numerator

multiplied by tJie denominator minus tJie derivative of tJie denomi-

nator multiplied by tJie numerator, this difference being divided by the

square of'the denominator.

VII. TJie derivative of any power of a variable is tJie product of the

exponent, tJie power witJi exponent diminisJied by 1, &nd the derivative

of the variable.

25. Proof of I. This follows immediately from the definition of

\w dx
a derivative. For, since — = 1, its limit —= 1.

Ax dx

26. Proof of II. A constant is a quantity whose value does not

vary.

Hence Ac = and — = j therefore its limit — = 0.
Ax • dx
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27. Proof of III. Let y = u-\-v, and suppose that when x re-

ceives the increment Ax, u and v receive the increments Au and Av,

respectively. Then the new value of y,

y + Ay = u + Au + v + Av,

therefore Ay = Au-{- Av.

Divide by Ax ; then
Ay _Au Av
Ax Ax Ax

'

Now suppose Ax to diminish and approach zero, and we have for

the limits of these fractions,

dy _du dv

dx dx dx'

If in this we substitute for y, u -{-v, we have

d / . N du , dv— (u + v) = 1 .

dx dx dx

It is evident that the same proof would apply to any number of

terms connected by plus or minus signs. We should then have

d ,
,

, ,
s du . dv

,
dw

,

dx dx dx dx

28. Proof of IV. Let y = uv;

then y + Ay = (u + Au) (y + Av),

and Ay = (u + Au) (y + Av) — uv = vAu + (u -f- Au)Av.

Divide by Ax
;

then ^/ =„^ + (M + Au)^.
Aaj Ax Ax

Now suppose Ax to approach zero, and, noticing that the limit of

u + Ait is u, we have

dy du ,
dv-£ = v \-u—

;

dx dx dx

,i d / k du , dv
that is, — (uv)=v \-u—

.

dx dx dx
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29. Product of Several Factors. Formula IV. may be extended to

the product of three or more factors. Thus we have

d , v d , x d , •.
, dw—

( uviv) as — (uv -w)=w— (uv)+ UV
dx

K ) dx
y }

dx
K J dx

du
,

dv\ . dw= w[ v \-u—
] -{-uv

dx dx dx

du
, dv

, dw= vw \-uw [-uv—

.

dx dx dx

It appears from the preceding that the derivative of the product

of two or three factors may be obtained by multiplying the deriva-

tive of each factor by all the others and adding the results.

This rule applies to the product of any number of factors. To
prove this, w& assume

d ( \ du, du„ .—
I Wh ••• un j

= u 2u3
••• u n—

\

-f u x
uzuA ... un

—
-
H h uxu2 ~-u,

Then ^-( l(
\
u -2 — wBwn+1

J

= un+l-—( UjU2 • •• uA + u&v ••• un

dun
dx

du„^

dx

du*
,

duo . dun= u 2u3
• • • un+1—i + Uju3u4

• • • un+l —? H p. w^ • •
. wn_!Wn+1—

a

ax ax dx

+ ?,lW2 ... Wn_n±i.
ax

Thus it appears that if the rule applies to n factors, it holds also for

7i-|-l factors, and is consequently applicable to any number of

factors.

Tlie derivative of the product of any number of factors is the sum of

the products obtained by multijjlying the derivative oj each factor by all

the other factors.



30 DIFFERENTIAL CALCULUS

dc
30. Proof of V. This is a special case of IV., — being zero. But

dx
we may derive it independently thus

:

y = cu,

y + Ay = c(u + Aw),

Ay = cAw,

Aw Aw— = c—

?

Ax Ax

dy du d, , x du-^ = c— , or — (cw) = c

—

dx dx dx dx

31. Proof of VI. ~Lety = u

Then y + Av
w + Aw

p

v+Av '

therefore Ay = «±*tt- ? = »*M ~
"f

»

Aw Av
v w

—

and Aw_ ^x ^x

Ax~ (y + Av)v

Now suppose Ax to approach zero, and noticing that the limit of

v + Av is v, we have
dw dv

V u
dy _ dx dx

dx
~~

v2

Or we may derive VI. from IV. thus

:

Since y = -,
v

therefore yv = u.
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t> ttt dy . dv duBy IV., v-f + y— =—

,

dx dx dx

dy __ du u dv,

dx dx v dx
1

du dv
v u—

therefore dy _ dx dx

dx v
2

32. Proof of VII. First, suppose n to be a positive integer.

Let y = un
,

then y + Ay = (u + Aw)n
,

and Ay = (u + A?*)'
1 — un

.

Putting u' for u + A?<, we have

Ay = u" — u n = (V — u) (u"l
~ l + u hl~ 2 u + «4

,B~3w2
H + un~ l

),

that is, Ay = Au (u'*-1 + it"
1
-2 u + u*^V f- w*-

1

),

^ = (u*-1 +u'n-2 u + m'-8 ^2 ... + a-1
)
—

.

Ax N ' Ax

Now let Ax diminish ; then, u being the limit of u', each of the n

terms within the parenthesis becomes un~ l
; therefore

-/ = nun~l— •

ax dx

Or it may be proved by regarding this as a special case of Art. 29,

where u l7 u 2,
••• and u n are each equal to u.

Then — (O =un~lC— +un - 1
du + ... to n terms

dx dx dx

dx

Second, suppose n to be a positive fraction,-?.

Let y = u",

then if = up
;

therefore — Of) =— (up).
dx

KJ J
dx

K }
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But we have already shown VII. to be true when the exponent is

a positive integer ; hence we may apply it to each member of this

equation. This gives

qyq ijL =pvP i .

dx dx

therefore 4=«!^*
dx q y

q~ l dx

2

Substituting for y, uq
,
gives

dy _p up~l du _p P
q~l du

dx q p_pdx q dx'
u

q

which shows VII. to be true in this case also.

Third, suppose n to be negative and equal to — m.

Let y = u~m =:—

;

um

i T7T dy dx dx m ,du
by VI., /- = s-— = — = - micm- 1—

dx u2m u2m dx

Hence, VII. is true in this case also.

EXAMPLES

Differentiate the following functions

:

1. y = x\

* = !(*•).
dx dx

If we apply VII., substituting u = x and w = 4, we have

— (z4)=4ar}— =4ar>. by I.

dx K J dx
J

Hence, ^ = 4^.
dx
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2. y = 3»4 + 4aj8
.

*?= J*(3a;*+4a?)=— (3 x*) +-^(4

a

8

),

by III., making u = 3x4 and u = 4#3
.

|(3^)=3|(A byV.

= 3-4^ = 12^.

Similarly, — (4 x3
) = 4— (or) = 4 . 3 x2 = 12 a?.

Hence, ^= 12a3 + 12«a= 12 (a? + a?
2

).
e2as

3. y= **+ 2.

dx dx dx

|(,f) = |,i
;

by VII.

|(2)=0, by II.

Hence, ^= 1**
dx 2

4. y=3Vx-A + |
+a .

dx dx
y J dx

K J dx
K

' dx

3 -I
= 2*

^- 2
(-
_1

--*-+
2x*

_1 _ 3

x4

'
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5. y =%£ar + 3

dy_ d / x + 3\
dx dx\x2 -{-3

Applying VI., making

u = x + 3 and v = x2 + 3, we have

dfx+3\ (-
2 + 3)|(, + 3)-(, + 3)|(^ + 3)

<toV<s
2 + 3y (x2 + 3f

_f + 3-(x + 3)2x = 3-6a;-^
(z2 + 3)

2 ~~
(>

2 + 3)
2

Hence,
dy = S-6x-a* m

9

dx (x2 + 3)
2

6. 2/ = (x6 + 2)t.

dx dx

If we apply VII., making

2
^ = x2 + 2 and w = -,we have

o

Hence,
dx 3(x2 + 2)3

3 3(»2 + 2)i

7. y = (x2 + l)Vx*-x.

^=A[(aj» + l)(aJ»-aOH
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If we apply IV., making

m = as? + 1 and v = (x3 — x)-, we have

£[(rf+ i)(#-.)»]

= (a-
2 + 1) |- (Xs - »)* + (*"- K)i|- 2 + 1).

(x2 + l)=2x.

dx 2 dx

dx

Hence ^ = i(.T2 + 1)(3 x2 - 1) (ar
3 -*)-£ + (s3 -»)*2a

= (j
2 + 1) (3 x-

2 - 1) + 4 afo
8 - a;) = 7 a;

4 - 2 a;
2 - 1

2 (.r
3 - xft 2{xz - a>)*

8. ^ = 3x10 -2a;6 + ar
? -5, ^ = 3 (10 a9 - 4 z5

-far2

)-

10. y = (x + 2a)(x-a) 2

, ^=3 (a2 -a2
).

,

,

,11.. <fy 4 (a; 3 — q3)3
11. s,= (»*-ai)« S=

3ic f

Differentiate Example 11 also after expanding.

12 v= 2x ~ 1 dy = 2x
' J (x-if dx (x-iy

13. y= z(a*+5)*, g = 5 (ar + l)(x3 + 5)i
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x dy a2

Va2 - x2
'

dx (a2 - x2f

15
(^-a2

)^ dy = 3aWx*-a
2

16
la — x

dx

dy

x dx 2 xy/ax — x2

Differentiate both members of the identical equations, Exs. 17-19.

17. (x2 + ax -h a
2)(x2 — ax + a2

) = x* -f aV + a4
.

18. /'^-±A
2Y = ^ + 2a2 + a4»-2

.

19. ,
2^_ = 1+ 2

20. a = * (*
2+ <*)*& f = (nt

2 + a2
)(*

2 + a2)T

21 ^^ (
2 ^

2 ~ 3)
3 <fy_6(3*2 +4Q(2; 2-3) 2

' y
(? + 2)

2 ' dt (? + 2f

*
y (2a-3a)9 ' dx (2a-3a?) 10

23. 2,= (z + l)3(3z-8) 4(z+ 2^

^ = 3 (13 a2 - 24) (a; + 1)
2
(3 a; - 8)

3(x + 2)
5

.

N
n-i dy_ n(xn + l)

24. <,= *(*» + n)-> ^-
(ajn + n)

l

25. </=
aJ_a d2/ - a'

V2 aa; - oj
2 *» (2 aa - x2)%
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*"• *
~~

~4 ' ,7^ Q ^.4
rfx 3 x4

cty

28. *=(*^2)JJ7i; g= 3
t\ d* 4 (ti + 1)1

29. t,
_ (x3 — «?)» c7y _ 2 a3x2

if l' d*
(.r
3_

h a3)V-«')f

30. y = ^jX- ~X-\-l
V \^+x + l'

cfy_ x-'-l

ax (a*+x+ 1)Vx4 + x2+

1

31.
6 x2 4- 6 *+

1

(4*+l)f

dy_ 12 or
9

* (4« + l)f

32. 2/== (iC2_3ax)^(4^ + 8az + 15«2
)3

)

c7?/_ 4(2

x

3 - 9a3
)

*b
(rf _ 3 cu.) 5(4 rf+ 8 ax + 15 a2

)*

33. y = (x + Vx2
4- l)

n
("Vx2 + 1 - *),

cZ.V

te
= (,r-l)(z+Vz2 + l)».

34. For -what values of x is 3 x4 — 8 x3 an increasing or a decreas-

ing function of x ?

Arts. Increasing, when x > 2 ; decreasing, when x < 2

35. A vessel in the form of an inverted circular cone of semi-

vertical angle 30°, is being filled with water at the uniform rate of

one cubic foot per minute. At what rate is the surface of the water

rising when the depth is 6 inches ? when 1 foot ? when 2 feet ?

Arts. .76 in. ; .19 in. ; .05 in., per sec.
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36. The side of an equilateral triangle is increasing at the rate

of 10 feet per minute, and the area at the rate of 10 square feet per

second. How large is the triangle ? Ans. Side = 69.28 ft.

37. A vessel is sailing due north 20 miles per hour. Another

vessel, 40 miles north of the first, is sailing due east 15 miles per

hour'. At what rate are they approaching each other after one

hour ? After 2 hours ? Ans. Approaching 7 mi. per hr. ; separating

15 mi. per hr.

When will they cease to approach each other, and what is then

their distance apart ?

Ans. After 1 hr. 16 min. 48 sec. Distance = 24 mi.

38. A train starts at noon from Boston, moving west, its motion

being represented by s = 9 f. From Worcester, forty miles west of

Boston, another train starts at the same time, moving in the same

direction, its motion represented by s' = 2 f. The quantities s, s',

are in miles, and t in hours. When will the trains be nearest to-

gether, and what is then their distance apart ?

Ans. 3 p.m., and 13 mi.

When will the accelerations be equal ?

Ans. 1 hr. 30 min., p.m.

39. If a point moves so that s = y7, show that the acceleration

is negative and proportional to the cube of the velocity. How is

the sign of the acceleration interpreted ?

40. Given s = - + bt
2

; find the velocity and acceleration.

41. A body starts from the origin, and moves so that in t seconds

the coordinates of its position are

o
Find the rates of increase of x and y.

Also find the velocity in its path, which is

ds

vdHtyvn , , Ans. 5f + o.
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42. Two bodies move, one on the axis of aj, and the other on the

axis of y, and in t minutes their distances from the origin are

x 5= 2 f
2- 6 t feet, and y= 6 1— 9 feet.

At what rate are they approaching each other or separating, after

1 minute ? After 3 minutes ?

Ans. Approaching 2 ft. per min. ; separating 6 ft. per min.

\Yhen will they be nearest together ? Ans. After 1 min. 30 sec.

43. In the triangle ABC, L and M are the middle points of BC
and CA respectively. A man walks along the median AL at a uni-

form rate. A lamp at B casts his shadow on the side AC. Show
that the velocities of the shadow at A, M, C, are as 22

: 32
: 42

; and

that the accelerations at these points are as 23
: 33 : 43

.

Suggestion.—P being any position of the man, draw from L a

line parallel to BP.

33. Formulae for Differentiation of Logarithmic and Exponential

Functions.

du

VIII. -^-log u « = logae^.
dx u

du

TV d i dx
IX. — log

e
w=— •

dx u

X. — au = loge a-a
u— •

dx dx

XI. *e" = e
v —

dx dx

YTi d .du
,

-, vdvXII. - "='// h loge
?^ • uv— •

dx dx dx
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34. Proof of VIII. Lety = loga u,

then y + Ay = \oga (u + Au),

Ay = \oga (u + Aw) - logau = logo^±^

= log/l +^=^log„(l+^f".
\_

u J u \ u J
Dividing by Ax,

^logA+^f^ CDAx \ u J u

If Ax approach zero, Au likewise approaches zero.

Now Lim^^l +^Y^Lim^Jl + l

For, if we put —= z,

Au

(
i+fr=(i+ t:

and as An approaches zero, z approaches infinity.

But in Art. 12 we have found

Lim^M +-j =e;

therefore LimAM=0 [ 1 -\—- r" = e.

Hence, if we take the limit of each member of (1),

du

dy i dx

dx u
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35. Proof of IX. This is a special case of VIII., when a = e.

In this case

loga e = loge e = l.

Note.—Logarithms to base e are called Napierian logarithms.

Hereafter, when no base is specified, Napierian logarithms are to be

understood; that is,

log u denotes log
e u.

36. Proof of X.

Let y = au
.

Taking the logarithm of each member, we have

log y = u log a;

dy

therefore by IX., dx , duJ 7 — = loga—
y dx

Multiplying by y = au, we have

dy t udu— = loga • au—

.

dx dx

37. Proof of XI. This is a special case of X., where a — e.

38. Proof of XII. Let y = uv
.

Taking the logarithm of each member, we have

\ogy=v\ogu;

dy du

therefore by IX., dx dx . n doJ
' — = + logw—

.

y u dx

Multiplying by y = uv
, we have

dy r-idu . i vdv-?- — vuv l hlog^-^v—
dx dx dx

The method of proving X. and XII. by taking the logarithm of

each member, may be applied to IV., VI., and VII
This exercise is left to the student.
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EXAMPLES

(See note, Art. 35.)

1. y = log (2^ + 3 r%

2. y = xn log (a# + 6),

3- y
xlogx

4. 2/ = log10 (3 x + 2),

ax — b
5. # = log

aa? + 6

I. y = lo{
3^ + 1

' «+3

8. y = ax
e
x
,

9. y = log(a* + 6*),

10. y = (««-_ 1)*,

dy _ 6 (a; + 1)

dx 2 a?
2 + 3 x

dy

dx

ox

ax+b
+nlog(ax+b)

dy _ _ 1 + log x

dx (x log x) 2

riy = 3 log10 e = 1.3029

da 3x + 2 3a+2

dy _ 2 ab

dx a2
x'

2 — b2

dy

dx 3a2 + 10a;-f 3

dy _ 2 (f- - 1)

eft ^4-^-j_^

|2=(l + loga)a*e".

dy _ ax log a + &* log b

dx
~

ax + b
x

dy

dx
= 8 e

2x
(e

2x - l)
s

.

Differentiate Ex. 10 also after expanding.

11. y = 6* +V»,
x — 3

<fy = 24a--10^ &
cte (x-S)2

12. y=(3x-l) 2
e
3x-2

,

dy

dx
3 (9 x2 - l)e3x-\
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13. y = x5 5x
,

~JL = x4 oT(o + x log 5).
da;

14. y = log log x - 1

log x

d# _ 1 + log X

dx x (log a;)
2

Differentiate both members of the identical equations, Exs. 15-18.

15. (x + e
xy = .r

4 + 4 .rV + 6 xV" + 4 a*3* + e
4*.

16. (a* - e
x

f = a3" - 3 cr*e
x + 3 ax

e
2x - e*.

17. log (e
2* + e'

2a
) = log (e

x~a + e
a"x

) + x + a.

18. .i
Jog a = alog x

.

.. Q x los: x i / , . ^

v

dy log x

20. y = log (Vx~HTa + Vx),

21. y = log (2a-+V4x*-l),

<ty_ 1

dx 2Vx* + ax

dy _ 2

da V4r>- 1

dy _ 1
22. y= log ^±i-^

a.,- + 1 + 1
ax xVx + 1

23. y = x [(log x)2 - 2 log x + 2], 4 = (log X)2
-

UX

oa i /

"'•'
/ - (x + a)* + (x - a)*

24. r=log(VJ+7-V—,fc S— . ^f
..'

25. ,, = log(V* + 3 + V* + 2)+V(* + 3)(z + 2), g=^/|±|

26 i = W- ,r - 1 + *'"'

,

•''! = 2 „(,'-?-<)
'.-"' + 1 + <r" dx c-"' + 1 + e"-"
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87. y = log
lo« x

,
®L= 1

.

1 + log x dx x log a; (1 + log x)

,
dv 30 e°*

2/ = 3 log (Vx2 + 3 -3) + log (Vx2 + 3 + 1),

30. y = log (a + V2ax-a2

) +

fly __ 4 a;

^"~^-2V^T3

Va 4- V2 a; — a

0> 1

dx 2(x + V2 ax - a2

)

31 v _,iog
a;2 + l4-V^ + 3a;

2 + l
j

dy = x2 -!
x dx x^/x^ + Stf + l

The following may be derived by XII. or by differentiating after

taking the logarithm of each member of the given equation.

33. y = xnx
, ^| = nx™ (1 + log x).

34. y = (ax>)x
, ^= (ax2

)
1
[2 + log (ax2

)].ax

35. 2/ = x**
2

, ^ = ax°*
2+1

(l + 21ogx).
ax

36. 2/ = (logx)*, ^ = (log x)/-i— + log log xV
ax ° Vlogx y

37. y = x<
10*^ * te (w + 1} (log ,,)Vio,<^

38 . ,»(-£_£ * rf f-fL,W-i-+il€g^-A.
\x + aJ dx \x-\-aJ \x + a a x + a)
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The method of differentiating after taking the logarithm of the

expression may often be applied with advantage to algebraic func-

tions. This is sometimes called logarithmic differentiation.

In this way differentiate Exs. 21-26, pp. 36, 37.

I X

39. Find the slope of the catenary y = ~(ea
-f- e

a
), at x= 0.

What is the abscissa of the point where the curve is inclined 45°

to the axis of X ? Ans. x = a log
e (1 + V2).

40. When does log10 # increase at the same rate as #?

Ans. When x = log10 e = .4343.

When at one third the rate? Ans. When x = 1.3029.

Verify these results from logarithm tables.

41. If the space described by a point is given by s = ae c + be~ f

,

show that the acceleration is equal to the space passed over.

42. If a point moves so that in t seconds s = 10 log feet,
£ + 4

find the velocity and acceleration at the end of 1 second. At the end

of 16 seconds. Ans. Velocity = — 2 ft., and — .5 ft. per sec.

Acceleration = .4, and .025.

43. For what values of a? is y = log (x - 2)
3 - 9^~ 36 x + 32

an increasing or a decreasing function ? \ ~ )

Ans. Increasing when x > 3; decreasing when x < 3.

39. Formulae for Differentiation of Trigonometric Functions. In

the following formulae the angle u is supposed to be expressed in

circular measure.

d du
XIII — sin w = cos u—-

dx dx

XIV —cos u = - sin u— .

dx dx

XV. —tanw = sec2M—

.

dx dx
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d , o du
XVI — cot u = — cosec2 w— •

dx dx

XVII. — see u= sec u tan %—
dx dx

XVIII. — cosec u = — cosec u cot ?t— -

dx dx

XIX. —-versw=sm?t—

•

ax ax

40. Proof of XIII. Let y = sin u,

then y-\-Ay = sin (it + Am);

therefore A y = sin (w -f- A u) — sin ?t.

But from Trigonometry,

sin A - sin B = 2 sin* (A - B) cos
\
(A + B).

If we substitute ^4 = u + A w, and B = m,

we have Av = 2cos(mH—-)sin— -

9

Aw

Hence, H = cos u + *g) l^
Ax V 2 An Ax

Now when Ax approaches zero, Aw likewise approaches zero, and

as Au is in circular measure,

• Au
sin

—

2
LimAM=0-^- = 1. See Art. 12.

T
TT dy du
Hence, — = cos a

dx dx
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41. Proof of XIV. This may be derived by substituting in XIII.

for u, £-?/.

Then |-(l-«)= cos(|-„)|(|r«)
d f du\ d»

or — cos?* = sin ?/[ =-sm«—
dx V dxj dx

42. Proof of XV. Since tan u = ^-^,
cos u

tf . d
cos ?/ — sm v — sm ?/— cos u

. „T
tf ete (to

bv \ 1., ~y~ tan " = 5
d* cos- >/

, dn . . o dv du
cos2 b—t sm- u— —

sec- "

CfeB

COS" ?' COS" w.

43. Proof of XVI. This 'may be derived from XV. by substitut-

ing —— v for ?/.

44. Proof of XVII. Since sec u =—
cos u

d . c?u
cos u sm w

—

, „, f? eta dx
bv A L, 3~ sec u = 5

= =
J 7 ax cos- ?< cos- u

. du= sec v tan >/—
dx

45. Proof of XVIII. This may be derived from XVII. by sub-

stituting ^ — u for u.

46. Proof of XIX. This is readily obtained from XIV. by the

relation 1vers u= 1 — cos u.
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EXAMPLES

1. y = 3 sin 3x cos 2x — 2 cos Sx sin 2x, -^ = 5 cos 3x cos 2x.u
dx

2. y = log cos2 x-\-2x tan a? — a?
2
,

-^-= 2x tan2
#.

3. ?/ = log (sec ra# -f tan mx), — = m sec wa?.
C*3J

>i i / • 2 i * 2 \ dy 2 (a—b) tan #
4. ?/ = log (a sm2

cc + 6 cos2
a), — = — r1u 5 v ; dx a tan2 x + b

c i //) \ , a • dv sin
5. y = cos a log sec (8 — a) + sin ot, -^ = —

.

dv cos (0 — a)

6. y=(m — 1) secm+1#— (ra+ l)secm_1a;,^==(m2 — l)secm-1a;tan3
a;.

cia;

7. 2/ = log tan
(
aa? — ^"j, -^ =— 2a sec 2ax.

8. r = log [sec tan 6 (sec + tan 0)
2

] , — = (sec 6 + tan ^
2

-

& L v y J
' dB tan

9. 2/ = cosecm ax cosec" bx,

—^ = — cosec™ ax cosec" bx (ma cot ax + n& cot bx).
dx

10. w = 2x2 sin 2x + 2x cos 2# — sin 2x, -& == 4a2 cos 2a\
da;

11. ?/ = 2 tan3
a; sec a; + tan a; sec x — log (sec x + tan #),

-^ = 8 tan2 x sec3 a;.

dx

- ' sin a; -f cos x dy 2 sin x
12

-

»- ? '

Tx V
13. y = e3'(sin 2a; - 5 cos 2a;), ^ =13eto(sin2x- cos2z).

ax
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cos x dy sin a

cos (x + a) dx cos x cos (x + a)

15. y = sin3
4.r cos4 3x, -^ = 12 sin2

4a; cos3 3a; cos 7x.
dx

,

«

t
sin x 4- vers x dy

16. y = log !
, -^ = secx.

sin x — vers a; dx

17. 2/ = (sin 2 a;)
1
,

— = 2/ (log sin 2x + 2a; cot 2a;).

da;

18. ?/ = (tan a;)
8inz

,
— = y (cos a; log tan a; + sec a?).

dx

19. y = (sin x)log c0* x
,

-^ = y (cot x log cos a; — tan x log sin x).
dx

20. 7/ = tana;seca; + log J^L±4^, - = 2 sec3 x.
* 1 — sin a; da;

21. 7/ = (tan a; -3 cot a;) Vtana;,
dy = 3sec4

a;

d* 2 tan* x

sin^fl — «)

22. y = log
dy _ sine*

sini^ + a)'
d0~"cos«-cos0

23. y = a log (a sin a; + 6 cos a;)+ 6a, ^ = _^_±&!_,
da; a tan a; -f b

24. y= -
sin

(
2 - +

i)

tan- -2
25. y = log

da; 1-|- sin 4a;

dy 3

2tan?-l d* 4-5sW
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oa a sin if + b vers x dy 2 ab vers x
«D. ])

=
; ,

—- — ;
—

a sm x — b vers x dx (a sm x — b vers x)~.

In each of the following pairs of equations derive by differentia-

tion each of the two equations from the other:

27 . sin 2 a; = 2 sin x cos x,

cos 2 x = cos2
a? — sin2

ic.

2 tan x
28. sin 2 a;

cos 2 a*

1 -f tan
2
aj'

1 — tan 2
aj

tan2#

29. sin 3 a; = 3 sin a? — 4 sin3
a:,

cos 3 x — 4 cos3
a; — 3 cos #.

30. sin 4 a? = 4 sin a; cos3
a; — 4 cos a; sin3

#,

cos 4 a: = 1 — 8 sin 2x cos 2
x.

31. sin (m + n) x = sin mx cos rase + cos mx sin wa;,

cos (m -\-n)x= cos mx cos wa; — sin mx sin wa\

32. If 6 vary uniformly, so that one revolution is made in ir sec-

onds, show that the rates of increase of sin 0, when = 0°, 30°,

45°, 60°, 90°, are respectively 2, V3, ^/% 1. 0, per second.

33. If 6 is increasing uniformly, show that the rates of increase

of tan 0, when = 0°, 30°, 45°, 60°, 90°, are in harmonical progres-

sion.

34. For what values of 0, less than 90°, is sin 6 -f cos an increas-

ing or a decreasing function ?

Find its rate of change when = 15°. Ans.
vr

35. The crank and connecting rod of a steam engine are 3 and 10

feet respectively, and the crank revolves uniformly, making two

revolutions per second. At what rate is the piston moving, when
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the crank makes with the line of motion of the piston 0°,. 45°, 90°,

135°, 180° :

If a, b, x, are the three sides of the triangle, and $ the angle

opposite b,

x = a cos + V62 — a- sin2
6.

Ans. 0, 32.38, 37.70, 20.90, 0, ft. per sec.

36. A crank OP revolves about O with angular velocity <o, and a

connecting rod PQ is hinged to it at P, whilst Q is constrained to

move in a fixed groove OX Prove that the velocity of Q is w. OP,

where R is the point in which the line QP (produced if necessary)

meets a perpendicular to OX drawn through O.

47. Inverse Trigonometric Functions. The inverse trigonometric

functions are many-valued functions; that is, for any given value of

x. there are an infinite number of values of sin
-1

#, tan
-1

#, &c.

For example, sin
-1 -= ±-± 2mr, where n is any integer.

But if the angle is restricted to values not greater numerically

than a right angle, sin
-1 x will have only one value for a given value

of x. Then sin
-1 - = -, sin

_1
( ]

= — - • We thus regard sin
-1

x,
2 6' V 2y 6

cosec
-1

x, tan
-1

x, and cot
_1

.T, as taken between — - and -, that is, in

the first or fourth quadrants.

But cos
_1

.r, sec
-1

x, and vers-1 a;, must be taken between and v,

that is, in the first and second quadrants, which include all values of

the cosine, secant, and versine.

These restrictions are assumed in the following formulae of differ-

entiation.

48. Formulae for Differentiation of Inverse Trigonometric Functions.

flu

XX. — sin
dx VI - u2

clu

XXI. i^cos-S< =
dx x i
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XXII.

XXIII.

XXIV.

XXV.

XXVI.

du

dx

dx ~l + w2

d , i— cot u
dx

du

dx

l+u2

— sec
-1 u

du

dx

dx «V«2-1

d— cosec
-

du

i
##

dx

dx u-Vu2 - 1

d— vers 1

du

dx
jl = •

dx V2w

49. Proof of XX.

therefore

By XIIL,
'

therefore

But

Let y— sin
-1

%;

sin y = u.

du du
cos 2// =— ;

dx dx

du

dy _ dx
_

dx ~ cos y

cos y = ± Vl- sin2
2/
= ± VT

If the angle y is restricted to the first and fourth quadrants

(Art. 47), cos y is positive.

Hence

and

cosy = Vl-<
dy _

du

dx

dx VI
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50. Proof of XXI. Let y = cos
_1

w;

therefore cos y — u.

A, TT ^ dy du

dx dx

therefore

du

dy_ dx

dx~ smy

But sin y = Vl — cos'
2
y = Vl — uK

If the angle ?/ is restricted to the first and second quadrants

(Art. 47), sin y is positive.

Hence sin y -= VI - u2
,

and
dy_

dx~

du

dx

VI -u2

51. Proof of XXII. Let y = tan-1 u

;

therefore tan y = u.

By XV, o dy du
sec^-^ = —

;

dx dx

du

therefore
dy _ dx

dx sec2
?/

But

therefore

sec2
y = 1 -h tai

du

dy _ dx

dx 1 + u2

52. Proof of XXIII. This may be derived like XXIL, or from

cot
-1 u = tan-1 -

.
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53. Proof of XXIV. This may be obtained from XXI. Since

sec
-1 u = cos

-1
-,
u

d /1\ 1 du du

d _! d _,1 dx \uj u2 dx dx
sec * u =— cos l -=

dx dx u I i ./ i «V%2 -1

54. Proof of XXV. This mav be obtained from XX. Since

1 • ll
cosec-1 w = sin

- ->
u

d
f
1
)

1 du du

d _! d , 1 dx
n -1 —

:

—

w u 2 dx dx

^-i +-i
,-\/ir — 1

55. Proof of XXVI. This may be obtained from XXL Since

vers_1 w = cos
-1

(1 — w),

d /-. _ v du

vers-1 m =— cos x
(1 — u)

dx dx Vl-(l-w) 2 V2

EXAM PLES

! 4.-1 5® — 1
1. y = tan x —-—

>

^ 9

• 2/ = sec x —

,

3. y = sin x—-—

>

u - 7

4. ?/ = vers
-1

(8#
2 — 8#4

),

5. 3/ = tan x
>

dt/
o

da; 5.r- — 2a? -h 1

dy _ 3

dx ^V4x2 -9

^.V _ 1

dx V(aj - 5)(2 - X)

dy _ 4

da; VI - x2

% _ a
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6. y = tan * (3 tail 0),

7. ?/ = sec
-1

sec2
0,

9
8. y = vers-1

r + 1

9 . y=cot -i *"+':'
er* — e

10. // = cosec-1

dy _ 3

d6 o - 4 cos 2

dy_ 2

dO Vsec2 + 1

dy _ 2

dx *» + l'

dy 2a

dx e
2ax_|_

e
-2«x

dy _ 1

* -

1

*c a V8ar + 2b - 1

11. // = tan x
(- cot '

>
-^ = 0.

5 6x +

1

da;

12. y = cos
-1 Vvers sc, — = — 4 Vl 4- sec a7.

13. y = o tan- ? - b tan-
* * = (a'-ftV

, -

J
a 6 da; (a;

2 4-a2
)<>

2 + &
2

)

14. >/ = cot-^ + ^
,

fa; — a

15.
• _i Sill X — COS SB

y = sin A

V2

16. y = sin ;
,

17. j/ = tan -1
(sec x 4- tan a?)

,

18. y = sin
-1 -

dy _ a

da; a;
2 + a

dx
1.

1fty _ k2 -6 2

da; &a • + ( -a; 2
'

•#_.1
da* 2

dy

e' 4- e
- * dx e

x
4- e~x

19. y = cot '
1
.,- - x 4- 1) - cut" 1

(a; - 1)
dy

da; a;
2 4-

1
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20. y=:tan-l4 + 5tanfl;
?

*
3 da? 5 + 4 sin 2a;

21. 2/
= cos- 1^^-2x/^ % = V6av-a^

22. 2/ = ^2 sec- 1--2V^=l, ^/ = 2 a; sec" 1 -•
2 da; 2

Differentiate both members of the identical equations, Exs. 23-28.

23. 2cos- 1^±i = cos-1
a.

24. 3 vers-1 x = vers" 1 [x(2x- 3)
2
].

25. sin
-1 x + sin

-1 a = sin-1 (ay 1 — xz
-\-x Vl — a2

).

26. tan-1 mse +. tan-1 nse = tan-1 ^— ^
•

1 — mnxr

ol- ,2 a; + 2 , _i /a; + 1
27. vers *

—

=[-—=2tan \ —^

—

» + 3 \ 2

28. tan-
"'tan*-* =^ fa^ \ _^ b

.

a6(l + tanx) \b J a-

OQ 01 aj
2 -2a; + 5 14 . _!^-5 dy 12x2 -20

29
' ^

= 2lQg
^ + 2, + 5

+tan 17^ &=
54^F+3'

__ _ 4 a; — xs dy 4

3

Q1 . .^(a^-a2)^ dy 2\/x2 -a2

31. 2/=sm x—^—-

—

i—
y

-£ =

—

3V3 a2a ^ a?V4 a2 - or

32. What value must be assigned to a so that the curve

y = loge (x — 7 a) -f- tan
-1

a«,

may be parallel to the axis of X at the point x = 1 ?

^4ns. J or — i.
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33. A man walks across the diameter, 200 feet, of a circular

courtyard at a uniform rate of 5 feet per second. A lamp at one

extremity of a diameter perpendicular to the first casts his shadow

upon the circular wall. Required the velocity of the shadow along

the wall, when he is at the centre ; when 20 feet from centre ; when

50 feet ; when 75 feet ; when at circumference.

Ans. 10, 9T
8
g, 8, 6-f,

5 ft. per sec.

56. Relations between Certain Derivatives. It is necessary to notice

the relations between certain derivatives obtained by differentiating

with respect to different quantities.

To express — in terms of'—
• If y is a given function of x, then x

dx dy
may be regarded as a function of y. From the former relation, we

have -^, and from the latter, — These derivatives are connected
dx dy

by a simple relation.

It is evident that —£ = -—,
Ax A#

*9

however small the values of Ax and Ay. As these quantities ap-

proach zero, we have for the limits of the members of this equation,

ft=i (i)
dx dx w

dy

That is, the relation between -2 and — is the same as if they were
-,. - .. dx dy

ordinary tractions. a

For example, suppose

x=-^~. (2)
y + 1 •

w

Differentiating with respect to y, we have

dx a

B

dy G/ + 1)
2

y(i), !=_M!=-!, by(2) .



58 DIFFERENTIAL CALCULUS

This is the same result as that obtained by solving (2) with refer-

ence to y, giving

y = - 1,
x

and differentiating this with respect to x.

To express -^ in terms of -^ and — : that is, to find the derivative
dx dz dx

of a function of a function. If y is a given function of z, and z a

given function of x, it follows that y is a function of x. This relation

may often be obtained by eliminating z between the two given

equations, but -^ can be found without such elimination.
dx

By differentiating the two given equations, we find —and—, and
dz dx

from these derivatives,— may be obtained by the relation
dx

J J

dy_dy^dz^ /on

dx dz dx

For it is evident that —^=—^ —
Ax Az Ax

however small Ax, Ay, and Az. By taking the limits of the members

of this equation we obtain (3). That is, the relation is the same as

if the derivatives were ordinary fractions.

For example, suppose

y = *
5
, \ ,4x

z^tf-x2
.}

K)

Differentiating these equations, the first with respect to z, and

the second with respect to x, we have

dz dx

By (3),
%L = bz\- 2x) = - 10x(a2 - x2

)\ by (4).
dx
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The same result might have been obtained by eliminating z between

(4), giving

and differentiating this with respect to x.

The relation (1) may be obtained as a special case of (3) by

substituting y = x. This gives

Another form of (3) is

dx dz _ dx _ ..

dz dx dx

dy

dx dy

dz~dz'
dx

EXAMPLES

(5)

which is of frequent use.

In Exs. 1-4, find — and thence — by (1).
dy dx

i ,- — ay ~ ^ dy _ (by — k) 2
__ bh — ak

by — k' dx bh — ak (bx — a) 2

2. x = vl +siny,

3. x =
1+ logy'

dy __ 2 Vl + sin y
cos y

2

dx V2-X2

dy._(l-flog;V)
2 _ f

dx logy xy — x2

2z 2x

4. a? = olog
Vy+ q "hV^, dy = 2^/tf + cu/ = e«-e

Va dx a 2

In Exs. 5-8 find ~ and — , and thence -j- by (3).
dz dx dx J v '

9 2z-l' :;./;-
2'

dx (a>+2)2
'



60 DIFFERENTIAL CALCULUS

6. y= log£±±, , = «,
dy = e-e~*_

z dx e
x + e~x

7. y=zez + e
2z

, z = \og(x-x2
),

^/ = 4 a)
3 - 6 ar> + l.

dec

8. ?/ = log !— , z = sec x -f tan #,
62 -fa

% a2 — 5
2

da? 2 ab -\- (a2 -f 6
2
) cos x

9. Differentiate (a?
2 + 2)

2 with respect to sb
3
.

n fi nrl

dz

(77/
Let y = (x2 + 2)

2
, and 2 == ar

3
. It is required to find -j*-

^ = 4aj(aj
2 + 2), — = 3a;2

.

cte dx

B (5)
dy = ±x(x2 + 2) = ±(x2 + 2)

J w
dz 3x2 3x '

10. Find the derivative of —;+ —
; with respect to - + -

a6 x6 c a x

Ans. Sfc+ l +£\
a;

2

/

11. Find the derivative of sin 3a; with respect4o sin x.

Ans. 3 (4 cos2 x — 3).

12. Find the derivative of taii
-1
^/^ with respect to log (1 + x).

Ans.
2-Vx

13. Find the derivative of log—: with respect to
a sin x — cos x

j ab (a
2 tan x — b

2 cot x)

a2 sin2 x — b2 cos2 x a2 +b

14. Given x = 5 cos
<f>
— cos 5cf>, y — 5 sin<£ — sin 5<£; find— .

ciaj

u.-i?t.s. — = tan 3 4>.

dx



CHAPTER IV

SUCCESSIVE DIFFERENTIATION

57. Definition. As we have seen, the derivative is the result of

differentiating a given function of x. This derivative being generally

also a function of x, may be again differentiated, and we thus obtain

what is called the second derivative; the result of three successive

differentiations is the third derivative; and so on.

For example, if y = %\

dx

-1^=12^,
dxdx

dx dx dx

58. Notation.

denoted by —^«
J

dx2

The second derivative of

That is, dry _ d dy

dx2 dx dx

Similarly,
dhj __ d d dy _ d d2

y
dx3 dx dx dx dx dx2

d4
y _ d d d dy _ d d3

y
dx4 dx dx dx dx dx dx3

dry _ d d"
_1

.y.

dxn dx dxn~ l

01
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Thus, if y =A
dy_
dx

= 4a3
,

dx2
= 12a;',

fry
=

dxs
= 24x.

The successive derivatives are sometimes called the first, second,

third, . . . differential coefficients.

If the original function of x is denoted by f(x), its successive de-

rivatives are often denoted by

/'(•). /?(«)» /'"(•). /*(?). ••• /-(*)

59. The rtth Derivative. It is possible to express the nth deriva-

tive of some functions.

For example,

(a) From y = e
ax

, we have

dy — aeax
fry_ a2

e
ax

. . .
fry = a"eax .

dec ' dx2 dxn

(b) From y = = (ax + b)~\ we have
ax + b

g = (-l)a(aa + 6)-*, g = (-1)( - 2)a\ax + &)-»,

g = (- 1)(- 2)(- 3)a8(aa + 6)~4 = (- 1)^3 a
3(ax + 6)"4

,

2JL = (_ l)"|na-(aa! + 6)"Bj1 - — -
dx11 ' — y

(ax + 6)
n+l
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(c) From y = sin ax, we have

f
-^- = a cos ax = a sin ( GKE-f-

*"

da;

*fc = a2
cos faa + 1) = a2

sin few +^\
dx

& = crcos f«e +—\= a3 sin few+^\

(/"?/ - . / , ?nr\—i = a n sin
f
ckb H ].

efo"

EXAMPLES

1. y= Za*- 5 rt + 20 ar» -or' + 2^ ^ = 120(0? - a? + 1).
ax

2 !/ = {x2 -^, â M
Q
= 20(x2 -l)(x2 -4:)i

ctx~

3. y = xr + x~m
,

-{ — m(m - l)(m — 2)aJ
m"3 — ra(m + l)(m + 2)arro-3

.

J '

da*
L

[3 |6 J9

5. // = x4 log a-*,

6. 7 = a*
2 log (a* — 1),

7. v = 4^_2)e*+(a,'-l)e2x
.

8. ., = ^_3^ + — -3)ea
,

9. /• = log sec 0,

da5

_24

X

cfy_ 2(x2 --3a;+ 3)

dx"' (« -I) 3

d2y_
dx2

= 4 x(ex + *)•

d2x

df
:4ts

e
2t

-

dfr
- 6 sec4 0-4 sec 2

(9-
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10. y=ze-x(llsin2x-\-2eos2x), ^ = 125 e— sin 2 x.
dx3

n . _, A 24a<l-a;2
)11. ?/ = tan 1

a?, —2 = ^ >->
'

dxA
(1 + a;

2

)
4

12. ^tan-f^, g, 2(^ + ^-6).
J

2 ' da;
3

(e
* + e-*)3

,_ ,— a; d3y_2(x — aYx2 + ! ax + a2
)

13. 2/ = logV^ + a-+ tan-'-, ^
(^ + ay

14. y = (e
a» + e-"*) sin a6, ^+ 4a4

t/ = 0. .

du

15. ?/ = a;e
x(sma; — cos a;)-}- 3 e

x cos a?, —-^ = 4 a;e* cos x.

16. 2/ = e-tan
% 2̂

+ (tana;-l) 2^ = 0.

l7
sinwg + coswa? ^ + ?^2/ + n2

o.

18. w = arYsin log a; + cos log x), x2—\ — 3 x-^- + 5 v = 0.
dar da;

19. 2/ = a6
*, ^ = &w(loga)na6a!

.

(XX

0* (—1Y-I 3n \n — 1
20. 2/ = log(3a;+2), ^ = ^ i- t==.

9
,

y
da;

n
(3a; + 2)

M

, d"2/ (-l)w" 1 1.3.5...(2n-3)

22. 2/ = sin5a;sin2a;, ^=y~3w cos/3a;+^V ?n cosf7a;+^Yj
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The following fractions should be separated into partial fractions

before differentiating.

1 fin.. (— l) n
\n

23 i/ = - 1

x2 - 1 daT 2 L(aj-1)"
+1 (x+ 1)"*

oa 3a?-4 d"y , 1 . n| |~ 2 2"
24. w = , —£ = (— l) n H —

3
2.r-' + 3.r-2 da?

K J L
-\_(x + 2y+1 (2a>-l)»+1

n
5 _ 13 ^1 = (- ±\n\ f 2"+1 3" +1

26.
2x-- + x + l

* 2.r'-x-l
2X+ z

-1

On+1

da"
V ) LL3(x-l)n+1 3(2 a? + 1)

x2 dry _ (- l)"+1 4[w (x - n + 1)
27. y=

28. ^/
=

(x + 2)
2

'

dxn (x + 2)'l+2

/ax + 1\
2 d"y 4

(- i)"01" |* (a:c + n)

\ax - 1/ dx" (ax — iy

60. Leibnitz's Theorem. This is a formula for the ?ith derivative

jf the product of two factors in terms of the successive derivatives

3f those factors.

A special case of Leibnitz's Theorem, when n = 1, is Formula IV.,

d , s du dv m\
Tx {ttV)

=Hx
v+u

<rx
(1)

For convenience let us use the following abridged notation

:

dv d?v dnv
vi = — ?

v2 =—o> '" vn =
dx dxr dxn

du cPu dnu
Uj =— , u2

=— , ••• un =—

•

dx " dx2 dx"
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Then (1) becomes

d
(uv)=u 1v+uv1 (2)

Differentiating (2),

d2—- (uv) = u2v + ihVi -h VqVi + uv2 = u2v + 2 ulv1 4- uv2,

dx~

d3— (uv)= usv + U2V1 + 2 iu>vx + 2u xV2 + 0^2 4- uv3
dx>

= usv 4- 3 w2^i 4- Sufis 4~ wy3 .

We shall find that this law of the terms applies, however far we
continue the differentiation, the coefficients being those of the Bino-

mial Theorem ; so that

— (uv)= UnV + Wn-lVl + -^T^ Z Un-2»2 -\ 1- UU^O^ + UVn . (3)
(XX £

This may be proved by induction, by showing that, if true for

dn dn+l— (uv), it is also true for (uv). This exercise is left for the
dxnK J dxn+iy J

student.

In the ordinary notation (3) becomes

dn f N dnu
,

dn
~ludv . n(n-l)dn - 2ud*v

,(uv)= v + n h — h •••

dxnK
} dxn dxn~ l dx [2 dxn-*da?

. dudn~lv
,

dnv

dx dx"*1 dxn

EXAMPLES

1. Given y — Xs sin 2 x ; find by Leibnitz's Theorem —^.9
dx4

d*
From (3),

—
- (uv) == u#) + 4 u^ + 6 u2v2 + 4 w^ 4 ttv4.

Cta?

^ = a;
3
, i<! = 3 a?

2
, u2 = 6 a?, Wg = 6, u4

= 0.

v = sin 2 a?, %\ — 2 cos 2 x, v2 = — 4 sin 2 x, v3 — — 8 cos 2 a?
5

v4 = 16 sin 2 a;.
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!&/ = <P
, .r sin 2 x) = 0. sin 2 x + 4-6- 2 cos 2 .r -f 0-6 a; (- 4 sin 2 »)^ dx4

-J- 4 • 3 x3(— 8 cos 2 «) + a?
3 16 sin 2 aj

- 16 [(.i-
3 - 9 x) sin 2 x + (3 - 6 a2

) cos 2 »].

2. Given y = *«*• find 25

.

d.r"

Here u = e"
x

, Mj = oe", ••• u,^ = an~ l
e
ax

, un = an
e
ax

.

v = x, vl= l
)

v.2 = 0, v3= 0, •••.

Substituting in (3), we have

^ =— (e**x) = an
e
axx + m"" 1^1 =atl- 1

e
ax(ax + w).

3. , = (. + i)V^ri; ^3(5^-14,4-13).
d7? 8(»-l)*

a -i dA

y J, ,46,8 6\1 ^ lo^ J = €

X
l°Z X +x-^^-x*)

K ,31 /o , in c?
4
V 48(a;4-l)(2«2 + 2x + l)

6. 2/ = sin x log cos a,*, —- = sin a; [log cos x — 2 tan2 #(3 tan 2 x -*- 5)1.
dar

7. y = x*a*, ^ = ax(loga)"-2 [(ajloga + ft)
2 -ft].

\

8. v = !

>
—-=( — 1) ft- *

—

! !—

•

9
(a-,+ 1)

3 dxn K } - (x + l)
n+*



CHAPTER V

DIFFERENTIALS. INFINITESIMALS

61. The derivative -^ has been defined, not as a fraction having a
ax

numerator and denominator, but as a single symbol representing the

limiting value of — , as Ax approaches zero. In other words, the

derivative has not been defined as a ratio, but as the limit of a ratio.

We have seen (Art. 56) that derivatives have certain properties

of fractions, and there are some advantages in treating them as such,

thus regarding -^ as the ratio between dy and dx.
dx

Various definitions have been given for dx and dy, but however

defined, they are called differentials of x and y respectively. The
symbol d before any quantity is read " differential of."

