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Abstract

These problems were solved by Fedja Nezarov, who helped me a lot during writing the Lifting The
Exponent Lemma article.

Problem 1. Let k be a positive integer. Find all positive integers n such that 3"|2" — 1.
Solution. 2|n otherwise 2" —1 =1 mod 3. If n = 2m, we should have
v3(4™ —1) =wv3(m) +1 >k,
i.e., m = 3¥~1s for some s € N.
Problem 2. Let a,n be two positive integers and let p be an odd prime number such that
a’? =1 (mod p").

Prove that

a=1 (modp"t).

Solution. By Fermat, a =a? =1 mod p, so
vpla—1)=vp(a? —=1)—-1>n—1.

Problem 3. Show that the only positive integer value of a for which 4(a™ 4 1) is a perfect cube for all
positive integers n, is 1.

Solution. If a > 1, a® + 1 is not a power of 2 (because it is > 2 and either 1 or 2 modulo 4). Choose some
odd prime pla® + 1. Now, take some n = 2m with odd m and notice that v,(4(a" 4+ 1)) = v,(a® + 1) +v,(m)
but v,(m) can be anything we want modulo 3.

Problem 4. Let k > 1 be an integer. Show that there exists infinitely many positive integers n such that
n|1" 4+ 2" +3" + .-+ k™.

Solution. If 1+ k is not a power of 2, choose an odd prime p|1 4+ &k and take n = p™. Then, for each j not
divisible by p, we have
up(" + (k+1—7)") = vp(k+ 1) +vp(n) =m+1.

Also, if p|j (and, thereby, p|k+1— j), then n|p™|p™|j™ so the sum in question is divisible by p™ =n. If 1+k
is a power of 2, then take an odd prime divisor p of k and repeat the above argument with & — 1 instead of
k (the last term k"™ is, obviously, not a problem)

Problem 5. Let p be a prime number, and a and n positive integers. Prove that if
2P + 3P = qa".

then n = 1.
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Solution. 22 + 32 = 13, so assume that p is odd. Then 2P + 37 = 2 mod 3, so it cannot be a square. But
v5(2P +3P) =1+ vs(p) < 2.

Problem 6. Find all positive integers n for which there exist positive integers z,y and k such that ged(z,y) =
1,k>1and 3" = zF + ¢/*.

Solution. k must be odd since the sum of 2 squares is divisible by 3 only if both squares are. If p|a + ¥,
then p is odd and v,(3") = v, (2% + y*) = v, (k) + v,(x + y), which means that p = 3, so x + y = 3™ and
n = v3(k) +m. Now it is just cases. a) m > 1. Then vs(k) < k—2 for all k > 1, and M = max(x,y) > 5 so

.’L'k + yk‘ 2 Mk > %31’7’7,5/6—1 > 3m5k—2 Z 3m+k:—2 Z 3’m+’U3(k7) — 377,7

which gives an immediate contradiction. b) m = 1. Then z = 1,y = 2 (or vice versa) and we get 3!Tvs(*) =
1+ 2% meaning k < 2(1 + v3(k)) whence vz(k) = 1, so n = 2 giving the only solution 32 = 1% + 23.

Problem 7. Let z,y, p,n, k be positive integers such that n is odd and p is a prime. Prove that if 2" +y" =
p*, then n is a power of p.

Solution. z + y|z" 4+ y"™ = p*, so x +y = p™. Now divide z and y by the highest power of p they contain
(it has to be the same). This may change k and m but not n in our condition. Then use the LTE to get
m+vp(n) =k, s0 " +y" = (z+ y)pr (M. If n # pU» (™) we get n > 2p¥r(™) > 2 5o

n

M" <™ +y" < 5

(x+y) <nM

and M < nﬁ, which is less than 2 for odd n > 3 but the case M = 1 is impossible.
Problem 8. Let p be a prime number. Solve the equation a? — 1 = p¥ in the set of positive integers.

Solution. By Fermat, a — 1 = a? — 1 = Omodp. a) p is odd. Then v,(a —1) =k — 1, so a > p*~1 and, if
k > 1, then a? > pP*—1 > p3(k=1 5 pk Thus, in this case k = 1 and a = (p + 1)/?, which is never an
integer (because it is strictly between 1 and 2). b) p = 2. Then a? — 1 = 2¥ but, unless a = 3, either a — 1
or a + 1 is not a power of 2. So, the only solution is 32 — 1 = 23.

Problem 9. Find all solutions of the equation
(n=DI'+1=n"
in positive integers.

