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Preface

It seems to me that the notion of convex function is
just as fundamental as positive function or increasing
function. If I am not mistaken in this, the notion ought
to find its place in elementary expositions of the theory
of real functions.

J. L. W. V. Jensen

Convexity is a simple and natural notion which can be traced back to
Archimedes (circa 250 B.C.), in connection with his famous estimate of the
value of π (by using inscribed and circumscribed regular polygons). He no-
ticed the important fact that the perimeter of a convex figure is smaller than
the perimeter of any other convex figure surrounding it.

As a matter of fact, we experience convexity all the time and in many
ways. The most prosaic example is our upright position, which is secured as
long as the vertical projection of our center of gravity lies inside the convex
envelope of our feet. Also, convexity has a great impact on our everyday life
through numerous applications in industry, business, medicine, and art. So
do the problems of optimum allocation of resources and equilibrium of non-
cooperative games.

The theory of convex functions is part of the general subject of convexity,
since a convex function is one whose epigraph is a convex set. Nonetheless
it is an important theory per se, which touches almost all branches of math-
ematics. Graphical analysis is one of the first topics in mathematics which
requires the concept of convexity. Calculus gives us a powerful tool in recog-
nizing convexity, the second-derivative test. Miraculously, this has a natural
generalization for the several variables case, the Hessian test. Motivated by
some deep problems in optimization and control theory, convex function the-
ory has been extended to the framework of infinite dimensional Banach spaces
(and even further).

The recognition of the subject of convex functions as one that deserves
to be studied in its own right is generally ascribed to J. L. W. V. Jensen
[114], [115]. However he was not the first to deal with such functions. Among
his predecessors we should recall here Ch. Hermite [102], O. Hölder [106] and
O. Stolz [233]. During the twentieth century, there was intense research ac-
tivity and significant results were obtained in geometric functional analysis,
mathematical economics, convex analysis, and nonlinear optimization. A clas-
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sic book by G. H. Hardy, J. E. Littlewood and G. Pólya [99] played a large
role in the popularization of the subject of convex functions.

Roughly speaking, there are two basic properties of convex functions that
make them so widely used in theoretical and applied mathematics:
• The maximum is attained at a boundary point.
• Any local minimum is a global one. Moreover, a strictly convex function

admits at most one minimum.
The modern viewpoint on convex functions entails a powerful and elegant

interaction between analysis and geometry. In a memorable paper dedicated
to the Brunn–Minkowski inequality, R. J. Gardner [88, p. 358], described this
reality in beautiful phrases: [convexity] “appears like an octopus, tentacles
reaching far and wide, its shape and color changing as it roams from one area
to the next. It is quite clear that research opportunities abound.”

Over the years a number of notable books dedicated to the theory and ap-
plications of convex functions appeared. We mention here: L. Hörmander [108],
M. A. Krasnosel’skii and Ya. B. Rutickii [132], J. E. Pečarić, F. Proschan and
Y. C. Tong [196], R. R. Phelps [199], [200] and A. W. Roberts and D. E. Var-
berg [212]. The references at the end of this book include many other fine
books dedicated to one aspect or another of the theory.

The title of the book by L. Hörmander, Notions of Convexity, is very
suggestive for the present state of art. In fact, nowadays the study of convex
functions has evolved into a larger theory about functions which are adapted
to other geometries of the domain and/or obey other laws of comparison of
means. Examples are log-convex functions, multiplicatively convex functions,
subharmonic functions, and functions which are convex with respect to a
subgroup of the linear group.

Our book aims to be a thorough introduction to contemporary convex
function theory. It covers a large variety of subjects, from the one real vari-
able case to the infinite dimensional case, including Jensen’s inequality and its
ramifications, the Hardy–Littlewood–Pólya theory of majorization, the the-
ory of gamma and beta functions, the Borell–Brascamp–Lieb form of the
Prékopa–Leindler inequality (as well as the connection with isoperimetric in-
equalities), Alexandrov’s well-known result on the second differentiability of
convex functions, the highlights of Choquet’s theory, a brief account on the
recent solution to Horn’s conjecture, and many more. It is certainly a book
where inequalities play a central role but in no case a book on inequalities.
Many results are new, and the whole book reflects our own experiences, both
in teaching and research.

This book may serve many purposes, ranging from a one-semester gradu-
ate course on Convex Functions and Applications to additional bibliographic
material. In a course for first year graduate students, we used the following
route:

• Background : Sections 1.1–1.3, 1.5, 1.7, 1.8, 1.10.
• The beta and gamma functions: Section 2.2.
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• Convex functions of several variables: Sections 3.1–3.12.
• The variational approach of partial differential equations: Appendix C.

The necessary background is advanced calculus and linear algebra. This
can be covered from many sources, for example, from Analysis I and II by
S. Lang [137], [138]. A thorough presentation of the fundamentals of measure
theory is also available in L. C. Evans and R. F. Gariepy [74]. For further
reading we recommend the classical texts by F. H. Clarke [56] and I. Ekeland
and R. Temam [70].

Our book is not meant to be read from cover to cover. For example, Sec-
tion 1.9, which deals with the Hermite–Hadamard inequality, offers a good
starting point for Choquet’s theory. Then the reader may continue with Chap-
ter 4, where this theory is presented in a slightly more general form, to allow
the presence of certain signed measures. We recommend this chapter to be
studied in parallel with the Lectures on Choquet’s theory by R. R. Phelps
[200]. For the reader’s convenience, we collected in Appendix A all the nec-
essary material on the separation of convex sets in locally convex Hausdorff
spaces (as well as a proof of the Krein–Milman theorem).

Appendix B may be seen both as an illustration of convex function theory
and an introduction to an important topic in real algebraic geometry: the
theory of semi-algebraic sets.

Sections 3.11 and 3.12 offer all necessary background on a further study of
convex geometric analysis, a fast-growing topic which relates many important
branches of mathematics.

To help the reader in understanding the theory presented, each section
ends with exercises (accompanied by hints). Also, each chapter ends with
comments covering supplementary material and historical information. The
primary sources we have relied upon for this book are listed in the references.

In order to avoid any confusion relative to our notation, a symbol index
was added for the convenience of the reader. Notice that our book deals only
with real linear spaces and all Borel measures under attention are assumed to
be regular.

We wish to thank all our colleagues and friends who read and commented
on various versions and parts of the manuscript: Madalina Deaconu, Andaluzia
Matei, Sorin Micu, Florin Popovici, Mircea Preda, Thomas Strömberg, Andrei
Vernescu, Peter Wall, Anna Wedestig and Tudor Zamfirescu.

We also acknowledge the financial support of Wenner–Gren Foundations
(Grant 25 12 2002), which made possible the cooperation of the two authors.

In order to keep in touch with our readers, a web page for this book will
be made available at http://www.inf.ucv.ro/∼niculescu/Convex Functions.html

Craiova and Lule̊a Constantin P. Niculescu
September 2004 Lars-Erik Persson
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Introduction

At the core of the notion of convexity is the comparison of means. By a mean
(on an interval I) we understand any function M : I × I → I which verifies
the following property of intermediacy,

inf{s, t} ≤ M(s, t) ≤ sup{s, t},

for all pairs {s, t} of elements of I. M is called a strict mean if these inequali-
ties are strict for s 
= t, and M is called a symmetric mean if M(s, t) = M(t, s)
for all s, t ∈ I.

When I is one of the intervals (0,∞), [0,∞) or (−∞,∞), it is usual to
consider homogeneous means, that is,

M(αs, αt) = αM(s, t)

for all α > 0 and all s, t ∈ I.
Several examples of strict, symmetric and homogeneous means of strictly

positive variables are listed below. They are all continuous (that is, continuous
in both arguments).
Hölder’s means (also called power means):

Mp(s, t) = ((sp + tp)/2)1/p, for p 
= 0

M0(s, t) = lim
p→0

Mp(s, t) =
√

st,

to which we can add

M−∞(s, t) = inf{s, t} and M∞(s, t) = sup{s, t}.

Then A = M1 is the arithmetic mean and G = M0 is the geometric mean.
The mean H = M−1 is known as the harmonic mean.
Lehmer’s means:

Lp(s, t) = (sp + tp)/(sp−1 + tp−1).
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Notice that L1 = A, L1/2 = G and L0 = H. These are the only means that
are both Lehmer means and Hölder means.
Stolarsky’s means:

Sp(s, t) = [(sp − tp)/(ps − pt)]1/(p−1), p 
= 0, 1.

The limiting cases (p = 0 and p = 1) give the logarithmic and identric means,
respectively. Thus

S0(s, t) = lim
p→0

Sp(s, t) =
s − t

log s − log t
= L(s, t)

S1(s, t) = lim
p→1

Sp(s, t) =
1
e

( tt

ss

)1/(t−s)
= I(s, t).

Notice that S2 = A and S−1 = G. The reader may find a comprehensive
account on the entire topic of means in [44].

An important mathematical problem is to investigate how functions be-
have under the action of means. The best-known case is that of midpoint
convex (or Jensen convex ) functions, which deal with the arithmetic mean.
They are precisely the functions f : I → R such that

f
(x + y

2

)
≤ f(x) + f(y)

2
(J)

for all x, y ∈ I. In the context of continuity (which appears to be the only one
of real interest), midpoint convexity means convexity, that is,

f((1 − λ)x + λy) ≤ (1 − λ)f(x) + λf(y) (C)

for all x, y ∈ I and all λ ∈ [0, 1]. See Theorem 1.1.4 for details. By mathemat-
ical induction we can extend the inequality (C) to the convex combinations
of finitely many points in I and next to random variables associated to arbi-
trary probability spaces. These extensions are known as the discrete Jensen
inequality and the integral Jensen inequality, respectively.

It turns out that similar results work when the arithmetic mean is replaced
by any other mean with nice properties. For example, this is the case for
regular means. A mean M : I × I → R is called regular if it is homogeneous,
symmetric, continuous and also increasing in each variable (when the other
is fixed). Notice that the Hölder means and the Stolarsky means are regular.
The Lehmer’s mean L2 is not increasing (and thus it is not regular).

The regular means can be extended from pairs of real numbers to ran-
dom variables associated to probability spaces through a process providing a
nonlinear theory of integration.

Consider first the case of a discrete probability space (X, Σ, µ), where
X = {1, 2}, Σ = P({1, 2}) and µ : P({1, 2}) → [0, 1] is the probability measure
such that µ({i}) = λi for i = 1, 2. A random variable associated to this space
which takes values in I is a function
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h : {1, 2} → I, h(i) = xi.

The mean M extends to a function M(h ; µ) = M(x1, x2 ; λ1, λ2) such
that inf h ≤ M(h; µ) ≤ suph for all such random variables h. In this respect
M(x1, x2 ; λ1, λ2) appears as a weighted mean of x1 and x2 with weights λ1
and λ2 respectively. More precisely, we set

M(x1, x2 ; 1, 0) = x1

M(x1, x2 ; 0, 1) = x2

M(x1, x2 ; 1/2, 1/2) = M(x1, x2)

and for the other dyadic values of λ1 and λ2 we use formulas like

M(x1, x2 ; 3/4, 1/4) = M(M(x1, x2), x1)
M(x1, x2 ; 1/4, 3/4) = M(M(x1, x2), x2)

and so on. In the general case, every λ1 ∈ (0, 1), has a unique dyadic repre-
sentation λ1 =

∑∞
k=1 dk/2k (where d1, d2, d3, . . . is a sequence consisting of

0’s and 1’s, which is not eventually 1) and we put

M(x1, x2 ; λ1, λ2) = lim
n→∞ M

(
x1, x2 ;

n∑
k=1

dk/2k, 1 −
n∑

k=1

dk/2k
)
.

Now we can pass to the case of discrete probability spaces built on fields
with three atoms via the formula

M(x1, x2, x3 ; λ1, λ2, λ3) = M
(
M
(
x1, x2 ;

λ1

1 − λ3
,

λ2

1 − λ3

)
, x3 ; 1 − λ3, λ3

)
.

In the same manner, we can define the means M(x1, . . . , xn ; λ1, . . . , λn),
associated to random variables on probability spaces having n atoms.

We can bring together all power means Mp, for p ∈ R, by considering the
so called quasi-arithmetic means,

M[ϕ](s, t) = ϕ−1
(1

2
ϕ(s) +

1
2
ϕ(t)

)
,

which are associated to strictly monotone continuous mappings ϕ : I → R;
the power mean Mp corresponds to ϕ(x) = xp, if p 
= 0, and to ϕ(x) = log x,
if p = 0. For these means,

M[ϕ](x1, . . . , xn ; λ1, . . . , λn) = ϕ−1
( n∑

k=1

λkϕ(xk)
)
.

Particularly,

A(x1, . . . , xn ; λ1, . . . , λn) =
n∑

k=1

λkxk,
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in the case of the arithmetic mean, and

G(x1, . . . , xn ; λ1, . . . , λn) =
n∏

k=1

xλk

k ,

in the case of the geometric mean.
The algorithm described above may lead to very complicated formulas

for the weighted means M(x1, . . . , xn ; λ1, . . . , λn) when M is not a quasi-
arithmetic mean. For example, this is the case when M is the logarithmic
mean L. However, the weighted means L(x1, . . . , xn ; λ1, . . . , λn) can be in-
troduced by a different algorithm proposed by A. O. Pittenger [201].

We can build a generalized theory of convexity (referred to as the theory
of comparative convexity) simply, by replacing the arithmetic mean by other
means. To be more specific, suppose there are given a pair of means M and
N on the intervals I and J . A function f : I → J is called (M, N)-midpoint
affine, (M, N)-midpoint convex and (M, N)-midpoint concave if, respectively,

f(M(x, y)) = N(f(x), f(y))
f(M(x, y)) ≤ N(f(x), f(y))
f(M(x, y)) ≥ N(f(x), f(y))

for all x, y ∈ I (see G. Aumann [13]). The condition of midpoint affinity is
essentially a functional equation and this explains why the theory of compar-
ative convexity has much in common with the subject of functional equations.

While the general theory of comparative convexity is still in its infancy,
there are some notable facts to be mentioned here. For example, an easy
inductive argument leads us to the following result:

Theorem A (The discrete form of Jensen’s inequality) If M and N
are regular means and F : I → J is an (M, N)-midpoint convex continuous
function, then

F (M(x1, . . . , xn ; λ1, . . . , λn)) ≤ N((F (x1), . . . , F (xn) ; λ1, . . . , λn))

for all x1, . . . , xn ∈ I and all λ1, . . . , λn ∈ [0, 1] with
∑n

k=1 λk = 1.

If (X, Σ, µ) is an arbitrary probability space, it is still possible to define
the mean M(h ; µ) for certain real random variables h ∈ L1(µ) with values
in I. In fact, letting (Σα)α be an upward directed net of finite subfields of Σ
whose union generates Σ, the conditional expectation E(F |Σα) of F ∈ L1(µ)
with respect to Σα gives rise to a positive contractive projection

Pα : L1(µ) → L1(µ|Σα), Pα(F ) = E(F |Σα),

and
E(F |Σα) → F in the norm topology of L1(µ),
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by Lebesgue’s theorem on dominated convergence. See [103, p. 369].
A real random variable h ∈ L1(µ) (with values in I) will be called M -

integrable provided that the limit

M(h ; µ) = lim
α

M(Pα(h) ; µ|Σα)

exists whenever (Σα)α is an upward directed net of finite subfields of Σ whose
union generates Σ.

For the quasi-arithmetic mean M[ϕ] (associated to a strictly monotone
continuous mapping ϕ : I → R) and the probability space associated to the
restriction of the Lebesgue measure to an interval [s, t] ⊂ I, the construction
above yields

M[ϕ]

(
id[s,t] ;

1
t − s

dx
)

= ϕ−1
(

1
t − s

∫ t

s

ϕ(x) dx

)
,

which coincides with the so-called integral ϕ-mean of s and t (also denoted
Intϕ(s, t)). Using the fundamental theorem of calculus, it is easy to see that,
on each interval I, the set of all integral means equals the set of all differen-
tial means. The differential ψ-mean of s and t (associated to a differentiable
mapping ψ : I → R for which ψ′ is one-to-one) is given by the formula

Dψ(s, t) = (ψ′)−1
(ψ(t) − ψ(s)

t − s

)
.

Passing to the limit in Theorem A we obtain:

Theorem B (The continuous form of Jensen’s inequality) Under the
assumptions of Theorem A, if (X, Σ, µ) is a probability space, then

F (M(h ; µ)) ≤ N((F ◦ h ; µ))

for all h ∈ L1
R
(µ) such that h is M -integrable and F ◦ h is N -integrable.

Theorem C (The Hermite–Hadamard inequality) Suppose that M and
N are regular means and F : I → J is a continuous function. Then F is
(M, N)-midpoint convex if and only if for all s < t in I and all probability
measures µ on [s, t] we have the inequality

F (M(s ; t)) ≤ N((F |[s,t] ; µ)).

Proof. The necessity follows from Theorem B (applied to h = id[s,t]). The
sufficiency represents the particular case where µ = (δs + δt)/2. Here δx rep-
resents the Dirac measure concentrated at x. ��

It is worth mentioning the possibility of extending Theorem B beyond the
class of probability measures. This can be done under the additional assump-
tion of positive homogeneity (both for the means M and N , and the involved
function F ) following the model of Lebesgue theory, where formulæ such as
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R

f(x) dx = lim
n→∞

[
2n

(
1
2n

∫ n

−n

f(x) dx

)]
hold. Given a σ-finite measure space (X, Σ, µ), a function h : X → R will be
called M -integrable provided the limit

M(h ; µ) = lim
n→∞

[
µ(Ωn) · M

(
hχΩn ;

µ

µ(Ωn)

)]
exists for every increasing sequence (Ωn)n of finite measure sets of Σ with⋃

n Ωn = X. Then
F (M(h ; µ)) ≤ N((F ◦ h ; µ))

for every h ∈ L1
R
(µ) such that h is M -integrable and F ◦ h is N -integrable (a

fact which extends Theorem C). An illustration of this construction is offered
in Section 3.6.

The theory of comparative convexity encompasses a large variety of classes
of convex-like functions, including log-convex functions, p-convex functions,
and quasi-convex functions. While it is good to understand what they have
in common, it is of equal importance to look inside their own fields.

Chapter 1 is devoted to the case of convex functions on intervals. We
find there a rich diversity of results with important applications and deep
generalizations to the context of several variables.

Chapter 2 is a specific presentation of other classes of functions acting on
intervals which verify a condition of (M, N)-convexity. A theory on relative
convexity, built on the concept of convexity of a function with respect to
another function, is also included.

The basic theory of convex functions defined on convex sets in a normed
linear space is presented in Chapter 3. The case of functions of several real
variables offers many opportunities to illustrate the depth of the subject of
convex functions through a number of powerful results: the existence of the
orthogonal projection, the subdifferential calculus, the well-known Prékopa–
Leindler inequality (and some of its ramifications), Alexandrov’s beautiful
result on the twice differentiability almost everywhere of a convex function,
and the solution to the convex programming problem, among others.

Chapter 4 is devoted to Choquet’s theory and its extension to the con-
text of Steffensen–Popoviciu measures. This encompasses several remarkable
results such as the Hermite–Hadamard inequality, the Jensen–Steffensen in-
equality, and Choquet’s theorem on the existence of extremal measures.

As the material on convex functions (and their generalizations) is ex-
tremely vast, we had to restrict ourselves to some basic questions, leaving
untouched many subjects which other people will probably consider of ut-
most importance. The Comments section at the end of each chapter, and the
Appendices at the end of this book include many results and references to
help the reader to get a better understanding of the field of convex functions.



1

Convex Functions on Intervals

The study of convex functions begins in the context of real-valued functions
of a real variable. Here we find a rich variety of results with significant appli-
cations. More importantly, they will serve as a model for deep generalizations
in the setting of several variables.

1.1 Convex Functions at First Glance

Throughout this book I will denote a nondegenerate interval.

Definition 1.1.1 A function f : I → R is called convex if

f((1 − λ)x + λy) ≤ (1 − λ)f(x) + λf(y) (1.1)

for all points x and y in I and all λ ∈ [0, 1]. It is called strictly convex if
the inequality (1.1) holds strictly whenever x and y are distinct points and
λ ∈ (0, 1). If −f is convex (respectively, strictly convex) then we say that f is
concave (respectively, strictly concave). If f is both convex and concave, then
f is said to be affine.

The affine functions on intervals are precisely the functions of the form
mx + n, for suitable constants m and n. One can easily prove that the fol-
lowing three functions are convex (though not strictly convex): the positive
part x+, the negative part x−, and the absolute value |x|. Together with the
affine functions they provide the building blocks for the entire class of convex
functions on intervals. See Theorem 1.5.7.

The convexity of a function f : I → R means geometrically that the points
of the graph of f |[u,v] are under (or on) the chord joining the endpoints
(u, f(u)) and (v, f(v)), for all u, v ∈ I, u < v; see Fig. 1.1. Then

f(x) ≤ f(u) +
f(v) − f(u)

v − u
(x − u) (1.2)
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for all x ∈ [u, v], and all u, v ∈ I, u < v. This shows that the convex functions
are locally (that is, on any compact subinterval) majorized by affine func-
tions. A companion result, concerning the existence of lines of support, will
be presented in Section 1.5.

Fig. 1.1. Convex function: the graph is under the chord.

The intervals are closed under arbitrary convex combinations, that is,

n∑
k=1

λkxk ∈ I

for all x1, . . . , xn ∈ I, and all λ1, . . . , λn ∈ [0, 1] with
∑n

k=1 λk = 1. This can
be proved by induction on the number n of points involved in the convex
combinations. The case n = 1 is trivial, while for n = 2 it follows from the
definition of a convex set. Assuming the result is true for all convex combi-
nations with at most n ≥ 2 points, let us pass to the case of combinations
with n+1 points, x =

∑n+1
k=1 λkxk. The nontrivial case is when all coefficients

λk lie in (0, 1). But in this case, due to our induction hypothesis, x can be
represented as a convex combination of two elements of I,

x = (1 − λn+1)
( n∑

k=1

λk

1 − λn+1
xk

)
+ λn+1xn+1,

hence x belongs to I.
The above remark has a notable counterpart for convex functions:

Lemma 1.1.2 (The discrete case of Jensen’s inequality) A real-valued
function f defined on an interval I is convex if and only if for all x1, . . . , xn

in I and all scalars λ1, . . . , λn in [0, 1] with
∑n

k=1 λk = 1 we have

f
( n∑

k=1

λkxk

)
≤

n∑
k=1

λkf(xk).



1.1 Convex Functions at First Glance 9

The above inequality is strict if f is strictly convex, all the points xk are
distinct and all scalars λk are positive.

A nice mechanical interpretation of this result was proposed by T. Need-
ham [174]. The precision of Jensen’s inequality is discussed in Section 1.4. See
also Exercise 7, at the end of Section 1.8.

Related to the above geometrical interpretation of convexity is the follow-
ing result due to S. Saks [219]:

Theorem 1.1.3 Let f be a real-valued function defined on an interval I.
Then f is convex if and only if for every compact subinterval J of I, and every
affine function L, the supremum of f + L on J is attained at an endpoint.

This statement remains valid if the perturbations L are supposed to be
linear (that is, of the form L(x) = mx for suitable m ∈ R).

Proof. Necessity: If f is convex, so is the sum F = f +L. Since every point of
a subinterval J = [x, y] is a convex combination z = (1 − λ)x + λy of x and
y, we have

sup
z∈J

F (z) = sup
λ∈[0,1]

F ((1 − λ)x + λy)

≤ sup
λ∈[0,1]

[(1 − λ)F (x) + λF (y)] = max{F (x), F (y)}.

Sufficiency: Given a compact subinterval J = [x, y] of I, there exists an
affine function L(x) = mx + n which agrees with f at the two endpoints x
and y. Then

sup
λ∈[0,1]

[(f − L)((1 − λ)x + λy)] = 0,

which yields

0 ≥ f((1 − λ)x + λy) − L((1 − λ)x + λy)
= f((1 − λ)x + λy) − (1 − λ)L(x) − λL(y)
= f((1 − λ)x + λy) − (1 − λ)f(x) − λf(y)

for every λ ∈ [0, 1]. ��

An easy consequence of Theorem 1.1.3 is that a convex function f is
bounded on every compact subinterval [u, v] of its interval of definition. In
fact, f(x) ≤ M = max{f(u), f(v)} on [u, v] and writing an arbitrary point
x ∈ [u, v] in the form x = (u + v)/2 + t for some t with |t| ≤ (v − u)/2, we
easily infer that

f(x) = f
(u + v

2
+ t

)
≥ 2f

(u + v

2

)
− f

(u + v

2
− t

)
≥ 2f

(u + v

2

)
− M.
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Checking that a function is convex or not is not very easy, but fortunately
several useful criteria are available. Probably the simplest one is the following:

Theorem 1.1.4 (J. L. W. V. Jensen [115]) Let f : I → R be a continu-
ous function. Then f is convex if and only if f is midpoint convex, that is,

f
(x + y

2

)
≤ f(x) + f(y)

2
for all x, y ∈ I.

Proof. Clearly, only the sufficiency part needs an argument. By reductio ad
absurdum, if f is not convex, then there exists a subinterval [a, b] such that
the graph of f |[a,b] is not under the chord joining (a, f(a)) and (b, f(b)); that
is, the function

ϕ(x) = f(x) − f(b) − f(a)
b − a

(x − a) − f(a), x ∈ [a, b]

verifies γ = sup{ϕ(x) | x ∈ [a, b]} > 0. Notice that ϕ is continuous and
ϕ(a) = ϕ(b) = 0. Also, a direct computation shows that ϕ is also midpoint
convex. Put c = inf{x ∈ [a, b] | ϕ(x) = γ}; then necessarily ϕ(c) = γ and
c ∈ (a, b). By the definition of c, for every h > 0 for which c ± h ∈ (a, b) we
have

ϕ(c − h) < ϕ(c) and ϕ(c + h) ≤ ϕ(c)

so that

ϕ(c) >
ϕ(c − h) + ϕ(c + h)

2
in contradiction with the fact that ϕ is midpoint convex. ��

Corollary 1.1.5 Let f : I → R be a continuous function. Then f is convex
if and only if

f(x + h) + f(x − h) − 2f(x) ≥ 0

for all x ∈ I and all h > 0 such that both x + h and x − h are in I.

Notice that both Theorem 1.1.4 and its Corollary 1.1.5 above have straight-
forward variants for the case of strictly convex functions.

Corollary 1.1.5 allows us to check immediately the strict convexity of some
very common functions, such as the exponential function. Indeed, due to the
fact that

a, b > 0, a 
= b, implies
a + b

2
>

√
ab

we have
ex+h + ex−h − 2ex > 0

for all x ∈ R and all h > 0. An immediate consequence of this remark is the
following result, which extends the well-known arithmetic mean–geometric
mean inequality (abbreviated, AM–GM inequality):
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Theorem 1.1.6 (The weighted form of the AM–GM inequality;
L. J. Rogers [215]) If x1, . . . , xn ∈ (0,∞) and λ1, . . . , λn ∈ (0, 1),∑n

k=1 λk = 1, then
n∑

k=1

λkxk > xλ1
1 · · ·xλn

n

unless x1 = · · · = xn.

Replacing xk by 1/xk in the last inequality we get (under the same hy-
potheses on xk and λk),

xλ1
1 · · ·xλn

n > 1 /

n∑
k = 1

λk

xk

unless x1 = · · · = xn (which represents the weighted form of the geometric
mean–harmonic mean inequality).

The particular case of Theorem 1.1.6 where λ1 = · · · = λn = 1/n repre-
sents the usual AM–GM inequality, which can be completed as above, with its
relation to the harmonic mean: For every family x1, . . . , xn of positive numbers
we have

x1 + · · · + xn

n
> n

√
x1 · · ·xn >

n(
1
x1

+ · · · + 1
xn

)
unless x1 = · · · = xn. An estimate of these inequalities is the objective of
Section 2.5 below.

The closure under functional operations with convex functions is an im-
portant source of examples in this area.

Proposition 1.1.7 (The operations with convex functions)

(i) Adding two convex functions (defined on the same interval) we obtain a
convex function; if one of them is strictly convex, then the sum is also
strictly convex.

(ii) Multiplying a (strictly) convex function by a positive scalar we obtain
also a (strictly) convex function.

(iii) The restriction of every (strictly) convex function to a subinterval of its
domain is also a (strictly) convex function.

(iv) If f : I → R is a convex (respectively a strictly convex) function and
g : R → R is a nondecreasing (respectively an increasing) convex func-
tion, then g ◦ f is convex (respectively strictly convex).

(v) Suppose that f is a bijection between two intervals I and J . If f is
increasing, then f is (strictly) convex if and only if f−1 is (strictly)
concave. If f is a decreasing bijection, then f and f−1 are of the same
type of convexity.

We end this section with an analogue of Theorem 1.1.4 for triplets:
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Theorem 1.1.8 (Popoviciu’s inequality [206]) Let f : I → R be a con-
tinuous function. Then f is convex if and only if

f(x) + f(y) + f(z)
3

+ f
(x + y + z

3

)
≥ 2

3

[
f
(x + y

2

)
+ f

(y + z

2

)
+ f

(z + x

2

)]
for all x, y, z ∈ I.

In the variant of strictly convex functions the above inequality is strict
except for x = y = z.

Proof. Necessity: (this implication does not need the assumption on con-
tinuity). Without loss of generality we may assume that x ≤ y ≤ z. If
y ≤ (x + y + z)/3, then

(x + y + z)/3 ≤ (x + z)/2 ≤ z and (x + y + z)/3 ≤ (y + z)/2 ≤ z,

which yields two numbers s, t ∈ [0, 1] such that
x + z

2
= s · x + y + z

3
+ (1 − s) · z

y + z

2
= t · x + y + z

3
+ (1 − t) · z.

Summing up, we get (x + y − 2z)(s + t − 3/2) = 0. If x + y − 2z = 0, then
necessarily x = y = z, and Popoviciu’s inequality is clear.

If s + t = 3/2, we have to sum up the following three inequalities:

f
(x + z

2

)
≤ s · f

(x + y + z

3

)
+ (1 − s) · f(z)

f
(y + z

2

)
≤ t · f

(x + y + z

3

)
+ (1 − t) · f(z)

f
(x + y

2

)
≤ 1

2
· f(x) +

1
2

· f(y)

and then multiply both sides by 2/3.
The case where (x + y + z)/3 < y can be treated in a similar way.

Sufficiency: Popoviciu’s inequality (when applied for y = z), yields the fol-
lowing substitute for the condition of midpoint convexity:

1
4
f(x) +

3
4
f
(x + 2y

3

)
≥ f

(x + y

2

)
for all x, y ∈ I. (1.3)

Using this remark, the proof follows verbatim the argument of Theorem 1.1.4
above. ��

The above statement of Popoviciu’s inequality is only a simplified ver-
sion of a considerably more general result; see the Comments at the end of
this chapter. However, even this version leads to interesting inequalities; see
Exercise 9. An estimate from below of Popoviciu’s inequality is available in
[188].
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Exercises

1. Prove that the following functions are strictly convex:
• − log x and x log x on (0,∞);
• xp on [0,∞) if p > 1; xp on (0,∞) if p < 0; −xp on [0,∞) if p ∈ (0, 1);
• (1 + xp)1/p on [0,∞) if p > 1.

2. Let f : I → R be a convex function and let x1, . . . , xn ∈ I (n ≥ 2). Prove
that

(n − 1)
[f(x1) + · · · + f(xn−1)

n − 1
− f

(x1 + · · · + xn−1

n − 1

)]
cannot exceed

n
[f(x1) + · · · + f(xn)

n
− f

(x1 + · · · + xn

n

)]
.

3. Let x1, . . . , xn > 0 (n ≥ 2) and for each 1 ≤ k ≤ n put

Ak =
x1 + · · · + xk

k
and Gk = (x1 · · ·xk)1/k.

(i) (T. Popoviciu) Prove that(An

Gn

)n

≥
(An−1

Gn−1

)n−1
≥ · · · ≥

(A1

G1

)1
= 1.

(ii) (R. Rado) Prove that

n(An − Gn) ≥ (n − 1)(An−1 − Gn−1) ≥ · · · ≥ 1 · (A1 − G1) = 0.

[Hint : Apply the result of Exercise 2 to f = − log and respectively to
f = exp.]

4. Suppose that f1, . . . , fn are nonnegative concave functions with the same
domain of definition. Prove that (f1 · · · fn)1/n is also a concave function.

5. (i) Prove that Theorem 1.1.4 remains true if the condition of midpoint
convexity is replaced by: f((1 − α)x + αy) ≤ (1 − α)f(x) + αf(y) for
some fixed parameter α ∈ (0, 1), and for all x, y ∈ I.

(ii) Prove that Theorem 1.1.4 remains true if the condition of continuity
is replaced by boundedness from above on every compact subinterval.

6. (New from old) Assume that f(x) is a (strictly) convex function for x > 0.
Prove that xf(1/x) is (strictly) convex too.

7. Infer from Theorem 1.1.6 that min
x,y>0

(x + y + 1
x2y ) = 4/

√
2.

8. (The power means in the discrete case: see Section 1.8, Exercise 1, for the
integral case.) Let x = (x1, . . . , xn) and α = (α1, . . . , αn) be two n-tuples
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of positive elements, such that
∑n

k=1 αk = 1. The (weighted) power mean
of order t is defined as

Mt(x; α) =
( n∑

k=1

αkxt
k

)1/t

for t 
= 0

and

M0(x; α) = lim
t→0+

Mt(x, α) =
n∏

k=1

xαk

k .

Notice that M1 is the arithmetic mean, M0 is the geometric mean and
M−1 is the harmonic mean. Moreover, M−t(x; α) = Mt(x−1; α)−1.

(i) Apply Jensen’s inequality to the function xt/s, to prove that

s ≤ t implies Ms(x; α) ≤ Mt(x; α).

(ii) Prove that the function t → t log Mt(x; α) is convex on R.
(iii) We define M−∞(x; α) = inf{xk | k} and M∞(x, α) = sup{xk | k}.

Prove that

lim
t→−∞ Mt(x; α) = M−∞(x; α) and lim

t→∞ Mt(x; α) = M∞(x; α).

9. (An illustration of Popoviciu’s inequality) Suppose that x1, x2, x3 are pos-
itive numbers, not all equal. Prove that:
(i) 27

∏
i<j(xi + xj)2 > 64x1x2x3(x1 + x2 + x3)3;

(ii) x6
1 + x6

2 + x6
3 + 3x2

1x
2
2x

2
3 > 2(x3

1x
3
2 + x3

2x
3
3 + x3

3x
3
1).

1.2 Young’s Inequality and Its Consequences

Young’s inequality asserts that

ab ≤ ap

p
+

bq

q
for all a, b ≥ 0,

whenever p, q ∈ (1,∞) and 1/p + 1/q = 1; the equality holds if and only
if ap = bq. This is a consequence of the strict convexity of the exponential
function. In fact,

ab = elog ab = e(1/p) log ap+(1/q) log bq

<
1
p

elog ap

+
1
q

elog bq

=
ap

p
+

bq

q

for all a, b > 0 with ap 
= bq. An alternative argument can be obtained by
studying the variation of the function
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F (a) =
ap

p
+

bq

q
− ab, a ≥ 0,

where b ≥ 0 is a parameter. Then F has a strict global minimum at a = bq/p,
which yields F (a) > F (bq/p) = 0 for all a ≥ 0, a 
= bq/p.

W. H. Young [247] actually proved a much more general inequality which
yields the aforementioned one for f(x) = xp−1:

Theorem 1.2.1 (Young’s inequality) Suppose that f : [0,∞) → [0,∞) is
an increasing continuous function such that f(0) = 0 and limx→∞ f(x) = ∞.
Then

ab ≤
∫ a

0
f(x) dx +

∫ b

0
f−1(x) dx

for all a, b ≥ 0, and equality occurs if and only if b = f(a).

Proof. Using the definition of the derivative we can easily prove that the
function

F (x) =
∫ x

0
f(t) dt +

∫ f(x)

0
f−1(t) dt − xf(x)

is differentiable, with F ′ identically 0. This yields

0 ≤ u ≤ a and 0 ≤ v ≤ f(a) =⇒ uv ≤
∫ u

0
f(t) dt +

∫ v

0
f−1(t) dt

and the conclusion of the theorem is now clear. ��

Fig. 1.2. The areas of the two curvilinear triangles exceed the area of the rectangle
with sides u and v.

The geometric meaning of Young’s inequality is indicated in Fig. 1.2.
Young’s inequality is the source of many basic inequalities. The next two

applications concern complex functions defined on an arbitrary measure space
(X, Σ, µ).
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Theorem 1.2.2 (The Rogers–Hölder inequality for p > 1) Let p, q ∈
(1,∞) with 1/p + 1/q = 1, and let f ∈ Lp(µ) and g ∈ Lq(µ). Then fg is
in L1(µ) and we have ∣∣∣∣∫

X

fg dµ

∣∣∣∣ ≤
∫

X

|fg| dµ (1.4)

and ∫
X

|fg| dµ ≤ ‖f‖Lp ‖g‖Lq (1.5)

and thus ∣∣∣∣∫
X

fg dµ

∣∣∣∣ ≤ ‖f‖Lp ‖g‖Lq . (1.6)

The above result extends in a straightforward manner to the pairs p = 1,
q = ∞ and p = ∞, q = 1. In the complementary domain, p ∈ (−∞, 1)\{0}
and 1/p + 1/q = 1, the inequality sign in (1.4)–(1.6) should be reversed. See
Exercises 3 and 4.

For p = q = 2, the inequality (1.6) is called the Cauchy–Buniakovski–
Schwarz inequality .

Proof. The first inequality is trivial. If f or g is zero µ-almost everywhere,
then the second inequality is trivial. Otherwise, using Young’s inequality, we
have |f(x)|

‖f‖Lp

· |g(x)|
‖g‖Lq

≤ 1
p

· |f(x)|p
‖f‖p

Lp

+
1
q

· |g(x)|q
‖g‖q

Lq

for all x in X, such that fg ∈ L1(µ). Thus

1
‖f‖Lp‖g‖Lq

∫
X

|fg| dµ ≤ 1

and this proves (1.5). The inequality (1.6) is immediate. ��

Remark 1.2.3 (Conditions for equality in Theorem 1.2.2) The basic
observation is the fact that

f ≥ 0 and
∫

X

f dµ = 0 imply f = 0 µ-almost everywhere.

Consequently we have equality in (1.4) if and only if

f(x)g(x) = eiθ|f(x)g(x)|
for some real constant θ and for µ-almost every x.

Suppose that p, q ∈ (1,∞) and f and g are not zero µ-almost everywhere.
In order to get equality in (1.5) it is necessary and sufficient to have

|f(x)|
‖f‖Lp

· |g(x)|
‖g‖Lq

=
1
p

· |f(x)|p
‖f‖p

Lp

+
1
q

· |g(x)|q
‖g‖q

Lq
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almost everywhere. The equality case in Young’s inequality shows that this is
equivalent to |f(x)|p/‖f‖p

Lp = |g(x)|q/‖g‖q
Lq almost everywhere, that is,

A|f(x)|p = B|g(x)|q almost everywhere

for some nonnegative numbers A and B.
If p = 1 and q = ∞, we have equality in (1.5) if and only if there is a

constant λ ≥ 0 such that |g(x)| ≤ λ almost everywhere, and |g(x)| = λ for
almost every point where f(x) 
= 0.

Theorem 1.2.4 (Minkowski’s inequality) For 1 ≤ p < ∞ and f, g ∈
Lp(µ) we have

‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp . (1.7)

In the discrete case, using the notation of Exercise 8 in Section 1.1, this
inequality reads

Mp(x + y, α) ≤ Mp(x, α) + Mp(y, α). (1.8)

In this form, it extends to the complementary range 0 < p < 1, with the
inequality sign reversed. The integral analogue for p < 1 is presented in Sec-
tion 3.6.