62. Definition of Differential. One definition is the following:

The differential of any variable quantity is an infinitely small in-

crement in that quantity. That is, dx is an infinitely small Ax, and

dy an infinitely small Ay.

By the direct process (Art. 16) of finding the derivative of an

algebraic function, Ay is generally expressed in a series of ascending

powers of Ax, beginning with the first.

For example, if y = x3
, y+ Ay=(x + Ax)3

,

and Ay = 3x2Ax + 3x(Axy+(Ax)\ ... (1)

In finding the derivative we have

^ = 3x? + 3xAx + (Ax)2
,

in which, as Ax approaches zero, the second member approaches 3x?

as its limit, the second and third terms approaching the limit zero.
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If we let A.r approach zero in equation (1), every term approaches

zero, but there is nevertheless a marked distinction between them, in

that the second and third terms, containing powers of Ax higher than

the first, diminish more rapidly than that term.

Thus we have Ay=3x2Ax approximately,

and the closeness of the approximation increases as Ax approaches

zero.

From this point of view, regarding dx and dy as infinitely small

increments, we may write

dy = 3x2 dx,

not in the sense that both sides ultimately vanish, but in the sense

that the ratio of the two sides approaches unity.

Thus dy=3x2 dx, and ^- = 3x2

,

dx

are two modes of expressing the same relation.

According to the first,

An infinitely small increment of y is 3x2 times the corresponding infi-

nitely small increment of x.

According to the second,

Tlie limit of the ratio of the increment of y to that of x, as the latter

increment approaches zero, is 3xr.

Just as we sometimes say

"An infinitely small arc is equal to its chord," instead of

"The limit of the ratio between an arc and its chord, as these

quantities approach zero, is unity."

So in general, if y =f(x),

LimAae=0 -^=/'(aj),Ax

that is, ^/ =/'(*) + e
,

Ax

where c approaches zero as Ax approaches zero.



70 DIFFERENTIAL CALCULUS

Hence Ay = f'(x)Ax-\-eAx,

and as the term eAx diminishes more rapidly than the term f'(x)Ax
}

we have
Ay =/ '(a?) Ax approxim ately

,

or dy=f'(x)dx.

Corresponding to every equation involving differentials, there is

another equation involving derivatives expressing the same relation,

and the former may be used as a convenient substitute for the more

rigorous statement of the latter.

Thus the use of differentials is not indispensable, but convenient.

It should always be kept in mind that their ratio only is important,

the derivative being the real subject of mathematical reasoning.

63. Another Definition of Differentials. The differentials dy, dx,

are sometimes defined as any two quantities whose ratio equals the

derivative
dy

dx

tan RPT.

Y

o/
?^<k\ T

R

y

dx

X

Let us see what this defini-

tion means geometrically.

If we regard the derivative

as the slope of a curve,

dy

dx
By this definition of differen-

tials, dx may be any distance

PR taken as the increment of

x, and dy is then RT, the corre-

sponding increment of the ordi-

nate of the tangent line at P.

That the two definitions are

consistent will appear, if we
diminished.

The smaller we take PR, the more nearly is ^- equal to unity, or
RQ

in other words, the more nearly is RT equal to RQ.
If PR is supposed to be infinitely small, this definition of differ-

entials becomes that of the preceding article.

suppose PR to be indefinitely

RT
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The second may be said to be the more rigorous of the two defini-

tions, but the first has the advantage of being more symmetrical, and

better adapted to the various applications of the calculus to mechanics

and physics.

64. Formulae for Differentials. The formulae for differentiation

may be expressed in the form of differentials by omitting dx in each

member.

To each of the formulae for a derivative, corresponds a formula

for a differential.

Thus we have

II. dc = 0.

III. d(u + v) = du + dv.

IV. d(uc) —vdu -f udv.

VI. jfu\ _ vdu — udv

VII. d(u") = nun~ l du.

IX. 7 1
(l "

d log u =—
u.

XI. de" = e
,

'du.

XIII. d sinw = cosu du.

XIV. d cos u = — sin u du.

XV. d tan u = sec2 udu.

XVI. d cot u= — cosec2 u du.

XVII. d sec u = sec u tan u du.

XVIII. d cosec u = — cosec u cot u du.

XX. 7
• _i fl "

O Sill U — •

Vl-u2

XXII. 7 *. -1 (l "
,i tan u = -•

1 +U*

XXIV. i du
d sec u =

"VuY^l

XXVI. 7 , du
il vers- u = •

V2u
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Differentiation by the new formulae is substantially the same as

by the old, differing only in using the symbol d instead of — .

(XX

For example, let y =
2

.

X -\- O

to, _ rif^±l\ - (x2 +3)d(x + 3)-(x + 3)d(x2 + 3)ay ~ a
[x^T3j~ (z2 + 3)

2

= (x2 + 3) dx - (x + 3) 2 xdx~
(x2 + 3)

2

_ (a;
2 + 3 - 2 a;

2 -6 apcfa = (3 - 6 a; - a2
) cfa

(x2 + 3)
2

(a;
2 + 3)

2

If we wish to express the result as the derivative, we have only

to divide by dx, giving

dy_ 3 — 6x — x2

dx~ (x2
-\-3)

2

EXAMPLES

Differentiate the following functions, using differentials in the

process

:

1. y=(a?-l)(2-3a>)(2a> + 3), dy= (-IS x2 + 2 x + ll)dx.

2 x = (t-l)(t-2) dx= 6(f-2)dt

(* + l)(* + 2)' (t+l)«(*+ 2)«"

3. y = -vVTT Va7^2, dy = ~Z=rdx-
Wx'-\- 1 Var — 2

4. r = 5J2l-*, ^ = (2 + Sm^)sin^
cos3 cos4

5. y = e*(x3 -6x2 + 2£x-4:0), dy= e
2

(^ + Adx.
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f6.

r = sin 6 log tan 9, dr = cos 6 log tan 6 dO + sec 6 dO.

4.r , 4 cfa
7. w = tan *

-, o?/= .

4 - sc
8 5

4 + x2

sin-1 3a + 3.rVl - 9 x2
, dy = SVI — 9 x* dx.

3 tan2
(9 dO

9. <^ = tan-Han3
^, d^ =

tan4
6> — tair^+1'

65. Order of Infinitesimals. In Art. 62 we have spoken of infinitely

small or infinitesimal increments.

An infinitesimal may be defined as a variable whose limit is zero.

If there are several infinitesimals that approach zero simulta-

neously, one of them, a, may be taken as the standard of comparison

and called the principal infinitesimal.

Then a 2
, a3, a* are said to be infinitesimals of the second, third,

?ith orders, with respect to a.

In general the order of an infinitesimal is defined as follows: An
infinitesimal (3 is said to be of the nth order with respect to a when

Lim a=0^ = A', a finite quantity, not zero. . . . (1)

When n= 1, (3 is of the first order with respect to a.

When n = 2, (3 is of the second order with respect to a.

From the definition it may be shown that the limit of the ratio of

an infinitesimal to one of the same order is finite, and to one of a

lower order, zero.

Equation (1), Art. 62, illustrates infinitesimals of different orders.

If we write it

dy = 3x2 dx + 3x (dx) 2 + (dx)8
,

and regard dx as the principal infinitesimal, the terms of the second

member are infinitesimals of the first, second, and third orders, with

respect to dx.

i), if we regard x as the principal infinitesimal, of what orders

are Bin a; and \tvsx, with respect to x?
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By Art. 12, Limx=o ?HL£! = l
?
a finite quantity.

Hence by (1) sin x is an infinitesimal of the first order with respect

to x.

T . versa; T . 1 — cosx siii
2
sc T - 1 /sinscV 1

Lim x=0
—— = Lim x=0

——— —— == Lim x=0
x- sin'

2* or l + cosa?y x J I

a finite quality.

Hence by (1) versa? is an infinitesimal of the second order with

respect to x.

Show that tan 6 — sin 6 is an infinitesimal of the third order with

respect to 6.



CHAPTER VI

IMPLICIT FUNCTIONS

(See also Art. 114.)

66. In the preceding chapters differentiation has been applied to

explicit functions of a variable. The same rules or formulae of differ-

entiation are sufficient for deriving -^, —4, —*, •••, when y is an
° dx dx2 ' dx5 '

' y

implicit function of x ; that is, when the relation between y and x is

expressed by an equation containing these variables, but not solved

with respect to y.

For example, suppose the relation between y and x to be given by

the equation
9 9,799 97 9

cry2 + b
2xr — orb'.

Differentiating with respect to x,

dx

2ahJ
(hl + 2bix
dx

= o,

dx

b
2x^

a 2

y

Having thus obtained the first derivative, we may by another

differentiation find the second derivative.

cC-ylf- - Hm»3K b
2

fy -x&SJ
dx V dx)

dx- d.ca2y~
<i^f d2

y
2

7-3
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Substituting now for -^ its value,
dx

dry _ b\a2f + b
2x2

) b*

dx2 ay ay

differentiating again, we may obtain

d3
y _

dx8

3 6\
a4
y
5

'

The first differentiation may be conveniently performed by differ-

entials instead of derivatives. Thus we should have from the

equation
a2

y
2
-f b

2x2=a2
b
2
,

2a2ydy + 2b2xdx = 0,

dn "hi*
giving -^ = — , as before.

dx a 2

y

In deriving —^, —*, ..., derivatives should be used rather than

differentials.
dx dx

EXAMPLES

Find the following derivatives.

1. (x- a
)
2 + (y-b) 2 = c

2
,

''_ d3y_ 3c2(x-a)dv _ x — a d2

y _
dx y — b' dx2

dy_xy- y
2

dx xy + x2

(y-by dx* (y-by

2. x=y\og(xy),

3. (coB^=(8in^, gj = logBin* + <frtanfl
7 v ry '

dB Iogcos0-Ocotcf>

4. ax2+2 hxy-\-by2= 1,

<fy_ _axjj-hy d2
y _ lr — ab d2x _ h2—ab

dx hx + by' dx2 (hx + by)3 ' dy2 (ax + hyy
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5. aa? + 2hx!r+ bf= }

d/ = «.

dx x

. . , . rtd> sin 2 6 d2
d> 2 sin 2 Afcos 2 <f> + cos 2 0)

6. tan tand> = w,—" —
:

—_x _x= ^ v
. T* z -r

'd0 sin2 0'c?02 sin2 2 5

„ o / \ i / s ch/ 2)/ — x d2
)/ (x — y)

2

8. (3x+ y+ 6y(3y-3x+ 2)=c, Jj=y=|e.

9. ,W«+ 2r + l= 0,

(|J
+ 2,eot.|=^

10. e-=crtr
diJ = ?/

"~ logft
,
^y = %-iog«) j

c?£ a; — log 6
' (to

2
(a; — log b)

2
'

hi / o , oN o . i v r?y « + ?/ d2
y 2x? + 2w2

ii. log (,-+,-) = 2 tan-^, g=^-J
y

, J=-^r#-



CHAPTER VII

SERIES. POWER SERIES

67. Convergent and Divergent Series. The series

%+w2 -f u8 + ••• +un + un+1 , . . ... . . (1)

composed of an indefinite number of terms following each other

according to some law, is said to be convergent when the sum of the

terms approaches a finite limit, as the number of terms is indefi-

nitely increased. But when this sum does not approach a finite

limit, the series is divergent. That is, if Sn denote the sum of the

first n terms of (1), the series is convergent, when
Lim )(=00 Sn = some definite finite quantity.

When this condition is not satisfied, the series is divergent.

Thus the geometrical series,

a + ar +ar2
-f- ar

3
-f-

is convergent when r is numerically less than unity, and divergent

when r is numerically greater than unity.

For Sn = a + ar + ar* + ••• + ar""1= a
(}
~ **)

.

1 — r

When * \r
|
< 1, Lim^ Sn = ^_i_

.

1 — r

When
|
r

|
> 1, Liin n=00 Sn = oo.

When
|
r

| =1, the series is also divergent.

68. Series of Positive and Negative Terms. Absolute and Conditional

Convergence. In the case of series composed of both positive and

negative terms, a distinction is made between absolute convergence

and conditional convergence.

*
|
r

|
denotes the numerical value of r.

78



SERIES 79

Before defining these terms, the following theorem should be

noticed:

A series whose terms have different signs is convergent if the series

formed by tailing the absolute values of the terms of the given series is

con vergent.

"Without giving a rigorous proof of the theorem, we may regard

the given series as the difference between two series formed of the

positive ami negative terms respectively.

The theorem is then equivalent to this :

If the sum of two series is convergent, their difference is also

convergent.

A series is said to be absolutely convergent, when the series of the

absolute values of its terms is convergent.

A series whose terms have different signs may be convergent

without being absolutely convergent. Such a series is said to be

conditionally convergent.

For example : 1 1 h (1)

converges to the limit loge 2,

but it is not absolutely convergent, since

2 3 4
is divergent (see Art. 70).

Series (1) is accordingly conditionally convergent.

But l_i +I_I + ...

22 32 42

is absolutely convergent (see Art. 70).

69. Tests for Convergence. The following are some of the most

useful tests.

In every convergent series the nth term must approach zero as a

limit, as n is indefinitely increased.

That is, the series v^ -f- u2 + Mg+ ••• + u n -\

is convergent, only when Lim
# ,=x u n

— 0.

For Sn = #__, + un .
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If the sum of the series has a definite limit,

Limn = a0 Sn = Limn=0O Sn. v

Hence Limn=00 M n = (1)

For a decreasing series whose terms are alternately positive and

negative, this condition is sufficient.*

For example, 1 — - + = + -••*
^ ' 2 3 4

is convergent. But the decreasing series

2 _ 3 4 _ 5

1 2 3 4*"

is divergent, as it does not satisfy (1), since LimM=00 un = 1.

The sum of this series oscillates between two limits, loge 2 and

1 + log
e 2, according as the number of terms is even or odd. Such a

series is called an oscillating series.

For a series whose terms have the same sign, the condition (1) is

not sufficient. For example, the harmonic series

^2^3 4^
is divergent (see Art. 70).

70. Comparison Test. We may often determine whether a given

series of positive terms is convergent or divergent, by comparing its

terms with those of another series known to be convergent or diver-

gent.

In this way the harmonic series

1 + - + - + -+- + - + - + - + — . • . • . (1)
2 3 4 5 6 7 8

w
may be shown to be divergent, by comparing it with

1+
I
+H +H +H + - (2)

* The proof of this is omitted.
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Each term of (1) is equal to, or greater than, the corresponding

term of (2). Hence if (2) is divergent, (1) is also divergent. But

(2) may be written

T
2
T4816

= 1 + 1 + 1 + 1 + 1 + ...

The sum of this series is unlimited ; hence (2) is divergent, and

therefore (1).

Consider now the more general series

h+h+h+h+- (3)

If p = 1, the series (3) becomes (1), which is divergent.

If p < 1, every term of (3) after the first is greater than the cor-

responding term of (1). Hence (3) is divergent in this case also.

Ifp> 1, compare

! + !+!+L + L + !+!+L + ...+JL + ...
. (4)

1» 2' 3' 1' o» 6' 7' 8' 15" v i

™th h +h +h+h +h +h+h+h +," +h + " :
- • ®

Every term of (4) is equal to, or less than, the corresponding

term of (5). But (5) may be written

L + ^+l+^ + ...

\P ' 9 P 4:P S p '

2
a geometrical series whose ratio, — , is less than unity.

Hence by Art. 67, (5) is convergent and consequently (4).

Thus it has been shown that

whenp^l, the series (3) is divergent;

when p >1, the series (3) is convergent.

The series (3) together with the geometrical series are standard

series, with which others may often be compared.
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71. Cauchy's Ratio Test. This depends upon the ratio of any

term to the preceding term. In the series

u2 + u3 H h un + un+1+ • • (1)

this ratio is

Let us first consider, from this point of view, the geometrical

.... (2)
series

a + ar + ar -\ \- arn 4- arn+1+

Here the ratio-^ = r, and is the same for any two adjacent terms.

We have seen (Art. 67) that this series is convergent or divergent,

according as
, , „ , , i

-

|r|< 1, or |?-|> 1.

That is, (2) is convergent or divergent according as

< 1, or >1.

If now (1) is any series other than the geometrical series, the

is not constant, but a function of n. The series is thenratio
Wi

convergent or divergent, according as

Liim < 1, or Lim,
J=

Wi >1. (3)

We will first suppose (1) to be a series of positive terms.

Let Lim, = P .

Suppose p < 1. By taking n sufficiently large we can make

— approach its limit p as nearly as we please.
n

There must be some value m, of n, such that when n ^ m,

-^- < r, a proper fraction.

Hence um+1 < ujr3
um+2 < um+lr < umr

2
, etc.

um + um+l+ mot+2+-- <um+ umr+ uy+ ••-.
. • W



SERIES 83

But since r < 1, the second member of (4), which is the geometrical

series, is convergent, and therefore the first member

is convergent. Consequently (1) is convergent.

Suppose p > 1. By similar reasoning, when n > m,

-^ > r, an improper fraction.

Hence v. m^ > um r, u m+2 > um+1r > unf+ etc.

Since r > 1, the second member, and therefore the first member,

must be divergent.

Thus the theorem is proved for a series of positive terms.

If the terms of (1) have different signs, it is evident from Art. 68

that the series will be absolutely convergent if

u.
Lim,

l n+l <1.

It is also true that for different signs, (1) will be divergent if

,n+l

Lira, >1.

If Lira,

The proof of this latter statement is omitted.

Un+1 _ -i

the series may be either convergent or divergent. There are other

tests for such cases, but they will not be considered here.

EXAMPLES
1. Is the following series convergent?

1-2 2-

2

2 3.2s «2»

Applying (3), Art. 71, we have ^*±*
n

un 2(w + l)

1

2 (n + 1) 2

As this is less than unity, the given series is convergent.

Its limit is log, 2, as will appear later.
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Determine which of the following series are convergent, and which

divergent.

2
' 2 + \3

+
g
+

\5
+

+ II +
10 102 103 104

4
-

l+
l+H+

5
1

1

1
I

1
1

1
I

6. l-f? +l ± ^
2 22 23 24

7 . 1+
'*
+* *

L? L§ Ji=

8 i_?+?-^+A_
3 5 7 9 11

9 1+I+A.+
,

i
' 2

_r 5"r
10 n2 + l

+

10.
1 4—i-_ + 1

1 + Vl 1 + V2 1 + V3

11. log?-log| + log|-log| +

By (3), Art. 71.

By (3), Art. 71.

By (1), Art. 70.

By (1), Art. 69.

Compare with (3), Art. 70.

Compare with (3), Art. 70.

By (1), Art. 69.1

12. sec^-see^+sec^-sec^+

13. sin2 ^ + sin2 - + sin2 ^ + sin2

^ + ..

2 3 4 5
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14.

15.

16.

1 + 1

1 2 + 1 22 + l ' 32 + l 42 + l

1 + 1 2 + 1 3 + 1 4 + 1

l» + l~
t"22 +l~t S2+ l~

f"4s+ l

2+1
,
3 + 1 4+1

,

' OS . i .19 -t '

+

2+l + 3±l + 4±l + 5±l +2^-1 33_1 43_1 5S_ ±

Answers

Exs. 2, 5, 6, 9, 11, 13, 14, 16, convergent.

Exs. 3, 4, 7, 8, 10, 12, 15, divergent.

Exs. 8, 12, oscillating.

72. Power Series. A series of terms containing the positive in-

tegral powers of a variable x, arranged in ascending order, as

a + axx + a 2#
2 + a$? -\ ,

is called a power series in x. The quantities a,-,, a
l5 a2,

supposed to be independent of x.

For example, l + 2a; + 3a,-
2 + 4^3

H ,

are

1_ t+ I*_ t
12 li 1$

are power series in x and y respectively.

+

73. Convergence of Power Series. A power series is generally

convergent for certain values of the variable and divergent for

others.

If we apply the ratio test, (3), Art. 71, to the power series

a
{)
+a xx + a#?-\ \-anx

n
-\ , (1)

we have for the ratio between two terms

Un±X anx

Lim. = Lim,
anx = |a?|Liin BS

«n-l



86 DIFFERENTIAL CALCULUS

The series (1) is convergent or divergent according as

|
x

|

Lim^

that is, according as

|<c|<Lim n=

The case \x\ = Limw=Q

< 1, or
|
a;

|

Lim, >i;

or |#|>Lim
7t=

requires further examination.

For example, consider the series

1 + 2x + 3x2 + 4lX3
-\ t-naT-1 + (n + 1) a? +—.

Here =
, Lim,,^, = 1.

an n +

1

71 + 1

(2)

Hence (2) is convergent or divergent, according as

|aj| < 1 or \x\ > 1.

We may say that (2) is convergent when — 1 < x < 1, and the in-

terval from — 1 to + 1 is called the interval of convergence.

EXAMPLES

Determine the values of the variable for which the following

1. l + x + x2 + xs +---

x , x-
2. -J^-j-_^_ +-^ +

1-2 2-3 3-4

/v*— /y»3 rW*

3. »+'-+- + - + —.,2^3 4

A Xs
, X5 x7

.

4
-

X -3 + 5~7 + -'
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- .1 .r*
,

1 3 .i-
3

,
1 • 3 T> .r

7

,

5- .r + ^ • - + —-T ~ + n , ,.
- + •

7.- m3 />v*

V- )•"* }•'

7. 1-— +— -=-+•'. : ««x
2 i [6

Q a-
3

. sc
6

a*' .

12 • 12 II

Exs. 1-5, convergent when — 1 < a? < 1

Exs. 6-8, convergent for all values of jc.



CHAPTER VIII

EXPANSION OF FUNCTIONS

74. When by any process a given function of a variable is

expressed as a power series in that variable, the function is said to

be expanded into such series.

Thus by ordinary division

= l_ a; + ^_ x3 + ... (1)
1 + x

By the Binomial Theorem

(x + a) 4 = a4 + 4 a3x+ 6 a¥ + 4 ax3 + x*.

(l-£C)-2 = l + 2x + 3»2 + 4ar3 +... (2)

The methods employed in these expansions are applicable only to

functions of a certain kind. We are now about to consider a more

general method of expansion, of which the foregoing are only special

cases.

It should be noticed that when a function is expanded into a

power series of an unlimited number of terms, as (1) and (2), the

expansion is valid only for values of x that make the series con-

vergent. For such values, the limit of the sum of the series is the

given function, to which we can approximate as closely as we please

by taking a sufficient number of terms.

The general method of expansion is known as Taylor's Theorem

and as Maclaurin's TJieorem.

These two theorems are so connected that either may be regarded

as involving the other. We shall first consider Maclaurin's

Theorem.

88
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75. Maclaurin's Theorem. This is a theorem by which a function

of x may be expanded into a power series in x. It may be

expressed as follows

:

/(*) =/(0) +/(Q)j+/' (0)|+/"(0)|+ -,

in which f(x) is the given function to be expanded, and/' (x),f (x),

f"(x), •••, its successive derivatives.

f(O),f(0),f'(0), • ••, as the notation implies, denote the values of

/(*), / (*)> /' (*)>
'

'

; when * = °-

76. Derivation of Maclaurin's Theorem. If we assume the

possibility of the expansion of f(x) into a power series in x, we may
determine the series in the following manner:

Assume
/(x^i + m'+CV +DxH^i •••,

- . . . (1)

where A, B, C, ••• are supposed to be constant coefficients.

Differentiating successively, and using the notation just defined,

we have

f\x) = B + 2Cx + 3Dx2 + 4:Exi+ ..- .... (2)

f"(x) = 2C+ 2.3Dx + 3.±Ex2 ... (3)

f"'(x) = 2.3D + 2-3-4;Ex + ... . (4)

r(x) = 2'Z-±E+... (5)

Now since equation (1), and consequently (2), (3), ••• are supposed

true for all values of x, they will be true when x = 0. Substituting

zero for x in these equations, we have

from (1), f(0)=A, A=f(0),

from (2), f(0)=B, B=f(0),

from (3), /'(0) = 2C, C=^'



90 DIFFERENTIAL CALCULUS

from (4), /»'(0) =2- 3D, D =OS,

from (5), /iv
(0) = 2-34^ E = G^-,

li

Substituting these values of A, B, C, • • • in (1), we have

/(*)=/(0)+/ ,

(0)j+/"(0)
|

| + /"'(0)^+--- ... (6)

77. As an example in the application of Maclaurin's Theorem, let

it be required to expand log (1 -f x) into a power series in x.

fix) = log (1 + x), /(0) = log 1 = 0.

f(x) = -±- = (l + x)-\ /'(0) = 1.

f'(x)=-(l + x)-*, /"(0)=-l.

/'»(*)= 2 (1+z)-3
,

/'"(0)=2.

/* (x) = - [3 (1 + *)-4
, /"(0) = - [3.

/*.(*) = 14(1+.*)^, /- (0) =14.

Substituting in (6), Art. 76, we have

x2
,
2 xs [3*4

, Li*
5

log(l+x) =0 + 1.^-1- 2
+^--^J

+ ^g----

/v?2 /yiO /yi4 /yi5

iog(i-M)=*-f +!-!+!-•••.

78. If in the application of Maclaurin's Theorem to a given

function, any of the quantities, f(0), /'(0), /"(0), ••• are infinite,

this function does not admit of expansion in the proposed power

series in x.

In this case f(x) or some of its derivatives are discontinuous for

x = 0, and the conditions for Maclaurin's Theorem are not satisfied

(see Art. 94).

The functions logic, cotcc, x2
}
illustrate this case.
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EXAM PLES

Expand the following functions into power series by Maclaurin's

Theorem

:

r- t3 x4

1. e
x = 1 + x + -

: + '— 4- '— H • Convergent for all values of x.

\2 |3 |4

2*^ X° X'

2 sin x = x — — + '— — ~ H • Convergent for all values of x.

[3 [5 [7

,2 ,4 6

3 cos a; = 1 ——+ - — + Convergent for all values of x.

j2 |4 [6

4. (a + jc)« = a" + va»-\v -f
"^~^ a"~V

+ "O*- 1)!"- 2) ^-3^3 + ... Convergent when \x\ < a.

[3

5. logu (l+ a;) = logae^-|+|-j+-
Convergent when |a;|< 1.

2 3 4

6. log (1—*) = — x- ———— — . Convergent when
|

x
| < 1.

7. tan- 1 ;/— x—— +—— ^--\ . Convergent when \x\ < 1.

O O 4

Here /(a?) = tan-1
a;,

/'(*) =^-1-^ = 1 -o'+^-aM- ...,

/" (a?) = -2a? + 4ar3- 6a?5+

Q . .
,
1 .r '

,
1 . 3 a?

8 1 • 3 • 5 x7
.

Convergent when \x\ <1.
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Here f(x) — sin
-1

#,

VI — XT

Expanding by the Binomial Theorem,

/' (a;) = 1 +aar>+ bx4+ cx6+ • ••,

where a = -, 5 =—, c^ 1
'
3

'
5

,
»

2* 2-4' 2.4.6'

/" (x) = 2 ax + 4&c3+ 6ca5+ —

,

9. sin (x + a) = sin a + a; cos a — — sin a — — cos a +

Convergent for all values of x.

10. log(l + x + x*) = x + ^-?f + ^+ ^^ o 4 o

Convergent when
|
x

|
< 1,

. x3 x5

11. e* sin x = cc + a3
2
H . Convergent for all values of x.

12. e* cos # = 1 + a; 1 . Convergent for all values of x.
3 6

13. tana= a +^+ ?
r?+"-.

3 lo

14. Sec*= l + |
2

+ |f+-.

15. logsec* = - +- +- + ....

Defining the hyperbolic sine, cosine, and tangent by

sinh x = ——— , cosh x =—

—

, tanh x = , show that
2 ' 2 ' e-H-e-'

16. sinh «=* +- + -+.-.
[3 |5
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ar , x"
17. cosh 3 = 1 + ;- + ;-+. •

x3 2 r5
18. tanh x = x— — 4- 77-

3 15

19. Show by means of the expansions of Exs. 1, 2, 3, that

,xiA-l cos as 4- V— 1 sin x,

e
-x v/- 1 _ cos a-

_ -y/_ 1 s in ^ #

These are important relations.

79. Huyghens's Approximate Length of a Circular Arc.

If s denote the length of the arc ACB, a its chord, and b the

chord of half the arc, it may be shown that

8 b - a . .,
s =—-— , approximately.

o
Let <£ be the half angle AOC.
Then s = 2 r<j>, and by Ex. 2, Art 72,

a=2r sm<£ = 2W
<f>

*! + £
[3 [5

in|=2r^-^4--*
5

2 V2 2 '3

[3
25

1^

Combining so as to eliminate <£
3
,

b-a =2rfs^ + ^=3s(l-^.

480

If s is an arc of 30°, & = —, and the error < -,T
12' 102000

If s is an arc of G0°, <*> =
|, and the error <^q
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80. Computation by Series.

Compute by Ex. 1, p. 91, Ve to 5 decimal places.

Ans. 1.64872.

Compute ^\/e to 10 decimal places. Ans. 1.1051709181.

Compute by Ex. 2, p. 91, sin 1° to 8 decimal places.

7T = 3.14159265. Ans. 0.01745241.

Compute to 4 decimal places the cosine of the angle whose arc is

equal to the radius. Ans. 0.5403.

81. Calculation of Logarithms. By means of the expansion of

log (1 + x), Art. 77, the Napierian logarithms of numbers may be

computed.

Let us find the logarithms in the following table.

log 2 =0.6931,

log 3 =1.0986,

log 4 =1.3862,

log 5 =1.6094,

log 6 =1.7917,

log 7 =1.9459,

log 8 =2.0793,

log 9 =2.1972,

log 10 = 2.3025.

It is only necessary to calculate directly the logarithms of the prime

numbers 2, 3, 5, 7, as the others can be expressed in terms of these.

We have from Art. 77,

log 2 = log(l + l)=l-i + |-i+....

This series is convergent, but converges so slowly that 100 terms

would give only two decimal places correctly. But we may obtain

a series converging much more rapidly by taking

log2 = log ? = log (1 + |)-log (1-|).
~3
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For log
1 + x

1-x
log (1 + X) - log (1 - x)

.v-
,
x3 a*

,= X +
2 3 4

(-a ar _ ar _ .t
4 _ .

2~ 3 4 }

Convergent when !a;|<l.

Thus log2= 2/^+-i- + -i-+-i-+...\

Four terms of this series give losr 2 = .6931.

The computation may be arranged as follows:

J-

3
~ .333333 i =.333333

1

33
.037037 — = .012346

3-33

1 _
3"'

.004115
1

=.000823
5-3 5

1

37
.000457

1
. = .000065

1

3 ,J

.000051
1

r
= .000006

9 • 3"

.34657

2

.69314

The numbers in the first column may be obtained by dividing suc-

cessively by 9.

1 + x
1 +

Any number may be put in the form T an(j \Q(T 3

may be found like log 2.
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But having log 2, it is easier to compute

1
1 +

log - = log

log3 = log| + log2.and then

Let the student make this computation

Find log 5 from

i+i
i . 5 ! '4
log - = log -

1-

In a similar way find log 7 from log 5.

Having obtained the logarithms of 2, 3, 5, 7, find the other loga-

rithms in the table at the beginning of this article.

To obtain the common logarithm, that is, logarithm10, it is only-

necessary to multiply the Napierian logarithm by .4343, the modulus

of the common system.

Find thus the common logarithms of the numbers in the foregoing

tables,— first, of 2, 3, 5, 7, and from these the others.

82. Computation of ir. From Ex. 7, p. 91, by letting x = 1, we have

I=
taa->l = l-!+H + ..,

a slowly converging series.

To obtain a series converging more rapidly, we may use

tan" 1 1 = tan"1 - + tan
- 1

3'

from which
1 + 1 1

4 2 3 • 2s
' 5 • 25 7 • 27

+

^3 3-33 5-35 7-37
+
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By taking 9 terms of the first series and 5 of the second, the

student will find

- = 0.463647 ... + 0.321751...
4

and 7T = 3.14159 ••..

Other forms of tan-1 1 may be used, giving series converging even

more rapidly, as

tan" 1 1=2 tan"1 - + tan"1- •

tan-1 1 = 4 tan-1 tan-i
5 239

By these formulae the computation has been carried to 200 deci-

mal places.

83. Taylors Theorem. This is a theorem for expanding a function

of the sum of two quantities into a power series in one of these

quantities.

As the Binomial Theorem expands (x + h) n into a power series

in h, so Taylors Theorem expands f(x + h) into such a series. It

may be expressed as follows

:

/(x + ft)=/(x)+/'(x)A+/"(x)|+/"'(»)|+-.

84. The proof of Taylor's Theorem depends upon the following

principle

:

If we differentiate f(x + h) with respect to x, regarding h con-

stant, the result is the same as if we differentiate it with respect

to h, regarding x constant.

That is, -ff(x + h) =-£ f(x + h).
ax all

For, let z = x + h, (1)
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then by (3), Art. 56,

dx dx dz dx

dh
Jy J

dJi
K }

dz
K J

dh

But from (1), — = 1. and — = 1

;

v ;
' dx ' dh

therefore Af(x + h)=— f (x '+ h)

.

dx
JK ^ J dh

JKJ
85. Derivation of Taylor's Theorem. If we assume the possibility

of the expansion of f(x + h) into a power series in h, we may deter-

mine the series by the aid of the preceding article. Assume

f(x+h) = A + Bh + Ch2 +ms + (1)

where A, B, C, • • • are supposed to be functions of x but not of h.

Differentiating (1), first with respect to x, then with respect to h,

d j.,
, 7N dA . dB 7 . dC.o ,

dD JS ,

dx dx, dx dx dx

— f(x + h)=B + 2 Ch -f 3Dh2 + ....

By Art. 84, the first members of these two equations are equal to-

each other, therefore

§A + QRn + Mltf +... = B + 2Ch + 3Dh2 + ....

dx dx dx

Equating the coefficients of like powers of h according to the

principle of Undetermined Coefficients, we have

^ = B, B = ^.
dx dx

dB_2fl p _ 1 d2A
dx 2 dx2

dC=3D, j) = ~ c~
dx [3 dx3
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The coefficient A may be found from (1) by putting h = 0, as that

equation is supposed true for all values of h.

Then A =/(«).

Hence £=^ =/'(»)•

Substituting these expressions for A, B, C, ••• in (1), we have

/(.r + /o=/«>o+/'(^A+rw|Vr'(^,4
3

+---. . . (2)
[2 [3

86. Maclaurin's Theorem may be obtained from Taylor's Theorem

by substituting x = 0. We then have

/CO =/(0) +./(0)» +/"(0)jf +/"'(0)jf
+ •-

This is Maclaurin's Theorem expressed in terms of h instead of x.

87. As an example in the application of Taylor's Theorem, let it

be required to expand sin (x + h) into a power series in h.

f(x + h) = sin (x + h)
;

hence / (x) = sin x,

f'(x) = cos x,

f"(x) = — sin x,

/"'(a*) = — cos x,

/iv
(a;) = sin x.

Substituting these expressions in (2), Art. 85, we find

/r h* h4

sin (x + /ij = sin x -f h cos x — — sin a: — — cos x + — sm a: -f

re.
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EXAM PLES

Derive the following expansions by Taylor's Theorem :

h2 h3

1. cos (x + h) = cos x — h sin x — 7F>
C0S x + 75 sin ^ +

3. (x + /i)
7 = x7 + 7a;6 7i+ •••.

4. (x + 7i)
w = af

1 + nxn
~x h +

n (n— 1) +

A4h h2 h3

5. log (a; + h) = log x -\ 7Tl> + ^Js~T^4 + '

7
a? 2 ar 3 ar 4 ar

6. tan (a; + h) = tan a; + h sec2
a; 4- 7r sec2

a;tan x

+ ^(3sec4 aj-2sec2 x) + ....

7. Compute from Ex. 1, cos 62° = 0.4695.

8. Compute from Ex. 6, tan 44° = 0.9657, tan 46° = 1.0355.

9
fjx+ h) +/(»,- h)

=f(x) +| r(x)+
V /iv(a;) +_

10 .
/(«+*) -ffr-Q ^hfim) + g /"'(g) +g/» + -;

As a special case of Ex. 10, derive

iiog.«±»- * + j!. + i. + ..,
2 # — 7i a; oar 5X5

11. /(2a.)= /(a;)+x/^)+
^

2

/' ,W + |r'W + -...

12. /
1 + aJ

/{«) /'(*) + f" (x)

1 + 05

13. If 2/= /(#), show that

(1 + *)
2

1

2

x3 f'"(x)

(1 + *)
3

[3
+

y
da; ^cto2

[2 ^da:3
[3



EXrAXSIOX OF FUNCTIONS 101

88. In the preceding derivations of Taylor's and Maclaurin's

Theorems, the possibility of the expansion in the proposed form has

been assumed. In the remainder of this chapter we shall show how
Taylor's Theorem may be derived without such assumption.

89. Rolle's Theorem. If a given function <£(.r) is zero when

x = a and when x=b, and is continuous between those values, as

well as its derivative <£'(.r); then

<f>\x) must be zero for some value

of x between a and b.

Let the function be represented

by the curve y = <f>(x). Let

6A = a, OB = b. Then accord-

ing to the hypothesis,, y = when

x = a, and when x = b.

O/A B\
Since the curve is continuous

between A and B. there must be

some point P between them, where the tangent is parallel to

and consequently <f>'(x) = 0.

OX,

90. Mean Value Theorem. If/(#) is continuous from x = a to

x = b, there must be some value xx of x, for which

b-a J K J

This may be stated geometrically

thus:

The difference of the ordinates of

two points of a continuous curve,

divided by the corresponding differ-

ence of abscissas of these points, equals

the slope of the curve at some inter-

mediate point.

In the figure let the curve PRQ
represent y=f(x).

A
1

A(P/Y
M

K B
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Let OA = a, OB = b. Then

b-a PM
At some point of the curve, as R, between P and Q, a tangent can

be drawn parallel to PQ. Call OK=x1
. Then the slope of the

tangent at R is/'(a^), which equals tan QPM.

Hence HS~f(a
) =f(Xl), where a < x, < b. . (1)— CL

If we let AB = b — a = h, b = a + h, (1) may be written

f(a + h)=f(a)+hf(a + cf>h), where 0<<£<1. . (2)

91. Another Proof. The following method of deriving (2), Art. 84,

is important, in that it may be extended to higher derivations of

f(x), as appears in Arts. 92, 93.

Let R be defined by

f(a + h)-f(a)-hR = (1)

That is, let R denote /(a + ?0 -/(«)
.

h

Consider a function of x whose expression is the same as (1) with

x substituted for h. Call this function 4>(x).

That is, <£(#) =f(a + x) -f(a) -xR (2)

Differentiating, <j>' (x) =f (a + x) - R (3)

It is evident from (2) that <j>(x) = 0, when x = h, by (1) ;

also <j}(x) = 0, when x = 0.

Hence by Eolle's Theorem, Art. 89, <j>'(x) == 0, for some value of x

between and h.

Calling this value of x, 6h, we have from (3)

f'(a -f Bh) -R = 0.

Substituting this value of R in (1),

f(a + h)=f(a) + hf'(a + $h).
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92. Extension of Mean Value Theorem. We may extend the method

of the preceding article so as to include the second derivative, and

obtain f(a + h) =/(a) + hf (a)+|V" (* + Oh).

Define i? by f(a+ h)-f(a)-hf(a)~M = 6 (1)

Let $(x)=f(a+ x)-f(a)-xf(a)-^R (2)

Hence <f>'(x)=f (a + x)—f (a) — xE,

4>"(x)=f"(a+x)-B (3)

From (2) it is evident that <f>(x) = 0, when x = h, by (1);

also <ft(x)=0, when a; = 0.

Hence by Rolle's Theorem, Art. 89, <f>'(x) = 0, for some value, x1}

of x
}
between and h.

Also
<f>'

(x) = 0, when x = 0.

Hence <f>" (x) = 0, for some value, x2 , between and x
1}
that is, be-

tween and h. Writing x2 = Oh, we have from (3),

f'(a + 0h)-E = O.

Substituting this value of E in (1), we have

f(a + h) =f(a) + hf (a) + ~f'{a + Oh).

It is to be noticed that it is assumed that /(a;), f'(x), and /"(a;) are

continuous from x = a to x — a + h.

93. Taylor's Theorem. This may now be derived by extending the

preceding method so as to include the ?*th derivative.

It is assumed that fix) and its first n derivatives are continuous

from x — a to x = a + h.

Define It by

f(a + h)-f(a)-kf(a)-gf»(a) ^/»-i(a)-f"i^0. (1)
[2 \n-l \n
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Let

+(x)=f(a+z)-f($-xfXa)-£f"(a) * /^(a)-^

if(x) =fr(a + x)-f'(a)-xf»(a)
[

J^/^»(tt)-
|

-gL j»

$«-* (») =/w"1 (a + a;) -/"- 1 (a) - a>2J,

*-(oj)=/l (a + aj)-iJ (2)

As in the preceding articles, it is evident that

cj)(x) = 0, when x = h, and also when x=0.

Hence <f>'(x) = 0, when x = x1 , where 0<xx <h.

But <f>'(x) = 0, when # =0 ; hence

<f>"(x) = 0, when x = x2, where < x2 < xv

Continuing this reasoning, we find

<fr

n (x) = 0, when x = xn, where < xn < xn_u

that is, where xn is between and h.

Hence from (2) <£" (Oh) =fn (a + 6h) - R = 0.

Substituting this value of R in (1), we have

f(a + h)=f(a)+hf («)+!/"(«) + ...+ |r^/-'(a)+^/"(a + fl»).

Since a is ara/ quantity, we may write x in place of a, giving

/( + A) =/() + V(«) +|/» + - +
|
J3I

/-1

o*)

+ .-/•(* + »). ..... (3)
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94. Remainder. The last term of this equation

I*

is called the remainder after n terms in Taylor's Theorem. When the

limit of this remainder is zero, as n is indefinitely increased, Taylor's

Theorem gives a convergent series.

We have already seen (Art. 86) that Maclaurin's Theorem is a

special case of Taylor's Theorem, so that corresponding to (3) of the

preceding article, we may write Maclaurin's Theorem

/(*) = /(0) +.r/'(0) + |/"(0) + .- + -^_/..-'(0) +|/»(te),

f(x) and its first n derivatives being assumed continuous for values

from to sb.

Thus the remainder after n terms in Maclaurin's Theorem is

™»

When Lim n=I=e = 0, (1)

Maclaurin's Theorem gives a convergent series.

Applying (1) to f(x) = e
x
, we have

Lim, = 0,

which is evidently satisfied for all values of x.

The same is true for f(x) = sin x, and f(x) = cos x.

llf(x) = log (1 4- *), (1) becomes

Lhn_ \* (-1)-|!L=11
U± (i + Bxy J

=--[!

=Ffe)-]=»-
This is satisfied when |aj| < 1.

It is to be noticed that the preceding test for convergence is of no

practical use, unless the nth. derivative of f(x) can be expressed.



CHAPTER IX

INDETERMINATE FORMS

95. Value of Fraction as Limit. The value of the fraction ^; ' for

• , i

"#
• <K«) ^>

any assigned value ot x, as x =a, is
^ v y

•

This is a definite quantity, unless <j>(a) or \{/(a) is zero or infinity.

When this is the case, we may, by regarding the fraction as a

continuous variable, define its value when x equals a, as its limit

when x approaches a.

That is, the value of ^' '
, when x = a, is defined to be

Limx_ a
^

, or what is the same thing,

Lim ±(a+M.
h

-°t(a + h)

There is no difficulty in determining this limit immediately, when
the numerator only, or the denominator only, is zero or infinity ; or

when one is zero and the other infinity.

We will now consider the cases where, for some assigned value of

x, the numerator and denominator are both zero or both infinity.

The fraction is then said to be indeterminate.

96. Evaluation of the Indeterminate Form - • Frequently a trans-

formation of the given fraction will determine its value.

Thus, —j-—-— = - , when x = l.
x2 — l

But if we reduce the fraction to its lowest terms, we have

z2 +.t-2 T . x+ 2 3
LinL,_, = Lim^i

—

[— = - •

*_1 x*-l Vhl 2

106
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r — 2
Again, —— = -, when x = 2.

a z - 1 - 1

By rationalizing the denominator,

T . a;- 2 T . (a; - 2) (V» -1 + 1)

Vai-1-1 g—'2

= Lim^Va-l + 1)= 2.

As another illustration,

008 2g = °, whenfl = ?.
cos 0- sin 4

cos 2 (9 .
cos 2 6- sin 2

(9

"But Liui p_zr
7 :—7 — Lim

fl
_zr ;r~—:

—

we~
4 cos 6 — sin (9

e~4 cos^-siu^

= Lillian (cos 6 + sin 0) = cos- -f- sin-= -y^.
4 4 4

The Differential Calculus furnishes the following general method:

97. Form <• yen- fraction, taking the derivative ofthe given numerator

for << new numerator, and of the given denominator for a new denomi-

nator. T/>>- value of this new fraction, for the assigned value of the

variable, is /la- limiting value of the given fraction.

We will now show how this rule is derived.

Suppose the fraction ^ ' —-, when x = a-, that is, <f>(a) =0, and

= o. *W °

- By Art. 95 the required value of the fraction is the limit of

. as h approaches zero.
- h)

By the Mean Value Theorem, (2), Art. 90

(ft (a +h) = <t>
(a) + h4'(a + Oh),

^{a^h) = ^{a)-r h^(a-r-eih)t

where 6 and
X
are proper fractions.
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But since cj>(a) — and if/(a) = 0, we have

<t>(a 4 h) = h<f>'(a 4 Oh) = <fr

f(a + flft)
t

^(a 4 /i) ^'(a 4 dji) i}/'(a 4 0^)
*

Hence Lim^^±£ =£M

which is the theorem expressed by the rule.

If <j>'(a) = and ij/' (a) = 0, it follows likewise that

that is, the process expressed by the rule must be repeated, and as

often as may be necessary to obtain a result which is not indeter-

minate.

For example, let us find the limiting value of the fraction in

Art. 96.

$(x) x2 -l 0'

y
,> / = ^ = -, when 05 = 1.

xp\x) 2x 2'

q
Thus the required limiting value is - •

Z
For another example, let us find the limiting value, when x = 0,

e* _|_ e
-x _ 2

1 — COS £C

i// (a?) 1 — cos a?

= -, when a; =0.

<£'(<e) _ e
x — e~* _

ij/'(x) sin a; 0'
when x = 0.

xj/"(x) cos a?

when x = 0.

Thus the required limiting value is 2.



INDETERMIXATE FORMS 109

EXAMPLES

Find the limiting values of the following fractions for the assigned

values of the variable.

1.
*0g ~ 1;r~ 2

,
whenz = 2. Ans. n + \.

x- — 2 X L

% log(3*» + s-3) whenx = l. Ans. 7.

\ogx

3.
a ~

, when x = 0. Ans. log6 a.

.r— tan_1 .T

vers fl

sin2
'

sin^ + |)-l

log sin 2

when x = 0. -4?is. — 2.

5
108(^-4 8 + 6) when*= 2. ^nS. -2.
log cos (# — 2)

6
w-log(x + l)

> whenx = 0. 4«& g.
XT Jj

when = 0. Ans. 0.

8.
sinm"- sin "", whenm = «. Ans. cos no.
sin (?n — n)«

when0 = ?« ^4??s. -

10. 5^=±
6

,
when a =6. ^w. ^+J2S-

6
.

ab —b" 1— log 6

„ log>g -log.6 when a = 6. Ans.
a — b b log b

^-2ar' + 2x-l
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13>
faums-ntans when z = 0. Ans. 2.
nsmx — sin7ix

, A tan nx — n tan x -, ^ A xsec2^— tana;
14. —

;
;

,
wnen?i = l. Ans. —

n sin x — sin nx sin x — x cos x

- c m sin x — sin mx •

, A A ms — m
15. , when x = 0. Ans.

(x — 1) e
x + (a; + 1) e~x 4

16.
eto + e" -

log sec2 x — af

98. Evaluation of the Indeterminate Form °°. The method is the
00

same as that given in Art. 97 for the form -

.

It has been shown in that article that

Lmu=o T^-ZL_1 = T-±-l
, (1)

if/ (a + li) i//(a)

if <£(«)= 0, and ^(a)=0.

It may be shown that (1) is true also, if <f>(a) = oo and \p (a) = oo .

For the proof of this the student is referred to more extensive

treatises on the Differential Calculus.

For example, find the limiting value of
° x

, when x = 0.
cot x

&£)=M^ = » when z= 0.

\f/(x) cot x oo

1

6'(a?) a; sin2
a; , A7?H= — = =

a' whenx-0.y(x) — cosec^a? a;

d>"(x) 2 sin a; cos a; A -, A
,.) (

= = - = 0, when a; = 0.
\\>"(x) 1 1.

Thus the required limiting value is 0.

oo
Note. —^The form — can in most cases be avoided by transformation into —

GO
J
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99. Evaluation of the Indeterminate Forms • x , cc — cc .

Transform the expression into a fraction, which will assume either

the form - or— •

x
For example, find the value of

(?r — 2 x) tan x, when x= ~+

This takes the form • oc

.

