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Abstract

These problems were solved by Fedja Nezarov, who helped me a lot during writing the Lifting The
Exponent Lemma article.

Problem 1. Let k be a positive integer. Find all positive integers n such that 3n|2n − 1.

Solution. 2|n otherwise 2n − 1 ≡ 1 mod 3. If n = 2m, we should have

v3(4m − 1) = v3(m) + 1 ≥ k,

i.e., m = 3k−1s for some s ∈ N.

Problem 2. Let a, n be two positive integers and let p be an odd prime number such that

ap ≡ 1 (mod pn).

Prove that
a ≡ 1 (mod pn−1).

Solution. By Fermat, a ≡ ap ≡ 1 mod p, so

vp(a− 1) = vp(a
p − 1)− 1 ≥ n− 1.

Problem 3. Show that the only positive integer value of a for which 4(an + 1) is a perfect cube for all
positive integers n, is 1.

Solution. If a > 1, a2 + 1 is not a power of 2 (because it is > 2 and either 1 or 2 modulo 4). Choose some
odd prime p|a2 + 1. Now, take some n = 2m with odd m and notice that vp(4(an + 1)) = vp(a

2 + 1) + vp(m)
but vp(m) can be anything we want modulo 3.

Problem 4. Let k > 1 be an integer. Show that there exists infinitely many positive integers n such that

n|1n + 2n + 3n + · · ·+ kn.

Solution. If 1 + k is not a power of 2, choose an odd prime p|1 + k and take n = pm. Then, for each j not
divisible by p, we have

vp(j
n + (k + 1− j)n) = vp(k + 1) + vp(n) ≥ m+ 1.

Also, if p|j (and, thereby, p|k+1− j), then n|pm|pn|jn so the sum in question is divisible by pm = n. If 1+k
is a power of 2, then take an odd prime divisor p of k and repeat the above argument with k − 1 instead of
k (the last term kn is, obviously, not a problem)

Problem 5. Let p be a prime number, and a and n positive integers. Prove that if

2p + 3p = an.

then n = 1.
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Solution. 22 + 32 = 13, so assume that p is odd. Then 2p + 3p ≡ 2 mod 3, so it cannot be a square. But
v5(2p + 3p) = 1 + v5(p) ≤ 2.

Problem 6. Find all positive integers n for which there exist positive integers x, y and k such that gcd(x, y) =
1, k > 1 and 3n = xk + yk.

Solution. k must be odd since the sum of 2 squares is divisible by 3 only if both squares are. If p|x + y,
then p is odd and vp(3

n) = vp(x
k + yk) = vp(k) + vp(x + y), which means that p = 3, so x + y = 3m and

n = v3(k) +m. Now it is just cases. a) m > 1. Then v3(k) ≤ k − 2 for all k > 1, and M = max(x, y) ≥ 5 so

xk + yk ≥Mk >
1

2
3m5k−1 > 3m5k−2 ≥ 3m+k−2 ≥ 3m+v3(k) = 3n,

which gives an immediate contradiction. b) m = 1. Then x = 1, y = 2 (or vice versa) and we get 31+v3(k) =
1 + 2k, meaning k ≤ 2(1 + v3(k)) whence v3(k) = 1, so n = 2 giving the only solution 32 = 13 + 23.

Problem 7. Let x, y, p, n, k be positive integers such that n is odd and p is a prime. Prove that if xn+yn =
pk, then n is a power of p.

Solution. x+ y|xn + yn = pk, so x+ y = pm. Now divide x and y by the highest power of p they contain
(it has to be the same). This may change k and m but not n in our condition. Then use the LTE to get
m+ vp(n) = k, so xn + yn = (x+ y)pvp(n). If n 6= pvp(n), we get n ≥ 2pvp(n) ≥ 2, so

Mn < xn + yn ≤ n

2
(x+ y) ≤ nM

and M < n
1

n−1 , which is less than 2 for odd n ≥ 3 but the case M = 1 is impossible.

Problem 8. Let p be a prime number. Solve the equation ap − 1 = pk in the set of positive integers.