Proof. For p = 1, the inequality (1.7) follows immediately by integrating the
inequality |f + g| ≤ |f | + |g|. For p ∈ (1,∞) we have

|f + g|p ≤ (|f | + |g|)p ≤ (2 sup{|f |, |g|})p

≤ 2p(|f |p + |g|p),
which shows that f + g ∈ Lp(µ). Moreover, according to Theorem 1.2.2,

‖f + g‖p
Lp =

∫
X

|f + g|p dµ ≤
∫

X

|f + g|p−1 |f | dµ +
∫

X

|f + g|p−1 |g| dµ

≤
(∫

X

|f |p dµ

)1/p(∫
X

|f + g|(p−1)q dµ

)1/q

+
(∫

X

|g|p dµ

)1/p(∫
X

|f + g|(p−1)q dµ

)1/q

= (‖f‖Lp + ‖g‖Lp)‖f + g‖p/q
Lp ,

where 1/p + 1/q = 1, and it remains to observe that p − p/q = 1. ��

Remark 1.2.5 If p = 1, we obtain equality in (1.7) if and only if there is a
positive measurable function ϕ such that

f(x)ϕ(x) = g(x)

almost everywhere on the set {x | f(x)g(x) 
= 0}.
If p ∈ (1,∞) and f is not 0 almost everywhere, then we have equality in

(1.7) if and only if g = λf almost everywhere, for some λ ≥ 0.
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In the particular case when (X, Σ, µ) is the measure space associated with
the counting measure on a finite set,

µ : P({1, . . . , n}) → N, µ(A) = |A|,

we retrieve the classical discrete forms of the above inequalities. For example,
the discrete version of the Rogers–Hölder inequality can be read∣∣∣ n∑

k=1

ξkηk

∣∣∣ ≤
( n∑

k=1

|ξk|p
)1/p( n∑

k=1

|ηk|q
)1/q

for all ξk, ηk ∈ C, k ∈ {1, . . . , n}. On the other hand, a moment’s reflection
shows that we can pass immediately from these discrete inequalities to their
integral analogues, corresponding to finite measure spaces.

Remark 1.2.6 It is important to notice that all numerical inequalities of the
form

f(x1, . . . , xn) ≥ 0 for x1, . . . , xn ≥ 0 (1.9)

where f is a continuous and positively homogeneous function of degree 1
(that is, f(λx1, . . . , λxn) = λf(x1, . . . , xn) for λ ≥ 0), extend to the con-
text of Banach lattices, via a functional calculus invented by A. J. Yudin and
J. L. Krivine. This allows us to replace the real variables of f by positive ele-
ments of a Banach lattice. See [147, Vol. 2, pp. 40–43]. Particularly, this is the
case of the AM–GM inequality, Rogers–Hölder’s inequality, and Minkowski’s
inequality.

Also, all numerical inequalities of the form (1.9), attached to continuous
functions, extend (via the functional calculus with self-adjoint elements) to the
context of C∗-algebras. In fact, the n-tuples of real numbers can be replaced
by n-tuples of mutually commuting positive elements of a C∗-algebra. See [58].

Exercises

1. Recall the identity of Lagrange,( n∑
k=1

a2
k

)( n∑
k=1

b2
k

)
=

∑
1≤j<k≤n

(ajbk − akbj)2 +
( n∑

k=1

akbk

)2
,

which works for all ak, bk ∈ C, k ∈ {1, . . . , n}. Infer from it the discrete
form of Cauchy–Buniakovski–Schwarz inequality,∣∣∣ n∑

k=1

ξkηk

∣∣∣ ≤
( n∑

k=1

|ξk|2
)1/2( n∑

k=1

|ηk|2
)1/2

,

and settle the equality case.
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2. (The Bernoulli inequality)
(i) Prove that for all x > −1 we have

(1 + x)α ≥ 1 + αx if α ∈ (−∞, 0] ∪ [1,∞)

and
(1 + x)α ≤ 1 + αx if α ∈ [0, 1];

if α /∈ {0, 1}, the equality occurs only for x = 0.
(ii) The substitution 1+x → x/y followed by a multiplication by y leads

us to Young’s inequality (for full range of parameters). Show that
this inequality can be written

xy ≥ xp

p
+

yq

q
for all x, y > 0

in the domain p ∈ (−∞, 1)\{0} and 1/p + 1/q = 1.

3. (The Rogers–Hölder inequality for p ∈ (−∞, 1)\{0} and 1/p + 1/q = 1)
Apply Young’s inequality to prove that

n∑
k=1

|akbk| ≥
( n∑

k=1

|ak|p
)1/p( n∑

k=1

|bk|q
)1/q

for all a1, . . . , an, b1, . . . , bn ∈ C and all n ∈ N∗.

4. (A symmetric form of Rogers–Hölder inequality) Let p, q, r be nonzero
real numbers such that 1/p + 1/q = 1/r.
(i) Prove that the inequality

( n∑
k=1

λk|akbk|r
)1/r

≤
( n∑

k=1

λk|ak|p
)1/p( n∑

k=1

λk|bk|q
)1/q

holds in each of the following three cases:

p > 0, q > 0, r > 0; p < 0, q > 0, r < 0; p > 0, q < 0, r < 0.

(ii) Prove that the opposite inequality holds in each of the following cases:

p > 0, q < 0, r > 0; p < 0, q > 0, r > 0; p < 0, q < 0, r < 0.

Here λ1, . . . , λn > 0,
∑n

k=1 λk = 1, and a1, . . . , an, b1, . . . , bn ∈
C\{0}, n ∈ N∗.

(iii) Formulate the above inequalities in terms of power means and then
prove they still work for r = pq/(p + q) if p and q are not both zero,
and r = 0 if p = q = 0.
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5. Prove the following generalization of the Rogers–Hölder inequality: If
(X, Σ, µ) is a measure space and f1, . . . , fn are functions such that fk ∈
Lpk(µ) for some pk ≥ 1, and

∑n
k=1 1/pk = 1, then∣∣∣∣∫

X

( n∏
k=1

fk

)
dµ

∣∣∣∣ ≤
n∏

k=1

‖fk‖Lpk .

6. (A general form of Minkowski’s inequality, see [144, p. 47]) Suppose that
(X, M, µ) and (Y,N , ν) are two σ-finite measure spaces, f is a nonnegative
function on X × Y which is µ × ν-measurable, and let p ∈ [1,∞). Then(∫

X

(∫
Y

f(x, y) dν(y)
)p

dµ(x)
)1/p

≤
∫

Y

(∫
X

f(x, y)p dµ(x)
)1/p

dν(y).

1.3 Smoothness Properties

The entire discussion on the smoothness properties of convex functions on
intervals is based on their characterization in terms of slopes of variable chords
through arbitrary fixed points of their graphs.

Given a function f : I → R and a point a ∈ I, one can associate with them
a new function,

sa : I\{a} → R, sa(x) =
f(x) − f(a)

x − a
,

whose value at x is the slope of the chord joining the points (a, f(a)) and
(x, f(x)) of the graph of f .

Theorem 1.3.1 (L. Galvani [86]) Let f be a real function defined on an
interval I. Then f is convex (respectively, strictly convex) if and only if the
associated functions sa are nondecreasing (respectively, increasing).

In fact,

sa(y) − sa(x)
y − x

=

∣∣∣∣∣∣
1 x f(x)
1 y f(y)
1 a f(a)

∣∣∣∣∣∣
/∣∣∣∣∣∣

1 x x2

1 y y2

1 a a2

∣∣∣∣∣∣
for all three distinct points a, x, y of I, and the proof of Theorem 1.3.1 is a
consequence of the following lemma:

Lemma 1.3.2 Let f be a real function defined on an interval I. Then f is
convex if and only if ∣∣∣∣∣∣

1 x f(x)
1 y f(y)
1 z f(z)

∣∣∣∣∣∣
/∣∣∣∣∣∣

1 x x2

1 y y2

1 z z2

∣∣∣∣∣∣ ≥ 0

for all three distinct points x, y, z of I; equivalently, if and only if
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1 x f(x)
1 y f(y)
1 z f(z)

∣∣∣∣∣∣ ≥ 0 (1.10)

for all x < y < z in I.
The corresponding variant for strict convexity is valid too, provided that

≥ is replaced by >.

Proof. The condition (1.10) means that

(z − y)f(x) − (z − x)f(y) + (y − x)f(z) ≥ 0

for all x < y < z in I. Since each y between x and z can be written as
y = (1 − λ)x + λz, the latter condition is equivalent to the assertion that

f((1 − λ)x + λz) ≤ (1 − λ)f(x) + λf(z)

for all x < z in I and all λ ∈ [0, 1]. ��

We are now prepared to state the main result on the smoothness of convex
functions.

Theorem 1.3.3 (O. Stolz [233]) Let f : I → R be a convex function. Then
f is continuous on the interior int I of I and has finite left and right derivatives
at each point of int I. Moreover, x < y in int I implies

f ′
−(x) ≤ f ′

+(x) ≤ f ′
−(y) ≤ f ′

+(y).

Particularly, both f ′
− and f ′

+ are nondecreasing on int I.

Proof. In fact, according to Theorem 1.3.1 above, we have

f(x) − f(a)
x − a

≤ f(y) − f(a)
y − a

≤ f(z) − f(a)
z − a

for all x ≤ y < a < z in I. This fact assures us that the left derivative at a
exists and

f ′
−(a) ≤ f(z) − f(a)

z − a
.

A symmetric argument will then yield the existence of f ′
+(a) and the

availability of the relation f ′
−(a) ≤ f ′

+(a). On the other hand, starting with
x < u ≤ v < y in int I, the same Theorem 1.3.1 yields

f(u) − f(x)
u − x

≤ f(v) − f(x)
v − x

≤ f(v) − f(y)
v − y

,

so letting u → x+ and v → y−, we obtain that f ′
+(x) ≤ f ′

−(y).
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Because f admits finite lateral derivatives at each interior point, it will be
continuous at each interior point. ��

By Theorem 1.3.3, every continuous convex function f (defined on a non-
degenerate compact interval [a, b]) admits derivatives f ′

+(a) and f ′
−(b) at the

endpoints, but they can be infinite,

−∞ ≤ f ′
+(a) < ∞ and − ∞ < f ′

−(b) ≤ ∞.

How nondifferentiable can a convex function be? Due to Theorem 1.3.3
above, we can immediately prove that every convex function f : I → R is
differentiable except for an enumerable subset. In fact, by considering the set

Ind = {x | f ′
−(x) < f ′

+(x)}
and letting for each x ∈ Ind a rational point rx ∈ (f ′

−(x), f ′
+(x)) we get a

one-to-one function ϕ : x → rx from Ind into Q. Consequently, Ind is at most
countable. Notice that this reasoning depends on the axiom of choice.

An example of a convex function which is not differentiable on a dense
countable set will be exhibited in Remark 1.6.2 below. See also Exercise 3 at
the end of this section.

Simple examples such as f(x) = 0 if x ∈ (0, 1), and f(0) = f(1) = 1, show
that upward jumps could appear at the endpoints of the interval of definition
of a convex function. Fortunately, the possible discontinuities are removable:

Proposition 1.3.4 If f : [a, b] → R is a convex function, then f(a+) and
f(b−) exist in R and

f̃(x) =

⎧⎪⎨⎪⎩
f(a+) if x = a

f(x) if x ∈ (a, b)
f(b−) if x = b

is convex too.

This result is a consequence of the following:

Proposition 1.3.5 If f : I → R is convex, then either f is monotonic on
int I, or there exists an ξ ∈ int I such that f is nonincreasing on the interval
(−∞, ξ] ∩ I and nondecreasing on the interval [ξ,∞) ∩ I.

Proof. Since any convex function verifies formulas of the type (1.2), it suffices
to consider the case where I is open. If f is not monotonic, then there must
exist points a < b < c in I such that

f(a) > f(b) < f(c).

The other possibility, f(a) < f(b) > f(c), is rejected by the same for-
mula (1.2). Since f is continuous on [a, c], it attains its infimum on this interval
at a point ξ ∈ [a, c], that is,
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f(ξ) = inf f([a, c]).

Actually, f(ξ) = inf f(I). In fact, if x < a, then according to Theorem 1.3.1
we have

f(x) − f(ξ)
x − ξ

≤ f(a) − f(ξ)
a − ξ

,

which yields (ξ − a)f(x) ≥ (x − a)f(ξ) + (ξ − x)f(a) ≥ (ξ − a)f(ξ), that is,
f(x) ≥ f(ξ). The other case, when c < x, can be treated in a similar manner.

If u < v < ξ, then

su(ξ) = sξ(u) ≤ sξ(v) =
f(v) − f(ξ)

v − ξ
≤ 0

and thus su(v) ≤ su(ξ) ≤ 0. This shows that f is nonincreasing on I∩(−∞, ξ].
Analogously, if ξ < u < v, then from sv(ξ) ≤ sv(u) we infer that f(v) ≥ f(u),
hence f is nondecreasing on I ∩ [ξ,∞). ��

Corollary 1.3.6 Every convex function f : I → R which is not monotonic
on int I has an interior global minimum.

There is another way to look at the smoothness properties of the con-
vex functions, based on the Lipschitz condition. A function f defined on an
interval J is said to be Lipschitz if there exists a constant L ≥ 0 such that

|f(x) − f(y)| ≤ L|x − y| for all x, y ∈ J.

A famous result due to H. Rademacher asserts that any Lipschitz function
is differentiable almost everywhere. See Theorem 3.11.1.

Theorem 1.3.7 If f : I → R is a convex function, then f is Lipschitz on any
compact interval [a, b] contained in the interior of I.

Proof. By Theorem 1.3.3,

f ′
+(a) ≤ f ′

+(x) ≤ f(y) − f(x)
y − x

≤ f ′
−(y) ≤ f ′

−(b)

for all x, y ∈ [a, b] with x < y, hence f |[a,b] verifies the Lipschitz condition
with L = max{|f ′

+(a)|, |f ′
−(b)|}. ��

Corollary 1.3.8 If fn : I → R (n ∈ N) is a pointwise converging sequence of
convex functions, then its limit f is also convex. Moreover, the convergence is
uniform on any compact subinterval included in int I, and (f ′

n)n converges to
f ′ except possibly at countably many points of I.
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Since the first derivative of a convex function may not exist at a dense
subset, a characterization of convexity in terms of second order derivatives is
not possible unless we relax the concept of twice differentiability. The upper
and the lower second symmetric derivative of f at x, are respectively defined
by the formulas

D2
f(x) = lim sup

h↓0

f(x + h) + f(x − h) − 2f(x)
h2

D2f(x) = lim inf
h↓0

f(x + h) + f(x − h) − 2f(x)
h2 .

It is not difficult to check that if f is twice differentiable at a point x, then

D2
f(x) = D2f(x) = f ′′(x);

however D2
f(x) and D2f(x) can exist even at points of discontinuity; for

example, consider the case of the signum function and the point x = 0.

Theorem 1.3.9 Suppose that I is an open interval. A real-valued function f

is convex on I if and only if f is continuous and D2
f ≥ 0.

Accordingly, if a function f : I → R is convex in the neighborhood of each
point of I, then it is convex on the whole interval I.

Proof. If f is convex, then clearly D2
f ≥ D2f ≥ 0. The continuity of f follows

from Theorem 1.3.3.
Now, suppose that D2

f > 0 on I. If f is not convex, then we can find a
point x0 such that D2

f(x0) ≤ 0, which will be a contradiction. In fact, in this
case there exists a subinterval I0 = [a0, b0] such that f((a0+b0)/2) > (f(a0)+
f(b0))/2. A moment’s reflection shows that one of the intervals [a0, (a0+b0)/2],
[(3a0 + b0)/4, (a0 + 3b0)/4], [(a0 + b0)/2, b0] can be chosen to replace I0 by a
smaller interval I1 = [a1, b1], with b1 − a1 = (b0 − a0)/2 and f((a1 + b1)/2) >
(f(a1)+f(b1))/2. Proceeding by induction, we arrive at a situation where the
principle of included intervals gives us the point x0.

In the general case, consider the sequence of functions

fn(x) = f(x) +
1
n

x2.

Then D2
fn > 0, and the above reasoning shows us that fn is convex. Clearly

fn(x) → f(x) for each x ∈ I, so that the convexity of f will be a consequence
of Corollary 1.3.8 above. ��

Corollary 1.3.10 (The second derivative test) Suppose that f : I → R

is a twice differentiable function. Then:
(i) f is convex if and only if f ′′ ≥ 0;
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(ii) f is strictly convex if and only if f ′′ ≥ 0 and the set of points where f ′′

vanishes does not include intervals of positive length.

An important result due to A. D. Alexandrov asserts that all convex func-
tions are almost everywhere twice differentiable. See Theorem 3.11.2.

Remark 1.3.11 (Higher order convexity) The following generalization
of the notion of a convex function was initiated by T. Popoviciu in 1934. A
function f : [a, b] → R is said to be n-convex (n ∈ N∗) if for all choices of n+1
distinct points x0 < · · · < xn in [a, b], the n-th order divided difference of f
satisfies

f [x0, . . . , xn] ≥ 0.

The divided differences are given inductively by

f [x0, x1] =
f(x0) − f(x1)

x0 − x1

f [x0, x1, x2] =
f [x0, x1] − f [x1, x2]

x0 − x2

...

f [x0, . . . , xn] =
f [x0, . . . , xn−1] − f [x1, . . . , xn]

x0 − xn
.

Thus the 1-convex functions are the nondecreasing functions, while the
2-convex functions are precisely the classical convex functions. In fact,∣∣∣∣∣∣

1 x f(x)
1 y f(y)
1 z f(z)

∣∣∣∣∣∣
/∣∣∣∣∣∣

1 x x2

1 y y2

1 z z2

∣∣∣∣∣∣ =
f [y, z] − f [x, z]

y − x
,

and the claim follows from Lemma 1.3.2. As T. Popoviciu noticed in his book
[205], if f is n-times differentiable, with f (n) ≥ 0, then f is n-convex.

See [196] and [212] for a more detailed account on the theory of n-convex
functions.

Exercises

1. (An application of the second derivative test of convexity)
(i) Prove that the functions log((eax−1)/(ex−1)) and log(sinh ax/ sinhx)

are convex on R if a ≥ 1.
(ii) Prove that the function b log cos(x/

√
b) − a log cos(x/

√
a) is convex

on (0, π/2) if b ≥ a ≥ 1.

2. Suppose that 0 < a < b < c (or 0 < b < c < a, or 0 < c < b < a). Use
Lemma 1.3.2 to infer the following inequalities:
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(i) abα + bcα + caα > acα + baα + cbα for α ≥ 1;
(ii) abbcca > accbba;

(iii)
a(c − b)

(c + b)(2a + b + c)
+

b(a − c)
(a + c)(a + 2b + c)

+
c(b − a)

(b + a)(a + b + 2c)
> 0.

3. Show that the function f(x) =
∑∞

n=0 |x − n|/2n, x ∈ R, provides an
example of a convex function which is nondifferentiable on a countable
subset.

4. Let D be a bounded closed convex subset of the real plane. Prove that D
can be always represented as

D = {(x, y) | f(x) ≤ y ≤ g(x), x ∈ [a, b]}
for suitable functions f : [a, b] → R convex, and g : [a, b] → R concave.
Infer that the boundary of D is smooth except possibly for an enumerable
subset.

5. Prove that a continuous convex function f : [a, b] → R can be extended to
a convex function on R if and only if f ′

+(a) and f ′
−(b) are finite.

6. Use Corollary 1.3.10 to prove that the sine function is strictly concave on
[0, π]. Infer that ( sin a

a

)
x ≤ sin x ≤ sin a

(x

a

)a cot a

for every a ∈ (0, π/2] and every x ∈ [0, a]. For a = π/2 this yields the
classical inequality of Jordan.

7. Let f : [0, 2π] → R be a convex function. Prove that

an =
1
π

∫ 2π

0
f(t) cos nt dt ≥ 0 for every n ≥ 1.

8. (J. L. W. V. Jensen [115]) Prove that a function f : [0, M ] → R is nonde-
creasing if and only if

n∑
k=1

λkf(xk) ≤
( n∑

k=1

λk

)
f
( n∑

k=1

xk

)
for all finite families λ1, . . . , λn ≥ 0 and x1, . . . , xn ∈ [0, M ], with∑n

k=1 xk ≤ M and n ≥ 2. This applies to any continuous convex func-
tion g : [0, M ] → R, noticing that [g(x) − g(0)]/x is nondecreasing.

9. (van der Corput’s lemma) Let λ > 0 and let f : R → R be a function of
class C2 such that f ′′ ≥ λ. Prove that∣∣∣∣∫ b

a

eif(t) dt

∣∣∣∣ ≤ 4
√

2/λ for all a, b ∈ R.

[Hint : Use integration by parts on intervals around the point where f ′

vanishes. ]
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1.4 An Upper Estimate of Jensen’s Inequality

An important topic related to inequalities is their precision. The following re-
sult (which exhibits the power of one-variable techniques in a several-variables
context) yields an upper estimate of Jensen’s inequality:

Theorem 1.4.1 Let f : [a, b] → R be a convex function and let

[m1, M1], . . . , [mn, Mn]

be compact subintervals of [a, b]. Given λ1, . . . , λn in [0, 1], with
∑n

k=1 λk = 1,
the function

E(x1, . . . , xn) =
n∑

k=1

λkf(xk) − f
( n∑

k=1

λkxk

)
attains its maximum on Ω = [m1, M1]× · · ·× [mn, Mn] at a vertex, that is, at
a point of {m1, M1} × · · · × {mn, Mn}.

The proof depends upon the following refinement of Lagrange’s mean value
theorem:

Lemma 1.4.2 Let h : [a, b] → R be a continuous function. Then there exists
a point c ∈ (a, b) such that

Dh(c) ≤ h(b) − h(a)
b − a

≤ Dh(c).

Here

Dh(c) = lim inf
x→c

h(x) − h(c)
x − c

and Dh(c) = lim sup
x→c

h(x) − h(c)
x − c

.

are respectively the lower derivative and the upper derivative of h at c.

Proof. As in the smooth case, we consider the function

H(x) = h(x) − h(b) − h(a)
b − a

(x − a), x ∈ [a, b].

Clearly, H is continuous and H(a) = H(b). If H attains its supremum at
c ∈ (a, b), then DH(c) ≤ 0 ≤ DH(c) and the conclusion of Lemma 1.4.2 is
immediate. The same is true when H attains its infimum at an interior point
of [a, b]. If both extremes are attained at the endpoints, then H is constant
and the conclusion of Lemma 1.4.2 works for all c in (a, b). ��

Proof of Theorem 1.4.1. Clearly, we may assume that f is also continuous.
We shall show (by reductio ad absurdum) that
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E(x1, . . . , xk, . . . , xn) ≤ sup{E(x1, . . . , mk, . . . , xn), E(x1, . . . , Mk, . . . , xn)}
for all (x1, x2, . . . , xn) ∈ Ω and all k ∈ {1, . . . , n}. In fact, if

E(x1, x2, . . . , xn) > sup{E(m1, x2, . . . , xn), E(M1, x2, . . . , xn)}
for some (x1, x2, . . . , xn) ∈ Ω, we consider the function

h : [m1, M1] → R, h(x) = E(x, x2, . . . , xn).

According to Lemma 1.4.2, there exists a ξ ∈ (m1, x1) such that

h(x1) − h(m1) ≤ (x1 − m1)Dh(ξ).

Since h(x1) > h(m1), it follows that Dh(ξ) > 0, equivalently,

Df(ξ) > Df(λ1ξ + λ2x2 + · · · + λnxn).

Or, Df = f ′
+ is a nondecreasing function on (a, b), which yields

ξ > λ1ξ + λ2x2 + · · · + λnxn,

and thus ξ > (λ2x2 + · · · + λnxn)/(λ2 + · · · + λn).
A new appeal to Lemma 1.4.2 (applied this time to h|[x1,M1]), yields an

η ∈ (x1, M1) such that η < (λ2x2 + · · · + λnxn)/(λ2 + · · · + λn). But this
contradicts the fact that ξ < η. ��
Corollary 1.4.3 Let f : [a, b] → R be a convex function. Then

f(a) + f(b)
2

− f
(a + b

2

)
≥ f(c) + f(d)

2
− f

(c + d

2

)
for all a ≤ c ≤ d ≤ b.

An application of Corollary 1.4.3 to series summation may be found in
[99, p. 100].

Theorem 1.4.1 allows us to retrieve a remark due to L. G. Khanin [125]:
Let p > 1, x1, . . . , xn ∈ [0, M ] and λ1, . . . , λn ∈ [0, 1], with

∑n
k=1 λk = 1.

Then
n∑

k=1

λkxp
k ≤

( n∑
k=1

λkxk

)p

+ (p − 1)pp/(1−p)Mp.

In particular,

x2
1 + · · · + x2

n

n
≤
(x1 + · · · + xn

n

)2
+

M2

4
,

which represents an additive converse to the Cauchy–Buniakovski–Schwarz
inequality. In fact, according to Theorem 1.4.1, the function

E(x1, . . . , xn) =
n∑

k=1

λkxp
k −

( n∑
k=1

λkxk

)p

,

attains its supremum on [0, M ]n at a point whose coordinates are either 0 or
M . Therefore supE(x1, . . . , xn) does not exceed Mp ·sup {s − sp | s ∈ [0, 1]} =
(p − 1) pp/(1−p)Mp.
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Exercises

1. (Kantorovich’s inequality) Let m, M, a1, . . . , an be positive numbers, with
m < M . Prove that the maximum of

f(x1, . . . , xn) =
( n∑

k=1

akxk

)( n∑
k=1

ak/xk

)
for x1, . . . , xn ∈ [m, M ] is equal to

(M + m)2

4Mm

( n∑
k=1

ak

)2
− (M − m)2

4Mm
min

X⊂{1,...,n}

(∑
k∈X

ak −
∑

k∈�X

ak

)2
.

Remark. The following particular case( 1
n

n∑
k=1

xk

)( 1
n

n∑
k=1

1
xk

)
≤ (M + m)2

4Mm
− (1 + (−1)n+1)(M − m)2

8Mmn2

represents an improvement on Schweitzer’s inequality for odd n.

2. Let ak, bk, ck, mk, Mk, m′
k, M ′

k be positive numbers with mk < Mk and
m′

k < M ′
k for k ∈ {1, . . . , n} and let p > 1. Prove that the maximum of

( n∑
k=1

akxp
k

)( n∑
k=1

bkyp
k

)/( n∑
k=1

ckxkyk

)p

for xk ∈ [mk, Mk] and yk ∈ [m′
k, M ′

k] (k ∈ {1, . . . , n}) is attained at a
2n-tuple whose components are endpoints.

3. Assume that f : I → R is strictly convex and continuous and g : I → R

is continuous. For a1, . . . , an > 0 and mk, Mk ∈ I, with mk < Mk for
k ∈ {1, . . . , n}, consider the function

h(x1, . . . , xn) =
n∑

k=1

akf(xk) + g
( n∑

k=1

akxk

/ n∑
k=1

ak

)
defined on

∏n
k=1[mk, Mk]. Prove that a necessary condition for a point

(y1, . . . , yn) to be a point of maximum is that at most one component yk

is inside the corresponding interval [mk, Mk].

1.5 The Subdifferential

In the case of nonsmooth convex functions, the lack of tangent lines can be
supplied by support lines. See Fig. 1.3. Given a function f : I → R, we say
that f admits a support line at x ∈ I if there exists a λ ∈ R such that
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f(y) ≥ f(x) + λ(y − x), for all y ∈ I.

We call the set ∂f(x) of all such λ the subdifferential of f at x. Geomet-
rically, the subdifferential gives us the slopes of the supporting lines for the
graph of f . The subdifferential is always a convex set, possibly empty.

Fig. 1.3. Convexity: the existence of support lines at interior points.

The convex functions have the remarkable property that ∂f(x) 
= ∅ at all
interior points. However, even in their case, the subdifferential could be empty
at the endpoints. An example is given by the continuous convex function
f(x) = 1 − √

1 − x2, x ∈ [−1, 1], which fails to have a support line at x = ±1.
We may think of ∂f(x) as the value at x of a set-valued function ∂f (the

subdifferential of f), whose domain dom ∂f consists of all points x in I where
f has a support line.

Lemma 1.5.1 Let f be a convex function on an interval I. Then ∂f(x) 
= ∅
at all interior points of I. Moreover, every function ϕ : I → R for which
ϕ(x) ∈ ∂f(x) whenever x ∈ int I verifies the double inequality

f ′
−(x) ≤ ϕ(x) ≤ f ′

+(x),

and thus is nondecreasing on int I.

The conclusion above includes the endpoints of I provided that f is differ-
entiable there. As a consequence, the differentiability of a convex function f
at a point means that f admits a unique support line at that point.

Proof. First, we shall prove that f ′
+(a) ∈ ∂f(a) for each a ∈ int I (and also

at the leftmost point of I, provided that f is differentiable there). In fact, if
x ∈ I, with x ≥ a, then

f((1 − t)a + tx) − f(a)
t

≤ f(x) − f(a)

for all t ∈ (0, 1], which yields
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f(x) ≥ f(a) + f ′
+(a) · (x − a).

If x ≤ a, then a similar argument leads us to f(x) ≥ f(a)+f ′
−(a) · (x−a);

or f ′
−(a) · (x − a) ≥ f ′

+(a) · (x − a), because x − a ≤ 0.
Analogously, we can argue that f ′

−(a) ∈ ∂f(a) for all a ∈ int I (and also
for the rightmost point in I provided that f is differentiable at that point).

The fact that ϕ is nondecreasing follows now from Theorem 1.3.3. ��

Every continuous convex function is the upper envelope of its support
lines. More precisely:

Theorem 1.5.2 Let f be a continuous convex function on an interval I and
let ϕ : I → R be a function such that ϕ(x) belongs to ∂f(x) for all x ∈ int I.
Then

f(z) = sup{f(x) + (z − x)ϕ(x) | x ∈ int I} for all z ∈ I.

Proof. The case of interior points is clear. If z is an endpoint, say the left one,
then we have already noticed that

f(z + t) − f(z) ≤ tϕ(z + t) ≤ f(z + 2t) − f(z + t)

for t > 0 small enough, which yields limt→0+ tϕ(z + t) = 0. Given ε > 0, there
is δ > 0 such that |f(z) − f(z + t)| < ε/2 and |tϕ(z + t)| < ε/2 for 0 < t < δ.
This shows that f(z + t) − tϕ(z + t) < f(z) + ε for 0 < t < δ and the result
follows. ��

The following result shows that only the convex functions satisfy the con-
dition ∂f(x) 
= ∅ at all interior points of I.

Theorem 1.5.3 Let f : I → R be a function such that ∂f(x) 
= ∅ at all
interior points x of I. Then f is convex.

Proof. Let u, v ∈ I, u 
= v, and let t ∈ (0, 1). Then (1 − t)u + tv ∈ int I, so
that for all λ ∈ ∂f((1 − t)u + tv) we get

f(u) ≥ f((1 − t)u + tv) + t(u − v) · λ,

f(v) ≥ f((1 − t)u + tv) − (1 − t)(u − v) · λ.

By multiplying the first inequality by 1 − t, the second one by t and then
adding them side by side, we get (1 − t)f(u) + tf(v) ≥ f((1 − t)u + tv), hence
f is a convex function. ��

We shall illustrate the importance of the subdifferential by proving two
classical results. The first one is the basis of the theory of majorization, which
will be later described in Section 1.10.
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Theorem 1.5.4 (The Hardy–Littlewood–Pólya inequality) Suppose
that f is a convex function on an interval I and consider two families
x1, . . . , xn and y1, . . . , yn of points in I such that

m∑
k=1

xk ≤
m∑

k=1

yk for m ∈ {1, . . . , n}

and
n∑

k=1

xk =
n∑

k=1

yk.

If x1 ≥ · · · ≥ xn, then
n∑

k=1

f(xk) ≤
n∑

k=1

f(yk),

while if y1 ≤ · · · ≤ yn this inequality works in the reverse direction.

Proof. We shall concentrate here on the first conclusion (concerning the de-
creasing families), which will be settled by mathematical induction. The sec-
ond conclusion follows from the first one by replacing f by f̃ : Ĩ → R, where
Ĩ = {−x | x ∈ I} and f̃(x) = f(−x) for x ∈ Ĩ.

The case n = 1 is clear. Assuming the conclusion valid for all families of
length n−1, we pass to the case of families of length n. Under the hypotheses
of Theorem 1.5.4, we have x1, x2, . . . , xn ∈ [mink yk, maxk yk], so that we may
restrict to the case where

min
k

yk < x1, . . . , xn < max
k

yk.

Then x1, . . . , xn are interior points of I. According to Lemma 1.5.1 we may
choose a nondecreasing function ϕ : int I → R such that ϕ(x) ∈ ∂f(x) for all
x ∈ int I. By Theorem 1.5.2 and Abel’s summation formula we get

n∑
k=1

f(yk) −
n∑

k=1

f(xk)

≥
n∑

k=1

ϕ(xk)(yk − xk)

= ϕ(x1)(y1 − x1) +
n∑

m=2

ϕ(xm)
[ m∑

k=1

(yk − xk) −
m−1∑
k=1

(yk − xk)
]

= ϕ(xn)
n∑

k=1

(yk − xk) +
n−1∑
m=1

[
(ϕ(xm) − ϕ(xm+1))

m∑
k=1

(yk − xk)
]

=
n−1∑
m=1

[
(ϕ(xm) − ϕ(xm+1))

m∑
k=1

(yk − xk)
]
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and the proof is complete. ��

A more general result (which includes also Corollary 1.4.3) will be the
objective of Theorem 2.7.8.

Remark 1.5.5 The Hardy–Littlewood–Pólya inequality implies many other
inequalities on convex functions. We shall detail here the case of Popoviciu’s
inequality (see Theorem 1.1.8).

Without loss of generality we may assume the ordering x ≥ y ≥ z. Then

(x + y)/2 ≥ (z + x)/2 ≥ (y + z)/2 and x ≥ (x + y + z)/3 ≥ z.

If x ≥ (x+ y + z)/3 ≥ y ≥ z, then the conclusion of Theorem 1.1.8 follows
from Theorem 1.5.4, applied to the families

x1 = x, x2 = x3 = x4 = (x + y + z)/3, x5 = y, x6 = z,

y1 = y2 = (x + y)/2, y3 = y4 = (x + z)/2, y5 = y6 = (y + z)/2,

while in the case x ≥ y ≥ (x + y + z)/3 ≥ z, we have to consider the families

x1 = x, x2 = y, x3 = x4 = x5 = (x + y + z)/3, x6 = z,

y1 = y2 = (x + y)/2, y3 = y4 = (x + z)/2, y5 = y6 = (y + z)/2.

Our second application concerns a classical generalization of Jensen’s in-
equality, which deals with linear (not necessarily convex) combinations:

Theorem 1.5.6 (The Jensen–Steffensen inequality) Let xn ≤ xn−1 ≤
· · · ≤ x1 be points in [a, b] and let p1, . . . , pn be real numbers such that the
partial sums Sk =

∑k
i=1 pi verify the relations

0 ≤ Sk ≤ Sn and Sn > 0.

Then every convex function f defined on [a, b] verifies the inequality

f
( 1

Sn

n∑
k=1

pkxk

)
≤ 1

Sn

n∑
k=1

pkf(xk).

Proof. Put x̄ = (
∑n

k=1 pkxk)/Sn and let S̄k = Sn − Sk−1 =
∑n

i=k pi. Then

Sn(x1 − x̄) =
n∑

i=1

pi(x1 − xi) =
n∑

j=2

(xj−1 − xj)S̄j ≥ 0

and

Sn(x̄ − xn) =
n−1∑
i=1

pi(xi − xn) =
n−1∑
j=1

(xj − xj+1)Sj ≥ 0,
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which shows that xn ≤ x̄ ≤ x1. At this point we may restrict ourselves to
the case where f is continuous and the points x1, . . . , xn belong to (a, b).
See Proposition 1.3.4. According to Lemma 1.5.1, we may choose a function
ϕ : I → R such that ϕ(x) ∈ ∂f(x) for all x ∈ int I. Then

f(z) − f(y) ≥ ϕ(c)(z − y) if z ≥ y ≥ c

and
f(z) − f(y) ≤ ϕ(c)(z − y) if c ≥ z ≥ y.

Choose also an index m such that x̄ ∈ [xm+1, xm]. Then

f
( 1

Sn

n∑
k=1

pkxk

)
− 1

Sn

n∑
k=1

pkf(xk)

is majorized by

m−1∑
i=1

[ϕ(x̄)(xi − xi+1) − f(xi) + f(xi+1)]
Si

Sn

+ [ϕ(x̄)(xm − x̄) − f(xm) + f(x̄)]
Sm

Sn

+ [f(x̄) − f(xm+1) − ϕ(x̄)(x̄ − xm+1)]
S̄m+1

Sn

+
n−1∑

i=m+1

[f(xi) − f(xi+1) − ϕ(x̄)(xi − xi+1)]
S̄i+1

Sn
,

which is a sum of nonpositive numbers. ��

A powerful device to prove inequalities for convex functions is to take ad-
vantage of some structure results. The class of piecewise linear convex func-
tions appears to be very important. Here a function f : [a, b] → R is said to
be piecewise linear if there exists a division a = x0 < · · · < xn = b such that
the restriction of f to each partial interval [xk, xk+1] is an affine function.

Theorem 1.5.7 (T. Popoviciu [203]) Let f : [a, b] → R be a piecewise lin-
ear convex function. Then f is the sum of an affine function and a linear com-
bination, with positive coefficients, of translates of the absolute value function.
In other words, f is of the form

f(x) = αx + β +
n∑

k=1

ck|x − xk| (1.11)

for suitable α, β ∈ R and suitable nonnegative coefficients c1, . . . , cn.
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Proof. Let a = x0 < · · · < xm = b be a division of [a, b] such that the
restriction of f to each partial interval [xk, xk+1] is affine. If αx + β is the
affine function whose restriction to [x0, x1] coincides with f |[x0,x1], then it
will be a support line for f and f(x) − (αx + β) will be a nondecreasing
convex function which vanishes on [x0, x1]. A moment’s reflection shows the
existence of a constant c1 ≥ 0 such that f(x) − (αx + β) = c1(x − x1)+ on
[x0, x2]. Repeating the argument we arrive at the representation

f(x) = αx + β +
m−1∑
k=1

ck(x − xk)+ (1.12)

where all coefficients ck are nonnegative. The proof ends by replacing the
translates of the positive part function by translates of the absolute value
function. This is possible via the formula y+ = (|y| + y)/2. ��

Suppose that we want to prove the validity of the discrete form of Jensen’s
inequality for all continuous convex functions f : [a, b] → R. Since every such
function can be uniformly approximated by piecewise linear convex functions
we may restrict ourselves to this particular class of functions. If Jensen’s
inequality works for two functions f1 and f2, it also works for every combi-
nation c1f1 + c2f2 with nonnegative coefficients. According to Theorem 1.5.7,
this shows that the proof of Jensen’s inequality (within the class of contin-
uous convex functions f : [a, b] → R) reduces to its verification for affine
functions and translates x → |x − y|, or both cases are immediate. In the
same manner (but using the representation formula (1.12)), one can prove
the Hardy–Littlewood–Pólya inequality. Popoviciu’s inequality was originally
proved via Theorem 1.5.7. For it, the case of the absolute value function re-
duces to Hlawka’s inequality on the real line, that is,

|x| + |y| + |z| + |x + y + z| ≥ |x + y| + |y + z| + |z + x|
for all x, y, z ∈ R. A simple proof may be found in the Comments section at
the end of Chapter 2.

The representation formula (1.11) admits a generalization for all continu-
ous convex functions on intervals. See Theorem 1.6.3.

Exercises

1. Let f : I → R be a convex function. Show that:
(i) Any local minimum of f is a global one;
(ii) f attains a global minimum at a if and only if 0 ∈ ∂f(a);
(iii) if f has a global maximum at an interior point of I, then f is constant.

2. Suppose that f : R → R is a convex function which is bounded from above.
Prove that f is constant.
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3. (Convex mean value theorem) Consider a continuous convex function
f : [a, b] → R. Prove that (f(b) − f(a))/(b − a) ∈ ∂f(c) for some point
c ∈ (a, b).

4. (A geometric application of the Hardy–Littlewood–Pólya inequality; see
M. S. Klamkin [127]) Let P , A and P ′, A′ denote the perimeter and area,
respectively, of two convex polygons P and P ′ inscribed in the same circle
(the center of the circle lies in the interior of both polygons). If the greatest
side of P ′ is less than or equal with the smallest side of P, prove that

P ′ ≥ P and A′ ≥ A

with equality if and only if the polygons are congruent and regular.
[Hint : Express the perimeter and area of a polygon via the central angles
subtended by the sides. Then use Theorem 1.5.4.]

5. (A. F. Berezin) Let P be an orthogonal projection in Rn and let A be a
self-adjoint linear operator in Rn. Infer from Theorem 1.5.7 that

trace(Pf(PAP )P ) ≤ trace(Pf(A)P )

for every convex function f : R → R.

1.6 Integral Representation of Convex Functions

It is well known that differentiation and integration are operations inverse to
each other. A consequence of this fact is the existence of a certain duality
between the class of convex functions on an open interval and the class of
nondecreasing functions on that interval.

Given a nondecreasing function ϕ : I → R and a point c ∈ I we can attach
to them a new function f , given by

f(x) =
∫ x

c

ϕ(t) dt.