But (tt-2x) taiix=
7r ~ 2x =®, when«= J.v J
cot a; 0' 2

^ =
~ 2

,
= 2j when *«*

i//(.r) -cosec2
a- 2

Thus the required limiting value is 2.

For another example, find the limiting value of

1 1

log X X — 1

This takes the form x — x

, when x = 1.

-p,-,4. 1 1 b—1— log a; -, .,-But = °
. = - when x = 1.

log sc x — 1 (a; — 1) log x

^ =__£_=4 when a- = 1.

'« 1-1+fcg. °

1

„ = = -
. when x = l c

*(*) 1 + 1 2
'

a?
2

a;

Thus the required limiting value is--
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100. Evaluation of the Exponential Indeterminate Forms, 0°, l
00

, oo°.

Take the logarithm of the given expression, which will have the

form - or — • The limiting value of this logarithm will determine the
oo

given function.

For example, find the limiting value of x*, when x = 0.

This takes the form 0°.

Let y = xx
;

then log y = x log x =—^— = — , when x = 0.
x-\ GO

1

iLLA — = — x = 0, when x = 0.
ij/'(x) _1_

x2

Thus the limiting value of log y is 0.

Hence the limiting value of y is e° = 1.

For another example find the limiting value of

i

(1 -f- ax)*t
when x = 0.

This takes the form of l
00

.

i

Let y = (l + ax)x,

log y = lpg (! + ax) = % when *= 0.
a;

y v y =—! = a, when x = 0.
^' (a) 1f (a)

The limiting value of log y being a, the limiting value of y is e
a
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EXAMPLES

Find the limiting values of the following expressions for the

assigned values of the variable.

1. log(lH-aj), when a; = 0. Ans.
x or 2

3
2. 2X tan—

,

when # = 00. Ans. 3.
2T

3. x tan v — j: sec x, when a; = ^. Ans. - 1.

4.
'°g tan "*,

log tan &#

5 »
*

2x? 2x tan a;
'

sec 3 x
6.

sec o x

„ fx
2 + x\-\

V 2 J
:

8. (cosec0)
tan

9. (tan0) cos<>

2 sec2
(9 - l\ tan2'

10
/2 sec2 6 - IV

c"\i

12. (log a>>--,

i

13. (az + z)x,

«* /cos ax 4- cos bx\ xZ

\ 2 J

when a; == 0.

when a; = 00

when a;

:

7T

~2"

when a'

:

= 0.

when x == 0.

when x
7T

~2*

when x = 1.

when 6
7T

~2*

when 0:
7i'

"2"

when 0:_ 7r

"4"

when x = 0.

when a; = e.

when x == 0.

when a; == 0.

^±ns. 6*

Ans.
5
3'

Ans.
3

Ans. vz

Ans. 1.

Ans.
4

e 3-

Ans. abc.

Ans.
i

Ans. ae.

Ans.
1



CHAPTER X

MAXIMA AND MINIMA OF FUNCTIONS OF ONE
INDEPENDENT VARIABLE

101. Definition. A maximum value of a function is a value greater

than those immediately preceding or immediately following.

A minimum value of a function is a value less than those immedi-

ately preceding or immediately following.

If the function is represented by the curve y=f(x), then PM
represents a maximum value of y or of /(»), and QN represents a

minimum value.

102. Conditions for a Maximum or a Minimum.

It is evident that at both P and Q the tangent is parallel to OX,
and therefore we have for both maxima and minima,

clx

Moreover, as we move along

the curve from left to right,

at P the slope changes from

positive to negative ; but at Q,

from negative to positive.

In other words,

At P the slope decreases as

x increases. ... . (a)

At Q the slope increases as

x increases (b)

By Art. 21 we have the case (a)

d
when

dx
(slope) < 0. • (1)

114
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But * (slope) =^f^\ =%
Iv * J dx\dxj lWdx

and (1) becomes —\ < 0.
efar

Hence when ^ = 0, and^ < 0, . (2)
dx dx2

there is a maximum value of y.

By similar reasoning we have the case (6),

$y
dx2

when —\ > 0.

Hence when S = 0, and ^ > 0, (3)
r/.v dar

w
there is a miidmum value of ?/.

For example, let us find the maximum and minimum values of

the function «

Put 2/== |_2o;2 + 3^ + l.

Then ^= a*-4a?^& (4)
da;

Putting ( 4) = 0, s?- 4 a;+ 3 = 0,

whence

fH*- 4
- • • •

• <5>

Substituting those values of a; in (5), we find

when a =1, = _2<0;



116 DIFFERENTIAL CALCULUS

Hence by (2) and (3),

when x= 1, y has a maximum value

;

when x = 3, y has a minimum value.

From the given function we find

that the maximum value of y is y = 2J,

and the minimum value of y, y = 1.

103. In exceptional cases it may happen that a value of x given by

^ = 0, makes^ == 0, so that neither (2) nor (3), Art. 102, is satisfied.
dx dx-

This would be the case for a

point of inflection B (see Art.

158) whose tangent is parallel

to OX. Here the ordinate RL
is neither a maximum nor a

minimum.

But there may be a maximum
or minimum value of y, even

when —4=0. This is more fully
dx2 J

considered in Art. 106. The

following article is also appli-

cable to such cases.

104. Second Method of determining Maxima and Minima. Maxima

and minima may be determined from the first derivative — alone.

d2 dx
without using —%.

dx2

We have seen in Art. 102 that when y is a maximum, as at

P, the slope, that is, — , changes from -f- to — ; and when y is a mini-
ax

mum, as at Q, -& changes from — to + . (It is understood that we
dx

pass along the curve from left to right.)



MAXIMA AND MINIMA OF FUNCTIONS 117

By examining the form of — , which should be expressed in factor

form, we may determine whether it changes from -f to — , or from

— to + , for any assigned value of x.

Let us apply this method to the example in Art. 102,

c^ = Xs - 4a? + 3 = - 1)(* - 3).
dx

Here — can change sign only when x = 1 or x = 3.
dx ° °

J

By supposing x to change from a value slightly less, to one slightly

greater than 1, we find that (x — 1) changes from — to + ; but since

the factor (x — 3) is then negative, it follows that — changes from
dx

+ to — , when x = 1, and denotes a maximum. In the same way, we

find that — changes from — to +, when x = 3, and denotes a mini-
dxmum.

Again, consider the function y = (x — 4)
5
(# + 2)

4
.

Differentiating and writing the result in factor form,

cIl = 3 (3 x - 2)(x - 4:)\x + 2)
3

.

dx

"When x =-. -*- changes from — to +

.

3 dx

"When x = — 2, -2 changes from + to — •

dx

When x = 4, -^ does woi change sign,
dx

since (a; — 4)
4 cannot be negative.

2
Hence we conclude that y is a minimum when # = -; a maximun

o
when x = — 2 ; but neither a maximum nor minimum when x = 4.

As this method does not require —%, it is preferable to thai
dx2

of Art. 102, when the second differentiation of y involves much work
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EXAMPLES

1. Find the maximum value of 32 a; — x4
. Ans. 48.

Find the maximum and minimum values of the following functions.

2. 2 Xs — 3 x2 — 12 x + 12. Ans. x = —l, gives a maximum 19.

x = 2, gives a minimum — 8.

3. 2 x3 — 11 ic
2 + 12 x + 10. ^4ns. a? = -, gives a maximum

13-J-f-

2

x — 3, gives a minimum 1.

4. «3 + 9 (a — #)
3
. ^tfts. x = -—

-

,
gives a maximum3 a _._ „ : 9 a3

4
'

3a . .

".-. 9 a3

# = —
-, gives a minimum .

4 16
5. (x-l)(x-2)(x-3).

A o 1 • -2
-4ws. a> = 2 = ,

gives a maximum
V3 3V3"

1 •
°

x = 2 -\ = ,
gives a minimum

V3 3V3

6. 2 (3 a? + 2)
2 — 3 #4. -4ns. aj = 2, gives a maximum 80.

7. Show that ^-^—^t

—

^ ~ has no maximum nor minimum.
x— 1

8. ^_ + _^_ )Wherea > 6.

a a ~ x a2 (a4-bY
Ans. x =

,
gives a maximum ^——

—

'—

a + b a

a2
. . (a-b)2

x =
,
gives a minimum ^ 1-

a — b a

1 no* /y*

9. Show that the greatest value of —^— is —

.

a;
n ne

9
10. Show that the greatest value of cos 2 +- sin is -.

8
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11. Show that the maximum and minimum values of

sin2
$ + sin2

f
- — 6 )

are - and -

.

,
3 / 2 2

12. Find the maximum value of a sin x + b cos x. Ans. Va2 + b
2
.

13. Find the maximum value of tan-1 x — tan-1
~, the angles being

taken in the first quadrant. . , _j3
4'

14. Show that the least value of a2 tan2
-f b

2 cot2
is the same as

that of ere** + &V", and equal to 2 ab.

15. y = ^a ~ x
)

. u4?is. A minimum when x = -
J

a - 2 x 4

16. 2/ = (.r-l)%r + 2)
3

.

Ans. A maximum when a = ; a minimum when x = 1

;

neither when a; = — 2.

17. 7/=0-2)5(2z + l) 4
.

J./<s. A maximum when x = — -
; a minimum when x =—

,

2 lo

neither when x = 2.

105. Case where -^ = oo . It is to be noticed that -^ may change
dx dx

sign by passing through infinity instead of zero.

Hence if ^=oo,
dx

for a finite value of #
;
this value should be examined, as well as

those given by
''" =0.
dx
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For example, suppose
2

y = a — b(x — c) 3
.

Then

hence we have

dy_
dx

25

3(x-cy

Y

dy

dx
oo , when x = c.

It is evideDt that when x
dx

changes from 4- to — , indicating a

maximum value of y, which is a.

The figure shows the maximum
ordinate PM, corresponding to a '

cusp at P.

On the other hand, suppose y = a — b(x — c)"3
".

b
Then

dy

dx
= oo when x = c.

3(«-c) 8

dy
But as -^ does not change sign when x = c, there is no maxi-

dx
mum nor minimum. The corresponding curve is shown in the figure.

Y
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EXAMPLES

Find the maximum and minimum values of the two following

functions:

1. y=(x + l)i{*-oy-

Ans. A minimum when x = 5; a maximum when a; = ;

a minimum when x = — 1.

2. y = (2x-ay(x-a)*'

Ans. A maximum when x =— ; a minimum when x = a.

106. Conditions for Maxima and Minima by Taylor's Theorem.

Suppose the function /(.r) to be a maximum when x = a. Then, by

the definition in Art. 101,

/(o)>/(a + ft),

and also f(a) >f(a — h),

where h is any small but finite quantity. Now, by the substitution

of a for x in Taylor's Theorem, we have

/(a+ A)-/(a)= Rf(a)+ ^/"(a)+i
S

/"'(a) + -. • (1)*
[»'

/(a-;0-/(a)= -7i/'(a) + f/"(a)-|V'»+ --
• (2)

By the hypothesis /(a + /*) —/(a) < 0,

and also /(a — h)-f(a) < 0.

Hence the second members of both (1) and (2) must be negative.

* The rigorous form of Art. 93 may be used here without any change in the

context.
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By taking h sufficiently small, the first term can be made numeri-

cally greater than the sum of all the others, involving h2
, h3

, etc.

Thus the sign of the entire second member will be that of the first

term. As these have different signs in (1) and (2), the second mem-
bers cannot both be negative unless

/(a)= 0.

Equations (1) and (2) then become

f(a + A) -/(a.)= | /"(a)+ |/"'(a)+ ...»

/(a-A)-/(a)=|/"(a)-|/''(a)+....

The term containing h2 now determines the sign of the second

members. That these may be negative, we must have

f"(a)<6.

If then /'(a) = and /"(a)<0,

f(a) is a maximum.

Similarly, it may be shown that if

/'(a)= and /"(a)>0,

f(a) will be a minimum.

If /'(a)= and /"(a)= 0,

similar reasoning will show that for a maximum we must also have

f'"(a)=0 and fiv(a)<0;

and for a minimum
/"'(a)=0 and flv(a)>0.

The conditions may be generalized as follows

:

Suppose that

f(a)= 0, /"(a) = 0, f"'(a)= 0, ... f(a) = 0,

and that fn+1
(a) is not zero.

Then if n is even, /(a) is neither a maximum nor a minimum.

If n is odd, f(a) will be a maximum or a minimum, according as

/M+1(a)<0 or >0.
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:>.i'(4-.t)(10-.t) 2 = 0,

PROBLEMS IN MAXIMA AND MINIMA

1. Divide 10 into two such parts that the product of the square

of one and the cube of the other may be the greatest possible.

Let x and 10 — x be the parts. Then x2
(10 — x) 3

is to be a maxi-

mum. Letting u = x2
(10 — x)3

, we find

du

dx

from which we find that u is a maximum when x = 4. Hence the

required parts are 4 and 6.

2. A square piece of pasteboard whose side is a has a small

square cut out at each corner. Find the side of this square that the

remainder may form a box of maximum contents.

Let x = the side of the small square. Then the contents of the

box will be (a — 2 x) 2
x. Eepresenting this by u, we find that u is a

maximum when x= -, which is the required answer.

3. Find the greatest right cylinder that can be inscribed in a

given right cone.

Let AD = a, DC=b.
Let x = DQ, the radius of the base of the cylinder, and y = PQ,

its altitude.

From the similar triangles ADC, PQC,
we find

b-x b
y y=i«

.r).

The volume of the cylinder is

7r:r?/ = 7r-X2
(6 — x).

a

This will be a maximum when u^bxP—x3

is a maximum.
This is found to be when x = | b, the radius of the base of the

required cylinder.

From this, y = -, the altitude of the cylinder.
o



124 DIFFERENTIAL CALCULUS

4. Determine the right cylinder of the greatest convex surface

that can be inscribed in a given sphere.

Let r — OP, the radius of the sphere ; x = OR, the radius of base

of cylinder ; and y = PR, one half its altitude.

From the right triangle OPR we have

x2
i
-jg y

2=r2
.

The convex surface of the cylinder is

2 ttx • 2 y = 4 7rx Vr2 — x2
.

We may put u equal to this expression,

and determine the value of x that gives a

maximum value of u. But the work may
be shortened by the following considerations :

4 irx Vr2 — x2
is a maximum,

when

and

when its square

x V?*
2 — #2

is a maximum

;

x-y/r2 — x2
is a maximum,

i^x
2 — x4

is a maximum.*

Hence we may put u = r^x2 — xk
, from which we find u is a

maximum, when x =
V2

From this y =—-, giving for the altitude of the cylinder,

V2

2?/ = rV2.

Another Method. The equations

The convex surface = 4 irxy, u = xy, (1)

x2 + y
2 = i*, (2)

may be used without substituting in (1) the value of y from (2).

* Since we are only concerned with the positive root of Vr2 — x2
.
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Differentiating (1),
^L = y + X% (3)
dx dx

and differentiating (2). x + y
c^=0, * = _ 5

.

dx dx y

Substituting in (3), — = y = *

dx y y

Since x and y are positive quantities, it is evident that when

x=y, — changes from -f to —
,
giving a maximum value of u.

dx

Combining x = y, with* (2), we have

x =—= , y = —- , as before.

V2 V2

In some problems this method has some advantages over the first.

5. Divide 48 into two parts, such that the sum of the square cd

one and the cube of the other may be a minimum. Ans. 42f, 5-|.

6. Divide 20 into two parts, such that the sum of four times the

reciprocal of one and nine times the reciprocal of the other may be

a minimum. Ans. 8, 12.

7. A rectangular sheet of tin 15 inches long and 8 inches wide

has a square cut out at each corner. Find the side of this square

so that the remainder may form a box of maximum contents.

Ans. 1J in.

8. How far from the wall of a house must a man, whose eye is

5 feet from the ground, stand, so that a window 5 feet high, whose

sill is 9 feet from the ground, may subtend the greatest angle ?

Ans. 6 ft.

9. A wall 27 feet high is 8 feet from the side of a house. What
is the length of the shortest ladder from the ground over the wall

to the house ? Ans. 13V 13= 46.87 ft.
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10. A person being in a boat 5 miles from the nearest point of the

beach, wishes to reach in the shortest time a place 5 miles from that

point along the shore; supposing he can run 6 miles an hour, but.

row only at the rate of 4 miles an hour, required the place he must

land. Ans. 929.1 yards from the place to be reached.

11. Find the maximum rectangle that can be inscribed in an

ellipse whose semiaxes are a and b.

Ans. The sides are aV2 and &V2; the area, 2ab.

12. A rectangular box, open at the top, with a square base, is to

be constructed to contain 500 cubic inches. What must be its

dimensions to require the least mate'rial ?

Ans. Altitude, 5 in ; side of base, 10 in.

13. A cylindrical tin tomato can is to be made which shall have

a given capacity. Find what should be the ratio of the height to

the diameter of the base that the smallest amount of tin shall be

required. Ans. Height = diameter.

14. What are the most economical proportions for an open cylin-

drical water tank, if the cost of the sides per square foot is two

thirds the cost of the bottom per square foot ?

Ans. Height = f diameter.

15. (a) Find the altitude of the rectangle of greatest area that

can be inscribed in a circle whose radius is r.

Ans. rV2; a square.

(b) Find the altitude of the right cylinder of greatest volume that

can be inscribed in a sphere whose radius is r. Ans. —^«

V3

16. (a) Find the altitude of the isosceles triangle of greatest area

inscribed in a circle of radius r. Ans. — ;
equilateral triangle.

(b) Find the altitude of the right cone of greatest volume inscribed

in a sphere of radius r, Ans. — •
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17. (a) Find the altitude of the isosceles triangle of least area

circumscribed about a circle of radius r.

Arts. 3r; equilateral triangle.

(b) Find the altitude of the right cone of least volume circum-

scribed about a sphere of radius r. Ans. 4 r.

18. A right cone of maximum volume is inscribed in a given right

cone, the vertex of one being at the center of the base of the other.

Show that the altitude of the inscribed cone is one third the altitude

of the other.

19. Find the point of the line, 2x+ y = 16, such that the sum
of the squares of its distances from (4, 5) and (6, — 3) may be a

minimum. Ans. (7, 2).

20. Find the perpendicular distance from the origin to the line

- -f
i- = 1, bv rinding the minimum distance. Ans.

a b '
J & '

' Va2+ &*

21. A vessel is sailing due north 10 miles per hour. Another

vessel 190 miles north of the first is sailing 15 miles per hour on a

course East 30° South. When will they be nearest together, and

what is their least distance apart ?

Ans. In 7 hrs. Distance 15Vo7 = 113.25 mi.

22. A vessel is anchored 3 miles off the shore. Opposite a point

5 miles farther along the shore, another vessel is anchored 9 miles

from the shore. A boat from the first vessel is to land a passenger

on the shore and then proceed to the other vessel. What is the

shortest course of the boat ? Ans. 13 mi.

23. The velocity of waves of length X in deep water is propor-
7

tional to \ - + -, where a is a certain linear magnitude. Show that
* a X

the velocity is a minimum when A = a.

24. Assuming that the current in a voltaic cell is C= , E
v -j- R

being the electromotive force, r the internal, and R the external,

resistance; and that the power given out is P=RC2
\ show that P

is a maximum when R = r.
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25. From a given circular sheet of metal, to cut out a sector, so

that the remainder may form a conical vessel of maximum capacity.

Arts. Angle of sector =
( 1 _ ^-)2 ir = 66° 14'.

3,

26. Find the height of a light on a wall so as best to illuminate

a point on the floor a feet from the wall ; assuming that the illumi-

nation is inversely as the square of the distance from the light, and

directly as the sine of the inclination of the rays to the floor.

Ans.
V2

27. At what point on the line joining the centres of two spheres

must a light be placed, to illuminate the largest amount of spherical

surface ?

Ans. The centres being A, B ; the radii, a, b ; and P the required

point; AP2

:PB2

=a?:bs
.

28. (a) The strength of a rectangular beam varies as the breadth

and the square of the depth. Find the dimensions of the strongest

beam that can be cut from a cylindrical log whose diameter is 2 a.

Ans. Breadth =— . Depth = 2aA /?.
V3 \3

(6) The stiffness of a rectangular beam varies as the breadth and

the cube of the depth. Find the dimensions of the stiffest beam
that can be cut from the log. Ans. Breadth = a. Depth = a VS.

29. The work of propelling a steamer through the water varies

as the cube of her speed. Find the most economical speed against

a current running 4 miles per hour. A?is. 6 mi. per hr.

30. The cost of fuel consumed in propelling a steamer through

the water varies as the cube of her speed, and is $ 25 per hour when
the speed is 10 miles per hour. The other expenses are $ 100 per

hour. Find the most economical speed.

Ans. -^2000 = 12.6 mi. per hr.

31. A weight of 1000 lbs. hanging 2 feet from one end of a lever

is to be raised by an upward force at the other end. Supposing the

lever to weigh 10 lbs. per fpot, find its length that the force may be

a minimum. Ans. 20 ft.



MAXIMA AND MINIMA OF FUNCTIONS 129

32. (a) The lower corner of a leaf, whose width is a, is folded

over so as just to reach the inner edge of the page. Find the width

of the part folded over, when the length of the crease is a minimum.

Ans. J a.

(b) In the preceding example, find when the area of the triangle

folded over is a minimum. Ans. When the width folded is -| a.

33. A steel girder 25 feet long is moved on rollers along a pas-

sageway 12.8 feet wide, and into a corridor at right angles to the

passageway. ISTeglecting the horizontal width of the girder, how
wide must the corridor be, in order that the girder may go around

the corner ? Ans. 5.4 ft.

34. Find the altitude of the least isosceles triangle that can be

circumscribed about an ellipse whose semiaxes are a and b, the base

of the triangle being parallel to the major axis. Ans. 3 b.

35. A tangent is drawn to the ellipse whose semiaxes are a and

b, such that the part intercepted by the axes is a minimum. Show
that its length is a -f- b.



CHAPTER XI

PARTIAL DIFFERENTIATION

107. Functions of Two or More Independent Variables. In the pre-

ceding chapters differentiation has been applied only to functions of

one independent variable. We shall now consider functions of more

than one variable.

Let u=f(x,y)

be a function of the two independent variables x and y.

Since x and y are independent of each other, we may suppose x to

vary while y remains constant, or y to vary while x remains con-

stant ; or we may suppose x and y to vary simultaneously. We
must distinguish between the changes in u resulting from these dif-

ferent suppositions.

Let Axu denote the increment in u resulting from a change in x

only, and A
y
u the increment in u from a change in y only.

Let Aw, called the total

increment of u, be the in-
r

N r '

crement when x and y both

change.

Suppose u the area of a

rectangle whose sides are x

and y.

Then u = xy.

If x changes from OA to u

OA', while y remains con-

stant, u is increased by the rectangle AM.

Ay & 3
u

C

y u A^u

x Ax

That is, Axu = area AM.
130



obtain — •

PARTIAL DIFFERENTIATION 131

If y changes from OB to OB', while x remains constant, u is

increased by the rectangle BX.

That is, \u = area BN.

If x and y both change together, we have for the total increment

of u, A«= area AM+ area 5A"+ area MN*

108. Partial Differentiation. This supposes only one of the inde-

pendent variables to vary at the same time, so that the differentia-

tion is performed by the same rules that have been applied to

functions of a single variable.

If we differentiate u = f(x, y), supposing x to vary, y remaining

constant, we obtain— •

dx
If we differentiate, supposing y to vary, x remaining constant, we

du

dy

The derivatives, — , — , thus derived, are called partial deriva-
dx dy

tives, and a special notatioD, — , — , is used for them.
ox dy

For example, if u = x3 + 2 x?y — y
3
,

— = 3 x2
-f 4 xy, the ^derivative of u.

dx

— = 2x2 — 3y2
, the ^/-derivative of u.

In general, whatever the number of independent variables, the

partial derivatives are obtained by supposing only one to vary at a

time.

EXAMPLES

Derive by partial differentiation the following results

:

du . du

(to+„)*_(«.+«„)*

1. V.
xy

•'• + y

2. 2 = (ax2 + 2 bxy + off,
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o / \/ \/ \ du . du . du ^

- . dr dr
4. r = A/T2 , ?/

2 w— = x—Vx +#> y
dx dy

5. m = log (x3 + ace
2
?/ + foci/

2 + c?/
3
), a \- y — = 3-

dx dy

« ii , z . x du
,

du
,

du A
6. % = £+- + -, a- +2/ +2 = 0.

z x y ox oy dz

vt e
xy du . du , . iN

7
-

t*=
x , ,

' ^ + ^ = (a; + 2/- 1
)
w -

e
x + ey ofl? a?/

8 . M = l0g£^l + 2tan-^, *£ + *¥+^ = °-
a; 4- 2/ 2/ ox oy x~ + y

l

10. .. 1 J, gY+ gl]f+ glY, 1

(^ + 2/
2 + 22)i w vw V^y (^ + r+^-)

2

11. 2 =log
y
aj4-logx y, a5logaj-^+ylogy-^ = 0.

da; d?/

12. u= e
z sin y + ey sin a?,

^)
2+

(fr)*
= e2x + e2" + 2 e

*+
* sin (*+*)

13. u = log (tan x + tan ^ + tan z),

' o du
, o du . . o dusm 2x— + sin 2w f- sm 2z— =2.

da; a?/ dz
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109. Geometrical Illustration of Partial Derivatives. Let z = f(x, y)

be the equation of the surface

APCIL
The ordinate PN is thus

given for every point A" in the

plane XT.
Let APB and CPD be sec-

tions of the surface by planes

through P. parallel to XZ and

YZ. respectively.

If x and y both vary, P
moves to some other position

on the surface. y

If x vary, y remaining con-

stant, P moves on the curve of intersection APB.

Hence — is the slope of the curve APB at P.
dx

If y vary, x remaining constant, P moves on the curve CPD.

Hence — is the slope of the curve CPD at P.

110. Equation of Tangent Plane. Angles with Coordinate Planes.

In the figure of the preceding article, let P be the point (a?', y', z')
;

PT, the tangent to APB in the plane APNM-, and PT, the tangent

to CPD in the plane CPNL.
It is evident from the preceding article that the equations of PT

are

, 6V

dx
-,(»-«'), y = y',

and of PT,
*"*'* #<*-&> X = X '-

(1)*

(2)

.
^- denote the values of &-, $? , respectively, for (x', y' z').

ax' dy' dx dy
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The plane tangent to the surface at P contains the tangent lines

PT and PT'. Its equation is

z - z,==d6 (x- x ')+
W'

{y
~ y,) (3)

For (3) is of the first degree with respect to the current variables

x, y, z, and is satisfied by (1), and also by (2).

TJie equations of the normal through P are those of a line through

(x', y', z') perpendicular to (3). Its equations are

x — x'y — i/' , K ...-jn- = ?-^- = -(z-z') (4)
d^_ dz^_

y ' v J

dx' dy'

The angles made by the tangent plane with the coordinate planes are

equal to the inclinations of the normal to the coordinate axes.

By analytic geometry of three dimensions, the direction cosines of

the line perpendicular to (3) are proportional to

dj_ dz[ _ 1
dx' ' dy'

?

Hence, if a, {3, y, are the inclinations of the normal to OX, OY,
OZ, respectively,

cos a _ cos /3 _ cos y
dz; w
dx dy'

(5)

Also cos2 a + cos 2
/3 + cos2

y = 1 (6)

From (5) and (6) we find, dropping the accents,

dz

dx
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-(DM!)

For the inclination of the tangent plane to XY, we have from (7),

-"- i+
(D*

+
(IJ

<8»

The term slope used in geometry of two dimensions may thus be

extended to three dimensions, as the tangent of the angle made by

the tangent plane with the plane XY In this sense,

=v(IJ + (SJ-

EXAMPLES

1. Find the equations of the tangent plane and normal, to the

sphere x2 — y
2 + z- = a2, at (V, y,' z').

dz _ x dz _ y t

dx z' By z
y

„ dz' x' dz' y'
Hence — = -, — = — -;- • •

dx z' Oy z'

Substituting in (3), z - z' = - "''-

(x-x') - £ (y - y'),

xx'+ yy' + zz' — x'
2 + y'2 -j- z'

2 = a2
, vlws.
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From (4) we find for the normal

^-^-,= (y-y')- =^-^
x y

—— 1 = ^ — 1 = - — 1, -= 2- = -. Ans.
x' y' z' x y' z'

2. Find the equations of tangent plane and normal to the cone,

3x2 -y2 + 2z2 = 0, at (x', y\ z').

Ans. 3xx'-yy'+2zz' = 0, ^-^ = y-^- = z ~ z
'

3 a;' —y' 2z'

3. Find the equation of the tangent plane to the elliptic parabo-

loid, z= 3 x2 + 2

y

2
, at the point (1, 2, 11).

Ans. 6x+8y — 2 = 11.

4. Find the equations of tangent plane and normal to the ellipsoid,

x2 + 2y2 + 3z2 =20,

at the point x = 3, y = 2, z being positive.

Ans. 3x + ±y + 3z = 20; x = z + 2, 3y = 4;Z + 2.

Find the slope of this tangent plane. Ans. -§.

5. Find the equation of the tangent plane to the sphere,

x2 + y
2 + z

2 -2x + 2y = l, at (x', y', z').

Ans. icaj'-f- yy' + zz' — x — x' + y + y' =zl.

111. Partial Derivatives of Higher Orders. By successive differ-

entiation, the independent variables varying only one at a time, we

may obtain
d2u d2u dhc dhc

dx2' dy2 ' dx* dy
4>

If we differentiate u with respect to x, then this result with respect

to y, we obtain — I -^\ which is written —-—-.

dy\dxj dydx
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Similarly, — is the result of three successive differentiations,
J

dyd.r

two with respect to x, and one with respect to y. It will now be shown

that this result is independent of the order of these differentiations.

*\ n

In other words, the operations — and — are commutative.
dx dy

. That is,

dydx dxdy dydx2 dxdydx dx*dy

112. Given u=f(x,y), (1)

to prove that

«fe)"Sfe>

Supposing x to change in (1), y being constant,

Au = f(x + As, y) -f(x, y)
^

Ax " Ax
(2)

Now supposing y to change in (2), x being constant,

AVAtA= f(x + As, y + Ay) -f(x, y + Ay) -/(a? + As, y) +f(x, gfl

Ay\Ax) Ay Ax

Reversing the above order, we find

A» = f(x, y + Ay) -f(x, y) and
Ay Ay

A (*^\= f(x + Ax
> y + Ay) -f(x + Aa:

> y) — f(x> y + A^) + f fa y)
.

Ax\Ay) AxAy

Hence ±/A«\ A/Aii\
(3)

Ay\AxJ Ax\Ay) J

The mean value theorem, (2), Art. 90, may be expressed in the

form — = f'(x+0>Ax), where u =f(x). 0< 6< 1.

As
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In the present case, where u =f(x, y) f

ty{lx)
=
iy

fx {X + &1 'AX
'
V) =fyx(X + ^'AX

'
V + $rAy) '

Similarly, ^=f(x,y + B^Ay),
Ay

and
Ax\^r)

= f*y<KX + 6i
' Ax> V + °3'^'

By (3) /^(aj+^.Ax, y + OrAy) =fxy(x + 6fAx, y + 8.Ay).

Taking the limits as Aaj, A?/, approach zero, and assuming the

functions involved to be continuous,

fyx(%,y)=fxy(%,y)-

mi , • d fdu\ d fdu\ d 2u d2u
That is, - — =-— or _—_ = _-—

.

ay\axj dx\&yj ay ax ax ay

This principle, that the order of differentiation is immaterial, may
be extended to any number of differentiations.

Thus
d3u = d 2

fdu\ = d 2

fdu\ = &u
dydx2 dydx\dx) dxdy\dxj dxdydx

= d
f

d2u \ d
f

d2u \ d3u

dx\dydxj dx\dxdyj dx2 dy

It is evident that the same is true of functions of three or more

variables.

dx ay
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EXAMPLES

A erlfy =—— in Lxs. l-o.
dx dy dy dx

1. u = ax + l)
!/

, 2. w= fBylog?. 3. ?* = (a; + y) e*-».
ay + bx y

Derive the following results :

d 4a d 4u d*u
4. u = a.x* -f 6 Saf^

8 + c?/
4
,

dx2 dy2 dx dy dx dy dx dy2 dx

s. .=iog(*»+!o, g+g=°-

6. ,=(3. + ,)3+ sin(2,-,), find g_^_«g.
- a*

2
, , x n > *d 2u

, c, dhi . odhi
7. tt = - + log-, find ar— -f 2a^-—- + 2/

2—
1/ y dar oxdy dyz

8. , = ,= tan-' 2 - r tan- 5, -^ =££
n / ,. , „\ a d2

q ,
1 dq . 1 d2

q A
d>2

r 5?' r2 d#-

10. u = log
(e

*+ e"+ <*) t4V = 2e^+- 3«.

dxdydz

11. i^ztan 1 -, + + = o.

?/ dar dy dz-

10 i /".>, ^ d 2
ii . d2u

,
d2u 1

12. u = log (ar -f y
2 + z

2
),

—
: + t-= +

dx2 dy2 dz 2 x2
-\-y2

-\-z
2

* " ? 1%, * V *
io 999,00'). 999 U IV 0,9,0
13. u - y-z-e- + z-.cre- + afyV,

^ ^
= e- + er + e

2
.

14. u = sin (jj + z) sin (z + a;) sin (x -f y),

2cos(2a; + 2?/ + 2z).
dxdydz
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113. Total Derivative. Total Differential. In Art. 107 we have

referred to the change in u when x and y vary simultaneously.

This change is called the total increment of u. Thus the total incre-

mentof u=f(x,y)

is Au = f(x + Ax, y + Ay)~ f{x, y).

The terms total derivative and total differential are also used. For

example,

let
u = xsy-3x2

y
2

, (1)

and suppose x and y to be functions of a variable t.

Differentiating with respect to t,

dt dt
K y)

dt
K J)

= tfty. + 3^2 dx _ 6x2
dy _ 6 2 dx

dt * dt
J

dt
y

dt

= (Zx2

y-$xtf)f
t

+(x*-(Sx2

y)
dX .... (2)

But from (1) we find

Cj7/ fi?f— = 3 x2
y — 6 xy2

,
— = xz — 6x2

y.
ox dy

So that (2) may be written

du _du dx du dy ,q\

dt~dxdtdydt' r ^ '

If we had used differentials in differentiating (1) we should have

obtained

du = — dx H dy (4)
dx dy

J w
dn— in (2) and (3) is called the total derivative, and du in (4) the total
aii

differential, of u.

We proceed to show that (3) and (4) are true for any function of

x and y.
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Noticing that An is the total increment of u,

and Ax u, A L/
u, the partial increments, when x and y vary separately,

let
u = f(x, y), x and y being functions of t.

u'=r\x + Ax,y),

u"=f(x + Ax,y + Ay).

Then A xm = u' — it,

A
y
u' = w" — m',

Ait = u" — m.

Hence Am = Axm + A,.M
r

,

and
Am _ Axu A.U A„w' Am
At

~~
Aa A£ Ay At

"

Taking the limits of each member, as At, and consequently Ax, Ay,

approach zero,
clu = dudx du dy

(5)
dt dxdt dy dt'

K }

since the limit of u' is u.

This may be written in the differential form

du = — dx + — dy (6)
dx dy

J w
In the same way, if u =f(x, y, z), where x, y, z are functions of t,

dt
~

dx dt dy dt dz dt'
^

and ri„ = ^rl< + ^dy + ^dz (8)
ox dy dz

We may write in (8)

du , 7 cht , , du , 1— tfaj = d,tt _ dy = d„w, —- cZz = dzu,
ox dy dz

giving du = dxu + dvu 4- dzu,

that is, the total differential of m is the sum of its partial differentials.
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This principle, as expressed by du = dxu + d
y
u, may be illustrated

by the figure of Art. 107, from which we have

Aw = Axu + A
y
u + area MN,

that is, Aw == Axw + A
uu -+- Ax Ay.

As Ax and Ay approach zero, the last term diminishes more rap-

idly than the others, and we may write

Aw = Axu + A
y
u,

K
approximately,

the closeness of the approximation increasing as Ax and Ay
approach zero.

If in (5) we suppose t == x,

then u=f(x, y), y being a function of x
;

and (5) becomes
du^du + 3udy_

(9)
dx ox By dx

Similarly, if in (7), t =.x
}

u =f(x, y, z), y and z being functions of x
;

, du du . du dv ,
du dz /iANwhence — = — + -h -= (10)

dx dx dy dx dz dx '

EXAMPLES

Find the total derivative of w by (5) or (7) in the three following :

1. u=f(x,y,z), where x = t
2
} y = 1?, z—-.

— — 2 t — 4- ^ t
2 — —- —

dt dx dy t
2 dz'

2. w = log (x2~ y
2
), where x = a cos t, y = a sin t.

^ = - 2 tan 2 t.

dt

3- w = tan-1
-, where x = 2t, y = 1 — t

2
. — = —

y
r
.r dt l + t\
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Apply (10) to the two following

:

4. u =/(*, y, z), where y = x2 — x, z = x? — x2
.

(h = ^+(2x-l)^ + (3x*-2x)^.
dx dx

v
dy

K )
dz

o . u = tan -» , where y=d— ar, 2 = 1 — o flr,

da? 1 + x2
'

Find the total differential by (6) or (8) in the following

:

6. u = ax2 + 2 6«y + cy2

,
du = 2 (ax + &?/) da; + 2 (6aj + c#) dy.

v » y

8 u = l
rr
sin i(x + y)

j du = sinydx-smxdy
m

sin i (a? — y)' cos a) — cos ?/

9 . v. = ax2 + ty
2 + cz

2 + 2/#2 + 2 gr«aj + 2 fta#,

du =2 (ax + hy+gz) dx + 2(hx + by+fz) dy+ 2(gx +Jy + cz)dz.

10. it= af' du = a?*
-1

(yz cZx + zx log a; c?y + xy log a; dz)

.

11. ?/ = tan2 a:tair?/tairz, du = 4uf-^— + -^_ + __^_\
\sin2a; sin2y sin 2zy

If the variable t in (5) and (7) denotes the time, we have the re-

lation between the rates of increase of the variables.

For illustration consider the following example

:

12. One side of a plane triangle is 8 feet long, and increasing 4

inches per second ; another side is 5 feet, and decreasing 2 inches

cond. The included angle is 00°, and increasing 2° per second.

At what rate is the area of the triangle increasing?
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The area A = -be sin A, from which

dA c • ,db
,
b • A dc . be A dA— = - sin^l V- - sm^l cos A—

dt 2 dt 2 dt 2 dt

= ^sin^.i + 5sin^.-i + ^cos^-^
2 32 6 2 90

= .4934 sq. ft. = 70.05 sq. in. per sec.

13. One side of a rectangle is 10 inches long, and increasing uni-

formly 2 inches per second. The other side is 15 inches long, and

decreasing uniformly 1 inch per second. At what rate is the area

increasing ? Ans. 20 sq. in. per sec.

At what rate after the lapse of 2 seconds ?

Ans. 12 sq. in. per sec.

14. The altitude of a circular cone is 100 inches, and decreasing

10 inches per second, and the radius of the base is 50 inches and

increasing 5 inches per second. At what rate is the volume in-

creasing ? Ans. 15.15 cu. ft. per sec.

15. In Ex. 12, at what rate is the side opposite the given angle

increasing ? Ans. 8.63 in. per sec.

114. Differentiation of an Implicit Function. (See Art. 66.) The
derivative of an implicit function may be expressed in terms of

partial derivatives.

The equation connecting y and x, by transposing all the terms to

one member, may be represented by

+ (*,y)=o (i)

Let u = cj>(x, y).

From (9), Art. 113, we have for the total derivative of u,

du _ du da dy

dx dx dy dx
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But by (1) x and y must have such values that u may be zero, that

is, a constant ; and therefore its total derivative— must be zero.
dx

Hence

and ^ = _-_ (2)

du

dx

du dy _

By dx
= 0,

dy=

du

_ dx

dudx

dy

•om x?y2 + ^y3 =--a
5
.For example, find — from

dx

Let u = xPy- -+- xry3 — a5
.

J?
- 3 a^ + 2 a-r, f?

= 2 &y + 3 *y.
o.r dy

dy = 3.i-y+ 2ay» = 3ay + 2y2

cfa 2^ + 3a^?/2 " 2z2 + 3a*/'
By (2)

In the same way find the first derivatives in the examples of Art. 67

115. Extension of Taylor's Theorem to Functions of Two Inde-

pendent Variables. If we apply Taylor's Theorem

to f(x+7i,y+k),

regarding x as the only variable, we have

f(x+ h, y + k) =f(x, y+k) + h~f(x, y + k)
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Now expanding f(x, y + 7c), regarding y as the only variable,

d k2 d2

f(x, y + k) =f(x, y) + k— f(x, y) + -y2
f(x, y) + ....

Substituting this in (1),

fix + h,y + k) =f(x, y)+h±f(x, y)+ h^-f(x, y)

+i/i2

£* /(^ +2J^ f(x
> *>+"£/<*« + .». (2)

This may be expressed in the symbolic form thus

:

f(x + h,y+ Jc) =f(x, y) + fhfx
+ kjj-\ f(x, y)

m, aswhere (h h&— ) is to be expanded by the Binomial Theore
V dx dyj

if h— and k~ were the two terms of the binomial, and the result-
dx dy

ing terms applied separately tof(x
} y).

116. Taylor's Theorem applied to Functions of Any Number of In-

dependent Variables. By a method similar to that of the preceding

article we shall find

f(x + h,y + k,z^l)=f(x,y,z) + (lij- + kj- + l£^f(x,y y
z)

+|(*s+*S
+,

s)

i^^ f> +:-

This expansion may be extended to any number of variables.
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EXAM PLES

1. Expand log (a? + h) log (y + A).

T . -, N i i d>/ los: y d?< losr x
Let u =/(.i\ y) = log x log y, — = —a^ , — = -£-,

dx a; ay ?/

d2
?? _ log?/ 32m _ 1 d'

2
u _ log re

d.r ar
?

dyda; scy* dy~ y
2

By (2), Art. 115, log (»+*) log (y+ A) = log a logy

. L
,

A* i A 2
, . AA A2

,

4- -logy + -loga-- _ log?/ H 5
_
i loga5+—

-

a; 2/ *& xy 2y-

2. (a + A) 3
(y + A)2 = xY + 3 A.r

2

y
2 + 2 fc^y

+ 3 h2xy2 + 6 AAa;
2
y + A~V + • • ••

3. sin [(a: + A) (y + A)] = sin (xy) + Ay cos (xy) -f A» cos (#?/)

7 2 2 V,9 ,2
'

- ^-sin (xy) + 7ik [cos (xy)-xy sin (a-y)] -— sin(a;y) + •••.



CHAPTER XII

CHANGE OF THE VARIABLES IN DERIVATIVES

117. To express
dy d2

y d3
y ••in terms of

dx d2x d3x

dx dx* dx3'

dy dy2' dy3
'

This is changing the independent variable from x to y.

By (1), Art. 56,

By (3), Art. 56,

From (1),

Similarly,

From (2),

dy = ±_
dx dx

dy

dry_d
L
dy_d_dy dy

dx2 dxdx dydx dx

d2x

d dy _ d 1 dy2

dy dx ~ dy dx ~ (ax*

dy [dy,

d?x

d2
y _ dy2

dx2 ~ fdx\ 3

.W
dPj[_dL d^_dL d^y dy

dx3 dx dx2 dy dx2 dx

fd
2x\ 2 _ dx (Px

d d2
y \dy2

) dydy3

dy dx2 dx^ 4

dy

fdrx^ 2 _ dx d3x

d3
y \dy2

) dydy3

dx3 dx^ 5

148

(1)

(2)

(3)
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It is sometimes necessary in the derivatives,

dy d*y effy

dx dar dx?

to introduce a new variable z in place of x or y, z being a given

function of the variable removed.

There are two cases, according as z replaces y or x.

118 First. To express 4, g, g, -, in terms of * * * ••,
dx dxr dx6 dx dxr dxr

where y is a given function of z.

By (3), Art. 56, *=**.J v " '

dx dz dx

d2
y _ d fdy\dz dydh__ d2y/dz\ 2

, <fy d?z

dx2 dx\dz Jdx dz dx2 dz\dxj dz dx2
'

Similarly, we find

d3
y _ cPy/dzY, o^ydz_dh,dy d?z_

dx3 dz3 \dx) dz2 dxdx2 dz dx3
'

Similarly, —^, —4, •-., may be expressed in terms of z and x.
(XX CIX

It is to be noticed that in this case there is no change of the in-

dependent variable, which remains x.

For example, suppose y = z*.

Then *V = 3z2^.
dx dx

dx2 \dx) dx1

^ = 6f*Y+ 18**^ + 3*^.
dx3 \dxj dxdx2 dx3
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119. Second. To express^, **, *M
, ...,

dx
9

dx2 ' dx3 ' '

in terms of -2 —a _Jl • where a; is a given function of z.
dz dz2 dz6

This is changing the independent variable from x to z.

By (3), Art. 56,

dy

dy _ dy dz
_

dx dz dx

dz

dx

dz

d fdy\

d*y = dL fay

dx2 dz \dx
y

\dz _dz\dx)

)dx~ dx

dz

dx d2
y dy d2x

dz dz2 dz dz2

Similarly, higher derivatives may be expressed. In practice it

is generally easier to work out each case by itself.

For example, suppose x = z3.

dy _ dy dz

dx dz dx

But
dx _ 2 dz _ z~2

dz~
Z

' ~dx~~3'

Hence ySdy_l
z
-2 <ty

dx 3 dz
(1)

d2
y _ d_ fdy\ _ d_ fdy\ dz

dx2 dx\dx) dz\dxjdx

From(l), *(&\u.±(f**!-ir*®\.v " dz\dx) S\ dz2 dz)

Hence '&*(,-««&_2r*#\ (2)
dx2 9\ dz2 dz) w
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Similarly, S-#(§V£.
dar dz \darj dx

From (2), */*3t\ =*/V^- 6z^^+ 10z~^v h
dz\dx2

J 9\ dz" dz2 dz

Hence SUA(r*S*-6r^+10 *+$L\
dx3 27 V c?2

3 dz2 dz
1

EXAMPLES

Change the independent variable from x to y in the two following

equations

:

1. 3 (W-*£* -*W= 0. 4»s. *5 +& = 0.
yiry dsccfcc

3 dx\dxj dys dy2

\ c?oj J\dx~J \ dx Jdx dxs

Ans. (**\U**+ ay*
\dy-J \dy Jdif

Change the variable from y to z in the two following equations

:

3 «fff-i
,

2(i+ yy%Y „_ tan/3 ^~ 1 +TTFW' y

iK ^-2^Y=eos**.
da;

2
Veto:/

v
'cfo3 dxdx2

Change the independent variable from x to z in the following

equations

:

'/.'
,J

./' 'A'' (for C?Z

das' 1 + a^rfx (1 + z2

)
2

ciz
J J
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7. (2aj-l)3g + (2aJ -l)^ = 2
2/, 2»= l + e'.

^s . 4^-12^-f-9^-2/ = 0.
dr dr dz

8. ^^+6^ +9^ +3^+ 2/ = ^^, a; = e*.

da;
4 dx3 dar da;

^ d?
+

d**
+2/ -*'

120. Transformation of Partial Derivatives from Rectangular to Polar

Coordinates.

Given u — f(x, y),

to express —- and — in terms of — and —, where x, y, are rec-
dx dy dr dO

tangular, and r, 6, polar coordinates.

We have from (5), Art. 113, regarding u as a function of r and 0,

du _ du dr
,
du dO ,^ .

dx dr dx d6 dx

du_dudr dudO ^x
dy~drdy <j$dy U

The values of —,
—

-, —, —, are now to be found from the rela-
dx ay ox dy

tions between a;, y, and r, 0.

These are a; = rcos0, y = rsmO (3)

But in the partial derivatives —
^,
—
^ , and — , —, r and 6 are re-

da; dy dx dy

garded as functions of x and y.

These are, from (3),

^= a^ + 2/
2
, d = tan-1 ^.

x
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Differentiating, we find

dx r 8y r

86 _ y _ sin 6 86 _ x _ cosfl

dx x2 + y- r ' 8y x2 + y
2 r

Substituting in (1) and (2), we have

8u » 8u sin 6 8u //IN— = cos0- —, (4)
dx dr r 86

8u • * 8u . cos 6 8u /trx— = sm0 — + — (5)
8y dr r 86

121. Transformation of — A from Rectangular to Polar Co-
dxr 8y2

*\

ordinates. By substituting in (4), Art. 120) — for u, we have
dx

8rv
L _ 8_(8u\_ q 8 (8u\_ sin 6 8 (8u\ ,*.

dx*~dx\dxj
C°S

8i\dx) ~8~6\8x) ^'

Differentiating (4), Art. 120, with respect to r,

8 (8v\_ q8
2h sinfl 8 2u sin fl da ,o\

8r\8x)~ dr2
r 8r86 r2 8$

K)

Differentiating (4), Art. 120, with respect to 6,

86\8x) drd6 dr r 862 r 86
W
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Substituting (2) and (3) in (1), we have

dhi 2 a d
2u 2 sin cos dhi , sin 2 d2u ,

sin2 du— = cos 6 1 1

dx2 dr2 r drdd r
2 d$2 r dr

d$

Adding (4) and (5^ =*>* obtain

c% dhi _ 5

dx2 dy2 dr2 r dr r
2 d&

^2u . d2u d2u . 1 du . 1 d 2u

2 sin cos du ...