Solution. n must be 1 or prime (otherwise any nontrivial divisor d of n will divide both (n — 1)! and n™.
Now, n =2, m =1 is a solution, n = 1 is not, so it suffices to consider the case when n is an odd prime. If
m is odd, then vo(n™ — 1) = va(n — 1) < va((n — 1)!) if n > 3. n = 3 is not a solution, so we can consider
only even m. Then
va((n — D)) =wve(m) — 1+ ve(n+1) +vy(n—1)
or
va((n —2)) = va(n+1) + va(m) — 1.

But the left hand side is at least 252 (just count evens up to n — 2), so m > 2"=1/2/(n + 1), which is at
least n for n > 18. It remains to note that n™ > (n—1)!+1 for n > 1. Now comes the remaining finite trial
and error part: 4!+ 1 = 52 is good 6!+ 1 = 721 is bad n = 11 gives vo(m) = 9 which is far too large. n = 13
gives va(m) = 10, which is too large too n = 17 gives some big ve(m) as well.

Problem 10. For some positive integer n, the number 3" — 2™ is a perfect power of a prime. Prove that n
is a prime.

Solution. Assume n = ab, a,b > 1. Then 3% —2% = p™ with m > 1. Thus, by LTE, v,(3" —2") = m+u,(b)
and
pervp(b) _ 3ab _ 2ab > (3a o Qa)b _ pmb

but for b > 1, one has mb > m +b— 1> m + v,(b), which gives a contradiction.



Problem 11. Let m,n,b be three positive integers with m # n and b > 1. Show that if prime divisors of
the numbers "™ — 1 and b™ — 1 be the same, then b+ 1 is a perfect power of 2.

Solution. I failed to find a way to use the LTE here. The way I solved it is as follows. Let u = ged(m,n).
Then b* — 1 and b?* — 1 have the same prime divisors (this uses the proof of the principle I mentioned rather
than the statement itself: when you repeat going from m,n to m — n,n, you stop when you get two equal
numbers). But then each prime dividing b“ + 1 has to divide b* — 1 whence b* + 1 is a power of 2. If u were
even, the remainder of the LHS modulo 4 would be 2, so u is odd. Then b+ 1|b* + 1 and must be a power
of 2 too.

Problem 12. Find the highest degree k of 1991 for which 1991% divides the number
19901991 4 19921991,
Solution. Using p = 11 and p = 181, we get
vy (19901991 4 1) = 1+ 1992 = 1993

and
1 1990

v, (1992199177 — 1) = 1 41990 = 1991.
Since vp(a + b) = min(vy(a), vp(b)) when vy(a) # vp(b), the answer is 1991.
Problem 13. Let p be a prime number and m > 1 be a positive integer. Show that if for some positive
integers x > 1,y > 1 we have
2+y?  (x+ty "
2\ 2 ’

then m = p.

\%

Solution. Since

zPtyP
2 iy
r =dx1, y = dy, we get

(%)p, we must have m > p. Now, factoring out d = ged(z,y) and writing

2N (@ o) = d" P+ y)™

Assume that p is odd. Take any prime divisor g|z1 + y1 and let v = vy(z1 + y1). If ¢ is odd, we get
v+ 1> v+ vy(p) > mv whence m < 2 and p < 2, giving an immediate contradiction. If ¢ = 2, we get
m—14v>mv,sov<1andz;+y; =2, ie., z =y, which immediately implies m = p. If p = 2, we just

notice that 5 5
2 2
e +y <9 T+y < T+y
2 2 2

if 2 +y >4, so m =2 is the only possibility unless {z,y} = {1,2}, which is easy to outrule.

Problem 14. Find all positive integers x, y such that p® — y? = 1, where p is a prime.

Solution. The case p = 2 is easily done mod 4 (y?+1 has remainder 2, so 2 —12 = 1 is the only possibility),
so assume that p is odd. Then y + 1 = p™ and, by LTE, y? + 1 = p™*!. But (p™ — 1) + 1 > p™*! unless
p =3, m = 1, which gives the second solution.

Problem 15. Let x and y be two positive real numbers such that for each positive integer n, the number
™ —y" is a positive integer. Show that x and y are both positive integers.

Problem 16. Let z and y be two positive rational numbers such that for infinitely many positive integers
n, the number ™ — y™ is a positive integer. Show that z and y are both positive integers.