As ϕ is bounded on bounded intervals, it follows that f is locally Lipschitz
(and thus continuous). It is also a convex function. In fact, according to The-
orem 1.1.4, it suffices to show that f is midpoint convex. Or, for x ≤ y in I
we have

f(x) + f(y)
2

− f
(x + y

2

)
=

1
2

(∫ y

(x+y)/2
ϕ(t) dt −

∫ (x+y)/2

x

ϕ(t) dt

)
≥ 0

since ϕ is nondecreasing.
It is elementary that f is differentiable at each point of continuity of ϕ

and f ′ = ϕ at such points.
On the other hand, the subdifferential allows us to state the following

generalization of the fundamental formula of integral calculus:
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Proposition 1.6.1 Let f : I → R be a continuous convex function and let
ϕ : I → R be a function such that ϕ(x) ∈ ∂f(x) for all x ∈ int I. Then for all
a < b in I we have

f(b) − f(a) =
∫ b

a

ϕ(t) dt.

Proof. Clearly, we may restrict ourselves to the case where [a, b] ⊂ int I. If
a = t0 < t1 < · · · < tn = b is a division of [a, b], then

f ′
−(tk−1) ≤ f ′

+(tk−1) ≤ f(tk) − f(tk−1)
tk − tk−1

≤ f ′
−(tk) ≤ f ′

+(tk)

for all k. Since

f(b) − f(a) =
n∑

k=1

[f(tk) − f(tk−1)],

a moment’s reflection shows that

f(b) − f(a) =
∫ b

a

f ′
−(t) dt =

∫ b

a

f ′
+(t) dt.

On the other hand f ′
− ≤ ϕ ≤ f ′

+, which forces the equality in the statement
of Proposition 1.6.1. ��

Remark 1.6.2 There exist convex functions whose first derivative fails to
exist on a dense set. For this, let r1, r2, r3, . . . be an enumeration of the rational
numbers in [0, 1] and put

ϕ(t) =
∑

{k|rk≤t}

1
2k

.

Then
f(x) =

∫ x

0
ϕ(t) dt

is a continuous convex function whose first derivative does not exist at the
points rk. F. Riesz exhibited an example of increasing function ϕ with ϕ′ = 0
almost everywhere. See [103, pp. 278–282]. The corresponding function f in
his example is strictly convex though f ′′ = 0 almost everywhere. As we shall
see in the Comments at the end of this chapter, Riesz’s example is typical
from the generic point of view.

We shall derive from Proposition 1.6.1 an important integral representa-
tion of all continuous convex functions f : [a, b] → R. For this we need the
following Green function associated to the bounded open interval (a, b):

G(x, y) =

{
(x − a)(y − b)/(b − a), if a ≤ x ≤ y ≤ b

(x − b)(y − a)/(b − a), if a ≤ y ≤ x ≤ b.



38 1 Convex Functions on Intervals

Notice that G is continuous, symmetric and G ≤ 0 on [a, b] × [a, b]. It is a
convex function in each variable (when the other is fixed) and vanishes at the
boundary. Moreover,

∂G

∂x
(x + 0, x) − ∂G

∂x
(x − 0, x) = 1.

Theorem 1.6.3 For every continuous convex function f : [a, b] → R there
exists a uniquely determined positive Borel measure µ on I = (a, b) such that

f(x) =
∫

I

G(x, y) dµ(y) +
b − x

b − a
f(a) +

x − a

b − a
f(b) for all x ∈ [a, b] (1.13)

and ∫
I

(x − a)(b − x) dµ(x) < ∞. (1.14)

Proof. Consider first the case when f extends to a convex function in a neigh-
borhood of [a, b] (equivalently, when f ′

+(a) and f ′
−(b) exist and are finite). In

this case we may choose as µ the Stieltjes measure associated to the nonde-
creasing function f ′

+. In fact, integrating by parts we get∫
I

G(x, y) dµ(y) =
∫

I

G(x, y) df ′
+(y)

= G(x, y)f ′
+(y)

∣∣y=b

y=a
−
∫

I

∂G(x, y)
∂y

f ′
+(y) dy

= −x − b

b − a

∫ x

a

f ′
+(y) dy − x − a

b − a

∫ b

x

f ′
+(y) dy

= −x − b

b − a
(f(x) − f(a)) − x − a

b − a
(f(b) − f(x)),

according to Proposition 1.6.1. This proves (1.13). Letting x = (a + b)/2 in
(1.13) we get∫ x

a

(y − a) dµ(y) +
∫ b

x

(b − y) dµ(y) = f(a) + f(b) − 2f
(a + b

2

)
,

which yields

0 ≤ 1
b − a

∫
I

(x − a)(b − x) dµ(x) ≤ f(a) + f(b) − 2f
(a + b

2

)
. (1.15)

In the general case we apply the above reasoning to the restriction of f to
the interval [a + ε, b − ε] and then pass to the limit as ε → 0.

The uniqueness of µ is a consequence of the fact that f ′′ = µ in the sense
of distribution theory. This can be easily checked by noticing that

ϕ(x) =
∫

I

G(x, y)ϕ′′(y) dy
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for all ϕ ∈ C2
c (I), which yields∫

I

f(x)ϕ′′(x) dx =
∫∫

I×I

G(x, y)ϕ′′(x) dx dµ(y) =
∫

I

ϕ(y) dµ(y),

due to the symmetry of G and the Fubini–Tonelli theorem. The application
of this theorem was made possible by (1.14). ��

Theorem 1.6.3 shows that every continuous convex function on a compact
interval is a superposition of an affine function and functions of the form
x → G(x, y), equivalently, a superposition of an affine function and functions
of the form x → (x − y)+ (or x → |x − y|) for y ∈ R. The essence of this fact
was already noted at the end of Section 1.5.

Exercises

1. (The discrete analogue of Theorem 1.6.3) A sequence of real numbers
a0, a1, . . . , an (with n ≥ 2) is said to be convex provided that

∆2ak = ak − 2ak+1 + ak+2 ≥ 0

for all k = 0, . . . , n−2; it is said to be concave provided ∆2ak ≤ 0 for all k.
(i) Solve the system

∆2ak = bk for k = 0, . . . , n − 2

(in the unknowns ak) to prove that the general form of a convex
sequence a = (a0, a1, . . . , an) with a0 = an = 0 is given by the
formula

a =
n−1∑
j=1

cjwj ,

where cj = 2aj − aj−1 − aj+1 and wj has the components

wj
k =

{
k(n − j)/n, for k = 0, . . . , j

j(n − k)/n, for k = j, . . . , n.

(ii) Prove that the general form of a convex sequence a = (a0, a1, . . . , an)
is a =

∑n
j=0 cjwj , where cj and wj are as in the case (i) for j =

1, . . . , n − 1. The other coefficients and components are:

c0 = a0, cn = an, w0
k = (n − k)/n and wn

k = k/n for k = 0, . . . , n).

Remark. The theory of convex sequences can be subordinated to that
of convex functions. If f : [0, n] → R is a convex function, then (f(k))k

is a convex sequence; conversely, if (ak)k is a convex sequence, then the
piecewise linear function f : [0, n] → R obtained by joining the points
(k, ak) is convex too.
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2. Prove the discrete Berwald inequality :

1
n + 1

n∑
k=0

ak ≥
(3(n − 1)

4(n + 1)

)1/2( 1
n + 1

n∑
k=0

a2
k

)1/2

for every concave sequence a0, a1, . . . , an of nonnegative numbers.
[Hint : By Minkowski’s inequality (Theorem 1.2.4 above), if the Berwald
inequality works for two concave sequences, then it also works for all lin-
ear combinations of them, with positive coefficients. Then apply the asser-
tion (ii) of the preceding exercise. ]

1.7 Conjugate Convex Functions

The aim of this section is to develop a concept of duality between convex
functions which makes possible an easy handling of some problems. The basic
idea can be traced back to Young’s inequality.

If ϕ : [0,∞) → [0,∞) is an increasing and continuous function with ϕ(0) =
0 and ϕ(x) → ∞ as x → ∞, then ϕ−1 exists and has the same properties
as ϕ. Moreover, if we let

f(x) =
∫ x

0
ϕ(t) dt and f∗(y) =

∫ y

0
ϕ−1(t) dt,

then f and f∗ are both convex functions on [0,∞). By Young’s inequality,

xy ≤ f(x) + f∗(y) for all x ≥ 0, y ≥ 0

(with equality if and only if y = f ′(x)) and

f∗(y) = sup{xy − f(x) | x ≥ 0} for all y ≥ 0.

Clearly, the same is true if we extend f∗ to R by letting f∗(y) = 0 for y < 0.
Under these circumstances we say that f and f∗ are conjugate functions.

If ϕ(x) = xp−1, x ∈ [0,∞) (for p > 1), then ϕ−1(y) = yq−1, where
1/p + 1/q = 1. In this case f(x) = xp/p and f∗(y) = (y+)q/q for all x ≥ 0,
y ∈ R.

The study of conjugate functions is important in several connections, for
example, in the theory of Orlicz spaces. See Exercise 5.

In what follows we want to extend the notion of conjugacy to all convex
functions, preserving its main features.

This is done by associating to each convex function f : I → R defined on
an interval I a new function,

f∗ : I∗ → R, f∗(y) = sup{xy − f(x) | x ∈ I},

with domain I∗ = {y ∈ R | f∗(y) < ∞}, called the conjugate function (or the
Legendre transform) of f .
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Lemma 1.7.1 I∗ is a nonempty interval and f∗ is a convex function whose
sublevel sets Lλ = {y | f∗(y) ≤ λ} are closed subsets of R for each λ ∈ R.

Proof. We first note that I∗ 
= ∅. This is obvious if I is a singleton. If I is
a nondegenerate interval, then for each a ∈ int I there is y ∈ R such that
f(x) ≥ f(a) + y(x − a), which yields

xy − f(x) ≤ ay − f(a),

so, y ∈ I∗. Our next remark is that I∗ is actually an interval and f∗ is a
convex function. In fact, if λ ∈ (0, 1) and y, z ∈ I∗ then

f∗((1 − λ)y + λz) = sup{x[(1 − λ)y + λz] − f(x) | x ∈ I}
≤ (1 − λ) sup{xy − f(x) | x ∈ I}

+ λ sup{xz − f(x) | x ∈ I}
= (1 − λ)f∗(y) + λf∗(z).

It remains to prove that the sublevel sets Lλ = {y | f∗(y) ≤ λ} are closed.
For this, consider a sequence (yn)n of points of Lλ, which is converging, say
to y. Then xyn − f(x) ≤ f∗(yn) ≤ λ for each n and each x, so letting n → ∞
we get xy − f(x) ≤ λ for each x, that is, y ∈ I∗ and f∗(y) ≤ λ. ��

The real functions whose sublevel sets are closed are precisely the lower
semicontinuous functions, that is, the functions f : I → R such that

lim inf
y→x

f(y) = f(x)

at any point x ∈ I.
A moment’s reflection shows that a convex function f : I → R is lower

semicontinuous if and only if it is continuous at each endpoint of I which
belongs to I and f(x) → ∞ as x approaches any finite endpoint not in I.

The following representation is a consequence of Proposition 1.6.1:

Lemma 1.7.2 Let f : I → R be a lower semicontinuous convex function and
let ϕ be a real-valued function such that ϕ(x) ∈ ∂f(x) for all x ∈ I. Then for
all a < b in I we have

f(b) − f(a) =
∫ b

a

ϕ(t) dt.

We can now state the main result on the operation of conjugacy:

Theorem 1.7.3 Let f : I → R be a lower semicontinuous convex function.
Then its conjugate f∗ : I∗ → R is also convex and lower semicontinuous.
Moreover:
(i) xy ≤ f(x) + f∗(y) for all x ∈ I, y ∈ I∗, with equality if and only if

y ∈ ∂f(x);



42 1 Convex Functions on Intervals

(ii) ∂f∗ = (∂f)−1 as graphs of set-valued functions;
(iii) f∗∗ = f .

Recall that the inverse of a graph G is the set G−1 = {(y, x) | (x, y) ∈ G}.

Proof. The first assertion follows from Lemma 1.7.1.
(i) The inequality is immediate. To settle the equality case, we need the

fact that a convex function h attains a minimum at x if and only if ∂f(x)
contains 0 (see Section 1.5, Exercise 1 (ii)). Since the function h(x) = f(x)−xy
is convex and

−f∗(y) = − sup{xy − f(x) | x ∈ I} = inf{f(x) − xy | x ∈ I},

the equality −f∗(y) = f(x) − xy holds true if and only if 0 ∈ ∂h(x), that is,
if y ∈ ∂f(x).

(ii) Letting x ∈ I, we have f∗(y) − xy ≥ −f(x) for all y ∈ I∗. Thus
f∗(y) − xy = −f(x) occurs at a point of minimum, which by the above
discussion means y ∈ ∂f(x). In other words, y ∈ ∂f(x) implies that the
function h(z) = f∗(z) − xz has a (global) minimum at z = y. Since h is
convex, this could happen only if 0 ∈ ∂h(y), that is, when x ∈ ∂(f∗)(y).
Taking inverses, we are led to

x ∈ (∂f)−1(y) =⇒ x ∈ ∂(f∗)(y),

which shows that ∂(f∗) ⊃ (∂f)−1. For equality we remark that the graph G of
the subdifferential of any lower semicontinuous convex function f is maximal
monotone in the sense that

(x1, y1) and (x2, y2) in G =⇒ (x2 − x1)(y2 − y1) ≥ 0 (1.16)

and G is not a proper subset of any other subset of R × R with the prop-
erty (1.16). Then the graph of (∂f)−1 is maximal monotone (being the inverse
of a maximal monotone set) and thus (∂f)−1 = ∂(f∗), which is (ii).

The implication (1.16) follows easily from the monotonicity of the subdif-
ferential, while maximality can be established by reductio ad absurdum.

(iii) According to (ii), ∂(f∗∗) = (∂(f∗))−1 = (∂(f)−1)−1 = ∂f , which
yields that I = I∗∗, and so by Lemma 1.7.2,

f(x) − f(c) =
∫ x

c

ϕ(t) dt = f∗∗(x) − f∗∗(c)

for all x, c ∈ I. It remains to find a c ∈ I for which f(c) = f∗∗(c). Choose z ∈ I
and y ∈ I∗ such that y ∈ ∂f(z). By (iii), this means z ∈ (∂f)−1(y) = ∂f∗(y).
According to (i), applied for f and f∗, we have

zy = f(z) + f∗(y) = f∗(y) + f∗∗(z),

that is, f(z) = f∗∗(z). ��
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By Theorem 1.7.3, if f is differentiable, then its conjugate can be deter-
mined by eliminating x from the equations

f(x) + f∗(y) = xy and f ′(x) = y.

Exercises

1. Let f be a lower semicontinuous convex function defined on a bounded
interval I. Prove that I∗ = R.

2. Compute ∂f , ∂f∗ and f∗ for f(x) = |x|, x ∈ R.

3. Prove that:
(i) the conjugate of f(x) = |x|p/p, x ∈ R, is

f∗(y) = |y|q/q, y ∈ R (p > 1,
1
p

+
1
q

= 1);

(ii) the conjugate of f(x) = (1 + x2)1/2, x ∈ R, is the function

f∗(y) = −(1 − y2)1/2, y ∈ [−1, 1];

(iii) the conjugate of f(x) = ex, x ∈ R, is the function f∗(y) = y log y − y
for y > 0 and f∗(0) = 0;

(iv) the conjugate of f(x) = − log x, x > 0, is the function

f∗(y) = −1 − log(−y), y < 0.

4. (A minimization problem) Let f : R → R be a convex function such that
lim|x|→∞ f(x) = ∞. Consider the function

F (x) = inf
{ n∑

k=1

ckf(xk) | x1, . . . , xn ∈ R,

n∑
k=1

ckakxk = x
}

where c1, . . . , cn are given positive constants and a1, . . . , an are given
nonzero constants. Prove that F is convex and that its conjugate is the
function

F ∗(y) =
n∑

k=1

ckf∗(aky).

5. An Orlicz function is any convex function Φ: [0,∞) → R such that:
(Φ1) Φ(0) = 0, Φ(x) > 0 for x > 0;
(Φ2) Φ(x)/x → 0 as x → 0 and Φ(x)/x → ∞ as x → ∞;
(Φ3) there exists a positive constant K such that Φ(2x) ≤ KΦ(x) for

x ≥ 0.



44 1 Convex Functions on Intervals

Let (X, Σ, µ) be a complete σ-finite measure space and let S(µ) be the
vector space of all equivalence classes of µ-measurable real-valued functions
defined on X. The Orlicz space LΦ(X) is the subspace of all f ∈ S(µ) such
that

IΦ(f/λ) =
∫

X

Φ(|f(x)|/λ) dµ < ∞, for some λ > 0.

(i) Prove that LΦ(X) is a linear space such that

|f | ≤ |g| and g ∈ LΦ(X) imply f ∈ LΦ(X).

(ii) Prove that LΦ(X) is a Banach space when endowed with the norm

‖f‖Φ = inf{λ > 0 | IΦ(f/λ) ≤ 1}.

(iii) Prove that the dual of LΦ(X) is LΨ(X), where Ψ is the conjugate of
the function Φ.

Remark. The Orlicz spaces extend the Lp(µ) spaces. Their theory is ex-
posed in books like [132] and [209]. The Orlicz space L log+ L (correspond-
ing to the Lebesgue measure on [0,∞) and the function Φ(t) = t(log t)+)
plays a role in Fourier analysis. See [253]. Applications to interpolation
theory are given in [20].

1.8 The Integral Form of Jensen’s Inequality

The analogue of the arithmetic mean in the context of finite measure spaces
(X, Σ, µ) is the integral arithmetic mean (or, simply, the arithmetic mean),
which, for a µ-integrable function f : X → R, is the number

M1(f ; µ) =
1

µ(X)

∫
X

f dµ.

For convenience, we shall denote M1(f ; µ) also M1(f).
In probability theory, M1(f) represents the conditional expectation of the

random variable f (in which case it is denoted E(f)).
There are many results on the integral arithmetic mean. A basic one is the

integral form of Jensen’s inequality:

Theorem 1.8.1 (Jensen’s inequality) Let (X, Σ, µ) be a finite measure
space and let g : X → R be a µ-integrable function. If f is a convex func-
tion given on an interval I that includes the image of g, then M1(g) ∈ I
and

f(M1(g)) ≤ M1(f ◦ g)

provided that f ◦ g is µ-integrable.
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If f is strictly convex, then the above inequality becomes an equality if
and only if g is constant µ-almost everywhere.

Proof. M1(g) belongs to I since otherwise h = M1(g) − g (or −h) will be a
strictly positive function whose integral is 0.

Then, choose a function ϕ : I → R such that ϕ(x) ∈ ∂f(x) for all x ∈ int I.
If M1(g) ∈ int I, then

f(g(x)) ≥ f(M1(g)) + (g(x) − M1(g)) · ϕ(M1(g)) for all x ∈ X

and Jensen’s inequality follows by integrating both sides over X. The case
where M1(g) is an endpoint of I is straightforward because in that case g =
M1(g) µ-almost everywhere. ��

Remark 1.8.2 (The integral form of the arithmetic-geometric-har-
monic mean inequality) Consider a finite measure space (X, Σ, µ) and
a function f ∈ L1(µ) such that f ≥ 0. Define log 0 = −∞ and e−∞ = 0.
According to Jensen’s inequality,

1
µ(X)

∫
X

log f(x) dµ ≤ log
(

1
µ(X)

∫
X

f(x) dµ

)
,

the inequality being strict except for the case when f is a constant function
µ-almost everywhere. This fact can be restated as M0(f ; µ) ≤ M1(f ; µ), where

M0(f ; µ) = exp
(

1
µ(X)

∫
X

log f(x) dµ

)
represents the geometric mean of f . If we agree to regard 0 and ∞ as recip-
rocals of one another, we may introduce also the harmonic mean of f ,

M−1(f ; µ) =
(

1
µ(X)

∫
X

1
f(x)

dµ

)−1

.

It is clear that M0(f ; µ) = (M0(1/f ; µ))−1 and M−1(f ; µ) = (M1(1/f ; µ))−1,
so that

M−1(f ; µ) ≤ M0(f ; µ) ≤ M1(f ; µ).

In Section 3.6 we shall prove that Jensen’s inequality still works (under
additional hypotheses) outside the framework of finite measure spaces.

Jensen’s inequality can be related to another well-known inequality:

Theorem 1.8.3 (Chebyshev’s inequality) If g, h : [a, b] → R are Rie-
mann integrable and synchronous (in the sense that

(g(x) − g(y))(h(x) − h(y)) ≥ 0

for all x, y ∈ [a, b]), then M1(g)M1(h) ≤ M1(gh).
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The next result complements Jensen’s inequality by Chebyshev’s inequal-
ity:

Theorem 1.8.4 (The complete form of Jensen’s inequality) Let
(X, Σ, µ) be a finite measure space and let g : X → R be a µ-integrable func-
tion. If f is a convex function given on an interval I that includes the image
of g and ϕ : I → R is a function such that
(i) ϕ(x) ∈ ∂f(x) for every x ∈ I, and
(ii) ϕ ◦ g and g · (ϕ ◦ g) are µ-integrable functions,
then the following inequalities hold:

0 ≤ M1(f ◦ g) − f(M1(g)) ≤ M1(g · (ϕ ◦ g)) − M1(g)M1(ϕ ◦ g).

If f is concave, then the inequalities in Theorems 1.8.1 and 1.8.4 hold in
the reversed direction.

Proof. The first inequality is that of Jensen. The second can be obtained from

f(M1(g)) ≥ f(g(x)) + (M1(g) − g(x)) · ϕ(g(x)) for all x ∈ X

by integrating both sides over X. ��

The following result represents a discrete version of Theorem 1.8.4:

Corollary 1.8.5 Let f be a convex function defined on an open interval I
and let ϕ : I → R be a function such that ϕ(x) ∈ ∂f(x) for all x ∈ I. Then

0 ≤
n∑

k=1

λkf(xk) − f
( n∑

k=1

λkxk

)
≤

n∑
k=1

λkxkϕ(xk) −
( n∑

k=1

λkxk

)( n∑
k=1

λkϕ(xk)
)

for all x1, . . . , xn ∈ I and all λ1, . . . , λn ∈ [0, 1], with
∑n

k=1 λk = 1.

An application of Corollary 1.8.5 is indicated in Exercise 6.
In a symmetric way, we may complement Chebyshev’s inequality by

Jensen’s inequality:

Theorem 1.8.6 (The complete form of Chebyshev’s inequality) Let
(X, Σ, µ) be a finite measure space, let g : X → R be a µ-integrable function
and let ϕ be a nondecreasing function given on an interval that includes the
image of g and such that ϕ◦g and g · (ϕ◦g) are integrable functions. Then for
every primitive Φ of ϕ for which Φ ◦ g is integrable, the following inequalities
hold true:

0 ≤ M1(Φ ◦ g) − Φ(M1(g)) ≤ M1(g · (ϕ ◦ g)) − M1(g)M1(ϕ ◦ g).
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In order to show how Theorem 1.8.6 yields Chebyshev’s inequality we will
consider first the case when g : [a, b] → R is increasing and h : [a, b] → R is
nondecreasing. In this case we apply Theorem 1.8.6 to g and ϕ = h ◦ g−1.
When both g and h are nondecreasing, we consider increasing perturbations
of g, for example, g + εx with ε > 0. By the previous case,

M1(g + εx)M1(h) ≤ M1((g + εx)h)

and Chebyshev’s inequality follows by taking the limit as ε → 0+.
In connection with Jensen’s inequality, it is important to notice here an-

other classical inequality:

Theorem 1.8.7 (Hardy’s inequality) Suppose that f ∈ Lp(0,∞), f ≥ 0,
where p ∈ (1,∞). Put

F (x) =
1
x

∫ x

0
f(t) dt, x > 0.

Then
‖F‖Lp ≤ p

p − 1
‖f‖Lp

with equality if and only if f = 0 almost everywhere.

Hardy’s inequality yields the norm of the averaging operator H : f → F ,
from Lp(0,∞) into Lp(0,∞). In fact, the constant p/(p − 1) is best possible
(though untainted). The optimality can easily be checked by considering the
sequence of functions fε(t) = (t−1/p + ε)χ(0,1](t), and letting ε → 0+.

Hardy’s inequality can be deduced from the following lemma:

Lemma 1.8.8 Let 0 < b < ∞ and −∞ ≤ a < c ≤ ∞. If u is a positive
convex function on (a, c), then∫ b

0
u

(
1
x

∫ x

0
h(t) dt

)
dx

x
≤
∫ b

0
u(h(x))

(
1 − x

b

)dx

x

for all integrable functions h : (0, b) → (a, c).

Proof. In fact, by Jensen’s inequality,∫ b

0
u

(
1
x

∫ x

0
h(t) dt

)
dx

x
≤
∫ b

0

(
1
x

∫ x

0
u(h(t)) dt

)
dx

x

=
∫ b

0

1
x2

(∫ b

0
u(h(t))χ[0,x](t) dt

)
dx

=
∫ b

0
u(h(t))

(∫ b

t

1
x2 dx

)
dt

=
∫ b

0
u(h(t))

(
1 − t

b

)
dt

t
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and the proof is complete. ��
For u(x) = |x|p, the result of Lemma 1.8.8 can be put in the following

form∫ α

0

∣∣∣∣ 1x
∫ x

0
f(t) dt

∣∣∣∣p dx ≤
( p

p − 1

)p
∫ α

0
|f(x)|p

(
1 −

(x

α

)(p−1)/p)
dx, (1.17)

where α = bp/(p−1) and f(x) = h(x1−1/p)x−1/p. This yields an analogue of
Hardy’s inequality for functions f ∈ Lp(0, α) (where 0 < α < ∞), from which
Hardy’s inequality follows by letting α → ∞.

The equality case in Theorem 1.8.7 implies that F and f are proportional,
which makes f of the form Cxr. Since f ∈ Lp(0,∞), this is possible only for
C = 0.

As shown in the above argument, Hardy’s inequality also holds for p < 0.
An alternative proof of Theorem 1.8.7 can be built on the well-known

fact that Cc(0,∞) (the space of all continuous functions f : (0,∞) → C with
compact support) is dense in Lp(0,∞). This allows us to restrict ourselves to
the case where f ∈ Cc(0,∞). Then (xF (x))′ = f(x), which yields∫ ∞

0
F p(t) dt = −p

∫ ∞

0
F p−1(t)tF ′(t) dt

= −p

∫ ∞

0
F p−1(t)(f(t) − F (t)) dt,

that is,
∫∞
0 F p(t) dt = p

p−1

∫∞
0 F p−1(t)f(t) dt. The proof ends by taking into

account the integral form of the Rogers–Hölder inequality.

Exercises

1. (The power means; see Section 1.1, Exercise 8, for the discrete case) Con-
sider a finite measure space (X, Σ, µ). The power mean of order t 
= 0 is
defined for all nonnegative measurable functions f : X → R, f t ∈ L1(µ),
by the formula

Mt(f ; µ) =
(

1
µ(X)

∫
X

f t dµ

)1/t

.

We also define

M0(f ; µ) = exp
(

1
µ(X)

∫
X

log f(x) dµ

)
for f ∈ ⋃

t>0 Lt(µ), f ≥ 0, and

M−∞(f ; µ) = sup
{
α ≥ 0

∣∣ µ({x ∈ X | f(x) < α}) = 0
}

M∞(f ; µ) = inf
{
α ≥ 0

∣∣ µ({x ∈ X | f(x) > α}) = 0
}

for f ∈ L∞(µ), f ≥ 0.
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(i) (Jensen’s inequality for means) Suppose that −∞ ≤ s ≤ t ≤ ∞ and
Mt(f ; µ) < ∞. Prove that

Ms(f ; µ) ≤ Mt(f ; µ).

(ii) Suppose that f ∈ L∞(µ), f ≥ 0. Prove that

lim
t→−∞ Mt(f ; µ) = M−∞(f ; µ) and lim

t→∞ Mt(f ; µ) = M∞(f ; µ).

(iii) Suppose that f ∈ L∞(µ), f ≥ 0. Prove the convexity of the function
t �→ t log Mt(f ; µ) on R.

(iv) Notice that (tr − 1)/r decreases to log t as r ↓ 0 and apply the dom-
inated convergence theorem of Lebesgue to conclude that

lim
r→0+

Mr(f ; µ) = M0(f ; µ)

for all f ∈ L1(µ), f ≥ 0.

2. Infer from the integral form of the arithmetic-geometric-harmonic mean
inequality that L(a, b) < I(a, b) < A(a, b) for all a, b > 0, a 
= b. Here
L(a, b), I(a, b), A(a, b) are the logarithmic, the identric and respectively
the arithmetic mean of a and b.

3. Infer from Theorem 1.8.7 the discrete form of Hardy’s inequality:( ∞∑
n=1

( 1
n

n∑
k=1

ak

)p)1/p

<
p

p − 1

( ∞∑
k=1

ap
k

)1/p

,

for every sequence (an)n of nonnegative numbers (not all zero) and every
p ∈ (1,∞).

4. (The Pólya–Knopp inequality; see [99], [130]) Prove the following limiting
case of Hardy’s inequality: for every f ∈ L1(0,∞), f ≥ 0 and f not
identically zero,∫ ∞

0
exp

(
1
x

∫ x

0
log f(t) dt

)
dx < e

∫ ∞

0
f(x) dx.

The discrete form of this inequality was previously noted by T. Carleman
[48]:

∞∑
n=1

(a1a2 · · · an)1/n < e

∞∑
n=1

an

for a1, a2, a3, . . . ≥ 0, not all zero.
[Hint : Apply Lemma 1.8.8 for h(x) = log f(x). ]

5. Formulate and prove the analogue of the Pólya–Knopp inequality for func-
tions defined on bounded intervals of the form (0, α).
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6. Assume that A, B, C are the angles of a triangle (expressed in radians).
Prove that

0 ≤ 3
√

3/2 −
∑

sin A ≤
∑(π

3
− A

)
cos A.

7. (Another estimate of Jensen’s inequality) Let (X, Σ, µ) be a finite measure
space and let g ∈ L2(µ). If f is a twice differentiable function given on an
interval I that includes the image of g and α ≤ f ′′/2 ≤ β, then

α var(g) ≤ M1(f ◦ g) − f(M1(g)) ≤ β var(g).

Here var(g) = M1
(
(g − M1(g))2

)
denotes the variance of g.

[Hint : Apply Taylor’s formula to infer that

α(g(x) − M1(g))2 ≤ f(g(x)) − f(M1(g)) − f ′(M1(g))(g(x) − M1(g))

≤ β(g(x) − M1(g))2. ]

1.9 The Hermite–Hadamard Inequality

As stated in Proposition 1.3.4 above, every convex function f on an interval
[a, b] can be modified at the endpoints to become convex and continuous. An
immediate consequence of this fact is the (Riemann) integrability of f . The
arithmetic mean of f can be estimated by the Hermite–Hadamard inequality ,

f
(a + b

2

)
≤ 1

b − a

∫ b

a

f(x) dx ≤ f(a) + f(b)
2

. (1.18)

The right-hand side (denoted (RHH)) follows by integrating the inequal-
ity (1.2) in Section 1.1 (which says that the graph is under the chord joining
the endpoints). Assuming that f is also continuous, we actually get

1
b − a

∫ b

a

f(x) dx <
f(a) + f(b)

2

except when f is affine, that is, when f(x) = f(a) + f(b)−f(a)
b−a (x − a).

The left-hand side of (1.18) (denoted (LHH)) is also easy to prove:

1
b − a

∫ b

a

f(x) dx =
1

b − a

(∫ (a+b)/2

a

f(x) dx +
∫ b

(a+b)/2
f(x) dx

)
=

1
2

∫ 1

0

[
f
(a + b − t(b − a)

2

)
+ f

(a + b + t(b − a)
2

)]
dt

≥ f
(a + b

2

)
.

Interestingly, each of the two sides of (1.18) in fact characterizes convex
functions. More precisely, if I is an interval and f : I → R is a continuous
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function whose restriction to every compact subinterval [a, b] verifies (LHH),
then f is convex. The same works when (LHH) is replaced by (RHH). See
Exercises 1 and 2.

We shall illustrate the power of the Hermite–Hadamard inequality with
several examples from calculus.

Examples 1.9.1

(i) For f(x) = 1/(1 + x), x ≥ 0, Ch. Hermite [102] observed that

x − x2/(2 + x) < log(1 + x) < x − x2/(2 + 2x).

Particularly,

1
n + 1/2

< log(n + 1) − log n <
1
2

( 1
n

+
1

n + 1

)
(1.19)

for all n ∈ N∗, and this fact is instrumental in deriving Stirling’s formula,

n! ∼
√

2π · nn+1/2e−n.

See Theorem 2.2.11.
(ii) For f = exp, the inequality (1.18) yields

e(a+b)/2 <
eb − ea

b − a
<

ea + eb

2
for a 
= b in R,

that is,

√
xy <

x − y

log x − log y
<

x + y

2
for x 
= y in (0,∞), (1.20)

which represents the geometric–logarithmic–arithmetic mean inequality.
For f = log, we obtain a similar inequality, where the role of the loga-
rithmic mean is taken by the identric mean.

(iii) For f(x) = sinx, x ∈ [0, π], we obtain

sin a + sin b

2
<

cos a − cos b

b − a
< sin

(a + b

2

)
for a 
= b in R,

and this implies the well-known inequalities tanx > x > sin x (for x in
(0, π/2)).

The following result yields an estimate of the precision in the Hermite–
Hadamard inequality:

Lemma 1.9.2 Let f : [a, b] → R be a twice differentiable function for which
there exist real constants m and M such that

m ≤ f ′′ ≤ M.
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Then

m · (b − a)2

24
≤ 1

b − a

∫ b

a

f(x) dx − f
(a + b

2

)
≤ M · (b − a)2

24
,

and

m · (b − a)2

12
≤ f(a) + f(b)

2
− 1

b − a

∫ b

a

f(x) dx ≤ M · (b − a)2

12
.

Proof. In fact, the functions f − mx2/2 and Mx2/2 − f are convex and thus
we can apply to them the Hermite–Hadamard inequality. ��

For other estimates see the Comments at the end of this chapter.

Remark 1.9.3 (An improvement on the Hermite–Hadamard inequal-
ity) Suppose that f : [a, b] → R is a convex function. By applying the
Hermite–Hadamard inequality on each of the intervals [a, (a + b)/2] and
[(a + b)/2, b] we get

f
(3a + b

4

)
≤ 2

b − a

∫ (a+b)/2

a

f(x) dx ≤ 1
2

(
f(a) + f

(a + b

2

))
and

f
(a + 3b

4

)
≤ 2

b − a

∫ b

(a+b)/2
f(x) dx ≤ 1

2

(
f
(a + b

2

)
+ f(b)

)
.

Summing up (side by side), we obtain the following refinement of (1.18):

f
(a + b

2

)
≤ 1

2

(
f
(3a + b

4

)
+ f

(a + 3b

4

))
≤ 1

b − a

∫ b

a

f(x) dx ≤ 1
2

[
f
(a + b

2

)
+

f(a) + f(b)
2

]
≤ 1

2
(f(a) + f(b)).

By continuing the division process, the arithmetic mean of f can be ap-
proximated as close as desired by convex combinations of values of f at suit-
able dyadic points of [a, b].

The Hermite–Hadamard inequality is the starting point to Choquet’s the-
ory, which is the subject of Chapter 4.

Exercises

1. Infer from Theorem 1.1.3 that a (necessary and) sufficient condition for a
continuous function f to be convex on an open interval I is that
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f(x) ≤ 1
2h

∫ x+h

x−h

f(t) dt

for all x and h with [x − h, x + h] ⊂ I.

2. Let f be a real-valued continuous function defined on an open interval I.
Prove that f is convex if it verifies the right-hand side inequality in (1.18).

3. (An improvement of the left-hand side of (1.18)) Let f : [a, b] → R be a
convex function. Use the existence of support lines to show that

1
2

(
f
(a + b

2
− c

)
+ f

(a + b

2
+ c

))
≤ 1

b − a

∫ b

a

f(x) dx

for all c ∈ [0, (b− a)/4], and that c = (b− a)/4 is maximal within the class
of convex functions on [a, b].

4. Notice the following quadrature formula,

1
b − a

∫ b

a

f(x) dx =
1
2

[f(a) + f(b)] − 1
b − a

∫ b

a

f ′′(x)
(b − x)(x − a)

2
dx,

valid for f ∈ C2([a, b], R), and infer from it the right-hand side of inequal-
ity (1.18).

5. (Pólya’s inequality) Prove that

x − y

log x − log y
<

1
3

(
2
√

xy +
x + y

2

)
for all x 
= y in (0,∞).

1.10 Convexity and Majorization

In a celebrated paper published in 1929, G. H. Hardy, J. E. Littlewood and
G. Pólya [98] proved an interesting characterization of convex functions in
terms of an order relation defined on Rn, called by them majorization. Their
basic observation was the subject of Theorem 1.5.4 above.

For any vector x = (x1, . . . , xn) ∈ Rn, let

x↓
1 ≥ · · · ≥ x↓

n

denote the components of x in decreasing order. For x, y ∈ Rn we put x ≺ y
(and say that x is majorized by y, or that y majorizes x) if

k∑
i=1

x↓
i ≤

k∑
i=1

y↓
i for k = 1, . . . , n − 1

n∑
i=1

x↓
i =

n∑
i=1

y↓
i .
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The geometric insight into majorization was later observed by R. Rado
[208]: x ≺ y means that the components of x spread out less than those of y
in the sense that x lies in the convex hull of the n! permutations of y (the orbit
of y under the group of permutation matrices). See Exercise 6, Section 3.3.

This fact comes from another characterization of the majorization rela-
tion via doubly stochastic matrices. Recall that a matrix P ∈ Mn(R) is
doubly stochastic if P has nonnegative entries and each row and each col-
umn sums to unity. A special class of doubly stochastic matrices is that of
T -transformations. They have the form

T = λI + (1 − λ)Q

where 0 ≤ λ ≤ 1 and Q is a permutation mapping which interchanges two
coordinates, that is,

Tx =
(
x1, . . . , xj−1, λxj + (1 − λ)xk, xj+1, . . . , xk−1, λxk

+ (1 − λ)xj , xk+1, . . . , xn

)
.

Theorem 1.10.1 Let x, y ∈ Rn. Then the following assertions are equivalent:
(i) x ≺ y;
(ii)

∑
k f(xk) ≤ ∑

k f(yk) for every continuous convex function f whose
domain of definition contains the components of x and y;

(iii)
∑

π αx1
π(1) · · ·αxn

π(n) ≤ ∑
π αy1

π(1) · · ·αyn

π(n) for every α1, . . . , αn > 0, the
sum being taken over all permutations π of the set {1, . . . , n};

(iv) x = Py for a suitable doubly stochastic matrix P ∈ Mn(R);
(v) x can be obtained from y by successive applications of finitely many

T -transformations.

The equivalence (i) ⇔ (ii) is due to G. H. Hardy, J. E. Littlewood and
G. Pólya [98]. The implication (iv) ⇒ (i) is due to I. Schur [224]. The equiva-
lence (i) ⇔ (iii) is due to R. F. Muirhead [172], for x and y having nonnegative
integer components. The implication (i) ⇒ (v) was first observed by Muirhead
in the case of points with integer components and later extended by Hardy,
Littlewood and Pólya to the general case.

Proof. (i) ⇒ (ii) See Theorem 1.5.4 above.
(ii) ⇒ (i) Since the identity and its opposite are convex functions, we get∑n

i=1 x↓
i =

∑n
i=1 y↓

i . Also, using the convexity of f = (x − y↓
k)+, we get

x↓
1 + · · · + x↓

k − ky↓
k ≤

k∑
j=1

f(x↓
j ) ≤

k∑
j=1

f(y↓
j ) ≤ y↓

1 + · · · + y↓
k − ky↓

k

that is, x↓
1 + · · · + x↓

k ≤ y↓
1 + · · · + y↓

k.
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(i) ⇒ (iii) It suffices to consider the case where x and y differ in only two
components, say xk = yk for k ≥ 3. Relabel if necessary, so that x1 > x2 and
y1 > y2. Then there exists δ > 0 such that y1 = x1 + δ and y2 = x2 − δ. We
have∑

π

αy1
π(1) · · ·αyn

π(n) −
∑

π

αx1
π(1) · · ·αxn

π(n)

=
1
2

∑
π

[
αy1

π(1)α
y2
π(2) − αy1−δ

π(1) αy2+δ
π(2) + αy1

π(2)α
y2
π(1) − αy1−δ

π(2) αy2+δ
π(1)

] n∏
k=3

αyk

π(k)

=
1
2

∑
π

(απ(1)απ(2))y2
(
αy1−y2−δ

π(1) − αy1−y2−δ
π(2)

)
(αδ

π(1) − αδ
π(2))

n∏
k=3

αyk

π(k)

≥ 0.