Similarly by using (5), Art. 120, instead of (4), we find

d2u _ • 2 a dhi 2 sin cos d 2u cos2 d2u cos2 6 du

dy2 dr2 r drdO r2 dO2 r dr

2 sin cos du
.(5)



CHAPTER XIII

MAXIMA AND MINIMA OF FUNCTIONS OF TWO OR MORE
INDEPENDENT VARIABLES

122. Definition. A function of two independent variables, f(x, y) }

is said to have a maximum value when x = a, y = b; when, for all

sufficiently small numerical values of h and k,

f(ti,b)>f(a + h,b + k), (a)

and a minimum value, when

/(a, 5)</(a+ *»&+ &). (6)

123. Conditions for Maxima or Minima.

If u=f(x,y),

we find that a necessary condition for both (a) and (6) is that

— = 0, and — = 0, when x = a, y = b.

ox dy

This may be shown as follows

:

Conditions (a) and (&) must hold when Jc = 0, and we have for a

maximum
f(a,b)>f(a + h,b),

and for a minimum
f(a, 6)</(a + ft, &),

for sufficiently small values of //.

155
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We thus have for consideration a function of only one variable.

By Art. 106, we must have for both maximum and minimum,

—f(x, b) = 0, when x = a,
dx

that is jrf(x' ^ = ®> wnen x = a
> V =b>

ox

Similarly, by letting h — in (a) and (6), we may derive
~\

T f(%, V) = 0, when a; = a, y = b.

dy

These conditions for a maximum or minimum are necessary but

not sufficient. As in the case of maxima and minima of functions

of one variable, there are additional conditions involving derivatives

of higher orders. These we shall give without proof, as their

rigorous derivation is beyond the scope of this book.

The conditions for a maximum or minimum value of u = f(x, y)

are as follows

:

For either a maximum or minimum,

£ = 0, and |5_0s (1)
ox dy

also 6S-Y<SS <2>
\dy oxJ dx2 dy2

S<* and wFor a maximum, -^ < 0, and —^ < (3)

For a minimum, —- > 0, and — > (4)
ox2 dy2

124 Functions of Three Independent Variables. The conditions

for a maximum or minimum value of u =f(x, y, z) are as follows

:

For either a maximum or minimum,

£?!f — o ^ — ^u —
dx ' dy ' dz

and (^L\<
\dx dy)

d2u d2u

dx2 dy2
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For a maximum
d2u

dx2
-<0, and A<0;

for a minimum, |^>0, and A>0;

where A =

d2u d2u dh

dx2* dx dy dx dz

d2u d2u d2u

dx dy dy2' dy dz

d2u d2u d 2u

dx dz dy dz dz1

EXAMPLES

1. Find the maximum value of

u = 3 axy — xP — y
3

.

Here ^ = 3ay-3x2
, —=3ax-Sy2

.

dx dy

» n d2U a d 2U a d 2U
Also ^j =_6flj

> -z-i
= - 6 y> r~^- =Sa"

dx2 dy2 dx dy

Applying (1), Art. 123, we have

ay — x2 = 0, and ax — y
2 = 0;

whence x = 0, y = 0; or x = a, y = a.

The values x = 0, y = 0, give

t-, = 0, —, = 0, —— = 3ct,
dx- dy dx dy

which do not satisfy (2), Art. 123.

Hence they do not give a maximum or minimum.
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The values x — a, y = a, give

d 2u n d2u a d2u o
-—-•= — 6 a, —- = — ba, = 6 a,
dx2 by2 dx By

which satisfy both (2) and (3), Art. 123.

Hence they give a maximum value of u, which is a3
.

2. Find the maximum value of xyz, subject to the condition

t + vl+ t 1 (1)
a2

fr c-

c
2 a2

b
1

and as xyz is numerically a maximum when x^yh2
is a maximum,

we put

. A 2a.-
2 2«2

\

50a52/

From — = and — = 0, we find, as the only values satisfying
dx dy

(2), Art. 123,

x= ——, y = —— which give

V3 V3

^ 9 '

fy
2 9 ' da% 9

'
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As these values satisfy (2) and (3), Art. 123, it follows that xyz is

a maximum when
, _ a _ b c

a 3 V3 ~ V3

The maximum value of xyz is—
3v3

3. Find the values of x, y, z that render

ar + y
2 + z

2 + x — 2 z — xy

a minimum. A 2 1 iAns. #=— -, y=—-, 2 = 1.
3 3

4. Find the maximum value of

(a — x)(a — y){x + y — a). Ans. —

,

jut

5. Find the minimum value of

x2 + xy + y
2 — ax— by. Ans. - (ab — a2 — b

2
)

.

o

6. Find the values of x and y that render

sin x + sin y + cos (x + y)

a maximum or minimum. A . . . -, 3tt
Ans. A minimum, when x==y =—

;

25

a maximum, when x=y = -.
6

7. Find the maximum value of

(cu; + 6w + c)
2

A 9 . 7 2 , 2v—
„ -

y
„

y
. ^Ins. or + &- 4- <r.

^ + z/

2 + i

8. Find the maximum value of afyV, subject to the condition

2x + 3y-t-4z = a Ans.

9. Find the minimum value of -+ -+ -, subject to the condition
a b c

Xyz = abc. Ans. 3.
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10. Divide a into three parts such, that their continued product

may be the greatest possible.

Let the parts be x, y, and a — x — y.

Then u = xy (a — x — y), to be a maximum.

— = ay-2xy-y2 = 0, — = ax-x*-2xy= 0.
dx oy

These equations give x = y = ^.
o

Hence a is divided into equal parts.

Note.—When, from the nature of the problem, it is evident that there is

a maximum or minimum, it is often unnecessary to consider the second

derivatives.

11. Divide a into three parts, x, y, z, such that xmy
nzp may be a

maximum.

Ans. * = Z=*-=^ .

m n p m + n+p

12. Divide 30 into four parts such that the continued product of

the first, the square of the second, the cube of the third, and the

fourth power of the fourth, may be a maximum.
Ans. 3, 6, 9, 12.

13. Given the volume a3 of a rectangular parallelopiped ; find

when the surface is a minimum.

Ans. When the parallelopiped is a cube.

14. An open vessel is to be constructed in the form of a rec-

tangular parallelopiped, capable of containing 108 cubic inches of

water. What must be its dimensions to require the least material iu

construction ?

Ans. Length and width, 6 in. ; height, 3 in.

15. Find the coordinates of a point, the sum of the squares of

whose distances from three given points,

0*i> 2/i,)> (x2 2/2), (a* 2/s),
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is a minimum. ^ |<*,+ *,+ **), §<*+*+*>,

the centre of gravity of the triangle joining the given points.

16. If x, y, z are the perpendiculars from any point P on the sides

a, b, c of a triangle of area A, find the minimum value of x2 + y
2 + z

2
.

4 A2

Ans.
a2 + &2 + c

2

17. Find the volume of the greatest rectangular parallelopiped

that can be inscribed in the ellipsoid,

^+S+S-1 Ans.
«*

a2 b2
c
2

3V3

18. The electric time constant of a cylindrical coil of wire is

u = mx^z
,

ax + by + cz

where x is the mean radius, y is the difference between the internal

and external radii, z is the axial length, and m, a, b, c are known con-

stants. The volume of the coil is nxyz = g. Find the values of x, y, z

which make u a minimum if the volume of the coil is fixed ; also the

minimum value of u.

Ans. ax=by=cz=Jj^- u=™j[jEL
\ ?i ' 3 Vabctf



CHAPTER XIV

CURVES FOR REFERENCE

We give in this chapter representations and descriptions of some

of the curves used as examples in the following chapters.

RECTANGULAR COORDINATES

Y

125. The Cissoid,

f 2a —

x

This curve may be constructed from

the circle ORA (radius a) by drawing

any oblique line OM, and making

PM= OR,

The equation above may be easily

obtained from this construction. The

line AM parallel to T is an asymp-

tote.

The polar equation of the cissoid is

r=2a sin 6 tan 0.

162



126. The Witch of Agnesi, y =

CURVES FOR REFERENCE

8 a3

163

a2 4-4 a2

This curve may be constructed from the circle OBA (radius, a) by

drawing any abscissa ME, and extending it to P determined by ORN,
by the construction shown in the figure.

The equation above may be derived from this construction. The

axis of X is an asymptote.

127. The Folium of Descartes,

b3
-f- V

s — 3 axy = 0.

The point A, the vertex of

the loop, is

fSa S_a\

\2> 2/

The equation of the asymp-

tote MN is

x+ y+ a = 0.

The polar equation of the

folium is

3 a tan 6 sec 6

l + tan8

a o

a
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128. The Catenary, 2/= 7jV + e «)•

This is the curve of a cord or chain suspended freely between two

points.

129. The Parabola, referred to Tangents at the Extremities of the
l JL 1

Latus Rectum, x 2 + y^ = a 2
.

OL=OL' = a.

Y

The line LL' is the latus rectum ; its middle point F, the focus

;

OFM, the axis of the parabola ; A the middle point of OF, the vertex.
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130. The curve a n ~ l

y = .v
n
, where one coordinate is proportional

to the nth power of the other, is sometimes called the parabola of

the nth degree.

If n = 3, we have the Cubical Parabola, a2
y = x5

.

Y

If n= -, we have the Semicubical Parabola,

a 2y= x 2
, ay2= x3

.
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131. The Two-arched Epicycloid.

x = —-cos 4> — -cos 3 </>,

y= —-sm<£--sm3<£.

132. The Hypocycloid of Four Cusps sometimes called the Astroid,

2. 2.

a; 3 +y 3
2

a 3 -

This is the curve de-

scribed by a point P
in the circumference of

the circle PR, as it rolls

within the circumfer-

ence of the fixed circle

ABA', whose radius a

is four times that of

the former.

The equation above

may be given in the

form

#=acos3
<£, 2/=asin3

<£.
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"/+ (*)*=* *'

The equation is

the same as that

of the ellipse with

the exponent of

the second term

changed from 2

tof.

134. The Curve, <ry- — on? — a:'

POLAR COORDINATES

135. The Circle, r = a sin $.

The circle is OPA (diameter,

a) tangent to the initial line

OX at the origin 0.
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136. " The Spiral of Archimedes, r = aO.

In this

curve r is

proportional

to 6. Lay-

ing off

r = OA,

when

= 2tt,

then

OPx
= \OA, OP2

= iOA, OPz
= \OA, OP5 = iOA,

0B = 2 0A, OC = SOA.

The dotted portion corresponds to negative values of 6.

137. The Hyperbolic or Reciprocal Spiral, rO a.

In this curve r

varies inversely as

0. The line MN
is an asymptote,

which the curve

approaches, as 6

approaches zero.

Since r=0 only

when = oo , it fol-

lows that an in-

finite number of

revolutions are

necessary to reach the origin.
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r = e138. The Logarithmic Spiral

Starting from A,

where 0=0 and r=l,

r increases with 6 :

but if we suppose

negative, /• decreases

as 6 numerically in-

creases. Since r=0
only when 0=—x:,
it follows that an

infinite number of

retrograde revolu-

tions from A is re-

quired to reach the

origin 0.

A property of this spiral is that the radii vectores OP, OPj, OP2,

make a constant angle with the curve.

139. The Parabola, Origin at Focus, r(l — cos 0) = 2 a.

The initial line OX is the axis of

the parabola; the origin is the

focus ; LL', the latus rectum.

140. The Parabola, Origin at Vertex (see preceding figure),

/• sin $ tan 6 = 4a.

The initial line is the axis AX; the origin is the vertex A.
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141. The Cardioid, r = a(l — cos 6).

This is the curve described

by a point P in the circum-

ference of a circle PA (di-

ameter, a) as it rolls upon

an equal fixed circle OA.

Or it may be constructed

by drawing through 0, any

line OB in the circle OA,

and producing OR to Q and

Q', making BQ=RQ'=OA.
The given equation fol-

lows directly from this con-

struction.

142. The Equilateral Hyperbola, r2 cos 2

The origin

is the

centre, of the

hyperbola,

and the in-

itial line OX
is the trans-

verse axis.

If Or is

taken as the

initial line,

the equation

of the hyper-

bola is

r
2 sin 2 6=

a

2
.
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143. The Lemniscate referred to OA (see preceding figure),

r = a2 cos 2 0.

This is a curve of two loops like the figure eight.

It may be defined in connection with the equilateral hyperbola, as

the locus of P, the foot of a perpendicular from on PQ, any

tangent to the hyperbola.

The loops are limited by the asymptotes of the hyperbola, making

TOX=T'OX= 45°. OA = a.

The lemniscate has the following property:

If two points, F and F', called the foci, be taken on the axis, such

that OF= OF'
V2

then the product of the distances P'F, P'F', of any point of the

curve from these fixed points, is constant, and equal to the square

of OF.

If J" is taken as the initial line, the equation of the lemniscate is

r2 = a2 sin 2 6.

144. The Four-leaved Rose, r=a sin

2

0.
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145. The Curve, r = a sin3 -
o



CHAPTER XV

DIRECTION OF CURVES. TANGENTS AND NORMALS

We have seen in Art. 17 that the derivative at any point of a

plane curve is the slope of the curve at that point. We will now con-

sider some further applications of differentiation to curves.

146. Subtangent, Subnormal, Intercepts of Tangent.— Let PT be

the tangent, and PX the normal, to a curve at the point P, whose

ordinate is y == PM.
Then MT is called the

subtangent, and . MN
the subnormal, corre-

sponding to the point

P.

To find expressions

for these quantities

:

Let
<f>

donote the

angle PTX, the in-

clination of the tan-

gent to OX.

By Art. 17, tan PTX = tan
<f>
= ^-.

dx

Subtangent = TM= PM cot PTM= y cot <£ =^ = y—
dx

Subnormal = MN= PM tan MPX= ytsmcf> = y

Intercept of tangent on OX= OT= OM— TM=x— y

PS - PM=Intercept of tangent on OY= OT'

But as OT' is negative, we have

Intercept of tangent on Y= y — x tan cf> = y — x

dy

dx
dx

dy

x tan
<f>
— y.

dx
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147. Angle of Intersection of Two Curves. Suppose the two curves

intersect at P.

Let PT and PT be the

tangents at P.

PTX=<j>, PT'X=cf>',

and let I be the angle

TPT between the tangents.

Then I=<f>'-<]> and

tan/= tan<
fr

f- tan<
ft-. (i)

l+tan<£'tan<£ v
'

From the equations of

the given curves find the

coordinates of the point of

intersection P; then using

these equations separately, find by tan
<f>
=^ the values of tan <£

dx
and tan <j>' for the point P. Substituting in (1) gives tan /.

For example find the angle at which the circle

T

dy

a*+3^ 13, . . .

intersects the parabola

2y2 = 9x. . . .

(2)

(3)

The intersection P of (2) and (3) is

found to be (2, 3).

Differentiating (2),

^ = -- = -? forP, tan<£ =
dx y 3

From (3),
dy

dx 4cy

2
3*

9 =?forP, tan
<f>'
=

Substituting in (1), tan/
17 1=70° 33',
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EXAMPLES

1. Find the direction at the origin of the curve,

(a4— b
i
)y = x (x - a) 4 - b

4
x. Ans. 45° with OX.

What must be the relation between a and b, so that it may be

parallel to OX at the point x = 2 a ? • Arts. 3a2 = b
2

.

2. Find the poiuts of contact of the two tangents to the curve,

6 y = 2 Xs + 9 x2 - 12 aj + 2,

parallel to the tangent at the origin to

the curve, y
2 + ay = 2 ax. Ans. f 1, - V (— 4, 11)-

3. Find the subtangents and subnormals in the parabolas,

7f = 4tax, and x2 = 4:<iy.

Ans. Subtangents, 2a?, -; subnormals, 2 a,—

—

4. Find the subtangent and subnormal in the cissoid (Art. 125),

y
1 = -1

, at the point (a, a). Ans. -, 2 a.
Li (X X Li

5. Show that the sum of the intercepts of the tangent to theiii
parabola (Art. 129), # 2+ y

2 = a 2
, is equal to a.

6. Show that the area of the triangle intercepted from the co-

ordinate axes by the tangent to the hyperbola,

2 xy = a2
, is equal to a2

.

7. Show that the part of the tangent to the hypocycloid (Art. 132),
2 2 2

— a 3
, intercepted between the coordinate axes, is equal to a,

8. At what angle do the parabolas, y
2 = ax and x2 = 8 ay intersect?

3
An s. At (0, 0), 90°; at another point, tan-1 -•
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9. At what angle does the circle, x2 + y
2 = 5 x, intersect the' curve,

3 y = 7 x3 — 1, at their common point (1, 2) ? Ans. 45°.

10. Show that the ellipse and hyperbola,

' 7
+

2 ' 3 2~ '

intersect at right angles.

11. Find the angle of intersection of the circles,

x*+ y
2-. x+ 3y+ 2 = 0, x2 + if-2y = 9. Ans. tan"1

\

12. Show that the parabola and ellipse,

y
2 = ax, 2 x2 + y

2 = 6
2

,

intersect at right angles.

13. Show that the parabolas,

y
2 = 2 ax + a2

, and #2 = 2% + 6
2

,

intersect at an angle of 45°.

14. Find the angle of intersection of the parabola,

x2 = 4 ay, and the witch (Art. 126), y = - 8

^bis. tan-1 3=71°34'.

15. Find the angle of intersection between the parabola,

y
2 = 4 a#, and its evolute, 27 a?/

2 = 4 (x — 2 a) 3
. (See Fig., Art. 167.)

-4ns. tan-1

V2

148. Equations of the Tangent and Normal. Having given the

equation of a curve y=f(x), let it be required to find the equation

of a straight line tangent to it at a given point.
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Let (V. y
1
) he the given point of contact. Then the equation of a

straight line through this point is

y-y' = m{x-x'), (1)

in which x and y are the variable coordinates of any point in the

straight line ; and m, the tangent of its inclination to the axis of X.

But since the line is to be tangent to the given curve, we must have,

by Art. 17,

m = tan
(f>

dx'

(

-^ being derived from the equation of the given curve y =f(x),

and applied to the point of contact (»', ?/').

If we denote this by — , we have, substituting m = -^- in
ii m\ dx' dx'

equation (1),

y-y'=%(*-*), (2)

for the equation of the required tangent.

Since the normal is a line through (a?', y') perpendicular to the

tangent, we have for its equation

r-f—^C—0—g<—> (3)

dx'

For example, find the equations of the tangent and normal to the

circle x2 + if = a2
, at the point (x', y').

Here, by differentiating ar + ?/
2 = cr, we find

— = — -, from which -&- =— —

.

tw y dx' y'

Substituting in (2), we have

x'y-y' = --Xx ~ x%
y

as the equation of the required tangent.
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It may be simplified as follows

:

yy'-y' 2 = -xx' + x'
2

,

xx' -\-yy'=x' 2 + y' 2 = a2
.

The equation of the normal to the circle is found from (3) to be

y-y'=-,(x-x'),
X

which reduces to x'y = y'x.

EXAMPLES

Find the equations of the tangent and normal to each of the three

following curves at the point (x'
} y')

:

1 . The parabola, y
2 = 4 ax.

Ans. yy' =2 a{x + x'), 2a(y — y')+y'(x — x r
) = 0.

2. The ellipse, ^ + ^ = 1.
a2

b 2

Ans. ^ + WL = 1, b2x'(y - y')= a2y'(x - a?').

3. The equilateral hyperbola, 2xy = a2
.

Ans. xy' + yx' = a2

, y'(y— y') = x'(x — x').

4. Find the equation of the tangent at the point (x',y') to the

ellipse, 3x2 -4:xy + 2y2+ 2x = 2.

Ans. 3 xx' + 2yy'—2 (x'y + y'x) + x + x' = 2.

5. Find the equations of tangent and normal at the point (V, y')

to the curve, x5 — as
y

2
.

Ans. ^-^ = 3, 2xx' + 5yy' = 2x'2 + 5y'2
.

x y
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ar
3

6. In the cissoid (Art. 125), y
2 = , find the equations of the

2a — x

tangent and normal at the points whose abscissa is a.

Ans. At (a, a), y = 2 x — a, 2 y -f- x = 3 a.

t

At (a, — a), y + 2x = a, 2y — x — 3a.

So 3

7. In the witch (Art. 126), y =— , find the equations of
4r + x-

the tangent and normal at the point whose abscissa is 2 a.

Ans. x + 2y = ka, y = 2 x — 3 a.

8. Find the equation of the tangent at the point (x', y') to the

curve, Xs
y + xy2 = a 3

.

Ans. xy\2 x'+ y') + yx'(2 y' + x') = 3 a3
.

Find the equations of tangent and normal to the three following

curves

:

9. x'+f =3 axy (Avt. 127), at /^, 2^). Ans. x+y=3a, x=y.

10. :c + y = 2ex - y
, at (1, 1). Ans. 3y = x-{-2, 3^ + y = 4.

11. fjY + (llX= 2, at (a, b). Ans. - + U. = 2, ax -by = a2 - b
2

.

\aj \bj a b

12. Find the equations of the two tangents to the circle,

x2 + y
2 — 3y = 14:, parallel to the line, 7y = 4:X + l.

Ans. 7 2/ = 4# + 43, ly = 4 x — 22.

13. Find the equations of the two normals to the hyperbola,

4 x2 - 9 y
2 + 36 = 0, parallel to the line, 2 y+ 5 x= 0.

^[?is. 8 y + 20 a; =±65.

149. Asymptotes.* "When the tangent to a curve approaches a

limiting position, as the distance of the point of contact from the

origin is indefinitely increased, this limiting position is called an

* The limits of this work allow only a brief notice of this subject.
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asymptote. In other words, an asymptote is a tangent which passes

within a finite distance of the origin, although its point of contact is

at an infinite distance.

We have found in Art. 146, for the intercepts of the tangent on the

coordinate axes,

Intercept on OX=x — y— , Intercept on OY= y — x
c
-^-.

dy dx

If either of these intercepts is finite for x = oo, or y = oo, the cor-

responding tangent will be an asymptote.

The equation of this asymptote may be obtained from its two

intercepts, or from one intercept and the limiting value of -^.
dx

Let us investigate the conic sections with reference to asymptotes.

(1) The parabola, y
2 = 4 ax, ^ = ^.

dx y

dx ii~

Intercept on OX — x — y— — x—^— = — x,
dy 2 a

t x. , ^ Tr dy 2 ax y
Intercept on OT = y — x—' = y = ^

.

dx y 2

When x = oo, y=ao, and both intercepts are also infinite.

Hence the parabola has no asymptote.

(2) The hyperbola, .^-«j= l, &=.$£.
a2 b

2 dx a2

y

Intercept on OX = — , Intercept on OY= .

x y

These intercepts are both zero when x = oo, and there is an

asymptote passing through the origin. To find its equation, it is

necessary to find the limiting value of -^, when x = oo.

Hence

dy _ b
2x _ bx -± b-

1

dx a2
y aV^2 _-«2

\/i- a2

X2

dx a'
when x =oo.

9
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There are then two asymptotes, whose equations are

,
b

y = ± -x.
a

(3) The ellipse, having no infinite branches, can have no

asymptote.

150. Asymptotes Parallel to the Coordinate Axes. When, in the

equation of the curve, x = oo gives a finite value of y, as y = a, then

y = a is the equation of an asymptote parallel to OX.
And when y = oo gives x = a, then x = a is an asymptote parallel

to OY.

151. Asymptotes by Expansion. Frequently an asymptote may
be determined by solving the equation of the curve for x or y, and

expanding the second member.

For example, to find the asymptotes of the hyperbola

y = ±V -^= ± *?(l - f)i= ±*(l*-.
a a\ arj a\ 2x2

As x increases indefinitely, the curve approaches the lines

y = ± — , the asymptotes.

EXAMPLES

Investigate the following curves with reference to asymptotes

:

x3

1. ? = 32 , 3 a»
- Asymptote, ?/= z.

2. y
3 = 6x2 — or

5
. Asymptote, a; + y = 2.

3. The cissoid (Art. 125) y
2 = ^

Asymptote, a; = 2a.
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4. a?
3 + ?/

3 = a3
. Asymptote, x + y = 0.

5. (a? — 2 a)?/
2 = x3 — a3

. Asymptotes, # = 2 a, x + a = ± ?/.

6. Xs
-f 2/

3 = 3 cm/ (Art. 127). Asymptote, x + ?/ + a = 0.

(Substitute ?/ = vx in the given equation and in the expressions

for the intercepts.)

152. Direction of Curve. Polar Coordinates.

In this case the angle

OPT between the tangent

and the radius vector may
be most readily obtained.

Denote this angle by if/.

Let r, 0, be the coordi-

nates of P; r+Ar,0+A0,
the coordinates of Q.

Draw PR perpendicular

to OQ.

Then tanPQP = |^ =RQ r+ A> — rcos A0

sin A0
A0

Ar + 2rsin2 ^

. A0
sin—

Ar • A6» 2—
- -f r sin — —

A0 2 A0

Now let A0 approach zero ; the point Q approaches P, and the

angle PQR approaches its limit if/.

Hence tan
if/
= Lim A =otan PQR =

d0

(1)

The inclination
<f>

of the tangent to OX may be found by

<f>
= t+0 (2)
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153. Polar Subtangent and Subnormal.

If through O, NT be drawn per-

pendicular to OP, OT is called the

polar subtangent, and ON the polar

subnormal, corresponding to the

point P.

OT=OP tan OPT; that is,

r2
Polar subtangent = r tan \b =—

.

a>

dO

ON= OP cot PNO; that is,

dr
Polar subnormal = r cot xb =— •Y

dO

154. Angle of Intersection. Suppose the two curves intersect at P,

and have the tangents PT and PT\
OPT=xj/, OPT' = x\,'.

Then the angle of intersection,

and tan I- tan ^-tani/r

1 + tan i// tan ^
a)

By this formula the angle of inter-

section may be found in polar coordi-

nates, in the same way as by (1), Art. 147, in rectangular coordinates.

For example, find the angle of intersection between the curves

r = asin20, (2)

and r = a cos 20. (3)

From (2) and (3) we have for the intersection

tan20 = l.
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From (2), tan if/' = - tan 2 = -, for the intersection.
-i Z

From (3), tan if/
= — - cot 2 = — -, for the intersection.

Z Z

Substituting in (1), tan I— -

.

o

The curves are that in Art. 144, and the same curve revolved 45 c

about the origin.

EXAMPLES

1. In the circle (Art. 135), r — a sin 6, find if/ and <£.

Ans. if/ = 6, and $ = 20.

2. In the logarithmic spiral (Art. 138), r = e
ad

, show that
\J/

is

constant.

3. In the spiral of Archimedes (Art. 136), r = ad, show that

tan \j/=0; thence find the values of ^, when = 2 -k and 4 -k.

Ans. 80° 57' and 85° 27'.

Also show that the polar subnormal is constant.

4. The equation of the lemniscate (Art. 143) referred to a tangent

at its center is r2 = a2 sin 2 0. Find if/, <f>,
and the polar subtangent.

Arvs. if/ = 2 6; <£ = 30; subtangent = a tan 2 Vsin 2 0.

5. In the cardioid (Art. 141), r = a (1 — cos 0), find <£, ^, and the

polar subtangent.

Ans.
<f>
=— ; if/

= - ; subtangent = 2 a tan - sin2 —
z z z z

6. Find the area of the circumscribed square of the preceding

cardioid, formed by tangents inclined 45° to the axis.

27 —
AnS

' f^
2 + V3)a2

.
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7. In the folium of Descartes (Art. 127), r=
3atan ^ sec

^

show that tan <£ =

+

tan4 - 2 tail 6

2tan3 0-l

8. Find the area of the square circumscribed about the loop of

the folium of the preceding example.

Ans. 2 a/2 a2
.

9. Show that the spiral of Archimedes (Art. 136), r = ad, and the

reciprocal spiral (Art. 137), rO = a, intersect at right angles.

10. Show that the cardioids (Art. 141),

r = a (1 — cos 0), r = b (1 + sin 6),

intersect at an angle of 45°.

11. Show that the parabolas (Art. 139),

r =: m sec- -, r = n cosec- -
2' 2'

intersect at right angles.

12. Find the angle of the intersection between the circle (Art. 135),

r = a sin 0, and the curve (Art. 144), r = a sin 2 6.

Ans. At origin 0° ; at two other points, tan -1 3V3 = 79° 6'.

13. Find the angle of intersection between the circle (Art. 135),

r = 2 a cos 6, and the cissoid (Art. 125), r = 2 a sin tan 0.

Ans. tan -1
2.

14. At v% hat angle does the straight line, r cos 6 = 2a, intersect the

circle (Art. 135), r = 5 a sin 6 ? ^ tan
_, 3

4

15. Show that the equilateral hyperbolas (Art. 142), r2 sin 2 6 = a 2

,

/-cos 26 = b
2
, intersect at right angles.
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16. Find the angle of intersection between the circles

r = a sin + b cos 0, r = acos$-\-b sin 0.

Ans. tan"
2ab

17. Find the angle of intersection between the lemniscate (Art.143),

r2 = a2 sin 2 0, and the equilateral hyperbola (Art. 142), f^sin 2 6 — b
2
.

Ans. 2 sin
-1 —

155. Derivative of an Arc. Rectangular Coordinates. Let s denote

the length of the arc of the curve measured from any fixed point of it.

Then

We have

arc AP, As = arc PQ.

sec QPR PQ
PR

Now suppose Ax to approach zero, and consequently the point Q
to approach P.

Then

Lim sec QPR= sec TPR= sec <£.

PQ = PQ arcPQ
PR arcPQ* PR '

since

Lim _p_e_ =1
,arcPQ

Lim^=l4m^§
P# PR

T . As c?s

Ax dx

ds
Hence sec<£ =

dx'

therefore |=VH^-V^g)'
(1)



DIRECTION OF CURVES. TANGENTS AND NORMALS 187

It is evident also that

SlU(i = -, COS 6= . . (2)
ds ds

It may be noticed that these

relations (1) and (2) are cor-

rectly represented by a right

triangle, whose hypothennse is

ds, sides dx and dy, and angle

at the base <j>.

Here ds= ^(dxf+(dyy,

or
dx V [dxj

156. Derivative of an Arc. Polar Coordinates. From the figure of

Art. 152, we have, as A0 approaches zero,

sec \b = Lim sec FOR = Lim —-^ = Lim ar° ^ = Lim —J.r ^ RQ RQ RQ

As As

As

A0

*' + »'-»¥ A,,.^ . A.
A0 AF smT

Hence

ds

. T • As d9 ds
sec ^ = Lim =— =—

,

Y RQ dr dr

dO

-^
r

= Vl+tan 2
i/> V' +

<|J,

<l»_'l*<]r_ .
.

/'*'

Vctf

(i)

(2)

(3)
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It may be noticed that these relations (1), (2), and (3), are cor-

rectly represented by a right triangle, whose hypothenuse is ds, sides

dr and rdd, and angle between dr and ds, \p.

Here ds = V (drf + (r ddf,

and thence ^ = Ji + W™Y, or *=V r2 I
I)-



CHAPTER XVI

DIRECTION OF CURVATURE. POINTS OF INFLEXION

157. Concave Upwards or Downwards. A curve is said to be con-

cave upwards at a point P, when in the immediate neighborhood of

P it lies wholly above the tangent at P, as in the first figure below.

Similarly, it is said to be concave downwards, when in the immediate

neighborhood of P it lies wholly below the tangent at P, as in the

second figure below.

It will now be shown that when the equation of the curve is in

rectangular coordinates, the curve is concave upwards or downwards,
d2v

according as —- is positive or negative.
ax~

Suppose -^ > 0, that is, — ( —
)
> 0; in other words, the derivative

oar dx\dxj

of the slope is positive.

Then by Art. 21 the slope increases as x increases.

This case is illustrated in the first figure above, where the slope

evidently increases as we pass from PY to P2 . The curve is then con-

upwards.

But if --» < 0, it follows that the slope decreases as x increases.

189
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We then have the case of the second figure, where the slope de-

creases as we pass from P1 to P2 . The curve is then concave down-
wards.

158. A Point of Inflexion is a point P where —^ changes sign,
dx2

the curve being concave upwards on one side of this point, and con-

cave downwards on the other.

dx2

This can occur, provided -^ and
dx

are continuous, only when

^ =
dx2

(1)

But if -^ and —\ are infinite, we
dx dx2

may have a point of inflexion

when J = oc

dx2

X*

It is evident that the tangent at a point of inflexion crosses the

curve at that point.

For example, find the point of inflexion of the curve

2y = 2-8x + 6x2 -x3
.

d2y_Here
dx2

3(2-a>).

Putting this equal to zero, we have for the required point of in-

flexion, x = 2. If x<2,
ô >0; and if a>>2,^<0.

' dx2 '

dx2

Hence the curve is concave upwards on the left, and concave down-

wards on the right, of the point of inflexion.
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EXAM PLES

Find the points of inflexion and the direction of curvature of the

five following curves

:

1. y=(r-iy.

Ans. x= ±—-; concave downwards between these points, con-

V3
cave upwards elsewhere.

2. y = x* - 16 x" + 42 x2 - 28 x.

^Lns. 05= 1 and x= 7; concave downwards between these points,

concave upwards elsewhere.

3. a 4
y = x (x — a) 4 + aA

x.

r> a
Ans. x=^; concave downwards on the left of this point, con-

o

cave upwards on the right.

4. The witch (Art. 126), y

Ans. ( ± —*-, — ) : concave downwards between these points,

concave upwards outside of them.

5. The curve, y
a?

a? + 3 a*

Ans. [—3a, -j, (0,0), (3 a, — ); concave upwards on the

left of first point, downwards between first and second,

upwards between second and third, and downwards on the

right of third point.
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Find the points of inflexion of the following curves:

4:X

x> + ±

4t x m

6
- y = „a a

' Ans. x = and ± 2 V3.

7. y = T
«*. Ans. x = -2a.

(x — a) 2

8.i/ = (#
2
-f a?) e

-x
. Ans. x = and a; = 3.

9. y = e-~-e-K Ans. x = ^2S^zMH.
a — b

10 .

gy
+g)U. ^ „. ±-.

11. aV = a¥ - »6 (Art. 134). Ans. x=±% ^21 - 3 V33.
6



CHAPTER XVII

CURVATURE. RADIUS OF CURVATURE. EVOLUTE AND
INVOLUTE

159. Curvature. If a point moves in a straight line, the direc-

tion of its motion is the same at every point of its course, but if its

path is a curved line, there is a continual change of direction as it

moves along the curve. This change of direction is called curvature.

We have seen in the preceding chapter that the sign of the second

derivative shows which way the curve bends. We shall now find

that the first and second derivatives give an exact measure of the

curvature.

The direction at any point being the same as that of the tangent

at that point, the curvature may be measured by comparing the

linear motion of the point with the simultaneous angular motion of

the tangent.

160- Uniform Curvature. The curvature is uniform when, as the

point moves over equal arcs, the tangent turns through equal angles.

The only curve of uniform curvature is the circle. Here the meas-

ure of curvature is the ratio between the angle described by the tan-

gent and the arc described by the point of contact. In other words,

it is the angle described by the tangent while the point describes a unit

of arc.

Suppose the point Pto move in the circle AQ.
Let s denote its distance AP from some initial position A

}
and

<j> the angle PTXmade by the tangent PT with OX.
Then as the point moves from P to Q, s is increased by PQ= As,

and
<f>
by the angle QRK= A<£.

As the point describes the arc As, the tangent turns through the

angle A(£.
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The curvature, being uni-

form, is then equal to — •

' ^ As
If we draw the radii CP,

CQ, and let r denote the

radius, then

angle PCQ = QBK= A</>.

But

arc PQ = CP (angle PCQ)
;

that is,

As = rA<f>, —^ = —
As r

Hence the curvature of a circle is the reciprocal of its radius.

For example, suppose the radius of a circle to be 50 feet.

Then its curvature is
A<j> = 1

As ~ 50'

where A<f> is in circular measure, and As in feet.

In other words, for every foot of arc, the change of direction is

— in circular measure = 1° 8' 45".
50

161. Variable Curvature. For all curves except the circle the

curvature varies as we move along the curve. In moving over the

arc As, —* is the mean curvature throughout the arc. The curva-
As

ture at the beginning of this arc is more nearly equal to —*, the

shorter we take As.

Hence the curvature at any point of a curve is equal to

-L<iniAs=o
-— — -7-

As as
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162. Circle of Curvature. A circle tangent to a curve at any point,

having its concavity turned in the same direction, and having the

same curvature as that of the curve at that point, is called the circle

of curvature ; its radius, the radius of curvature; and its centre, the

centre of curvature.

The figure shows the circle of curvature MPN for the point P of the

ellipse. C is the centre of curvature, and CP the radius of curvature.

It is to be noticed

that the circle of curv-

ature crosses the curve

at P. This can be

easily proved.

At P the circle and

ellipse have the same

curvature, but as we

go towards P2 ,
the

curvature of the ellipse

increases, while that of

the circle continues the same.

Hence on the right of P the circle is outside of the ellipse.

Moving from P to P2 , the curvature of the ellipse decreases, and

therefore on the left of P the circle is inside of the ellipse.

So in general the circle of curvature crosses the curve at the point of

contact.

B n>\
i!

VL
/ p!v

_j^C^

A J \

M

N
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The only exceptions to this rule are at points of maximum and

minimum curvature, as the vertices A and B of the ellipse.

As we move from A along the curve in either direction, the curva-

ture of the ellipse decreases ; hence the circle of curvature at A lies

entirely within the ellipse.

Similarly it appears that the circle of curvature at B lies entirely

without the ellipse.

163. Radius of Curvature. The curvature of the circle of curva-

ture being that of the given curve, is equal to -^ (Art. 161). If we

denote the radius of curvature by p, then by Art. 160,

ds mp=^ (1)

ds

To obtain p in terms of x and y, we may write (1), p =— = —- •

dcf> d<f>

dx

From (1) Art. 155, ^ = Jl + f§Ydx \ ^ \dx)

Also, tand> = ^, <f> = tan- 1^\
dx \dxj

Differentiating, ^> = ^—- (2)
dcf> dx'

2

dx 1+ (^y
\dxj

Mm 3
2

d2

y
dx2

Hence P= ^ ^
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It is to be uoticed that p is always to be considered positive ; that

the sign of |~1 + f^t

By interchanging x and y, we have

is taken the same as that of —

.

dor

Kf)t
dtf

which is sometimes the more convenient expression.

As an example, find the radius of curvature of the semicubical

parabola ay2 = x3 (Art. 130).

Differentiating, *_**, ^=_J

Substituting in (3), we find

a£(4 a +9x)i
P== Wa

164. Radius of Curvature in Polar Coordinates. Eesuming (1),

Art. 163, p = —q, let us express p in terms of r and 6.

ds_

d* doWe may write pJ H
d<f> d±

dO

From (3), Art. 156,
ds = J?
0.6 \
ds I o

,
fdr^

From (2), Art. 152,

* *'
06 dO
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From (1), Art. 152,

T f T
tan \b-=—, il/ = tan _1

T dr r

Differentiating,

Substituting,

Hence

dO

dr

ld$)

'dr\ _ d2r

d&__ \dd)
r
d&

dcf>

dO

d$
J

.2,2^—Y-r—
\d0)__ dO2

dr

dO

P =

.2,[dr

\dO.

^y d02

(1)

EXAMPLES

Find the radius of curvature of the following curves :

1. y = (x-l) 2(x-2), at (1, 0) and (2, 0). Ana. p = \ and -L
2 Y2

2. ?/= log x, when a; = f

.

Ans. p = 2||.

3. The cubical parabola (Art. 130), ct
2
y = #3

. Ans. p — T 4 .

4. The parabola, y
2 = 4ax.

Find the point of the parabola where p = 54 a. Ans. x = 8a.

(x2 -4- y2
)
2

5 The equilateral hyperbola, 2xy = a2
. Ans. p = ±—

2

•
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6. The ellipse, t. + 1 = 1. Am. P =W + **)*
.

ar b- a 4
6

4

What are the values of p at the extremities of the axes ?

Ans. - and £L
2

.

a b

7. Show that the radius of curvature of the curve,

x* + y
2+ 10 x — 4 y + 20 = is constant, and equal to 3.

Find the radius of curvature of the following curves

:

8. sH-log(l-x*) = 0. Ans. P = <}+%

9. sin y = e
z

. Ans. p = e~x.

XT °

10. The catenary (Art. 128), y = *(e° + e~"«). ^%s. p = £.

11. The hypocycloid (Art. 132), a?« + y* = a*. ^^- p = 3 (aa;y)*-

12. The curve aY=aV— a? (Art. 133), at the points (0, 0) and

(a, 0). Ans. p = - and p = a.

13. The cycloid, x = a(0 — sm0), y = a(l — cos0).

Ans. p = 4asin -'

14. Show that the radius of curvature of the logarithmic spiral

(Art. 138), r = eae, is proportional to r. p = r Vl + a1
.

15. Show that the radius of curvature of the curve,

r= a sin 6 4- b cos 0, is constant. p = - Va2 + 6
2

.

16. The spiral of Archimedes (Art. 136), r = aO.

(r^-Mry

r
l + 2 a 2

Ans. p
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17. The cardioid (Art. 141), r = a (1 - cos 6). Ans. p
2 = - ar.

18. The curve, r = a sin3 - (Art. 145). Ans. p=-c&sin2 -'
H

4 3

19 . The parabola (Art. 139), r — a sec2 - • Ans. p = 2a secs

20. The lemniscate (Art, 143), r2 = a2 cos2 ^4ws. o =
3r

165. Coordinates of the Centre of Curvature. Let x, y be the co-

ordinates of P, any point of the curve AB, and C the corresponding

centre of curvature. CP is

then the radius of curvature,

and is normal to the curve.

Draw also the tangent PT.

Then CP = p ;

angle PCR = PTX=
<f>.

Let a, /?, be the coordinates

of C. OL = OM- RP,
LC=MP+RC;

that is, a =x — p sin <£,

P = y + P cos'<f>. (1)

To express « and /? in terms of x and y, we have, by (2), Art. 155,

and (1), (2), Art. 163,

p sin</>

pCOS cji

dy

ds dy _ dy _dy dx _ cto

dcf> ds d<j> dx d<fi

dx dx \dxj

1+
dys

dx

d2

y

dx2

Hence dy

dx
1 +

~¥y
dx2

d2y~

dx2

£=2/ +
d*y

dx2

(2)
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166. Evolute and Involute. Every point of a curve AB has a

Thus, P
x , P>, P,, etc., have forcorresponding centre of curvature,

their respective centres of

curvature C1} C2, C3, etc, The
curve UK, which is the locus

of the centres of curvature, is

called the evolute of AB. To
express the inverse relation,

AB is called the involute

of HK.

167. To find the Equation

of the Evolute of a Given Curve.

By (2), Art. 165, a and /?, the

coordinates of any point of the required evolute, may be expressed

in terms of x and y, the coordinates of any point of the given curve.

These two equations, together with that of the given curve, furnish

three equations between a, /3, x, and y, from which, if x and y are

eliminated, we obtain a relation between a and /3, which is the

equation of the required evolute.

For example, find the equation of the evolute of the parabola

Here

y- — 4 ax.

-J- — a?x ?, -^ = crx '

dx ' dx2 2

Substituting in (2), Art. 165, we have

a = 3 x + 2 a, j3 =

Eliminating x, we have for the equation of the evolute,

«/3
? = i(«-2«)3

.

This curve is the semicubical parabola (Art. 130). The figure

shows its form and position. F is the focus of the given parabola.

OC=2a = 2 0F.
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As another example, let us

find the equation of the evolute Y

of the ellipse, 9 2

-+2- =1.
a2 b2

dy = _b2x d2

y = __&*_
#

dx a2
y dx2 a2

y
(Art. 66)

Substituting in (2), Art. 165,

To eliminate a; and y be-

tween these equations and that

of the ellipse, we find

x3 aa y
s M

a3 a2 - b* bs a2 - b2'

x2 ,V_ (q«)* + (&£)* __
" u

(a2 - b
2y

giving, for the equation of the evolute,

(aa)$+(60)*=(tt2 ^&2)"*.

The evolute is EF'EFE. E is centre of curvature for A\ C for

P; Ffor JB; ^' for ^ f

; i^
7

' for B'.

In the figure F and _F' are outside the ellipse, but if the eccentric-

ity is decreased, so that a < b V2, these points fall within the ellipse.

168. Properties of the Involute and Evolute. Let us return to the

equations, (1), Art. 165,

a = x — p sin
<f>,

£ = y -h p cos
<f>.
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Differentiating with

respect to s,

da _ dx dp

ds ds ds

sin (p — p cos
<f>

—

*

ds
a)

ds ds ds

coscp-psincp^-. (2)

Substituting in (1),

P = ^- and cos 4,= ^,
d<f>

r
ds

(Art. 155), two terms

cancel each other,

giving

Similarly in (2), p=— and sin
<f>

d<p

d^ dp

ds ds

dy

ds
(Art. 155), giving

(4)

(5)
Dividing (4) by (3), 3£= L_

da tan <£

But JS
i s the slope of the tangent to the evolute at any point d,

(see fig., Art. 166), and tan </> the slope of the tangent to the involute
at the corresponding point Pv Since by (5) one is minus the recip-
rocal of the other, these tangents are perpendicular to each other.
In other words, a tangent to the evolute at any point C\ is C^, the
normal to the involute at Pv
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169. Again, from (3) and (4), Art. 168,

daV
+ M?Y fdp\*

0T
(d*y= (dp

dsj \dsj \dsj ' \ds J

fdp\
\dsj'

where s
r denotes the length of the arc of the evolute m&asured from

a fixed point. Hence,

ds ds ds\ J

Hence, s' ± p = a constant, (1)

since, if a derivative is always zero, the function can neither increase

nor decrease, but is constant.

It follows from (1) that

A 0' ± p) = 0, As' = ± Ap.

That is, the difference between any two radii of curvature P
XCX,

P3(73, is equal to the corresponding included arc of the evolute CXCZ .

170. From the two properties of Arts. 168 and 169, it follows that

the involute AB may be described by the end of a string unwound
from the evolute UK. From this property the word evolute is

derived.

It will be noticed that a curve has only one evolute, but an infinite

number of involutes, as may be seen by varying the length of the

string which is unwound.

EXAMPLES

1. Find the coordinates of the centre of curvature of the cubical

parabola (Art. 130), ahj = x\
a< lg x< ^ _ 9 ^

6 a2x 2 a4

2. Find the coordinates of centre of curvature of the semicubical

parabola (Art. 130), ay2 = x\

Ans. .=--!£ ^(*+
|)^i



CURVATURE. RADIUS OF CURVATURE 205

3. Find the coordinates of the centre of curvature of the catenary

(Art. 128), y = |

(

e
-»+ <T°).

^ins. a = x—
a

Ans. a = x-^^/
y
2_ a2

j p == 2y.

4. Show that in the parabola (Art. 129), x? + y* = a 2
, we have the

relation a + /3 — 3 (as + y).

5. Find the coordinates of the centre of curvature, and the equa-

tion of the evolute, of the hypoeycloid (Art. 132), Xs -j-y1 = ds
.

Ans. a=a +3x*y*
} (3 = y + 3 xf y s

,

(«+ j8)* + (« - P)*=2a\.

6. Given the equation of the equilateral hyperbola 2 xy — a2

,

show that « + j8= (y+
g

a?)3

, «-P= (y~^\
a- ar

Thence derive the equation of the evolute,

(«+/^-(a-/?)3 = 2al

7. Find the equation of the evolute of the cissoid (Art. 125),

f = -
. Ans. 4096 asa + 1152 a2

£
2 + 27^ = 0.

_ (X — x



CHAPTER XVIII

ORDER OF CONTACT. OSCULATING CIRCLE

171. .Order of Contact. Let us consider two curves whose equa-

tions are
y = <f>(x) and y = if/(x).

If for a definite value a, of x, the value of y is the same for both

curves, that is, if

the curves have 'a common
point P.

If, moreover, for x = a, the

value of — also is the same for
dx

,

both curves, that is, if

<f}(a) = if/(a) and <£'(a) = ^'(a),

the curves have a common tangent at P.

The curves are then said to have a contact of the^rs^ order.

If besides, for x = a, the values of —^ are the same for both

curves, that is, if
x

<£(a) =ip(a), <£'(a) = i//(«), and <f>"(a) = if/" (a),

the curves have contact of the second order.

In general, the conditions for a contact of the nth order at the

point x = a, are

*(a) = ^(a), <£'(a) = f(a), *"(a) = f (a), ••, <£»(a) = ^(a),

and <£
n+1 (a)9^w+1

<>)-

206
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In other words, for x = a,

d n
y

dx*'dx daf

must all have the same values, respectively, taken from the equations

of both curves : and
dx"

must have different values.

