LTE Challenge Problems

Amir Hossein Parvardi

December 2017

Abstract

These problems were solved by Fedja Nezarov, who helped me a lot during writing the Lifting The Exponent Lemma article.

Problem 1. Let k be a positive integer. Find all positive integers n such that $3^{n} \mid 2^{n}-1$.
Solution. $2 \mid n$ otherwise $2^{n}-1 \equiv 1 \bmod 3$. If $n=2 m$, we should have

$$
v_{3}\left(4^{m}-1\right)=v_{3}(m)+1 \geq k
$$

i.e., $m=3^{k-1} s$ for some $s \in \mathbb{N}$.

Problem 2. Let a, n be two positive integers and let p be an odd prime number such that

$$
a^{p} \equiv 1 \quad\left(\bmod p^{n}\right)
$$

Prove that

$$
a \equiv 1 \quad\left(\bmod p^{n-1}\right)
$$

Solution. By Fermat, $a \equiv a^{p} \equiv 1 \bmod p$, so

$$
v_{p}(a-1)=v_{p}\left(a^{p}-1\right)-1 \geq n-1
$$

Problem 3. Show that the only positive integer value of a for which $4\left(a^{n}+1\right)$ is a perfect cube for all positive integers n, is 1 .
Solution. If $a>1, a^{2}+1$ is not a power of 2 (because it is >2 and either 1 or 2 modulo 4). Choose some odd prime $p \mid a^{2}+1$. Now, take some $n=2 m$ with odd m and notice that $v_{p}\left(4\left(a^{n}+1\right)\right)=v_{p}\left(a^{2}+1\right)+v_{p}(m)$ but $v_{p}(m)$ can be anything we want modulo 3.

Problem 4. Let $k>1$ be an integer. Show that there exists infinitely many positive integers n such that

$$
n \mid 1^{n}+2^{n}+3^{n}+\cdots+k^{n}
$$

Solution. If $1+k$ is not a power of 2 , choose an odd prime $p \mid 1+k$ and take $n=p^{m}$. Then, for each j not divisible by p, we have

$$
v_{p}\left(j^{n}+(k+1-j)^{n}\right)=v_{p}(k+1)+v_{p}(n) \geq m+1
$$

Also, if $p \mid j$ (and, thereby, $p \mid k+1-j$), then $n\left|p^{m}\right| p^{n} \mid j^{n}$ so the sum in question is divisible by $p^{m}=n$. If $1+k$ is a power of 2 , then take an odd prime divisor p of k and repeat the above argument with $k-1$ instead of k (the last term k^{n} is, obviously, not a problem)
Problem 5. Let p be a prime number, and a and n positive integers. Prove that if

$$
2^{p}+3^{p}=a^{n}
$$

then $n=1$.

Solution. $2^{2}+3^{2}=13$, so assume that p is odd. Then $2^{p}+3^{p} \equiv 2 \bmod 3$, so it cannot be a square. But $v_{5}\left(2^{p}+3^{p}\right)=1+v_{5}(p) \leq 2$.

Problem 6. Find all positive integers n for which there exist positive integers x, y and k such that $\operatorname{gcd}(x, y)=$ $1, k>1$ and $3^{n}=x^{k}+y^{k}$.
Solution. k must be odd since the sum of 2 squares is divisible by 3 only if both squares are. If $p \mid x+y$, then p is odd and $v_{p}\left(3^{n}\right)=v_{p}\left(x^{k}+y^{k}\right)=v_{p}(k)+v_{p}(x+y)$, which means that $p=3$, so $x+y=3^{m}$ and $n=v_{3}(k)+m$. Now it is just cases. a) $m>1$. Then $v_{3}(k) \leq k-2$ for all $k>1$, and $M=\max (x, y) \geq 5$ so

$$
x^{k}+y^{k} \geq M^{k}>\frac{1}{2} 3^{m} 5^{k-1}>3^{m} 5^{k-2} \geq 3^{m+k-2} \geq 3^{m+v_{3}(k)}=3^{n}
$$

which gives an immediate contradiction. b) $m=1$. Then $x=1, y=2$ (or vice versa) and we get $3^{1+v_{3}(k)}=$ $1+2^{k}$, meaning $k \leq 2\left(1+v_{3}(k)\right)$ whence $v_{3}(k)=1$, so $n=2$ giving the only solution $3^{2}=1^{3}+2^{3}$.