Solution. They are very much alike, so I'll combine the solutions. In 17, start with the observation that

a b

2 2
£ =Y are rational, so z,y € Q. Now we are in the conditions of 18. Write x = y=<

r—yandx+y= Ty
where c¢ is the least common denominator of z,y. If ¢ > 1, take any prime divisor p of ¢. Then p"|a™ — b,
for infinitely many n and p cannot divide a or b (otherwise it would divide them both and we could reduce
the fractions). Led u be the least power such that pla* — b*. Then all those n’s are mu for some integer m
and we get n < vp(a™ — ") < vp(m) + vy(a* — b*) + vp(a™ + b*) (just not to consider 2 separately). But
vp(m) grows only logarithmically in n, so we get a contradiction.




Problem 17. Does there exist a positive integer n such that n has exactly 2000 prime divisors and n divides
2" + 17

Problem 18. Note that 3™|23" 41 by LTE. Thus, if 23" +1 has 1999 distinct prime divisors g1, ..., gi999 > 3,
n = 3™q ...qio99 will work. Note that each divisor of 23" + 1 is also a divisor of 23" + 1, so the set of
prime divisors either grows without bound or saturates to some finite set P. In the latter case, we have
v, (28" +1) < (m—myp) +v,(2%"" +1) < m+ C, where m,, is the least integer such that p[23”" + 1. Thus,
23" 41 < CA™ where A is the product of all primes in P, which is absurd.

Problem 19. Suppose that m and k are non-negative integers, and p = 22" + 1 is a prime number. Prove
that 227" =1 (mod pF*1); 2m*1pF is the smallest positive integer n satisfying the congruence equation
2" =1 (mod pFt1).

Solution. v,(22"?" +1) = k 4+ v,(22" +1) = k4 1 by LTE and 2277" 4 122" ""#"
p|22er1 — 1 but not 22" — 1, so if p|2" — 1, we have 2" !|n (powers of 2 have only divisors that are powers
of 2 themselves). If n = Q2™ %! then

— 1. Furthermore,

2m+1

vp(2" = 1) = up(Q) + v, (27 —1) = (Q) +1,
s0 vp(Q) > k.

Problem 20. Let p > 5 be a prime. Find the maximum value of positive integer k such that
pH(p =220 — (p— 4P
Solution. Let p — 1 = 2%m. Then, since v,((p —2)? + (p —4)) = v,(P*> —3p) = 1, vp((p — 2)* — (p — 4)) =
vp(p? — B5p+8) =0, and v,(2°"'m) = 0, we get
op((p— 220D = (p— 4"Y) = v, ((p— 2> — (p — 4))
=up((P =22+ (p—4) +up((p—2° = (p—4)) = 1.
Problem 21. Find all positive integers a,b which are greater than 1 and
bab — 1.

Solution. Let p be the least prime divisor of b. Let m be the least positive integer for which pla™ — 1. Then
m|b and m|p—1, so any prime divisor of m divides b and is less than p. Thus, not to run into a contradiction,
we must have m = 1. Now, if p is odd, we have av,(b) < vp(a — 1) + v, (D), so

a—1<(a—1)vp(b) <vpla—1),

which is impossible. Thus p = 2, b is even, a is odd and ave(b) < va(a — 1) + va(a + 1) 4+ va(b) — 1 whence
a<(a—1v(b)+1<wy(a—1)+wvy(a+ 1), which is possible only if a = 3, vo(b) = 1. Put b = 2B with odd
B and rewrite the condition as 22B3|328 — 1. Let ¢ be the least prime divisor of B (now, surely, odd). Let
n be the least positive integer such that ¢|3™ — 1. Then n|2B and n|q¢ — 1 whence n must be 2 (or B has a
smaller prime divisor), so |3 — 1 = 8, which is impossible. Thus B = 1.

Problem 22. Let a, b be distinct real numbers such that the numbers
a—"b, a®> =0, a® -1, ...
Are all integers. Prove that a,b are both integers.

Solution. If a®> = b?, then @ = —b is either an integer or a half-integer, the latter case being impossible
because then a® — b® = 243 is not an integer. Otherwise, a? and b? are integers by problem 17, so a + b =
a’® — b%a — b is rational, so a, b are rational but all rational square roots of integers are integer.

Problem 23. Find all quadruples of positive integers (x,r,p,n) such that p is a prime number, n,r > 1
n

and " — 1 =p".



Solution. Assume pisodd. Let z—1 = p™. Then n = m+wv,(r), so p™ (") = (p"+1)"—1 > p™", implying
m+uv,(r) > mr > m+r—1and v,(r) > r—1, which is impossible for r > 1. Thus p = 2. If r is odd, we get
n =vg(x"—1) = va(x—1) so r = 1, which is outruled. Thus, r is even and n = vo(x—1)+vo(x+1)+vo(r)—1.
If m = 1, we get the usual 32 — 1 = 23. Otherwise va(x + 1) = 1, so n = m + va(r) and we can finish just as
we started.