(iii) ⇒ (i) The case where α1 = · · · = αn > 0 gives us

α
∑n

k=1 xk

1 ≤ α
∑n

k=1 yk

1

so that
∑n

k=1 xk =
∑n

k=1 yk since α1 > 0 is arbitrary. Then denote by P
the set of all subsets of {1, . . . , n} of size k and take α1 = · · · = αk > 1,
αk+1 = · · · = αn = 1. By our hypotheses,∑

S∈P
α

∑
k∈S xk

1 ≤
∑
S∈P

α
∑

k∈S yk

1 .

If
∑k

j=1 x↓
j >

∑k
j=1 y↓

j , this leads to a contradiction for α1 large enough. Thus
x ≺ y.

(iv) ⇒ (i) Assume that P = (pjk)n
j,k=1. Since xk =

∑
j yjpjk, where∑

j pjk = 1, it follows from the definition of convexity that

f(xk) ≤
∑

j

pjkf(yj).

Using the relation
∑

k pjk = 1, we infer that

n∑
k=1

f(xk) ≤
n∑

k=1

n∑
j=1

pjkf(yj) =
n∑

j=1

n∑
k=1

pjkf(yj) =
n∑

j=1

f(yj).

(v) ⇒ (iv) Since T -transformations are doubly stochastic, the product of
T -transformations is a doubly stochastic transformation.

(i) ⇒ (v) Let x and y be two distinct points of Rn such that x ≺ y. Since
permutations are T -transformations, we may assume that their components
verify the conditions

x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn.
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Let j be the largest index such that xj < yj and let k be the smallest
index such that k > j and xk > yk. The existence of such a pair of indices is
motivated by the fact that the largest index i with xi 
= yi verifies xi > yi.
Then

yj > xj ≥ xk > yk.

Put ε = min{yj − xj , xk − yk}, λ = 1 − ε/(yj − yk) and

y∗ = (y1, . . . , yj−1, yj − ε, yj+1, . . . , yk−1, yk + ε, yk+1, . . . , yn).

Clearly, λ ∈ (0, 1). Letting Q be the permutation matrix which inter-
changes the components of order j and k, we see that y∗ = Ty for the repre-
sentation

T = λI + (1 − λ)Q.

From (v) ⇒ (iv) ⇒ (i) it follows that y∗ ≺ y. On the other hand, x ≺ y∗.
In fact,

s∑
r=1

y∗
r =

s∑
r=1

yr ≥
s∑

r=1

xr for s = 1, . . . , j − 1

y∗
j ≥ xj and y∗

r = yr for r = j + 1, . . . , k − 1
s∑

r=1

y∗
r =

s∑
r=1

yr ≥
s∑

r=1

xr for s = k + 1, . . . , n

n∑
r=1

y∗
r =

n∑
r=1

yr =
n∑

r=1

xr.

Letting d(u, v) be the number of indices r such that ur 
= vr, it is clear
that d(x, y∗) ≤ d(x, y) − 1, so repeating the above algorithm (at most) n − 1
times, we arrive at x. ��

The theory of majorization has important applications to statistics, com-
binatorics, metric geometry, and eigenvalue distribution of compact operators.
Some of them are summarized in the classical book by A. W. Marshall and
I. Olkin [155]. In the Comments section of Chapter 4 we shall present an im-
portant component of this theory, Schur convexity, to which I. Schur was led
by the following result:

Theorem 1.10.2 (I. Schur [224]) Let A be an n × n-dimensional Hermi-
tian matrix with diagonal elements a11, . . . , ann and eigenvalues λ1, . . . , λn.
Then

(a11, . . . , ann) ≺ (λ1, . . . , λn).

Proof. By the spectral decomposition theorem, A = UDU∗, where U =
(ukl)k,l is unitary and D is diagonal, with entries λ1, . . . , λn. Then the di-
agonal elements of A are
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akk =
n∑

l=1

uklūklλl =
n∑

l=1

pklλl,

where pkl = uklūkl. Since U is unitary, the matrix P = (pkl)k,l is doubly
stochastic and Theorem 1.10.1 applies. ��

Corollary 1.10.3 (Hadamard’s inequality) If A is an n×n-dimensional
positive matrix with diagonal elements a11, . . . , ann and eigenvalues λ1, . . . , λn,
then

n∏
k=1

akk ≥
n∏

k=1

λk.

An alternative form of this corollary is as follows: If A = (ajk)j,k is an
m × n-dimensional complex matrix, then

det AA∗ ≤
m∏

j=1

n∑
k=1

|ajk|2.

A. Horn [109] (see also [155]) proved a converse to Theorem 1.10.2. Namely,
if x and y are two vectors in Rn such that x ≺ y, then there exists a symmetric
matrix A such that the entries of x are the diagonal elements of A and the
entries of y are the eigenvalues of A. We are thus led to the following example
of a moment map. Let α be an n-tuple of real numbers and let Oα be the
set of all symmetric matrices in Mn(R) with eigenvalues α. Consider the map
Φ: Oα → Rn that takes a matrix to its diagonal. Then the image of Φ is a
convex polyhedron, whose vertices are the n! permutations of α. See M. Atiyah
[12] for a large generalization and a surprising link between mechanics, Lie
group theory and spectra of matrices.

We end this section with a result concerning a weaker relation of majoriza-
tion (see Exercise 5, Section 2.7, for a generalization):

Theorem 1.10.4 (M. Tomić [236] and H. Weyl [245]) Let f : I → R be
a nondecreasing convex function. If (ak)n

k=1 and (bk)n
k=1 are two families of

numbers in I with a1 ≥ · · · ≥ an and

m∑
k=1

ak ≤
m∑

k=1

bk for m = 1, . . . , n

then
n∑

k=1

f(ak) ≤
n∑

k=1

f(bk).

Proof. (By mathematical induction.) The case n = 1 is clear. Assume the
conclusion works for all families of length n − 1. By our hypotheses, a1 ≤ b1.
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If a1 = b1 or an ≤ bn, then the conclusion will follow from the induction
hypothesis and the monotonicity of f . If a1 < b1 and an > bn, then the points
a1, . . . , an are interior to I and Lemma 1.5.1 yields a nondecreasing function
ϕ : int I → R such that ϕ(x) ∈ ∂f(x) for all x. Moreover, ϕ ≥ 0 since f is
nondecreasing. See Proposition 1.6.1. As in the proof of Theorem 1.5.4, we
may conclude that

n∑
k=1

(f(bk) − f(ak)) ≥
n∑

k=1

ϕ(ak)(bk − ak)

= ϕ(an)
[ n∑

k=1

bk −
n∑

k=1

ak

]
+

n−1∑
m=1

[
(ϕ(am) − ϕ(am+1))

m∑
k=1

(bk − ak)
]

≥ 0

and the proof is done. ��

Exercises

1. Notice that (1/n, 1/n, . . . , 1/n) ≺ (1, 0, . . . , 0) and infer from Muirhead’s
inequality (the equivalence (i) ⇔ (iii) in Theorem 1.10.1) the AM–GM
inequality.

2. (I. Schur [222]) Consider the matrix A = (ajk)n
j,k=1, whose eigenvalues

are λ1, . . . , λn. Prove that
n∑

j,k=1

|ajk|2 ≥
n∑

k=1

|λk|2.

3. Apply the result of the preceding exercise to derive the AM–GM inequal-
ity.
[Hint : Write down an n×n matrix whose nonzero entries are x1, . . . , xn > 0
and whose characteristic polynomial is xn −∏n

k=1 xk. ]

4. (The rearrangement inequalities of Hardy–Littlewood–Pólya [99]) Let
x1, . . . , xn, y1, . . . , yn be real numbers. Prove that

n∑
k=1

x↓
ky↓

n−k+1 ≤
n∑

k=1

xkyk ≤
n∑

k=1

x↓
ky↓

k.

If the numbers x1, . . . , xn, y1, . . . , yn are nonnegative, prove that
n∏

k=1

(x↓
k + y↓

k) ≤
n∏

k=1

(xk + yk) ≤
n∏

k=1

(x↓
k + y↓

n−k+1).
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5. Give another proof of the AM–GM inequality by applying the rearrange-
ment inequalities of Hardy–Littlewood–Pólya.

6. (An overview on symmetric-decreasing rearrangements, see [144] for a full
account) Let (X, Σ, µ) be a measure space. The distribution function of a
µ-measurable function f : X → C is defined by

λf (α) = µ({x
∣∣ |f(x)| > α}) for α > 0.

(i) Infer from Fubini’s theorem that∫
X

|f(x)|p dµ = p

∫ ∞

0
αp−1λf (α) dα

for every p > 0 and every f ∈ Lp(µ). The particular case where
f ≥ 0, µ = δx and p = 1 is known as the layer cake representation
of f .

(ii) The symmetric-decreasing rearrangement of f is the function

f↓(α) = inf{t | λf (t) ≤ α}.

Consider a discrete measure space and conclude that the symmetric-
decreasing rearrangement of a finite sequence x1, x2, . . . , xn of non-
negative numbers is x↓

1 ≥ x↓
2 ≥ · · · ≥ x↓

n.
(iii) (Equimeasurability of f and f↓) Suppose that f ∈ Lp(µ), where

(1 ≤ p < ∞). Prove that

χ↓
{x||f(x)|>t} = χ{x|f↓(x)>t} for all t > 0,

and conclude that ‖f‖Lp = ‖f↓‖Lp .

7. (An integral version of the Hardy–Littlewood–Pólya inequality) Let f and
g be two integrable functions on [0, 1], taking values in an interval I. Prove
that ∫ 1

0
ϕ(f(x)) dx ≤

∫ 1

0
ϕ(g(x)) dx

for every continuous convex function ϕ : I → R (for which both functions
ϕ ◦ f and ϕ ◦ g are integrable) if and only if f ≺ g, that is,∫ x

0
f↓(t) dt ≤

∫ x

0
g↓(t) dt for 0 ≤ x < 1

and ∫ 1

0
f↓(t) dt =

∫ 1

0
g↓(t) dt.
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1.11 Comments

The recognition of convex functions as a class of functions to be studied in its
own right generally can be traced back to J. L. W. V. Jensen [115]. However,
he was not the first one to deal with convex functions. The discrete form
of Jensen’s inequality was first proved by O. Hölder [106] in 1889, under
the stronger hypothesis that the second derivative is nonnegative. Moreover,
O. Stolz [233] proved in 1893 that every midpoint convex continuous function
f : [a, b] → R has left and right derivatives at each point of (a, b).

While the usual convex functions are continuous at all interior points (a
fact due to J. L. W. V. Jensen [115]), the midpoint convex functions may
be discontinuous everywhere. In fact, regard R as a vector space over Q and
choose (via the axiom of choice) a basis (bi)i∈I of R over Q, that is, a maximal
linearly independent set. Then every element x of R has a unique represen-
tation x =

∑
i∈I ci(x)bi with coefficients ci(x) in Q and ci(x) = 0 except for

finitely many indices i. The uniqueness of this representation gives rise, for
each i ∈ I, of a coordinate projection pri : x → ci(x), from R onto Q. As
G. Hamel [95] observed in 1905, the functions pri are discontinuous every-
where and

pri(αx + βy) = α pri(x) + β pri(y),

for all x, y ∈ R and all α, β ∈ Q.
H. Blumberg [31] and W. Sierpiński [226] have noted independently that

if f : (a, b) → R is measurable and midpoint convex, then f is also continuous
(and thus convex). See [212, pp. 220–221] for related results. The complete
understanding of midpoint convex functions is due to G. Rodé [214], who
proved that a real-valued function is midpoint convex if and only if it is the
pointwise supremum of a family of functions of the form a + c, where a is
additive and c is a real constant.

Popoviciu’s inequality [206], as stated in Theorem 1.1.8, was known to
him in a more general form, which applies to all continuous convex functions
f : I → R and all finite families x1, . . . , xn of n ≥ 2 points with equal weights.
Later on, this fact was extended by P. M. Vasić and Lj. R. Stanković to the
case of arbitrary weights λ1, . . . , λn > 0:∑

1≤i1<···<ik≤n

(λi1 + · · · + λik
)f
(λi1xi1 + · · · + λik

xik

λi1 + · · · + λik

)
≤
(

n − 2
k − 2

)[n − k

k − 1

n∑
i=1

λif(xi) +
( n∑

i=1

λi

)
f
(λ1x1 + · · · + λnxn

λ1 + · · · + λn

)]
.

See [196, Section 6.1].
The Rogers–Hölder inequality (known to most mathematicians as the

Hölder inequality) was proved in 1888 by L. J. Rogers [215] in a slightly dif-
ferent, but equivalent form. The basic ingredient was his weighted form of the
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AM–GM inequality (as stated in Theorem 1.1.6). One year later, O. Hölder
[106] clearly wrote that he, after Rogers, proved the inequality( n∑

k=1

akbk

)t

≤
( n∑

k=1

ak

)t−1( n∑
k=1

akbt
k

)
,

valid for all t > 1, and all ak > 0, bk > 0, k = 1, . . . , n, n ∈ N∗. His idea
was to apply Jensen’s inequality to the function f(x) = xt, x > 0. However,
F. Riesz was the first who stated and used the Rogers–Hölder inequality as
we did in Section 1.2. See the paper of L. Maligranda [152] for the complete
history.

The inequality of Jakob Bernoulli, (1+a)n ≥ 1+na, for all a ≥ −1 and n in
N, appeared in [22]. The generalized form (see Exercise 2, Section 1.1) is due to
O. Stolz and J. A. Gmeiner; see [152]. The classical AM–GM inequality can be
traced back to C. Maclaurin [149]; see [99, p. 52]. L. Maligranda [152] noticed
that the classical Bernoulli inequality, the classical AM–GM inequality and
the generalized AM–GM inequality of L. J. Rogers are all equivalent (that
is, each one can be used to prove the other ones).

The upper estimate for Jensen’s inequality given in Theorem 1.4.1 is due
to C. P. Niculescu [179].

A refinement of Jensen’s inequality for “more convex” functions was
proved by S. Abramovich, G. Jameson and G. Sinnamon [1]. Call a func-
tion ϕ : [0,∞) → R superquadratic provided that for each x ≥ 0 there exists a
constant Cx ∈ R such that ϕ(y) − ϕ(x) − ϕ(|y − x|) ≥ Cx(y − x) for all y ≥ 0.
For example, if ϕ : [0,∞) → R is continuously differentiable, ϕ(0) ≤ 0 and ei-
ther −ϕ′ is subadditive or ϕ′(x)/x is nondecreasing, then ϕ is superquadratic.
Particularly, this is the case of x2 log x. Moreover every superquadratic non-
negative function is convex. Their main result asserts that the inequality

ϕ

(∫
X

f(y) dµ(y)
)

≤
∫

X

[
ϕ(f(x)) − ϕ

(∣∣∣f(x) −
∫

X

f(y) dµ(y)
∣∣∣)] dµ(x)

holds for all probability spaces (X, Σ, µ) and all nonnegative µ-measurable
functions f if and only if ϕ is superquadratic.

The proof of Theorem 1.5.6 (the Jensen–Steffensen inequality) is due to
J. Pečarić [195].

The history of Hardy’s inequality is told in Section 9.8 of [99]. Its many
ramifications and beautiful applications are the subject of two monographs,
[135] and [192].

We can arrive at Hardy’s inequality via mixed means. For a positive n-
tuple a = (a1, . . . , an), the mixed arithmetic-geometric inequality asserts that
the arithmetic mean of the numbers

a1,
√

a1a2, . . . , n
√

a1a2 · · · an

does not exceed the geometric mean of the numbers
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a1,
a1 + a2

2
, . . . ,

a1 + a2 + · · · + an

n

(see K. Kedlaya [123]). As noted by B. Mond and J. Pečarić [170], the arith-
metic and the geometric means can be replaced (in this order) by any pair
(Mr, Ms) of power means with r > s. For r = p > 1 and s = 1 this gives us

[ 1
n

n∑
k=1

(a1 + a2 + · · · + ak

k

)p]1/p

≤ 1
n

n∑
k=1

(1
k

k∑
j=1

ap
j

)1/p

so that
∑n

k=1((a1 + a2 + · · · + ak)/k)p is less than or equal to

n1−p
( n∑

j=1

ap
j

)[ n∑
k=1

(1
k

)1/p]p

≤
( p

p − 1

)p( n∑
j=1

ap
j

)
,

as
∫ n

0 x−1/p dx = p
p−1n1−1/p. The integral case of this approach is discussed

by A. Čižmešija and J. Pečarić [54].
Carleman’s inequality (and its ramifications) has also received a great deal

of attention in recent years. The reader may consult the papers by J. Pečarić
and K. Stolarsky [198], J. Duncan and C. M. McGregor [68], M. Johansson,
L.-E. Persson and A. Wedestig [116], S. Kaijser, L.-E. Persson and A. Öberg
[118], A. Čižmešija and J. Pečarić and L.-E. Persson [55].

The complete forms of Jensen’s and Chebyshev’s inequalities (Theo-
rems 1.8.4 and 1.8.6 above) are due to C. P. Niculescu [179]. The smooth vari-
ant of Corollary 1.8.5 was first noticed by S. S. Dragomir and N. M. Ionescu
[67]. An account on the history, variations and generalizations of the Cheby-
shev inequality can be found in the paper by D. S. Mitrinović and P. M. Vasić
[169]. Other complements to Jensen’s and Chebyshev’s inequalities can be
found in the papers by H. Heinig and L. Maligranda [100] and S. M. Mala-
mud [150].

The dramatic story of the Hermite–Hadamard inequality is told in a short
note by D. S. Mitrinović and I. B. Lacković [167]: In a letter sent on Novem-
ber 22, 1881, to Mathesis (and published there in 1883), Ch. Hermite [102]
noted that every convex function f : [a, b] → R satisfies the inequalities

f
(a + b

2

)
≤ 1

b − a

∫ b

a

f(x) dx ≤ f(a) + f(b)
2

and illustrated this with Example 1.9.1 (i) in our text. Ten years later, the
left-hand side inequality was rediscovered by J. Hadamard [94]. However the
priority of Hermite was not recorded and his note was not even mentioned in
Hermite’s Collected Papers (published by E. Picard).

The precision in the Hermite–Hadamard inequality can be estimated via
two classical inequalities that work in the Lipschitz function framework. Sup-
pose that f : [a, b] → R is a Lipschitz function, with Lipschitz constant
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Lip(f) = sup
{∣∣∣f(x) − f(y)

x − y

∣∣∣ ∣∣ x 
= y
}

.

Then the left Hermite–Hadamard inequality can be estimated by the inequality
of Ostrowski ,∣∣∣∣f(x) − 1

b − a

∫ b

a

f(t) dt

∣∣∣∣ ≤ M
[1
4

+
(x − a+b

2

b − a

)2]
(b − a),

while the right Hermite–Hadamard inequality can be estimated by the in-
equality of Iyengar ,∣∣∣∣f(a) + f(b)

2
− 1

b − a

∫ b

a

f(t) dt

∣∣∣∣ ≤ M(b − a)
4

− 1
4M(b − a)

(f(b) − f(a))2,

where M = Lip(f). The first inequality is a direct consequence of the triangle
inequality. The second one will be proved in Section 4.3.

A dual Hermite–Hadamard inequality is discussed by C. P. Niculescu [180].
A complete extension of the Hermite–Hadamard inequality to the class of n-
convex functions was recently obtained by M. Bessenyei and Z. Páles [25]. For
other results on the Hermite–Hadamard inequality, see the monograph [196].

The theory of majorization (and its applications) is presented in great
detail in the book by A. W. Marshall and I. Olkin [155]. The integral version
of majorization is based on the concept of rearrangement. A modern exposition
of the theory can be found in E. H. Lieb and M. Loss [144] (but [99] is still a
big source of concrete examples).

As noticed by L. Maligranda [151], if f is a nonnegative convex (concave)
function on an interval I = [0, a], then its distribution function λf is convex
on [ess infI f,∞) (concave on [0, ess supI f)) and f↓ is convex on [0,∞). As
an application he derived the following two inequalities:

Favard’s inequality [76]. Let f be a nonnegative continuous concave
function on [0, a], not identically zero, and let ϕ be a convex function on
[0, 2M1(f)]. Then

1
a

∫ a

0
ϕ(f(x)) dx ≤ 1

2M1(f)

∫ 2M1(f)

0
ϕ(t) dt.

Berwald’s inequality [24]. Let f be a nonnegative continuous concave func-
tion on [0, a] and 0 < r ≤ p. Then(

1
a

∫ a

0
fp(x) dx

)1/p

≤ (1 + r)1/r

(1 + p)1/p

(
1
a

∫ a

0
fr(x) dx

)1/r

.

We end this chapter with a brief discussion on the differentiability prop-
erties of convex functions from a generic point of view.
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Let P be a property which refers to the elements of a complete metric
space X. We say that P is generic (or that most elements of X enjoy P)
if those elements not enjoying the property P form a set of first Baire cate-
gory, that is, a countable union of nowhere dense sets. The space C[0, 1], of
all continuous real functions on [0, 1], endowed with the usual sup-norm, is
complete. The same is true for Conv[0, 1], the subset of all continuous convex
functions on [0, 1]. A well-known elegant proof of S. Banach shows that most
functions in C[0, 1] are nowhere differentiable. The situation in Conv[0, 1] is
different. In fact, as noted by V. Klee [128], most convex functions in C[0, 1]
are differentiable.

The generic aspects of the second differentiability of convex functions are
described by T. Zamfirescu [249]: For most convex functions f : [0, 1] → R,

Df ′ = 0 or Df ′ = ∞ everywhere.

Moreover, for most convex functions f , the second derivative f ′′ vanishes
wherever it exists, that is, almost everywhere. Thus, the behavior of the inte-
gral of Riesz’s increasing function ϕ mentioned in Remark 1.6.2 is rather the
rule, not the exception.

Most convex functions have, however, many points where f ′′ does not
exist. More precisely, for most convex functions f , at most points of [0, 1],
Df ′ = 0 and Df ′ = ∞. See T. Zamfirescu [250]. This is complemented by
another result (also by T. Zamfirescu [251]), showing that for most convex
functions f , at densely, uncountably many points in [0, 1], f ′′ = ∞.



2

Comparative Convexity on Intervals

This chapter is devoted to a succinct presentation of several classes of functions
acting on intervals, which satisfy inequalities of the form

f(M(x, y)) ≤ N(f(x), f(y)),

for a suitable pair of means M and N . Leaving out the case of usual con-
vex functions (when M and N coincide with the arithmetic mean), the most
important classes that arise in applications are:

• the class of log-convex functions (M is the arithmetic mean and N is the
geometric mean)

• the class of multiplicatively convex functions (M and N are both geomet-
ric means)

• the class of Mp-convex functions (M is the arithmetic mean and N is the
power mean of order p).

They all provide important applications to many areas of mathematics.

2.1 Algebraic Versions of Convexity

The usual definition of a convex function (of one real variable) depends on
the structure of R as an ordered vector space. As R is actually an ordered
field, it is natural to investigate what happens when addition is replaced by
multiplication and the arithmetic mean is replaced by the geometric mean.

The characteristic property of the subintervals I of R is

x, y ∈ I and λ ∈ [0, 1] =⇒ (1 − λ)x + λy ∈ I

so, in order to draw a parallel in the multiplicative case, we must restrict to
the subintervals J of (0,∞) and use instead the following fact:

x, y ∈ J and λ ∈ [0, 1] =⇒ x1−λyλ ∈ J.
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Depending on which type of mean, arithmetic (A) or geometric (G), we
consider on the domain and on the range, we shall encounter one of the fol-
lowing four classes of functions:

• (A, A)-convex functions, the usual convex functions;
• (A, G)-convex functions;
• (G, A)-convex functions;
• (G, G)-convex functions.

More precisely, the (A, G)-convex functions (usually known as log-convex
functions) are those functions f : I → (0,∞) for which

x, y ∈ I and λ ∈ [0, 1] =⇒ f((1 − λ)x + λy) ≤ f(x)1−λf(y)λ, (AG)

that is, for which log f is convex. If a function f : I → R is log-convex, then
it is also convex. In fact, according to the AM–GM inequality,

f((1 − λ)x + λy) ≤ f(x)1−λf(y)λ ≤ (1 − λ)f(x) + λf(y).

The converse does not work. For example, the function ex − 1 is convex
and log-concave.

One of the most notable examples of a log-convex function is Euler’s
gamma function,

Γ(x) =
∫ ∞

0
tx−1e−t dt, x > 0.

The place of Γ in the landscape of log-convex functions is the subject of
the next section.

The class of all (G, A)-convex functions consists of all real-valued func-
tions f (defined on subintervals I of (0,∞)) for which

x, y ∈ I and λ ∈ [0, 1] =⇒ f(x1−λyλ) ≤ (1 − λ)f(x) + λf(y). (GA)

In the context of twice-differentiable functions f : I → R, (G, A)-convexity
means x2f ′′ + xf ′ ≥ 0.

The (G, G)-convex functions (called multiplicatively convex functions in
what follows) are those functions f : I → J (acting on subintervals of (0,∞))
such that

x, y ∈ I and λ ∈ [0, 1] =⇒ f(x1−λyλ) ≤ f(x)1−λf(y)λ. (GG)

Equivalently, f is multiplicatively convex if and only if log f(x) is a convex
function of log x. This fact will be shown in Lemma 2.3.1 below. Due to the
arithmetic-geometric mean inequality, all multiplicatively convex functions
(and also all nondecreasing convex functions) are (G, A)-convex functions.

The theory of multiplicatively convex functions is similar to that of clas-
sical convex functions. In fact, they differ from each other only by a change
of variable and a change of function:
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Lemma 2.1.1 Suppose that I is a subinterval of (0,∞) and f : I → (0,∞)
is a multiplicatively convex function on I. Then

F = log ◦f ◦ exp: log(I) → R

is a convex function. Conversely, if J is an interval and F : J → R is a convex
function, then

f = exp ◦F ◦ log : exp(J) → (0,∞)

is a multiplicatively convex function.

The proof is straightforward. Lemma 2.1.1 can be adapted easily to other
situations and allows us to deduce new inequalities from old ones. This idea
is central to Section 2.3 below.

Exercises

1. (Some geometrical consequences of log-convexity)
(i) A convex quadrilateral ABCD is inscribed in the unit circle. Its sides

satisfy the inequality AB · BC · CD · DA ≥ 4. Prove that ABCD is
a square.

(ii) Suppose that A, B, C are the angles of a triangle, expressed in radi-
ans. Prove that

sin A sin B sin C <
(3

√
3

2π

)3
ABC <

(√
3

2

)3
,

unless A = B = C.
[Hint : Note that the sine function is log-concave, while x/ sin x is log-
convex on (0, π). ]

2. Let (X, Σ, µ) be a measure space and let f : X → C be a measur-
able function, which is in Lt(µ) for t in a subinterval I of (0,∞). In-
fer from the Cauchy–Buniakovski–Schwarz inequality that the function
t → log

∫
X

|f |t dµ is convex on I.
Remark. The result of this exercise is equivalent to Lyapunov’s inequality
[148]: If a ≥ b ≥ c, then(∫

X

|f |b dµ

)a−c

≤
(∫

X

|f |c dµ

)a−b(∫
X

|f |a dµ

)b−c

(provided the integrability aspects are fixed). Equality holds if and only if
one of the following conditions hold:
(i) f is constant on some subset of Ω and 0 elsewhere;
(ii) a = b;
(iii) b = c;
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(iv) c(2a − b) = ab.

3. (P. Montel [171]) Let I be an interval. Prove that the following assertions
are equivalent for every function f : I → (0,∞):
(i) f is log-convex;
(ii) the function x → eαxf(x) is convex on I for all α ∈ R;
(iii) the function x → [f(x)]α is convex on I for all α > 0.
[Hint : For (iii) ⇒ (i), note that ([f(x)]α − 1)/α is convex for all α > 0
and log f(x) = limα→0+([f(x)]α − 1)/α. Then apply Corollary 1.3.8. ]

4. Prove that the sum of two log-convex functions is also log-convex.
[Hint : Note that this assertion is equivalent to the following inequality for
positive numbers: aαbβ + cαdβ ≤ (a + c)α(b + d)β .]

5. (S. Simic [227]) Let (an)n be a sequence of positive numbers. Prove that
the following assertions are equivalent:
(i) (an)n is log-convex (that is, an−1an+1 ≥ a2

n for all n ≥ 1);
(ii) for each x ≥ 0, the sequence Pn(x) =

∑n
k=0 ak

(
n
k

)
xn−k (n ∈ N) is

log-convex.

6. A function f : (0,∞) → R is called completely monotonic if f has deriva-
tives of all orders and satisfies (−1)nf (n)(x) ≥ 0 for all x > 0 and n ∈ N.
In particular, completely monotonic functions are decreasing and convex.
(i) Prove that

(−1)nk(f (k)(x))n ≤ (−1)nk(f (n)(x))k(f(x))n−k

for all x > 0 and all integers n, k with n ≥ k ≥ 0. Infer that any
completely monotonic function is actually log-convex.

(ii) Prove that the function

Vq(x) =
exp(x2)
Γ(q + 1)

∫ ∞

x

e−t2(t2 − x2)q dt

is completely monotonic on (0,∞) if q ∈ (−1, 0].

2.2 The Gamma and Beta Functions

The gamma function Γ: (0, ∞) → R is defined by the relation

Γ(x) =
∫ ∞

0
tx−1e−t dt for x > 0.

Theorem 2.2.1 The gamma function has the following properties:
(i) Γ(x + 1) = xΓ(x) for all x > 0;
(ii) Γ(1) = 1;
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Fig. 2.1. The graph of Γ.

(iii) Γ is log-convex.

Proof. (i) Using integration by parts we get

Γ(x + 1) =
∫ ∞

0
txe−t dt = [−txe−t]

∣∣∞
t=0 + x

∫ ∞

0
tx−1e−t dt = xΓ(x)

for all x > 0.
The property (ii) is obvious.
(iii) Let x, y > 0 and let λ, µ ≥ 0 with λ + µ = 1. Then, by the Rogers–

Hölder inequality, we have

Γ(λx + µy) =
∫ ∞

0
tλx+µy−1e−t dt =

∫ ∞

0
(tx−1e−t)λ(ty−1e−t)µ dt

≤
(∫ ∞

0
tx−1e−t dt

)λ(∫ ∞

0
ty−1e−t dt

)µ

= Γλ(x)Γµ(y)

which proves that Γ is log-convex. ��

Corollary 2.2.2 Γ(n + 1) = n! for all n ∈ N.

Corollary 2.2.3 The gamma function is convex and xΓ(x) approaches 1 as
x → 0+.

C. F. Gauss first noted that Γ attains its minimum at x = 1.461632145 . . . .
The gamma function is the unique log-convex extension of the factorial

function:

Theorem 2.2.4 (H. Bohr and J. Mollerup [32], [10]) Suppose the func-
tion f : (0,∞) → R satisfies the following three conditions:
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(i) f(x + 1) = xf(x) for all x > 0;
(ii) f(1) = 1;
(iii) f is log-convex.
Then f = Γ.

Proof. By induction, from (i) and (ii) we infer that f(n+1) = n! for all n ∈ N.
Now, let x ∈ (0, 1] and n ∈ N�. Then by (iii) and (i),

f(n + 1 + x) = f((1 − x)(n + 1) + x(n + 2))

≤ [f(n + 1)]1−x · [f(n + 2)]x

= [f(n + 1)]1−x · (n + 1)x · [f(n + 1)]x

= (n + 1)x · f(n + 1)
= (n + 1)x · n!

and

n! = f(n + 1) = f(x(n + x) + (1 − x)(n + 1 + x))

≤ [f(n + x)]x · [f(n + 1 + x)]1−x

= (n + x)−x · [f(n + 1 + x)]x · [f(n + 1 + x)]1−x

= (n + x)−x · f(n + 1 + x).

Thus, since f(n + 1 + x) = (n + x)(n − 1 + x) · · ·xf(x), we obtain(
1 +

x

n

)x

≤ (n + x)(n − 1 + x) · · ·xf(x)
n! nx

≤
(
1 +

1
n

)x

,

which yields

f(x) = lim
n→∞

n! nx

(n + x)(n − 1 + x) · · ·x for x ∈ (0, 1].

We shall show that the above formula is valid for all x > 0 so that f is
uniquely determined by the conditions (i), (ii) and (iii). Since Γ satisfies all
these three conditions, we must have f = Γ.

To end the proof, suppose that x > 0 and choose an integer number m
such that 0 < x − m ≤ 1. According to (i) and what we have just proved, we
get

f(x) = (x − 1) · · · (x − m)f(x − m)

= (x − 1) · · · (x − m) · lim
n→∞

n! nx−m

(n + x − m)(n − 1 + x − m) · · · (x − m)

= lim
n→∞

( n! nx

(n + x)(n − 1 + x) · · ·x

· (n + x)(n + x − 1) · · · (n + x − (m − 1))
nm

)
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= lim
n→∞

n! nx

(n + x)(n − 1 + x) · · ·x
· lim

n→∞

((
1 +

x

n

)(
1 +

x − 1
n

)
· · ·

(
1 +

x − m + 1
n

))
= lim

n→∞
n! nx

(n + x)(n − 1 + x) · · ·x.

��

Corollary 2.2.5 Γ(x) = lim
n→∞

n! nx

(n + x)(n − 1 + x) · · ·x for all x > 0.

Before establishing a fundamental identity linking the gamma and sine
functions, we need to express sin x as an infinite product:

Theorem 2.2.6 (L. Euler) For all real numbers x,

sin x = x
∞∏

k=1

(
1 − x2

k2π2

)
.

Proof. De Moivre’s formula shows that sin(2n + 1)θ is a polynomial of degree
2n + 1 in sin θ (for each n ∈ N, arbitrarily fixed). This polynomial has roots
± sin(kπ/(2n + 1)) for k = 0, . . . , n. It follows that

sin(2n + 1)θ = (2n + 1) sin θ

n∏
k=1

(
1 − sin2 θ

sin2 kπ
2n+1

)
.

Suppose that x > 0 and fix arbitrarily two integers m and n such that
x < m < n. The last identity shows that

sin x

(2n + 1) sin x
2n+1

=
n∏

k=1

(
1 − sin2 x

2n+1

sin2 kπ
2n+1

)
.

Denote by ak the k-th factor in this last product. Since 2θ/π < sin θ < θ
when 0 < θ < π/2, we find that

0 < 1 − x2

4k2 < ak < 1 for m < k ≤ n,

which yields

1 > am+1 · · · an >

n∏
k=1

(
1 − x2

4k2

)
> 1 − x2

4

n∑
k=m+1

1
k2 > 1 − x2

4m
.

Hence
sin x

(2n + 1) sin x
2n+1
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lies between(
1 − x2

4m

) n∏
k=1

(
1 − sin2 x

2n+1

sin2 kπ
2n+1

)
and

n∏
k=1

(
1 − sin2 x

2n+1

sin2 kπ
2n+1

)
and so, letting n → ∞, we deduce that sin x/x lies between(

1 − x2

4m

) ∞∏
k=1

(
1 − x2

k2π2

)
and

∞∏
k=1

(
1 − x2

k2π2

)
.

The proof ends by letting m → ∞. ��

Theorem 2.2.7 For all real x with 0 < x < 1,

Γ(x)Γ(1 − x) =
π

sin πx
.

Proof. In fact, by Corollary 2.2.5 and Theorem 2.2.6 above we infer that

Γ(x)Γ(1 − x) = lim
n→∞

n! nxn! n1−x

(n + x) · · ·x (n + 1 − x) · · · (1 − x)

=
1

x
∏∞

k=1(1 − x2/k2)
=

π

sin πx
.

��

Corollary 2.2.8 Γ(1/2) =
√

π.

A variant of the last corollary is the formula

1√
2π

∫
R

e−t2/2 dt = 1

which appears in many places in mathematics, statistics and natural sciences.
Another beautiful consequence of Theorem 2.2.4 is the following:

Theorem 2.2.9 (The Gauss–Legendre duplication formula)

Γ
(x

2

)
Γ
(x + 1

2

)
=

√
π

2x−1 Γ(x) for all x > 0.

Proof. Notice that the function

f(x) =
2x−1
√

π
Γ
(x

2

)
Γ
(x + 1

2

)
x > 0,

verifies the conditions (i)–(iii) in Theorem 2.2.4 and thus equals Γ. ��

We will prove Stirling’s formula, which is an important tool in analytic
number theory. We shall need the following lemma:
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Lemma 2.2.10 The sequence (an)n, whose n-th term is

an = log n! −
(
n +

1
2

)
log n + n,

converges.

Proof. We shall show that the sequence is decreasing and bounded below. In
fact,

an − an+1 =
(
n +

1
2

)
log

(
1 +

1
n

)
− 1 ≥ 0

since by the Hermite–Hadamard inequality applied to the convex function 1/x
on [n, n + 1] we have

log
(
1 +

1
n

)
=
∫ n+1

n

dx

x
≥ 1

n + 1/2
.

A similar argument (applied to the concave function log x on [u, v]) yields∫ v

u

log x dx ≤ (v − u) log
u + v

2
,

so that (taking into account the monotonicity of the log function) we get∫ n

1
log x dx =

∫ 1+1/2

1
log x dx +

∫ 2+1/2

1+1/2
log x dx + · · · +

∫ n

n−1/2
log x dx

≤ 1
2

log
3
2

+ log 2 + · · · + log(n − 1) +
1
2

log n

<
1
2

+ log n! − 1
2

log n.

Since ∫ n

1
log x dx = n log n − n + 1,

we conclude that

an = log n! −
(
n +

1
2

)
log n + n >

1
2
.

The result now follows. ��

Theorem 2.2.11 (Stirling’s formula) n! ∼ √
2π nn+1/2e−n.

Proof. Under the notation of the previous lemma, put

bn = ean =
n!

nn+1/2e−n
for n = 1, 2, . . . .
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Then the sequence (bn)n converges to some b > 0. Thus

b2
n

b2n
=

22n+1/2(n!)2

n1/2(2n)!
→ b2

b
= b as n → ∞.

For n = 1, 2, . . . , let cn =
n! n1/2

(n + 1
2 ) · · · 3

2 · 1
2

. Then by Corollary 2.2.5, (cn)n

converges to Γ(1/2) =
√

π as n → ∞. Hence

b2
n

b2n
= cn

(
1 +

1
2n

)√
2 →

√
2π as n → ∞,

which yields b =
√

2π. Consequently,

bn =
n!

nn+1/2e−n
→

√
2π as n → ∞

and the proof is now complete. ��

Closely related to the gamma function is the beta function B, which is the
real function of two variables defined by the formula

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1 dt for x, y > 0.

Theorem 2.2.12 The beta function has the following properties:
(i) B(x, y) = B(y, x) and B(x + 1, y) = x

x+y B(x, y);
(ii) B(x, y) is a log-convex function of x for each fixed y;

(iii) B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

.

Proof. (i) The first formula is clear. For the second,

B(x + 1, y) =
∫ 1

0
tx(1 − t)y−1 dt

=
∫ 1

0
(1 − t)x+y−1

( t

1 − t

)x

dt

=
[−(1 − t)x+y

x + y

( t

1 − t

)x]t=1

t=0
+
∫ 1

0

x

x + y
tx−1(1 − t)y−1 dt

=
x

x + y
B(x, y).

(ii) Let a, b, y > 0 and let λ, µ ≥ 0 with λ + µ = 1. By the Rogers–Hölder
inequality,
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B(λa + µb, y) =
∫ 1

0
(ta−1(1 − t)y−1)λ(tb−1(1 − t)y−1)µ dt

≤
(∫ 1

0
ta−1(1 − t)y−1 dt

)λ(∫ 1

0
tb−1(1 − t)y−1 dt

)µ

= Bλ(a, y) · Bµ(a, y).

(iii) Let y > 0 be arbitrarily fixed and consider the function

ϕy(x) =
Γ(x + y)B(x, y)

Γ(y)
, x > 0.

Then ϕy is a product of log-convex functions and so it is itself log-convex.
Also,

ϕy(x + 1) =
Γ(x + y + 1)B(x + 1, y)

Γ(y)

=
[(x + y)Γ(x + y)][x/(x + y)]B(x, y)

Γ(y)
= xϕy(x)

for all x > 0 and

ϕy(1) =
Γ(1 + y)B(1, y)

Γ(y)
= y

∫ 1

0
(1 − t)y−1 dt = 1.

Thus ϕy = Γ by Theorem 2.2.4, and the assertion (iii) is now clear. ��

Exercises

1. Prove that Γ(n + 1
2 ) = (2n)!

√
π

n! 4n for n ∈ N.