Problem 7. Let x, y, p, n, k be positive integers such that n is odd and p is a prime. Prove that if $x^{n}+y^{n}=$ p^{k}, then n is a power of p.

Solution. $x+y \mid x^{n}+y^{n}=p^{k}$, so $x+y=p^{m}$. Now divide x and y by the highest power of p they contain (it has to be the same). This may change k and m but not n in our condition. Then use the LTE to get $m+v_{p}(n)=k$, so $x^{n}+y^{n}=(x+y) p^{v_{p}(n)}$. If $n \neq p^{v_{p}(n)}$, we get $n \geq 2 p^{v_{p}(n)} \geq 2$, so

$$
M^{n}<x^{n}+y^{n} \leq \frac{n}{2}(x+y) \leq n M
$$

and $M<n^{\frac{1}{n-1}}$, which is less than 2 for odd $n \geq 3$ but the case $M=1$ is impossible.
Problem 8. Let p be a prime number. Solve the equation $a^{p}-1=p^{k}$ in the set of positive integers.
Solution. By Fermat, $a-1 \equiv a^{p}-1 \equiv 0 \bmod p$. a) p is odd. Then $v_{p}(a-1)=k-1$, so $a>p^{k-1}$ and, if $k>1$, then $a^{p}>p^{p(k-1)}>p^{3(k-1)}>p^{k}$. Thus, in this case $k=1$ and $a=(p+1)^{1 / p}$, which is never an integer (because it is strictly between 1 and 2). b) $p=2$. Then $a^{2}-1=2^{k}$ but, unless $a=3$, either $a-1$ or $a+1$ is not a power of 2 . So, the only solution is $3^{2}-1=2^{3}$.

Problem 9. Find all solutions of the equation

$$
(n-1)!+1=n^{m}
$$

in positive integers.
Solution. n must be 1 or prime (otherwise any nontrivial divisor d of n will divide both ($n-1$)! and n^{m}. Now, $n=2, m=1$ is a solution, $n=1$ is not, so it suffices to consider the case when n is an odd prime. If m is odd, then $v_{2}\left(n^{m}-1\right)=v_{2}(n-1)<v_{2}((n-1)!)$ if $n>3$. $n=3$ is not a solution, so we can consider only even m. Then

$$
v_{2}((n-1)!)=v_{2}(m)-1+v_{2}(n+1)+v_{2}(n-1)
$$

or

$$
v_{2}((n-2)!)=v_{2}(n+1)+v_{2}(m)-1
$$

But the left hand side is at least $\frac{n-3}{2}$ (just count evens up to $n-2$), so $m \geq 2^{(n-1) / 2} /(n+1)$, which is at least n for $n \geq 18$. It remains to note that $n^{n}>(n-1)!+1$ for $n>1$. Now comes the remaining finite trial and error part: $4!+1=5^{2}$ is good $6!+1=721$ is bad $n=11$ gives $v_{2}(m)=9$ which is far too large. $n=13$ gives $v_{2}(m)=10$, which is too large too $n=17$ gives some big $v_{2}(m)$ as well.
Problem 10. For some positive integer n, the number $3^{n}-2^{n}$ is a perfect power of a prime. Prove that n is a prime.

Solution. Assume $n=a b, a, b>1$. Then $3^{a}-2^{a}=p^{m}$ with $m \geq 1$. Thus, by LTE, $v_{p}\left(3^{n}-2^{n}\right)=m+v_{p}(b)$ and

$$
p^{m+v_{p}(b)}=3^{a b}-2^{a b}>\left(3^{a}-2^{a}\right)^{b}=p^{m b}
$$

but for $b>1$, one has $m b \geq m+b-1 \geq m+v_{p}(b)$, which gives a contradiction.