Solution. By Fermat, a − 1 ≡ ap − 1 ≡ 0modp. a) p is odd. Then vp(a − 1) = k − 1, so a > pk−1 and, if
k > 1, then ap > pp(k−1) > p3(k−1) > pk. Thus, in this case k = 1 and a = (p + 1)1/p, which is never an
integer (because it is strictly between 1 and 2). b) p = 2. Then a2 − 1 = 2k but, unless a = 3, either a− 1
or a+ 1 is not a power of 2. So, the only solution is 32 − 1 = 23.

Problem 9. Find all solutions of the equation

(n− 1)! + 1 = nm

in positive integers.

Solution. n must be 1 or prime (otherwise any nontrivial divisor d of n will divide both (n − 1)! and nm.
Now, n = 2, m = 1 is a solution, n = 1 is not, so it suffices to consider the case when n is an odd prime. If
m is odd, then v2(nm − 1) = v2(n − 1) < v2((n − 1)!) if n > 3. n = 3 is not a solution, so we can consider
only even m. Then

v2((n− 1)!) = v2(m)− 1 + v2(n+ 1) + v2(n− 1)

or
v2((n− 2)!) = v2(n+ 1) + v2(m)− 1.

But the left hand side is at least n−3
2 (just count evens up to n − 2), so m ≥ 2(n−1)/2/(n + 1), which is at

least n for n ≥ 18. It remains to note that nn > (n− 1)! + 1 for n > 1. Now comes the remaining finite trial
and error part: 4! + 1 = 52 is good 6! + 1 = 721 is bad n = 11 gives v2(m) = 9 which is far too large. n = 13
gives v2(m) = 10, which is too large too n = 17 gives some big v2(m) as well.

Problem 10. For some positive integer n, the number 3n − 2n is a perfect power of a prime. Prove that n
is a prime.

Solution. Assume n = ab, a, b > 1. Then 3a−2a = pm with m ≥ 1. Thus, by LTE, vp(3
n−2n) = m+vp(b)

and
pm+vp(b) = 3ab − 2ab > (3a − 2a)b = pmb

but for b > 1, one has mb ≥ m+ b− 1 ≥ m+ vp(b), which gives a contradiction.
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Problem 11. Let m,n, b be three positive integers with m 6= n and b > 1. Show that if prime divisors of
the numbers bn − 1 and bm − 1 be the same, then b+ 1 is a perfect power of 2.

Solution. I failed to find a way to use the LTE here. The way I solved it is as follows. Let u = gcd(m,n).
Then bu−1 and b2u−1 have the same prime divisors (this uses the proof of the principle I mentioned rather
than the statement itself: when you repeat going from m,n to m − n, n, you stop when you get two equal
numbers). But then each prime dividing bu + 1 has to divide bu − 1 whence bu + 1 is a power of 2. If u were
even, the remainder of the LHS modulo 4 would be 2, so u is odd. Then b+ 1|bu + 1 and must be a power
of 2 too.

Problem 12. Find the highest degree k of 1991 for which 1991k divides the number

19901991
1992

+ 19921991
1990

.

Solution. Using p = 11 and p = 181, we get

vp(19901991
1992

+ 1) = 1 + 1992 = 1993

and
vp(19921991

1990

− 1) = 1 + 1990 = 1991.

Since vp(a+ b) = min(vp(a), vp(b)) when vp(a) 6= vp(b), the answer is 1991.

Problem 13. Let p be a prime number and m > 1 be a positive integer. Show that if for some positive
integers x > 1, y > 1 we have

xp + yp

2
=

(
x+ y

2

)m
,

then m = p.

Solution. Since xp+yp

2 ≥
(
x+y
2

)p
, we must have m ≥ p. Now, factoring out d = gcd(x, y) and writing

x = dx1, y = dy1, we get
2m−1(xp1 + yp1) = dm−p(x1 + y1)m.