172. When the Order of Contact is Even, the Curves cross at the Point

of Contact ; but when the Order is Odd, they do not cross. Let us dis-

tinguish the ordinates of the two curves by

T=€f»(x), and y = if/(x).

In the figures Y refers to the full curve, and y to the clotted curve.

If Y—y has the same sign on both sides of P, as in the first

figure, the curves do not cross at P; but if Y—y is positive on one

side of P and negative on the other, the curves do cross at P.

Let OM=a, MM1= h.

Then AQi= Y-y==4>(a+ h) - if/(a + K).

F
>

p ^^^ _

or
^y^
rs
/

/ / Qs
' /
/

R^rT
.

y%~
. F s
//

//
//

QyY
/

/

// p2

7
J M 9 M Mj X

Expanding by Taylors Theorem,

M. M Mi

a \o

^(a)-^'(a)-|V"(a)-|V"(«)
13

(1)
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Suppose the contact of the first order ; then

<£ (a) = ^ (a), <j>'(a) — ^'(a) , and (1) becomes

^=| *»(a)-f'(a) + |T*'"(«)-f"(«)] + •- • (2)

For sufficiently small values of h the sign of the lowest power de-

termines that of the second member, and hence the sign of PYQX will

remain unchanged when — li is substituted for h, giving P2Q2, as in

the first figure.

Thus when the contact is of the first order, the curves do not cross

at the point of contact.

Again, suppose the contact of the second order ; then

™=i

cf>"(a) = «//"(a), and (2) becomes

V "'(«) - *"'(«)]
+ jj

[+"(«) -r(«)]
+

•

Now PiQi will change sign with J\, so that P2Q2 and PXQX
will have

different signs, as in the second figure.

Thus when the contact is of the second order, the curves cross at

the point of contact.

By similar reasoning the general proposition is established.

It may be of service to the student, in connection with this prin-

ciple, to think of two curves as having two consecutive common
points, when they have contact of the first order; as having three

consecutive common points, when they have contact of the second

order ; as having n + 1 consecutive common points, when they have

contact of the nth order.

An odd number of common points implies the crossing of the

curves, but where there is an even number of common points, the

curves do not cross.

173. Osculating Curves. Contact of the nth order requires that y
and its first n derivatives should, for some definite value of x, have

the same values for both curves.

This implies n + 1 conditions.
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The equation of the straight line, y = ax + b, having only two

arbitrary constants, can satisfy only two of these conditions. Hence

a straight line can have contact of the first order with a given curve,

and cannot, in general, have contact of a higher order.

The equation of the circle x2 + y
2
-\- ax + by + c = 0, having three

arbitrary constants, can satisfy three of the conditions. Hence the

circle may have contact of the second order with a given curve.

Such a circle is called the osculating circle.

Similarly, the parabola, whose equation contains four constants,

may have contact of the third order ; and the general conic, whose

equation contains five constants, may have contact of the fourth

order with a given curve. These are called the osculating parabola

and the osculating conic.

174. Order of Contact at Exceptional Points. Although the tangent

has generally contact of the first order, it may at exceptional points

of a curve have a contact of a higher order.

For example, since the tangent at a point of inflexion crosses the

curve, it follows from Art 172, that the order of contact must be

even. Hence at a point of inflexion the tangent has contact of at

least the second order.

The osculating circle, which has generally contact of the second

order, has a higher order of contact at points of maximum or mini-

mum curvature, as, for example, the vertices of an ellipse. It is

evident from the symmetry of the ellipse with reference to its ver-

tices, that no circle tangent at these points would cross the curve at

the point of contact. Hence, by Art. 172, the order of contact is

odd,— at least the third.

175. To Find the Coordinates of the Centre, and Radius, of the Oscu-

lating Circle at Any Point of a Given Curve.

Let the equation of the given curve be

y =/(»)•

The general equation of a circle with centre (a, b) and radius r, is

(x-a?+(ij-by-=^ (1)



210 DIFFERENTIAL CALCULUS

Differentiating twice successively, we have

HW+(y - b)d
A=°-

(2)

(3)

From (3), y - b =

dx2

(4)

From (2), x— a =

dy

dx
1 + f^V"

1

dx

c^y

dx2

(5)

Substituting (4) and (5) in (1),

1 iffdx

dx2

)

(6)

Hence

dy

dx
a — x — x\_ \dx

d*y

dx2

, .
\dx) fTs

>

h = y+^f-' ()

dx2

and
Wt

(8)

C£#
2
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In these expressions, x, y,— , — , refer to (1), the equation of the

circle ; but since the osculating circle bv definition has contact of the

second order with the given curve, these quantities will have the

same values if derived from the equation of this curve y=f(x), and

applied to the point of contact.

By comparing (7) and (8) with the expressions for a, ft,
and p, in

Arts. 163, 165, it is evident that the osculating circle is the same as

the circle of curvature.

176. At a Point of Maximum or Minimum Curvature, the Osculating

Circle has Contact of the Third Order.

If we regard equation (8) in the preceding article as referring to

the given curve y =f(x), we have as a condition for a maximum or

minimum value of r,

^ = 0.
dx

We thus obtain from (8),

dx\da?) M2' dx*

3
dyfdy

from which tlL = *x[ ']

f\ .

dx* im(<&\*
\dx)

Again, if we regard (8) as referring to the osculating circle

(x-af+(y-by=r\

we shall also have — = 0,
dx

since r is constant for all points on the circle.



212 DIFFERENTIAL CALCULUS

Thus we obtain, both for the curve and the circle, the same ex-

pression (1) for J, and since -^ and —\ in the second member of
dx3 dx dx2

(1) have, at the point of contact, the same values for both curves, it

d3v
follows that —t has likewise the same value. Hence the contact is

dx3

of the third order.

EXAMPLES

1. Find the order of contact of the two curves,

y = x?, and y = 3 x2 — 3 x + 1.

By combining the two equations, the point x = 1, y = 1, is found

to be common to both curves.

Differentiating the two given equations,

y = x3
, y = 3 x2— 3 x + 1,

dx
'

dx>-
bX

^= 6,
da? '

dx
= 6aj--3,

d2
y_

dx2
= 6,

d3y_
dx?~

= 0.

dyWhen x = 1, ^ = 3, in both curves

;

dx

when x = 1 , ^4 = 6, in both curves

;

dx2

but —4 has different values in the two curves.
dx3 ^

Hence the contact is of the second order.

2. Find the order of contact- of the parabola, 4?/= a?
2
, and the

straight line, y = x — 1. Ans. First order.
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3. Find the order of contact of

9y= a*-3x*+ 27
)
and 9// + 3.r = 2S.

Ans. Second order.

4. Find the order of contact of the curves

y= log(x— 1), and x2 - 6a; + 2y + 8 = 0,

at the common point (2, 0). ^l»s. Second order.

5. Find the order of contact of the parabola, 4,y = x~ — 4, and the

circle, or -f y- — 2 y = 3. Ans. Third order.

6.- What must be the value of a, in order that the parabola,

y = x + l + a(x— l)
2

,

may have contact of the second order with the hyperbola,

xy — 3x — 1? Ans. a—— 1.

7. Find the order of contact of the parabola,

(x-2a)2+(y-2ay=2xy,-

and the hyperbola, xy = a2
. ^4?is. Third order.



CHAPTER XIX

ENVELOPES

177. Series of Curves. When, in the equation of a curve, different

values are assigned to one of its constants, the resulting equations

represent a series of curves, differing in position, but all of the same

kind or family.

For example, if we give different values to a in the equation of

the parabola y
2 = £ ax, we obtain a series of parabolas, all having a

common vertex and axis, but different focal distances.

Again, take the equation of the circle (x — a) 2
-f (y — b)

2 = c
2

. By-

giving different values to a, we have a series of equal circles whose

centres are on the line y = b.

The quantity a which remains constant for any one curve of the

series, but varies as we pass from one curve to another, is called the

parameter of the series.

Sometimes two parameters are supposed to vary simultaneously,

so as to satisfy a given relation between them.

Thus, in the equation of the circle (x — a)2 + (y— b)
2 = c

2
, we may

suppose a and b to vary, subject to the condition,

tf + b2 = tf

We then have a series of equal circles, whose centres are on

another circle described about the origin with radius fc.

178. Definition of Envelope. The intersection of any two curves

of a series will approach a certain limit, as the two curves approach

coincidence. Now, if we suppose the parameter to vary by infinitesi-

mal increments, the locus of the ultimate intersections of consecutive

curves is called the envelope of the series.

214
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179. The Envelope of a Series of Curves is Tangent to Every Curve of

the Series.

P Q

Suppose L. My N to be auy three curves of the series. P is the

intersection of M with the preceding curve L, and Q its intersection

with the following curve N.

As the curves approach coincidence, P and Q will ultimately be

two consecutive points of the envelope and of the curve M. Hence

the envelope touches M.

Similarly, it may be shown that the envelope touches any other

curve of the series.

180. To find the Equation cf the Envelope of a Given Series of Curves.

Before considering the general problem let us take the following

special example.

Required the envelope of the series

of straight lines represented by

. m
y = ax -f —

a

a being the variable parameter.

Let the equations of any two of

these lines be

y = ax + m

and y = (a +
a + h

(1)

(2)

From (1) and (2) as simultaneous

equations, we can find the inters

tion of the two lines. Subtracting (1) from (2),
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= to- hm
,

a(a + A)

or = £ ™— (3)

From (3) and (1), we have

x= m
,

(2a + h)m
. . . . . (4)

which are the coordinates of the intersection.

Now if we suppose h to approach zero in (4), we have for the ulti-

mate intersection of consecutive lines

m 2m
ar a

By eliminating a between these equations we have

y
2 = 4 ma?,

which, being independent of a, is the equation of the locus of the in-

tersection of any two consecutive lines, that is, the equation of the

required envelope.

The figure shows the straight lines, and the envelope, which is a

parabola.

181. We will now give the general solution.

Let the given equation be

f(x,y,a) = 0,

which, by varying the parameter a, represents the series of curves.

To find the intersection of any two curves of the series, we com-

bine

f(x,y,a) = Q, (1)

and f{x, y,a + h) = (2)



ENVELOPES 217

From (1) and (2), we have

f{x, ?/, a + h)-f(x, y, a) _ n ^x
A

' (;

and it is evident that the intersection may be found by combining

(1) and (3), instead of (1) and (2).

When the two curves approach coincidence, h approaches zero,

and we have, by Art. 15, for the limit of equation (3),

|-/(.r,2/,«) = (4)

Thus equations (1) and (4) determine the intersection of two con-

secutive curves. By eliminating a between (1) and (4) we shall

obtain the equation of the locus of these ultimate intersections,

which is the equation of the envelope.

182. Applying this method to the preceding example,

. m
y = ax + —

,

a

we differentiate with reference to a, and obtain for (4) Art. 181,

= x ---
a 2

Eliminating a between these equations gives the equation of the

envelope,

y
2 = 4:

rmx, as found'in Art. 180.

183. The Evolute of a Given Curve is the Envelope of its Normals.

This is indicated by the figure of Art. 166, and the proposition

may be proved by the method of Art 181, as follows :

The general equation of the normal at the point (V, y') is by

Art. 148, x -x! +&(S-y l

) = 0, (1)
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dn'
in which the variable parameter is x', the quantities y', -~, being

dx'

functions of x'. Differentiating (1) with reference to x', we have

From (1) and (2) we find for the intersection of consecutive

normals,

, ,

\dx'
y=y +

x = x' —

dy'

dx'

dx'2

HSf\
d2y'

dx'2

As these expressions are identical with the coordinates of the

centre of curvature in Art. 165, it follows that the envelope of the

normals coincides with the evolute.

EXAMPLES

1. Find the envelope of the series of straight lines represented by

y — 2 mx -f- m4
, m being the variable parameter.

Differentiating the given equation with reference to m,

= 2^ + 4m3
.

Eliminating m between the two equations, we have for the envelope,

16?/3 4-27x4 = 0.

2. Find the envelope of the series of parabolas

y
2 = a (x — a), a being the variable parameter. Ans. ky2 = x2

.

3. Find the envelope of a series of circles whose centres are on

the axis of X, and radii proportional to (m times) their distance

from the origin. Ans. y2 = m 2 (x2 + y
2
).
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4. Find the evolute of the parabola y
2 = 4ax according to Art.

l^o. taking the equation of the normal in the form

y = ni (x — 2 a) — a

m

s
. Ans. 21aif = 4 (x — 2 a) 3

.

5. Find the evolute of the ellipse — + ^=1, taking the equation

of the normal in the form

by = ax tan <j> — (a2 — b
2
) sin <j>,

where <£ is the eccentric angle.

Ans. (ax)* + (by)* = (a2 — b
2
)

\

6. Find the envelope of the straight lines represented by

x cos 3 + y sin 3 = a(cos 2 0)*,

6 being the variable parameter.

Ans. (x2 + y
2

)
2 = a2 (x2 — y

2
), the lemniscate.

7. Find the envelope of the series of ellipses, whose axes coincide

and whose area is constant.

The equation of the ellipses is

£,+£=i a)
a- cr

a and b being variable parameters, subject to the condition

ab = k2

, (2)

calling the constant area -n-k
2

.

Substituting in (1) the value of b from (2),

K +&-1, (3)
a- k4

in which a is the only variable parameter. Differentiating (3) with

reference to a, we have

-^+^ = (4)
a8 Jr

Eliminating a between (3) and (4), we have

4 xhf = k\
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Second Solution. Differentiate (1), regarding both a and b as

variable.

x?da
j

y
2 db = ^ /

5
n

a3 b3

Differentiating (2) also, we have

b da + a db = . (6)

From (5) and (6), we have

9 9

£=£ (7)
a2 b

2 W

From (7) and (1),

t = t= \ (8)
a2 b 2 2

W

Substituting (8) in (2),

4 x2

y
2 = &4

.

8. Find the envelope of the circles whose diameters are the double

ordinates of the parabola y
2 = 4 ax. Ans. y

2 = 4 a (a + x).

9. Find the envelope of the straight lines - + ^= 1,
a b

when an + b
n = kn .

_JL_ _^ _n_

X2 V2

10. Find the envelope of the ellipses —\-¥- — l
9

a2
b-

2 2 2
when a + b = fc. -4ns. # 3 + 2/

3 = & 3
.

11. Find the envelope of the circles passing through the origin,

whose centres are on the parabola y
2 = 4 ax.

Ans. (x + 2a)y2 + x? = 0.
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12. Find the envelope of circles described on the central radii of

an ellipse as diameters, the equation of the ellipse being

a~ o-

13. Pind the envelope of the ellipses whose axes coincide, and

such that the distance between the extremities of the major and

minor axes is constant and equal to k.

Ans. A square whose sides are (x ± y)
2 = k2

.
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CHAPTER XX

INTEGRATION. STANDARD FORMS

184. Definition of Integration. The operation inverse to differ-

entiation is called integration. By differentiation Ave find the dif-

ferential of a given function, and by integration we find the function

corresponding to a given differential. This function is called the

integral of the differential.

For instance;

since 2xdx is the differential of x2

,

therefore x2 is the integral of 2xdx.

The symbol I is used to denote the integral of the expression

following it.

Thus the foregoing relations would be written,

d{x2 ) = 2xdx, p2xdx = x\

It is evidently the same thing, whether we consider this integral

as the function whose differential is 2xdx, or the function whose
derivative is 2x.

As regards notation, however, it is customary to write

|
2zdx = :c

2
, and not j 2x = xr.

223
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In other words,/d
is the inverse of d, and not of —

'

dx

Thus the general definition of I <1>(x)dx is that function whose

differential is <^{x)dx ; the symbol | denoting " the function whose

differential is," in the same way that the inverse symbol, tan-1
,

denotes "the angle whose tangent is."

Integration is not like differentiation a direct operation, but con-

sists in recognizing the given expression as the differential of a

known function, or in reducing it to a form where such recognition

is possible.

185. Elementary Principles.

(a) It is evident that we may write

I 2 x dx = x* + 2, or I 2 x dx = x2 — 5,

as well as
J
2 x dx = x2

;

since the differential of x2
-f- 2, as well as of x2 — 5 is 2 x dx.

In general
J
2 x dx = x2 + (7,

where C denotes an arbitrary constant called the constant of integra-

tion.

Every integral in its most general form includes this term,

+ 0.

(6) Since d(u ±v ± w) = du ± dv ± div,

it follows that

I (du ± dv ± dw) = I du ± i dv ± I div.
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That is, we integrate a polynomial by integrating the separate

terms, ami retaining the signs.

(c) Since d(au) = adu,

it follows that
|
aclu = a

j
dw.

That is, a constant factor may be transferred from one side of the

symbol
J

to the other, without affecting the integral.

186. Fundamental Integrals. Since integration is the inverse of

differentiation, to integrate any given function we must reduce it to

one or more of the differentials of the elementary functions, ex-

pressed by the fundamental formulas of the Differential Calculus.

Corresponding to these formulae we may write a list of integrals,

which may be regarded as fundamental, and to which all integrals

should, if possible, be ultimately reduced. We shall then consider

in this chapter such examples as are integrable by these formulae,

either directly, or after some simple transformation.

I. frcfe-Jf-L.
J n-f-1

II. Jy = logu.

III. Ca*du=,—

.

J log a

[
»• /•

r

. j cos u

e"du = e
u

.

V. I cos u du = sin u.

VI. I sin u du — — cos u.
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VII. ) sec2 u die = tan u.

VIII. I cosec2 w du = — cot w.

IX.
|
sec u tan udu = sec w.

X.
J
cosec u cot icdu = — cosec w.

XI.
j
tan it du = log sec u.

XII. I cot udu = log sin u.

XIII.
j
sec u du = log (sec w + tan w) = log tan

f

- +

XIV.
I
cosec u du = log (cosec u — cot w) = log tan -

<S ^t-xt C du 1 , i u 1 ,_i u
XV. j = -tan-1

-, or = cot 1 --
J vr + a2 a a a a

, S vvt C du 1 i u — a 1 , a\X XVI. -^ - = —-log-—— , or = —log-
J vr — a? 2 a u-\- a 2 a a

XVII. f

XVIII. r_J?^= log (u+v^tf)
•/ VV ± a2 y

7T , tfc

2

+ u

XVII. I —= = sin * — , or = — cos l -
Vcr — u2 a a

du_

±

ATT AT C WU J- _1 '<*.

XIX. I —-sec -, or = cosec
J MVw2 _ a2 a a a a

XX. f
r/" =

•^ V2 aw — w2

= vers '

-

a
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INTEGRALS BY I. AND II.

187. Proof of I. and II.

To derive I.,

since d(un+l) = (?i -f- 1) un du,

therefore

« n+1 = f(n + l)un du = (n + 1) Cun du, by (c), Art. 185.

/ un+l
u
n du = •

n + 1

Formula II. follows directly from /

,j i du
d log u =

u

It is to be noticed that I. applies to all values of n except n = —1.

For this value it gives

u°
v l du = — =oo/• „

Formula II. provides for this failing case of I.

EXAMPLES

Integrate the following expressions

:

1. CaHkx.

If we apply L, calling u = x, and n=4; then du —dx. Then
we have

j
A<hr = '— + C, adding the constant of integration C, according to

(a), Art. 185.
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2. C(x2 + l)hdx.

If we apply I., calling u = x2
-j- 1, and n = -

; then cfa*=2 #d#.

We must then introduce a factor 2 before the icda?, and conse-

quently its reciprocal - on the left of
|

f(<e* + l)*a> da; = i f(» 2+ 1)*2 x dx, by (c), Art. 185.

_l (a;
2 + l)f _0g_+l}j

2 3 3

2

3
r (a;

2 --a2
)cfa = l /%3a2 - 3a2

)(fo

' J x*-3a2x 3J a;
3 -3a2x

= |log (a3 - 3 aV) = log (or
5 - 3 aV)* + C.

o

By introducing the factor 3, we make the numerator the differ-

ential of the denominator, and then apply II.

4. f(2x»-3x«+12x3 -3)dx =— - ?jl + 3x*-3x + C.
%s O 4

5. f(»f_l- +
2_2V 3»t_

3 ^_ 1 _ 2 _

c/ \ ^f ct-
5

a;y 5 2x*

6. f(aj2 -2)Vcto=-
} -^-8

+— -2*4 + <7.

*/ 10 4 o

7. f(a^-2)3a?da; =^~ 2
)
4

-|-0.
«y 8
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CI \ }\
3

7
9ctiv$

,
9oU x-

,

~

2a

10 (7 *F 4/«
3Y. 4a# 12 a£

, , 11,4a*', „
v *a ^ 13a* 7a* 5^

11. jy»i+ aJ-lY(to=^ +i^+ 6»+ 12**-3ar* + 0.

12. fcilS

^ =^^+ 32,-logy+ aJ 7/ 3 2

J xi 7 4

14. JV + 1)
5 x2

da; = (a?3 + 1)
6

+ C.

15. j%.x~ + 6)Wi\ 16. C(ax -\-b)
n
dx.

17. C(aa?+ b)*a?dx. , 18. f(oaf + ft^a?"-
1
da?.

21. Ju-i-l/"^'. 22. J(a+logOy-
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23.
f.

INTEGRAL CALCULUS

e
x -\-xe

-dx. 24. j (a — log10 x)
dx

x

25
- $\J^zf + *£- /e

2x da. 26. ( sin5 cos (9 ^6>.

27. f(e
2* + sin 20)(e2 + cos 20)d0.

28. I tan6 x sec2 x dx. 29. I sec5a tan x dx.

30. f(sinm -f cosw0) sin cos 6 dO.

31. f(sec + tan 0)
10 sec <9d0.

32. ("(sin <£> + cos <£)
w(sin2

<f>
- cos2

<£)d<£. 33. C(ax + &)
3 ax da.

34 r
sin

-1 a £fa
35

' J(l +
da

x~) tan -1 a

A rational fraction, whose denominator is of the first degree, may
be integrated directly or after being reduced to a mixed quantity.

36
- /iSri log(4*- 3

>
+c-

37
• Jfffi^ =^-^ 1(

2 4

33
J 2x-l 3 2 2 4 V y
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on Cost -f b , ax . 6s— a2
1 n , \ , r\

39.
;

dte = — + ,
log (&as + a) + C.

J bx + a b b~

40 C^LtJ^ civ = - 4-— + «2
-« +

1

a8 log (» - a)+ G.
J x — a 3 2

41 . f (-r + flV
<& = f + 2 as - fcc + (a - &)'9 log (x + 6) + <7.

«y .17 -}- —

42. f (
A

' + f^ s

<*b = - + 2 oas
2 + 7 a2* + 8 a3 log (x - a) + C.

J x — a 3

INTEGRALS BY III. AND IV.

188. Proof of III. and IV. These are evidently obtained directly

from the corresponding formulae of differentiation.

EXAMPLES

.
f(^ + a*+3b-*ydx=^.+i^ -l^-f

5 log a 2 log b

2. f<>« + e- axfdx = -\ e
-^ + 3eax -3 e~ax -

*J Cl\ o .a\_ 3
+ 0.

&e 4x 7a

, r I j , ,
1 /2a 2 9a 3

, 18a 6

fa

4. I L cto = — 6 e
3

h CJ %&* 4 2
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5. C(ex+a - e
ax+h

) dx. 6. C(e5inx cosx — acos2x sm2x)dx.

i

7. C(ex\+ -\dx. 8. fte
tan * sec 6> -e sec nan0) sec 0d<9.

J e
2* J J V ;

log(«62

)

log (ambp
)

J v ; 21og6 log (a&) 2 log a

INTEGRALS BY V.— XIV.

189. Proof of V.— XIV. It is evident that V.—X. are obtained

directly from the corresponding formulas of differentiation.

To derive XI. and XII.,

tan udu = — |
= — log cos u — log sec u.

J cos u

/, , (*cos udu
icot udu= I —

:
= log sin u.

J sinw

To derive XIII. and XIV.,

/' -j _ rsec u (tan a 4- sec u) du _ /~sec u tan u du + sec-u du

J sec u + tan u J sec it 4- tan-%

= log (sec u 4- tan u) .

/«„„«„ - ,7 Tcosec w (— cot z* 4- cosec w) aw
cosec udu= I i l—

J cosec u— cotu

= log (cosec u — cot w).
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By Trigonometry,

2 sirr -
1 — cos u 2 . u

cosec u — cot u =—:

= = tan - •

sm a o • u it 2,

2 sin -cos-
— _

If we substitute in this, ^ + u for u,

we have sec u + tan w = tan
(
- + -

Thns we obtain the second forms of XIII. and XIV.

, Cf • o - sb\ 7 cos 3 aj . sin 5 x
1. I sm 3 x + cos o x — sin - ax — —- -\ —

•

+ 2cos^+C.

sm—-*- 1- cos—!— cto = — m cos
^ + n sm—^— + C.

J \ m n J m n

o CI 4- sin mx 7 1 ,,
, x , AT

3. |
—:— dx = — (tan mx -\- sec mx) 4- C.

J COS' 0KC ??i

4. I (sec 5 x — tan 5 a?) sec 5 x dx. 5. I (sec 2 4- tan 2 6) dO.

J \cos-6 smdj J

c> f* vers y
8. I —^—— da; = cos x — 2 log (1 4- cos #) 4- C.

J sm./;
y

9. C^pdx. 10. '.fl?™!***
•/ c J sin-x

n r seo»rf» = 1 , ,,, tan 4> + b) + aJ a sin £+ & cos <£ a
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12. I (tan x — cot# + l)2
dsc = tan a; + cot cc — 3x— 2 log sin 2 x + C.

13. I (sec 2x-\- tan 2 a? — cot 2 a?)
2
c?# = tan 2x -\- sec 2x — - cot 2 a;

— log tan ce — 4 x -j- (7.

14. I (sec
<f> + cosec

<f>
— I) 2

dcf> = 4> + tan <£ — cot <£

+ 2Iog* + c°sf+a
1 + sin <£

The following may be integrated after trigonometric transforma-

tion.

15. Csin*xdx =*-™^+a
4

\. I sin2
a?

1 a C 2 7 » ,
sin 2 x . ^

lb. | cos^ a; cfe = - -\— 1- C.
J 2 4

17. . ( vers2
a; dx. 18. j sin 2 x cos2 x dx = —— + C.

J J x 16

in f. a . n -,n sin (m — n)0 sin(m+ %)0 , n
19. I sin mO sin nO dO = -

)
'- —^—

—

J— + C.
J 2 (m — n) 2 (m -f w)

nr\ C a a 7/1 sin(m — ?i)0
,

sin(m + w)d
, ^

20. | cos m0 cos w0 c?0 = -

—

\
J— + -ttt —r~ + "•

J 2{m— n) 2(m-j-w)

oi C - a a ja • cos (m — w)0 cos (m + w)0 ' n21. j sm m0 cos w0 d0 = '- —-) !—f- -f C\
J 2(m— w) 2 (m+n)

on T K o j sin 3 x . sin 1 x
, n22. | cos t> a? cos 2 £(&«:= — 1

—
\- C.

J 6 14
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23. fsin (3 x + 2) cos (4 • + 3) dx = <**(*+ *) - Cos(^+^ + C.

nA T .-> o 7 cos 6 a; cos 4 a; cos 2 sc
, ^

24. I sm .r sin 2 x sm 3 .r dx =—— -f C.
J 24 10 8

25. C^MdO. 26. rg?°i-fl rfg = 2sin g + 2gin3fl + C.
J sin J sin o

27. f—^— = tan0-sec0 + O. 28. f-^-.
J 1 + sm J vers

-dx — — cosec a? —cot x — log vers a; + C.
vers x

C cos a; cfce „ ,

VI + sm x dx = I — — 2VI— sin a; + C.J V 1— sin .x*

31. fVveraada?. 32. f- ^ =J- log tan (^ +^+ C.
J J sin + cos V2 V2 87

INTEGRALS BY XV. — XX.

190. Proof of XV.— XX.

To derive XV.,

29

30

c_±!_ = i r^^ = i f_W = i
taa-i«

J it
2 + a2 a .7 i i ?L a

1 (-] a a

cr \aj

To derive XVII.,
du

I •= I — SID-1-.
•J Va2— <•- ^ }_'_!! a

\ a2
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To derive XIX.,
K

"

du

/du 1 r a 1 ,u
3;:;: I _ — SeC

_
'

wVw2-a2 uJ u ly?_
1

a a

a^a2

To derive XX.,
du/du C a

^/2au — u2 J \u u2

\2
2* a or

vers"

Since tan-1 ^ = 7r
-cot- 1 ^,

a 2 a

it is evident that d tan-1 - = d ( — cot
-1 - ) •

Hence either expression may be used as the integral in XV.
In the same way we obtain the second forms of XVII. and XIX.
The formulae XVI. and XVIII. are inserted in the list of integrals,

because their forms are similar to XV. and XVII., respectively, with

different signs.

To derive XVI.,

u2 — a2 2 a\u — a u + aj

hence

/ du 1 Cf du du \

u2 — a 2 2aJ \u — a u + a)

h [log (w - a) ~ log (M + a)] =£ loghi
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Or we may integrate thus

:

r (hi _ \_ rr -du _ (7?/

J ir~ a2 2 aJ \a — u a + u

=A [log (« - u) - log (a+ «)] =A log
a

j a a + U

To derive XVIII.

assume -\vF±a- = z, a new variable.

Then u2 ±a2 = z
2

,

2udu= 2zdz;

du dz du + dz
therefore

z u u + z

Hence f^
( = Cd " + (fe = log (u + z)

;

1 1S
' J v^±^'

= log (w + v%2 ± a2) -

EXAM PLES

J4.r + 9 6 3 J4a;2 -9 12 °2a; + 3

3. I
—====== = -sm *

\- C.
J VT-25^ 5 2

4. P dj; = I log (5 a; + V25 ar - 4) + C.

5. f
r?'r =— log (ars/5 + Voa?+l) + 0.

•^ V5 a^ + 1 Vo
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J3-12x2 12
& 2a?-l^

/ dy g C dw q C dx

12 f +
3* 'Jm<;2 -3° ' J 3^-5*

^ V3*2 -2 ' J V2 - 3 a2
.

J V3~a^T2

13. C dx = lsec-^+G
•^ ^V9ar — 4 2 2

» /:
dec -l 2 a? ' ^= vers x

h C.

Vma? — a?
2 m

15. f ^ =-sec- 1 g + g
J&VaV-16 4 2

16. f ^ = ± vers"1dx 1 _, -8 x_====r = - vers l—
V7 a? — 4 a?

2 2 7

17. P da; = sin"1 log Vx + C.
J a?V4— (log a?)

2

18-/SS^=
i

l0g(^ +9) ^i
tatl"1+a

J4a?2 -5 8 4V5 2x+V5

20. f
3 a; ~ 2

da? = - 3 V9 - x2 -2sm-l ^+C.
J V9-a?2 3

a
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21. f
x
_±___ c?.r = ^ ^T4 -f 3 log (x + V.^+4) + (7.

J V .r + 4

22. C 5 x 1
dx = 5 V3 Xs - 9 -— log (a V3 + V3 ^ - 9) + C.

J V3.r-9 3 V3

23.
J cr siu- + 6- cos- «6 6

24. f
rf» = -Ltaii-'gg4 + C.

J 1 + cos- <#> y2 V2

25. r si° g^ =COgV«*JUft
•/ A/Sp.ns2 fl4-a.siTi 2

fl V 2 /V3 cos- + 4 sin-

26. f
/

S2£J_^1 - = -^Iog(3cos2s+V9cos2 2a;-4)+ (7.

*^ Vo cos1' 2 .1-— 4 sin- 2 i "

27. fe_!l±^! tfa. = 1 log ( e
2x + x + J_ tan-i _£_ + c

The same formulae may be applied to integrals involving

- ax + /j or — x2 + ax + b, by completing the square with, the

terms containing x. Thus,

Ja*+ 6a?+13 J (x + 3/ + 4 2 2

29. f
** = f_ «** ^sin-'g^ + C.

J v/8 + 4 a; — 4 .r J a 9 - (2 jc - l)2 2 3

30. f r7x = Jl.W (3 a?- 2+ V9ar>- 12 a; + 6) + C.
-'a a7+ 2 V3
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31. f *5 = -4,tan-i^4?+C.
J 2 ar — 3 a? + 5 A/si V31

32.

2 x2 - 3 a; + 5 V31 V31

/' dx—
, when a = 4 ; when a = 6 ; when a = 8.

or — ax + 9

33. f-
-*? = 1 tan-^^±^±J + a

J (a> + a) 2 + (a; + 6)
2 Va2 + &

2 Vet2 + b'
1

O/i r ^ 1 • -1 4 JB — 1 . n34. I —===^= = - sm 1 — + C.

35.- f
eos2ecW = ±log sin2e +a

J sin220+msin20 2m & m + sin2

36. f
dx =sm-i 2x - a - b +C.

J V(a-a)(&- a-) a-&

37. f- *L = 2
tan-i(^ + a+ &)V3+a

J (a? + a) 3 — (a? + 6V3
a/q („ _ m* a — b(x + af-(x + by V3(a-6) 2



CHAPTER XXI

SIMPLE APPLICATIONS OF INTEGRATION.
TEGRATION

CONSTANT OF IN-

Before continuing the integration of functions, we will consider

the relation of integration to the determination of the area bounded

by a given curve, and show how the constant of integration may be

determined.

191. Derivative of an Area. Let y=f(x) be the equation of a given

curve OPv Suppose a point to move along the curve starting from

P(„ and let x, y, be the coordi-

nates of any position P.

At the same time the ordi-

nate of the moving point

starts from the position

P^lf,,, and sweeps over or

generates a certain area.

When the point has moved

to P, this area is PqMqMP.
Denote this area by A.

A is a function of x, and it

will now be proved that its derivative with respect to x is equal to y.

Give to x the increment A.? = MN.

Then AA = PMNQ.

AA > y Ax, and AA < (y + Ay) Ax,

-r->y>Ax

AA
and — < y+ Ay.

Ax

Hence
rl_A

dx
= Lim AA

.'/•

In case the curve descends from P to Q, the above inequalities

will be reversed, but the result will be the same.

241
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192. Area of Curve. Let it be required to find the area PqMqMxP^
between the curve, the axis of X, and the two ordinates P MQ and

Pal-
let 0MQ

= a, and 0MX = b.

dA
From the preceding article — = y.

dx

Hence A =
j
ydx= i f(x)dx.

Let • Cf(x)dx=F(x) 0}

then A = F(x) + G (1)

To determine C, we have the condition that A begins when x = a
;

.that is, A — when x = a.

Hence = F(a) + C, C=- F(a).

Substituting in (1), A = F(x) - F (a) = P MMP (2)

It is to be noticed that C is determined by the initial value a of x,

corresponding to the initial ordinate PoMQ .

If now we let x = b in (2), we have

A = F(b) - F(a) = PqMoM^

For example, let the given curve be the parabola y
2 = x.

Then A= Cydx= fxidx=— + G. ... (3)

To determine G, A = when x = a.

o 3
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Substituting in (3),

A=Z^-^= P<>MQMR (4)

To find PJUfP.. let s= b in (4).

3 3
"

EXAM PLES

1. In the curve of Ex. 1, p. 24, show that P OJIP, = ~'

Also P1M1M2P2= ^-

2. Find the area included between the equilateral hyperbola

2xy = cr. the axis of X. and two ordinates x = a, x = 2 a.

Ans. cr los: V2.

3. Find the area included between the witch of Agnesi (Art. 126),

the axes of X and I", and the ordinate x = 2 a. Ans. ircr.

4. Find the area included between the catenary (Art. 128),

the axis of X, and the ordinates x = a, x = 2a.
2

A n s. — (ft
2 — e + e

_1— e~ 2
)

.

5. Find the area of one arch of y = sin x. Ans. 2.

6. Find the area included between the parabola x* + y- = a*

(Art. 129), and the axes of X and Y. Ans.
<r

7. Find the area included between the semicubical parabola

". - = • A rt. 130 • the axis of 1", and two abscissas, y = 8 a, gl =* 27 a.

A 633
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Conversely, instead of determining the area from the integral, we
may find the integral from the area, when it can be obtained geo-

metrically from the figure. For example :

8. Find | Va~ — x2 dx, by means of the curve y = Va2 — x2
, circle

about 0, radius a.

A = BOMP = OMP+ BOP

= -xy-\ <}>= -x-y a~ — xr -\ sin -

•

2
y

2 * 2 2 a

If the initial ordinate, instead of OB,

had been some other ordinate, we should

have had

A = - Va2 - x2 + - sin-1 - + C, where C is independent of x.

Hence A= i ydx— j Va2— sc
2
cZas = *|Va2 — a,*

2 + ^- sin
-1

- + (7.

9. Find j (3 a? + 2) eta, by means of the line y = 3x + 2.

10. Find
J
V2 ax — x2 dx, by means of the curve y = V2 ax — x'

2
.

Ans. CV2ax-x* dx= X-^ V2aa-a2
-f £ sin" 1^^ + C.

J 2 2 a

193. Other Illustrations. In order to further illustrate the deter-

mination of the constant of integration, we will work three examples,

involving geometrical or physical properties.

Ex. 1. Determine the equation of a curve through the point (4, 3),

at every point of which the slope of the tangent is equal to the recip-

rocal of twice the ordinate of the point of contact.
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By the hypothesis
dy_ 1

dx 2y

from which 2ydy = dx.

Integrating, y- = x + a (1)

2=£-8

This equation represents a series of parabolas whose axes coincide

with the axis of x.

If now we impose the additional condition that the curve must

pass through the point (4, 3), its coordinates must satisfy equation

fe), giving
9 = 4 + C, 0=5.

The equation of the particular curve is therefore

y
2 = x -h 5. '

Ex. 2. A body starting from rest, with a given initial velocity ^,

,

moves with a constant acceleration g. Find the space passed over

in any time.

dv
In Art. 19, acceleration

dt

Here

Integrating,

rj
}
dv==gdt.

dt

v = gt+C.

From the conditions of the example, v = v when t = ; therefore

v = 0+C, C=Vq.
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Hence v = gt-\- v .

ds
Since v = — (Art. 18), ds = gtdt-\- % dt.

tit

Integrating, s = - gt
2 + v$ + C.

From the conditions of the example, s = when t = ; therefore

O=0, and s = - #£
2 + v £ is the complete solution.

Ex. 3. A body is projected at an angle a with the horizon, and

with a velocity v . Eind the equation of its path.

Represent the horizontal and vertical components of the velocity

by vx and v
y
respectively. Then, since gravity is the only force act-

ing on the body, we have

^ = 0, and
dt dt *

Integrating, «L=C, v
y
= -gt+0.

When t = 0, vx = v cos a, v
y
= v sin a.

Hence vx = v cos a, v
y
= -gt + v

l)
sina-,

at is,
dx
-r- = i< cos a,
dt

-^- = — gt + v sin a.

(*5

Integrating, x = v t cos a + C, 2/ = — - gtf
2 + v £ sin a + C".

When t — 0, x and ?/, and therefore C and C, are zero.

Hence x = v £ cos a, and y = — -gf-\- v t sin a.

Eliminating £ between these equations, we have as the equation of

the path of the projectile,

qxr
?/=#tan a

2 v? cos2 a

This evidently represents a parabola whose axis is parallel to the

axis of Y.
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EXAMPLES

4. Find the equation of the curve whose subnormal (Art. 146)

has the constant value 4, and which passes through the point (1, 4).

Ans. y
2 = 8x + 8.

5. Find the equation of the curve whose subtangent (Art. 146)

is twice the abscissa of the point of contact, and which passes through

the point (2, 1). Ans , x = 2y2
.

6. The slope of the tangent to a curve at any point is , and

the curve passes through the point (3, 2). Find its equation.

Ans. 4ar + 9?/
2 = 72.

7. Find the equation of the curve whose polar subtangent (Art.

153) is 3 times the length of the corresponding radius vector, and

which passes through the point (2, 0). Ans. r = 2es
.

8. Find the equation of the curve whose polar subnormal (Art.

153) is 3 times the length of the corresponding radius vector, and

which passes through the point (2, 0). Ans. r = 2 ew .

9. Find the equation of a curve through the point (3, —
j,
in which

the angle between the radius vector and the tangent is half the

vectorial angle. Ans. r = 6(1 - cos 6).

10. A balloon is ascending with a velocity of 20 miles an hour.

A stone dropped from the balloon reaches the ground in 6 seconds.

Find the height of the balloon when the stone is dropped,

Ans. 400 ft.

11. If a particle moves so that its velocities parallel to the axes

of X and Y are ky and. kx respectively, prove that its path is an

equilateral hyperbola.
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12. A body starts from the origin of coordinates, and in t seconds

its velocity parallel to the axis of X is 6 1, and its velocity parallel

to the axis of Y is 3 1
2 — 3. Find (a) the distances traversed parallel

to each axis in t seconds
;

(b) the distance traversed along the path

;

(c) the equation of the path.

Ans. (a) x = 3f; tj = f-3t.

(b) s = t
3 + 3 t.

(c) 27tf = xfr-$y.

13. If a body, projected from the top of a tower at an angle of

45° above the horizontal plane, falls in 5 seconds at a distance from

the bottom of the tower equal to its height ; find the height of the

tower (gi= 32). Ans. 200 ft.

14. When the brakes are put on a train, its velocity suffers a con-

stant retardation. If the brakes will bring to a dead stop in 2 min-

utes a certain train running 30 miles an hour, how far from a station

should the brakes be applied, if the train is to stop at the station ?

Ans. Half a mile.



CHAPTER XXII

INTEGRATION OF RATIONAL FRACTIONS

194. Formulae for Integration of Rational Functions. On examin-

ing the fundamental integrals in Art. 186, it will be seen that only

four apply to the integration of rational algebraic functions, I., II.,

XV.. and XVI. ; and of these only I., II., and XV. are independent,

since XVI. depends directly upon II.

It will be shown in this chapter that by these three formulae any

rational function can be integrated. The integration of a rational

polynomial has been explained in Chapter XX. We will now con-

sider the integration of rational fractions.

195. Preliminary Operation. If the degree of the numerator is

equal to, or greater than, that of the denominator, the fraction

should be reduced to a mixed quantity, by dividing the numerator

by the denominator.

For example,

a*-2o* = 1
2.t2 + 1

x' + l a^+ l
'

2a5 -3tf4 + l Q o . _2ar3 + 3a2 + l—-

—

— z x — o -\ •

' X* + X~ X* + XT

The degree of the numerator of the new fraction will be less than

that of the denominator.

The entire part of the mixed quantity is readily integrable, and

thus the integration of any rational fraction is made to depend upon
the integration of one whose numerator is of a lower degree than the

denominator.

240
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196. Partial Fractions. A rational fraction is integrated by de-

composing it into partial fractions, whose denominators are the

factors of the original denominator. The complete discussion of

Partial Fractions belongs to Algebra. We shall only consider here

the form of these partial fractions and the processes of determining

them.

Factors of the Denominator. It is shown by the Theory of Equa-

tions that a polynomial of the nth. degree, with respect to x, may be

resolved into n factors of the first degree,

(x — ax)
(x — a2) (x — a3)

• ••(x— an).

These factors are real or imaginary, but the imaginary factors

occur in pairs, of the form

x — a + &V— 1, and x — a — bV— 1,

whose product is (x — a) 2 + b2
, a real factor of the second degree.

It follows that any polynomial may be resolved into real factors

of the first or second degree, and only such factors will be considered

in the denominators of fractions.

There are four cases to be considered.

First. Where the denominator contains factors of the first degree

only, each of which occurs but once.

Second. Where the denominator contains factors of the first

degree only, some of which are repeated.

Third. Where the denominator contains factors of the second

degree, each of which occurs but once.

Fourth. Where the denominator contains factors of the second

degree, some of which are repeated.

197. Case I. Factors of the Denominator all of the First Degree,

and none repeated.

The given fraction may be decomposed into partial fractions, as

shown by the following example,

/
x2 + 6 x — 8 ,

m

Xs — 4 x
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sume

.r + .r - 8 = x2 + 6 .v - 8 AB C
§ ; ^

where ^1. 5. C are unknown constants.

Clearing (1) of fractions,

x* + 6x-8 = Ax(x+ 2)+Bx(x-2)+C(x-2)(x+ 2) ... (2)

=(A+B+C)xi+ 2(A-B)x-4:a

Equating the coefficients of like powers of x in the two mem-
bers of the equation, according to the method of Undetermined

Coefficients, we have

A + B+C=l, 2(A-B) = 6, _4C=-8.

whence 4= 1, B = -2, C=2.

aj*+ 6a>-8 1 2,2Hence —

—

= (--?
x3 — 4:X x — 2 x-i-2 x

and
rx* + 6x-S dx = 1()g (flj

^ 2)_ 2 log (flJ + 2)+ 2 log

= log^^- 2).
8

(a + 2)*

The following is a shorter method of finding A, B, C:

Suppose the denominator of the given fraction to contain the fac-

tor x — a, not repeated. Then the fraction may be expressed as

fix) = A
|

tfx)

(x — a)
<f>

(a?) x — a <f>(x)

Hence &* = A + (x - a)^M

.

This being an identical equation is true for'all values of x.
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If we put x = a, we have A = ^f^, since by hypothesis <£ (x) does

not vanish when x = a. ^w
' Thus we have the following rule :

To find A, the numerator of the partial fraction , put x = a
x — a

in the given fraction, omitting the factor x — a itself.

For example, having written equation (1), we find A by substitut-

ing x = 2 in the given fraction —l—^
, omitting the factor

x-2. This gives
(x-2)(x + 2)x

4 +12-8^
4(2)

To find B, substitute x = — 2, omitting the factor x-\-2.

4-12-8 = _ 2
-4(-2)

To find C, substitute x = 0, omitting the factor x.

EXAMPLES

The constant of integration C will be omitted in the examples in

this chapter, and the following chapters on the integration of func-'

tions.

J x- — 3#-j-2 3 2 #—1

2 f (x*+x+l)dx = l
1

(x + l)(x-3r
*Ja?-4a? + a; + 6 12 * (o;-2) 28

3
r(zo+iydW = i

loy,
(2^ + i)(2^-i)»
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l)(.i-+3)(.c + 5) 8 ° (.c + l)(x + 5)

_1, (8a»-l)»(8«»-8)
" J (2as-l)(3ir-l)(3*-.2) 18 (2.i--l) a

6 / as+ ta
(fa= _^L^log (to _ „)+—*_,log (ax-6).

J (CKB — 0)(OSE — CI) GO— 0- CIO — (T

y
r Cv + aYclr = 1

lQ
C2 x + <Q (s- «y

J (x+d)(x+ b) b-a oV
' a-b &v ;

9 r «y = i log fr+io'fr-i)-
1

J (oV — ft
2
)
(6\r — a2) 2 a6 ° (ax — b)(bx -j- a)

., r fa + i)dx _ l (,- + 5)%,---y
' J (a? - 19/- i (x + 8f 360 ° (a; + 3)

8
(a; - 1)

5
"

12. C >^m:L_
J1j;>-17a-! + 4.»;

=jLlog^| -1 :^:,:.<.,- + l)(2a.-l)'] + ilog*.
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198. Case II. Factors of the denominator all of the first degree, and

some repeated.

Here the method of decomposition of Case I. requires modifica-

tion. Suppose, for example, we have

a3 + l
7ax.

J x(x(x-iy

If we follow the method of the preceding case, we should write

a? + l = A B C D
x(x — I) 3 X x — 1 x — 1 x — 1

But since the common denominator of the fractions in the second

member of this equation is x(x — 1), their sum cannot be equal to the

given fraction with the denominator x(x — l) 3
. To meet this objec-

tion, we assume

x? + l _A
,

B G D
x(x-Xf x (x-iy (x-iy x-1

Clearing of fractions,

Xs + 1 = A(x -l)3 + Bx + Cx(x - 1) + Dx(x - 1)
2

= (A+ D)x* + (- 3 ^ + <7- 2 D)x2 + (3 A+B-C+ D)x-A.

Hence A + D = l, (1)

= SA+C-2D = 0, (2)

3A +B-C+D = 0,

-4=1.

Whence- A= -1, 23 = 2, (7=1, D = 2.

Therefore (f
+ *) = - - +

x(x - 1)
8 x (x-iy (x - 1)

2 x-1
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Hence f f+ *
8
dte== -logs- 1 i_+ 21«g>(»--l)

J jc(a; — 1)° (.x- — 1)- x — 1

.r . , (x-1) 2

= - ; ~rr-2 + log* *-

The numerators A and 5 may be determined by the short method

given for Case I., and then C and D may be found by (1) and (2).

EXAMPLES

»' ar— ar 2 2x'- x a;

aftfc; 2 - 3 a; .It a?-

1

2
r a*dx = 2-3a; 1

lQ
J (a + l)(aJ - l) 3

4(a? - 1)- 8 ° a; + 1

3. f *^=_1 +h *
J x\ ar — 4

)-'

ar — 4 4_ 4)2 x2-44 ° ar
9 - 4

r (19 x-S2)dx 1 3
j
„ 2 a; - 3

J (4;/- + l;(2a;-3) 2 4(2 a; -3) 4
°g

4.i- + l

f ^g = * +J_l0g^2.
J(9ar-4/-' 18(9 ar- 4) 216

8
3 x + 2

-fa , a2— 3 aas . t
a?
2

— ".':/ a; — a

7. f ' -
J

'* = , + W—**l - -J* + 8 log (, _ 1).