Problem 11. Let m, n, b be three positive integers with $m \neq n$ and $b>1$. Show that if prime divisors of the numbers $b^{n}-1$ and $b^{m}-1$ be the same, then $b+1$ is a perfect power of 2 .

Solution. I failed to find a way to use the LTE here. The way I solved it is as follows. Let $u=\operatorname{gcd}(m, n)$. Then $b^{u}-1$ and $b^{2 u}-1$ have the same prime divisors (this uses the proof of the principle I mentioned rather than the statement itself: when you repeat going from m, n to $m-n, n$, you stop when you get two equal numbers). But then each prime dividing $b^{u}+1$ has to divide $b^{u}-1$ whence $b^{u}+1$ is a power of 2 . If u were even, the remainder of the LHS modulo 4 would be 2 , so u is odd. Then $b+1 \mid b^{u}+1$ and must be a power of 2 too.

Problem 12. Find the highest degree k of 1991 for which 1991^{k} divides the number

$$
1990^{1991^{1992}}+1992^{1991^{1990}}
$$

Solution. Using $p=11$ and $p=181$, we get

$$
v_{p}\left(1990^{1991^{1992}}+1\right)=1+1992=1993
$$

and

$$
v_{p}\left(1992^{1991^{1990}}-1\right)=1+1990=1991
$$

Since $v_{p}(a+b)=\min \left(v_{p}(a), v_{p}(b)\right)$ when $v_{p}(a) \neq v_{p}(b)$, the answer is 1991.
Problem 13. Let p be a prime number and $m>1$ be a positive integer. Show that if for some positive integers $x>1, y>1$ we have

$$
\frac{x^{p}+y^{p}}{2}=\left(\frac{x+y}{2}\right)^{m}
$$

then $m=p$.
Solution. Since $\frac{x^{p}+y^{p}}{2} \geq\left(\frac{x+y}{2}\right)^{p}$, we must have $m \geq p$. Now, factoring out $d=\operatorname{gcd}(x, y)$ and writing $x=d x_{1}, y=d y_{1}$, we get

$$
2^{m-1}\left(x_{1}^{p}+y_{1}^{p}\right)=d^{m-p}\left(x_{1}+y_{1}\right)^{m}
$$

Assume that p is odd. Take any prime divisor $q \mid x_{1}+y_{1}$ and let $v=v_{q}\left(x_{1}+y_{1}\right)$. If q is odd, we get $v+1 \geq v+v_{q}(p) \geq m v$ whence $m \leq 2$ and $p \leq 2$, giving an immediate contradiction. If $q=2$, we get $m-1+v \geq m v$, so $v \leq 1$ and $x_{1}+y_{1}=2$, i.e., $x=y$, which immediately implies $m=p$. If $p=2$, we just notice that

$$
\frac{x^{2}+y^{2}}{2}<2\left(\frac{x+y}{2}\right)^{2} \leq\left(\frac{x+y}{2}\right)^{3}
$$

if $x+y \geq 4$, so $m=2$ is the only possibility unless $\{x, y\}=\{1,2\}$, which is easy to outrule.
Problem 14. Find all positive integers x, y such that $p^{x}-y^{p}=1$, where p is a prime.
Solution. The case $p=2$ is easily done $\bmod 4\left(y^{2}+1\right.$ has remainder 2 , so $2^{1}-1^{2}=1$ is the only possibility), so assume that p is odd. Then $y+1=p^{m}$ and, by LTE, $y^{p}+1=p^{m+1}$. $\operatorname{But}\left(p^{m}-1\right)^{p}+1>p^{m+1}$ unless $p=3, m=1$, which gives the second solution.

Problem 15. Let x and y be two positive real numbers such that for each positive integer n, the number $x^{n}-y^{n}$ is a positive integer. Show that x and y are both positive integers.