Problem 24. Let a > b > 1 be positive integers and b be an odd number, let n be a positive integer. If
b" | a™ — 1, then show that a® > 2-.

Solution. Let P be the set of all prime divisors of b. For p € P, let s, be the least integer such that
pla®» —1. We have sp[n, sp[p—1 and n < vy(a® — 1) +v,(n/sp). Now note that b > [[ cpp > [[epsp =S
and that a*» — 1|a® — 1 for all p € P. Thus,

a>a®—1> Hp” Hp*”P(”) >3"/n.

peEP  peEP

Problem 25. Let p be a prime number, p # 3, and integers a, b such that p | a + b and p? | a® + b3. Prove
that p? | a + b or p® | a® + b3.

Solution. If pla,b, then p3|a® + b3. Otherwise LTE applies and v,(a + b) = v,(a® + b3) > 2.

Problem 26. Let m and n be positive integers. Prove that for each odd positive integer b there are infinitely
many primes p such that p” =1 (mod b™) implies ™! | n.

Solution. Let ¢ be any prime divisor of b. If v, (p?~1 — 1) = 1, we get mv,(b) < vy(n) + 1 (using, as before,
that the minimal s satisfying ¢|p® — 1 divides both n and ¢ — 1) and vg(n) > muy(b) — 1 > (m — 1)vg(b).
Thus we just need to show that there are infinitely many primes p satisfying the condition v,(p?=t —1) =1
for all prime divisors of b. If one knows Dirichlet, it is simple: just consider p = 1 +¢ mod ¢ for all primes
q dividing p. If not, 'm stuck for now.

Problem 27. Determine all integers n > 1 such that
2" + 1
n2

is an integer.

Solution. Let p be a prime divisor on n, v = v,(n), @ = p~“n. We have p?¥|2P" Q + 1. We also know that
2¢" =2 mod p by Fermat. Thus p|29 + 1 and, by LTE p¥|29 + 1. Let m be the least positive integer such
that p¥[2™ + 1. Then m|Q,p*~!(p—1). If p is the least prime divisor of n, we conclude that m = 1 (because
Q consists of primes larger than p) and p = 3, v = 1. Now, if p is the second smallest prime divisor in n,

then m can be only 3 (the only factor in @ that can occur in p —1). But 23 + 1 = 9 has no prime divisors
greater than 3 and we are stuck in our attempt to acsend. Thus, the answer is n =1 or n = 3.

Problem 28. Find all positive integers n such that

2n—1 + 1
n

is an integer.

Solution. Let n = p¥" ...p,"" . As before, put Q; = pj_vjn. Since pj|2”;J Q=141 and oy’ =9 (mod p;) by
Fermat, we get p;|29:~1 +1. Let m; be the least positive integer such that p;|2™ 4+ 1. Then m; divides both
Q;—1and pijl and Q; — 1 is an odd multiple of m;. But the power of 2in Q; —1 =[], ,;(1+(pxr —1)) —1
is at least ming; vo(pg — 1) while va(m;) < va(p; —1) —1, so choosing p; so that va(p; — 1) is minimal, we’ll
get a contradiction.

(57 — 20)(5 = 29)
bq

Problem 29. Find all primes p, g such that is an integer.



Solution. Assume p < g. If 5> — 2P = 5 — 2 = 3 mod p by Fermat, so if p|5? — 2P, then p = 3. In
particular, if p = ¢, then p = ¢ = 3. If p < ¢ and p|59 — 29, then p|5P~1 — 2P~ by Fermat, so the least
m > 0 such that p|5™ — 2™ must divide both p — 1 and ¢, i.e., m = 1, so p = 3 again. Now, either ¢ = 3, or
q|5% — 23 =117 =913, so (3,13) is the only other solution.

Problem 30. For some natural number n let a be the greatest natural nubmer for which 5 — 3" is divisible
by 2%. Also let b be the greatest natural number such that 2° < n. Prove that a < b+ 3.

Solution. If n is odd, a = 1 and there is nothing to prove. If n is even, a = v2(5" —3") = v2(5—3) + v2(5+
3) + va(n) — 1 =34 va(n). But, clearly, b > va(n).