Assume that p is odd. Take any prime divisor q|x1 + y1 and let v = vq(x1 + y1). If q is odd, we get
v + 1 ≥ v + vq(p) ≥ mv whence m ≤ 2 and p ≤ 2, giving an immediate contradiction. If q = 2, we get
m− 1 + v ≥ mv, so v ≤ 1 and x1 + y1 = 2, i.e., x = y, which immediately implies m = p. If p = 2, we just
notice that

x2 + y2

2
< 2

(
x+ y

2

)2

≤
(
x+ y

2

)3

if x+ y ≥ 4, so m = 2 is the only possibility unless {x, y} = {1, 2}, which is easy to outrule.

Problem 14. Find all positive integers x, y such that px − yp = 1, where p is a prime.

Solution. The case p = 2 is easily done mod 4 (y2+1 has remainder 2, so 21−12 = 1 is the only possibility),
so assume that p is odd. Then y + 1 = pm and, by LTE, yp + 1 = pm+1. But (pm − 1)p + 1 > pm+1 unless
p = 3, m = 1, which gives the second solution.

Problem 15. Let x and y be two positive real numbers such that for each positive integer n, the number
xn − yn is a positive integer. Show that x and y are both positive integers.

Problem 16. Let x and y be two positive rational numbers such that for infinitely many positive integers
n, the number xn − yn is a positive integer. Show that x and y are both positive integers.

Solution. They are very much alike, so I’ll combine the solutions. In 17, start with the observation that

x− y and x+ y = x2−y2
x−y are rational, so x, y ∈ Q. Now we are in the conditions of 18. Write x = a

c , y = b
c

where c is the least common denominator of x, y. If c > 1, take any prime divisor p of c. Then pn|an − bn
for infinitely many n and p cannot divide a or b (otherwise it would divide them both and we could reduce
the fractions). Led u be the least power such that p|au − bu. Then all those n’s are mu for some integer m
and we get n ≤ vp(a

n − bn) ≤ vp(m) + vp(a
u − bu) + vp(a

u + bu) (just not to consider 2 separately). But
vp(m) grows only logarithmically in n, so we get a contradiction.
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Problem 17. Does there exist a positive integer n such that n has exactly 2000 prime divisors and n divides
2n + 1?

Problem 18. Note that 3m|23m+1 by LTE. Thus, if 23
m

+1 has 1999 distinct prime divisors q1, . . . , q1999 > 3,

n = 3mq1 . . . q1999 will work. Note that each divisor of 23
m

+ 1 is also a divisor of 23
m+1

+ 1, so the set of
prime divisors either grows without bound or saturates to some finite set P . In the latter case, we have
vp(2

3m + 1) ≤ (m−mp) + vp(2
3mp

+ 1) ≤ m+Cp where mp is the least integer such that p|23mp
+ 1. Thus,

23
m

+ 1 ≤ CAm where A is the product of all primes in P , which is absurd.

Problem 19. Suppose that m and k are non-negative integers, and p = 22
m

+ 1 is a prime number. Prove

that 22
m+1pk ≡ 1 (mod pk+1); 2m+1pk is the smallest positive integer n satisfying the congruence equation

2n ≡ 1 (mod pk+1).

Solution. vp(2
2mpk + 1) = k + vp(2

2m + 1) = k + 1 by LTE and 22
mpk + 1|22m+1pk − 1. Furthermore,

p|22m+1 − 1 but not 22
m − 1, so if p|2n − 1, we have 2m+1|n (powers of 2 have only divisors that are powers

of 2 themselves). If n = Q2m+1, then

vp(2
n − 1) = vp(Q) + vp(2

2m+1

− 1) = vp(Q) + 1,

so vp(Q) ≥ k.

Problem 20. Let p ≥ 5 be a prime. Find the maximum value of positive integer k such that

pk|(p− 2)2(p−1) − (p− 4)p−1.

Solution. Let p− 1 = 2sm. Then, since vp((p− 2)2 + (p− 4)) = vp(p
2 − 3p) = 1, vp((p− 2)2 − (p− 4)) =

vp(p
2 − 5p+ 8) = 0, and vp(2

s−1m) = 0, we get

vp((p− 2)2(p−1) − (p− 4)p−1) = vp((p− 2)2 − (p− 4)2)

= vp((p− 2)2 + (p− 4)) + vp((p− 2)2 − (p− 4)) = 1.