Problem 16. Let x and y be two positive rational numbers such that for infinitely many positive integers n, the number $x^{n}-y^{n}$ is a positive integer. Show that x and y are both positive integers.

Solution. They are very much alike, so I'll combine the solutions. In 17, start with the observation that $x-y$ and $x+y=\frac{x^{2}-y^{2}}{x-y}$ are rational, so $x, y \in \mathbb{Q}$. Now we are in the conditions of 18 . Write $x=\frac{a}{c}, y=\frac{b}{c}$ where c is the least common denominator of x, y. If $c>1$, take any prime divisor p of c. Then $p^{n} \mid a^{n}-b_{n}$ for infinitely many n and p cannot divide a or b (otherwise it would divide them both and we could reduce the fractions). Led u be the least power such that $p \mid a^{u}-b^{u}$. Then all those n 's are $m u$ for some integer m and we get $n \leq v_{p}\left(a^{n}-b^{n}\right) \leq v_{p}(m)+v_{p}\left(a^{u}-b^{u}\right)+v_{p}\left(a^{u}+b^{u}\right)$ (just not to consider 2 separately). But $v_{p}(m)$ grows only logarithmically in n, so we get a contradiction.

Problem 17. Does there exist a positive integer n such that n has exactly 2000 prime divisors and n divides $2^{n}+1$?

Problem 18. Note that $3^{m} \mid 2^{3^{m}}+1$ by LTE. Thus, if $2^{3^{m}}+1$ has 1999 distinct prime divisors $q_{1}, \ldots, q_{1999}>3$, $n=3^{m} q_{1} \ldots q_{1999}$ will work. Note that each divisor of $2^{3^{m}}+1$ is also a divisor of $2^{3^{m+1}}+1$, so the set of prime divisors either grows without bound or saturates to some finite set P. In the latter case, we have $v_{p}\left(2^{3^{m}}+1\right) \leq\left(m-m_{p}\right)+v_{p}\left(2^{3^{m_{p}}}+1\right) \leq m+C_{p}$ where m_{p} is the least integer such that $p \mid 2^{3^{m_{p}}}+1$. Thus, $2^{3^{m}}+1 \leq C A^{m}$ where A is the product of all primes in P, which is absurd.
Problem 19. Suppose that m and k are non-negative integers, and $p=2^{2^{m}}+1$ is a prime number. Prove that $2^{2^{m+1} p^{k}} \equiv 1\left(\bmod p^{k+1}\right) ; 2^{m+1} p^{k}$ is the smallest positive integer n satisfying the congruence equation $2^{n} \equiv 1\left(\bmod p^{k+1}\right)$.
Solution. $v_{p}\left(2^{2^{m} p^{k}}+1\right)=k+v_{p}\left(2^{2^{m}}+1\right)=k+1$ by LTE and $2^{2^{m} p^{k}}+1 \mid 2^{2^{m+1} p^{k}}-1$. Furthermore, $p \mid 2^{2^{m+1}}-1$ but not $2^{2^{m}}-1$, so if $p \mid 2^{n}-1$, we have $2^{m+1} \mid n$ (powers of 2 have only divisors that are powers of 2 themselves). If $n=Q 2^{m+1}$, then

$$
v_{p}\left(2^{n}-1\right)=v_{p}(Q)+v_{p}\left(2^{2^{m+1}}-1\right)=v_{p}(Q)+1
$$

so $v_{p}(Q) \geq k$.
Problem 20. Let $p \geq 5$ be a prime. Find the maximum value of positive integer k such that

$$
p^{k} \mid(p-2)^{2(p-1)}-(p-4)^{p-1}
$$

Solution. Let $p-1=2^{s} m$. Then, since $v_{p}\left((p-2)^{2}+(p-4)\right)=v_{p}\left(p^{2}-3 p\right)=1, v_{p}\left((p-2)^{2}-(p-4)\right)=$ $v_{p}\left(p^{2}-5 p+8\right)=0$, and $v_{p}\left(2^{s-1} m\right)=0$, we get

$$
\begin{aligned}
v_{p}\left((p-2)^{2(p-1)}-(p-4)^{p-1}\right) & =v_{p}\left((p-2)^{2}-(p-4)^{2}\right) \\
& =v_{p}\left((p-2)^{2}+(p-4)\right)+v_{p}\left((p-2)^{2}-(p-4)\right)=1
\end{aligned}
$$