Problem 31. Find all surjective functions f : N — N such that for every m,n € N and every prime p, the
number f(m + n) is divisible by p if and only if f(m) + f(n) is divisible by p.

Solution. We start with the (well-known?) observation that every subset S of positive integers that is
closed under addition is an eventual arithmetic progression. More precisely, there exists d > 1 (which
actually is just the greatest common divisor of the elements of S) and N such that for n > N we have
n € S <= d|n. Now, for prime p, let S, = {n:p|f(n). Let d, be the corresponding difference. Thus
plf(n) <= dpln if n is large. Now take any n and take a huge m divisible by d, (so p|f(m)). Then
dylm < dyIn + m < p|f(n + m) < p|f(n), so the equivalence holds without the requirement that
n is large too. The next step is to show that the remainder of n modulo d;, determines the remainder of
f(n) modulo p and vice versa. Let’s take A= {1,2,...d, — 1. For every n there exists the unique a € A
such that d,|n + a determined by n mod d,. But then p|f(n) + f(a) determining f(n) mod p uniquely.
Conversely, let B = {b1,...,by} so that f(b;) = j (here is where we use surjectivity). Then once we know
f(n) mod p, we know j such that p|f(n) +j = f(n + b;) mod p whence we know that d,|n + b;. This
one-to one correspondence between remainders implies that p = d,, and that

pln —m < plf(n) — f(m).

In particular, f(1) =1 and if f(n+ 1) — f(n) = %1 for all n. Now take a huge odd prime P and note that
we can have P|f(P) only if all 1 up to P are actually 1. Since P is arbitrarily large, f(n) = n for all n.

Problem 32. Determine all sets of non-negative integers x,y and z which satisfy the equation
27 4+ 3V = 2%

Solution. This is just a casework: If z = 0, we get 3¥ = (2 — 1)(2+ 1), but 1 and 3 are the only two powers
of 3 differing by 2, so y =1, z=2. If y =0, then 2* = (2 — 1)(z + 1) giving z = 3, x = 3 in the same way.
If 2,y > 0, then z is even (22 cannot be 2 mod 3) whence y is even (22 cannot be 3 mod 4), so, letting
r=2X,y=2Y, we get 32¥ = (2 — 2%)(z +2%). Thus, we must have z = 2%X + 1 and 32 — 1 = 2%+, But
then X 4+ 1 = vo(Y) + 3 by the LTE, so 2Y > 2¥~1 > X 4 1if X > 4. X = 1 gives nothing, X = 2 gives
Y =1, and X = 3 gives nothing.

Problem 33. Find all positive integer solutions of equation z2%%9 4 32009 = 77,

Solution. 7|2009 so 7|z + y by Fermat. Removing the highest possible power of 7 from z,y, we get
vr (@ + %) = vr(2 +y) +v7(2009) = vr(2 +y) +2,
so 22009 4 42009 — 49(x + y) but the left hand side is much larger than the right hand one if max(x,y) > 1.
Problem 34. Let n be an odd positive integer. Prove that ((n — 1)" +1)? divides n(n — 1)(»=D"+1 4 p,
Solution. n|(n —1)™ + 1, so for every p|(n — 1)" + 1, we have
vp((n — 1) 47
(n—1)"+1+ 1)

n

=vp((n—=1)"+1)+v, (
=20p((n —1)" +1) —vp(n),

which is just what we need in terms of prime divisors.



Problem 35. Find all positive integers n such that 3 — 1 is divisible by 2™.
Solution. n < v5(3" — 1) < 3+ v3(n), son < 4. 1,2,4 work, 3 doesn’t.

Problem 36. Let p be a prime and a, b be positive integers such that a = b (mod p). Prove that if p*|ja — b
and pY||n, then p®*¥||a™ — b".

Solution. LTE, odd prime case.

Problem 37. Let a,n > 2 be two integers, which have the following property: there exists an integer k > 2,
such that n divides (a — 1)*. Prove that n also divides a® ' +a" 2+ .- +a+ 1.

Solution. If some prime p|n, then pla — 1 and v,(a™ — 1) > v,(a — 1) + v,(n), which is a restatement of
what we need in terms of prime divisors.

5%+1
3a

Problem 38. Find all positive integers a such that is a positive integer.

Solution. a must be odd (otherwise the numerator is 2 mod 3). Then a < v3(5% + 1) = 1 4 v3(a) giving
a = 1 as the only solution.

Problem 39. Let a,b,n be positive integers such that 20‘\\“2552 and 2°||n (with 8 > 1). Prove that
208 g™ — b,

Solution. LTE, even prime case.