2. The integrals

In =
∫ π/2

0
sinn t dt (for n ∈ N)

can be computed easily via the recurrence formula nIn = (n − 1)In−2
(where n ≥ 2). Integrate the inequalities sin2n+1 x ≤ sin2n x ≤ sin2n−1 x
over [0, π/2] to infer Wallis’ formula,

π

2
= lim

n→∞

[2 · 2
1 · 3

· 4 · 4
3 · 5

· · · 2n · 2n

(2n − 1) · (2n + 1)

]
.

Remark. An alternative proof of this formula follows from Corollary 2.2.5,
by noticing that π/2 = (Γ(1/2))2/2.
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3. Establish the formula

B(x, y) = 2
∫ π/2

0
sin2x−1 t · cos2y−1 t dt for x, y > 0,

and infer from it that∫ π/2

0
sin2n t dt =

(2n)! π
22n+1(n!)2

for n ∈ N.

4. Use Corollary 2.2.5 to prove Weierstrass’ formula,

Γ(x) =
e−γx

x

∞∏
n=1

(
1 +

x

n

)−1
ex/n,

where γ = lim
n→∞(1 + 1

2 + · · · + 1
n − log n) = 0. 57722 . . . is Euler’s constant.

5. (The Raabe integral) Prove that

Γ
(1

p

)
Γ
(2

p

)
· · ·Γ

(p − 1
p

)
=

(2π)p−1/2

p1/2 for all p ∈ N�.

Then infer the integral formula∫ x+1

x

log Γ(t) dt = x(log x − 1) +
1
2

log 2π for all x ≥ 0.

[Hint : Notice that
∫ x+1

x
log Γ(t) dt−x(log x− 1) is constant. The value at

x = 0 can be computed by using Riemann sums. ]

6. (L. Euler) Prove the formula∫ ∞

0

tx−1

1 + t
dt =

π

sin πx
for 0 < x < 1.

[Hint : Put t = u/(1 − u) and apply Theorem 2.2.12 (iii). ]

7. (An alternative proof of the log-convexity of Γ) Prove the formula

d2

dx2 log Γ(x) =
∞∑

n=0

1
(x + n)2

for x > 0.

8. (F. John’s approach of the Bohr–Mollerup theorem) Let g be a real-valued
concave function on (0,∞) such that g(x)/x → 0 as x → ∞.
(i) Prove that the difference equation

f(x + 1) − f(x) = g(x)
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has one and only one convex solution f : (0,∞) → R with f(1) = 0,
and this solution is given by the formula

f(x) = −g(x) + x · lim
n→∞

(
g(n) −

n−1∑
k=1

g(x + k) − g(k)
x

)
.

(ii) (A Stirling type formula) Prove the existence of the limit

c = lim
x→∞

(
f(x) + g(x) −

∫ x+1/2

1/2
g(t) dt

)
.

Remark. The Bohr–Mollerup theorem concerns the case where g = log
and f = log Γ.

9. (E. Artin [10]) Let U be an open convex subset of Rn and let µ be a Borel
measure on an interval I. Consider the integral transform

F (x) =
∫

I

K(x, t) dµ(t),

where the kernel K(x, t) : U × I → [0,∞) satisfies the following two con-
ditions:
(i) K(x, t) is µ-integrable in t for each fixed x;
(ii) K(x, t) is log-convex in x for each fixed t.
Prove that F is log-convex on U .
[Hint : Apply the Rogers–Hölder inequality, noticing that

K((1 − λ)x + λy, t) ≤ (K(x, t))1−λ(K(y, t))λ. ]

Remark. The Laplace transform of a function f ∈ L1(0,∞) is given by the
formula (Lf)(x) =

∫∞
0 f(t)e−tx dt. By Exercise 9, the Laplace transform of

any nonnegative function is log-convex. In the same way one can show that
the moment µα =

∫∞
0 tαf(t) dt, of any random variable with probability

density f , is a log-convex function in α (on each subinterval of [0,∞) where
it is finite).

2.3 Generalities on Multiplicatively Convex Functions

The class of multiplicatively convex functions can be easily described as being
constituted by those functions f (acting on subintervals of (0,∞)) such that
log f(x) is a convex function of log x:

Lemma 2.3.1 Suppose that f : I → (0,∞) is a function defined on a subin-
terval of (0,∞). Then f is multiplicatively convex if and only if
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1 log x1 log f(x1)
1 log x2 log f(x2)
1 log x3 log f(x3)

∣∣∣∣∣∣ ≥ 0

for all x1 ≤ x2 ≤ x3 in I; equivalently, if and only if

f(x1)log x3f(x2)log x1f(x3)log x2 ≥ f(x1)log x2f(x2)log x3f(x3)log x1

for all x1 ≤ x2 ≤ x3 in I.

This is nothing but the translation (via Lemma 2.1.1) of the result of
Lemma 1.3.2.

In the same spirit, we can show that every multiplicatively convex function
f : I → (0,∞) has finite lateral derivatives at each interior point of I (and the
set of all points where f is not differentiable is at most countable). As a conse-
quence, every multiplicatively convex function is continuous in the interior of
its domain of definition. Under the presence of continuity, the multiplicative
convexity can be restated in terms of geometric mean:

Theorem 2.3.2 Suppose that I is a subinterval of (0,∞). A continuous func-
tion f : I → (0,∞) is multiplicatively convex if and only if

x, y ∈ I implies f(
√

xy) ≤
√

f(x)f(y).

Proof. The necessity is clear. The sufficiency part follows from the connection
between the multiplicative convexity and the usual convexity (as noted in
Lemma 2.1.1) and the fact that midpoint convexity is equivalent to convexity
in the presence of continuity. See Theorem 1.1.3. ��

Theorem 2.3.2 reveals the essence of multiplicative convexity as being the
convexity according to the geometric mean; in fact, under the presence of
continuity, the multiplicatively convex functions are precisely those functions
f : I → (0,∞) for which

x1, . . . , xn ∈ I implies f( n
√

x1 · · ·xn) ≤ n
√

f(x1) · · · f(xn).

In this respect, it is natural to call a function f : I → (0,∞) multiplicatively
concave if 1/f is multiplicatively convex, and multiplicatively affine if f is of
the form Cxα for some C > 0 and some α ∈ R.

A refinement of the notion of multiplicative convexity is that of strict
multiplicative convexity, which in the context of continuity will mean

f( n
√

x1 · · ·xn) < n
√

f(x1) · · · f(xn)

unless x1 = · · · = xn. Clearly, Lemma 2.1.1 (which relates the multiplicatively
convex functions and the usual convex functions) has a “strict” counterpart.

A large class of strictly multiplicatively convex functions is indicated by
the following result:
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Proposition 2.3.3 (G. H. Hardy, J. E. Littlewood and G. Pólya
[99, Theorem 177, p. 125]) Every polynomial P (x) with nonnegative co-
efficients is a multiplicatively convex function on (0,∞). More generally, ev-
ery real analytic function f(x) =

∑∞
n=0 cnxn with nonnegative coefficients is

a multiplicatively convex function on (0, R), where R denotes the radius of
convergence.

Moreover, except for the case of functions Cxn (with C > 0 and n ∈ N),
the above examples exhibit strictly multiplicatively convex functions (which
are also increasing and strictly convex). In particular,

• exp, sinh and cosh on (0,∞);
• tan, sec, csc and 1

x − cot x on (0, π/2);
• arcsin on (0, 1];
• − log(1 − x) and 1+x

1−x on (0, 1).

See the table of series in I. S. Gradshteyn and I. M. Ryzhik [89].

Proof. By continuity, it suffices to prove only the first assertion. Suppose that
P (x) =

∑N
n=0 cnxn. According to Theorem 2.3.2, we have to prove that

x, y > 0 implies (P (
√

xy))2 ≤ P (x)P (y),

or, equivalently,

x, y > 0 implies (P (xy))2 ≤ P (x2)P (y2).

The later implication is an easy consequence of Cauchy–Buniakovski–
Schwarz inequality. ��

The following result collects a series of useful remarks for proving the
multiplicative convexity of concrete functions:

Lemma 2.3.4

(i) If a function is log-convex and increasing, then it is strictly multiplica-
tively convex.

(ii) If a function f is multiplicatively convex, then the function 1/f is mul-
tiplicatively concave (and vice versa).

(iii) If a function f is multiplicatively convex, increasing and one-to-one, then
its inverse is multiplicatively concave (and vice versa).

(iv) If a function f is multiplicatively convex, so is xα[f(x)]β (for all α ∈ R

and all β > 0).
(v) If f is continuous, and one of the functions f(x)x and f(e1/ log x) is

multiplicatively convex, then so is the other.

In many cases the inequalities based on multiplicative convexity are better
than the direct application of the usual inequalities of convexity (or yield
complementary information). This includes the multiplicative analogue of the
Hardy–Littlewood–Pólya inequality of majorization:



80 2 Comparative Convexity on Intervals

Proposition 2.3.5 Suppose that x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn

are two families of numbers in a subinterval I of (0,∞) such that

x1 ≥ y1

x1x2 ≥ y1y2

...
x1x2 · · ·xn−1 ≥ y1y2 · · · yn−1

x1x2 · · ·xn = y1y2 · · · yn.

Then
f(x1)f(x2) · · · f(xn) ≥ f(y1)f(y2) · · · f(yn)

for every multiplicatively convex function f : I → (0,∞).

A result due to H. Weyl [245] (see also [155]) gives us the basic example of
a pair of sequences satisfying the hypothesis of Proposition 2.3.5: Consider a
matrix A ∈ Mn(C) having the eigenvalues λ1, . . . , λn and the singular numbers
s1, . . . , sn, and assume that they are rearranged such that |λ1| ≥ · · · ≥ |λn|,
and s1 ≥ · · · ≥ sn. Then:∣∣∣ m∏

k=1

λk

∣∣∣ ≤
m∏

k=1

sk for m = 1, . . . , n − 1 and
∣∣∣ n∏
k=1

λk

∣∣∣ =
n∏

k=1

sk.

Recall that the singular numbers of a matrix A are precisely the eigenvalues
of its modulus, |A| = (A�A)1/2; the spectral mapping theorem assures that
sk = |λk| when A is Hermitian. The fact that all examples come this way was
noted by A. Horn; see [155] for details.

According to the discussion above the following result holds:

Proposition 2.3.6 Let A ∈ Mn(C) be any matrix having the eigenvalues
λ1, . . . , λn and the singular numbers s1, . . . , sn, listed such that |λ1| ≥ · · · ≥
|λn| and s1 ≥ · · · ≥ sn. Then

n∏
k=1

f(sk) ≥
n∏

k=1

f(|λk|)

for every multiplicatively convex function f which is continuous on [0,∞).

In general it is not true that |λk| ≤ sk for all k. A counterexample is given
by the matrix (

0 1
4 0

)
whose eigenvalues are λ1 = 2 > λ2 = −2 and the singular numbers are
s1 = 4 > s2 = 1.
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Exercises

1. (C. H. Kimberling [126]) Suppose that P is a polynomial with nonnegative
coefficients. Prove that

(P (1))n−1P (x1 · · ·xn) ≥ P (x1) · · ·P (xn)

provided that all xk are either in [0, 1] or in [1,∞). This fact complements
Proposition 2.3.3.

2. (The multiplicative analogue of Popoviciu’s inequality) Suppose there is
given a multiplicatively convex function f : I → (0,∞). Infer from Theo-
rem 2.3.5 that

f(x) f(y) f(z) f3( 3
√

xyz) ≥ f2(
√

xy)f2(
√

yz)f2(
√

zx)

for all x, y, z ∈ I. Moreover, for the strictly multiplicatively convex func-
tions the equality occurs only when x = y = z.

3. Recall that the inverse sine function is strictly multiplicatively convex on
(0, 1] and infer the following two inequalities in a triangle ∆ABC:

sin
A

2
sin

B

2
sin

C

2
<
(
sin

(1
2

3
√

ABC
))3

<
1
8

sin A sin B sin C < (sin 3
√

ABC)3 <
3
√

3
8

unless A = B = C.

4. (P. Montel [171]) Let I ⊂ (0,∞) be an interval and suppose that f is
a continuous and positive function on I. Prove that f is multiplicatively
convex if and only if

2f(x) ≤ kαf(kx) + k−αf(x/k)

for all α ∈ R, x ∈ I, and k > 0, such that kx and x/k both belong to I.

5. (The multiplicative mean) According to Lemma 2.1.1, the multiplicative
analog of the arithmetic mean is

M∗(f) = exp
(

1
log b − log a

∫ log b

log a

log f(et) dt

)
= exp

(
1

log b − log a

∫ b

a

log f(t)
dt

t

)
,

that is, the geometric mean of f with respect to the measure dt/t. Notice
that

M∗(1) = 1
inf f ≤ f ≤ sup f ⇒ inf f ≤ M∗(f) ≤ sup f

M∗(fg) = M∗(f)M∗(g).
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(i) Let f : [a, b] → (0,∞) be a continuous function defined on a subin-
terval of (0, ∞) and let ϕ : J → (0,∞) be a multiplicatively convex
continuous function defined on an interval J which includes the image
of f . Prove that

ϕ(M∗(f)) ≤ M∗(ϕ ◦ f),

which is the multiplicative analogue of Jensen’s inequality.
(ii) Suppose that 0 < a < b and let f : [a, b] → (0,∞) be a multiplica-

tively convex continuous function. Prove the following analogue of
Hermite–Hadamard inequality,

f(
√

ab) ≤ M∗(f) ≤
√

f(a)f(b);

the left-hand side inequality is strict unless f is multiplicatively affine,
while the right-hand side inequality is strict unless f is multiplica-
tively affine on each of the subintervals [a,

√
ab] and [

√
ab, b]. These

inequalities can be improved following an idea similar to that of Re-
mark 1.9.3:

f(a1/2b1/2) ≤ (f(a3/4b1/4)f(a1/4b3/4))1/2 ≤ M∗(f)

≤ (f(a1/2b1/2))1/2f(a)1/4f(b)1/4

≤ (f(a)f(b))1/2.

(iii) Notice that M∗(f) = exp( b−a
log b−log a ) for f = exp |[a,b] (0 < a < b).

Then, infer from (ii) the inequalities:

a3/4b1/4 + a1/4b3/4

2
<

b − a

log b − log a
<

1
2

(a + b

2
+

√
ab
)

exp
( b − a

log b − log a

)
<

eb − ea

b − a
.

6. Let f : I → (0,∞) be a function which is multiplicatively convex or multi-
plicatively concave and let a > 0.
(i) Prove that( n∏

k=1

f(ak/n)
)1/n

>
(n+1∏

k=1

f(ak/(n+1))
)1/(n+1)

> M∗(f)

for all n = 1, 2, 3, . . . in each of the following two cases:
• I = [1, a] (with a > 1) and f is increasing;
• I = [a, 1] (with 0 < a < 1) and f is decreasing.

(ii) Prove that the above inequalities will be reversed in each of the fol-
lowing two cases:
• I = [1, a] (with a > 1) and f is decreasing;
• I = [a, 1] (with 0 < a < 1) and f is increasing.

(iii) Illustrate the assertions (i) and (ii) in the case of the functions 1+log x
and expx, for x ≥ 1, and sin(πx/2) and cos(πx/2), for x ∈ (0, 1].
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2.4 Multiplicative Convexity of Special Functions

We start this section by noticing that the indefinite integral of a multiplica-
tively convex function has the same nature:

Proposition 2.4.1 (P. Montel [171]) Let f : [0, a) → [0,∞) be a continu-
ous function which is multiplicatively convex on (0, a). Then

F (x) =
∫ x

0
f(t) dt

is also continuous on [0, a) and multiplicatively convex on (0, a).

Proof. Due to the continuity of F , it suffices to show that

(F (
√

xy))2 ≤ F (x)F (y) for all x, y ∈ [0, a),

which is a consequence of the corresponding inequality at the level of integral
sums,

[√
xy

n

n−1∑
k=0

f
(
k

√
xy

n

)]2
≤
[x

n

n−1∑
k=0

f
(
k

x

n

)][ y

n

n−1∑
k=0

f
(
k

y

n

)]
,

that is, of the inequality

[n−1∑
k=0

f
(
k

√
xy

n

)]2
≤
[n−1∑

k=0

f
(
k

x

n

)][n−1∑
k=0

f
(
k

y

n

)]
.

To see that the later inequality holds, first notice that[
f
(
k

√
xy

n

)]2
≤
[
f
(
k

x

n

)][
f
(
k

y

n

)]
and then apply the Cauchy–Buniakovski–Schwarz inequality. ��

According to Proposition 2.4.1, the logarithmic integral ,

Li(x) =
∫ x

2

dt

log t
, x ≥ 2,

is multiplicatively convex. This function is important in number theory. For
example, if π(x) counts the number of primes p such that 2 ≤ p ≤ x, then
an equivalent formulation of the Riemann hypothesis is the existence of a
function C : (0,∞) → (0,∞) such that

|π(x) − Li(x)| ≤ C(ε)x1/2+ε for all x ≥ 2 and all ε > 0.
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Since the function tan is continuous on [0, π/2) and strictly multiplicatively
convex on (0, π/2), a repeated application of Proposition 2.4.1 shows that the
Lobacevski’s function

L(x) = −
∫ x

0
log cos t dt

is strictly multiplicatively convex on (0, π/2).
Starting with t/(sin t), (which is strictly multiplicatively convex on (0, π/2])

and then switching to (sin t)/t, a similar argument leads us to the fact that
the integral sine function,

Si(x) =
∫ x

0

sin t

t
dt,

is strictly multiplicatively concave on (0, π/2].
Another striking fact is the following:

Proposition 2.4.2 Γ is a strictly multiplicatively convex function on [1,∞).

Proof. In fact, log Γ(1 + x) is strictly convex and increasing on (1, ∞). More-
over, an increasing strictly convex function of a strictly convex function is
strictly convex. Hence, F (x) = log Γ(1 + ex) is strictly convex on (0,∞) and
thus Γ(1 + x) = expF (log x) is strictly multiplicatively convex on [1, ∞). As
Γ(1 + x) = xΓ(x), we conclude that Γ itself is strictly multiplicatively convex
on [1,∞). ��

According to Proposition 2.4.2,

Γ3( 3
√

xyz) < Γ(x)Γ(y)Γ(z) for all x, y, z ≥ 1

except the case where x = y = z.
On the other hand, by the multiplicative version of Popoviciu’s inequality

(Exercise 2, Section 2.3), we infer that

Γ(x)Γ(y)Γ(z)Γ3( 3
√

xyz) ≥ Γ2(
√

xy)Γ2(
√

yz)Γ2(
√

zx)

for all x, y, z ≥ 1; the equality occurs only for x = y = z.
Another application of Proposition 2.4.2 is the fact that the function

Γ(2x+1)/Γ(x+1) is strictly multiplicatively convex on [1,∞). This can be seen
by using the Gauss–Legendre duplication formula given by Theorem 2.2.9.

Exercises

1. (D. Gronau and J. Matkowski [90]) Prove the following converse to Propo-
sition 2.4.2: If f : (0,∞) → (0,∞) verifies the functional equation

f(x + 1) = xf(x),

the normalization condition f(1) = 1, and f is multiplicatively convex on
an interval (a,∞), for some a > 0, then f = Γ.
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2. Let f : I → (0,∞) be a differentiable function defined on a subinterval I
of (0,∞). Prove that the following assertions are equivalent:
(i) f is multiplicatively convex;
(ii) the function xf ′(x)/f(x) is nondecreasing;
(iii) f verifies the inequality

f(x)
f(y)

≥
(x

y

)yf ′(y)/f(y)
for all x, y ∈ I.

A similar statement works for the multiplicatively concave functions. Il-
lustrate this fact by considering the restriction of sin(cosx) to (0, π/2).

3. The psi function (also known as the digamma function) is defined by

Psi(x) =
d

dx
log Γ(x) =

Γ′(x)
Γ(x)

, x > 0

and it can be represented as

Psi(x) = −γ −
∫ 1

0

tx−1 − 1
1 − t

dt,

where γ is Euler’s constant. See [9], [89].
(i) Prove that the function Psi satisfies the functional equation

ψ(x + 1) = ψ(x) +
1
x

.

(ii) Infer from Proposition 2.4.2 and the preceding exercise the inequality

Γ(x)
Γ(y)

≥
(x

y

)y Psi(y)
for all x, y ≥ 1.

4. Let f : I → (0,∞) be a twice differentiable function defined on a subin-
terval I of (0,∞). Prove that f is multiplicatively convex if and only if it
verifies the differential inequality

x[f(x)f ′′(x) − f ′2(x)] + f(x)f ′(x) ≥ 0 for all x > 0.

Infer that the integral sine function is multiplicatively concave.

2.5 An Estimate of the AM–GM Inequality

Suppose that I is a subinterval of (0,∞) and that f : I → (0,∞) is a twice
differentiable function. According to Lemma 2.1.1, the values of the parameter
α ∈ R for which the function
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ϕ(x) = f(x) · x(−α/2) log x

is multiplicatively convex on I are precisely those for which the function

Φ(x) = log ϕ(ex) = log f(ex) − αx2

2

is convex on log(I). Since the convexity of Φ is equivalent to Φ′′ ≥ 0, we infer
that ϕ is multiplicatively convex if and only if α ≤ α(f), where

α(f) = inf
x∈log(I)

d2

dx2 log f(ex)

= inf
x∈I

x2
(
f(x)f ′′(x) − (f ′(x))2

)
+ xf(x)f ′(x)

f(x)2
.

By considering also the upper bound

β(f) = sup
x∈log(I)

d2

dx2 log f(ex),

we arrive at the following result:

Lemma 2.5.1 Under the above hypotheses, we have

exp
(α(f)

2n2

∑
1≤j<k≤n

(log xj − log xk)2
)

≤
( n∏

k=1

f(xk)
)1/n/

f

(( n∏
k=1

xk

)1/n)

≤ exp
(β(f)

2n2

∑
1≤j<k≤n

(log xj − log xk)2
)

for all x1, . . . , xn ∈ I.

Particularly, for f(x) = ex, x ∈ [A, B] (where 0 < A ≤ B), we have
α(f) = A and β(f) = B, and we are led to the following improvement upon
the AM–GM inequality:

Lemma 2.5.2 Suppose that 0 < A ≤ B and n ∈ N�. Then

A

2n2

∑
1≤j<k≤n

(log xj − log xk)2 ≤ 1
n

n∑
k=1

xk −
( n∏

k=1

xk

)1/n

≤ B

2n2

∑
1≤j<k≤n

(log xj − log xk)2

for all x1, . . . , xn ∈ [A, B].
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Since
1

2n2

∑
1≤j<k≤n

(log xj − log xk)2

represents the variance of the random variable whose distribution is(
log x1 log x2 . . . log xn

1/n 1/n . . . 1/n

)
,

Lemma 2.5.2 reveals the probabilistic character of the AM–GM inequality.
Using the usual device to approximate the integrable functions by step func-
tions, we can derive from Lemma 2.5.2 the following more general result:

Theorem 2.5.3 Let (Ω, Σ, P ) be a probability space and let X be a random
variable on this space, taking values in the interval [A, B], where 0 < A ≤ B.
Then

A ≤ E(X) − eE(log X)

var(log X)
≤ B.

Here E(Z) =
∫

X
Z(ω) dP (ω) represents the mathematical expectation of

the random variable Z, and var(Z) = E((Z − E(Z))2
)

the variance of Z.

Exercises

1. (H. Kober; see [166, p. 81]) Suppose that x1, . . . , xn are distinct positive
numbers, and λ1, . . . , λn are positive numbers such that λ1 + · · ·+λn = 1.
Prove that

A(x1, . . . , xn ; λ1, . . . , λn) − G(x1, . . . , xn ; λ1, . . . , λn)∑
i<j(

√
xi − √

xj)2

lies between infi λi/(n − 1) and supi λi.

2. (P. H. Diananda; see [166, p. 83]) Under the same hypothesis as in the
precedent exercise, prove that

A(x1, . . . , xn ; λ1, . . . , λn) − G(x1, . . . , xn ; λ1, . . . , λn)∑
i<j λiλj(

√
xi − √

xj)2

lies between 1/(1 − infi λi) and 1/ infi λi.

3. Suppose that x1, . . . , xn and λ1, . . . , λn are positive numbers for which
λ1 + · · · + λn = 1. Put An = A(x1, . . . , xn ; λ1, . . . , λn) and Gn =
G(x1, . . . , xn ; λ1, . . . , λn).
(i) Compute the integral

J(x, y) =
∫ ∞

0

t dt

(1 + t)(x + yt)2
.

(ii) Infer that An/Gn = exp(
∑n

k=1 λk(xk − An)2J(xk, An)).
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2.6 (M, N)-Convex Functions

The four algebraic variants of convexity we considered in the preceding sec-
tions can be embedded into a more general framework, by taking two regular
means M and N (on the intervals I and J respectively) and calling a function
f : I → J to be (M, N)-midpoint convex if it satisfies

f(M(x, y)) ≤ N(f(x), f(y))

for all x, y ∈ I. As noticed in the Introduction, if f is continuous, this yields
the (M, N)-convexity of f , that is,

f(M(x, y ; 1 − λ, λ)) ≤ N(f(x), f(y) ; 1 − λ, λ)

for all x, y ∈ I and all λ ∈ [0, 1]. The sundry notions such as (M, N)-strict
convexity and (M, N)-concavity can be introduced in a natural way.

Many important results, such as the left-hand side of the Hermite–
Hadamard inequality and the Jensen inequality, extend to this framework.
See Theorems A, B and C in the Introduction.

Other results, like Lemma 2.1.1, can be extended only in the context of
quasi-arithmetic means:

Lemma 2.6.1 (J. Aczél [2]) If ϕ and ψ are two continuous and strictly
monotonic functions (on intervals I and J respectively) and ψ is increasing,
then a function f : I → J is (M[ϕ], M[ψ])-convex if and only if ψ ◦ f ◦ ϕ−1 is
convex on ϕ(I) in the usual sense.

Proof. In fact, f is (M[ϕ], M[ψ])-convex if and only if

ψ
(
f
(
ϕ−1((1 − λ)u + λv)

)) ≤ (1 − λ)ψ
(
f(ϕ−1(u))

)
+ λψ

(
f(ϕ−1(v))

)
for all u, v ∈ ϕ(I) and λ ∈ [0, 1]. ��

A nice illustration of Lemma 2.6.1 was recently given by D. Borwein,
J. Borwein, G. Fee and R. Girgensohn [35], who proved that the volume Vn(p)
of the ellipsoid {x ∈ Rn | ‖x‖Lp ≤ 1} is (H, G)-strictly concave as a function
of p:

Theorem 2.6.2 Given α > 1, the function Vα(p) = 2α Γ(1+1/p)α

Γ(1+α/p) verifies the
inequality

V 1−λ
α (p)V λ

α (q) < Vα

(
1

1−λ
p + λ

q

)
,

for all p, q > 0, p 
= q and all λ ∈ (0, 1).
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Proof. According to Lemma 2.6.1 it suffices to prove that the function

Uα(x) = − log(Vα(1/x)/2α) = log Γ(1 + αx) − α log Γ(1 + x)

is strictly convex on (0,∞) for every α > 1. Using the psi function,

Psi(x) =
d

dx
log Γ(x),

we have
U ′′

α(x) = α2 d

dx
Psi(1 + αx) − α

d

dx
Psi(1 + x).

Then U ′′
α(x) > 0 on (0,∞) means (x/α)U ′′

α(x) > 0 on (0,∞), and the latter
holds if the function x → x d

dx Psi(1 + x) is strictly increasing. Or, according
to [9], [89],

d

dx
Psi(1 + x) =

∫ ∞

0

ueux

eu − 1
du,

and an easy computation shows that

d

dx

(
x

d

dx
Psi(1 + x)

)
=
∫ ∞

0

u[(u − 1)eu + 1]eux

(eu − 1)2
du > 0.

The result now follows. ��

As stated in [35, p. 634], the volume function Vn(p) is neither convex nor
concave for n ≥ 3.

In the next chapter we shall encounter the class of Mp-convex functions
(−∞ ≤ p ≤ ∞). A function f : I → R is said to be Mp-convex if

f((1 − λ)x + λy) ≤ Mp(f(x), f(y) ; 1 − λ, λ)

for all x, y ∈ I and all λ ∈ [0, 1] (that is, f is (A, Mp)-convex). In order to
avoid trivial situations, the theory of Mp-convex functions is usually restricted
to nonnegative functions when p ∈ R, p 
= 1.

The case p = 1 corresponds to the usual convex functions, while for p = 0
we retrieve the log-convex functions. The case p = ∞ is that of quasiconvex
functions, that is, of functions f : I → R such that

f((1 − λ)x + λy) ≤ sup{f(x), f(y)}
for all x, y ∈ I and all λ ∈ [0, 1]. Clearly, a function f : I → R is quasiconvex
if and only if its sublevel sets {x | f(x) ≤ α} are convex for all α ∈ R.

If p > 0 (or p < 0), a function f is Mp-convex if and only if fp is convex
(or concave, respectively). According to Exercise 8, Section 1.1,

Mp(x, y ; 1 − λ, λ) ≤ Mq(x, y ; 1 − λ, λ) for − ∞ ≤ p ≤ q ≤ ∞,

which shows that every Mp-convex function is also Mq-convex for all q ≥ p.
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Exercises

1. Suppose that I and J are nondegenerate intervals and p, q, r ∈ R, p < q.
Prove that for every function f : I → J the following two implications hold
true:
• If f is (Mq, Mr)-convex and increasing, then it is also (Mp, Mr)-convex;
• If f is (Mp, Mr)-convex and decreasing, then it is also (Mq, Mr)-convex.
Conclude that the function Vα(p) of Theorem 2.6.2 is also (A, G)-concave
and (H, A)-concave.

2. Suppose that M and N are two regular means (respectively on the inter-
vals I and J) and the function N(·, 1) is concave. Prove that:
(i) for every two (M, N)-convex functions f, g : I → J , the function f +g

is (M, N)-convex;
(ii) for every (M, N)-convex function f : I → J and α > 0, the function

αf is (M, N)-convex.

3. Suppose that f : I → R is a continuous function which is differentiable on
int I. Prove that f is quasiconvex if and only if for each x, y ∈ int I,

f(y) ≤ f(x) implies f ′(x)(y − x) ≤ 0.

4. (K. Knopp and B. Jessen; see [99, p. 66]) Suppose that ϕ and ψ are
two continuous functions defined in an interval I such that ϕ is strictly
monotonic and ψ is increasing.
(i) Prove that

M[ϕ](x1, . . . , xn; λ1, . . . , λn) = M[ψ](x1, . . . , xn; λ1, . . . , λn)

for every family x1, . . . , xn of elements of I and every family λ1, . . . , λn

of nonnegative numbers with
∑n

k=1 λk = 1 (n ∈ N�) if and only if
ψ ◦ ϕ−1 is affine, that is, ψ = αϕ + β for some constants α and β,
with α 
= 0.

(ii) Infer that any power mean Mp is a mean M[ϕ], where ϕ(x) = log x,
if p = 0, and ϕ(x) = (xp − 1)/p, if p 
= 0.

5. (M. Nagumo, B. de Finetti and B. Jessen; see [99, p. 68]) Let ϕ be a
continuous increasing function on (0,∞) such that the quasi-arithmetic
mean M[ϕ] is positively homogeneous. Prove that M[ϕ] is one of the power
means.
[Hint : By Exercise 4 (i), we can replace ϕ by ϕ−ϕ(1), so we may assume
that ϕ(1) = 0. The same argument yields two functions α and β such that
ϕ(cx) = α(c)ϕ(x)+β(c) for all x > 0, c > 0. The condition ϕ(1) = 0 shows
that β = ϕ, so for reasons of symmetry,

ϕ(cx) = α(c)ϕ(x) + ϕ(c) = α(x)ϕ(c) + ϕ(x).
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Letting fixed c 
= 1, we obtain that α is of the form α(x) = 1 + kϕ(x) for
some constant k. Then ϕ verifies the functional equation

ϕ(xy) = kϕ(x)ϕ(y) + ϕ(x) + ϕ(y)

for all x > 0, y > 0. When k = 0 we find that ϕ(x) = C log x for some
constant C, so M[ϕ] = M0. When k 
= 0 we notice that χ = kϕ + 1 verifies
χ(xy) = χ(x)χ(y) for all x > 0, y > 0. This leads to ϕ(x) = (xp − 1)/k,
for some p 
= 0, hence M[ϕ] = Mp. ]

6. (Convexity with respect to Stolarsky’s means) One can prove that the ex-
ponential function is (L, L)-convex. See Exercise 5 (iii), Section 2.3. Prove
that this function is also (I, I)-convex. What can be said about the loga-
rithmic function? Here L and I are respectively the logarithmic mean and
the identric mean.

7. (Few affine functions with respect to the logarithmic mean; see [157]) Prove
that the only (L, L)-affine functions f : (0,∞) → (0,∞) are the constant
functions and the linear functions f(x) = cx, for c > 0. Infer that the
logarithmic mean is not a power mean.

2.7 Relative Convexity

The comparison of quasi-arithmetic means is related to convexity via the
following result:

Lemma 2.7.1 Suppose that ϕ, ψ : I → R are two strictly monotonic contin-
uous functions. If ϕ is increasing, then

M[ψ] ≤ M[ϕ]

if and only if ϕ ◦ ψ−1 is convex.

Lemma 2.7.1 has important consequences. For example, it yields Clark-
son’s inequalities (which in turn extend the parallelogram law). The following
approach (in the spirit of Orlicz spaces) is due to J. Lamperti [136]:

Theorem 2.7.2 Suppose that Φ: [0,∞) → R, is an increasing and continu-
ous function with Φ(0) = 0 and Φ(

√
x) convex. Consider a σ-finite measure

space (X, Σ, µ) and denote by LΦ(X) the set of all equivalence classes of all
µ-measurable real-valued functions f such that

IΦ(f) =
∫

X

Φ(|f(x)|) dµ < ∞.

If f + g and f − g belong to LΦ(X), then

IΦ(f + g) + IΦ(f − g) ≥ 2IΦ(f) + 2IΦ(g). (2.1)



92 2 Comparative Convexity on Intervals

If Φ(
√

x) is concave and f and g belong to LΦ(X), then the reverse inequality
is true. If the convexity or concavity of Φ(

√
x) is strict, equality holds in (2.1)

if and only if fg = 0 almost everywhere.

Corollary 2.7.3 (Clarkson’s inequalities [57]) If 2 ≤ p < ∞, and f and
g belong to Lp(µ), then

‖f + g‖p
Lp + ‖f − g‖p

Lp ≥ 2‖f‖p
Lp + 2‖g‖p

Lp .

If 0 < p ≤ 2, then the reverse inequality holds. In either case, if p 
= 2,
equality occurs if and only if fg = 0 almost everywhere.

Clarkson’s inequalities easily imply the uniform convexity of the spaces
Lp(µ) for 1 < p < ∞ (see Exercise 2). J. Lamperti applied Corollary 2.7.3 to
give the general form of the linear isometries T : Lp(µ) → Lp(µ), for p > 0,
p 
= 2.

Clarkson’s inequalities are improved on by Hanner’s inequalities. See Ex-
ercise 7, Section 3.6.

Proof of Theorem 2.7.2. It suffices to prove the following result: Suppose that
Φ: [0,∞) → R is a continuous increasing function with Φ(0) = 0 and Φ(

√
t)

convex. Then

Φ(|z + w|) + Φ(|z − w|) ≥ 2Φ(|z|) + 2Φ(|w|), (2.2)

for all z, w ∈ C, while if Φ(
√

t) is concave the reverse inequality is true.
Provided the convexity or concavity is strict, equality holds if and only if

zw = 0.
In fact, since Φ(

√
t) is convex, we infer from Lemma 2.7.1 and the paral-

lelogram law the inequality

Φ−1
{Φ(|z + w|) + Φ(|z − w|)

2

}
≥
{ |z + w|2 + |z − w|2

2

}1/2

= (|z|2 + |w|2)1/2.

(2.3)

On the other hand, the convexity of Φ(
√

t) and the fact that Φ(0) = 0 yield
that Φ(

√
t)/t is nondecreasing, that is, t2/Φ(t) is nonincreasing (respectively

decreasing if the convexity is strict). See Theorem 1.3.1. Taking into account
the result of Exercise 1, we infer

Φ−1{Φ(|z|) + Φ(|w|)} ≤ (|z|2 + |w|2)1/2, (2.4)

and thus (2.2) follows from (2.3), (2.4) and the fact that Φ is increasing. When
Φ(

√
t) is strictly convex, we also obtain from Exercise 1 the fact that (2.4)

(and thus (2.2)) is strict unless z or w is zero. ��
Lemma 2.7.1 leads us naturally to consider the following concept of relative

convexity:
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Definition 2.7.4 Suppose that f and g are two real-valued functions defined
on the same set X, and g is not a constant function. Then f is said to be
convex relative to g (abbreviated, g � f) if∣∣∣∣∣∣

1 g(x) f(x)
1 g(y) f(y)
1 g(z) f(z)

∣∣∣∣∣∣ ≥ 0,

whenever x, y, z ∈ X with g(x) ≤ g(y) ≤ g(z).

When X is an interval and g is continuous and increasing, a small com-
putation shows that the condition g � f is equivalent with the convexity of
f ◦ g−1 (on the interval J = g(I)).

Examples 2.7.5
Under appropriate assumptions on the domain and the range of the function f ,
the following statements hold true:
(i) f is convex if and only if id�f ;
(ii) f is log-convex if and only if id� log f ;
(iii) f is (G, G)-convex if and only if log � log f ;
(iv) f is (G, A)-convex if and only if log �f .

A more exotic illustration of the concept of relative convexity is the fol-
lowing fact:

f � fα for all f : X → R+ and all α ≥ 1.

For example, sin� sin2 on [0, π], and |x| � x2 on R.

In the context of C1-differentiable functions, f is convex with respect
to an increasing function g if f ′/g′ is nondecreasing; in the context of
C2-differentiable functions, f is convex with respect to g if and only if
f ′′/f ′ ≥ g′′/g′ (provided these ratios exist).

It is important to notice that relative convexity is part of comparative
convexity. For this we need the integral analogue of quasi-arithmetic mean,

M[ϕ]

(
id[s,t];

1
t − s

dx
)

= ϕ−1
(

1
t − s

∫ t

s

ϕ(x) dx

)
.

In fact, if g � f , then

f
(
M[g]

(
id[a,b];

1
b − a

dx
))

= f

(
g−1

(
1

b − a

∫ b

a

g(x) dx

))
≤ 1

b − a

∫ b

a

f(x) dx = M1(f |[a,b])

for all a < b in the domain of f and g.
From the above discussion we can infer the following remark due to

H. Alzer [7]: Suppose that f is an increasing continuous function (act-
ing on subintervals of (0,∞)) and 1/f−1 is convex. Then 1/x � f . As
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M[1/x](id[a,b] ; 1
b−adx) coincides with the logarithmic mean L(a, b), it follows

that

f(L(a, b)) ≤ 1
b − a

∫ b

a

f(x) dx = M1(f |[a,b]).

We end this section by extending the Hardy–Littlewood–Pólya inequality
to the context of relative convexity. Our approach is based on two technical
lemmas.

Lemma 2.7.6 If f, g : X → R are two functions such that g � f , then

g(x) = g(y) implies f(x) = f(y).

Proof. Since g is not constant, then there must be a z ∈ X such that g(x) =
g(y) 
= g(z). One of the following two cases may occur:

Case 1: g(x) = g(y) < g(z). This yields

0 ≤
∣∣∣∣∣∣
1 g(x) f(x)
1 g(x) f(y)
1 g(z) f(z)

∣∣∣∣∣∣ = (g(z) − g(x))(f(x) − f(y))

and thus f(x) ≥ f(y). A similar argument gives us the reverse inequality,
f(x) ≤ f(y).

Case 2: g(z) < g(x) = g(y). This case can be treated in a similar way. ��

Lemma 2.7.7 (The generalization of Galvani’s Lemma) If g � f and
x, u, v are points of X such that g(x) /∈ {g(u), g(v)} and g(u) ≤ g(v), then

f(v) − f(x)
g(v) − g(x)

≥ f(u) − f(x)
g(u) − g(x)

.