256 INTEGRAL CALCULUS

8 . C(*±*\*<te = x - i
a ~ 6>' - 3 (a ~^ + 3(a - b) log (x + b).

J\x+b) 2(x + b)
2 x + b

K J &\ t j

9 C xdx = 2x ~ 1 +— W x-2 + V3
" J(aj»_4aj + 1)» 6(a2 _4x + l) 6V3 \_2-W

10 f (* + a + &)
3 ±_(_V_ +J*\

J (a+a) 2(x + 6)
2 " (a-6) 2

V« + a x + b)

. 3 a&2 — b 3
-, / . N . a3 — 3 a2

6
t

, , , N

199. Case III. Denominator containing Factors of the Second

Degree, but none repeated.

The form of decomposition will appear from the following

example,

f-
'5cc + 12 ,

dx.
x(x2 + 4)

w 5 x + 12 A . Bx+C /-, NWe assume ^ = - + , y , (1)
a?(ar + 4) a; a;- + 4

and in general for every partial fraction in this case, whose denomi-

nator is of the second degree, we must assume a numerator of the

form Bx + O.

Clearing (1) of fractions,

5 x + 12 = (A + B)x2 +Cx + 4,A.

A + B = 0, 0=5, 4 A = 12.

Whence .4 = 3, B = -3, 0=5;

5 a; + 12 3,-3^+5
therefore

x(x2 + 4) 03 x2 + 4

f-3«+sfe= _ 3 r^. +6 r
a2 + 4 J x' + i Ja? + 4

-|log(^ + 4) + ?tan-^.
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Hence f
°

'*'•/"

Vn dx = 3 log .

*
+ r,

tan_1 %

'

Take for another example,

r (2x2 -3x-3)dx
J (x-l)(.r--2.i' + 5)'

This fraction is decomposed as follows :

2a?-3x-3 1 3.v-2
(a — l)(jr — 2# + 5) a?— 1 x2 — 2x+ 5

r*3x-2)dx = r(3x-3)dx C dx

J g*-2x+ 5 J x*-2x+ 5 J x*-2x+ 5

= |log(^-2 a;+ 5) + |tan-1^i

r <2*>-3x-S)dx =1 (*-2s+5)t
+ l

tan-i£= l,

J (.-, _ l) (^ _ 2 2 + 5) ° a?-

1

^2 2

The integration of any fraction with a quadratic denominator like

the preceding. ( \ '

~~—V— , may be shown as follows

:

* °' J x*-2x + 5' J

Having written the denominator in the form (a; + a
)
2 + b

2
, we have

r ( px + g)dx __ C p(x + a)dx . r (g — pa)dx

. (x + o.f + b2 ~J {x + ay+ W J (x + a) 2 + b 2

= £ log [(x + a)^ + &*] +*=» tan- 2±5 .

J b b
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r32_
" J 4 ar

EXAMPLES

32 x> + 3
7

8 a;
3

A (

1,

+ 3a? 4^ + 3
+ 3V3tan-

V3

/» (2s»-aQ(to ^l l0.
(^-l)(^ + 2) + 2V2

tan
- 1J

' J x4 +ar9 -2 6
& (®+iy V2

x:
• '4^-30 + 1, _6£-l

2rf + rf *
t ""2^" +

2 a?
- + 3V2tan-1 (a-V2).

„ r rfdx x3
,
1 i x-1,1, _i

4
' J^I=3 +

I
l0g

^Tl + 2
tan *•

When the given fraction and the denominators of the partial

fractions contain only even powers of x, they may be regarded as

functions of x2
, and we may assume A, B, C, etc., as the numerators

of the partial fraction.

In the following example, the partial fractions may be assumed as

B
x- + a 2 x2 + b-

5 C x*dx

J (x2 + a 2)(x2
ft
3 tan -1 a3 tan

(per + cr) (x- + &-) or — b~ V

= x +

s
(1 - x2

)do i^l^-i 3x= - 1 tan-12 x — tan-1 -
] = - tan"

(4a>2 + l)(a? + 4) 6 V 2 J 6 2 + 2 a,-

2

Zr>

J (a¥+52)(5¥ + a2
)

' a6 a&(l - a2

)

J a;(ar
9 - 6 a? + 13) 26

°8
jc

8 13

, _i x - 3
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9
r (3x>-2x-20)dx = l

lo/,
(2^-6a? + 6y

+— tan-1^- - 2 tan- 1
(2 a? - 3).

V3 V3 2
^ ;

10. lAJlna ly- 1/ _u_l,t.a,-i2y±lI f * = - losj -A3 A- -j tan
Jt?-1 6 V + y.+ * V3 V3

11. f^±g^ = liog ^ + a ? + l
+ vg tail

- 1 W3.
J s* + 3^-4-1 4

&
.r- - x + 1 2 1 - a?

12. I
—-— =

:
log ^— H -tan ]

.

J ^4 + l 4V2 iv
2 + w^2+l 2V2 I-™2

1Q r dx 1 ,1^ ay-1 2 , _!2aj-l
13. |- —- = —

;
r-+Tlog tan 1

Jtf-^+^-l 6(* + l) 4 *x+l 3 V'3 V3

200. Case IV. Denominator containing Factors of the Second De-

gree, some of which are repeated.

This case is related to Case III., as Case II. to Case I., and requires

a similar modification of the partial fractions.

For illustration take

s
2*+*+*^

O-s + l) 2

We assume

2s3 + s2 + 3 _ Ax + B Cx + D
(a^-f-l)3 (a?+l)* x* +

1

*+ 3 = Oc8 + A* + M + C)a> + B + Z>.

-4*-2, /* = 2, C=2, £==1.



260 INTEGRAL CALCULUS

Therefore lt±_t±l = -2* + 2 + l*±A
(a^ + 1)

2
(a;

2 +l) 2 ^^2 + l

/»-2a + 2 /» 2a?da?
2 f dx

J (x' + iy J (^ + i)
2_r v (o^ + i) 2

a:
2 + l

"*" J <V+1) 2
'

To integrate the last fraction, we use the following formula of

reduction,

J CISC J- U/ . /(y q\ i CltC &.

(x2+«2

)
w ~ 2 (n - 1) a

2
[_(o5

8 + a2
)'

1" 1 ^ *
'

}J (a2 + a2)-^

'

/die— — by making it

(ar-f-cr)'
1

depend upon j
—

tt~~~^— ' -By successive applications the given

integral is made to depend ultimately upon | _ which is

-! J x~ -\-d2

itan-1 -.
a a

* This formula may be derived as follows :

[ * 1 = A[x(x2 + a 2)-"] = (x2 +a2)"w - 2 nx2 (a? + a2)-"- 1

|_(x2 +a2
)
MJ dx

j^ r £ d

dx _,

= (x2 + a2)-" - 2 to [(x2 + a2
) - a2

] (x
2 + a*)-"- 1

= (1 - 2 to)(x2 + a2)~n + 2 na2 (x2 + a2)-""1.

Integrating both members after multiplying by dx,

* = (l-2n)f (?X +2na2
f ,

**,
.

(x2 + a2)"
v y J (x2 + a2

)
n J (x2 + a2

)
n+ l

2 %a2 f *5 = x_^ ,
2 n _ x)

f_dx
§

J(x2 +a2
)
w+i (x2 +a2

)
w v y J (x2+a2

)
M

Substituting for to, n — 1, we have

2 (w - 1) a2 f ^ = ? + (2 to - 3) (—-J**-—.
•

v J
J (x2

-f a2)" (x2 + a2)
"-1

v J (x2 + a2)"- 1
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Substituting in the formula n = 2 and a2 = 1, we have

J ur + 1)- 2 [_.r + 1 J s2 + 1

C— ° r 4- 9 1

2G1

h - tan-1 sc

;

2(.r + l)^2

A partial fraction of the form ^x + ^
, by substituting

|> + a) 2 + 6
2]»'

y

4. a = z, becomes P "; ^ ^9a
, the integration of which has already

been explained. C^ + ft
2
}'

For example, if x-3 = z, j £> =J __*,

5 + 16 f
4<V2 4-3V2 J i

f?2

(^ + 3y

By the formula of reduction,

J (*
2 + 3)

3
12L(z

2 + 3)
2
+ J (*

2 + 3)
2

J

12(^2 + 3)
2 4 6[_z2 + 3 Jz2 + 3j

1 . _i z
H— - tan *+

12(z2 4-3) 2 24(z2
4-3) 24V3 V3

/5z
(z

2

5z + 16
7

162-15
,

2z
dz = tt—-——, + tan-i

2

(2
2 4-' 12(z2 + 3)

2
' 3(z2 4-3) " 3V3

(*« + 2)tfa 160,-63
e f-J (a 6a?4-12)8 12 (a2— 6a?4-12)3

2 (a? - 3) 2
tan-i a?-3+

3(s*-6a + 12) 3V3
Un

V3
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EXAMPLES

4^ + 3 ,_4t x* + 5x~-2^_ 1 .,2*
d% = "'

,.„—^r^

H

= tan"
(4a;2 + 3)

3 8(4a;2 +3) 2 16V3 V3

For the following example, see note preceding Ex. 5, Case III.

4
r36s»(s?+ l) a + 25a,* x* + x

' J (4a2 + 9)
2
(9a;2 + 4)

2
*

2(4a?+9)(9aj8 + 4)

156 6 — 6 x2

r ^ + Sx-21 , 3(q; + 7)

J (^ + 4x + 9)
2 ' 2(32+4«4+ 9)

^ ^ V5

i
C (

xS - 2
) clx = a^ + 4

J (a^ + a; _|_i)(aj2 + a,_h 2)
2 7(ar* + a; + 2)

+^ tan- 2£±1 _ _2_

^

2x±t
7V7 V7 V3 V3

(a^ + l) 2
a;
3 + l 2 °a;2 -a;+ l V3

da; = 12a;2 + 36a; + 29

[(X + 2)
4 - (a? + l) 4

]

2 ~" 2 (2 a; + 3) (2 a
2 + 6 x + 5)

Stan" 1
(2 a; + 3).



CHAPTER XXIII

INTEGRATION OF IRRATIONAL FUNCTIONS

201. We have shown in the preceding chapter that the integral

of any rational function can be expressed in terms of algebraic, loga-

rithmic, and inverse-trigonometric functions.

We shall now consider the integration of irrational functions.

202. Integration by Rationalization. Some integrals involving

radicals may be integrated, by reducing them to rational integrals

by a change of variable. This is possible, however, in only a very

limited number of cases. This process is sometimes called integra-

tion by rationalization.

p

203. Integrals containing (ax + b) q
. Such an integral may be

rationalized by the substitution ax -{-b = zq.

For example, take (
—

-

x2
clx

(2x + sy

Assume 2 x + 3 = zi

, x= —-— , dx = —

—

Then /
:rax

(1 «. _i_
<

(2x + 3)* J
z SJ

=l(t-¥ +9s)=¥(7-¥ +9
)=if2

f2a;+3)S(8a;2- 18a:+81>

203
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Another example is i
,J

_
'

•

J Va? + i

Assume x = z
2
, dx = 2zdz.

Then C_^x_ = f2^ = 2 C,U^ z + 1_J_\ dz
J Vx + i J » + i J \ 2 +v

= 2|~- - - + ^ - log (2 + 1)1 = ^ - x + 2 a* - log (a>* + 1)
2
.

204. Integrals containing (ax + 6)% (aaj + &)%••• . In this case

the integral is rationalized by the substitution ax + b = z
n

, where

n is the least common multiple of q, s, ••, the denominators of the

fractional exponents.

Take, for example,
j
'
(x - 2)* + (x - 2f

Assume x — 2 = z6, dx = 6z5
dz,

(
x _ 2)i = z3

,
(x-2)i = z\

= 6p-
2

-2-}-log(z + l) = 3(aj-2)*-6(aj-2)* + 61og[(a;-2)* + l].

EXAMPLES

L f ^ +L dx = 2Vx-2 + V2tan- 1J^=J-
•^ xVx —

2

* 2
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4. (V* + * l

+-1 civ =^ + 2 ^ - 4 .^ + 4 log (s* + 1).

5 f !?cbf = 4?/
3 -6?/2 -6?/-l

' J
(4y+ l)* 24(4y+ l)*

6 f ^- = 2 + 2 log (V2w-1 + 1).
J W + V 2 80 — 1 A 2 M> — 1 + 1

8. f.rVrt7+6 da; = 2
(q -Y+ 6)

a

(15 a*».« _ 12 a&a . + g &2\

J 105 a3

9. f
* = 2(3a; + l)*-4tan-^+i)L

J (3* + l)* + 4(3a; + l)* 2

10. fA -' + X
o
~ 1

dte = 2Va^fl - log (as + 3) - 2V2 tan" 1J^±^.

11. f fa ~ 2
)
fe = g(2s-3)Mlog (2*- 3)l + 3

^ (2z-3)*+ 6a;-9 4 8 (2 a -3)*

4 V3
12 . r

J V'2:/: + l+Vo;-l

= 2V2^Tl - 2V^1 + 2V3 (tan-iyjxEl _ tan" 1J?^±3

= 2V2^+1 - 2V^1 + Vsfcos- 1^^ - oc»-il=*Y
^ x + 2 x + 2J
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13. f ;—^-5 =2xMlog(2**-l)+!log(** + 2)
J (2aj*-l)(a>*+2) 9 9

16V2, ,
«*——- tan-1—;

=

9 V2

J
(a? + l)* + l 3

4
--log(l+ V^+l).

205. Roots of Polynomials of Higher Degrees.— In the rationaliza-

tion of irrational integrals we now pass from roots of binomials of

the first degree to roots of polynomials of higher degrees.

Here rationalization is limited to the square root of an expression

of the second degree.

206. Integrals containing Vtf2 + ax -f b. This may be rational-

ized by the substitution

For example, consider I

yx2 + ax + b = z — x.

dx

x -y/x
2 — x + 2

If, following the method of the preceding articles, we assume

^x2-x + 2 = z, x?-x + 2 = z
2

,

the expression for x, and consequently that for dx, in terms of z,

will involve radicals. This difficulty is avoided by assuming

Vx2 — x-\- 2 = z — x, — x-\-2 = z
2 — 2zx,

cancelling x2 in both members.

z
2 -2

dx = 2(z2 -z + 2)dz
^2z-l' (2z-iy

l -z + .

2z-l
V^^x~T~2 = z-x = z2
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Hence,

2(z2 -z + 2)c7z

dx (2z-l) 2 r<2dz 1 , z-V2
J «-*/rf_*j.9 s*-2 y-2+ 2 Jz2-2~A>°g

(2* -I) 2

2
2

-_ o Z
2 — 2 + 2

2z -1 2z--1
.rw-_ x+2 I

z--^
,
z -z + ^ Jz--Z V2 z + V2

<-/ 2z-l 2z-l

Substituting z = Va,-
2 — x + 2 -f- a?,

c& 1 , Var2 - x + 2 -f x - V2
x-Vx2 — x + 2 V2 Var' — a; + 2 + a? + V2

207. Integrals containing V— x2
-f a# + b. This may be rational-

ized by the substitution

V—x2 + ax+ b = V(« — a;) (/? + »)= («— #)z or = (/? + #)z,

where « — x and /? + a; are the factors of —z? + ax-{- b.

These factors will be real, unless V— ar* + a# -f- 6 is imaginary for

all values of x.

dx
Take, for example,

(
—

-

J a;V2 + x — x2

Assume V2 + x — x2 = V(2 — x) (1 + x)= (2 — aj)z.

l + z = (2-a0z2
, a ? = 2

f-"
1

, dx= 6zdz

z
2 + l' (z

2 + l)2

3z
V2 + a? - a;

2 = (2 - z)z = j^ •

Therefore,

r da; = r 2dz _ 1
log

gV2-l
J W2 + X-.X2 J2z2 -1 V2 zV2-fl

2 — a;

dx 1 , V2 + 2a;-V2-a;
f

** = -J-log
^ a^ + aj-ar2 V2^/2 + x-x2 V2 V2 + 2a; +V2-*
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EXAMPLES

dx __•, _ xx + Va;2 + 4 x — 4/ dx _
a;V'ar + 4 x — 4

tan

2. f
Va^ + 4a;

cfa =
a; +Va;

2 + 4 a;

+ log (a;+ 2 + Va;2
-f 4 a;).

/
da; x— a

. _ T2\ 2 a2V2 asc — a;
2

(2 aa? — a;
2

)

J ^ ;
2(n+ l) 2(»-l)

/;
—^±A)^=_ = 2^ tl-x 4

(3-a;)V3-2a;-a;2
tan"

3 + x V3

1 2
rt
— cos

2 yS 3-x

ij3-3c
* 3 + a;

_ia; + l 2 _i 2 a;
COS x—r COS *

/Va;2
-f ft

2

3a? + 4a
, z

2 + a2 4 a n ,
5o, 3 2! — a

dx = — — log 2 H log
62 9 9 z + 3a'

where = x + Va^ + a2
.

208. Integrable Cases.— The preceding articles include those

forms of irrational integrals that can be rationalized. In general,

integrals containing fractional powers of polynomials above the first

degree— except the square root of polynomials of the second degree

— cannot be rationalized, and cannot be integrated in terms of the

elementary functions, that is, cannot be expressed in terms of alge-

braic, exponential, logarithmic, trigonometric, or anti-trigonometric

functions.
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Every integral may be regarded as defining a certain function.

It has been shown in Art. 192 that if f(x) is any continuous func-

tion of Xj I f(x)dx is a function of x, which may be geometrically

represented by an area bounded by the curve y =f(x) ; but this

cannot always be expressed in terms of the elementary functions.



CHAPTER XXIV

TRIGONOMETRIC FORMS READILY INTEGRABLE

209. It is to be noticed that any power of a trigonometric func-

tion may be integrated by Formula I., when accompanied by its

differential.

Thus,

/. _ 7 sinw+1 x C » ^ cosn+1 x
sin" x cos xdx = , I cos'

1 x sin x ax = ,

n + 1 J 7i+l

/, _ 2 7 tanw+1 x C > n 2 , cotw+1 x
tanw x sec2 x dx = — . I cot" x eosec2 x dx = -

,

n + l J Ti + 1 '

J

secn x sec x tan x dx

+ 1 J 71 +

secw+1 x

71+1 '

cosecM+1 #

/cosecw a? cosec x cot a; da? = —
71 + 1

Having in mind these integrals, the student should readily under-

stand the transformations in the following articles.

210. To find
J
&vnn xdxov I eosn xdx. When n is an odd posi-

tive integer, we may integrate as in the following examples

:

J
sin5xdx= I sin4 x sin x dx =

J
(1 — cos2

a,*)
2 sin x dx

//h o 2 , 4 \ • 7 ,2 COS3 X COS5 X
(1 — I cos^ x + cos4 x) sin a? ax = — cos a? H — •

3 o

270
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Another example is

|
cosG 2 x dx = i cos2 2 as cos 2 x dx = -

J
(1 — sin2 2 x) cos 2 # 2 dx

1/ • sin3 2aA= - sin 2 x ]•A s )

211. To find I sinm x cos'
1 x dx. When either m or n is an odd

positive integer, this form may be integrated in the same manner as

in the preceding article. For example,

J
sin4

.r cos5 x dx = I sin4 x cos4 x cos x dx =
j
sin4 x (1 — sin2 x) 2 cos x dx

/, • 4 o • 6 i
• 8 \ 7 sin5 x 2 sin7 x

,

(sin4 x — 2 smb
aj + sm8

a;)cos x dx ==— h
o 7

snr a;

Another example is

I sin3 x cos - x dx = I cosT as sin2 x sin # c7ru =
|
cos* as (1 — cos2

#) sin #da;

J 5 9

EXAMPLES

3 cos5 a; , cos7
a;1 C -

i
3 COS5

25 .

1 . I sm' x dx = — cos x -f cos J x (-

J 5

4 sin3
a; . 6 sin5 a? 4 sin7

a; . sin9
a;o C n 7 4 sin3 x , 6 sin5 a? 4 sin7

a? .

2. I COS .r r/.v; = sm X hJ 3 5 7

o C - -,
•''

7 o as . 4 o«2 5 #
3. I sin5 - das = — 2 cos - + - cos3 -— cos5 - •

J 2 23 252
J T V^ 9 11 13 15
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sin6 2 sin8 2 6s5. sin5 2 cos3 2 <9d<9 =
12 16

6 . I (sin6 x + cos6 x) sin3 x cos2 x dx

_ cos3 x 4 cos5
a? _ 6 cos7

a; cos9 x~3~
5 7

"3"

'

7. I (cos3
<£ + sin3

<£) (cos
2
<£ — sin2

<f>) d<f>

2= sin2
<£ cos 4> + cos2

</> sin <£ + - (sin5
<j> + cos5

<f>)
.

o rsm7 ydy cos6
?/ 3 cos4

?/ . 3 cos2
y . -,

8. I £_£ =_-JL _-*h ^.j-iogsec?/.
./ cos y o 4 J

9 C<x**te= fa m + _2 1 .

J sin4 x sm a; 3 sin3 x

^Q /~cos3
a; dx _ _ 2 sin2 x -f- 6

•^ Vsin3
a? 3Vsina?

11. I (sin™ a; cos3
a; — cosw a; sin3 x) dx

_ sinm+1 x + cosm+1 a? sin™+3 x+ cosTO+3 a;

m + 1 m + 3

12 . I (sin 2 a? + cos 2 a?) cos3 x dx = - (sin5 x — cos5
a;) + sin x cos2

a;.

iq /*
• , • « 7 4 sin5 x 8 sin 7

a?
13. I sin 4 a? sm3

a; cto = ..

J 5 7
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212. To find ( tan" x dx, or ( cot" x dx.

These forms can be readily integrated when n is any integer.

J
tan" .i- dx =

J
tan"

-2
x (sec2 x — 1) dx

=
|
tan"

-2
.i' sec2 ado;— I tan'

1-2 x dx

tan x
tan" -#«#.

da;

dx.

Thus
J
tan" a; da; is made to depend upon j tann2 a* cZa;, and ulti-

mately, by successive reductions, upon
J
tan a; da; or I dx.

For example, I tan5 x dx =
J
tan3 x (sec

2 x — 1)

tan4 a /*, o= I tan-* x
4 J

I tan3
as dx = I tan a; (sec

2 x—l)dx

tan2
a; ,= — log sec x.

Hence I tan5 x dx = f- log sec x.
*s 4 Z

Another example is

Ccotfxdx= Ccot4 x(cosec2 x-l)dx =-^^- feot4 x dx

cot5
./* C 9 . , <N , cot5 a; , cot3

a; ,
/• i9= I cot2 a;(cosec2 aj — l)dx=s \- \-
| cot2

a;

5 J 5 3 «/

cot5
a; . cot3 a; . C

\

nnat%eAtm 1 , cot5 a;
,
cot8 a;= —— 1 h I (cosec- x — 1) dx = - — H cot x - x.

O o %J Do
dx
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213. To find j sec" x dx or | cosec" x dx. When n is an even

positive integer, we may integrate as follows

:

j sec6xdx=
J

(teLn
2 x+T)2 sec2xdx=

J
(tan4

a? + 2 tan2
a; + 1)sec

2
a; da;

tan5 x . 2 tan3 x . ,= —— H htana;.
o o

Another example is

j cosec4 x dx =
J
(cot2 x+1) cosec2 x dx — — co x— cot x.

214. To find I tanm x secn xdx or
J
cot™ x cosec" x dx. When n is

an even positive integer, these forms may be integrated in the same

manner as in the preceding article. For example,

j tan6 x sec4 x dx = I tan 6 x (tan2 x + 1) sec2 x dx

(tan8 x + tan6 x) sec2 x dx =

—

1 —

.

When m is an odd positive integer, we may integrate as follows

:

j tan5 x sec3 x dx= j tan4 x sec2 x sec x tan a? cfcc

=
j
(sec2 x — l) 2 sec2 x sec aj tan x dx

= I (sec6 x—2 sec4
a; +sec2 x) sec a; tan a; dx

sec7
a; 2 sec5 x sec3

a;

7 5 3

Another example is

cot3 # cosec5 x dx = ( cot2 x cosec4 x cosec a; cot a? dx
j cot3

$e cosec5 x dx =
j c

=

j
(cosec6

a? — cosec4 x) cosec a? cot x dx = cosec' a; cosec x
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I tan s x da.

EXAMPLES

^_t^ +
tan^_

taua; _f ^
i 5 3

2. Jcotf 5 dx = -| catf |+| cot* | - cot2

1
- log sin2

|.

3. fsec"ya'i/
=^+ 4tau^ +S^ + 4tan^ + tan 2/.

*/ 9 7 o 3

4. Jcosec* 3 x dx = -
1
(*£?? +^1* + 00V 3 x + cot 3A

5. I (sec x — tan x) sec5 # tan4 x dx

1 2 1= - (tan9 x — sec9
a;) + - (tan7 #+sec7

a;) + - (tan5 x — sec5
x).

y 7 o

6. f(sec3
<£ + tan3

<£)
2
cty

2/. B . . nnn5 ,v . tan3
<f> 2sec3

<f> . „. . .= - (tan5
<£ + secD

<£) -\ —-*- -*- + 2 tan
<f>
—

<fi.

5 3 3

» /"tan7 se+l , tan5
a; tan4

a; . . . ,
7. I '— dx =— h tan x -f log cos x.

J tan a- + 1 o 4

Q rsec 5
;/* + tan5

a; 7 , a 2 sec3
a;

,

o. I cte = tan J £ Hsecar+a;.
J sec x + tan a; 3

Q Tsec6 x + sec4
a; , tan 2 x . 2 ,

-,

9. I -7 dx = — cot2
a? 4- 3 log tan x.

J tan3
a; 2

10- I 7 .,. #0 =
r ,

ftan- 5 - sin 2
0) -+- log (sin 6 tan 0).

*/ cosec-<9cot J 2 y
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H-
J Vsec3 x tan x (Vsec5 x— Vtan5 x) dx

9 7 y 9 3 3= - (tan 2" ^— sec* x ) -f- ^ (tan* a; + sec"2 #).

12.
J
(secm x* tan5 x — tanm_1 a? sec6 x) dx

_ secm+4 x — tanOT+4 a; 2(secm+2 o?+ tanm+2 a;) secm a; — tanTO
a;

m + 4 m + 2 m

A term I secm x cosecM x dx may be integrated, when m + n is

even, by substituting cosec a = -.
tan x

13. fsec5 cosec3 x dx = *^^ + 3tan^ -^^ + 3 log tan x.
J 4 2 2

5

14.
j

(sec4 a; — cosec2 x) 2 dx

tan7 x
,
3 tan5

a; . tan3 x , cot3 x
,=—^

1 — H 3 tan x —— \- cot x.too o

215. To find j sin™ x cosn x dx by Multiple Angles. The integra-

tion of this form, when either m or n is odd, has been given in Art.

211. The following method is applicable when m and n are any

positive integers.

By trigonometric transformation sin"1 x cosn x, when m and n are

positive integers, can be expressed in a series of terms of the first|

degree, involving sines and cosines of multiples of x.

If we use the method of Art. 211 for integrating terms with one

odd exponent occurring during the process, the following formulae

for the double angle will be sufficient for the transformation of the|

terms with even exponents :
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sm x cos x =- sm A x,

sin2 x = - (1 — cos 2 a?),

cos2 x = - (1 -f cos 2 #).

For example, required I sin4
aj cos 2

s
2 a efo.

sin 4 x cos 2
x* = (sin X cos xf sin2 # = - sin2 2 .t(1 — cos 2 a?)

8

1 - 2 o __ _«_ . 1
sin2 2 sb cos 2 x-\ (1 — cos 4 x).

sin 3 2a; , x sin 4 ojtt C • 4 9 7 sm 3 2 a: .

Hence I sm4
.i' cos- x ax = h

«/ 48 16 64

EXAMPLES

n 4 xi r • 4 7 1 /3 x • o ,

si
1

.

I snr x ax = - — sm 2 x-\—

2. fcos 4 x dr. = -f^ + sin 2 x +

3. I sin 2
.'.- cos 2

.'- dx=* -

sin 4 x

1 f sin 4 a
x —

fsin«aj(ia?=
1 f

7> .,- - 4 sin 2x + sm * 2 ,7 ? + -sin 4A
J 16^ 3 4;
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5. fcos6 xdx =— f5ff + 4sin2%- sm32a; +-siii4A
J 16 \ 3 4 )

6. fsin4 x cos4 x dx = -i/3 a - sin 4 a +!^£\

i? /~ 6 -9-, 1 /, , 8 . , . A sin 8 aA 4
7. I cosb x snr # aa,* == \ox-\- -snr 2 a; — sm 4a; )•

J ^ 128\ 3 8 /

8. I sin8 x dx =— f 4 sin 2 a? 4- - sin3 2 a + - sin 4 x
J 16\ 8 3 8

sin8aA
+

64 J'



CHAPTER XXV

INTEGRATION BY PARTS. REDUCTION FORMULAE

216. Integration by Parts. From the differential of a product

d(uv) = udv + v du,

we have uv = i u dv + I v du.

Hence I udv=-uv — Ivdu (1)

This formula expresses a method of integration, which is called

integration by x>^rts.

For example, let us apply it to

j
x log x dx

Let u = log aj, then dv == xdx;

whence ' du = dx

X
and v-

X?
2*

Substituting in (1) , we have

Jbg;x • x dx = log x - — -
5

2 -/?•
dx

X

= - loga>-
X2

4*

• (2)

279
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Integration by parts may be regarded as a process, which begins

by integrating as if a certain factor were constant.

Thus in (2), if in | logx • dx we treat log x as if it were a con-

. x2

stant factor, we obtain log x • — • From this we must subtract a
Z

new integral formed as indicated by the following connecting lines.

*x
2 dx

x
logx>xdx = logX'--J —

This method of remembering the process may be found useful.

Another example is j x cos x dx.

Assuming u = cos x, we have

I x cos xdx — cos x • — —
|
— (— sin x dx).

As the new integral contains a higher power of x than the original

integral, nothing is gained by this application of the process.

But if we take u = x, we find

I x cos x dx = x sin x — I sinscefa;

= x sin x + cos a?.

EXAMPLES

1.
J

a?
4 logx dx =y flogcc — -

2. fa (e
a* + e~ax

) dx = - (e
ax — e-a

*)— i (e
ax + e~a:c

).

J a a2

3.
J
x (sin

3

x — cos 3x)dx=( (--) sin 3x — (- + -) cos

3

x.
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4. I x log - + sm - dx = — losr 2 x cos - + 4 sin - •

J V 2 2) 2 2 4 2 2

w)-
eT"2 ) + 2

5. fa;(e»»-l)2Qte=ete (-

6

.

Clog (ax + 6) dx = fx -f - )
log (oaj + ft) — x.

7.
J(

a?+ l)log(a?+ 3)cfa;= a?2+
^

a;- 3
log(a; + 3)-g+ |-

8

.

fsec4
<£ log sin <£ d<f> = f

1^^ + tan^ log sin <£ - ^L* - 2&

10>
rlog(., + 2)

(?
^_log(. + 21 + 1

*±1.
J (.i' + l) 2 x + 1 *x+2

11

.

ftan- ] - dx = x tan" 1 - - - log (x2 + a2
)-

J a a 2

12

.

pc2 tan"1
aj da = - tan" 1 x -- + - log (x2 + 1).

c/ 3 6 6

13. I sin -1 - dx = x sin
-1 - + Va2 — x2

.

J a a

14. f (3 x-
2 - 1) sin-

1 x dx = (x- - x) sin" 1
a; - (* ~^ .
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n K C • 3 ,1 /cos3 x \ . sin3 x . 2 sin x
15. I a?snrxaa; = x

I

cosicJH 1

16.
J
x (sec6 x — tan6

a;) dx = x tan3
a; -f-

——HL® _j_ i g sec Xt

„ /1oS (^ + l)
(to = a

,_gl±l l08(e. + 1) .

18. flog (a + Var2 + a2
) cte = a; log (a + -Vx2 + a2

)

+ a log (a; -f Va^
2 + a2

)— a?.

In each of the following examples integration by parts must be

applied successively.

19. CaPe-^dx = -^!(4ar5 + 6a;
2 + 6a; + 3^

20. JV - xfdx =£ - ^(4 x - 1) + ^(2x> - 2 x + 1) -^

21

.

Car-1 (log a;)
2
da; = - [(log xf - ?i°S« + -1

J n
|_

n n2

J

22. rx3 sin2a;^ = ('?^-lN

)sin2aj-^--—)cos2x.

23. Tartan-1
a;)

2 dx = ^^(tan"1 x) 2 - a; tan"1
a; + 1 log (x2 + 1) .

x log (a; + a) log (a; — a) dx = -—-— log (aj + a) log (x — a)

x2

Q^!log(x + a)-^-^\og(x-a) +
^
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217. To find
J
e™ sin nx dx, and

J
e
ax cos nx dx.

Integrating by parts, with u = e
ax

,

e
ax sm nxdx = f-- I e

ax cos nxdx. . . (1)

Integrating the same, with u = sinnic,

/„ • 7 €
ax sin nx n C ax j /o\

e
ax sin nx dx = e" cos nx dx. . . . (2)

We see that (1) and (2) are two equations containing the two

required integrals,
j

e
ax sin nx dx and I e

az cos nx dx. Eliminating

the latter, by multiplying (1) by n2
, and (2) by a2

, and adding, gives

(a2 + iv)
J

e
M sin nx dx = e™ (a sin nx — w cos nx)

;

v r ax • -, e^ia sin no; — n cos ?i#) /0\hence I e"smtia5CW5=—* '- (3)
J a2 + n2

Substituting this in (1) and transposing, gives

' a C ax 7 e" (a?i sin ?ia; + a2 cos na;)- I e
aj cos nx dx =—* ! z-

»J a2 + n2

I " C ax 7 e" (w sin as -f a cos wa;) ,AShence I e^ cos nx dx =—* —! L (4)
J a2 + ?i

2 w

EXAMPLES

The student is advised to apply the process of Art. 217 to Exs.

1-4. For the remaining examples he may substitute the values of

a and n in (3) and (4).

I '
' sin 5 x cfcr = — (3 sin 5 aj — 5 cos 5 a;),

/e3* cos 5 x dx = — (5 sin 5 as -f 3 cos 5 x).
34
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2. \

/e~ 2x

e~2x sin x dx = — (2 sin x -f- cos a?),

e~2x cos a; da; =— (sin x — 2 cos a?).

e
ax sin aa; dx =— (sin ax — cos ax).

2a K J

4. fe hos^dx = ~^ Y2sin?

*sin 2 a; + cos 2 a;, sin 2 x -f- 5 cos 2 a;
5. fS—

13 e
s

(e
2x + sin 2 a?) (e* + cos x)dx — 1 (sin x + 2 cos a;)

. e* / . o o N 2 cos 3
a;

H— (sin 2 a? — 2 cos 2 a;) .

5 3

7. fe2* cos2 3 x dx = — +— (3 sin 6 a; + cos 6 a?).

8. I e
x sin 2 a; sin 3 a? dx = sin a; + cos a;

5 sin 5 x 4- cos 5 a?

13 ]

/
g
2x

a;e
2x cos xdx = — [5x (sin a; + 2 cos a;) — 4 sin x — 3 cos a;].

218. Reduction Formulae for Binomial Algebraic Integrals. These

are formulae by which the integral,

j
xm (a + bxn

)
p dx,

may be made to depend upon a similar integral, with either m or p
numerically diminished. There are four such formulae, as follows:
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(i\p + m + l)b (np + m + l)bJ K } ' K J

Cxm (a -f bxn

)
p dx

= ar»(a+ bary *pa
Tarfr+ toy^ifr . . . . (B)

np + m-\-l np +m+U
Cx"\a + bxn

)
p dx

_ x^ja + bx")^ 1 _ (»j) + « + m + l)5 C m+n ,
b yd (c~

(m+ l)a (ro + l)a J * &+*")«*' (C )

r.r
m (a+ ^) p^

= _^^^ ¥ + M+w + l^ ( ^lfe
(

n(p+ l)a n(jp+ l)a J K J v J

Formulae (A) and (5) are used when the exponent to be reduced,

m or p, is positive, (^L) changing m into ?ti — w, aud (B) changing p
intop — 1.

Formulae (C) and (D) are used when the exponent to be reduced,

m or p. is negative, ((7) changing m into ?/i + ?i, and (D) changing p
into p + 1.

If, in the application of one of these formulae to a particular case,

any denominator becomes zero, the formula is then inapplicable.

For this reason,

Formulae (A) and (B) fail, when np + m + 1 = 0.

Formula (C) fails, when m + 1 = 0.

Formula (D) fails, when p -f- 1 = 0.

In these exceptionable case's the required integral can be obtained

without the use of reduction formulae.
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219. Derivation of Formula (A). Let us put for brevity

X= a + bxn
, dX= nbxn~l dx.

Then CxmXp dx = Cxn -n+lXpdX
nb

Integrating by parts with u = se
m-n+1

, we have

CxmXp dx =
xm~n+lXP+1 _ m 7

yi + 1 Cxm~nX>+ 1 dx. . . (1)J 7ib(p + l) nb(p + l)J
K J

Comparing the integrals in (1), we see that not only is m diminished

by n, but p is increased by 1.

In order that p may remain unchanged, further transformation is

necessary.

By substituting Xp^ = (af bxn) Xp
,

the last integral may be separated into two.

Cxm~nXp+1 dx = a Cxm-nXp dx-\-b CxmXp dx.

Substituting this in (1) and freeing from fractions,

nb(p + 1) CxmXp dx = xm
~n+1Xp+1

— (m — n + l)fa Cxm~nXp dx + bfx Xp dx\

Transposing the last integral to the first number,

(iip + m + 1) b CxmXp dx = xm~n+1Xp+1 — (m — n + l)a Cxm~nXp dx, (2)

which immediately gives (A).
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220. Derivation of Formula (B). Integrating by parts with

u = Xp
, we have

( %-X* dx = X*^—-- I — pX^bnx"- 1 dx
J m + 1 J m

+

1

=^^_m>brxm+nXP-ldx^ . . . (1)m + 1 m + lJ J

Comparing the integrals, we see that not only is p decreased by 1,

but that m is increased by n.

To avoid the change in m, substitute in the last integral of (1)

bxn=X-a.

Also freeing from fractions,

(m + 1) CxmXp dx = xm+lXp - npf CxmXp dx-a CxmXp~ l dx).

Transposing to the first member the last integral but one,

(np + m + 1) CxmXp dx = xm+lXp + npa CxmXp~1 dx, ... (2)

which immediately gives (B).

221. Derivation of Formula ((7). This may be obtained from (2),

Art. 219, by transposing the two integrals, and replacing throughout,

m — n by m. This gives

(m + 1) a CxmXp dx = afl+1X^p+1 — (np + m + n + 1) Cxm+nXp dx,

from which we obtain (C).

222. Derivation of Formula (D). This may be obtained from (2),

Art. 220, by transposing the two integrals, and replacing p— 1 by p.

This gives

n(p + l)a fafX* cte = -

x

m+1Xp+1 + (np + n + m + 1) CxmXp+1 dx,

from which we obtain (Z>).
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EXAMPLES

Here f ^da; = Cx\a2 -x2)~^dx.
J Va2— sc

2 ^

Apply (A), making

m = 2, n = 2, p = — -, a = a2
, &= — 1.

fx\a2 - x2y* dx =<a
*-f)* _ J^ f(a2 _ xyi dx

«/ — ^ — zu

= (a2 — x2
)* 4- — sin

-1-.
2

V
' 2 a

2. fV<*2 + a2
cte = | Vtf + a^ + ^logfc + V«2 + sc

2
).

»/ Z Z

Apply (jB), making

m = 0, w = 2, p = -, a = a 2
, 6 = 1.

z

JV + a0**« =
f
(*'+af)* + f

/ da?

(a2+ x2

y

*(a2 + a?)i + 1 log(z + V^+^).

/die V#— a- . 1 ,0?

arV#2 — a2 ^ ax" ^ a a
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Apply (C), making

m = — 3, n = 2, p= — -, a= — a2
, b = 1.

JV^ - tff**-^~ rf>* +^/^(^ - *>-»*

2 aW 2o8 a*

,. r dz 1 1 _,»
*j l —

-

. -S6C

Apply (D), making

3m = — 1, ?i = 2, p = — -, a = — a2
, 6 = 1.

«/ CI QT*J

1 _iiC
.see 1-

a2(^_ a2)i a3 a

5. C^Ja2 -x2 dx = -^a2 -x2 + - sin"1 1'

.

J 2 2 a

J VflS? — a2 ^ ^

7. f(a
2 - a2

)* <fo = -(5 a2 - 2 x2
)V^^2 +^ sin_1 -•

»/ 8 8 a

8. (V-a?)$ <fe = *(2 x2 - 5 a2)V?=7+^
4

log (a? + VaF+d).
*J 8 8
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9. fx2^/a2 -x2 dx = ^(2 x2 - a2
)Va2- x2 + - sin"1 -•

10. fxWx^+ti2 dx = ^(2x2 + a2
) ^/x

T~+a~2 - ^ log (a + V^T^"2
).

»/ o 8

C?iC

(a2 -a2)t a2Va2 -aJ*

12. Derive the formula of reduction used in Case IV of Rational

Fractions.

/ OjX J. X . /(~\ Q\ I U'37

J (x2 + a2

)
n
=
2(n-l) a2

[_(x
2 + a2)*- 1 l "~ V (x3+a2

)

n~1

_

1Q f da; 3 x2 — a2

sec

is.
r_^jx_ = _

^

v
__

5 + 3^^^^ V2 aa? — or * 2 a

Write P ^^ |"
s'cfa

?
and apply (^) twice

•^ xV2 asc — x2 J V2 a — x

*g /* dx V2 a# — x2
.

*^ x\/2ax—a?dx aiC

17. fV2 az - x2 dx =^* V2 ax - x3 + f sin"1 5=
^ 2 2 a

or =—-— V2 a# — #2 + — vers
-1

2 2 a



INTEGRATION BY PARTS. REDUCTION FORMULA 291

Write
J
V2 ax — a*

2
d.r = I Va2 — (x — a) 2

rife, and substitute

n Ex. o.

18. fxV2^T? fe= _ o «- + ax - 1
*
Vo^r^2 + g

«y o ...

1ft f*V2 ooj— x2 dx /« \ , -i#.
19. I = V2 ax — x- + a vers * -

»/ a; a

3
,3!

- vers
-1

-.
2 a

20 f '1
'"'

r? '1
' — - a-

7"-1V2 aa — it-
2

(2 m — l)a /» a;™-1
eta

J a 2 a.i- - .r

~
»» w» ^ V2 aa; - or

5
*

21. f
**

*^ xmV2 ax — x2

V 2 ax— x2
, m — 1 /• cfa+ - l)aJ i(2 m - l)axm (2 m - l)aJ xm~^2 ax - ar

2

22 . | xmV2 aa; - x2 dx

m + 2 m + 2 •/

23 t

f i'- aa: — x2 dx

(2 aa; - x2)* m-3 r^2ax-x2 dx
.

(2 m - 3)aa;" (2 ra - 3)aJ a;"
1"1

223 Trigonometric Reduction Formulae.— The methods explained

q Arts. 211, 214 are applicable only in certain cases.

By means of the following formulae,

I sinm x cosn x dx,
J
tan"1 x secn x dx, and

J
cotm x cosecn x dx,

lay be obtained for all integral values of m and n> by successive

eduction.
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fsin" x cos" x dx = - slnW-1 ^ CQS"+1 ^ + *2?^l1 fsin—2
aj cosw x dx. (1)

J m + n ra + nJ

Psin" a; cos" x dx = smm^ x cosW
"1 x + -^—^- f sin™ a cosw

- 2a da;. . (2)
*/ m + n m + n*/

/
JS»J«3»+Si!±!flii-.,M.,fc . . . (3)m + 1 m-\-l J

I sin"1

a? cosw x dx

sinm+1 x cosw+1 x . m-\-n-\-2 C - m n+2 ^ sa\= '— I smm x cosn+J x dx. . . (4)
71 + 1 71+1 J

J.
_ , sinm_1 x cos a? . m — 1 C m_2 -. /KNsmm xdx = 1 I sin™ 2 xdx (5)m m J

/_ , sina;cosM_1 a? , n — 1 T n _2 , /a,

cosw x dx = h — I cosw 2 x dx (o)
7i n J

ftan™ a? sec'1 x dx = tanW~1
,T sec" x m ~ 1

("tan"1 "2 x see" a? da;. (7)J m + n — l m + n —U

I cotm a;

_ £2
m + 7i — 1 m + n

/-, secn_2 x tan a; . n — 2 C „_2 , / >

secn a; da; = 1 I secw2 a; da; (9
n — 1 7i — 1*/

cosecw a? da?

cotm_1a; cosec" x m —lC ±m-2 „,>„«„* „ ,7™ /q>- I cotm z x cosecn x dx. . \6
J



INTEGRATION BY PARTS. REDUCTION FORMULAE 293

cosec 1 x dx = 1 I cosecn~- xdx. . . . (10)
n — 1 n —U y

Ctmi"xdx = tan"~lx - Cteti*-*xdx (11)

Ccot n xdx = - Qotn ,v - Ceotn-2 xdx (12)

224. Derivation of the Preceding Formulae. — To derive (1), we
integrate by parts with u = sinm_1 x.

fsin- x cos" x dx = - sm""1 x cos"+1 x + 7Azil fsin—2 x cosn+2 x dx.
J n +

1

n-\-lJ

I sin-
-2 x cos"^ 2

as dx =
J

sin"
1-2

a; cos" x dx —
J
sinw x cosn x cfa.

Substituting this in the preceding equation, and freeing from

fractions, we have

(m + ») I sinm a; cos'
1

a; cto

L
m_1 » cos"+1 # + (m — 1)

J
sinTO_2 a? cos" a? cfa,= — sin"

which gives (1).

To derive (2), integrate by parts with u = cos 71" 1
x, and proceed as

in the derivation of (1).

Formula (3) may be derived from (1) by transposing the integrals,

and replacing m — 2 by m.

Formula (4) may be derived from (2) by transposing the integrals,

and replacing n — 2 by n.

To derive (5), make ra= in (1); and to derive (6), make m =

The derivation of (7), (8), (9), and (10) is left to the student. We
have already derived (11) and (12) in Art. 212.
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EXAMPLES

n C • 6 7 cos x /sin5 x . 5 . » . 5 . \ ,
5x

n C 5 7 cos xf 1 , 3 \ . 3i , X
2. I cosec5 xdx = -—-—f-

. „ + t: log tan--
J 4 \sm*x 2sin2

xJ 8
B

2

o /•
7 , sin x f 1 , 5 . 5

N

3. I sec7 x dx = — —| — + -
J 2cos2 oA3cos4 # 12 cos- a? 8,

5+— log (sec x + tan x).

A C * a sina/ - ,7 5 ,35 3 ,35 \ , 35a;
4. I cos8 #cta =—— cos7 a + -cos5 # +— cos3 #+—cos#+tt— •

J 8 \ 6 24 16 y 128

K /* •
4 o ^ cos # /sin5 x sin3

ic sinaA . a;
5. I sm4 x cos2 x dx = ^ f

—-
] + -

—

J 2 ^ 3 12 8 J 16

c f
%
cos*x 1 3cosa? — 4 cos3

a; 3coscc , 3, , x
6 -r-y-*8= -p-—

A o •

2
+ g log tan--

J snr x 4 sm4 x 8 sir a; 8 2

7. J-^^-^^+^-lsin;
sin4

a; cos3 x cos2 # V 3 sin 3 x 3 sin a; 2

5+ - log (sec x + tan #).

A 4 o , /tan3
a; tanaA 3 ,

sec a? tan #
8. I tan4

sc sec3 a cte = -— sec3 aH •

J \ 6 8 / 16

+— log (sec x + tan x).

9. rcot^cosec5^^^ 60^ 0086^^- 60566^^ 008602 ^^--
J 2 V 3 12 8

-ilogtan|



CHAPTER XXVI

INTEGRATION BY SUBSTITUTION

225. The substitution of a new variable has been used in Chapter

XXIII, for the rationalization of certain irrational integrals. We
shall consider in this chapter some other cases where, by a change

of variable, a given integral may be made to depend upon a new
variable of simpler form.

We shall first consider some substitutions applicable to integrals

of algebraic functions, and afterward those applicable to integrals

of trigonometric functions.

226. Integrals of form I f(a?)xdx, containing (a + bzr)q. One of

the most obvious substitutions, when applicable, is x2 = z.

By this, any integral of the form ifix^xdx

is changed into - \f{z)dz.

p
Integrals containing (a + 6.x*

2
)? are often of this form.

x3 dx
Take for example -

J
-

VI -x 2

By the substitution x2 = z,

C x'dx _ 1 r zdz

This is of the form of Art. 203, and is rationalized by putting

l-z = v:\

295
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The two substitutions in succession are equivalent to the single

substitution 1 — x2 = id
2
.