Problem 21. Find all positive integers a, b which are greater than 1 and

$$
b^{a} \mid a^{b}-1
$$

Solution. Let p be the least prime divisor of b. Let m be the least positive integer for which $p \mid a^{m}-1$. Then $m \mid b$ and $m \mid p-1$, so any prime divisor of m divides b and is less than p. Thus, not to run into a contradiction, we must have $m=1$. Now, if p is odd, we have $a v_{p}(b) \leq v_{p}(a-1)+v_{p}(b)$, so

$$
a-1 \leq(a-1) v_{p}(b) \leq v_{p}(a-1)
$$

which is impossible. Thus $p=2, b$ is even, a is odd and $a v_{2}(b) \leq v_{2}(a-1)+v_{2}(a+1)+v_{2}(b)-1$ whence $a \leq(a-1) v_{2}(b)+1 \leq v_{2}(a-1)+v_{2}(a+1)$, which is possible only if $a=3, v_{2}(b)=1$. Put $b=2 B$ with odd B and rewrite the condition as $2^{3} B^{3} \mid 3^{2 B}-1$. Let q be the least prime divisor of B (now, surely, odd). Let n be the least positive integer such that $q \mid 3^{n}-1$. Then $n \mid 2 B$ and $n \mid q-1$ whence n must be 2 (or B has a smaller prime divisor), so $q \mid 3^{2}-1=8$, which is impossible. Thus $B=1$.
Problem 22. Let a, b be distinct real numbers such that the numbers

$$
a-b, a^{2}-b^{2}, a^{3}-b^{3}, \ldots
$$

Are all integers. Prove that a, b are both integers.
Solution. If $a^{2}=b^{2}$, then $a=-b$ is either an integer or a half-integer, the latter case being impossible because then $a^{3}-b^{3}=2 a^{3}$ is not an integer. Otherwise, a^{2} and b^{2} are integers by problem 17, so $a+b=$ $a^{2}-b^{2} a-b$ is rational, so a, b are rational but all rational square roots of integers are integer.

Problem 23. Find all quadruples of positive integers (x, r, p, n) such that p is a prime number, $n, r>1$ and $x^{r}-1=p^{n}$.

Solution. Assume p is odd. Let $x-1=p^{m}$. Then $n=m+v_{p}(r)$, so $p^{m+v_{p}(r)}=\left(p^{m}+1\right)^{r}-1 \geq p^{m r}$, implying $m+v_{p}(r) \geq m r \geq m+r-1$ and $v_{p}(r) \geq r-1$, which is impossible for $r>1$. Thus $p=2$. If r is odd, we get $n=v_{2}\left(x^{r}-1\right)=v_{2}(x-1)$ so $r=1$, which is outruled. Thus, r is even and $n=v_{2}(x-1)+v_{2}(x+1)+v_{2}(r)-1$. If $m=1$, we get the usual $3^{2}-1=2^{3}$. Otherwise $v_{2}(x+1)=1$, so $n=m+v_{2}(r)$ and we can finish just as we started.

Problem 24. Let $a>b>1$ be positive integers and b be an odd number, let n be a positive integer. If $b^{n} \mid a^{n}-1$, then show that $a^{b}>\frac{3^{n}}{n}$.