Proof. In fact, the following three cases may occur:
Case 1: g(x) < g(u) ≤ g(v). Then

0 ≤
∣∣∣∣∣∣
1 g(x) f(x)
1 g(u) f(u)
1 g(v) f(v)

∣∣∣∣∣∣
= (g(u) − g(x))(f(v) − f(x)) − (g(v) − g(x))(f(u) − f(x))

and the conclusion of Lemma 2.7.7 is clear.
Case 2: g(u) ≤ g(v) < g(x). This case can be treated in the same way.
Case 3: g(u) < g(x) < g(v). According to the discussion above we have

f(u) − f(x)
g(u) − g(x)

=
f(x) − f(u)
g(x) − g(u)

≤ f(v) − f(u)
g(v) − g(u)

=
f(u) − f(v)
g(u) − g(v)

≤ f(x) − f(v)
g(x) − g(v)

=
f(v) − f(x)
g(v) − g(x)

and the proof is now complete. ��
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Theorem 2.7.8 (The generalization of the Hardy–Littlewood–Pólya
inequality) Let f, g : X → R be two functions such that g � f and consider
points x1, . . . , xn, y1, . . . , yn ∈ X and weights p1, . . . , pn ∈ R such that:
(i) g(x1) ≥ · · · ≥ g(xn) and g(y1) ≥ · · · ≥ g(yn);
(ii)

∑r
k=1 pkg(xk) ≤ ∑r

k=1 pkg(yk) for every r = 1, . . . , n;
(iii)

∑n
k=1 pkg(xk) =

∑n
k=1 pkg(yk).

Then
n∑

k=1

pkf(xk) ≤
n∑

k=1

pkf(yk).

Proof. By mathematical induction. The case n = 1 is clear. Assuming the
conclusion of Theorem 2.7.8 valid for all families of length n − 1, let us pass
to the families of length n. The case where g(xk) = g(yk) for some index k
can be settled easily by our hypothesis and Lemma 2.7.6. Therefore we may
restrict ourselves to the case where g(xk) 
= g(yk) for all indices k. By Abel’s
summation formula,

n∑
k=1

pkf(yk) −
n∑

k=1

pkf(xk) (2.5)

equals

f(yn) − f(xn)
g(yn) − g(xn)

( n∑
i=1

pig(yi) −
n∑

i=1

pig(xi)
)

+
n−1∑
k=1

(f(yk) − f(xk)
g(yk) − g(xk)

− f(yk+1) − f(xk+1)
g(yk+1) − g(xk+1)

)( k∑
i=1

pig(yi) −
k∑

i=1

pig(xi)
)

which, by (iii), reduces to

n−1∑
k=1

(f(yk) − f(xk)
g(yk) − g(xk)

− f(yk+1) − f(xk+1)
g(yk+1) − g(xk+1)

)( k∑
i=1

pig(yi) −
k∑

i=1

pig(xi)
)
.

According to (ii), the proof will be complete if we show that

f(yk+1) − f(xk+1)
g(yk+1) − g(xk+1)

≤ f(yk) − f(xk)
g(yk) − g(xk)

for all indices k.
In fact, if g(xk) = g(xk+1) or g(yk) = g(yk+1) for some index k, this follows

from (i) and Lemmas 2.7.6 and 2.7.7.
When g(xk) > g(xk+1) and g(yk) > g(yk+1) the following two cases may

occur:
Case 1: g(xk) 
= g(yk+1). By a twice application of Lemma 2.7.7 we get
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f(yk+1) − f(xk+1)
g(yk+1) − g(xk+1)

=
f(xk+1) − f(yk+1)
g(xk+1) − g(yk+1)

≤ f(xk) − f(yk+1)
g(xk) − g(yk+1)

=
f(yk+1) − f(xk)
g(yk+1) − g(xk)

≤ f(yk) − f(xk)
g(yk) − g(xk)

.

Case 2: g(xk) = g(yk+1). In this case, g(xk+1) < g(xk) = g(yk+1) < g(yk),
and Lemmas 2.7.6 and 2.7.7 lead us to

f(yk+1) − f(xk+1)
g(yk+1) − g(xk+1)

=
f(xk) − f(xk+1)
g(xk) − g(xk+1)

=
f(xk+1) − f(xk)
g(xk+1) − g(xk)

≤ f(yk) − f(xk)
g(yk) − g(xk)

.

Consequently, (2.5) is a sum of nonnegative terms, and the proof is com-
plete. ��

The classical Hardy–Littlewood–Pólya inequality corresponds to the case
where X is an interval, g is the identity, and pk = 1 for all k. In this case, the
hypothesis (i) can be replaced by the following one:
(i′) g(x1) ≥ · · · ≥ g(xn),
see Theorem 1.5.4. When X is an interval, g is the identity, and p1, . . . , pn

are arbitrary weights, then the result of Theorem 2.7.8 is known as Fuchs’
inequality [83]. Clearly, Fuchs’ inequality implies Corollary 1.4.3 above.

In a similar way, we can extend another important result in majorization
theory, the Tomić–Weyl theorem. See Exercise 5.

Exercises

1. (R. Cooper; see [99, p. 84]) Suppose that ϕ, ψ : I → (0,∞) are two con-
tinuous bijective functions. If ϕ and ψ vary in the same direction and ϕ/ψ
is nonincreasing, then

ψ−1
( n∑

k=1

ψ(xk)
)

≤ ϕ−1
( n∑

k=1

ϕ(xk)
)

for every finite family x1, . . . , xn of elements of I.
[Hint : If h(x)/x is nonincreasing for x > 0, then h(

∑n
k=1 xk) ≤ ∑n

k=1 h(xk)
for every finite family x1, . . . , xn of positive numbers. See Section 1.3, Ex-
ercise 8. ]

2. Infer from Clarkson’s inequalities the uniform convexity of the spaces
Lp(µ), for 1 < p < ∞, that is, if x and y are in the unit ball of Lp(µ), then

inf
{

1 −
∥∥∥x + y

2

∥∥∥ ∣∣∣ ‖x − y‖ ≥ ε
}

> 0 for all ε ∈ (0, 2].
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3. Suppose that F, g : I → J are two continuous functions and g is strictly
monotone. Prove that g � F if and only if for every α ≥ 0 and every
[a, b] ⊂ I the function F − αg attains its maximum either at a or at b.
Remark. This result can be used to prove sharpened versions of the max-
imum principle for elliptic partial differential operators. See [242].

4. Suppose that f : [0, π/2] → R is a function such that

(f(y) − f(z)) cos x + (f(z) − f(x)) cos y + (f(x) − f(y)) cos z ≥ 0

for all x ≥ y ≥ z in [0, π/2]. Prove that

f
(π

7

)
− f

(2π

7

)
+ f

(3π

7

)
≤ f(0) − f

(π

3

)
+ f

(π

2

)
.

5. (An extension of the Tomić–Weyl theorem) Suppose that f, g : X → R

are two synchronous functions with g � f . Consider points x1, . . . , xn,
y1, . . . , yn in X and real weights p1, . . . , pn such that:
(i) g(x1) ≥ · · · ≥ g(xn) and g(y1) ≥ · · · ≥ g(yn);
(ii)

∑m
k=1 pkg(xk) ≤ ∑m

k=1 pkg(yk) for all m = 1, . . . , n.
Prove that

n∑
k=1

pkf(xk) ≤
n∑

k=1

pkf(yk).

2.8 Comments

The idea of transforming a nonconvex function into a convex one by a change
of variable has a long history. As far as we know, the class of all multiplica-
tively convex functions was first considered by P. Montel [171] in a beautiful
paper discussing the possible analogues of convex functions in n variables. He
motivates his study with the following two classical results:

Hadamard’s Three Circles Theorem Let f be an analytical function in
the annulus a < |z| < b. Then log M(r) is a convex function of log r, where

M(r) = sup
|z|=r

|f(z)|.

G. H. Hardy’s Mean Value Theorem Let f be an analytical function
in the annulus a < |z| < b and let p ∈ [1,∞). Then log Mp(r) is a convex
function of log r, where

Mp(r) =
(

1
2π

∫ 2π

0
|f(reiθ)|p dθ

)1/p

.
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As limp→∞ Mp(r) = M(r), Hardy’s aforementioned result implies Hada-
mard’s. It is well known that Hadamard’s result is instrumental in deriving
the Riesz–Thorin interpolation theorem (see [99]).

The presentation of the class of multiplicatively convex functions (as was
done in Sections 2.3 and 2.4) follows C. P. Niculescu [176]. The multiplicative
mean (see [178] and Section 2.3, Exercises 5 and 6) provides the right analogue
of the arithmetic mean in a fully multiplicative theory of convexity.

The theory of Euler’s functions gamma and beta follows the same steps as
in E. Artin [10] and R. Webster [243].

As noted by T. Trif [238], the result of Proposition 2.4.2 can be improved:
the gamma function is strictly multiplicatively concave on (0, α] and strictly
multiplicatively convex on [α,∞), where α ≈ 0.21609 is the unique positive
solution of the equation Psi(x) + x d

dx Psi(x) = 0. This fact has a full general-
ization in the context of (Mp, Mp)-convexity.

The quantum analogue of the gamma function, the q-gamma function Γq

of F. H. Jackson, is defined by

Γq(x) =
(q ; q)∞
(qx ; q)∞

(1 − q)1−x for x > 0 (0 < q < 1),

where (a ; q)∞ =
∏∞

k=0(1 − aqk). For it, the Bohr–Mollerup theorem has the
following form: Γq is the only solution of the functional equation

Γq(x + 1) =
1 − qx

1 − q
Γq(x)

which is log-convex and satisfies Γq(1) = 1 (see [9]). Γq is multiplicatively
convex at least on (2,∞) (see D. Gronau and J. Matkowski [91]).

The well-known inequalities in a triangle ∆ABC, such as

sin A + sin B + sin C ≤ 3
√

3/2 and sinA sin B sin C ≤ 3
√

3/8,

can be traced back to an old paper by G. Berkhan [21], from 1907.
R. A. Satnoianu [221] observed that the functions which are convex, mul-

tiplicatively convex and increasing are the source of Erdős–Mordell type in-
equalities in a triangle. Examples of such functions are numerous. See Propo-
sition 2.3.3.

The estimate given in Theorem 2.5.3 for the AM–GM inequality was
mentioned in [176].

The general notion of mean was clarified by B. de Finetti [80].
The idea to consider the general notion of (M, N)-convex function (asso-

ciated to a pair of means) can be traced back to G. Aumann [13]. Important
contributions came from J. Aczél [2], [3], J. Matkowski [157], J. Matkowski
and J. Rätz [158], [159]. The canonical extension of a mean, as well as Theo-
rems A, B and C in the Introduction, are due to C. P. Niculescu [183].

The result of Exercise 5, Section 2.6, concerning the characterization of
the power means among the quasi-arithmetic means, was recently extended
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by J. Matkowski [157] to the context of strict and homogeneous means which
verify some nondegeneracy conditions.

The comparability Lemma 2.7.1 is due to B. Jessen (see [99, p. 75]). The
concept of relative convexity can be also traced back to Jessen (see [99, The-
orem 92, p. 75]). Later, it was developed by G. T. Cargo [47], N. Elezović and
J. Pečarić [71] and many others. The generalization of the classical inequal-
ities of Hardy–Littlewood–Pólya, Fuchs and Tomić–Weyl to the framework
of relative convexity follows closely the paper [189] by C. P. Niculescu and
F. Popovici.

Recently, M. Bessenyei and Z. Páles [26] have considered a more general
concept of relative convexity, which goes back to a result of G. Pólya; see
[99, Theorem 123, p. 98]. Given a pair (ω1, ω2) of continuous functions on an
interval I, such that ∣∣∣∣ω1(x) ω1(y)

ω2(x) ω2(y)

∣∣∣∣ 
= 0 for all x < y, (2.6)

a function f : I → R is said to be (ω1, ω2)-convex if∣∣∣∣∣∣
f(x) f(y) f(z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ ≥ 0

for all x < y < z in I. It is proved that the (ω1, ω2)-convexity implies the
continuity of f at the interior points of I, as well as the integrability on
compact subintervals of I.

If I is an open interval, ω1 > 0 and the determinant in formula (2.6) is
positive, then f is (ω1, ω2)-convex if and only if the function f/ω1 ◦ (ω2/ω1)−1

is convex in the usual sense. Under these restrictions, M. Bessenyei and
Z. Páles proved a Hermite–Hadamard type inequality. Note that this case
of (ω1, ω2)-convexity falls under the incidence of relative convexity.

There is much information available nowadays concerning the Clarkson
type inequalities, and several applications have been described. Here we just
mention that even the general Edmunds–Triebel logarithmic spaces satisfy
Clarkson’s inequalities: see [191], where some applications and relations to
several previous results and references are also presented.

A classical result due to P. Jordan and J. von Neumann asserts that
the parallelogram law characterizes Hilbert spaces among Banach spaces. See
M. M. Day [64, pp. 151–153]. There are two important generalizations of the
parallelogram law (both simple consequences of the inner-product structure).

The Leibniz–Lagrange identity. Suppose there is given a system of
weighted points (x1, m1), . . . , (xr, mr) in an inner-product space H, whose
barycenter position is

xG =
r∑

k=1

mkxk

/ r∑
k=1

mk.
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Then for all points x ∈ H we have the equalities
r∑

k=1

mk‖x − xk‖2 =
( r∑

k=1

mk

)
‖x − xG‖2 +

r∑
k=1

mk‖xG − xk‖2

=
( r∑

k=1

mk

)
‖x − xG‖2 +

1∑r
k=1 mk

·
∑
i<j

mimj‖xi − xj‖2.

This identity is at the origin of many well-known formulas concerning the
distances between some special points in a triangle. For example, in the case
where x1, x2, x3 are the vertices of a triangle and m1, m2, m3 are proportional
to the length sides a, b, c, then xG is precisely the center I of the inscribed
circle. The above identity gives us (for x = O, the center of the circumscribed
circle) the celebrated formula of Euler ,

OI2 = R(R − 2r).

More information can be found at www.neiu.edu/∼mathclub/Seminar Notes/

Some Mathematical Consequences of the Law of the Lever.

E. Hlawka’s identity. We have

‖x‖2 + ‖y‖2 + ‖z‖2 + ‖x + y + z‖2 = ‖x + y‖2 + ‖y + z‖2 + ‖z + x‖2,

for all x, y, z in an inner-product space H.

This yields Hlawka’s inequality : In any inner-product space H, for all
x, y, z ∈ H we have

‖x + y + z‖ + ‖x‖ + ‖y‖ + ‖z‖ − ‖x + y‖ − ‖y + z‖ − ‖z + x‖ ≥ 0.

In fact, based on Hlawka’s identity, the left-hand side equals

(‖x‖ + ‖y‖ − ‖x + y‖)
(
1 − ‖x‖ + ‖y‖ + ‖x + y‖

‖x‖ + ‖y‖ + ‖z‖ + ‖x + y + z‖
)

+ (‖y‖ + ‖z‖ − ‖y + z‖)
(
1 − ‖y‖ + ‖z‖ + ‖y + z‖

‖x‖ + ‖y‖ + ‖z‖ + ‖x + y + z‖
)

+ (‖z‖ + ‖x‖ − ‖z + x‖)
(
1 − ‖z‖ + ‖x‖ + ‖z + x‖

‖x‖ + ‖y‖ + ‖z‖ + ‖x + y + z‖
)

which is a combination of nonnegative terms.
Hlawka’s inequality is not characteristic to Euclidean spaces! In fact, it was

extended by J. Lindenstrauss and A. Pe	lczyński [146] to all Banach spaces E
whose finite dimensional subspaces can be embedded (linearly and isomet-
rically) in suitable spaces Lp([0, 1]), with 1 ≤ p ≤ 2. On the other hand,
Hlawka’s inequality does not work for all Banach spaces. A counterexample
is provided by C2, endowed with the sup norm, and the vectors x = (1,−1),
y = (i, i), z = (−i, 1).

A large generalization of Hlawka’s inequality, based on ergodic theory, was
given by M. Rădulescu and S. Rădulescu [210].
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Convex Functions on a Normed Linear Space

Convex functions (and their relatives) provide basic techniques in a series of
domains like optimization theory, partial differential equations and geometric
inequalities related to isoperimetric problems. They are presented here in the
context of real normed linear spaces (most of the time the Euclidean space
Rn).

3.1 Convex Sets

The natural domain for a convex function is a convex set. That is why we
shall start by recalling some basic facts on convex sets, which should prove
useful for understanding the general concept of convexity. All ambient linear
spaces are assumed to be real.

A subset C of a linear space E is said to be convex if it contains the line
segment

[x, y] = {(1 − λ)x + λy | λ ∈ [0, 1]}
connecting any of its points x and y.

Fig. 3.1 below shows examples of convex and nonconvex sets. Besides these,
convex sets in R2 include line segments, half-spaces, open or closed triangles,
or open discs (plus any part of the boundary).

Many other examples can be obtained by considering the following oper-
ation with sets:

λA + µB = {λx + µy | x ∈ A, y ∈ B},

for A, B ⊂ E and λ, µ ∈ R. See Fig. 3.2. One can prove easily that λA + µB
is convex, provided that A and B are convex and λ, µ ≥ 0.

A subset A of E is said to be affine if it contains the whole line through
any two of its points. Algebraically, this means

x, y ∈ A and λ ∈ R imply (1 − λ)x + λy ∈ A.
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Fig. 3.1. Convex and nonconvex planar sets.

Fig. 3.2. Algebraic sum of sets.

Clearly, any affine subset is also convex (but the converse is not true). It is
important to notice that any affine subset A is just the translate of a (unique)
linear subspace L (and all translates of a linear space represent affine sets).
In fact, for every a ∈ A, the translate

L = A − a

is a linear space and it is clear that A = L+a. For the uniqueness part, notice
that if L and M are linear subspaces of E and a, b ∈ E verify

L + a = M + b,

then necessarily L = M and a − b ∈ L.
This remark allows us to introduce the concept of dimension for an affine

set (as the dimension of the linear subspace of which it is a translate).
Given a finite family x1, . . . , xn of points in E, an affine combination of

them is any point of the form

x =
n∑

k=1

λkxk

where λ1, . . . , λn ∈ R, and
∑n

k=1 λk = 1. If, in addition, λ1, . . . , λn ≥ 0, then
x is called a convex combination (of x1, . . . , xn).
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Lemma 3.1.1 A subset C of E is convex (respectively affine) if and only if
it contains every convex (respectively affine) combination of points of C.

Proof. The sufficiency part is clear, while the necessity part can be proved by
mathematical induction. See the remark before Lemma 1.1.2. ��

Given a subset A of E, the intersection co(A) of all convex subsets con-
taining A is convex and thus it is the smallest set of this nature containing A.
We call it the convex hull of A. By using Lemma 3.1.1, one can verify easily
that co(A) consists of all convex combinations of elements of A. The affine
variant of this construction yields the affine hull of A, denoted aff(A). As a
consequence we can introduce the concept of dimension for convex sets to be
the dimension of their affine hulls.

Theorem 3.1.2 (Carathéodory’s theorem) Suppose that A is a subset of
a linear space E and its convex hull co(A) has dimension m. Then each point
x of co(A) is the convex combination of at most m + 1 points of A.

Proof. Suppose that x =
∑n

k=0 λkxk, where xk ∈ A, λk > 0 and
∑n

k=0 λk = 1.
If n > m, then the set B = {x0, . . . , xn} verifies

dim(aff(B)) ≤ dim(aff(A)) = m ≤ n − 1

and thus {x1 − x0, . . . , xn − x0} is a linearly dependent set. This gives us
a set of real numbers µ0, . . . , µn, not all 0, such that

∑n
k=0 µkxk = 0 and∑n

k=0 µk = 0. Choose t > 0 for which υk = λk − tµk ≥ 0 for k = 0, . . . , n and
υj = 0 for some index j. This allows us to reduce the number of terms in the
representation of x. Indeed,

x =
n∑

k=0

λkxk =
n∑

k=0

(υk + tµk)xk =
∑
k �=j

υkxk,

and
∑

k �=j υk =
∑n

k=0 υk =
∑n

k=0(λk − tµk) =
∑n

k=0 λk = 1. ��

The sets of the form C = co({x0, . . . , xn}) are usually called polytopes. If
x1 − x0, . . . , xn − x0 are linearly independent, then C is called an n-simplex
(with vertices x0, . . . , xn); in this case, dim C = n. Any point x in an n-simplex
C has a unique representation x =

∑n
k=0 λkxk, as a convex combination. In

this case, the numbers λ0, . . . , λn are called the barycentric coordinates of x.
An important class of convex sets are the convex cones. A convex cone in

E is a subset C with the following two properties:

C + C ⊂ C

λC ⊂ C for all λ ≥ 0.

Interesting examples are:
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• Rn
+ = {(x1, . . . , xn) ∈ Rn | x1, . . . , xn ≥ 0}, the nonnegative orthant;

• Rn
++ = {(x1, . . . , xn) ∈ Rn | x1, . . . , xn > 0};

• Rn
≥ = {(x1, . . . , xn) ∈ Rn | x1 ≥ · · · ≥ xn};

• Sym+(n, R), the set of all positive matrices A of Mn(R), that is,

〈Ax, x〉 ≥ 0 for all x ∈ Rn;

• Sym++(n, R), the set of all strictly positive matrices A of Mn(R), that is,

〈Ax, x〉 > 0 for all x ∈ Rn, x 
= 0.

They are important because of the orderings they induce:

x ≤ y if and only if y − x ∈ C.

So far we have not used any topology; only the linear properties of the
space E have played a role.

Suppose now that E is a linear normed space. The following two results
relate convexity and topology:

Lemma 3.1.3 If U is a convex set in a linear normed space, then its interior
intU and its closure U are convex as well.

Proof. For example, if x, y ∈ intU , and λ ∈ (0, 1), then

λx + (1 − λ)y + u = λ(x + u) + (1 − λ)(y + u) ∈ U

for all u in a suitable ball Bε(0). This shows that intU is a convex set. Now
let x, y ∈ U . Then there exist sequences (xk)k and (yk)k in U , converging to x
and y respectively. This yields λx + (1 − λ)y = limk→∞[λxk + (1 − λ)yk] ∈ U
for all λ ∈ [0, 1], that is, U is convex as well. ��

Notice that affine sets in Rn are closed because finite dimensional subspaces
are always closed.

Lemma 3.1.4 If U is an open set in a linear normed space E, then its convex
hull is open. If E is finite dimensional and K is a compact set, then its convex
hull is compact.

Proof. For the first assertion, let x =
∑m

k=0 λkxk be a convex combination of
elements of the open set U . Then

x + u =
m∑

k=0

λk(xk + u) for all u ∈ E

and since U is open it follows that xk + u ∈ U for all k, provided that ‖u‖ is
small enough. Consequently, x + u ∈ co(U) for u in a ball Bε(0).
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We pass now to the second assertion. Clearly, we may assume that E = Rn.
Then consider the map defined by

f(λ0, . . . , λn, x0, . . . , xn) =
n∑

k=0

λkxk,

where λ0, . . . , λn ∈ [0, 1],
∑n

k=0 λk = 1, and x0, . . . , xn ∈ K. Since f is con-
tinuous and its domain of definition is a compact space, so is the range of f .
According to Carathéodory’s theorem, the range of f is precisely co(K), and
this ends the proof. ��

While working with a convex subset A of Rn, the natural space containing
it is often aff(A), not Rn, which may be far too large. For example, if dimA =
k < n, then A has empty interior. We can talk more meaningfully about the
topological notions of interior and boundary by using the notions of relative
interior and relative boundary. If A is a convex subset of Rn, the relative
interior of A, denoted ri(A), is the interior of A relative to aff(A). That is,
a ∈ ri(A) if and only if there is an ε > 0 such that Bε(a) ∩ aff(A) ⊂ A.
We define the relative boundary of A, denoted rbd(A), as rbd(A) = Ā\ ri(A).
These notions are important in optimization theory; see J. M. Borwein and
A. S. Lewis [38].

Exercises

1. Let S = {x0, . . . , xm} be a finite subset of Rn. Prove that

ri(co S) =
{ m∑

k=0

λkxk

∣∣∣ λk ∈ (0, 1),
m∑

k=0

λk = 1
}

.

2. Suppose that A and B are convex subsets of Rn, with A ⊂ B and aff(A) =
aff(B). Prove that ri(a) ⊂ ri(B).

3. Prove that the relative interior of any nonempty convex subset A of Rn is
dense in A (and thus it is nonempty).

4. (Accessibility lemma) Suppose that A is a convex subset of Rn, a ∈ ri(a)
and b ∈ Ā. Prove that

[a, b) = {(1 − λ)a + λb | λ ∈ [0, 1)} ⊂ ri(A).

Infer that ri(A) and int(A) are also convex.

5. It is well known that all norms on Rn give rise to the same topology. Prove
that all (nonempty) open convex subsets of Rn are homeomorphic.
[Hint : If B is the open unit ball of the Euclidean space Rn, then the
mapping x → x/(1 − ‖x‖2) provides a homeomorphism between B and
Rn. ]
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6. A subset S = {x0, . . . , xm} of Rn is said to be affinely independent if the
family {x1−x0, . . . , xm−x0} is linearly independent. Prove that this means

m∑
k=0

λkxk = 0 and
m∑

k=0

λk = 0 imply λk = 0 for all k ∈ {0, . . . , m}.

Infer that an affinely independent set in Rn can have at most n+1 points.

7. (Helly’s theorem; see [213] for applications) Let (Ci)i∈I be a finite collec-
tion of convex sets in Rn, where |I| ≥ n + 1. If every subcollection of at
most n+1 sets has a nonempty intersection, then the entire collection has
a nonempty intersection.
[Hint : The statement is clear for |I| = n+1. Then assume that |I| > n+1
and that the statement has already been proved for collections of |I| − 1
sets. Choose for each i an element xi ∈ ⋂

j �=i Cj . Since |I| > n + 1 these
points are affinely dependent, which yields real scalars λi (i ∈ I), not all
null, such that ∑

i∈I

λixi = 0 and
∑
i∈I

λi = 0.

Put λ =
∑

i∈I λ+
i =

∑
i∈I λ−

i . Then λ > 0 and

x =
∑
i∈I

(λ+
i /λ)xi =

∑
i∈I

(λ−
i /λ)xi

belongs to Cj for all j. Consider the two cases, λj ≥ 0 and λj < 0. ]
Remark. Helly’s theorem is equivalent with Carathéodory’s theorem.

3.2 The Orthogonal Projection

In any normed linear space E we can speak about the distance from a point
u ∈ E to a subset A ⊂ E. This is defined by the formula

d(u, A) = inf{‖u − a‖ | a ∈ A}
and represents a numerical indicator of how well u can be approximated by the
elements of A. When E = R3 and A is the x-y plane, the Pythagorean theorem
shows that d(u, A) is precisely the distance between u and its orthogonal
projection on that plane.

This remark has a notable generalization which will be presented in what
follows.

Theorem 3.2.1 Let C be a nonempty closed convex subset of a Hilbert
space H (particularly, of the Euclidean space Rn). Then for each x ∈ H there
is a unique point PC(x) of C such that

d(x, C) = ‖x − PC(x)‖.
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We call PC(x) the orthogonal projection of x onto C (or the nearest point
of C to x).

Proof. The existence of PC(x) follows from the definition of the distance from
a point to a set and the special geometry of the ambient space. In fact, any
sequence (yn)n in C such that ‖x − yn‖ → α = d(x, C) is a Cauchy sequence.
This is a consequence of the following identity,

‖ym − yn‖2 + 4
∥∥∥x − ym + yn

2

∥∥∥2
= 2(‖x − ym‖2 + ‖x − yn‖2)

(motivated by the parallelogram law), and the definition of α as an infimum;
notice that ‖x − ym+yn

2 ‖ ≥ α, which forces lim supm,n→∞ ‖ym − yn‖2 = 0.
Since H is complete, there must exist a point y ∈ C at which (yn)n con-

verges. Then necessarily d(x, y) = d(x, C). The uniqueness of y with this
property follows again from the parallelogram law. If y′ is another point of C
such that d(x, y′) = d(x, C) then

‖y − y′‖2 + 4
∥∥∥x − y + y′

2

∥∥∥2
= 2(‖x − y‖2 + ‖x − y′‖2)

which gives us ‖y − y′‖2 ≤ 0, a contradiction since it was assumed that the
points y and y′ are distinct. ��

The map PC : x → PC(x), from H into itself, is called the orthogonal
projection associated to C. Clearly,

PC(x) ∈ C for every x ∈ Rn

and
PC(x) = x if and only if x ∈ C.

In particular,
P 2

C = PC .

PC is also monotone, that is,

〈PC(x) − PC(y), x − y〉 ≥ 0 for all x, y ∈ H. (3.1)

This follows by adding the inequalities ‖x − PC(x)‖2 ≤ ‖x − PC(y)‖2 and
‖y − PC(y)‖2 ≤ ‖y − PC(x)‖2, after replacing the norm by the inner product.

If C is a closed subspace of the Hilbert space H, then PC is a linear self-
adjoint projection and x − PC(x) is orthogonal on each element of C. This
fact is basic for the entire theory of orthogonal decompositions.

Extensions of Theorem 3.2.1 are indicated in Exercise 4 and Theorem C.1.1
(Appendix C).

It is important to reformulate Theorem 3.2.1 in the framework of approx-
imation theory. Suppose that C is a nonempty closed subset in a real linear
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normed space E. We define the set of best approximation from x ∈ E to C as
the set PC(x) of all points in C closest to x, that is,

PC(x) = {z ∈ C | d(x, C) = ‖x − z‖}.

We say that C is a Chebyshev set if PC(x) is a singleton for all x ∈ E, and a
proximinal set if all the sets PC(x) are nonempty. Theorem 3.2.1 asserts that
all nonempty closed convex sets in a Hilbert space are Chebyshev sets. There
is an analogue of this theorem valid for the spaces Lp(µ) (1 < p < ∞, p 
= 2),
saying that all such sets are proximinal. See Exercise 8 in Section 3.6.

Clearly, the Chebyshev sets are closed. The following result is a partial
converse to Theorem 3.2.1:

Theorem 3.2.2 (L. N. H. Bunt) Every Chebyshev subset of Rn is convex.

See R. Webster [243, pp. 362–365] for a proof based on Brouwer’s fixed
point theorem. Proofs based on the differentiability properties of the function
dC : x → d(x, C), are available in the paper by J.-B. Hiriart-Urruty [104], and
in the monograph by L. Hörmander [108, pp. 62–63]. They are sketched in
Exercise 3, Section 3.8, and Exercise 2, Section 3.11.

V. Klee raised the question whether Theorem 3.2.2 is valid for all real
Hilbert spaces. The answer is known to be positive for all Chebyshev sets C
such that the map d2

C is differentiable. See [104] for details (and an account
of Klee’s problem).

Exercises

1. Find an explicit formula for the orthogonal projection PC when C is a
closed ball Br(a) in Rn.

2. Let �∞(2, R) be the space R2 endowed with the sup norm, ‖(x1, x2)‖ =
sup{|x1|, |x2|}, and let C be the set of all vectors (x1, x2) such that x2 ≥
x1 ≥ 0. Prove that C is a nonconvex Chebyshev set.

3. Consider in R2 the nonconvex set C = {(x1, x2) | x2
1 +x2

2 ≥ 1}. Prove that
all points of R2, except the origin, admit a unique closest point in C.

4. (Lions–Stampacchia theorem on a-projections) Let H be a real Hilbert
space and let a : H × H → R be a coercive continuous bilinear form.
Coercivity is meant here as the existence of a positive constant c such
that a(x, x) ≥ c‖x‖2 for all x ∈ H. Prove that for each x ∈ H and each
nonempty closed convex subset C of H there exists a unique point v in C
(called the a-projection of x onto C) such that

a(x − v, y − v) ≤ 0 for all y ∈ C.

Remark. This theorem has important applications in partial differential
equations and optimization theory. See, for example, [14], [69], [70].
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3.3 Hyperplanes and Separation Theorems

The notion of a hyperplane represents a natural generalization of the notion
of a line in R2 or a plane in R3. Hyperplanes are useful to split the whole
space into two pieces (called half-spaces).

A hyperplane in a real linear space E is any set of constancy of a nonzero
linear functional. In other words, a hyperplane is a set of the form

H = {x ∈ E | h(x) = α}, (3.2)

where h : E → R is a suitable nonzero linear functional and α is a suitable
scalar. In this case the sets

{x ∈ E | h(x) ≤ α} and {x ∈ E | h(x) ≥ α}
are called the half-spaces determined by H. We say that H separates two sets
U and V if they lie in opposite half-spaces (and strictly separates U and V
if one set is contained in {x ∈ E | h(x) < α} and the other in {x ∈ E |
h(x) ≥ α}).

When the functional h which appears in the representation formula (3.2)
is continuous (that is, when h belongs to the dual space E′) we say that
the corresponding hyperplane H is closed. In the context of Rn, all linear
functionals are continuous and thus all hyperplanes are closed. In fact, any
linear functional h : Rn → R has the form h(x) = 〈x, z〉, for some z ∈ Rn

(uniquely determined by h). This follows directly from the linearity of h and
the representation of Rn with respect to the canonical basis:

h(x) = h
( n∑

k=1

xkek

)
=

n∑
k=1

xkh(ek)

= 〈x, z〉,
where z =

∑n
k=1 h(ek)ek is the gradient of h.

Some authors define the hyperplanes as the maximal proper affine subsets
H of E. Here proper means different from E. One can prove that the hyper-
planes are precisely the translates of codimension-1 linear subspaces, and this
explains the agreement of the two definitions.

The following results on the separation of convex sets by closed hyper-
planes are part of a much more general theory that will be presented in Ap-
pendix A:

Theorem 3.3.1 (Separation theorem) Let U and V be two convex sets in
a normed linear space E, with intU 
= ∅ and V ∩ intU = ∅. Then there exists
a closed hyperplane that separates U and V .

Theorem 3.3.2 (Strong separation theorem) Let K and C be two dis-
joint nonempty convex sets in a normed linear space E with K compact and C
closed. Then there exists a closed hyperplane that separates strictly K and C.
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The special case of this result when K is a singleton is known as the basic
separation theorem.

A proof of Theorems 3.3.1 and 3.3.2 in the finite dimensional case is
sketched in Exercises 1 and 2.

Next we introduce the notion of a supporting hyperplane to a convex set
A in a normed linear space E.

Definition 3.3.3 We say that the hyperplane H supports A at a point a in
A if a ∈ H and A is contained in one of the half-spaces determined by H.

Theorem 3.3.1 assures the existence of a supporting hyperplane to any
convex set A at a boundary point, provided that A has nonempty interior.

When E = Rn, the existence of a supporting hyperplane of U at a bound-
ary point a will mean the existence of a vector z ∈ Rn and of a real number
α such that

〈a, z〉 = α and 〈x, z〉 ≤ α for all x ∈ U.

A direct argument for the existence of a supporting hyperplane in the finite
dimensional case is given in Exercise 3.

We end this section with a discussion on the geometry of convex sets in
finite dimensional spaces.

Definition 3.3.4 Let U be a convex subset of a linear space E. A point z in
U is an extreme point if it is not an interior point of any linear segment in U ,
that is, if there do not exist distinct points x, y ∈ U and numbers λ ∈ (0, 1)
such that

z = (1 − λ)x + λy.

The extreme points of a triangle are its vertices. More generally, every
polytope A = co{a0, . . . , am} has finitely many extreme points, and they are
among the points a0, . . . , am.

All boundary points of a disc DR(0) = {(x, y) | x2 +y2 ≤ R2} are extreme
points; this is an expression of the rotundity of discs. The closed upper half-
plane y ≥ 0 in R2 has no extreme point.

The extreme points are the landmarks of compact convex sets in Rn:

Theorem 3.3.5 (H. Minkowski) Every nonempty convex and compact sub-
set K of Rn is the convex hull of its extreme points.

Proof. We use induction on the dimension m of K. If m = 0 or m = 1, that
is, when K is a point or a closed segment, the above statement is obvious.
Assume the theorem is true for all compact convex sets of dimension at most
m ≤ n − 1. Consider now a compact convex set K whose dimension is m + 1
and embed it into a linear subspace E of dimension m + 1.

If z is a boundary point of K, then we can choose a supporting hyperplane
H ⊂ E for K through z. The set K ∩ H is compact and convex and its
dimension is less or equal to m. By the induction hypothesis, z is a convex
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combination of extreme points of K ∩H. Or, any extreme point e of K ∩H is
also an extreme point of K. In fact, letting H = {t ∈ E | ϕ(t) = α}, we may
assume that K is included in the half-space ϕ(t) ≤ α. If e = (1 − λ)x + λy
with x 
= y in K and λ ∈ (0, 1), then necessarily ϕ(x) = ϕ(y) = α, that is, x
and y should be in K ∩ H, in contradiction with the choice of e.

If z is an interior point of K, then each line through z intersects K in a
segment whose endpoints belong to the boundary of K. Consequently, z is a
convex combination of boundary points that in turn are convex combinations
of extreme points. This ends the proof. ��

The result of Theorem 3.3.5 can be made more precise: every point in a
compact convex subset K of Rn is the convex combination of at most n + 1
extreme points. See Theorem 3.1.2.

Exercises

1. Complete the following sketch of the proof of Theorem 3.3.2 in the case
when E = Rn: First prove that the distance

d = inf{‖x − y‖ | x ∈ K, y ∈ C}
is attained for a pair x0 ∈ K, y0 ∈ C. Then notice that the hyperplane
through x0, orthogonal to the linear segment [x0, y0], determined by x0 and
y0, has the equation 〈y0 − x0, z − x0〉 = 0. Fix arbitrarily a point x ∈ K.
Then 〈y0 − x0, z − x0〉 ≤ 0 for every point z ∈ [x0, x] (and thus for every
z ∈ K). Conclude that every hyperplane through any point inside the
segment [x0, y0], orthogonal to this segment, separates strictly K and C.

2. Infer the finite dimensional case of Theorem 3.3.1 from Theorem 3.3.2.
[Hint : It suffices to assume that both sets U and V are closed. Then
choose a point x0 ∈ intU and apply the preceding exercise to V and to
the compact set

Kn = {x0 + (1 − 1/n)(x − x0) | x ∈ U} ∩ Bn(0)

for n ∈ N∗. This gives us a sequence of unit vectors un and numbers αn

such that 〈un, x〉 ≤ αn for x ∈ Kn and 〈un, y〉 ≥ αn for y ∈ V . As (un)n

and (αn)n are bounded, they admit converging subsequences, say to u
and α respectively. Conclude that H = {z | 〈u, z〉 = α} is the desired
separation hyperplane. ]

3. (The support theorem) Assume that E = Rn and a is a point in the
relative boundary of the convex subset A of E. Prove that there exists a
supporting hyperplane H to A at a which differs from aff(A).
[Hint : We may assume that A is closed, by replacing A with A. Choose a
point x0 ∈ S1(a) = {x | ‖x − a‖ = 1} such that
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d(x0, A) = sup{d(x, A) | x ∈ S1(a)},

that is, x0 is the farthest point from A. Notice that a is the point of A
closest to x0 and conclude that the hyperplane H = {z | 〈x0−a, z−a〉 = 0}
supports U at a.

4. Prove that a closed convex set in Rn is the intersection of closed half-spaces
which contain it.

5. A set in Rn is a polyhedron if it is a finite intersection of closed half-spaces.
Prove that:
(i) every compact polyhedron is a polytope (the converse is also true);
(ii) every polytope has finitely many extreme points;
(iii) Sym+(2, R) is a closed convex cone (with interior Sym++(2, R)) but

not a polyhedron.

6. A theorem due to G. Birkhoff (see [243, pp. 246–247]) asserts that every
doubly stochastic matrix is a convex combination of permutation matri-
ces. As the set Ωn ⊂ Mn(R) of all doubly stochastic matrices is compact
and convex, and the extreme points of Ωn are the permutation matrices,
Birkhoff’s result follows from Theorem 3.3.5.
(i) Verify this fact for n = 2.
(ii) Infer from it Rado’s characterization of majorization: x ≺ y in Rn if

and only if x belongs to the convex hull of the n! permutations of y.

7. Let C be a nonempty subset of Rn. The polar set of C, is the set

C◦ = {x ∈ Rn | 〈u, x〉 ≤ 1 for every u ∈ C}.

(i) Prove that C◦ is a closed convex set containing 0 and C ⊂ D implies
D◦ ⊂ C◦.

(ii) (The bipolar theorem) Infer from the basic separation theorem that
C◦◦ = co(C ∪ {0}).

3.4 Convex Functions in Higher Dimensions

The notion of a convex function has a natural generalization to real-valued
functions defined on an arbitrary convex set.

In what follows U will be a convex set in a real linear space E.

Definition 3.4.1 A function f : U → R is said to be convex if

f((1 − λ)x + λy) ≤ (1 − λ)f(x) + λf(y) (3.3)

for all x, y ∈ U and all λ ∈ [0, 1].
The other related notions such as concave function, affine function, and

strictly convex function can be introduced as in Section 1.1.
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By mathematical induction we can extend the basic inequality (3.3) to the
case of arbitrary convex combinations. We shall refer to this as the discrete
case of Jensen’s inequality.