Applying this to the given integral,

x2 = 1 — w2
, xdx = — w dw.

f
^ dx =- ra-"')wdw = _ r

(X
_ wr)dw

J vi - «2 J w J

=-^_|
3

)
= -|(3-^) =-^^(^ + 2)

EXAMPLES

J V2s*+1 30

2. far* (a2 - x2)^dx = -£-(6 a4 - aV - 5 a4)(a2 - x2
)*.

3. C dx = 1
log
^' + ^-^ ^-Llog

«*

JaVa2 + a2 2a Va2 + a2 + a 2a (yV + a2 + a)2

1
t

aj

a Var2 + a2 + a

4 . r °g? = |r^±i)! + (^ + ,i)i + iog(^+i-i)'
•^ v x2 + 1 — l ^ L ^

5. f xdx * log (
V3~=^ + 1) + j log (V3^¥2 -3).

^ a^ + 2V3 - OJ
2 4 4

227. Integration of Expressions containing Va2 — ar
2 or V&*2 ± a2

,

by a Trigonometric Substitution. Frequently the shortest method of

treating such integrals is to change the variable as follows

:
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For a a* — .r , let as = a sin or x = a cos 0.

For vr + o-, let x = a tail or a; = a cot 0.

For v .r — a 2
, let # = a sec or a* = a cosec 0.

Jdv.

(a2 - a,-
2
)*

Let x = a sin 0, cfcc = a cos dO,

cr — or = a- — a2 sm- = <r cos- 0.

cos Ode 1 C cJO tan (9

/
c7x _ a, cos e do __ i r

(a*— a?)% ^ a3 cos3 a 2J cos2
6 a2

a2Vd2 — x2

nple j —
J x^Jx2 +

Take for another exai~~

Let x = a tan 0.

/
dx _ r a sec2 dO __ 1 /"sec

d
n_l C dO

x^/x2 + a 2 ^ a tan • a sec aJ tan aJ sin

- log (cosec - cot 0) = 1 log
Vx2+a2 -a

a a x

Again, find I
^ '

Let x = a sec 0.

^-«\te

J a; J a sec J

= a f(sec2 - l)d0 = a (tan 0-0)

Vx2 — a2 — a sec
-1 - •

a
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EXAMPLES

,2

1. I Va2 — x2 dx = - Va2 — x2
-j— sin

-1 - •

J 2 2 a

n C dx _ _ Va^ + a2

J
a;

2Va?Ta2 ^

3. f dx = \og(x4-VxT^~a1\
J ^Jx2 — a2

4 C dx = (2a;2 + a2)Va2 -^2

.

5. I —

—

^— dx — — ——-L 1_ log (x + Var -h a
2
)-J ctr rr.

J x4 3a2xs

7
C_dx__

=z
(2x2 -l)Vx2 + l

J x'Vx^+l
~

3x*

8. fv/^±i da? = f * + 1
da; =V^I + log (x + V^l).

9. r—g*—=\/^-^ (a3 + l)V^2-l ^x + 1

io. f *? =J5±i.

11. f
*<*g == _V8 + 2cc-a;2 +sm-^

^V3 + 2x-aj2 2
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For V3 4- 2 x - x* = V4— (x— l) 2
, let x— 1 = 2 sin 0.

r <f.r

J (j*+ 2x+ 3)*

12. " + 1

2Va2 + 2 a; + 3

For Var>+2 x + 3 = V(<e+ 1)
2 + % let a;+ 1 =V2 tan 0.

13 C r*'v — x — a

J (2ax-x*)% aW2ax-x*

UC ja — x _ C a — x , / s
, « • _i2.T-ffl

. I \i da; = I —^=r cfo = wax—x- + - sin l

J V * ^ Vaaj-ai2 2 a

15 (* a'2 ^x (3a-\-x)V2 aa; — x2 3a2
. _! «; — a

' J V2^"T~'~ 2
~

2
Sm

a
"

228. Substitutions for the Integration of Trigonometric Functions.

A trigonometric function can often be integrated by transforming it,

by a change of variable, into an algebraic function. For this purpose

two methods of substitution may be used, as shown in the two follow-

ing articles.

229. Substitution, sin x=z, cos x = z, or tan x = z.

Consider, for example, C sin x cos x dx

J 1— sin x + cos2 x

'

dz
Let sin x = z, then x = sin

-1
z, dx =

VI -z

J
sin x cos x dx _ C zVl — z

2 dz _ C zdz

1— sin x + cos2 x J 1 — z + l—z2
^/\ _ 22 J 2 — z — z

2

C zdz = 2 r dz 1 r_dz_
J (2 + z)(l-z) 3 J 2 + 2 3 J 1-2

= - ? log (2 + 2)- I
log (1 - 2) = - | log [(2 + sin a;)

2(l - sin «)].
o o o
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EXAMPLES

1. C f ,
=-1— r^-^taii-^tan^l

Ja2+b2
t3in

2 x a2 -b 2

[_ a \a )]

2
r—dx— = x i

j
,

in cos
v

J 1 + tanx 2 2
6 v ;

3. f^^^ = liog
l-sm^ + J_ log

l + V2sinx
>

J sin 4 a? 8 1 + sinsc 4V2 1 — V2sina;

Let sin a; = 2.

dx 1 n sin a; (1 + cos x) T ,= - log i—

!

'-. Let cos a; = z.

sin2x 3
5

(l+2cosa;)2
4. f °

»/ sinaj +

K /• sin x + cos x 7 3 oj 1 1 • l0 \
5. I — dx = log (sin x + 2 cos x)

J sin a? + 2 cos a; 5 5

Let tan x = z.

/'tan 3 x ,
,

1 i

6. I dx = x -\ = loj
'tan 3 a;-, . 1 , tan x — V

3

dx = x-\ log -.

tan x ^3 tan x + ^J§

7. Show, by transforming into algebraic functions, that only one of

the following integrals can be expressed in terms of the elementary

functions. (See Art. 208.)

/Vtana?d!a;= Cxi!*?, where z = tana;.
J 1 + z

2

I Vsina?daj= I
— = |

—
, where z — sin x.J J Vl-z2 J Vz-z3
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230. The Rational Substitution, tan - = z. By this substitution,

sin x, cos x, tan x, and dx are expressed rationally in terms of z. For

siu x -

2 tan -
2 22

COS X-

1 + tan--

1-tan2 *

2 1-Z2

1+tan2 -
2

~1+Z2

2 tan -
9

tana;

1-tan2 * i-*2

2

From - = tan- 1
2, dx =^-

c

9.

It follows that the integral of any trigonometric function of x,

not containing radicals, may be made to depend upon the integral

of a rational function of z, and can therefore be expressed in terms

of elementary functions of x.

C dx
231. To find | Applying the substitution of the

J a+ bsmx ™ J s

preceding article, tan - = z,

2dz
2dz

/i z riz

i + *
2 r

, 2bz J a
& ~r z «

1 + 2
2

(l + *) + 2ki

+
'

/
2fttfe _ /" 2 r/rfc

a2
z
2 + 2abz + a* J (az + b)

2 + a2 - b2
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If a > by numerically,

x
a tan - + b

r_dx__ = 2
t^_Y az + b = 2 ^^ 2

t

J a + 6 sin a; Va2 -62 Va2 -62 Va2 -62 Va2 -62

If a < 6, numerically,

/
da? _ r

a + 6 sin cc J (i

2a&
log

a^ -6-V6 ;

aZ + &)2_(52_ a2) y62_ a2 a2 + &+V&2_ a;

a tan - + 6 — V&2 — a2

log

atan| + & + V&2-a2V&2 - a:

232. To find f-J a

dx

-j- b COS £C

/
2 dz

6(1— z
2
) ~~J (

2^2

a — b) z
2 + a -f &

2 /" dz_

+ &''

a — b

f-J a

If a > b, numerically,

dx

+ b COS £C a-6^a+6 Va+6

_2 tan-'fJ«L^ tan
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If a < b, numerically,

dx 2 r dzr dx = 2_ r az

J a + b cos x b — aJ «a _ b + a

b — a

1
1

gv6-g-V& + a

V&2 - a2 sV&-a+V& + a

.r

Vfr — a tan h + Vb + a
log

V&2 — a2 / # /V6 — a tan « — V & + a

EXAMPLES

Integrate the following functions by means of the rational sub-

stitution.

1. J,-^- = W^2tan*
3cosa? 2 V 2

,

2 f (?* = 1
j

tanaj +2-V3
" J l + 2sin2a 2V3

&
tana; + 2 + V3

3tan^
3. f * =i log I

J 5 sin x + 12 cos a 13 &
, x

in^ + 2

2 tan ^-3

&tan£-a + Va2 + &2

J a sin*+ 6 cob* V^+65 °g
6 taD

* _ a _ V^+65

5. f * = log-
J sin ./,* -f- vers as

^

tan
2

x

H- tan -
2
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tan--l
6. f

*» = tan-_J?
J 3 — sm x + 2 cos a? 2

'•
I

1=—^ = ^logJo + T sm a; — cos x 5

3tan|+ l

tan^ + 2

/dx 1.x 1 i A— . . = - tan — log
f 1 +

(1 + sina + cosaj) 2 2 2 1+tan » V
tan

233. Miscellaneous Substitutions. Various substitutions applicable

to certain cases will be suggested by experience.

The reciprocal substitution, x = ~, may be mentioned as simplify-
z

ing many integrals.

EXAMPLES

Apply trie reciprocal substitution x = - to Exs. 1-6.

L
J x4 3aV

2
r___dx__ _ _ Va?-|-a2

' J fvV + a2 " a^»

3
rV2 ax - a;

2^ = (2 ax - x2
)?

^

J xs Sax3

4. r ** =iiog g

J j;VV ± x2 a « + Va2 ± x1 -

5 .
r^-f)*^J x4

3JX-X3

)

8tf

4

ill,
,4
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r *b =
J ±\ 8 x2 + 2 x - 1

snr
x-1
3x

7. f "*** = 5 §_+ _6_+ i g(a.+ 2).

Let a; + 2= 2.

8 . rix+a)(x+brdx=^f+(a_ b)(^i
J n -\- Z 91 + 1

Let x-\-b — z.

J x (a + &a?)
3 a3 _2(a + &a>)

2 a + bx x

Let a + 6a; = a;z.

10. - dx = sin a; — sin a log tan * "T • Let a; + a = 2.

tan (a; + a)

1 1 . f-—^ = - a?- «-+ log Ve& + e* + 1 — tan
1 ^.,2^+ 1

V3 V3

Let e
x = z.

12. f\-—-dx = V(a - a)(& + a) + (a + 6) sin" 1J-J ^ b 4-x * a

+ b

+

Substitute b + x = z
2
, and the integral takes the form of Ex. 5,

Art. 222.

13.

= V(a; + a)(x + b) + (a- 6)log(Va; + a + Va; + 6).

Substitute x + 6 = z
2
, and the integral takes the form of Ex. 2,

Art. 222.



CHAPTER XXVII

INTEGRATION AS A SUMMATION. DEFINITE INTEGRAL

234. Integral the Limit of a Sum. An integral may be regarded

and defined as the limit of a sum of a series of terms, and it is in

this form that integration is most readily applied to practical

problems.

235. Area of curve the limit of a sum of rectangles. Let it be re-

quired to find the area PABQ included between the given curve OS,

the axis of X, and the ordi-

nate s AP and BQ.

Let y=x? be the equa-

tion of the given curve.

Let OA = a, and OB=b.
Suppose AB divided into

n equal parts (in the figure,

n = 6), and let Ax denote

one of the equal parts, AA1}

A\A2,
•••

Then AB = b — a = n Ax.

At Alf
Ac,, •••, draw the

ordinates AXPX , A2P2, ••, and complete the rectangles PAX, PYA2,

From the equation of the curve y = x?,

PA = a\ PXAX =(a + Ax% P2A2 = (a + 2Ax)?, •••, QB= b?.

Area of rectangle PA1 — PA x AAX = a?Ax.

Area of rectangle P±A2 = P^AX x AXA2 = (a + Ax)? Ax.

Area of rectangle P2A3
= P2A2 x A2A3 = (a + 2 Ax)? Ax.

Area of rectangle P5B = P5A5 x A B = (b — Ax)? Ax.

306
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The sum of all the n rectangles is

a
1

- A.r -f (a + Aac)* A.r -f (a + 2 A.r)*- As H h (& — As)* Aa?,

^ 5
i

which may be represented by > .r-' A.r,

l a

where x- A.r represents each term of the series, x taking in succes-

sion the values a, a + A.r, a + 2 A.r, •••, b — A.r.

It is evident that the area PABQ is the limit of the sum of the

rectangles, as n increases, and A.r decreases.

That is, Area PABQ = Lim Ax=0 > x°- Ax.
' a

236. Definite Integral. From the preceding article

V x* A.r = a* A.r + (a 4- Aa)* Ax'+ (a -f 2 Ax) * Ax H h (6 — Ax) i A.r.

The limits of this sum, as A.r approaches zero, is denoted by

J

.r- dx. That is, by definition,

|
«2 dx = Lim A:e=0 > & Ax.

a ^ a

X
h 1 1

x- f?.r is calleji the definite integral, from a to 6, of a^da?.

It is to be noticed that a new definition is thus given to the sym-

bol I . which has been previously defined as an anti-differential.

The relation between these two definitions will be shown in the fol-

lowing article.

237. Evaluation of the Definite Integral I x% dx. This is effected

by finding a function whose derivative is a?*

dx\ 3 J

By the definition of derivative, Art. 15,

,
- (a -f Ax) 2

—
f

]= Lim . = s*.
da\ 3 J

^
A,;
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T = X* + C,
Ax

where e is a quantity that vanishes with Ax.

2 3 2x* i

Hence -(x4-Ax) 2 ^— =x 2 Ax + eAx.
o o

Substituting in this equation successively for x,

a, a-\- Ax, a + 2 Ax, •••,& — Ax,

| (a + Ax)* -^ = a* Ace + <a Ax,
o o

^ (a + 2Aa)* — - (a + Ax)^ = (a + Ax)? Ax + e2 Ax,
o o

| (a + 3 Ax) * - ? (a 4 2 Ax)* = (a + 2 Ax)* Ax + €3 Ax,
o o

.

26f _ | (ft _ Ax)
3 = (6 - Ax)?Ax + en Ax.

o o

Adding and cancelling terms in the first members,

?A2 _ 1^1 = ai Ax + (a + Ax)*Ax 4- (a 4- 2 Ax)?Ax H 1- (6- Ax)?Ax

+ e1 Ax + e2 Ax 4 e3 Ax 4 ••• -f eM Ax

= V^Ax +Y^Ax (1)^^ a a

Comparing with the figure, Art. 235, X x 2 Ax, as we have before

seen, represents the sum of the rectangles, and 2j e Ax represents
a

the sum of the triangular-shaped areas between these rectangles and

the curve.

The latter sum approaches the limit zero, as Ax approaches zero.
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For if eA. is the greatest of the quantities c1} u, •••£„, it follows that

V c Xv < e,T Ax,
1 a ^^ a

that is, >, e &x < e/t(^
— a)-

As et vanishes with Ax,

Lim^^ eAaj= 0.

Taking the limit of (1),

a?s da;=^iL-— = Area PABQ.

Thus the value of I x* dac is found from the integral

Sxldx = 2
4>

by substituting for a;, b and a in succession, thus giving

3 3

The process may be expressed

I

6 2b% 2J(Mo.-**
Ja 3 3

This is called integrating between limits, the initial value a of the

variable being the lower limit, and the final value b the upper limit.

In contradistinction

fx l dx = 2-^+C,

is called the indefinite integral of xMx.
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238. General Definition of Definite Integral. In general if f(x) is a

given function of x which is continuous from a to b, inclusive, the

definite integral

J
/ (x)dx= LimAa.=o /(a)Aa> + f(a + Aa)Ax + /(a + 2 Ax)Ax

+ - +/(&-Ax)Ax .

If
j f(x) dx = F(x), the indefinite integral,

l

f(x)dx= F(b)-F(a) --.(I)

This may be illustrated by the area bounded by a curve as in Art.

235, by supposing y—f(x) to be the equation of the curve OS.

The proof of Art. 237 may be similarly generalized by substitut-

ing /(» for a?*, and F(x) for ~-
Geometrically the definite integral I f(x)dx denotes the area

swept over by the ordinate of a point of the curve y =f(x), as x

varies from b to a.

It is to be noticed that in Art. 192, by a somewhat different course

of reasoning, we have arrived at the same result,

Area PABQ = F(b) - F(a).

239. Constant of Integration. It is to be noticed that the arbitrary

constant G in the indefinite integral disappears in the definite

integral.

Thus, if in evaluating
J

x* dx, we take for the indefinite integral

/ 3
'

2 6* 2J
wefind jyUx =

*f + C-(?f+c)== 3 g

Or if Cf (x) dx = F (x) + C,

Cf(x)dx = F(b) + G- IF(a) + C]=F.(b)-F(a).
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EXAMPLES
.0

1. Compute 2 -^Ax for different values of Ax.

When Ax = .2,

X/ Ax = (l
2 + L2

2 + 1A
2 + D?

+ r82

)(.2) = 2.01.

When Ax = .1,

2^x2Ax = (Is+ 13* + V? + • • -

+ L9
2

)(.1) = 2.18.

When A.? = .05, Jj'asPAa = 2 -26 -

LirnAx=0 5j a~ Ax = ( x2
c?x = —

2.33.

Curve OS, y=x*. 0A=1, 0B=2. o
Area PABQ = 2.33 square units.

2. Compute V— for different values of Ax.
*"*1 x

'Ax

x

When Ax = 1,

4Ax (\ . 1 ,

Y |R

s.T-e+i+i^- 1"-

When Ax = .5,
Ax^A 1XX _AT" 1.593.

When Ax Ax
^1 X

1.426.
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LimAa;=0 > — = — = log x
**l X Jl X

= log 4 - log 1 = log 4 = 1.386.
i

Curve RQ, y = -> 0A = 1, 0B = ±. Area PABQ = 1.386 square

units.

3. ComputeY x Ax, when Ax = 1 ; when Ax = .5 ; when Ax= .2.

3
^Ins. 18; 19; 19.6.

Find Lim
A3;= o 2y ^ Acc - ^ns - 20 -

4. Computed -, when Ax =.2; when Ax = .l; when
Ax =.05.

ol + x Am .833; .810; .798.

Find Lim Ax=0 Y* -**L. Ans. £ = .785.
^o 1 + x2 4

5. Compute V log10 xAx, when Ax = l; when Ax = .5; when
Ax =.3.

10
' Ans. 3.121; 3.150; 3.161.

Find LimAa;=0 > log10 xAx. Ans. 13 log10 13— 3 log10 e— 10=3.177.

6. Compute V tan<£ A<£, when A<£ =3°=^; whenA<£ = -^-; when
^^

IT ou oU

A<£ = -^-.V
180

125

6
'

Find Lim AcE=0 V tan
<f>

A<£

4

7. r
3

(ic
2 -4) 2x<!x =

-;« Va2 -2/2 3

Jo e2* + l 4

.4ns. .316; .328; .340.

Ans. loge V2 = .346.

/*9 x dx _ 9

J5 Vx2 + 144

r 2 dx *

Ji x2 -x + l 3V3
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13. C flv - = ff . rf 8

15. jTsin^ <M=^_|. 16 _
r vers22e ^ = ^_7V3.

is «/o 4 16

"f.
,; cos 20 — cos 2 a 1A -, , tt

cos 61 — cos a
dO = 1 + - cos a.

18. = 6 log 2.
Jo (aj+ 2)

3 4
&

19. f
1 — = -log (2 e).

Jo l + 2x + 2x2 + 2xs + x* 4
& ^ ;

7T

20. .i*- sin .r dx = 7r — 2.

21. f
2a

a log (x + a) cfc = ^log (3 a) - 1.
%J a A 4

22. f'tan- 1 -dx = tt - log 4.
•/o 4

By (5) and (6), Art. 223, we find

J
sin" ;/: dx = ?/ ~

( sinn~ 2
a; cfo,

o n Jo

7T 7T

I

cosn x ax = I cosn-_ x ax
;

Jo n Jo

from which derive the following results

:
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24. If n is even,

E E

J"\inn xdx = C\os>n xdx = 1 ' S ' b '"(n ~ V
)

o Jo 2-4-6.--H

25. If n is odd,

E E

J"
2 C2 2 »4. 6 •••(71 — D
sin" x dx = I cosM # d# = ^ £•

o c/o 3 • 5 • 7 • • • n

240. Sign of Definite Integral. In considering the definite inte-

gral I / (x) dx, we have supposed a < 6, and / (x) to be positive be-

tween the limits a and b.

Iif(x) is negative from x— a to x = b, V /(a?) A#, being the sum

of a series of negative terms, is negative, and consequently

Jf (x) dx is negative.

If /(a;) changes sign between x = a and x=b, I /(#) cto is the

algebraic sum of a positive and a negative quantity.

Y

For example, £

I

cos x dx — 1 = area ^4 0J5.

cos x dx == — 2 = area JBCZ).
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i
3ir

2

cos x dx = —1 = 1 — 2.

f
"""

cos x dx=0 = l — 2 + 1.

The change of sign resulting from a < b is considered in Art. 243.

241. Infinite Limits. In the definition of a definite integral the

limits have been, assumed to be finite. When one of the limits is

infinite, the expression may be thus defined :

J fix) dx = Lim6=w \ fix) dx.

For example, consider Ex. 12, following Art. 239.

r~8as dx T . r b Sas dx T . A ,, _x b\ 2
o ,

, o = Lim 5=» I o
,

, o = Lnn6=ao 4 ^ tan x — = 2tt a2
.

Jo ar + 4cr Jo or + 4 a2

\ 2a

J

Keferring to Art. 126, we find the geometrical interpretation of

this result.

The area included between the curve, the axes of X and Y, and a

variable ordinate, approaches the limit 2-n-a
2
, as the distance of the

ordinate is indefinitely increased.

J^dx—, we find
x

J"

6 dx— = Lim^^ log b — oo .

i x

Jr
00

dx— has no
1 25

meaning.

242. Infinite Values of f(x). In the definition of I f(x)dx, f(x)

is assumed to be a continuous function from x = a to x = b. If

/(#) is continuous for all values from a to b except x = a, where it

is infinite, the definite integral may be defined thus

:

fix) dx = Lim A=0 I / (x) dx.
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If f(b) = oo, f(x) being continuous for other values of x,

Xb S*b-h

f(x) dx = Lim^ I f(x) dx.

For example, consider Ex. 9, following Art. 239,

r dy

2
Va2 -/

Here —
,

= oo , when y = a.

Va2 — y
2

Hence

J* ^/a2 —y2
J
l

-Va2 -y2 V a 6J

_ 7T 7T IT

Another example is Ex. 13, following Art. 239.

r *
y/(x-2)(3-x)

V(a>-2)(3-a;)
Here — - = oo, when x = 2, and also when # = 3.

Hence j — = Lim ft=0 j —
J2 yj(x_2)(3-x) j2+h V(s

Lim^o sin
-1

(2 x — 5)
'"*=

Lim^Csin- 1 (1-2 ft)- sin-1 (-l+ 2 ft)]

= sin
-1

l — sin
_1 (— 1)= w.

If /(a?) is infinite for some value c between a and 6, and is con-

tinuous for other values, the definite integral should be separated

into two.

Cf(x)dx = Cf(x)dx+ Cf(x)dx. See Art. 243.

These new definite integrals may be treated as already explained.
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EXAMPLES

3
r - dx =l0g(2+V3). 4. C ^-— = -log2.

243. Change of Limits. The sign of a definite integral is changed

by the transposition of the limits,

f
a

f(?) dx = -£
h

f(fi) dx.

This is evident from (1), Art. 238, and also from the definition.

For if x varies from b to a, the sign of Ax is opposite to that where x

varies from a to b. Hence the signs of all the terms of ]x f(x) Ax
will be changed, if the limits a and b are transposed.

f(x)dx = — I f(x) dx.

A definite integral may be separated into two or more definite

integrals by the relation,

f7(a) dx = f /(*) dx + f /(a) (to.

This follows directly from the definition.

244. Change of Limits for a Change of Variable. When a new
variable is used in obtaining the indefinite integral, we may avoid

retaining to the original variable, by changing the limits to corre-

spond with the new variable.

For example, to evaluate

p_*L_
i

Jo 1 -f- V#
assume y/x = z.
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Then we have
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dx 2zdz

1+Vz 1 + z

Now when x = 4, z — 2 ; and when x = 0, 2! = 0.

Hence f—^p = C^« 2 [* - log (1 + *)]

= 4 - 2 log 3.

EXAMPLES

1. CxVx~T2dx =^. Let a-f2 = z
3

.

J2 15

2. f(a; -2)" !K c«a; = - 3m + 5

*/2 n2 + 3^ + 2
Let x — 2 = 2.

3 f
2 s8^ 3

(3 + ^g). Let a2 + l=z3
.

Jo(x2 -\-iy 8

2 ax — x2 dx = 7rcr
Let x — a = a sin 6.

5. r v3 + 2^-^&=V3 _T
Let a . =sl+ 2sinft

c/2 (a; — l) 2 3

6- I V(x — a)(b —x)dx = ^ (b — a)2
. Let # = a cos2

<£ + 6 sin2
<£.

7 j^V-^)f^ = -3^
32

Let x = a sin3 0.

8
\ x^a2 -x2 dx^(^ + ^\a\ Let z = asin0

V64 48
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245. Definite Integral as a Sum. In the application of integration

it is often convenient, in forming the definite integral from the data

/(as) dx as the sum of an infinite number

of infinitely small terms, f{x)dx being called an element of the

required definite integral.

From this point of view,

ff(x) dx =f(a) dx + f(a. + dx) dx+f(a + 2dx)dx+ ••• +/(&) dx.

This may be regarded as an abbreviation of the definition of a

definite integral given in Art. 238.



CHAPTER XXVIII

APPLICATION OF INTEGRATION TO PLANE CURVES.
APPLICATION TO CERTAIN VOLUMES

246. Areas of Curves. Rectangular Coordinates. We have already-

used this problem as an illustration of a definite integral. We will

now consider it more generally, and derive the formula for the area

in rectangular coordinates.

247. To find the area between a given curve, the axis of X, and two

given ordinates AP and BQ ; that is, to find the area generated by the

ordinate moving from AP to

BQ.
Let OA = a, OB = b.

Let x and y be the coordi-

nates of any point P2 of the

curve ; then

x + Ax, y + Ay,

will be the coordinates of P3 .

The area of the rectangle

P2A2A3 is

P2A2 x A2AZ
= y Ax*

The sum of all the rectangles PAAU PXA^A2, P2A2A3,
•••, maybe

represented by 2\ a y &v*

The required area PQBA is the limit of the sum of the rectangles,

as A# is indefinitely diminished. That is

=
J y dx,

* By Art. 245, one readily sees that this rectangle is an element of area.

320



APPLICATION OF INTEGRATION TO PLANE CURVES 321

the lower limit a = OA, being the initial value of x, and the upper

limit b = OB, the final value of x.

Similarly the area between the curve, the axis of Y, and two
given abscissas, GP and IIQ, is

=J vdij,

the limits of integration being the initial and final values of y,

g=OG, and h= OH.

EXAMPLES

1. Find the area between the parabola y
2 = kax and the axis of

X, from the origin to the ordinate at the point (h, k).

Here A= f ydx= f
h

2a^dx

4a^i* 4a*7i-

Since k2=lah, k= 2 aw, which
gives

A = hi2ah* = -hk =-OMPN*

2. Find the area of the ellipse

*+t= l.
a2 ^b 2

Area BOA

| y dx = - I Va- — x- (he

o aJo

bV x /-=
t, . a2

. _iX~\
a

= -\ -V«2 -ar + -sin '-

a\_2 2 aj

Tr«b

* In finding areas, after the element of area and the limits of integration are

chosen, the problem becomes purely mechanical.
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The entire area = -n-ab.

Or we may integrate by letting x = a sin <£.

Then f
a

Va*-a?dx = a* C\m2
4>d<t>=^ C (1 -cos 2 <l>)d<f>=—

Areai^^.^^
a 4 4

3. Find the area included between the parabola x2 = 4 ay, and the

witch y = 8<r

#2 + 4 d2
^Ins. (2,r-*V.

Having found the point of intersection P, (2 a, a), we proceed as

follows

:

Area AOP= AOMP- OMP*

= C2a $a?dx r2a a?dx = 2 2 a2

Jo cc
2 + 4a2 Jo 4 a 3

Area between two curves = ( 2 v— )a2
.

4. Find the area of the parabola

(y-5)* = 8(2-x),

on the right of the axis of Y. Arts. 104.

Length of element of area is the y of the witch minus the y of the parabola.
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5. Show that the area of a sector of the equilateral hyperbola

x2 — y
2 = a* included between the axis of X and a diameter through

the point (x
f y) of the curve, is — log i'

•

6. Find the entire area within the curve (Art. 133) f-Y + f£\ = 1.

Ans. - wab.
4

7. Find the entire area within the hypocycloid (Art. 132)

8
ft + y$= a\ Let x = a sin3 <£. ^?is.

3

8. Find the entire area between the cissoid (Art. 125) y
2=

2a —

x

and the line x = 2 a, its asymptote. Arts. 3 ?ra
2

.

9. Find the area of one loop of the curve (Art. 133) a*y2 = a2x4 — jc
6

,

TO

8
Ans. ??.

Also from x= - to a; = a.

^3 8 ; 4

10. Find the area of the evolute of the ellipse (Art. 167)

(*r)^ + (6y)*= (a2 - b
2)K Ans. ?ffe - *

8 \b a

11. What is the ratio between a and 6, when the areas of the

ellipse and its evolute are equal ?

6 V3

12. Find the area included between the parabolas

y
2 = ox and x*= by. Ans. — •
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13. Find the area included between the parabola

y
2 = 2 x and the circle y

2 = 4 x — x2
. Ans. 0.475.

14. Find the area included between the parabola

y
2 == 4 ax and its evolute (Art. 167) 27 ay2 = 4 (x — 2 a)3

.

Ans.

352V?„2
.

15

Parametric Equations. Instead of a single equation between x and y

for the equation of a curve, the relation between x and y may be ex-

pressed by means of a third variable. Thus the equations

x = a sin <£, y = a cos <j>, (1)

represent a circle; for if we eliminate <£ from (1) we have

x2 + y
2 = a2 (sin2

</> + cos2
<£) = a2

.

Equations (1) are called the parametric equations of the circle, and

the third variable
<f>

is called the parameter.

The formula A = I y clx is applied to (1) by substituting

y = a cos <}>, dx = a cos </> d<j>.

For a quadrant of the circle
n

A= I ydx= I a2 cos2
cf> d$ = 7T(T

T

15. Find the area of one arch of the cycloid

x = a (0 — sin 6), y = a (1 — cos 6). Ans. 3 ira
2
.

16. The parametric equations of the trochoid, described by a point

at distance & from the centre of a circle, radius a, which rolls upon a

straight line, are

x = a6 — b sin 0, y = a — b cos 0.

Find the area of one arch of the trochoid above the tangent at the

lowest points of the curve.

Ans. it (2 a + b) b, when b < a or b > a.
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248. Areas of Curves. Polar Coordinates. To find the Area POQ
included between a Given Curve PQ and Two Given Radii Vectores ; that

is, to find the area generated by the

radius vector turning from OP to

OQ.

Let POX=a, QOX = f3.

Let r and be the coordinates of

any point P2 of the curve, then

r+ Ar, + A0,

will be the coordinates of P3 .

The area of the circular sector

P2OR, is'

- OPo x P.Mo = -r -r A0 = Ir2
A<9.

2 " " " 2 2

The sum of the sectors POP, PxOR^ P2OR2,
• ••, may be rep-

resented by s -i

The required area POQ is the limit of the sum of the sectors,

as A0 approaches zero. That is,

-IX'"*

the initial value of 6, a = POX, being the lower limit, and the

final value of 6, j3= QOX, the upper limit.

EXAMPLES

1. Find the area of one loop of the curve (Art. 144) r = a sin 2 0.

A = lC
2

,*dO = l fa
2 sin2 2 0d$ = f f\l - cos 4 0)d0

-V/Q J»/o 4 */0

-IT- '

-



7rd
2

326 INTEGRAL CALCULUS

The entire area of the four loops

which is half the area of the circumscribed circle.

2. Find the entire area of the circle (Art. 135) r = a sin 0.

Ans. ——

.

4
In the two following curves find the area described by the radius

vector in moving from = to =-.

3. r = sec0 + tan0. Ans. 1 + V2 -
8̂

4. r = a(l-tan2
0). Ans. fc-*\<A

5. Find the entire area of the cardioid (Art. 141) r = a(l — cos 0).

Ans.
"*

, or six times the area of the generating circle.

Also find the area from = - to =—

.

Ans. (Sir — 2)—
4 4 v ;

8.

6. Find the area described by the radius vector in the parabola

r = a sec2 -, from = to $ = -. Ans. —
Also find the area from = 5 to = —^. ^4ns. —

—

3 3 9V3*

7. Find the entire area of the lemniscate (Art. 143) r2 = a2 cos 2 0.

^.fts. a2
.

8. Show that the area bounded by any two radii vectores of the

reciprocal spiral (Art. 137) r0 = a is proportional to the difference

between the lengths of these radii.

9. In the spiral of Archimedes (Art. 136), r = a$, find the area

described by the radius vector in one entire revolution from = 0.

Ans.
^ 2

2
Also find the area of the strip added by the nth revolution.

Ans. 8 (w — 1) ir
3a2

.
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10. Find the area of the part of the circle

/ = a sin + b cos 6, from = to 6 = -.

11. Find the area common to the two circles

r = a sin + b cos 0, r = a cos + b sin 0.

_, b\ a 2 + b
2 a2 - b

2

Ans. «•(«'+*$+ «»

8 2

^iws. + 2 tan- where a > 6.

12. Find the area of the loop of the Folium of Descartes (Art. 127)

r= 3 a tan sec

1 + tan3
Ans.

3 a2

13. Show that the line r= 2asec0
(x+ y=2a), divides the

l + tanfl'
V J J

area of the loop of the preceding example in the ratio 2:1.

a
14. Find the entire area within the curve (Art. 145) r = a sin3 -, no

o

part being counted twice. Ans. (10tt + 9V3) §-.

249. Lengths of Curves. Rectangular Coordinates. To find the

Length of the Arc PQ between Two Given Points P and Q.

Let OA = a, OB = b.

Denoting the required length of

arc by s, we have from (1), Art. 155,

ds=nMS\dx dx.

Hence

wi +aw«.
and between the given limits

s>m

a P.

dx, • • (1) A

the limits being the initial and final values of x.

B X
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We may also use the formula

-&+&« «
the limits being the initial and final values of y,

g=OG, and h=OH.

EXAMPLES

1. Find the length of the arc of the parabola y
2 = 4=ax, from the

vertex to the extremity of the latus rectum.

Here 4= 2!.

therefore $ =j[Yl + ~Y <& = fY£±*V <fo,.

This may be integrated by Ex. 13, p. 305, making 6 = 0.

rfa±x\l dx = ^ ax + x2 + a log (V"^+^ + Vas)

j^Va + »y ^ = o j-^2 + log £ + ^2)] =2.29558 a.

Or we may use the formula (2),

*=jhr
_ ?/

2 dx _ y
4 a cfa/ 2 a

=M|V^HU2 +^ log (2/ + V2/2 + 4a2)T

= a[V2 + log(l+ V2)]
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2. Find the length of the arc of the semicubical parabola

(Art. 130) ay2 = x3
, from x = - to x = 5a. Ans. —

.

3. Find the entire length of the arc of the hypocycloid (Art. 132)
2. 2. 2

x*+y 3 = a 3 '

Ans. 6 a.

4. Find the length of the arc of the catenary (Art. 128)

a - —
y = -(e

a + e -),
^ a - -x

from x = to the point (x, y). Ans. ^{ea — e °).

5. Find the length of the arc of the curve

y = log sec x, from x = to x = -.

Ans. log (2 + V3).
6. Find the length of the curve

17
6 aw = x* + 3, from x = 1 to a: = 2. ^4ns. —

.

* '
12

7. Find the perimeter of the loop of the curve

9 ay- =(x-2 a) (x - 5 a) 2
. Ans. 4 V3 a.

8. Find the length of that part of the evolute of the parabola

(Art. 167) 27 ay2 = 4 (x — 2 a)3 included within the parabola y
2 = 4 ax.

Ans. 4(3V3-l)a.
9. Find the length of the curve

y = log —=—, from # = 1 to x = 2.
eZ + l Aiis. log(e + e

_1
).

10. Find the length of one quadrant of the curve ( -
j
+ ( -

) = 1.

Ans. ^±^±&_2

.

a + b

11. The parametric equations of a curve are x = e9 sin 0, y = ee cos 0.

Find the length of arc from = to 6 =
jj.

-4n*. V2 (e*- 1).
40
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12. The parametric equations of the epicycloid, the radius of the

fixed circle being a, and that of the rolling circle ~, are
z

x = - (3 cos 4> — cos 3 $),

y — - (3 sin <£ — sin 3 <£),

<f}
being the angle of the fixed circle, over which the small circle has

rolled.

Find the entire length of the curve. Ans. 12 a.

250. Lengths of Curves. Polar Coordinates. To find the Length

of the Arc PQ between Two Given Points P and Q.

Let POX= a, QOX^fi.
We have from (3), Art. 156,

ds =
p

2 +(1)7-

rei

s

ore

2 fdrVJA

\dB) _
». • • (1)

the limits being the limiting values q'

of 0.

Or we have ds

therefore s

1 + r
Off

dr

-f-r
2

dr (2), Art, 156,

dr
dr, (2)

the limits being the limiting values of r. That is, OP— a, OQ = b.

EXAMPLES

1. Find the length of the arc of the spiral of Archimedes

(Art. 136), r = aO, from the origin to the end of the first revolution.

Here — = a, and we have by (1),
d6
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dOs= C~\a2
6
2 + a2)?d0 = a C*" (1+02

)"'

=0 [^l±i: + |iog(, + vr+^)J

TtVI + 47T
2 +hog (2 7T + Vl + 47T

2
)"].

Or ^ve ma}' use the formula (2)

Jf \i '06

a r dO 1

a ar a

s = Jf»2jra

Vl + r
2h dr = 1 p"V?"^2 dr

\ a2 a «/o

= *
[~|V^+d2 + flog (r + Vt:M^)1

2

= a 7rV47r2 + l+^log(27r + vW + l)l.

2. Find the entire length of the circle (Art. 135) r = 2 a sin 0.

Ans. 2 ira.

3. Find the length of the arc of the circle

r = a sin + & cos 0, from = to (r, 0). ^Lns. Va2 + b
2

0.

4. Find the length of the logarithmic spiral (Art. 138) r = eae from

the point (r
1} 0j) to (r2, 2), using the formula (2), and the equation

O^Ml. Ans.
Va2 + 1

(r2
- ri).

a a
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5. Find the entire length of the cardioid (Art. 141)

r =a (1 — cos 0). Ans. 8 a.

Also show that the arc of the upper half of the curve is bisected by

6. Solve Ex. 5 by using formula (2) and the equation 6 = vers
-1 -.

7. Find the arc of the reciprocal spiral (Art. 137) r6 = a, from

$ = £ to 6 = ?. Ans. (~ + log-V
12 4 V15

8. Find the arc of the parabola (Art. 139) r — a sec2 - from

$ = to 6 = |. ^4ns. (sec ^ + log tan *Lz)a.

9. Find the entire length of the arc of the curve (Art. 145)

r= a sin3 1 ^. ?£«

Also show that the arc AB is one third of OABG.

Hence OA, AB
}
BG are in arithmetical progression.

10. Find the entire length of the curve r = a sinn -, n being a posi-

tive integer.

See for integration Exs. 24, 25, p. 314.

2.4-6...
Ans. 2 a, when n is even

1.3.5...(?i-l)

1.3-5-w
2.4-6... (n-1)

7ra, when n is odd.
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251. Volumes of Surfaces of Revolution. To find the Volume gener-

ated by revolving about OX the Plane Area APQB.
Let OA = a, OB = b.

Let x and y be the coordinates

of any point P2 of the given

curve.

It is evident that the rectan-

gle P,A.2A~ will generate a right

cylinder, whose volume is

TTlf A.i\

The sum of all these cylinders

may be represented by

Ai A 2 A 3 A 4 B

The required volume is the limit of the sum of the cylinders, as

Ax approaches zero. That is,

Similarly the volume generated by revolving PGHQ about OF is

Vy
= ir\ x2

cbj,

where OG = g, and OH = It.

EXAMPLES

1. Find the volume generated by revolving the ellipse

9 9

a2
+

Z>
2 '

about its major axis, OX. This is called the prolate spheroid.

— =ttI y
2 dx = 7r I — (a2— a?)dx = —- crx

arY 27ra^2

F=%a6 2
.
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2. Find the volume generated by revolving the ellipse about its

minor axis, OY. This is called the oblate spheroid.

|_j^=^j>-^= 2 7ra?b

y=* 7Ta2
b.

3

3. If the parabola y
2 = kax is revolved about OX, show that the

volume from a? = to x=2a is one third the volume from x = 2 a

to x = 4 a.

4. Find the volume generated by revolving the segment LOL' of

the parabola about the latus rectum LL'.

Here -?= tt C\pN) 2 dy = ir C\a - x) 2 dy

C "-"( y- V r, 16
7rCT

Ans.
32

15
irCT.

5. Find the volume generated by revolving

about OX one loop of the curve (Art. 134)

aA
y

2 — a2xA — xe Ans. — -n-a
3
.

35

Y

P/

t

N

2a

a

v
F X

L'

6. Find the entire volume generated by revolving about OX the

hypocycloid (Art. 132) x*+y* = a*. Ans.
32

105
7r(r.

7. Find the volumes generated by revolving about OX, and

about OY, the curve (Art. 133)

Ans. Vx = ^irab2
. Vy

=^a2
b.

oo o
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8. The part of the line -+ |= 1, intercepted between the coor-
a o

dinate axes, is revolved about the line x = 2 a. Find the included

volume. Ans. -vefb,,

9. The segment of the parabola, x2 — 3 x + 2 y = 0, above OX, is

81
revolved about OX. Find the volume generated. Ans. —-.

10. A segment of a circle is revolved about a diameter parallel to

its chord. Show that the volume generated is equal to that of a

sphere whose diameter is equal to the chord.

11. Find the volume generated by revolving about OF the witch

(Art. 126), y = 8a'
„ , from (0, 2 a) to y = a. Ans. 4 (log 4-1) 7ra

3
.

or+ 4a2

12. Find the volume generated by revolving the upper half, ABA',

of the curve (Art. 133) [- ] + ( -) =1, about the tangent at B.

Ans. ^-ffW4 3oJ

13. Find the volume generated by revolving about OX the area

included between the ellipse — -|-^ = 1, and the parabola 2 ay2 = 3 b
2
x.

Ans. — irab
2

.

48
X X

14. A segment of the catenary (Art. 128), y = ~{ea
-\-e

a
), by a

chord through the points x = ± a log 2, is revolved about the tangent

at the vertex. Find the volume generated.

Ans. 3nog2-^J7ra3
.

15. Find the volume generated by revolving about the latus rec-

tum of the ellipse — + ^= 1, the segment cut off by the latus

rectum. Ans. 2ir{ab2-—- ab^/d2 - b
2 sin" 1 -\
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252. Derivative of Area of Surface of Revolution. In order to

obtain the formula for the surface generated by the revolution of a

given arc, it is necessary to find the derivative of this surface with

respect to the arc.

Let S denote the surface gen-

erated by revolving about OX
the arc s, AP.
Using for abbreviation the

expression "Surf (
)" to denote

"the surface generated by re-

volving
( ) about OX" we have

S = Surf (s), AS = Surf (As).

This may be written

AS Surf (As)

Surf (Chord PQ)
Surf (Chord PQ) (1)

Now the surface generated by the chord PQ is the convex surface

of the frustum of a right cone, which is the product of the slant

height by the circumference of a section midway between the bases.

Hence Surf (Chord PQ) = 2 tt(?E±M\ chord PQ

= 2^±1^ ChordPQ

= 7r (2y + Ay) Chord PQ.

Substituting this for the last factor in (1), and dividing both sides

by As, we have

Ag = Surf (A,) ,(2 +A) Chord PQ
As Surf (Chord PQ) ^ 9 ^ 9> As

Taking the limit of each member, as As approaches zero, noticing

that

LimAs=0
Surf (As)

Surf (Chord PQ)
1,
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and LimA„=>
ChOTdP(? = l, we ha*

f = Limirf
ds

As

AS
As

Try.

Similarly if Y is the axis of revolution,

dS
ds

2ttx.

253. Areas of Surfaces of Revolution. To find the Area of the Sur-

face generated by revolving about OX the Arc PQ.

By the preceding article we have

dS
ds
= 27ry

hence S = I 2-rry ds.

To express this in terms of x and

y, we have from (1), Art. 155,

ds MSI dx,

>n*

which gives

*—£{HWJ
If Y is the axis of revolution,

dx. . (1)

dyYf
dx)

dx.S
y
= 2 7T Cxds = 2 7T C x\l +

Or we may use rls = \ 1 + (
-^

)
dy,

and instead of (1) we have

and instead of (2) Sv
= 2ir Cx[l + (—Y~] dy.

B X

(2)

(20
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EXAMPLES

1. Find the area of the surface generated by revolving about OX
the hypocycloid (Art. 132) o$ + y* = a*.

Here (y = J - a,i)4, ^ = - (a* -x^x~\
ctx

Using (1) ±Sx = 2ir£(a} £C 3
)

: 1 +
2. 2._,1

a 3 — x s
~\~

x* J

2 •.{ /Y3 j /^a 2 2 3 1

x*y—dx = 2 7ra 3
| (a 3 — # 3 )* a;

-

3

cto

i«3

6 7ra
2

#* =
12W

Or we may use (1') -^ = — (a 3 — 2/*) 2 2/"

& = 2
-X'

1 +
2 :2_1

a 3 — y
2

F J

1 f*
a 1

dy = 2 ?ra 3
I y^dy = 6-n-a

2

2. Show that the area of the surface generated by revolving the

parabola y
2 = 4 ax, about OX, from a? = to x = 3 a, is one eighth of

that from x — 3atox = 15a.

3. Find the area of the surface generated by revolving about OX
the loop of the curve 9 ay2 = x(3a— xf. Ans. 3 tto

2
.

4. Find the surface generated by revolving about OX, the arc

of the curve 6 a2 xy = $4 + 3 a4
, from x = a to x = 2 a. *„

Ans. -—tto 2
.

16

5. The arc of the preceding curve from x = a to x = 3 a, revolves

about Y. What is the surface generated ? Ans. (20 + log 3)?ra
2

.

6. Find the surface generated by revolving about OF the curve

4 y = x2 — 2 log x, from x = 1 to x = 4. Ans. 24 tt,
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7. Find the entire surface generated by revolving about OX the

ellipse 3.r + 4?/- = 3cr. Ans (8+ _*\rCp
\2 VsJ

8. Find the entire surface generated by revolving about OY the

preceding ellipse. Am (4 + 3 iog3)i£

9. Find the surface generated by revolving about OX the loop

of the curve S aV = a-x2 — x*. A ira?J Ans.
4

10. An arc. subtending an angle 2 a, of a circle whose radius is a,

revolves about its chord. Find the surface generated.

Ans. 4 7ra
2 (sina — a cos a).

ci f - —-\
11. The arc of the catenary (Art. 121) y = -±le« + e « ), from x = a

to x=2a, revolves about OT. Find the surface generated.

Ans. (e> + 2e-l -3e-z)ira2.

12. The parametric equations of a curve are

x = ee sin 6, y = ee cos 0. .

Find the surface generated by revolving the arc from 6 = to

0=-, about OX Ans. i*(e»-2).
2 5

13. Find the surface generated by revolving about OT the arc of

the preceding example. AnSm
^ 7r

(2c 77
1 1).

o

14. The parametric equations of the epicycloid, the radius of the

fixed circle being a, and that of the rolling circle - (Ex. 12, p. 330)

are x =— cos
<f>

cos 3$, y=— sin <£ — - sm 3 <£.

Find the entire surface generated by revolving the curve about OX.

Ans. - 7r
2a2

.

15. Find the surface generated by revolving one arch of the pre-

ceding curve about OY. Ans. drra2
.
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254. Volume by Area of Section. The volume of a solid may be

found by a single integration, when the area of a section can be ex-

pressed in terms of its per-

pendicular distance from

a fixed point.

Let us denote this dis-

tance by x, and the area

of the section, supposed to

be a function of x, by X.

The volume included

between two sections sep-

arated by the distance dx

will ultimately be Xdx,
and we have for the volume of the solid

V= Cxdx,

the limits being the initial, and final, values of x.

EXAM PLES

1. Find the volume of a pyramid or cone having any base.

Let A be the area of the base, and h the altitude.

Let x denote the perpendicular distance from the vertex of a sec-

tion parallel to the base

have, by solid geometry,

X= tf

A h2 '

Hence,

Calling the area of this section X, we

X=

Xdx = -
)

I

/iVO
x2 dx

Ax2

Ji
2 '

Ahs

h2 3

Ah
3

'

2. Find the volume of a right conoid

with circular base, the radius of base being

a, and altitude h.