Solution. Let P be the set of all prime divisors of b. For $p \in P$, let s_{p} be the least integer such that $p \mid a^{s_{p}}-1$. We have $s_{p}\left|n, s_{p}\right| p-1$ and $n \leq v_{p}\left(a^{s_{p}}-1\right)+v_{p}\left(n / s_{p}\right)$. Now note that $b \geq \prod_{p \in P} p>\prod_{p \in P} s_{p}=S$ and that $a^{s_{p}}-1 \mid a^{S}-1$ for all $p \in P$. Thus,

$$
a^{b}>a^{S}-1 \geq \prod_{p \in P} p^{n} \prod_{p \in P} p^{-v_{p}(n)} \geq 3^{n} / n
$$

Problem 25. Let p be a prime number, $p \neq 3$, and integers a, b such that $p \mid a+b$ and $p^{2} \mid a^{3}+b^{3}$. Prove that $p^{2} \mid a+b$ or $p^{3} \mid a^{3}+b^{3}$.

Solution. If $p \mid a, b$, then $p^{3} \mid a^{3}+b^{3}$. Otherwise LTE applies and $v_{p}(a+b)=v_{p}\left(a^{3}+b^{3}\right) \geq 2$.
Problem 26. Let m and n be positive integers. Prove that for each odd positive integer b there are infinitely many primes p such that $p^{n} \equiv 1\left(\bmod b^{m}\right)$ implies $b^{m-1} \mid n$.

Solution. Let q be any prime divisor of b. If $v_{q}\left(p^{q-1}-1\right)=1$, we get $m v_{q}(b) \leq v_{q}(n)+1$ (using, as before, that the minimal s satisfying $q \mid p^{s}-1$ divides both n and $\left.q-1\right)$ and $v_{q}(n) \geq m v_{q}(b)-1 \geq(m-1) v_{q}(b)$. Thus we just need to show that there are infinitely many primes p satisfying the condition $v_{q}\left(p^{q-1}-1\right)=1$ for all prime divisors of b. If one knows Dirichlet, it is simple: just consider $p \equiv 1+q \bmod q^{2}$ for all primes q dividing p. If not, I'm stuck for now.

Problem 27. Determine all integers $n>1$ such that

$$
\frac{2^{n}+1}{n^{2}}
$$

is an integer.
Solution. Let p be a prime divisor on $n, v=v_{p}(n), Q=p^{-v} n$. We have $p^{2 v} \mid 2^{p^{v}} Q+1$. We also know that $2^{p^{v}} \equiv 2 \bmod p$ by Fermat. Thus $p \mid 2^{Q}+1$ and, by LTE $p^{v} \mid 2^{Q}+1$. Let m be the least positive integer such that $p^{v} \mid 2^{m}+1$. Then $m \mid Q, p^{v-1}(p-1)$. If p is the least prime divisor of n, we conclude that $m=1$ (because Q consists of primes larger than p) and $p=3, v=1$. Now, if p is the second smallest prime divisor in n, then m can be only 3 (the only factor in Q that can occur in $p-1$). But $2^{3}+1=9$ has no prime divisors greater than 3 and we are stuck in our attempt to acsend. Thus, the answer is $n=1$ or $n=3$.

Problem 28. Find all positive integers n such that

$$
\frac{2^{n-1}+1}{n}
$$

is an integer.
Solution. Let $n=p_{1}^{v_{1}} \ldots p_{m}^{v^{m}}$. As before, put $Q_{j}=p_{j}^{-v_{j}} n$. Since $p_{j} \mid 2^{p_{j}^{v_{j}} Q_{j}-1}+1$ and $2^{p_{j}^{v_{j}}} \equiv 2\left(\bmod p_{j}\right)$ by Fermat, we get $p_{j} \mid 2^{Q_{j}-1}+1$. Let m_{j} be the least positive integer such that $p_{j} \mid 2^{m_{j}}+1$. Then m_{j} divides both $Q_{j}-1$ and $\frac{p_{j}-1}{2}$ and $Q_{j}-1$ is an odd multiple of m_{j}. But the power of 2 in $Q_{j}-1=\prod_{k \neq j}\left(1+\left(p_{k}-1\right)\right)-1$ is at least $\min _{k \neq j} v_{2}\left(p_{k}-1\right)$ while $v_{2}\left(m_{j}\right) \leq v_{2}\left(p_{j}-1\right)-1$, so choosing p_{j} so that $v_{2}\left(p_{j}-1\right)$ is minimal, we'll get a contradiction.
Problem 29. Find all primes p, q such that $\frac{\left(5^{p}-2^{p}\right)\left(5^{q}-2^{q}\right)}{p q}$ is an integer.