Convexity in the case of several variables is equivalent with convexity on
each line segment included in the domain of definition:

Proposition 3.4.2 A function f : U → R is convex if and only if for every
two points x and y in U the function

ϕ : [0, 1] → R, ϕ(t) = f((1 − t)x + ty)

is convex.

Notice that convexity of functions in the several variables case means more
than convexity in each variable separately; think of the case of the function
f(x, y) = xy, (x, y) ∈ R2, which is not convex, though convex in each variable.

Some simple examples of strictly convex functions on Rn are as follows:

• f(x1, . . . , xn) =
∑n

k=1 ϕ(xk), where ϕ is a strictly convex function on R.
• f(x1, . . . , xn) =

∑
i<j cij(xi − xj)2, where the coefficients cij are positive.

• The distance function dU : Rn → R, dU (x) = d(x, U), associated to a
nonempty convex set U in Rn.

We shall next discuss several connections between convex functions and
convex sets.

By definition, the epigraph of a function f : U → R is the set

epi(f) = {(x, y) | x ∈ U, y ∈ R and f(x) ≤ y}.

It is easy to verify that f : U → R is convex if and only if epi(f) is convex in
E × R. This shows that the theory of convex functions can be subordinated to
the theory of convex sets.

A practical implication is the existence of supporting hyperplanes for con-
vex functions. To make this more precise, we shall pass to the topological con-
text, where U is an open convex set in a linear normed space E and f : U → R

is a continuous convex function. In this case, epi(f) has a nonempty interior
in E×R and every point (a, f(a)) is a boundary point for epi(f). According to
Theorem 3.3.1, there is a closed hyperplane H in E×R that contains (a, f(a))
and epi(f) is contained in one of the half-spaces determined by H. We call
this a supporting hyperplane to f at a.

The closed hyperplanes H are associated to nonzero continuous linear
functionals on E × R and the dual space of E × R is constituted of all pairs
(h, λ), where h is any continuous linear functional on E and λ is any real
number. Consequently a supporting hyperplane to f at a is determined by a
pair (h, λ) and a real number α such that

h(a) + λf(a) = α
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and
h(x) + λy ≥ α for all y ≥ f(x) and all x ∈ U.

Notice that λ 
= 0, since otherwise h(x) ≥ h(a) for x in a ball Br(a), which
forces h = 0. A moment’s reflection shows that actually λ > 0 and thus we
are led to the existence of a continuous linear functional h such that

f(x) ≥ f(a) + h(x − a) for every x ∈ U.

We call h a support of f at a.
From this point we can continue as in the case of functions of one variable,

by developing the concept of the subdifferential. We shall come back to this
matter in Section 3.7.

We pass now to another connection between convex functions and convex
sets.

Given a function f : U → R and a scalar α, the sublevel set Lα of f at
height α is the set

Lα = {x ∈ U | f(x) ≤ α}.

Lemma 3.4.3 Each sublevel set of a convex function is a convex set.

The property of Lemma 3.4.3 characterizes the quasiconvex functions. See
Exercise 8.

Convex functions exhibit a series of nice properties related to maxima and
minima, which make them important in theoretical and applied mathematics.

Theorem 3.4.4 Assume that U is a convex subset of a normed linear space
E. Then any local minimum of a convex function f : U → R is also a global
minimum. Moreover, the set of global minimizers of f is convex.

If f is strictly convex in a neighborhood of a minimum point, then the
minimum point is unique.

Proof. If a is a local minimum, then for each x ∈ U there is an ε > 0 such
that

f(a) ≤ f(a + ε(x − a)) = f((1 − ε)a + εx)
≤ (1 − ε)f(a) + εf(x).

(3.4)

This yields f(a) ≤ f(x), so a is a global minimum. If f is strictly convex
in a neighborhood of a, then the last inequality in (3.4) is strict and the
conclusion becomes f(x) > f(a) for all x ∈ U , x 
= a. The second assertion is
a consequence of Lemma 3.4.3. ��

The following result gives us a useful condition for the existence of a global
minimum:

Theorem 3.4.5 (K. Weierstrass) Assume that U is an unbounded closed
convex set in Rn and f : U → R is a continuous convex function whose sublevel
sets are bounded. Then f has a global minimum.
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Proof. Notice that all sublevel sets Lα of f are bounded and closed (and
thus compact in Rn). Then every sequence of elements in a sublevel set has
a converging subsequence and this yields immediately the existence of global
minimizers. ��

Under the assumptions of Theorem 3.4.5, the condition on boundedness
of sublevel sets is equivalent with the following growth condition:

lim inf
‖x‖→∞

f(x)
‖x‖ > 0. (3.5)

The sufficiency part is clear. For the necessity part, reason by reductio
ad absurdum and choose a sequence (xk)k in U such that ‖xk‖ → ∞ and
f(xk) ≤ ‖xk‖/k. Since the level sets are supposed to be bounded we have
‖xk‖ /k → ∞, and this leads to a contradiction. Indeed, for every x ∈ U the
sequence

x +
k

‖xk‖ (xk − x)

is unbounded though lies in some sublevel set Lf(x)+ε, with ε > 0.
The functions which verify the condition (3.5) are said to be coercive.

Clearly, coercivity implies

lim
‖x‖→∞

f(x) = ∞.

Convex functions attain their maxima at the boundary:

Theorem 3.4.6 (The maximum principle) If f is a convex function on
a convex subset U of a normed linear space E and attains a global maximum
at an interior point of U , then f is constant.

Proof. Assume that f is not constant and attains a global maximum at the
point a ∈ intU . Choose x ∈ U such that f(x) < f(a) and ε ∈ (0, 1) such
that y = a + ε(a − x) ∈ U . Then a = y/(1 + ε) + εx/(1 + ε), which yields a
contradiction since

f(a) ≤ 1
1 + ε

f(y) +
ε

1 + ε
f(x) <

1
1 + ε

f(a) +
ε

1 + ε
f(a) = f(a).

��

A generalization of the maximum principle is given in Corollary A.3.3
(Appendix A). We end this section with an important consequence of Theo-
rem 3.3.5.

Theorem 3.4.7 If f is a continuous convex function on a compact convex
subset K of Rn, then f attains a global maximum at an extreme point.
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Proof. Assume that f attains its global maximum at a ∈ K. By Theorem 3.3.5,
the point a can be represented as a convex combination of extreme points,
say a =

∑m
k=1 λkek. Then f(a) ≤ ∑m

k=1 λkf(ek) ≤ supk f(ek), which forces
f(a) = f(ek) for some k. ��

For functions defined on n-dimensional intervals [a1, b1] × · · · × [an, bn]
in Rn, Theorem 3.4.7 extends to the case of continuous functions which are
convex in each variable (when the others are kept fixed). This fact can be
proved by one-variable means (taking into account Theorem 1.1.3). A sample
is offered by Exercise 3.

In the infinite dimensional setting, it is difficult to state fairly general re-
sults on maximum-attaining. Besides, the deep results of Banach space theory
appears to be crucial in answering questions which at first glance may look
simple. Here is an example. By the Eberlein–S̆mulyan theorem (see Theo-
rem A.1.8, Appendix A) it follows that each continuous linear functional on
a reflexive Banach space E achieves its norm on the unit ball. Surprisingly,
these are the only Banach spaces for which the norm-attaining phenomenon
occurs. This was proved by R. C. James (see [64, p. 63]).

Exercises

1. Prove that the general form of an affine function f : Rn → R is f(x) =
〈x, u〉 + a, where u ∈ Rn and a ∈ R.

2. (A. Engel [72, p. 177]) A finite set P of n points (n ≥ 2) is given in the
plane. For any line L, denote by d(L) the sum of distances from the points
of P to the line L. Consider the set L of the lines L such that d(L) has the
lowest possible value. Prove that there exists a line of L passing through
two points of P.

3. Find the maximum of the function

f(a, b, c) =
[
3
(
a5 + b7 sin

πa

2
+ c

)
− 2(bc + ca + ab)

]
for a, b, c ∈ [0, 1].
[Hint : Notice that f(a, b, c) ≤ sup[3(a + b + c) − 2(bc + ca + ab)] = 4. ]

4. (i) Prove that the set Sym++(n, R), of all matrices A ∈ Mn(R) which
are strictly positive, is open and convex.

(ii) Prove that the function

f : Sym++(n, R) → R, f(A) = log(detA)

is concave.
[Hint: (ii) First, notice that

∫
Rn e−〈Ax,x〉 dx = πn/2/

√
det A for every A

in Sym++(n, R); there is no loss of generality assuming that A is diagonal.
Then, for every A, B ∈ Sym++(n, R) and every α ∈ (0, 1), we have
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Rn

e−〈[αA+(1−α)B]x,x〉 dx ≤
(∫

Rn

e−〈Ax,x〉 dx

)α(∫
Rn

e−〈Bx,x〉 dx

)1−α

,

by the Rogers–Hölder inequality. This yields the log-concavity of the func-
tion det:

det(αA + (1 − α)B) ≥ (det A)α(det B)1−α. ]

Extend this formula in the setting of positive matrices (e.g., using pertur-
bations of the form A + εI and B + εI).

5. (The John–Loewner ellipsoid) The aim of this exercise is to sketch a
proof of the following result: Given a compact set A in Rn with nonempty
interior, there exists one and only one ellipsoid E of minimal volume,
containing A; the ellipsoids are supposed to be centered at the origin.
Recall that an ellipsoid is a set of the form C(A) = {x ∈ Rn | 〈Ax, x〉 ≤ 1},
associated to a matrix A ∈ Sym++(n, R).
(i) Notice that given two ellipsoids which contain A, there is a third

smaller ellipsoid which contains A. Infer from this remark the unique-
ness of E.

(ii) Use a compactness argument to derive the existence of an ellipsoid
of minimal volume containing A.

(iii) Verify that the volume of C(A) is

Voln(C(A)) =
πn/2

Γ(n/2 + 1)
(det A)−1/2.

(iv) Infer from the preceding exercise that the function A → Voln (C(A))
is strictly convex (and thus it admits at most one minimum).

Remark. The above result has a series of strong consequences. See the
paper by M. Berger [23]. We recall here a renorming result due to F. John:
For every n-dimensional real Banach space there is a linear isomorphism
T : E → Rn such that ‖T‖ · ‖T−1‖ ≤ √

n.

6. Suppose that ϕ1, . . . , ϕn are convex functions defined on the same convex
set D in Rn and f : Rn → R is a nondecreasing convex function. Prove
that F (x) = f(ϕ1(x), . . . , ϕn(x)) is convex on D. Here “nondecreasing”
means nondecreasing in each variable (when the others are kept fixed).

7. (i) Prove that the limit of any pointwise converging sequence of convex
functions is a convex function.

(ii) Let (fα)α be a family of convex functions defined on the same convex
set U , such that f(x) = supα fα(x) < ∞ for all x ∈ U . Prove that f
is convex.

8. A function f : U → R defined on a convex set U in Rn is said to be
quasiconvex if

f((1 − λ)x + λy) ≤ sup{f(x), f(y)}
for all x, y ∈ U and all λ ∈ [0, 1].
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(i) Prove that f is quasiconvex if and only if its sublevel sets Lα are
convex for every real number α.

(ii) Extend Theorem 3.4.7 to the context of quasiconvex functions.

9. Brouwer’s fixed point theorem asserts that any continuous self map of a
nonempty compact convex subset of Rn has a fixed point. See [38, pp. 179–
182] for details. The aim of this exercise is to outline a string of results
which relates this theorem with the topics of convexity.
(i) Infer from Brouwer’s fixed point theorem the following result due

to Knaster–Kuratowski–Mazurkiewicz (also known as the KKM the-
orem): Suppose that X is a nonempty subset of Rn and M is a
function which associates to each x ∈ X a closed nonempty subset
M(x) of X. If

co(F ) ⊂
⋃

x∈F

M(x)

for every finite subset F ⊂ X, then
⋂

x∈F M(x) 
= ∅ for every finite
subset F ⊂ X. Moreover,

⋂
x∈X M(x) 
= ∅ if X is compact.

[Hint : If
⋂

x∈F M(x) is empty for some finite subset F , then the map

y ∈ co(F ) →
[∑

x∈F

dM(x)(y)x
]/[∑

x∈F

dM(x)(y)
]

admits a fixed point z. Letting G = {x ∈ F | z /∈ M(x)}, then z
should be in co(G), and this leads to a contradiction. ]

(ii) Prove that the KKM theorem yields the Ky Fan minimax inequality :
Suppose that C is a nonempty, compact, and convex subset of Rn. If
f : C × C → R, f = f(x, y), is quasiconcave in the first variable and
lower semicontinuous in the second variable, then

inf
y

sup
x

f(x, y) ≤ sup
x

f(x, x).

(iii) (Nash equilibrium) Consider the set C = C1 × · · · × Cm, where each
set Ck is a nonempty, compact and convex subset of Rn. Consider
also continuous functions f1, . . . , fm : C → R such that, for each k,
the function

xk ∈ Ck → f(y1, . . . , xk, . . . , ym)

is convex on Ck for all yi ∈ Ci, i 
= k. Then there exists an element
c = (c1, . . . , cm) ∈ C such that

fk(c) ≤ fk(c1, . . . , xk, . . . , cm) for all xk ∈ Ck, k ∈ {1, . . . , m}.

[Hint : Apply the Ky Fan minimax inequality to the function

f(x, y) =
m∑

k=1

[fk(y) − fk(y1, . . . , xk, . . . , ym)]. ]
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10. (Multiplicatively convex functions of several variables) Let

f(x1, . . . , xn) =
m∑

k=1

akxr1k
1 · · ·xrnk

n , (x1, . . . , xn) ∈ Rn
++

where ak > 0 and rij ∈ R. Prove that g(y1, . . . , yn) = log f(ey1 , . . . , eyn) is
convex on Rn.

3.5 Continuity of Convex Functions

In Section 1.3 we proved that a convex function defined on an open interval is
continuous. Here we establish the corresponding results for real-valued func-
tions defined on an open convex set in Rn. The basic remark refers to a local
property of convex functions.

Lemma 3.5.1 Every convex function f defined on an open convex set U in
Rn is locally bounded (that is, each a ∈ U has a neighborhood on which f is
bounded).

Proof. For a ∈ U arbitrarily fixed, choose a cube K in U , centered at a, with
vertices v1, . . . , v2n . Clearly, K is a neighborhood of a. Every x ∈ K is a
convex combination of vertices and thus

f(x) = f
( 2m∑

k=1

λkvk

)
≤ M = sup

1≤k≤2m

f(vk),

so f is bounded above on K. By the symmetry of K, for every x ∈ K there is
a y ∈ K such that a = (x + y)/2. Then f(a) ≤ (f(x) + f(y))/2, which yields
f(x) ≥ 2f(a) − f(y) ≥ 2f(a) − M , and the proof is complete. ��

Proposition 3.5.2 Let f be a convex function on an open convex set U in
Rn. Then f is locally Lipschitz. In particular, f is continuous on U .

According to a theorem due to Rademacher (see Theorem 3.11.1), we can
infer from Proposition 3.5.2 that every convex function on an open convex
set U in Rn is almost everywhere differentiable. A direct proof will be given
in Section 3.8 (see Theorem 3.8.3).

Proof. According to the preceding lemma, given a ∈ U , we may find a ball
B2r(a) ⊂ U on which f is bounded above, say by M . For x 
= y in Br(a), put
z = y + (r/α)(y − x), where α = ‖y − x‖. Clearly, z ∈ B2r(a). As

y =
r

r + α
x +

α

r + α
z,
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from the convexity of f we infer that

f(y) ≤ r

r + α
f(x) +

α

r + α
f(z).

Then

f(y) − f(x) ≤ α

r + α
[f(z) − f(x)]

≤ α

r
[f(z) − f(x)] ≤ 2M

r
‖y − x‖

and the proof ends by interchanging the roles of x and y. ��

Corollary 3.5.3 Let f be a convex function defined on a convex set A in
Rn. Then f is Lipschitz on each compact convex subset of ri(A) (and thus f
is continuous on ri(A)).

Proof. Clearly, we may assume that aff(A) = Rn. In this case, ri(A) = int(A)
and Proposition 3.5.2 applies. ��

The infinite dimensional analogue of Proposition 3.5.2 is as follows:

Proposition 3.5.4 Let f be a convex function on an open convex set U in a
normed linear space. If f is bounded above in a neighborhood of one point of U ,
then f is locally Lipschitz on U . In particular, f is a continuous function.

The proof is similar with that of Proposition 3.5.2, with the difference that
the role of Lemma 3.5.1 is taken by the following lemma:

Lemma 3.5.5 Let f be a convex function on an open convex set U in a
normed linear space. If f is bounded above in a neighborhood of one point of
U , then f is locally bounded on U .

Proof. Suppose that f is bounded above by M on a ball Br(a). Let x ∈ U
and choose ρ > 1 such that z = a + ρ(x − a) ∈ U . If λ = 1/ρ, then

V = {v | v = (1 − λ)y + λz, y ∈ Br(a)}

is a neighborhood of x = (1 − λ)a + λz, with radius (1 − λ)r. Moreover, for
v ∈ V we have

f(v) ≤ (1 − λ)f(y) + λf(z) ≤ (1 − λ)M + λf(z).

To show that f is bounded below in the same neighborhood, choose arbitrarily
v ∈ V and notice that 2x−v ∈ V . Consequently, f(x) ≤ f(v)/2+f(2x−v)/2,
which yields f(v) ≥ 2f(x) − f(2x − v) ≥ 2f(x) − M. ��
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A convex function on an infinite dimensional Banach space E is not neces-
sarily continuous. Actually, one can prove that the only Banach spaces E such
that every convex function f : E → R is continuous are the finite dimensional
ones. This is a consequence of the well-known fact that the norm and the weak
topology agree only in the finite dimensional case. See [64, Lemma 1, p. 45].

In applications it is often useful to consider extended real-valued functions,
defined on a real linear space E.

Definition 3.5.6 A function f : E → R is said to be convex if its epigraph,

epi(f) = {(x, y) | x ∈ E, y ∈ R and f(x) ≤ y}

is a convex subset of E × R.

The effective domain of a convex function f : E → R is the set

dom f = {x | f(x) < ∞}.

Clearly, this is a convex set. Most of the time we shall deal with proper convex
functions, that is, with convex functions f : E → R ∪ {∞} which are not
identically ∞. In their case, the property of convexity can be reformulated in
more familiar terms,

f((1 − λ)x + λy) ≤ (1 − λ)f(x) + λf(y)

for all x, y ∈ E and all λ ∈ [0, 1] for which the right hand side is finite.
If U is a convex subset of E, then every convex function f : U → R extends

to a proper convex function f̃ on E, letting f̃(x) = ∞ for x ∈ E\U . Another
basic example is related to the indicator function. The indicator function of
a nonempty subset A is defined by the formula

δA(x) =

{
0 if x ∈ A,
∞ if x ∈ E\A.

Clearly, A is convex if and only if δA is a proper convex function.
The sublevel sets of a proper convex function f : E → R∪{∞} are convex

sets. A discussion of the topological nature of the sublevel sets needs the
framework of lower semicontinuity.

Definition 3.5.7 An extended real-valued function f defined on a Hausdorff
topological space X is called lower semicontinuous if

f(x) = lim inf
y→x

f(y) for all x ∈ X.

In the same framework, a function g is called upper semicontinuous if −g is
lower semicontinuous.
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The lower semicontinuous functions are precisely the functions for which
all sublevel sets are closed (see Exercise 3). An important remark is that the
supremum of any family of lower semicontinuous proper convex functions is a
function of the same nature.

If the effective domain of a proper convex function is closed and f is
continuous relative to dom f , then f is lower semicontinuous. However, f
can be lower semicontinuous without its effective domain being closed. The
following function,

ϕ(x, y) =

⎧⎪⎨⎪⎩
y2/2x if x > 0,
α if x = y = 0,
∞ otherwise,

is illustrative on what can happen at the boundary points of the effective
domain. In fact, f is a proper convex function for each α ∈ [0,∞]. All points
of its effective domain are points of continuity except the origin, where the
limit does not exist. The function ϕ is lower semicontinuous for α = 0.

The possibility of modifying the values of a proper convex function on the
boundary of its effective domain to became lower semicontinuous is discussed
in Exercises 2 and 3.

Exercises

1. Exhibit an example of a discontinuous linear functional defined on an in-
finite dimensional Banach space.

2. (W. Fenchel [79]) This exercise is devoted to an analogue of Proposi-
tion 1.3.4. Let f be a convex function on a convex subset U of Rn. Prove:
(i) If x is a boundary point of U , then lim infy→x f(y) > −∞.
(ii) lim infy→x f(y) ≤ f(x) if x is a boundary point of U that belongs

to U .
(iii) Assume that U is open and consider the set V obtained from U by

adding all the boundary points x for which lim infy→x f(y) < ∞.
Prove that V is convex and the function g : V → R given by the
formula

g(x) =

{
f(x) if x ∈ U ,
lim inf

y→x
f(y) if x ∈ V ∩ ∂U ,

is convex as well.
Remark. The last condition shows that every convex function can be
modified at boundary points so that it becomes lower semicontinuous and
convex.

3. Let f be an extended real-valued function defined on Rn. Prove that the
following conditions are equivalent:
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(i) f is lower semicontinuous;
(ii) all sublevel sets {x|f(x) ≤ α} are closed;
(iii) the epigraph epi(f) is a closed subset of Rn+1;
(iv) if xm → x in Rn, then f(x) ≤ lim inf

m→∞ f(xm).

4. The closure of a proper convex function f is the function cl f whose epi-
graph is epi(cl f) = epi(f). This function is lower semicontinuous and
convex. Prove that cl f is the largest lower semicontinuous function mi-
norizing f .

5. Let K be a polytope in Rn. Prove that every bounded convex function on
the relative interior of K has a unique extension to a continuous convex
function on K.
Remark. D. Gale, V. Klee and R. T. Rockafellar [85] observed that this
property characterizes the polytopes among the convex sets in Rn.

3.6 Positively Homogeneous Functions

Many of the functions which arise naturally in convex analysis are real-valued
functions f defined on a convex cone C in Rn (often Rn itself) that satisfy
the relation

f(λx) = λf(x) for all x ∈ C and all λ ≥ 0.

Such functions are called positively homogeneous. An important example
is the norm mapping ‖ · ‖, which is defined on the whole space Rn.

Lemma 3.6.1 Let f be a positively homogeneous function defined on a convex
cone C in Rn. Then f is convex if and only if f is subadditive.

Proof. Suppose that f is convex and x, y ∈ C. Then

1
2
f(x + y) = f

(x + y

2

)
≤ 1

2
(f(x) + f(y))

and so f(x + y) ≤ f(x) + f(y).
Conversely, suppose that f is subadditive. Then

f((1 − λ)x + λy) ≤ f((1 − λ)x) + f(λy) = (1 − λ)f(x) + λf(y)

for all x, y ∈ C and λ ∈ [0, 1], which shows that f is convex. ��

Lemma 3.6.2 Let f be a nonnegative positively homogeneous function de-
fined on a convex cone C in Rn such that the sublevel set {x ∈ C | f(x) ≤ 1}
is convex. Then f is a convex function.



124 3 Convex Functions on a Normed Linear Space

Proof. According to Lemma 3.6.1, it suffices to show that f is subadditive.
For that, let x, y ∈ C and choose scalars α and β such that α > f(x), and
β > f(y). Since f is nonnegative and positively homogeneous, f(x/α) ≤ 1 and
f(y/β) ≤ 1. Thus x/α and y/β both lie in the sublevel set of f at height 1.
The assumed convexity of this sublevel set shows that

1
α + β

f(x + y) = f
( x + y

α + β

)
= f

( α

α + β
· x

α
+

β

α + β
· y

β

)
≤ 1,

that is, f(x + y) ≤ α + β whenever α > f(x), β > f(y). Hence f(x + y) ≤
f(x) + f(y), which shows that f is subadditive. ��

A sample of how the last lemma yields the convexity of some functions is
as follows. Let p ≥ 1 and consider the function f given on the nonnegative
orthant Rn

+ by the formula

f(x1, . . . , xn) = (xp
1 + · · · + xp

n)1/p.

Clearly, f is nonnegative and positively homogeneous, and fp is convex as
a sum of convex functions. Hence the sublevel set

{x ∈ X | f(x) ≤ 1} = {x ∈ X | fp(x) ≤ 1}
is convex and this implies that f is a convex function. By Lemma 3.6.1 we
conclude that f is subadditive, a fact which is equivalent with the Minkowski
inequality.

In Section 1.8, we established Jensen’s inequality in the context of finite
measure spaces. Recently, P. Roselli and M. Willem [216] proved an extension
of this inequality for all measure spaces, under the assumption that the convex
function under attention is positively homogeneous and continuous. The basic
ingredient in their proof is the following result, which is mostly a consequence
of Theorem 1.5.2.

Lemma 3.6.3 Suppose that J : R2
+ → R is a positively homogeneous contin-

uous function. Then the following assertions are equivalent:
(i) J is convex;
(ii) ϕ = J(1, t) is convex;
(iii) there exists a subset G ⊂ R2 such that

J(u, v) = sup{au + bv | (a, b) ∈ G}.

Proof. Clearly, (i) ⇒ (ii) and (iii) ⇒ (i). For (ii) ⇒ (iii) notice that J(u, v) =
uJ(1, v/u) if u > 0 and J(u, v) = vJ(0, 1) if u = 0. Or, according to Theo-
rem 1.5.2,

ϕ(t) = sup{a + bt | (a, b) ∈ G}
where G = {(ϕ(s) − sb, b) | b ∈ ∂ϕ(s), s ∈ R}. ��
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Theorem 3.6.4 (Roselli–Willem theorem) Let J : R2
+ → R be a posi-

tively homogeneous continuous convex function. Then for every measure space
(X, Σ, µ) and every µ-integrable function f : X → R2

+ for which J ◦ f is also
µ-integrable, we have the inequality

J

(∫
X

f dµ

)
≤
∫

X

J ◦ f dµ. (3.6)

See Exercise 4 for a converse. Also, the role of R2
+ can be taken by every

cone in Rn
+.

Proof. Put f = (f1, f2). According to Lemma 3.6.3, and Lebesgue’s dominated
convergence theorem,∫

X

(J ◦ f)(x) dµ =
∫

X

sup
(a,b)∈G

(af1 + bf2) dµ

≥ sup
(a,b)∈G

(
a

∫
X

f1 dµ + b

∫
X

f2 dµ

)
= J

(∫
X

f dµ

)
.

��

The particular case where f(x) = (|u(x)|p, |v(x)|p) and

J(u, v) = (u1/p + v1/p)p (p ∈ R, p 
= 0)

gives us a very general version of Minkowski’s inequality:

Theorem 3.6.5 For p ∈ (−∞, 0) ∪ [1,∞) and f, g ∈ Lp(µ) we have

‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp , (3.7)

while for 0 < p < 1 the inequality works in the reverse sense,

‖f + g‖Lp ≥ ‖f‖Lp + ‖g‖Lp . (3.8)

If f is not 0 almost everywhere, then we have equality if and only if g = λf
almost everywhere, for some λ ≥ 0.

Proof. In fact J(1, t) = (1 + t1/p)p is strictly convex for 0 < p < 1 and strictly
concave for p ∈ (−∞, 0) ∪ (1,∞). Then apply Theorem 3.6.4 above. ��

There is a Minkowski type inequality even in the case p = 0. In fact, letting
p → 0+ in (3.8), and taking into account Exercise 1 (iv) in Section 1.8, we
obtain the following:
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Corollary 3.6.6 (Minkowski’s inequality for p = 0) Assume that
(X, Σ, µ) is a finite measure space. For every f, g ∈ L1(µ), f, g ≥ 0 we have,

exp
(

1
µ(X)

∫
X

log(f(x) + g(x)) dµ

)
≥ exp

(
1

µ(X)

∫
X

log f(x) dµ

)
+ exp

(
1

µ(X)

∫
X

log g(x) dµ

)
.

For a direct proof of the discrete case see Exercise 4.
Another application of Theorem 3.6.4 is given by Hanner’s inequalities.

They improve Clarkson’s inequalities and are the object of Exercise 7.

Exercises

1. (Support function) The support function of a nonempty compact convex
set C in Rn is defined by

h(u) = sup
x∈C

〈x, u〉, u ∈ Rn.

If ‖u‖ = 1, the set Hα = {x ∈ Rn | 〈x, u〉 = α} describes a family of parallel
hyperplanes, each having u as a normal vector; α = h(u) represents the
value for which each Hα supports C and C is contained in the half-space
H−

α .
(i) Prove that the support function is positively homogeneous and con-

vex.
(ii) Prove that C = {x ∈ Rn | 〈x, u〉 ≤ h(u) for every u ∈ Rn}, which

shows that C is the intersection of all half-spaces that contain it.
(iii) Conversely, let h : Rn → R be a positively homogeneous convex func-

tion. Prove that

C = {x ∈ Rn | 〈x, u〉 ≤ h(u) for every u ∈ Rn}

is nonempty, compact, convex and its support function is h.
Remark. The notion of a support function can be attached to any
nonempty convex set C in Rn. See Section 3.7, Exercise 9.

2. The Minkowski functional (also called the gauge function) associated to a
nonempty subset C of Rn is the function

pC : Rn → R ∪ {∞}, pC(x) = inf{λ > 0 | x ∈ λC}.

Here inf ∅ = ∞. Suppose that C is a closed convex set which contains the
origin. Prove that:
(i) pC is a positively homogeneous convex function.
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(ii) The Minkowski functional of C is the support function of the polar
set C◦, and the Minkowski functional of C◦ is the support function
of C.

(iii) C◦ is bounded if and only if 0 ∈ intC (so by the bipolar theorem
C is bounded if and only if 0 ∈ intC◦). Infer that the Minkowski
functional of C is real-valued if 0 ∈ intC.

3. Find the support and the Minkowski functional of the following sets:
(i) {x ∈ Rn | sup{|x1|, . . . , |xn|} ≤ 1};
(ii) {x ∈ Rn | |x1| + · · · + |xn| ≤ 1};
(iii) {x ∈ Rn | x2

1 + · · · + x2
n ≤ 1}.

4. Prove the following converse of Theorem 3.6.4: If J is continuous and the
inequality (3.6) holds for every µ-integrable function f : X → R2

+ for which
J ◦ f is also µ-integrable, then J is positively homogeneous and convex.

5. (More on the Rogers–Hölder inequality) Extend the result of Section 1.2,
Exercise 4, to the general context of measure spaces.

6. (Minkowski’s inequality for p = 0: the discrete case) Prove that

( n∏
k=1

(xk + yk)
)1/n

≥
( n∏

k=1

xk

)1/n

+
( n∏

k=1

yk

)1/n

for every x1, . . . , xn, y1, . . . , yn ≥ 0. When does equality occur?
[Hint : Use the following consequence of the AM–GM inequality:

( n∏
k=1

xk

)1/n

= inf
{α1x1 + · · · + αnxn

n

∣∣∣ α1, . . . , αn ≥ 0,

n∏
k=1

αk = 1
}

. ]

7. (Hanner’s inequalities) If f, g ∈ Lp(µ) and 2 ≤ p < ∞, then

‖f + g‖p
Lp + ‖f − g‖p

Lp ≤ (‖f‖Lp + ‖g‖Lp)p +
∣∣‖f‖Lp − ‖g‖Lp

∣∣p,
equivalently (by making the replacements f → f + g and g → f − g),

(‖f + g‖Lp + ‖f − g‖Lp)p +
∣∣‖f + g‖Lp −‖f − g‖Lp

∣∣p ≥ 2p(‖f‖p
Lp + ‖g‖p

Lp).

If 1 < p ≤ 2, the above inequalities are reversed.
[Hint : Apply Theorem 3.6.4 for f(x) = (|u(x)|p, |v(x)|p) and J(u, v) =
(u1/p + v1/p)p + |u1/p − v1/p|p. ]

8. Prove that all nonempty closed convex subsets in a space Lp(µ) (1 < p <
∞) are proximinal.
[Hint : Adapt the argument of Theorem 3.2.1, by using the inequalities of
Hanner as a substitute for parallelogram’s law. ]
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3.7 The Subdifferential

As already noted in Section 3.4, if f is a convex function (on an open convex
subset U of a normed linear space E), then f has a supporting hyperplane at
each point a ∈ U . This means the existence of a continuous linear functional
h on E (the support of f at a) such that

f(x) ≥ f(a) + h(x − a) for all x ∈ U. (3.9)

The set ∂f(a) of all such functionals h constitutes the subdifferential of f
at the point a.

By adapting the argument of Theorem 1.5.3 we can easily infer the follow-
ing general result:

Theorem 3.7.1 Suppose that U is an open convex set in a normed linear
space E. Then a function f : U → R is convex if and only if ∂f(a) 
= ∅ at all
a ∈ U .

When E is an Rn (or, more generally, a Hilbert space), all such h can be
uniquely represented as

h(x) = 〈x, z〉 for x ∈ E.

In this case the inequality (3.9) becomes

f(x) ≥ f(a) + 〈x − a, z〉 for all x ∈ U (3.10)

and the subdifferential ∂f(a) will be meant as the set of all such vectors z
(usually called subgradients).

The analogue of Lemma 1.5.1 needs the notion of a directional derivative.
Let f be a real-valued function defined on an open subset U of a Banach
space E. The one-sided directional derivatives of f at a ∈ U relative to v are
defined to be the limits

f ′
+(a ; v) = lim

t→0+

f(a + tv) − f(a)
t

and

f ′
−(a ; v) = lim

t→0−
f(a + tv) − f(a)

t
.

If both directional derivatives f ′
+(a ; v) and f ′

−(a ; v) exist and they are
equal, we shall call their common value the directional derivative of f at a,
relative to v (also denoted f ′(a ; v)). Notice that the one-sided directional
derivatives are positively homogeneous and subadditive (as a function of v),
see Exercise 1. Taking into account the formula, f ′

+(a ; v) = −f ′
−(a ; − v), we

infer that the directional derivatives (when they exist) are linear.
The directional derivatives relative to the vectors of the canonical basis of

Rn are nothing but the partial derivatives.
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If f is convex, then for each pair (a, v) ∈ U × E there exists an interval
(−ε, ε) on which the function t → f(a+ tv) is well-defined and convex. Taking
into account Theorem 1.3.3, it follows that every convex function admits one-
sided directional derivatives at any point and that

f ′
+(a ; v) ≥ f ′

−(a ; v).

As f ′
−(a ; v) = −f ′

+(a ; − v), the above discussion yields the following ana-
logue of Lemma 1.5.1:

Lemma 3.7.2 Suppose that f is a convex function defined on an open convex
subset U of Rn. Then z ∈ ∂f(a) if and only if f ′

+(a ; v) ≥ 〈z, v〉 for all v ∈ Rn.

In the finite dimensional case, ∂f(a) is a singleton precisely when f has a
directional derivative f ′(a ; v) relative to any v. In that case, ∂f(a) consists
of the mapping v → f ′(a ; v). See Theorem 3.8.2.

If f : Rn → R∪{∞} is a lower semicontinuous proper convex function, we
say that z ∈ Rn is a subgradient of f at a ∈ dom f if

f(x) ≥ f(a) + 〈x − a, z〉 for all x ∈ Rn. (3.11)

We call the set ∂f(a), of all subgradients of f at a, the subdifferential of
f (at the point a).

A derivative is a local property, while the subgradient definition (3.10)
describes a global property. An illustration of this idea is the following remark:
for any lower semicontinuous proper function f : Rn → R ∪ {∞}, the point a
is a global minimizer of f if and only if

0 ∈ ∂f(a).

The subdifferential calculus is presented in Exercises 3–5.
The subdifferential of f is defined as the set-valued map ∂f which asso-

ciates to each x ∈ Rn the subset ∂f(x) ⊂ Rn. Equivalently, ∂f may be seen as
a graph in Rn × Rn. Given two set-valued maps u, v : Rn → P(Rn), we define

• domain of u, dom u = {x | u(x) 
= ∅};
• graph of u, graphu = {(x, y) | y ∈ u(x)};
• inverse of u, u−1(y) = {x | y ∈ u(x)};
• u ⊂ v, if the graph of u is contained in the graph of v.

Definition 3.7.3 A set-valued map u : Rn → P(Rn) is said to be monotone
if it verifies

〈x1 − x2, y1 − y2〉 ≥ 0

for all x1, x2 ∈ Rn and all y1 ∈ u(x1), y2 ∈ u(x2). A monotone function u is
called maximal monotone when it is maximal with respect to inclusion in the
class of monotone functions, that is, if the following implication holds:

v ⊃ u and v monotone =⇒ v = u.
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According to Zorn’s lemma, for each monotone function u there exists a
maximal monotone function ũ which includes u.

The graph of any maximal monotone map u : Rn → P(Rn) is closed and
thus it verifies the following conditions of upper semicontinuity:

xk → x, yk → y, and yk ∈ u(xk) for all k ∈ N =⇒ y ∈ u(x).

We shall prove the existence of a one-to-one correspondence between
graphs of maximal monotone maps and graphs of nonexpansive functions.
Recall that a function h : Rn → Rn is called nonexpansive if its Lipschitz
constant verifies

Lip(h) = sup
x�=y

‖h(x) − h(y)‖
‖x − y‖ ≤ 1.

We shall need the following result concerning the extension of Lipschitz
functions:

Theorem 3.7.4 (M. D. Kirszbraun) Suppose that A is a subset of Rn

and f : A → Rm is a Lipschitz function. Then there exists a Lipschitz function
f̃ : Rn → Rm such that f̃ = f on A and Lip(f̃) = Lip(f). Moreover, we may
choose f̃ convex, when A and f are also convex.

Proof. When m = 1, we may choose

f̃(x) = inf
y∈A

{f(y) + Lip(f) · ‖x − y‖}.

In the general case, a direct application of this remark at the level of
components of f leads to an extension f̃ with Lip(f̃) ≤ √

m Lip(f). The
existence of an extension with the same Lipschitz constant is described in [77,
Section 2.10.43, p. 201]. ��

The aforementioned correspondence between graphs is realized by the Cay-
ley transform, that is, by the linear isometry

Φ: Rn × Rn → Rn × Rn, Φ(x, y) =
1√
2
(x + y, −x + y).

When n = 1, the Cayley transform represents a clockwise rotation of angle
π/4. The precise statement of this correspondence is as follows:

Theorem 3.7.5 (G. Minty [165]) Let u : Rn → P(Rn) be a maximal mo-
notone map. Then J = (I + u)−1 is defined on the whole Rn and Φ(graphu)
is the graph of a nonexpansive function v : Rn → Rn, given by

v(x) = x −
√

2 (I + u)−1(
√

2 x). (3.12)

Conversely, if v : Rn → Rn is a nonexpansive function, then the inverse
image of graph v under Φ is the graph of a maximal monotone function on
Rn.
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Here I denotes the identity map of Rn.

Proof. Let u be a monotone map and let v be the set-valued function whose
graph is Φ(graphu). We shall show that v is nonexpansive in its domain (and
thus single-valued). In fact, given x ∈ Rn, we have

y ∈ v(x) if and only if
x + y√

2
∈ u

(x − y√
2

)
(3.13)

and this yields y ∈ x − √
2 (I + u)−1(

√
2x) for all y ∈ v(x).

Now, if xk ∈ Rn and yk ∈ v(xk) for k = 1, 2, we infer from (3.13) that

〈(x1 − y1) − (x2 − y2), (x1 + y1) − (x2 + y2)〉 ≥ 0,

hence ‖y1 − y2‖2 ≤ ‖x1 − x2‖2. This shows that v is indeed nonexpansive.
The same argument shows that Φ−1 maps graphs of nonexpansive func-

tions into graphs of monotone functions.
Assuming that u is maximal monotone, we shall show that the domain

of v is Rn. In fact, if the contrary were true, we could apply Theorem 3.7.4
to extend v to a nonexpansive function ṽ defined on the whole Rn, and then
Φ−1(graph ṽ) provides a monotone extension of u, which contradicts the max-
imality of u. ��

Corollary 3.7.6 Let u : Rn → P(Rn) be a maximal monotone map. Then
J = (I + u)−1 is a nonexpansive map of Rn into itself.

Proof. It is easy to see that I + u (and thus (I + u)−1) is monotone. By
Theorem 3.7.5, the maximality of u yields the surjectivity of I + u, hence
dom(I + u)−1 = Rn. In order to prove that (I + u)−1 is also a nonexpansive
function, let us consider points xk ∈ Rn and yk ∈ u(xk) (for k = 1, 2). Then

‖x1 − x2‖2 ≤ 〈x1 − x2, x1 − x2 + y1 − y2〉
≤ ‖x1 − x2‖ · ‖x1 + y1 − (x2 + y2)‖,

(3.14)

which yields ‖x1−x2‖ ≤ ‖(x1+y1)−(x2+y2)‖. Particularly, if x1+y1 = x2+y2,
then x1 = x2, and this shows that (I + u)−1 is single-valued. Consequently,
(I +u)−1(xk +yk) = xk for k = 1, 2 and thus (3.14) yields the nonexpansivity
of (I + u)−1. ��

An important class of maximal monotone maps is provided by the subd-
ifferentials of convex functions.