OA = BO=2 a, BO=CA = h.

The section BTQ, perpendicular to OA, is an isosceles triangle.
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Let x = OP; then

X= area PTQ = PTxPQ = h V2 ax - x\

Hence, V= f*Xdx= h C**^/2ax- x1 dx =—
«/o «/o 2

This is one half the cylinder of the same base and altitude.

3. Find the volume of the ellipsoid

Let us find the

*+£+$=!•
(V 0~ C"

7

.... a

area of a section

C'B'D' perpendicular

to OX, at the dis- ^^^f C

c

\
\

>£i
tance from the origin / T—*~7"1sk\
031= x.

x
a yn

This section is an

ellipse whose semi-

axes are MB' and ^y i
—*

\ /

MC
y/To find MB', let

z = in (1), aud we
7i

have y = MB' = -^d2 -
a

XT.

To find J/C", let y = in (1), and we have

z=MC = -->/a2 -x*.
a

The area of the ellipse (Ex. 2, p. 321) is it (MB 1

) (MC).

Hence, — («--.i~),

and V= 2 PX da; = " "^ P (a2 - s2
) da; = Kabc.

«A> a- J 3
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4. A rectangle moves from a fixed point, one side varying as the

distance from the point, and the other as the square of this distance.

At the distance of 2 feet the rectangle becomes a square of 3 feet.

What is the vohime then generated ? Ans. 41 cubic feet.

5. The axes of two right circular cylinders having equal bases,

radius a, intersect at right angles. Find the volume common to

the two. , 16 a3

Ans.
3

6. A torus is generated by a circle, radius b, revolving about an

axis in its plane, a being the distance of the centre of the circle from

the axis. Find the volume by means of sections perpendicular to

the axis. Ans. 2 7r
2a2

b.

7. A football is 16 inches long, and a plane section containing a

seam of the cover is an ellipse 8 inches broad. Find the volume of

the ball, assuming that the leather is so stiff that every plane cross-

section is a square. Ans. 341^ cu. in.

8. Given a right cylinder, altitude h, and radius of base a.

Through a diameter of the upper base two planes are passed, touch-

ing the lower base on opposite sides. Find the volume included

between the planes. ^ / _ |\ %_

9. Two cylinders of equal altitude h have a circle of radius a,

for their common upper base. Their lower bases are tangent to

each other. Find the volume common to the two cylinders.

Ans. i^.



CHAPTER XXIX

SUCCESSIVE INTEGRATION

255. Definite Double Integral. — A double integral is the integral

of an integral.

Thus, x and y being independent variables, the definite double

integral, „ a „ c

I f(x,y)dxdy
}

indicates the following operations:

Treating x as a constant, integrate f(x. y) with respect to y
between the limits d and c ; then integrate the result with respect

to sb between the limits b and a.*

For example,

J &(P - y)dx dy =
J

x-l by -
1 j

dx =
J

x~~dx

Xotice that the order of the two integrations is indicated in the

given definite integral by the order of the differentials dxdy, taken

|
being nsed in the same

order.
Jo

It should be said, however, that the order of the integrations is

denoted differently by different writers.

256. Variable Limits. — The limits of the first integration, instead

of being constants, are often functions of the variable of the second

integration.

* Using parentheses, this might be repmsfntert by I [( f(z,y)dy\<l.r.

343
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For example,

JPp xy dy dx=jT°g
2

J"
j dy =

|jf
"(3 jf + 2V - a*y)dy =^

.

As another example,

J J^^(x-\-y)dxdy=J f^ + |-)
o

^"^dx

When the limits are all constants, as in Art. 248, the order of the

integrations may be reversed without affecting the result. That is,

i I x2
(b — y)dxdy — I I x2

(b — y)dy dx.
a *S0 *^ */a

Where the definite integral has variable limits, the order of integra-

tions can be changed only by new limits adapted to the new order.

257. Triple Integrals.— A similar notation is used for three suc-

cessive integrations. Thus

III x2

y
2zdxdydz = I I ——x2

y
2dxdy

EXAMPLES

Evaluate the following definite integrals

:

n 6 a2b2

®V 0» - V) dx dy =— (a - b).

2. C Cr2 sin 6 dr dB = a3 ~ 63
(cos /3 - cos a).
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Jb Jo r dr d0=— •

2 --±

5. I r'sin^?^)-^.
Jo Jo 3

nlO y

Vxy — y
2 dy dx = 6 a3

.

«/0 «A) 2

8. fT' r^ear =L- 1±\^.
c/o c/acose ^ I5y 10

9- J^jTsin (2 +-«)<»** = 1.

10. fTfsirf**«**=£+5.
»/o »/o 6 8

Jo J 2̂ 2?+^ 2
&

a

12
- X

B

XX(^ + y2 + *2) dx dy dz =t (a2 + 52 + c2) -

13. j
j

sin (xyz) dx dydz = f

14. C f f
v

uvw du dvdw=—
J" %/o Ju-% 18

15
' J S*f*

VeX+y+zdxd
y dz = -



CHAPTER XXX

APPLICATIONS OF DOUBLE INTEGRATION

258. Moment of Inertia. If r1}
r2,

?*
3 ,

• ••, rn are the distances from

a given line of n particles of masses m1} m2) m3,
• •, mn, the sum

m^2 + m2r2 + ?%r3
2 + • • • -fmnrn

2 = X (w?*
2

)

is defined in treatises on mechanics as the moment of inertia of the

system about the given line.

The moment of inertia of a continuous solid about a given line is

the sum of the products obtained by multiplying the mass of each

infinitesimal portion of the solid by the square of its distance from

the given line.

The summation is then effected by integration, and we have for

the moment of inertia of a body of mass M,

-/- dM.

259. Moment of Inertia of a Plane Area. The moment of inertia

of a given plane area about a given point may be defined as the

sum of the products obtained, by multiplying the area of each infini-

tesimal portion by the square of its distance from 0.

This may be regarded as the moment of inertia of a thin plane

sheet of uniform thickness and density, about a line through per-

pendicular to the plane, the mass of a square unit of the sheet being

taken as unity.

We shall illustrate double integration by finding the moment of

inertia of certain areas.

346
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M' N'

i t

T

[Q

—i.— i

M N

260. Double Integration. Rectangular Coordinates. To find the

moment of inertia of the rectangle OACB about 0.

Let OA = a. OB = b.

Suppose the rectangle

divided into rectangular

elements by lines parallel

to the coordinate axes. Let

sb, y, which are to be re-

garded as independent vari-

ables, be the coordinates of

any point of intersection as

P, and x + dx, y + dy the

coordinates of Q. Then the area of the element PQ is dxdy.

Moment of inertia of PQ = OP' • dx dy = (x2 + y
2
) dx dy.

The moment of inertia of the entire rectangle OACB is the sum of

all the terms obtained from (x2 + y
2)dx dy, by varying x from to a,

and y from to b.

If we suppose x to be constant, while y varies from to b, we shall

have the terms that constitute a vertical strip MNN'M'.
Hence

Moment of inertia of MNN'M' = dx I (x2 + y
2
) dy

(.
Vdx[ x2

ii +
V 3yo

M+ ^yiae.

Having thus found the moment of a vertical strip, we may sum all

these strips by supposing x in this result to vary from to a. That

is, the moment of inertia of OACB,

1 =re +
?)

,2 , 'A 7 , _ a?b + ab3

dx—

The preceding operations are those represented by the double

integral,

T= C C
b

(pf+ f)dxdy.
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If we first collect all the elements in a horizontal strip, and then

sum these horizontal strips, we have

1=
f

I (x2 + y
2
) dy dx = + ab3

261. Variable Limits. To find the moment of inertia of the right

triangle OAO about 0.

Let OA = a, AC=b. The Y

equation of 00 is

b
V = — x.3

a

This differs from the pre-

ceding problem only in the

limits of the first integration.

In collecting the elements in a vertical strip MN, y varies from to

MN. But MNis no longer a constant as in Art. 260, but varies with

OM. according to the equation of OC, y = -x.

b
a

Hence the limits of y are and -x.
a

In collecting all the vertical strips by the second integration, x

varies from to a, as in Art. 260.

Thus we have for the moment of inertia of OAO,

*/0
+ y*)dxdy = ab(?- +

12

By supposing the triangle composed of horizontal strips as HK,
we shall find

Y

I-'= I I
(xP + y^dydx

T

G +5>
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262. Plane Area as a Double Integral. If in Art. 260 we omit the

factor (ar^+ y
2
), we shall have, instead of the moment of inertia, the

area of the given surface.

That is, Area =
} )

dx dy = I
J
dy dx,

the limits being determined as before.

EXAMPLES

1. Find the moment of inertia about the origin of the right tri-

angle formed by the coordinate axes and the line joining the points

»),(0,6). b(a-*)

2. Find the moment of inertia about the origin of the circle

r +>/- = «-.

Ans. i£j^-x

\x* + y^dxdy =^.

3. Find by a double integration the area between a straight line

and a parabola, each of which joins the origin and the point (a, 6),

the axis of X being the axis of the parabola.

h\l x ^
Ans. I I dx dy = I I dy dx =—

4. Find the moment of inertia about the origin of the preceding

5. Find by a double integration the area included between the

circle xr + y- = 10 ay, the line 3 x -j- y = 10 a, and the axis of T.

10 q-y
>~a /»Vl0ay-y2 /M0a •» 3

Ans. dy dx + I dy dx

/-Sa /*10a-3z g y . gy=
I I ,

dx dy = —- 3 +5 sin x -
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6. Find the moment of inertia about the origin of the area be-

tween the ellipse —f-*_ = l and the line - + " = 1.
a- b- a b

Arts. .[-(jL-A-\asb + ab3
).

\16 12/ J

7. Find the moment of inertia about the origin of the area be-

tween the parabola ay = 2 (x2 — a2
), the circle x2 + y

2 = a2
, and the

axis of Y
.35

8. Find by a double integration the area included between the

parabolas y
2 = 3x, and y

2 = 12 (60 — x). Ans. 960.

9. Find the moment of inertia of the area included between the

parabola y
2 = 4 ax, x = 4=a

}
and the axis of X, about the focus of the

parabola.
. A . 2336

Ans.
35

a\

10. Find the moment of inertia of the area included between the

lines y = 2x, x + 2y = 5a
f
and the axis of X, about the intersection

of the first two lines.
Ans.

125 a4

\M'

/ ;

M

263. Double Integration. Polar Coordinates. To find the area of

the quadrant of a circle AOB, whose radius is a

In rectangular coordinates, Art.

260, the lines of division consist of

two systems, for one of which x is b

constant, and for the other, 2/ is l

constant. L

So in polar coordinates, we have

one system of straight lines through

the origin, for each of which is

constant, and another system of

circles about the origin as centre, for

each of which r is constant.

Let r, 0, which are to be regarded

as independent variables, be the coordinates of any point of intersec-

l/0c^lxA"\'"\
"'

N N' A
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tion as P, and r + d)\ 4- dO, the coordinates of Q. Then the area

of PQ is ultimately
PBxPQ=rdO'dr.

If we first integrate, regarding constant while r varies from

to a. we collect all the elements in any sector MOM'.
The second integration sums all the sectors, by varying 6 from

*>l

Hence Area BOA = f ~ C r dO dr =—

If we reverse the order of integration, integrating first with respect

to 6, and afterwards with respect to r, we collect all the elements in

a circular strip XLL'X', and sum all these strips. This is written

Area BOA =XT' dr dO.

264. If the moment of inertia about is required, we have for

the moment of inertia of PQ, r-rdOdr. Hence, the moment of

BOA is

1= C C r\Wdr= f f
2

r*drdO =

265. Variable Limits. To find by a double integration the area

of the semicircle OBA with radius OC=a, the pole being on the

circumference.

The polar equation of the circle is

/* = 2 a cos 0. If we integrate first

with respect to r, then with respect

to 6, we shall have

Area OB-IT dOdr= -<i-

Here, in collecting the elements in a radial strip OM, r varies

from to OM. But 03/ varies with 0, according to the equation

of the circle r = 2 a cos 6. Hence the limits are and 2 a cos 6.
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In collecting all these radial strips for the second integration, $

varies from to - •

By supposing the area composed of concentric circular strips

about as LK, we find

A X

Area OBA X2a
/»c '(£)

r dr d6 = Tror

EXAMPLES

1. Find the moment of inertia about the origin of the area in-

cluded between the two circles, r = a sin and r = b sin 0, where a > b.no sin G O

sing 32

2. Find the moment of inertia about the origin of the area

between the parabola (Art. 139), r = asec2 -, its latus rectum, and

0X'

Ans. i^-
4

.

35

3. Find the moment of inertia about its centre of the area of the

lemniscate (Art. 143) r2 = a2 cos 2 0.
Ans.

irCC

4. Find by double integration the entire area of the cardioid

(Art. 141) r = a(l-cos0).
Ans.

Sva'

5. Find the moment of inertia about the origin of the area of the

preceding cardioid. A 35 wa4

Ans. -_-
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6. Find the moment of inertia about its centre of the entire arc

Df the four-leaved rose (Art. 144) r = a sin 2 0. A 3 wci*K J Ans.
16

7. Find by a double integration the area of one loop of the

lemniscate (Art. 143) outside the circle 2r = a2
.

i / /« tt\ a2

Ans. (V3-
5)T

8. Find the moment of inertia of the area of the preceding

example about the centre of the lemniscate. * /V3 ir\ a4

RS
'

V~2~
+
3)l6

266. Volumes and Surfaces of Revolution. Polar Coordinates. If

in the figure of Art. 263 we suppose a revolution about OX, the

volume generated by the infinitesimal area PQ is the product of

this area by the circumference through which it revolves, that is,

r r sin • r dO dr.

Hence for the entire volume

V=2tt f frsmedBdr,

the limits being determined as in Art. 263.

If the revolution is about OY,

V= 2 7T f Cr cos OdO dr.

The area of the surface generated about OX is (Art. 253)

U
EXAMPLES

1. Find the volume generated by revolving the cardioid (Art. 141)

= a (1 — cos 6) about OX. . 8 , L . ^ ., , ,

Ans. - irflr, twice the inscribed sphere.

2. Show that the entire volume generated by revolving the four-

leaved rose (Art 144) r= a sin 2 6 about OX is — of the volume of the

circumscribed sphere.
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3. Find the volume generated by revolving one loop of the four-

leaved rose r = a sin 2 about the axis of the loop.

Ans. fs V2 - 9V
105

4. Find the volume generated by revolving the lemniscate (Art,

143) r2 = a2 cos 2 about Y. ^ as vk

-4ns. -^—

.

5. Find the volume generated by revolving the lemniscate about

OX
^4ns.

L

L log(V2 +1)-|;

6. Find area of surface generated, by revolving the cardioid

r=a(l -- cos 0) about OX. , 32 -n-a
2

7. Find the moment of inertia of a sphere (radius a) about a

diameter, m being the mass of a unit of volume. Ans. 8 7ra
5m

15



CHAPTER XXXI

SURFACE, VOLUME. AND MOMENT OF INERTIA OF ANY SOLID

267. To find the Area of Any Surface, whose Equation is given

between Three Rectangular Coordinates, x
3 y, z.

Let this equation be „,
z=f(x,y).

Suppose the given surface to be divided into elements by two

series of planes, parallel respectively to XZ and YZ. These planes

will also divide the plane XY into elementary rectangles, one of

which is PQ. the projection upon the plane XY of the corresponding

element of the surface P'Q'.

Let x, y, z be the coordinates of P' and x + dx, y + dy, z + dz,

of (>'.
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Since PQ is the projection of P'Q', the area of PQ is equal to that

of P'Q' multiplied by the cosine of the inclination of P'Q' to the

plane AT. This angle is evidently that made by the tangent plane

at P' with the plane XY Denoting this angle by y,

Area PQ = Area P'Q' • cos y,

Area P'Q' = Area PQ • sec y.

We see from the figure that

Area PQ = dx dy.

Also from (8), Art. 110, sec y
dz fdz

dx J \dy

where — and — are partial derivatives, taken from the equation of
dx dy

the given surface z =f(x, y).

Hence Area P'Q' = [l + (^Y +(^ dx dy.

If S denote the required surface,

S-ff[i+©V:dz

\dy
dxdy, (i)

the limits of the integration depending upon the projection, on the

plane XY, of the surface required.

For example, suppose the surface ABC to be one eighth of the

surface of a sphere whose equation is

Here

1 + W

X2 + 2/
2 + z

2 = a2
.

dz

dx

X
— —

>

z

dz __
dy z

A2
-1 ,

x l + f a2

a2 — x2 — y
2
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Substituting in (1), we have
dx dy

J J Va2 — s ir

This is to be integrated over the region OBA, the projection of

the required surface on the plane XY.
The equation of the boundary AB is

s»+ a".

Integrating first with respect to y, we collect all the elements in

a strip M'X'KL. y varying from zero to ML, that is, between the

limits and v<r — .r\

Integrating afterwards with respect to x, we sum all the strips, to

obtain the required surface ABC, x varying from to a.

Hence 5
Jo Jo

\/a'2—x2 dx dy 7r(r

Va2 — x*— y
l

Another example is the following

The centre of a

sphere, whose radius is

a, is on the surface of a

right circular cylinder,

the radius of whose
a

base is Find the

surface of the sphere

intercepted by the

cylinder.

Take for the equa-

tions of the sphere and

cylinder,

and xr + y
2 = ax.

CPAQ is one fourth

the required surface. Since this surface is a part of the sphere, the
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partial derivatives — , — must be taken from x2
-f y

2
-f z2

ox dy
giving, as in the preceding example,

J *S -\i n^ nt&-\a2 — x2 — y
2

to be integrated over the region ORA, the projection of CPAQ on

the plane 17.
The equation of the curve ORA is x2 + y

2 = ax.

Hence ±S = f f^ <*****_ frA

^

#=(2ir-4)a2
.

Let us now find the surface of the cylinder intercepted by the

sphere, one fourth of which is CPARO.
Since this is a part of the cylinder x2 + y

2 = ax', the partial

derivatives in (1) must be taken from this equation. But from

x2 + y
2 =ax, we find — = oo, — = co-

ox oy

The formula (1) is, then, inapplicable in this case.

It is also evident from the figure that the surface CPARO cannot

be found from its projection on the plane XY, since this projection

is the curve ORA.
The difficulty is removed by projecting on the plane XZ, and

using, instead of (1),

We now find from x2 + y
2 = ax,

dy a — 2x dy

dx~ y dz

Substituting in (2), and simplifying,

= 0.

1 o C C adx dz

2 ^Jax—x2
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This must be integrated over the region CP'AO, CP'A being the

projection on XZ of CPA.

To find the equation of CP'A, we eliminate y from

giving,

Hence

x2 + y
2 + z

2 = a2 and x2 + y
2 = ax,

z
2 = a2 —ax.

\
S ~li i

v/qt: dx dz

vax — ar

EXAMPLES

1. The axes of two equal right circular cylinders, a being the

radius of base, intersect at right

angles : find the surface of one inter-

cepted by the other.

Take for the equations of the

cylinders,

x2
-\-z

2 = a 2
, and x2

-{-7j
2 =a 2

.

Ans. 8 a2
.

2. Find the area of the part of the

plane

a o c

in the first octant, inter-

cepted by the coordinate

planes.

An*- ^V^c-' + c^ + a^.

3. Find the area of the

surface of the cylinder

x2
-f- y

2 = a 2
, included be-

tween the plane z=mx and

the plane IT. Ans . ± ma? .

ccvJ
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4. Find the area of the surface of the paraboloid of revolution

y
2
-\-z

2 = 4 ax, intercepted by the

parabolic cylinder y
2 = ax, and

the plane x = 3 a. ^q *

Ans. —^—

.

5. In the preceding example,

find the area of the surface of

the cylinder intercepted by the

paraboloid of revolution and the

given plane.

Ans. (13VT3-1)
V3

6. Find the area of that part of the surface

z
2
-f (x cos a + y sin a)

2 = a?

which is situated in the first octant.

The surface is a

right circular cyl-

inder, whose axis

is the line z = 0,

x cos a+y sin a=0,
and radius of base a.

a a2

Ans. — .

sin a cos a

7. A diameter of

a sphere whose

radius is a is the

axis of a right

prism with a square

base, 2 b being the

side of the square. Find the surface of the sphere intercepted by

the prism.

Ans. 8a[2bsm-1— — a sin
-1——

-J.
V Va2 -62 a2 -b2

J
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268. To find the Volume of Any Solid bounded by a Surface, whose

Equation is given between Three Rectangular Coordinates, x, y, z.

The solid may be supposed to be divided, by planes parallel to the

coordinate planes, into elementary rectangular parallelopipeds. The

volume of one of these parallelopipeds is dx dy dz, and the volume of

the entire solid is r r r
v=jjj dxdy^

the limits of the integration depending upon the equation of the

bounding surface.

For example, let us find the volume of one eighth, of the ellipsoid

whose equation is , 2 2

a- b
2

<?

c ^H
vif

m'

4
/4.<

P

^
y K /'k 'X

PQ represents one of the elementary parallelopipeds whose volume

is dx dy dz.

If we integrate with respect to z, we collect all the elements in the

column MN\ z varying from zero to MM*\ that is,

from to z = c x h_''"_ 'L
V a1

lr
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Integrating next with respect to y, we collect all the columns in

the slice KLN'H, y varying from zero to KL ; that is,

Vx2

1 .

a2

This value of y is taken from the equation of the curve ALB,
which is

^4-^ = 1
a2 ^b2

'

Finally, we integrate with respect to x, to collect all the slices in

the entire solid ABC. Here x varies from zero to OA ;
that is, from

to a.

The y and x integrations are said to be over the region AOB.

abca2
I

at b2dxdydz =

For the entire ellipsoid V= 4^?.

EXAMPLES

1. Find the volume of one of the wedges cut from the cylinder

x2 + y
2 = a2 by the plane z = x tan a and the plane XY. (See Figure,

Ex. 3, Art. 267.)

Ans. 2)1 | dxdydz =

2. Find the volume of the tetrahedron bounded by the coordinate

planes and by the plane

x '

y , z u A abc

abc o

3. Find the volume included between the paraboloid of revolution

y
2
-f z

2 = 4 ax, the parabolic cylinder y
2 — ax, and the plane x=3a.

(See Figure, Ex. 4, Art. 267.) Ans. (6 tt + 9 V3)a3
.
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4. Find the volume contained between the paraboloid of revolution

ar -j-
1/

2 = «.:. the cylinder x2
-f y- = 2 ax, and the plane XT.

2

5. Find the volume of the cylinder x'
2 + y

2 = ax, intercepted by the

paraboloid of revolution y
2 + z

2 = 2 ax. fir 2\
3

6. The centre of a sphere (radius a) is on the surface of a right

circular cylinder, the radius of whose base is -. Find the volume of

the part of the cylinder intercepted by the sphere. (See second Figure,

^•267.) . 2/ _4\.,

3V 3

7. Find the volume in the first octant, bounded by the surface

& tt+Pt-l. Am- *

8. Find the entire volume within the surface

aj* + y* + «*»<!#. Ans. ^f.

269. Moment of Inertia of Any Solid. This may be expressed by a

triple integral.

Thus, the moment of inertia about OX, m being the mass of a unit

of volume, is

I=mJJf(y
2 + z

2)dxdydz,

with similar formulae for the moments of inertia about the axes

OY, OZ.

EXAMPLES

1. Find the moment of inertia about OX of the rectangular paral-

lelepiped bounded by the planes x= a, y = b, z= c, and the co-

ordinate planes.
I

.
,, 2 . »< mabc
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2. Find the moment of inertia about OZ of the tetrahedron

bounded by the plane

a b c

and by the coordinate planes. Ans. (a2
-f b

2
)
—— .

3. Find the moment of inertia about OX of the portion of the

cylinder x2
-f y

2 = a2 included between the planes z = h and z = — h.

A oj fa
2

. 2 h2

Ans. irmarh
(
— + -=-

4. Find the moment of inertia of the preceding cylinder about OZ.

Ans. TrmaVi.

5. Find the moment of inertia of a sphere (radius a) about a

diameter. A 8 -n-ma
5

6. Find the moment of inertia about OZ of the ellipsoid

-
2 +

6

-
2
+-

2
- 1

' ^s
- —15—



CHAPTER XXXII

CENTRE OF GRAVITY. PRESSURE OF FLUIDS.

FORCE OF ATTRACTION

CENTRE OF GRAVITY

270. Definition. The centre of gravity of a body is a point so

situated that the force of gravity acting on the body produces no

tendency to rotate about an axis passing through the point.

271. Coordinates of Centre of Gravity. To find the centre of

gravity. C, of any body, take P as any infinitesimal part of the

given body, PQ' the line

of direction of gravity,

and MN any horizontal

axis passing through C.

Let BD be the common
perpendicular between

MN and PQ. Take the

axis of X parallel to BD
and represent by x and

x, OL and OL', the x

coordinates of P and C re-

spectively. Then the dis-

tance BD = L'L = x — x.

The force exerted by gravity on P is proportional to and there-

fore may be measured by its mass. Denoting its mass by dm, the

moment of this force about MN would be (x — x)dm; and if dm is

an infinitesimal in one, two, or three dimensions, the tendency of

the whole body to rotate about MN is equal to
J

(as x)dm.

365
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Since this must equal zero,

I (x— x)dm = 0,

J
xdm

and

/
a)

dm.

Similar formulae may be derived for y and z.

Note. —-The mass of a unit's volume is called density. If we
represent the density by p, the differential mass or dm is equal to p

multiplied by the differential of the arc, area, or volume.

Ex. 1. Find the centre of gravity of a quarter of the arc of a circle.

Let the equation of the circle be x2 + y
2 = a2

.

Here dm = p ds.

Substituting in (1), Art. 271, we have

x =
Pxds aC^xia'-x2

) ^dx 9 a

i

2
wa

From the symmetry of the figure y = 2a

Ex. 2. Find the centre of gravity of the surface bounded by a

parabola, its axis, and one of its ordinates.

Let the equation of the parabola be y
2 = ±px, B being (9p, 6p).

Here dm = p dx dy, and substituting in formula (1), Art. 271.

x = J
i

x
x dx dy

o Jo

Jo Jo

VIp I x 9-dx
Jo _

p a x 2 dx
Jo

27

V4
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Similarly,

*/
=

rx** r(g *-£ %
9p

4

Ex. 3. Find the centre of gravity of a circular disk of radius

a, whose density varies directly as the distance from the centre, and\

from which a circle described

upon a radius as a diameter

has been cut.

Let the equation of the

large circle be r = a ; and

the equation of the small

circle be r= — a cos 0.

The disk is s}*mmetrical

with respect to OX, hence

»=o.
Here

dm = pr dd dr = kt2 dd dr,

(if p= Kr).

Also x = OM= r cos 0.

Therefore x
Jo «yo

r3 cos dd dr
%Jtt_ %J— I

?*3 cos dO dr
cos 9

dd dr

x =

2
| r2 cos d dd dr+11 r2 cos

c/o %/0 «/7r J—acos 9

T f f cos dd 4- f*
(cos $ - cos5

0) dB 1

[P*+£ (1 + cos3
0) c76>

]

5(3tt-2)
= 0.1016 a.
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Ex. 4. Find the centre of gravity of a cone of revolution, the

radius of the base being 2 and the altitude 6.

The equation of OB is y = ±x.

Here dm = piry
2 dx, and substituting in (1), Art. 271,

| xy- dx
.Jo

y
2 dx

The cone is symmetrical with

respect to OX, hence y = 0.

Note.—On comparing the

formulae for the centre of grav-

ity of arc, area, and volume,

Y

X

^^ * .1

i

\

3

o^- cl
1

1

X

/xds
J
xdA I ;

4V — j *Aj — y *As »
—

f ds f dA far

we notice that, in each case, the element of the numerator integral

is x times the element of the denominator integral.

5. Find the centre of gravity of the arc of the hypocycloid
2 2. 2 _ _ 2

(Art. 125) x* + y* =af in the first quadrant. Ans. x = y — -a.
o

6. Find the centre of gravity of the arc of the cycloid

-iVx = a vers" 1 ± — V2 ay — y
2
.

Ans. x = -n-a, y = -a.

7. Find the centre of gravity of a straight rod of length a, the

density of which varies as the third power of the distance of each

point from the end. Ans. x = -a.
5

8. Find the centre of gravity of the surface of a hemisphere

when the density at each point of the surface varies as its perpen-

dicular distance from the base of the hemisphere. * - _ 2_a
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9. Find the centre of gravity of a semiellipse. Ans. z = —-.
3 7T

10. Find the centre of gravity of the area between the cissoid

y- =— and its asvinptote. Ans. x = - a.
2 a — x 3

11. Find the centre of gravity of the area bounded by the parab-

ola y- = 8 x, the line y -f- x— 6 = 0, and the axis of X.

Ans. a = 2.48; y=lA.

12. Find the centre of gravity of one loop of the curve r = a sin 2 $.

A
- 128 a _ 128 a

Ans. x —
; y =

105 7r'
J

lOOTT

13. Find the centre of gravity of the upper half of the cardioid

'=«(1-«*<D- Ans, aj=_5 a .

6 '

_ 16 a rrr
y = ——=.57a.

14. Find the centre of gravity of one loop of the lemniscate

rW °0s2(''

Ans x-W*a-55a^cxllb. X — —— LI — .OO LI.

8

3
15. Find the centre of gravity of a hemisphere. Ans. x = -a.

8

3
16. Find the centre of gravity of a hemispheroid. Ans. '%= - a.

8

17. A cone of height h is scooped out of a cylinder of the same

height and base. Find the distance of the centre of gravity of the

remainder from the vertex. , 3

,

8

272. Theorems of Pappus.

Theorem I. If a plane area be revolved about an axis in its plane

and not crossing the area, the volume of the solid generated is equal

to the product of the area and the length of the path described by

the centre of gravity of the area.
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Theorem II. If the arc of a curve be revolved about an axis in

its plane and not Crossing the arc, the area of the surface generated is

equal to the product of the length of the arc and the path described

by the centre of gravity of the arc.

273. Proof of the Theorems. Let the area be in the plane XY
and let it revolve about the axis of X. Then by (1), Art. 271, we
have

y =
{ (ydxdy

I I dxcly

Or yjj dx dy=j \y dx dy.

Then 2 Try f Cdx dy = C (*2 Try dx dy (1)

But the right-hand member of equation (1) is the volume described

by revolving the area through the angle 2 it, 2 tig is the length of the

path described by the centre of gravity, and j I dxdy is the plane

area.

The first theorem is thus seen to be true, and the second can be

proved true in a similar manner.

EXAMPLES

1. Find the volume and surface generated by revolving a rec-

tangle with dimensions a and b about an axis c units from the centre

of the rectangle. Am 2^^ and 4^ + &)c

2. Eind the volume and surface generated by revolving an equi-

lateral triangle each side a units in length, about an axis c units

from the centre of the triangle.
2

r=

Am.
'7rac^ 6

and 6 fl-ac.

2
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3. Find the volume and surface generated by revolving a circle

of radius a about an axis c units from the centre of the circle.

Ans. 2 irarb and 4 -r^ab

4. Find the volume generated by revolving an ellipse, semiaxes

a and b, about an axis c units from the centre of the ellipse.

Ans. 2 7r
2abc.

PRESSURE OF LIQUIDS

274. The pressure of a liquid on any given horizontal surface is

equal to the weight of a column of the liquid whose base is the

given surface and whose height is equal to the distance of this sur-

face below the surface of the liquid.

The pressure on any vertical surface varies as the depth, and the

method of determining it is illustrated by the following examples.

Ex. 1. Suppose it is required to find the pressure on the

rectangular board OABC, the edge OC being at the surface of the

water.

Let BC= a, and AB— b. C Y

Suppose the rectangle divided

into horizontal strips one of which

is HK.
Let OH=x, then the width of

the strip is dx.

If the pressure on this strip

were uniform throughout and the

same as it is at the top of the strip,

the pressure on the strip would be

wbx dx, where iv is the weight of

a cubic unit of the water. And
the entire pressure on the board is

expression.

H

X a

K

B
b

evidently the integral of this

That is, Entire pressure-r-bx dx = a-biv
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Ex. 2. Find the pressure on that part of the board in Exam-
ple 1, which is below tile diagonal.

In this case the area of UK is y dx, and the entire pressure on the

triangular board is

f
But

wyx dx.

b

hence entire pressure

bw Ca
o 7=— I x~dx =

a Jo

bwa?

Ex. 3. One face of a box immersed in water is in the form of

a square, the diagonals being 8 feet in length. The centre of the

square is 6 feet below the surface of the water, and one diagonal is

vertical. Eind the pressure

on the square face. ~ YV

Let SW be the surface

of the water. Taking the

axes as in the figure, the

equations of AB and BO
are y=4-f x, and ?/=4— x,

respectively.

Then, if P represents the

entire pressure on the

board,

P=2iv( C (6-{-x)dydx

= 512 tv = 15872 lbs.

Ex. 4. Eind the pressure on a sphere 6 feet in diameter, im-

mersed in water, the centre of the sphere being 10 feet below the

surface of the water.
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Let SWbe the surface of

the water.

Take the axes as in the

figure, and let the elemen-

tary surface be a zone.

The area of a zone at a

distance x from the cen-

tre of the sphere is 2 -y ds.

The pressure on the zone

is 2 -"vmIO + a?)efc.

Then, if P represents

the entire pressure on the

sphere.

W

mL y (10 + x)ds.

But

Hence

y = V9 — x2
, and ds = - civ.

y

P=far«fl C (10 + x)dx,

= 360 ttv: = 22320tt lbs.

5. A rectangular flood gate whose upper edge is in the surface of

the water, is divided into three parts by two lines from the middle

of lower edge to the extremities of upper edge. Show that the parts

sustain equal pressures.

6. A rectangular flood gate 10 feet broad and 6 feet deep has its

upper edge in the surface of the water. How far must it be sunk to

double the pressure ? Ans. 3 ft.

7. A board in the form of a parabolic segment by a chord perpen-

dicular to th< j axis is immersed in water. The vertex is at the sur-

far-p and the axis vertical. It is 20 feet deep and 12 feet broad.

Find the pressure in tons. Ans. 59.52.
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8. How far must the board in Ex. 5 be sunk to double the

pressure ? Ans. 12 ft.

9. Suppose the position of the parabolic board in Ex. 5 reversed,

the chord being in the surface ; what is the pressure ?

Ans. 39.38 tons.

10. How far must the board in Ex. 7 be sunk to double the

pressure ? Ans. 8 ft.

11. A trough 2 feet deep and 2 feet broad at the top has semi-

elliptical ends. If it is full of water, find the pressure on one end.

Ans. 165^ lbs.

12. One end of an unfinished water main 2 feet in diameter is

closed by a temporary bulkhead and the water is let in from the

reservoir. Find the pressure on the bulkhead if its centre is 30 feet

below the surface of the water in the reservoir. Ans. 18607r lbs.

13. A water tank is in the form of a hemisphere 24 feet in diame-

ter surmounted by a cylinder of the same diameter and 10 feet high.

Find the total pressure on the surface of the tank when the tank is

filled to within 2 feet of the top. Ans. 148. 8?r tons.

14. A cylindrical vessel, whose depth is 12 inches and base a

circle of 20 inches diameter, is filled with equal parts of water and

oil. Assuming the oil to be half as heavy as the water, show that

the pressure on the base equals the lateral pressure.

275. Centre of Pressure. Since the pressure of a liquid on a verti-

cal surface varies as the depth, there exists a horizontal line about

which the statical moment of the entire pressure on the surface is

zero. Such a line passes through the centre of pressure and the

abscissa of this point may be found by the method used in the follow-

ing example.

Ex. 1. Find the abscissa of the centre of liquid pressure on

a vertical surface bounded by the curve y = f(x), the axis of X and

the two ordinates yQ and yv Given that the origin is at a distance
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h below the surface of the liquid, the axis of X vertical, and the

-weight of a cubic unit of liquid is w.

Let P^JPJIQ be the surface bounded by the curve y = f(x), the

axis of X, and the two ordinates ?/ = QP and yx
— HPV Divide

the surface into horizontal strips of width dx, one of which is HK.
Let OH = x. Let MN pass through the centre of liquid pressure,

and 031— x.

Then the pressure on the

strip HK is wy (h + x) dx,

and the moment of this

pressure about MN is

wy(h + x)(x —I-)dx.

Therefore, the moment
of the entire pressure is

the integral of this ex-

pression between the ab-

scissas of P and Pl} that

is, between x and x1 .

But this must equal zero,

therefore

£

Or

wy (Jt + x) (x- x) dx

=

0.

1

xy (h -f a;) dx
x=^

x
.

Jy(h+ x)dac

—

W

|%

Y

! Pn

Q
X

\x

\ MM l i«»

H IS.

R I

J
1

X

2. Find the centre of pressure of the water on the parabolic

board given in Ex. 7, Art. 274. Ans. 14f in. below vertex.

3. Find the centre of pressure of the water on the bulkhead given

in Ex. 12, Art. 274. Ans. x = T^ ft.

4. A rectangular flood gate a feet deep and b feet broad, with its

upper edge at the surface, is to be braced along a horizontal line.

How far down must the brace be put that the gate may not tend to

turn about it ? Ans. | a ft.
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5. One end of a cylindrical aqueduct 6 feet in diameter which is

half full of water is closed by a water-tight bulkhead held in place

by a brace. How far below the centre of the bulkhead should the

brace be put ? What pressure must it be able to withstand ?

Ans. x = T
9
F 7T ft. ; P= 1116 lbs.

6. A water pipe passes through a masonry dam, enters a reservoir,

and is closed by a cast-iron circular valve which is hinged at the

top. The diameter of the valve is 3 feet, and the depth of its centre

below the water level in the reservoir is 12 feet. Find the pressure

on the valve, and the distance of the centre of pressure below the

hinge. Ans. P= 1674 tt lbs. and ff ft.

7. Water is flowing along a ditch of rectangular section 4 feet

deep and 1 foot wide. The water is stopped by a board fitting the

ditch and held vertical by two bars crossing the ditch horizontally,

one at the bottom and the other one foot from the bottom of the

ditch. How high must the water rise to force a passage by upset-

ting the board ? Ans. To within 1 ft. of top of ditch.

ATTRACTION AT A POINT

276. A particle of mass m is situated at a perpendicular distance

c from one end of a thin, straight, homogeneous wire of mass M and

length I. Required to find the attraction on the particle due to the

wire.

Let be the particle and AB the wire. Let X and Y be the

components of the attraction along the axes of X and ^respectively.

DivideAB into elements of length dy

and let PQ be one of these elements.

M M
The mass of PQ is — dy, since — is

l L

the mass of a unit's length.

If the mass of PQ were concen-

trated at P, the attraction at due

to PQ is, according to Newton's Law
of Attraction,

KmJ(f(%

l(c
2+ f)'
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and the components along OX and OF are

«"»*d
J* cos 6, and

*™Md
l sin fl,

respectively.

Substituting for cos and sin their values we have

^ KinMc C l d\j KinM KinM . aX = I
•- =———-_ = sm 6.

I
JoQS+ y*)? cW^+T2 Cl

TT-_ KinM C 1 y dy _ KinMf^ c ~|

^° (c' + yrf cl L V?+T2JI
^° (c

2 + y
2y cl

_ KinM

Vc2 +

(1 — cos

Denoting by It the total attraction of the wire on the particle,

•K= VI 2+ Y 2= —£- V2(l - cos 0)

2 KmM . 1 „sm-0.
cl 2

The line of attraction evidently makes with OA an angle whose

tangent is

J^l-cos^lg
X sin 2

The resultant attraction, therefore, bisects the angle 6.

Xote. — If we take as our unit of force the force of attraction be-

tween two unit masses concentrated at points which are at unit's

distance apart, k becomes unity.
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EXAMPLES

1. Find the attraction perpendicular to the wire in Example 1

when the particle is at a distance - above 0.
o

Ans. SiM 21 . I

>]c [_V9 c- + <U2 V9c- +

2. Find the attraction of a thin, straight, homogeneous wire of

length I and mass M upon a particle or mass m which is situated at

a distance c from one end of the wire and in its line of direction.

KinM
Ans.

c(c + l).

3. Find the attraction of a homogeneous circular disk of radius a

upon a particle of mass m in its axis and at a distance c from the

disk.

where p is the density of the disk.Ans. 2 Kirmpl 1 —
Vc2 + a2

J

4. Find the attraction due to a homogeneous right circular cylinder

of length 2 I and radius a upon a mass m in the axis produced of the

cylinder and distant c from one end.

Ans. 2 TTKinp [2 ?+Va2 + c
2 - Va2 + (c+ 2 J)

2
].



CHAPTER XXXIII

INTEGRALS FOR REFERENCE

277. We give for reference a list of some of the integrals of the

preceding chapters.

/
rn+l

x" dx =
ra-fl

2. I — = log 05.

J X

o C dx
3. I-—— =-tan
J xr -f- a." a a-r cr a a

- r dx 1 , # — a
4. I — =— log
J x2 — a2 2 a x-\-a

EXPONENTIAL INTEGRALS

5. Cax dx = ax

log a

6. j e
x dx = e

x
.

TRIGONOMETRIC INTEGRALS

7. I sin x dx = — cos x.
j
sin x dx =

8. I cos £ dx = sin x.

379
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9. I tan x dx = log sec x.

10. I cot x dx = log sin x.

11. a sec x dx = log (sec x + tan x)

= logtan(|+|).

12. I cosec x dx = log (cosec x — cot x)

= log tan - •

13. j sec2 x dx = tan x.

14.
j
cosec2

cc dx = — cot a?.

15. I sec x tan x dx = sec x.

16. j cosec a? cot x dx = — cosec #.

17. j sin2 xd£ = - --sin2a\
2 4

18. I cos2
a? dx= - -f - sin 2 #.

2 4/<

INTEGRALS CONTAINING Vcr-a;2 (CHAP. XXV. AND ART. 227)

- n C dx . _!#
19. I

— — sin -•
J Va2— sc

2 a

20. f_^L_ = _ 2V^^t? + - sin- 1 - •

J Va2-^ ^ 2 2 a
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21.
C dx 1, x
I = - log =
^ sca a2— or a a + a ((- ar

22

23

r da? __ _ a a 2 -.r

•^ a*
2a a 1

' — x* (r>r

J
.r\ cr _ x'

2 2 a-.r 2 a 3 °° a + ya 2 -^2

'

24. (a ^^ da?= | Vtf^a? + - sin- 1 - -

25. f.r\'^7 da? = % (2 ar
2 - a2)Va2-r + - sin"1 -

.

J 8 8 a

26. f — = (Art. 227.)
•/ (a*- a?

2)* « 2a cr-x2

27. f (a2 - :r) I (to = 2 (5 a 2 - 2 x2
)Va^=^ +— sin"1 ?

.

*/ b 8 a

INTEGRALS CONTAINING Va?2 + a2 (CHAP. XXV. AND ART. 227)

28. f
** = log(a?4-VS*"+^).

^ a .r + a 2

29. ('
jrVj? =^A^T^-giog(.x-4-A^T^).

c/ A _ ,,- 2 J

Jdaj 1 , .x* 1 t v a?
2 4- a2 — a— = log = - 1—

x\ .- - a2 a a -f Var' -f a2 ct

31
f da; = _ Vx2 + as

J
2 a?2



382 INTEGRAL CALCULUS

34

35.

J or
5Vx2 4- a2 2aV 2 a3 a

33. fV^T^tto = |V^T^ + f log (a + -y/iF+a*).

. fa^Va?2 + a2 dx = x
(2x2 + a^Va^ + a2 -- log (jc + VV + a2

).Jo 8

/dec __ %

(x2 +a2
)* aV^+ a2

36. f(x
2 + a2

)
1 da> = ^ (2 x

2 + 5 a2

)V^+"^ +~ log (»+ Va?+a*).
%/ 8 8

INTEGRALS CONTAINING Va2 - a2 (CHAP. XXV. AND ART. 227)

37. f da; = log(a? + V^a»).
J Vec2 — a2

38. f /
^_g_, = ?V*2- a2 + £ log (« +V?=^)

oa {* dx 1 , x
39. I -———- = - sec

-1 -
•^ xV#2 — a2 a a

40
/:

c?» Vx2 — a2

x2
-\/x

2 — a2 a'x

dec V#2 — or . 1 _i a^==== = 1 sec - •

x^x2 ~a2 2aV 2 a3 a
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42. (\ .r-crV.r = | a .r - «- - | log (x + Vx2 - a2
).

43. faj
2\ Z^T? <fe = 5 (2 or - a2

)V^2^2 - ^ log (« + Vtf 2 -a*).
•J 8 b

44. f
dg = *

•

•*
a-- — cr)^ «Vr — a2

45. f^r-a 2)^7.r = ^(2^-5a 2)V^^ + ^log(a;+V^4rr^).
»y 8 8

INTEGRALS CONTAINING V2 a.r - x2

46. I — = vers ! -•
J V2 cub sr a

47. I
— = — V2 a.? — a^+ a vers ' -

•

•^ V2oa?— x2 a

a*£ V2 «.i* — x2

48
V2 aa — x'

1

49

.

( v 2 ax — a;
2
tfte = -—-• V2 ax — x2 + ^- vers

-1 - •

J 2 2 a

50. f«v?^=7* = - 3a'+ <f-
2*VU^rf + £ vers-*.

J 6 2 a

51. f>^^-^^= v aax-^+ avers-1 *.

J u; a
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s
. W2ax — x2 dx _ _ (2 ax — x2

)
2

x3 3 ax3

/» dx x — a
53. f

54. f

(2 ax — x-y a2V2 ax — x2

xdx x

(2ax — x2y aV2ax —

INTEGRALS CONTAINING ±ax2 +bx + c

55
C_J* = 2

tan-i 2^ + 6
,

' J aar + 6a; + c V4ac-62 V4ac-6 2

1 , 2aa; + 6- V62 -4ac
56. or =

,

~-\og -
,

V62 — 4ac 2aa; + 6 + V62 — 4 etc

57. f , 9 ,
= = —= log (2 aa; + 6 + 2vWaa;2 + 6a; + c).

J V aar + 6a; + c Va .

58.I- I -y/ax2 -\-bx + cdx =— Vax2 + 6a'^ 4a

62 — 4 ac

8 a*

1 f
^ = 1

•^ V— aa^ + 6a; + c Va

log (2 aa; + 6 + 2VaVaa;
2 + 6a; + c).

_i 2 aaj — 6
59. I — =

—

= sin x— —
V 6

2 + -i ac

60.
j V— aa;

2 -\-bx + cdx

2 aa; — 6 /
*——,—;— , 6

2 + 4 ac . _, 2 aa; — 6— V— ax2
-{- bx -\- c

-{
— sin *

—

z^=.
4 a 8a| V62 + 4ac
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OTHER INTEGRALS

61. CJ^t^cU
J \6 4-a-+

a {a + .i-) (b + x) + (a - 6) log (Va + a? + V& + x).

62. fJjL^cfa = V(a - a)(& + 0) + (a + 6) sin" 1J^|-
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of tan" x sec" x dx,

cot" x cot" x dx 274, 291, 293

of e^ sin nx dx,

eax cos nx dx 283

of xm (a + bxn)Pdx . . . 284

off(x2)xdx 295

of rational fractions . . 249

proofs of formulae . . . 227

successive 343

triple . ... 344, 361, 363

Intercepts of tangent 173

Involute 201

properties of ... . 202, 204

Leibnitz's theorem 65

Length of curves .... 93, 327, 330

Limit, change of 317

definition of 8

infinite 315

Napierian base 10

notation of 8

relation of arc to chord . . 9

variable 343, 348, 351

Liquids, pressure of 370

Logarithmic functions .... 2, 39

Logarithms, computation by . . . 94

Napierian 41

Maclaurin's theorem 89

Maxima and minima .... 114, 155

Moment of inertia 346, 363
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of differentiation 137

of integration 343

Osculating curves 208

order of contact of . . 209

Osculating circle, coordinates of centre
209

radius of 209

Pappus, theorems of 369

Parameter 214, 324

Parametric equations ..... 324

Power series 85

Pressure, centre of 373

of liquids 370

Rates 18

Reduction formulae 284, 291

Remainder, Taylor's theorem ... 105

Series, computation by 94

convergence of power ... 85

convergent and divergent . . 78

of positive and negative

terms 78

power 85

Slope of a curve 16

of a line 16

of a plane 133

Subtangent 173, 183
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Surfaces of revolution, areas of 337, 353

derivative of

area of . . 336
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Tangent 70
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Taylor's theorem .... 97, 103, 145

Theorem, Leibnitz's 65

Maclaurin's 89

mean value . . . . 84, 86
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Rolle's 83
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Transformation 152, 153

Trigonometric functions ... 2, 45

Uniform curvature . „ . . . . 193

Unit of force . . . „ ... . 376
*

Variable, change of . . . 57, 58, 148,

263, 299,304, 317

curvature ...... 194

definition of 1

dependent 2

independent 2

notation of 1
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Volumes, any solid 361

by area of section . . . 340
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