Problem 21. Find all positive integers a, b which are greater than 1 and

ba|ab − 1.

Solution. Let p be the least prime divisor of b. Let m be the least positive integer for which p|am−1. Then
m|b and m|p−1, so any prime divisor of m divides b and is less than p. Thus, not to run into a contradiction,
we must have m = 1. Now, if p is odd, we have avp(b) ≤ vp(a− 1) + vp(b), so

a− 1 ≤ (a− 1)vp(b) ≤ vp(a− 1),

which is impossible. Thus p = 2, b is even, a is odd and av2(b) ≤ v2(a − 1) + v2(a + 1) + v2(b) − 1 whence
a ≤ (a− 1)v2(b) + 1 ≤ v2(a− 1) + v2(a+ 1), which is possible only if a = 3, v2(b) = 1. Put b = 2B with odd
B and rewrite the condition as 23B3|32B − 1. Let q be the least prime divisor of B (now, surely, odd). Let
n be the least positive integer such that q|3n − 1. Then n|2B and n|q − 1 whence n must be 2 (or B has a
smaller prime divisor), so q|32 − 1 = 8, which is impossible. Thus B = 1.

Problem 22. Let a, b be distinct real numbers such that the numbers

a− b, a2 − b2, a3 − b3, . . .

Are all integers. Prove that a, b are both integers.

Solution. If a2 = b2, then a = −b is either an integer or a half-integer, the latter case being impossible
because then a3 − b3 = 2a3 is not an integer. Otherwise, a2 and b2 are integers by problem 17, so a + b =
a2 − b2a− b is rational, so a, b are rational but all rational square roots of integers are integer.

Problem 23. Find all quadruples of positive integers (x, r, p, n) such that p is a prime number, n, r > 1
and xr − 1 = pn.
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Solution. Assume p is odd. Let x−1 = pm. Then n = m+vp(r), so pm+vp(r) = (pm+1)r−1 ≥ pmr, implying
m+ vp(r) ≥ mr ≥ m+ r− 1 and vp(r) ≥ r− 1, which is impossible for r > 1. Thus p = 2. If r is odd, we get
n = v2(xr−1) = v2(x−1) so r = 1, which is outruled. Thus, r is even and n = v2(x−1)+v2(x+1)+v2(r)−1.
If m = 1, we get the usual 32 − 1 = 23. Otherwise v2(x+ 1) = 1, so n = m+ v2(r) and we can finish just as
we started.

Problem 24. Let a > b > 1 be positive integers and b be an odd number, let n be a positive integer. If
bn | an − 1, then show that ab > 3n

n .

Solution. Let P be the set of all prime divisors of b. For p ∈ P , let sp be the least integer such that
p|asp −1. We have sp|n, sp|p−1 and n ≤ vp(asp −1) + vp(n/sp). Now note that b ≥

∏
p∈P p >

∏
p∈P sp = S

and that asp − 1|aS − 1 for all p ∈ P . Thus,

ab > aS − 1 ≥
∏
p∈P

pn
∏
p∈P

p−vp(n) ≥ 3n/n.

Problem 25. Let p be a prime number, p 6= 3, and integers a, b such that p | a+ b and p2 | a3 + b3. Prove
that p2 | a+ b or p3 | a3 + b3.

Solution. If p|a, b, then p3|a3 + b3. Otherwise LTE applies and vp(a+ b) = vp(a
3 + b3) ≥ 2.

Problem 26. Let m and n be positive integers. Prove that for each odd positive integer b there are infinitely
many primes p such that pn ≡ 1 (mod bm) implies bm−1 | n.