Solution. Assume $p \leq q$. If $5^{p}-2^{p} \equiv 5-2=3 \bmod p$ by Fermat, so if $p \mid 5^{p}-2^{p}$, then $p=3$. In particular, if $p=q$, then $p=q=3$. If $p<q$ and $p \mid 5^{q}-2^{q}$, then $p \mid 5^{p-1}-2^{p-1}$ by Fermat, so the least $m>0$ such that $p \mid 5^{m}-2^{m}$ must divide both $p-1$ and q, i.e., $m=1$, so $p=3$ again. Now, either $q=3$, or $q \mid 5^{3}-2^{3}=117=9 \cdot 13$, so $(3,13)$ is the only other solution.
Problem 30. For some natural number n let a be the greatest natural nubmer for which $5^{n}-3^{n}$ is divisible by 2^{a}. Also let b be the greatest natural number such that $2^{b} \leq n$. Prove that $a \leq b+3$.
Solution. If n is odd, $a=1$ and there is nothing to prove. If n is even, $a=v_{2}\left(5^{n}-3^{n}\right)=v_{2}(5-3)+v_{2}(5+$ $3)+v_{2}(n)-1=3+v_{2}(n)$. But, clearly, $b \geq v_{2}(n)$.

Problem 31. Find all surjective functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $m, n \in \mathbb{N}$ and every prime p, the number $f(m+n)$ is divisible by p if and only if $f(m)+f(n)$ is divisible by p.

Solution. We start with the (well-known?) observation that every subset S of positive integers that is closed under addition is an eventual arithmetic progression. More precisely, there exists $d \geq 1$ (which actually is just the greatest common divisor of the elements of S) and N such that for $n \geq N$ we have $n \in S \Longleftrightarrow d \mid n$. Now, for prime p, let $S_{p}=\left\{n: p \mid f(n)\right.$. Let d_{p} be the corresponding difference. Thus $p\left|f(n) \Longleftrightarrow d_{p}\right| n$ if n is large. Now take any n and take a huge m divisible by d_{p} (so $p \mid f(m)$). Then $d_{p}\left|m \Longleftrightarrow d_{p}\right| n+m \Longleftrightarrow p|f(n+m) \Longleftrightarrow p| f(n)$, so the equivalence holds without the requirement that n is large too. The next step is to show that the remainder of n modulo d_{p} determines the remainder of $f(n)$ modulo p and vice versa. Let's take $A=\left\{1,2, \ldots d_{p}-1\right.$. For every n there exists the unique $a \in A$ such that $d_{p} \mid n+a$ determined by $n \bmod d_{p}$. But then $p \mid f(n)+f(a)$ determining $f(n) \bmod p$ uniquely. Conversely, let $B=\left\{b_{1}, \ldots, b_{p}\right\}$ so that $f\left(b_{j}\right)=j$ (here is where we use surjectivity). Then once we know $f(n) \bmod p$, we know j such that $p \mid f(n)+j \equiv f\left(n+b_{j}\right) \bmod p$ whence we know that $d_{p} \mid n+b_{j}$. This one-to one correspondence between remainders implies that $p=d_{p}$ and that

$$
p|n-m \Longleftrightarrow p| f(n)-f(m)
$$

In particular, $f(1)=1$ and if $f(n+1)-f(n)= \pm 1$ for all n. Now take a huge odd prime P and note that we can have $P \mid f(P)$ only if all ± 1 up to P are actually 1 . Since P is arbitrarily large, $f(n)=n$ for all n.
Problem 32. Determine all sets of non-negative integers x, y and z which satisfy the equation