Solution. Let q be any prime divisor of b. If vq(p
q−1 − 1) = 1, we get mvq(b) ≤ vq(n) + 1 (using, as before,

that the minimal s satisfying q|ps − 1 divides both n and q − 1) and vq(n) ≥ mvq(b) − 1 ≥ (m − 1)vq(b).
Thus we just need to show that there are infinitely many primes p satisfying the condition vq(p

q−1 − 1) = 1
for all prime divisors of b. If one knows Dirichlet, it is simple: just consider p ≡ 1 + q mod q2 for all primes
q dividing p. If not, I’m stuck for now.

Problem 27. Determine all integers n > 1 such that

2n + 1

n2

is an integer.

Solution. Let p be a prime divisor on n, v = vp(n), Q = p−vn. We have p2v|2pvQ+ 1. We also know that
2p

v ≡ 2 mod p by Fermat. Thus p|2Q + 1 and, by LTE pv|2Q + 1. Let m be the least positive integer such
that pv|2m + 1. Then m|Q, pv−1(p− 1). If p is the least prime divisor of n, we conclude that m = 1 (because
Q consists of primes larger than p) and p = 3, v = 1. Now, if p is the second smallest prime divisor in n,
then m can be only 3 (the only factor in Q that can occur in p− 1). But 23 + 1 = 9 has no prime divisors
greater than 3 and we are stuck in our attempt to acsend. Thus, the answer is n = 1 or n = 3.

Problem 28. Find all positive integers n such that

2n−1 + 1

n

is an integer.

Solution. Let n = pv11 . . . pm
vm . As before, put Qj = p

−vj
j n. Since pj |2p

vj
j Qj−1+1 and 2p

vj
j ≡ 2 (mod pj) by

Fermat, we get pj |2Qj−1 +1. Let mj be the least positive integer such that pj |2mj +1. Then mj divides both

Qj − 1 and
pj−1

2 and Qj − 1 is an odd multiple of mj . But the power of 2 in Qj − 1 =
∏
k 6=j(1 + (pk− 1))− 1

is at least mink 6=j v2(pk−1) while v2(mj) ≤ v2(pj −1)−1, so choosing pj so that v2(pj −1) is minimal, we’ll
get a contradiction.

Problem 29. Find all primes p, q such that
(5p − 2p)(5q − 2q)

pq
is an integer.
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Solution. Assume p ≤ q. If 5p − 2p ≡ 5 − 2 = 3 mod p by Fermat, so if p|5p − 2p, then p = 3. In
particular, if p = q, then p = q = 3. If p < q and p|5q − 2q, then p|5p−1 − 2p−1 by Fermat, so the least
m > 0 such that p|5m − 2m must divide both p− 1 and q, i.e., m = 1, so p = 3 again. Now, either q = 3, or
q|53 − 23 = 117 = 9 · 13, so (3, 13) is the only other solution.

Problem 30. For some natural number n let a be the greatest natural nubmer for which 5n−3n is divisible
by 2a. Also let b be the greatest natural number such that 2b ≤ n. Prove that a ≤ b+ 3.

Solution. If n is odd, a = 1 and there is nothing to prove. If n is even, a = v2(5n−3n) = v2(5−3) + v2(5 +
3) + v2(n)− 1 = 3 + v2(n). But, clearly, b ≥ v2(n).

Problem 31. Find all surjective functions f : N→ N such that for every m,n ∈ N and every prime p, the
number f(m+ n) is divisible by p if and only if f(m) + f(n) is divisible by p.

Solution. We start with the (well-known?) observation that every subset S of positive integers that is
closed under addition is an eventual arithmetic progression. More precisely, there exists d ≥ 1 (which
actually is just the greatest common divisor of the elements of S) and N such that for n ≥ N we have
n ∈ S ⇐⇒ d|n. Now, for prime p, let Sp = {n : p|f(n). Let dp be the corresponding difference. Thus
p|f(n) ⇐⇒ dp|n if n is large. Now take any n and take a huge m divisible by dp (so p|f(m)). Then
dp|m ⇐⇒ dp|n + m ⇐⇒ p|f(n + m) ⇐⇒ p|f(n), so the equivalence holds without the requirement that
n is large too. The next step is to show that the remainder of n modulo dp determines the remainder of
f(n) modulo p and vice versa. Let’s take A = {1, 2, . . . dp − 1. For every n there exists the unique a ∈ A
such that dp|n + a determined by n mod dp. But then p|f(n) + f(a) determining f(n) mod p uniquely.
Conversely, let B = {b1, . . . , bp} so that f(bj) = j (here is where we use surjectivity). Then once we know
f(n) mod p, we know j such that p|f(n) + j ≡ f(n + bj) mod p whence we know that dp|n + bj . This
one-to one correspondence between remainders implies that p = dp and that

p|n−m⇐⇒ p|f(n)− f(m).

In particular, f(1) = 1 and if f(n+ 1)− f(n) = ±1 for all n. Now take a huge odd prime P and note that
we can have P |f(P ) only if all ±1 up to P are actually 1. Since P is arbitrarily large, f(n) = n for all n.

Problem 32. Determine all sets of non-negative integers x, y and z which satisfy the equation

2x + 3y = z2.

Solution. This is just a casework: If x = 0, we get 3y = (z− 1)(z+ 1), but 1 and 3 are the only two powers
of 3 differing by 2, so y = 1, z = 2. If y = 0, then 2x = (z − 1)(z + 1) giving z = 3, x = 3 in the same way.
If x, y > 0, then x is even (z2 cannot be 2 mod 3) whence y is even (z2 cannot be 3 mod 4), so, letting
x = 2X, y = 2Y , we get 32Y = (z − 2X)(z + 2X). Thus, we must have z = 2X + 1 and 32Y − 1 = 2X+1. But
then X + 1 = v2(Y ) + 3 by the LTE, so 2Y ≥ 2X−1 > X + 1 if X ≥ 4. X = 1 gives nothing, X = 2 gives
Y = 1, and X = 3 gives nothing.

Problem 33. Find all positive integer solutions of equation x2009 + y2009 = 7z.

Solution. 7|2009 so 7|x+ y by Fermat. Removing the highest possible power of 7 from x, y, we get

v7(x2009 + y2009) = v7(x+ y) + v7(2009) = v7(x+ y) + 2,

so x2009 + y2009 = 49(x+ y) but the left hand side is much larger than the right hand one if max(x, y) > 1.

Problem 34. Let n be an odd positive integer. Prove that ((n− 1)n + 1)2 divides n(n− 1)(n−1)
n+1 + n.

Solution. n|(n− 1)n + 1, so for every p|(n− 1)n + 1, we have

vp((n− 1)(n−1)
n+1 + 1)

= vp((n− 1)n + 1) + vp

(
(n− 1)n + 1 + 1

n

)
= 2vp((n− 1)n + 1)− vp(n),

which is just what we need in terms of prime divisors.
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Problem 35. Find all positive integers n such that 3n − 1 is divisible by 2n.

Solution. n ≤ v2(3n − 1) ≤ 3 + v2(n), so n ≤ 4. 1, 2, 4 work, 3 doesn’t.

Problem 36. Let p be a prime and a, b be positive integers such that a ≡ b (mod p). Prove that if px‖a− b
and py‖n, then px+y‖an − bn.

Solution. LTE, odd prime case.

Problem 37. Let a, n ≥ 2 be two integers, which have the following property: there exists an integer k ≥ 2,
such that n divides (a− 1)k. Prove that n also divides an−1 + an−2 + · · ·+ a+ 1.

Solution. If some prime p|n, then p|a − 1 and vp(a
n − 1) ≥ vp(a − 1) + vp(n), which is a restatement of

what we need in terms of prime divisors.

Problem 38. Find all positive integers a such that 5a+1
3a is a positive integer.

Solution. a must be odd (otherwise the numerator is 2 mod 3). Then a ≤ v3(5a + 1) = 1 + v3(a) giving
a = 1 as the only solution.

Problem 39. Let a, b, n be positive integers such that 2α‖a
2−b2
2 and 2β‖n (with β ≥ 1). Prove that

2α+β‖an − bn.

Solution. LTE, even prime case.
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