$$
2^{x}+3^{y}=z^{2}
$$

Solution. This is just a casework: If $x=0$, we get $3^{y}=(z-1)(z+1)$, but 1 and 3 are the only two powers of 3 differing by 2 , so $y=1, z=2$. If $y=0$, then $2^{x}=(z-1)(z+1)$ giving $z=3, x=3$ in the same way. If $x, y>0$, then x is even $\left(z^{2}\right.$ cannot be $\left.2 \bmod 3\right)$ whence y is even $\left(z^{2}\right.$ cannot be $\left.3 \bmod 4\right)$, so, letting $x=2 X, y=2 Y$, we get $3^{2 Y}=\left(z-2^{X}\right)\left(z+2^{X}\right)$. Thus, we must have $z=2^{X}+1$ and $3^{2 Y}-1=2^{X+1}$. But then $X+1=v_{2}(Y)+3$ by the LTE, so $2 Y \geq 2^{X-1}>X+1$ if $X \geq 4 . X=1$ gives nothing, $X=2$ gives $Y=1$, and $X=3$ gives nothing.
Problem 33. Find all positive integer solutions of equation $x^{2009}+y^{2009}=7^{z}$.
Solution. $7 \mid 2009$ so $7 \mid x+y$ by Fermat. Removing the highest possible power of 7 from x, y, we get

$$
v_{7}\left(x^{2009}+y^{2009}\right)=v_{7}(x+y)+v_{7}(2009)=v_{7}(x+y)+2
$$

so $x^{2009}+y^{2009}=49(x+y)$ but the left hand side is much larger than the right hand one if $\max (x, y)>1$.
Problem 34. Let n be an odd positive integer. Prove that $\left((n-1)^{n}+1\right)^{2}$ divides $n(n-1)^{(n-1)^{n}+1}+n$.
Solution. $n \mid(n-1)^{n}+1$, so for every $p \mid(n-1)^{n}+1$, we have

$$
\begin{aligned}
v_{p}\left((n-1)^{(n-1)^{n}+1}+1\right) & \\
& =v_{p}\left((n-1)^{n}+1\right)+v_{p}\left(\frac{(n-1)^{n}+1+1}{n}\right) \\
& =2 v_{p}\left((n-1)^{n}+1\right)-v_{p}(n)
\end{aligned}
$$

which is just what we need in terms of prime divisors.

Problem 35. Find all positive integers n such that $3^{n}-1$ is divisible by 2^{n}.
Solution. $n \leq v_{2}\left(3^{n}-1\right) \leq 3+v_{2}(n)$, so $n \leq 4$. $1,2,4$ work, 3 doesn't.
Problem 36. Let p be a prime and a, b be positive integers such that $a \equiv b(\bmod p)$. Prove that if $p^{x} \| a-b$ and $p^{y} \| n$, then $p^{x+y} \| a^{n}-b^{n}$.

Solution. LTE, odd prime case.
Problem 37. Let $a, n \geq 2$ be two integers, which have the following property: there exists an integer $k \geq 2$, such that n divides $(a-1)^{k}$. Prove that n also divides $a^{n-1}+a^{n-2}+\cdots+a+1$.

Solution. If some prime $p \mid n$, then $p \mid a-1$ and $v_{p}\left(a^{n}-1\right) \geq v_{p}(a-1)+v_{p}(n)$, which is a restatement of what we need in terms of prime divisors.

Problem 38. Find all positive integers a such that $\frac{5^{a}+1}{3^{a}}$ is a positive integer.
Solution. a must be odd (otherwise the numerator is $2 \bmod 3)$. Then $a \leq v_{3}\left(5^{a}+1\right)=1+v_{3}(a)$ giving $a=1$ as the only solution.

Problem 39. Let a, b, n be positive integers such that $2^{\alpha} \| \frac{a^{2}-b^{2}}{2}$ and $2^{\beta} \| n$ (with $\beta \geq 1$). Prove that $2^{\alpha+\beta} \| a^{n}-b^{n}$.

Solution. LTE, even prime case.