Theorem 3.7.7 If f : Rn → R∪{∞} is a lower semicontinuous proper convex
function, then ∂f is a maximal monotone function such that

int dom f ⊂ dom ∂f ⊂ dom f.
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Proof. The fact that ∂f is monotone follows from (3.11). According to Theo-
rem 3.7.5, the maximality of ∂f is equivalent to the surjectivity of ∂f + I. To
prove that ∂f + I is onto, let us fix arbitrarily y ∈ Rn, and choose x ∈ Rn as
the unique minimizer of the coercive lower semicontinuous function

g : x → f(x) +
1
2

‖x‖2 − 〈x, y〉.

Then 0 ∈ ∂g(x), which yields y ∈ ∂(f(x) + ‖x‖2/2) = (∂f + I)(x). ��
According to W. Fenchel [78], the conjugate (or the Legendre transform)

of a function f : Rn → R is the function f∗ : Rn → R defined by

f∗(y) = sup
x∈Rn

[〈x, y〉 − f(x)].

The function f∗ is always lower semicontinuous and convex, and, if the ef-
fective domain of f is nonempty, then f∗ never takes the value −∞. Clearly,
f ≤ g yields f∗ ≥ g∗ (and thus f∗∗ ≤ g∗∗). Also, the following generalization
of Young’s inequality holds true: If f is a proper convex function then so is
f∗ and

f(x) + f∗(y) ≥ 〈x, y〉 for all x, y ∈ Rn.

Equality holds if and only if 〈x, y〉 ≥ f(x) + f∗(y), equivalently, when
f(z) ≥ f(x) + 〈y, z − x〉 for all z (that is, when y ∈ ∂f(x)).

By Young’s inequality we infer that

f(x) ≥ sup
y

[〈x, y〉 − f∗(y)] = f∗∗(x) for all x ∈ Rn.

All the material in Section 1.7 on conjugate functions can be adapted
mutatis mutandis to the context of several variables. See [213] for details. We
can prove that conjugacy induces a bijection between lower semicontinuous
proper convex functions.

Theorem 3.7.8 Suppose that f : Rn → R∪{∞} is a proper convex function.
Then the following assertions are equivalent:
(i) f is lower semicontinuous;
(ii) f = f∗∗;
(iii) f is the pointwise supremum of the family of all affine functions h such

that h ≤ f .

Proof. Clearly, (ii) ⇒ (i) and (ii) ⇒ (iii). Since any affine minorant h of f
verifies h = h∗∗ ≤ f∗∗ ≤ f , it follows that (iii) ⇒ (ii). The implication
(i) ⇒ (iii) can be proved easily by using the basic separation theorem. See
[38, pp. 76–77].

Alternatively, we can show that (i) ⇒ (ii). If x ∈ int(dom f), then ∂f(x) is
nonempty and for each y ∈ ∂f(x) we have 〈x, y〉 = f(x)+f∗(y), hence f(x) =
〈x, y〉 − f∗(y) ≤ f∗∗(x). In the general case, we may use an approximation
argument. See Section 3.8, Exercise 7. ��
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Remark 3.7.9 Conjugacy offers a convenient way to recognize properties
like coercivity and convexity. Here are the precise statements.
(i) (J.-J. Moreau and R. T. Rockafellar, see [38, p. 78] ) A lower semicon-

tinuous proper convex function has bounded level subsets if and only if
its conjugate is continuous at the origin.

(ii) (J.-B. Hiriart-Urruty [104] ) Suppose that f : Rn → R ∪ {∞} is lower
semicontinuous, not identically ∞ and limx→∞ f(x)/‖x‖ = ∞. If the
conjugate of f is differentiable, then f is necessarily convex.

Exercises

1. (Subadditivity of the directional derivatives) Suppose that f is a convex
function (on an open convex set U in a normed linear space E). For a ∈ U ,
u, v ∈ E and t > 0 small enough, show that

f(a + t(u + v)) − f(a)
t

≤ f(a + 2tu) − f(a)
2t

+
f(a + 2tv) − f(a)

2t

and conclude that f ′
+(a ; u + v) ≤ f ′

+(a ; u) + f ′
+(a ; v).

2. Compute ∂f(0) when f(x) = ‖x‖ is the Euclidean norm on Rn.

3. Suppose that f, f1, f2 are convex functions on Rn and a ∈ Rn.
(i) Infer from Lemma 3.7.2 that

f ′
+(a; v) = sup{〈z, v〉 | z ∈ ∂f(a)} for all v ∈ Rn.

(ii) Let λ1 and λ2 be two positive numbers. Prove that

∂(λ1f1 + λ2f2)(a) = λ1∂f1(a) + λ2∂f2(a).

Remark. In the general setting of proper convex functions, only the inclu-
sion ⊃ works. The equality needs additional assumptions, for example, the
existence of a common point in the convex sets ri(dom fk) for k = 1, . . . , m.
See [213, p. 223].

4. Let f be a proper convex function on Rn and let A be a linear transfor-
mation from Rm to Rn. Prove the formula

∂(f ◦ A)(x) ⊃ A∗∂f(Ax).

Remark. The equality needs additional assumptions. For example, it works
when the range of A contains a point of ri(dom fk). See [213, p. 225].

5. (Subdifferential of a max-function) Suppose that f1, . . . , fm are convex
functions on Rn and set f = max{f1, . . . , fm}. For a ∈ Rn set

J(a) = {j | fj(a) = f(a)}.

Prove that ∂f(a) = co{∂fj(a) | j ∈ J(a)}.
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6. Show, by examples, that the two inclusions in Theorem 3.7.7 may be strict,
and dom ∂f may not be convex.

7. (R. T. Rockafellar [213, pp. 238–239]) A cyclically monotone map is any
set-valued function u : Rn → P(Rn) such that

〈x2 − x1, y1〉 + 〈x3 − x2, y2〉 + · · · + 〈x1 − xm, ym〉 ≤ 0

for all finite families of points (xk, yk) ∈ Rn × Rn with yk ∈ u(xk),
k ∈ {1, . . . , m}. By the inequality (3.11), the subdifferential of any lower
semicontinuous proper convex function on Rn is cyclically monotone. Prove
the following integrability result: for any cyclically monotone map there
exists a lower semicontinuous proper convex function f such that u ⊂ ∂f .
[Hint : Consider the function

f(x) = sup{〈x − xm, ym〉 + 〈x − xm−1, ym−1〉 + · · · + 〈x − x0, y0〉},

where the supremum is taken over all finite sets of pairs (xk, yk) ∈ Rn ×Rn

such that yk ∈ u(xk) for all k. ]

8. Suppose that f is a convex function on Rn. Prove that f = f∗ if and only
if f(x) = ‖x‖2/2.

9. (Support function) The notion of a support function can be attached
to any nonempty convex set C in Rn, by defining it as the conjugate
of the indicator function of C. Prove that the support function of C =
{(x, y) ∈ R2 | x + y2/2 ≤ 0} is δ∗

C(x, y) = y2/2x if x > 0, δ∗
C(0, 0) = 0 and

δ∗
C(x, y) = ∞ otherwise. Infer that δ∗

C is a lower semicontinuous proper
convex function.

10. Calculate the support function for the set

C = {A ∈ Sym++(n, R) | trace(A) = 1}.

11. (Legendre transform) Let f : Rn → R be a strictly convex function of
class C1, such that f(x)/ ‖x‖ → ∞ as ‖x‖ → ∞. Prove that:
(i) The map x → ∇f(x) is a homeomorphism (from Rn onto itself);
(ii) f�(y) = 〈y, (∇f)−1

y〉 − f((∇f)−1
y) for all y ∈ Rn;

(iii) f� is a C1 function and ∇f� = (∇f)−1
.

[Hint : For every x, y ∈ Rn, x, y 
= 0, the function g(t) = f(x+ty) is strictly
convex on R and thus g′(1)−g′(0) = 〈∇f(x+y)−∇f(y), y〉 > 0. This shows
that ∇f is one-to-one. Let z ∈ Rn. Since g(x) = f(x) − 〈x, z〉 is coercive
and C1, it attains a global minimum at a point a for which ∇g(a) =
∇f(a)−z = 0. Hence ∇f is onto. The inequality f(0)+ 〈∇f(x), x〉 ≥ f(x)
yields ‖∇f(x)‖ → ∞ as ‖x‖ → ∞. Therefore the inverse image under ∇f
of every compact set is compact too, a fact which assures the continuity
of (∇f)−1. ]
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3.8 Differentiability of Convex Functions

The problem of differentiability of a convex function defined on an open subset
U of a Banach space E can be treated in the setting of Fréchet differentiability
or in the more general setting of Gâteaux differentiability.

The Fréchet differentiability (or, simply, the differentiability) of f at a
point a means the existence of a continuous linear functional df(a) : E → R

such that

lim
x→a

|f(x) − f(a) − df(a)(x − a)|
‖x − a‖ = 0.

Equivalently,

f(x) = f(a) + df(a)(x − a) + ω(x)‖x − a‖ for x ∈ U,

where ω : U → R is a function such that ω(a) = limx→a ω(x) = 0. When
E = Rn, the functional df(a) can be computed via the formula

df(a)(v) = 〈∇f(a), v〉,

where

∇f(a) =
n∑

k=1

∂f

∂xk
(a)ek

represents the gradient of f at a.
A function f : U → R is said to be Gâteaux differentiable at a point a

if the directional derivative f ′(a ; v) exists for every v ∈ E and defines a
continuous linear functional f ′(a) : v → f ′(a ; v) on E. It is straightforward
that differentiability implies Gâteaux differentiability and also the equality

f ′(a) = df(a).

For convex functions on open subsets of Rn, Gâteaux and Fréchet differ-
entiability agree:

Theorem 3.8.1 Suppose that a convex function f defined on an open convex
set U in Rn possesses all its partial derivatives ∂f

∂x1
, . . . , ∂f

∂xn
at some point

a ∈ U . Then f is differentiable at a.

Proof. Since U is open, there is a r > 0 such that Br(a) ⊂ U . We have to
prove that the function

g(u) = f(a + u) − f(a) −
n∑

k=1

∂f

∂xk
(a)uk

defined for all u = (u1, . . . , un) with ‖u‖ < r, verifies lim‖u‖→0 g(u)/‖u‖ = 0.
Clearly, the function g is convex. Then
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0 = g(0) = g
(u + (−u)

2

)
≤ 1

2
(g(u) + g(−u)),

which yields g(u) ≥ −g(−u). On the other hand, for each u with n‖u‖ < r,
we have

g(u) = g
( 1

n

n∑
k=1

nukek

)
≤ 1

n

n∑
k=1

g(nukek)

=
∑

{k|uk �=0}
uk

g(nukek)
nuk

≤ ‖u‖
∑

{k|uk �=0}

∣∣∣g(nukek)
nuk

∣∣∣.
Similarly,

g(−u) ≤ ‖u‖
∑

{k|uk �=0}

∣∣∣g(−nukek)
nuk

∣∣∣.
Then

−‖u‖
∑

{k|uk �=0}

∣∣∣g(−nukek)
nuk

∣∣∣ ≤ −g(−u) ≤ g(u) ≤ ‖u‖
∑

{k|uk �=0}

∣∣∣g(nukek)
nuk

∣∣∣
and it remains to remark that g(nukek)/(nuk) → 0 as uk → 0. ��

The condition of differentiability is equivalent to the uniqueness of the
support function:

Theorem 3.8.2 Let f be a convex function defined on an open convex set U
in Rn. Then f is differentiable at a if and only if f has a unique support at a.

Proof. Suppose that f ′(a ; v) exists for every v. If h : E → R is a support of f
at a, then

f(a + εv) − f(a) ≥ εh(v)

for sufficiently small ε > 0, which yields f ′(a ; v) ≥ h(v). Replacing v by −v,
and taking into account that the directional derivative is linear in v, we obtain

−f ′(a ; v) = f ′(a ; − v) ≥ −h(v)

from which we conclude that h(v) = f ′(a ; v).
Suppose now that f has a unique support h at a and choose a number λ

such that
f ′

−(a ; e1) ≤ λ ≤ f ′
+(a ; e1).

Then the line L in Rn+1 given by t → (a+te1, f(a)+λt) meets the epigraph
of f at (a, f(a)). Since f(a + te1) ≥ f(a) + λt as long as a + te1 ∈ U , the
line L does not meet the interior of the epigraph of f . By the Hahn–Banach
theorem (see Appendix A) we infer the existence of a supporting hyperplane
to the epigraph of f at (a, f(a)) which contains L. The uniqueness of the
support of f at a shows that this hyperplane must be the graph of h. Since
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h(a + te1) = f(a) + λt = h(a) + λt

for all t ∈ R, it follows that only one λ can be found satisfying the above
choice, and thus f ′

−(a ; e1) = f ′
+(a ; e1). In other words we established the

existence of ∂f/∂x1 at a. Similarly, one can prove the existence of all partial
derivatives at a so, by Theorem 3.8.1, the function f is differentiable at a. ��

In the context of several variables, the set of points where a convex function
is not differentiable can be uncountable, though still negligible:

Theorem 3.8.3 Suppose that f is a convex function on an open subset U of
Rn. Then f is differentiable almost everywhere in U .

Proof. Consider first the case when U is also bounded. According to Theo-
rem 3.8.1 we must show that each of the sets

Ek =
{

x ∈ U
∣∣∣ ∂f

∂xk
(x) does not exist

}
is Lebesgue negligible. The measurability of Ek is a consequence of the fact
that the limit of a pointwise converging sequence of measurable functions is
measurable too. In fact, the formula

f ′
+(x, ek) = lim

j→∞
f(x + ek/j) − f(x)

1/j

motivates the measurability of one-sided directional derivative f ′
+(x, ek) and

a similar argument applies for f ′
−(x, ek). Consequently the set

Ek = {x ∈ U | f ′
+(x, ek) − f ′

−(x, ek) > 0}
is measurable. Being bounded, it is also integrable. By Fubini’s theorem,

m(Ek) =
∫

Rn

χEk
dx

=
∫

R

· · ·
(∫

R

χEk
dxi

)
dx1 · · · dxi−1 dxi+1 · · · dxn

and the interior integral is zero since f is convex as a function of xi (and thus
differentiable except at an enumerable set of points).

If U is arbitrary, the argument above shows that all the sets Ek ∩ Bn(0)
are negligible. Or, Ek =

⋃∞
n=1(Ek ∩Bn(0)) and a countable union of negligible

sets is negligible too. ��

The function f(x, y) = sup{x, 0} is convex on R2 and nondifferentiable at
the points of y-axis (which constitutes an uncountable set).

The coincidence of Gâteaux and Fréchet differentiability is no longer true
in the context of infinite dimensional spaces.
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Theorem 3.8.4 Let E be a Banach space such that for each continuous con-
vex function f : E → R, every point of Gâteaux differentiability is also a point
of Fréchet differentiability. Then E is finite dimensional.

The proof we present here is due to J. M. Borwein and A. S. Lewis [38],
and depends on a deep result in Banach space theory:

Theorem 3.8.5 (The Josephson–Nissenzweig theorem[117], [190]) If
E is a Banach space such that

x′
n → 0 in the weak-star topology of E′ implies ‖x′

n‖ → 0,

then E is finite dimensional.

Recall that the weak-star topology of E′ is the topology of pointwise con-
vergence.

Proof of Theorem 3.8.4. Consider a sequence (x′
n)n of norm-1 functionals in

E′ and a sequence (αn)n of real numbers such that αn ↓ 0. Then the function

f(x) = sup
n

[〈x, x′
n〉 − αn]

is convex and continuous and, moreover,

f is Gâteaux differentiable at 0 ⇐⇒ x′
n(x) → 0 for all x ∈ E

f is Fréchet differentiable at 0 ⇐⇒ ‖x′
n‖ → 0.

The proof ends by applying the Josephson–Nissenzweig theorem. ��

Convolution by smooth functions provides us with a powerful technique
for approximating locally integrable functions by C∞ functions. Particularly,
this applies to the convex functions.

Let ϕ be a mollifier , that is, a nonnegative function in C∞
c (Rn) such that∫

Rn

ϕ dx = 1 and suppϕ ⊂ B1(0).

The standard example of such a function is given by

ϕ(x) =

{
C exp(−1/(1 − ‖x‖2)) if ‖x‖ < 1,
0 if ‖x‖ ≥ 1,

where C is chosen such that
∫

Rn ϕ dx = 1. Each mollifier ϕ gives rise to an
one-parameter family of nonnegative functions

ϕε(x) =
1
εn

ϕ
(x

ε

)
, ε > 0
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with similar properties:

ϕε ∈ C∞
c (Rn), suppϕε ⊂ Bε(0) and

∫
Rn

ϕε dx = 1.

The following lemma is standard and available in many places. For exam-
ple, see [74, pp. 122–125] or [252, pp. 22–23].

Lemma 3.8.6 Suppose that f ∈ L1
loc(R

n) and (ϕε)ε>0 is the one-parameter
family of functions associated to a mollifier ϕ. Then:
(i) the functions

fε = ϕε ∗ f

belong to C∞(Rn) and

Dαfε = Dαϕε ∗ f

for every multi-index α;
(ii) fε(x) → f(x) whenever x is a point of continuity of f . If f is continuous

on an open subset U , then fε converges uniformly to f on each compact
subset of U ;

(iii) if f ∈ Lp(Rn) (for some p ∈ [1,∞)), then fε ∈ Lp(Rn), ‖fε‖Lp ≤ ‖f‖Lp

and limε→0 ‖fε − f‖Lp = 0;
(iv) if f is a convex function on an open convex subset U of Rn, then fε is

convex too.

An application of Lemma 3.8.6 is given in Exercise 5.
A nonlinear analogue of mollification is offered by the infimal convolution,

which for two proper convex functions f, g : E → R ∪ {∞} is defined by the
formula

(f � g)(x) = inf{f(x − y) + g(y) | y ∈ E};

the value −∞ is allowed. If (f � g)(x) > −∞ for all x, then f � g is a proper
convex function. For example, this happens when both functions f and g are
nonnegative (or, more generally, when there exists an affine function h : E → R

such that f ≥ h and g ≥ h).
By computing the infimal convolution of the norm function and the indi-

cator function of a convex set C, we get

(‖ · ‖ � δC)(x) = inf
y∈C

‖x − y‖ = dC(x),

a fact which implies the convexity of the distance function.
A standard way to approximate from below a lower semicontinuous proper

convex function f : Rn → R ∪ {∞} is the Moreau–Yosida approximation:

fε(x) =
(
f � 1

2ε
‖ · ‖2

)
(x)

= inf
y∈Rn

{
f(y) +

1
2ε

‖x − y‖2
}
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for x ∈ Rn and ε > 0. The functions fε are well-defined and finite for all x
because the function y → f(y) + 1

2ε‖x − y‖2 is lower semicontinuous and also
coercive (due to the existence of a support for f).

Lemma 3.8.7 The Moreau–Yosida approximates fε are differentiable convex
functions on Rn and fε → f as ε → 0. Moreover, ∂fε = (εI + (∂f)−1)−1 as
set-valued maps.

The first statement is straightforward. The proof of the second one may
be found in [4], [14] and [43].

As J. M. Lasry and P.-L. Lions [139] observed, the infimal convolution
provides an efficient regularization procedure for (even degenerate) elliptic
equations. This explains the Lax formula,

u(x, t) = sup
y∈Rn

{
v(y) − 1

2t
‖x − y‖2

}
,

for the solution of the Hamilton-Jacobi equation,

∂u

∂t
− 1

2
‖∇u‖2 = 0 for x ∈ Rn, t > 0

u|t=0 = v on Rn.

Exercises

1. Prove that the norm function on C([0, 1]),

‖x‖ = sup{|x(t)| | t ∈ [0, 1]},

is not differentiable at any point, but it is Gâteaux differentiable at those
x of the unit sphere for which |x(t0)| = 1 is attained for only one value t0.

2. Prove that the norm function of a Hilbert space is differentiable at any
point x 
= 0.

3. Let C be a nonempty closed subset of Rn and let

dC : Rn → R, dC(x) = inf{‖x − y‖ | y ∈ C}

be the distance function.
(i) Prove that ϕ = d2

C verifies the relation

ϕ(x + y) = ϕ(x) + ϕ′(x; y) + ε(y)‖y‖,

where ϕ′(x; y) = min{〈2y, x − z〉 | z ∈ PC(x)} and limy→0 ε(y) =
ε(0) = 0 (and thus ϕ is Gâteaux differentiable everywhere).
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(ii) Suppose that C is also convex. Infer the formula

∇ d2
C

2
(x) = x − PC(x) for all x ∈ Rn.

(iii) Prove that dC is differentiable at a point x ∈ Ω = Rn\C if and only
if PC(x) is a singleton.

(iv) Consider the function fC(x) = ‖x‖2/2 if x ∈ C, and fC(x) = ∞
if x ∈ Rn\C (where C is a nonempty closed subset of Rn). Notice
that f∗

C(y) = [‖y‖2 − d2
C(y)]/2 and infer from Remark 3.7.9 (ii) the

conclusion of Bunt’s theorem (Theorem 3.2.2 above).

4. Infer from the Josephson–Nissenzweig theorem that any Banach space E
for which all continuous convex functions on E are bounded on bounded
subsets is finite dimensional.
[Hint : Consider a sequence (x′

n)n of norm-1 functionals in E′ and the
convex function f(x) =

∑
n n(|x′

n(x)| − 1/2)+. Then notice that f is finite
and continuous if and only if (x′

n)n is weak star convergent to 0. ]

5. Suppose that f is a convex function defined on an open ball Br(a) in Rn.
Prove that there exists a constant C > 0, depending only on n, such that

sup
Br/2(a)

|f | ≤ C

m(Br(a))

∫
Br(a)

|f(y)| dy

and
ess sup
Br/2(a)

|Df | ≤ C

r · m(Br(a))

∫
Br(a)

|f(y)| dy.

6. (Two basic properties of infimal convolutions) Prove that:
(i) (f � g)∗ = f∗ + g∗;
(ii) (f + g)∗ = f∗ � g∗ if the effective domain of f contains a point of

continuity of g.

7. Use the Moreau-Yosida approximates to complete the proof of the impli-
cation (i) ⇒ (ii) in Theorem 3.7.8.
[Hint : In fact, f∗∗(x) ≥ lim infε→0 f∗∗

ε (x) = lim infε→0 fε(x) = f(x). ]

3.9 Recognizing Convex Functions

We start with the following variant of Theorem 3.7.1:

Theorem 3.9.1 Suppose that f is defined on an open convex set U in a
Banach space. If f is convex on U and Gâteaux differentiable at a ∈ U , then

f(x) ≥ f(a) + f ′(a ; x − a) for every x ∈ U. (3.15)

If f is Gâteaux differentiable throughout U , then f is convex if and only
if (3.15) holds for all a ∈ U . Moreover, f is strictly convex if and only if the
inequality is strict for x 
= a.



142 3 Convex Functions on a Normed Linear Space

On intervals, a differentiable function is convex if and only if its derivative
is nondecreasing. The higher dimensional analogue of this fact is as follows:

Theorem 3.9.2 Suppose that f is Gâteaux differentiable on the open convex
set U in a Banach space. Then f is convex if and only if

f ′(x ; x − y) ≥ f ′(y ; x − y) (3.16)

for all x, y ∈ U .
The variant of this result for strictly convex functions asks the above in-

equality to be strict for x 
= y in U .

Proof. If f is convex, then for x and y in U and 0 < t < 1 we have

f(y + t(x − y)) − f(y)
t

≤ f(x) − f(y)

so by letting t → 0+ we obtain f ′(y ; x − y) ≤ f(x) − f(y). Interchanging x
and y, we also have f ′(x ; y − x) ≤ f(y) − f(x). Adding, we arrive at (3.16).

Suppose now that (3.16) holds. Let x, y ∈ U and consider the function
g(λ) = f((1 − λ)x + λy), λ ∈ [0, 1]. One can easily verify that

λ1 ≤ λ2 implies g′(λ1) ≤ g′(λ2)

which shows that g is convex. Then

f((1 − λ)x + λy) = g(λ) = g(λ · 1 + (1 − λ) · 0)
≤ λg(1) + (1 − λ)g(0) = (1 − λ)f(x) + λf(y).

��

When the ambient space is Rn, then the inequality (3.16) becomes

〈∇f(x) − ∇f(y), x − y〉 ≥ 0. (3.17)

In this context, a function F : U → Rn is said to be nondecreasing (respec-
tively increasing) if it is the gradient of a convex (strictly convex) function.

Higher differentiability leads to other important criteria of convexity.
Suppose that f : U → R is Gâteaux differentiable. We say that f is twice

Gâteaux differentiable at a ∈ U if the limit

f ′′(a ; v, w) = lim
λ→0

f ′(a + λw, v) − f ′(a ; v)
λ

exists for all v, w in the ambient Banach space E. This gives rise to a map
f ′′(a) : (v, w) �→ f ′′(a ; v, w), from E × E into R, called the second Gâteaux
differential of f at a. One can prove easily that this function is homogeneous
in v and w, that is,

f ′′(a ; λv, µw) = λµf ′′(a ; v, w)

for all λ, µ ∈ R. Another immediate fact is as follows:
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Lemma 3.9.3 If f : U → R is twice differentiable, then it is also twice
Gâteaux differentiable and

d2f(a)(v, w) = f ′′(a ; v, w) (3.18)

for all a ∈ U and v, w ∈ E.

Our next goal is to establish the analogue of Taylor’s formula in the context
of Gâteaux differentiability and to infer from it an important characterization
of convexity under the presence of Gâteaux differentiability.

Theorem 3.9.4 (Taylor’s formula) If f is twice Gâteaux differentiable at
all points of the segment [a, a + v] relative to the pair (v, v), then there exists
a θ ∈ (0, 1) such that

f(a + v) = f(a) + f ′(a ; v) +
1
2
f ′′(a + θv ; v, v). (3.19)

Proof. Consider the function g(t) = f(a + tv), for t ∈ [0, 1]. Its derivative is

g′(t) = lim
ε→0

g(t + ε) − g(t)
ε

= lim
ε→0

f(a + tv + εv) − f(a + tv)
ε

= f ′(a + tv ; v)

and similarly, g′′(t) = f ′′(a + tv ; v, v). Then by the usual Taylor’s formula we
get a θ ∈ (0, 1) such that

g(1) = g(0) + g′(0) +
1
2

g′′(θ),

which in turn yields the formula (3.19). ��

Corollary 3.9.5 Suppose that f is twice Gâteaux differentiable on the open
convex set U in a Banach space E and

f ′′(a ; v, v) ≥ 0 for all a ∈ U, v ∈ E. (3.20)

Then f is convex on U . If the above inequality is strict for v 
= 0, then f
is strictly convex.

Proof. In fact, by Taylor’s formula we have

f(x) = f(a) + f ′(a ; x − a) +
1
2

f ′′(a + θ(x − a) ; x − a, x − a)

for some θ ∈ (0, 1), so by our hypothesis,

f(x) ≥ f(a) + f ′(a ; x − a)
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and the conclusion follows from Theorem 3.9.1. ��

When E = Rn and f ′′(a; v, w) is bilinear, it is easy to check the equality

f ′′(a ; v, w) = 〈(Hessa f)v, w〉,
where

Hessa f =
( ∂2f

∂xi∂xj
(a)

)n

i,j=1

is the Hessian matrix of f at a.
Corollary 3.9.5 shows that the positivity (strict positivity) of the Hessian

matrix at all points of U guarantees the convexity (strict convexity) of f .
If A ∈ Mn(R) is a strictly positive matrix and u ∈ Rn, then the function

f(x) =
1
2
〈Ax, x〉 − 〈x, u〉,

satisfies

f ′(x ; v) = 〈v, Ax〉 − 〈v, u〉,
f ′′(x ; v, w) = 〈Av, w〉 = 〈v, Aw〉,

so by Corollary 3.9.5 it follows that f is strictly convex. By Theorem 3.4.5, f
admits a global minimum a. According to Fermat’s theorem (applied to the
function t → f(a + tv)), we infer that f ′(a ; v) = 0 for all v. This shows that
a is the solution of the equation

Ax = u.

The above idea, to solve equations by finding the minimum of suitable
functionals, is very useful in partial differential equations. See Appendix C.

Exercises

1. Consider the open set A = {(x, y, z) ∈ R3 | x, y > 0, xy > z2}. Prove that
A is convex and the function

f : A → R, f(x, y, z) =
1

xy − z2

is strictly convex. Then, infer the inequality

8
(x1 + x2)(y1 + y2) − (z1 + z2)2

<
1

x1y1 − z2
1

+
1

x2y2 − z2
2

which works for every pair of distinct points (x1, y1, z1) and (x2, y2, z2) of
the set A.
[Hint : Compute the Hessian of f . ]



3.10 The Convex Programming Problem 145

2. (Minkowski’s inequality for p = 0) Use calculus to prove that the function

f : [0,∞)n → R, f(x1, . . . , xn) = n
√

x1 · · ·xn

is concave and infer the inequality

n
√

(x1 + y1) · · · (xn + yn) ≥ n
√

x1 · · ·xn + n
√

y1 · · · yn

which works for all x1, . . . , xn, y1, . . . , yn ≥ 0.
[Hint : Notice that

∑n
i,j=1

∂2F
∂xi∂xj

(x1, . . . , xn)hihj ≥ 0 for all h1, . . . , hn

in R. ]

3. Prove that the function f(x, y) = y2/(1 − |x|) is convex and bounded on
the open unit disc D1(0) = {(x, y) ∈ R2 | x2 + y2 < 1}.
[Hint : The function f can be represented as the maximum of two convex
functions, y2/(1 − x) and y2/(1 + x). ]

4. Suppose that f is a convex function on an open convex set in Rn. If f is
twice continuously differentiable, prove that its Hessian matrix is positive
at each point of U .
[Hint : See the formula

〈∇f(x) − ∇f(y), x − y〉 =
∫ 1

0
〈Hf ((1 − t)x + ty)(x − y), x − y〉 dt. ]

3.10 The Convex Programming Problem

The aim of this section is to discuss the problem of minimizing a convex
function over a convex set defined by a system of convex inequalities. The
main result is the equivalence of this problem to the so-called saddle-point
problem. Assuming the differentiability of the functions concerned, the solu-
tion of the saddle-point problem is characterized by the Karush–Kuhn–Tucker
conditions, which will be made explicit in Theorem 3.10.2 below.

In what follows f, g1, . . . , gm will denote convex functions on Rn. The con-
vex programming problem for these data is to minimize f(x) over the convex
set

X = {x ∈ Rn | x ≥ 0, g1(x) ≤ 0, . . . , gm(x) ≤ 0}.

In optimization theory f represents a cost, which is minimized over the
feasible set X.

A particular case is the standard linear programming problem. In this
problem we seek to maximize a linear function

L(x) = −〈x, c〉 = −
n∑

k=1

ckxk

subject to the constraints
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x ≥ 0 and Ax ≤ b.

Here A ∈ Mn(R) and b, c ∈ Rn. Notice that this problem can be easily con-
verted into a minimization problem, by replacing L by −L. According to
Theorem 3.4.7, L attains its global maximum at an extreme point of the con-
vex set {x | x ≥ 0, Ax ≤ b}. This point can be found by the simplex algorithm
of G. B. Dantzig. See [212] for details.

Linear programming has many applications in industry and banking, which
explains the great interest in faster algorithms. Let us mention here that in
1979, L. V. Khachian invented an algorithm having a polynomial computing
time of order ≤ Kn6, where K is a constant.

Linear programming is also able to solve theoretical problems. The follow-
ing example is due to E. Stiefel: Consider a matrix A = (aij)i,j ∈ Mm×n(R)
and a vector b ∈ Rm such that the system Ax = b has no solution. Typically
this occurs when we have more equations than unknowns. The error in the
equation of rank i is a function of the form

ei(x) =
n∑

j=1

aijxj − bi.

The problem of Chebyshev approximation is to minimize the maximum ab-
solute error

X = max{|ei(x)| | i = 1, . . . , m}.

Letting X be a new unknown, this problem can be read as

minimize X

subject to the inequalities

−X ≤
n∑

j=1

aijxj − bi ≤ X (i = 1, . . . , m),

which can be easily converted into a standard linear programming problem.
We pass now to the convex programming problem. As in the case of any

constrained extremal problem, one can apply the method of Lagrange mul-
tipliers in order to eliminate the constraints (at the cost of increasing the
number of variables). The Lagrangian function associated with the convex
programming problem is the function

F (x, y) = f(x) + y1g1(x) + · · · + ymgm(x)

of n + m real variables x1, . . . , xn, y1, . . . , ym (the components of x and re-
spectively of y). A saddle point of F is any point (x0, y0) of Rn × Rm such
that

x0 ≥ 0, y0 ≥ 0
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and
F (x0, y) ≤ F (x0, y0) ≤ F (x, y0)

for all x ≥ 0, y ≥ 0. The saddle points of F will provide solutions to the
convex programming problem that generates F :

Theorem 3.10.1 Let (x0, y0) be a saddle point of the Lagrangian function
F . Then x0 is a solution to the convex programming problem and

f(x0) = F (x0, y0).

Proof. The condition F (x0, y) ≤ F (x0, y0) yields

y1g1(x0) + · · · + ymgm(x0) ≤ y0
1g1(x0) + · · · + y0

mgm(x0).

By keeping y2, . . . , ym fixed and taking the limit as y1 → ∞ we infer that
g1(x0) ≤ 0. Similarly, g2(x0) ≤ 0, . . . , gm(x0) ≤ 0. Thus x0 belongs to the
feasible set X.

From F (x0, 0) ≤ F (x0, y0) and the definition of X we infer

0 ≤ y0
1g1(x0) + · · · + y0

mgm(x0) ≤ 0,

that is, y0
1g1(x0) + · · · + y0

mgm(x0) = 0. Then f(x0) = F (x0, y0). Since
F (x0, y0) ≤ F (x, y0) for all x ≥ 0, we have

f(x0) ≤ f(x) + y0
1g1(x) + · · · + y0

mgm(x) ≤ f(x)

for all x ≥ 0, which shows that x0 is a solution to the convex programming
problem. ��

Theorem 3.10.2 (The Karush–Kuhn–Tucker conditions) Suppose that
the convex functions f, g1, . . . , gm are differentiable on Rn. Then (x0, y0) is a
saddle point of the Lagrangian function F if and only if

x0 ≥ 0, (3.21)
∂F

∂xk
(x0, y0) ≥ 0, for k = 1, . . . , n, (3.22)

∂F

∂xk
(x0, y0) = 0 whenever x0

k > 0, (3.23)

and

y0 ≥ 0, (3.24)
∂F

∂yj
(x0, y0) = gj(x0) ≤ 0, for j = 1, . . . , m, (3.25)

∂F

∂yj
(x0, y0) = 0 whenever y0

j > 0. (3.26)
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Proof. If (x0, y0) is a saddle point of F , then (3.21) and (3.24) are clearly
fulfilled. Also,

F (x0 + tek, y0) ≥ F (x0, y0) for all t ≥ −x0
k.

If x0
k = 0, then

∂F

∂xk
(x0, y0) = lim

t→0+

F (x0 + tek, y0) − F (x0, y0)
t

≥ 0.

If x0
k > 0, then ∂F

∂xk
(x0, y0) = 0 by Fermat’s theorem. In a similar way one

can prove (3.25) and (3.26).
Suppose now that the conditions (3.21)–(3.26) are satisfied. As F (x, y0) is

a differentiable convex function of x (being a linear combination, with positive
coefficients, of such functions), it verifies the assumptions of Theorem 3.9.1.
Taking into account the conditions (3.21)–(3.23), we are led to

F (x, y0) ≥ F (x0, y0) + 〈x − x0,∇xF (x0, y0)〉

= F (x0, y0) +
n∑

k=1

(xk − x0
k)

∂F

∂xk
(x0, y0)

= F (x0, y0) +
n∑

k=1

xk
∂F

∂xk
(x0, y0) ≥ F (x0, y0)

for all x ≥ 0. On the other hand, by (3.25)–(3.26), for y ≥ 0, we have

F (x0, y) = F (x0, y0) +
m∑

j=1

(yj − y0
j ) gj(x0)

= F (x0, y0) +
m∑

j=1

yjgj(x0)

≤ F (x0, y0).

Consequently, (x0, y0) is a saddle point of F . ��

We shall illustrate Theorem 3.10.2 by the following example:

minimize (x1 − 2)2 + (x2 + 1)2 subject to 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 2.

Here f(x1, x2) = (x1 −2)2 +(x2 +1)2, g1(x1, x2) = x1 −1 and g2(x1, x2) =
x2 − 2. The Lagrangian function attached to this problem is

F (x1, x2, y1, y2) = (x1 − 2)2 + (x2 + 1)2 + y1(x1 − 1) + y2(x2 − 2)

and the Karush–Kuhn–Tucker conditions give us the equations
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x1(2x1 − 4 + y1) = 0,
x2(2x2 + 2 + y2) = 0,
y1(x1 − 1) = 0,

y2(x2 − 2) = 0,

(3.27)

and the inequalities ⎧⎪⎪⎪⎨⎪⎪⎪⎩
2x1 − 4 + y1 ≥ 0,

2x2 + 2 + y2 ≥ 0,

0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 2,

y1, y2 ≥ 0.

(3.28)

The system of equations (3.27) admits 9 solutions: (1, 0, 2, 0), (1, 2, 2,−6),
(1,−1, 2, 0), (0, 0, 0, 0), (2, 0, 0, 0), (0,−1, 0, 0), (2,−1, 0, 0), (0, 0, 0,−1) and
(2, 0, 0,−1), of which only (1, 0, 2, 0) verifies also the inequalities (3.28). Con-
sequently,

inf
0≤x1≤1
0≤x2≤2

f(x1, x2) = f(1, 0) = 2.

We next indicate a fairly general situation when the convex programming
problem is equivalent to the saddle-point problem. For this we shall need the
following technical result, known as Farkas’ lemma:

Lemma 3.10.3 Let f1, . . . , fm be convex functions defined on a nonempty
convex set Y in Rn. Then either there exists y in Y such that f1(y) <
0, . . . , fm(y) < 0, or there exist nonnegative numbers a1, . . . , am, not all zero,
such that

a1f1(y) + · · · + amfm(y) ≥ 0 for all y ∈ Y.

Proof. Assume that the first alternative does not work and consider the set

C =
{

(t1, . . . , tm) ∈ Rm | there is y ∈ Y with fk(y) < tk

for all k = 1, . . . , m
}

.

Then C is an open convex set that does not contain the origin of Rm.
According to Theorem 3.3.1, C and the origin can be separated by a closed
hyperplane, that is, there exist scalars a1, . . . , am not all zero, such that for
all y ∈ Y and all ε1, . . . , εm > 0,

a1(f1(y) + ε1) + · · · + am(fm(y) + εm) ≥ 0. (3.29)

Keeping ε2, . . . , εm fixed and letting ε1 → ∞, we infer that a1 ≥ 0. Simi-
larly, a2 ≥ 0, . . . , am ≥ 0. Letting ε1 → 0, . . . , εm → 0 in (3.29) we conclude
that a1f1(y) + · · · + amfm(y) ≥ 0 for all y in Y . ��
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Theorem 3.10.4 (Slater’s condition) Suppose that x0 is a solution of the
convex programming problem. If there exists x∗ ≥ 0 such that g1(x∗) <
0, . . . , gm(x∗) < 0, then one can find a y0 in Rm for which (x0, y0) is a saddle
point of the associated Lagrangian function F .

Proof. By Lemma 3.10.3, applied to the functions g1, . . . , gm, f − f(x0) and
the set Y = Rn

+, we can find a1, . . . , am, a0 ≥ 0, not all zero, such that

a1g1(x) + · · · + amgm(x) + a0(f(x) − f(x0)) ≥ 0 (3.30)

for all x ≥ 0. A moment’s reflection shows that a0 > 0. Put y0
j = aj/a0 and

y0 = (y0
1 , . . . , y0

m). By (3.30) we infer that f(x0) ≤ f(x) +
∑m

j=1 y0
j gj(x) =

F (x, y0) for all x ≥ 0. Particularly, for x = x0, this yields

f(x0) ≤ f(x0) +
m∑

j=1

y0
j gj(x0) ≤ f(x0)

that is,
∑m

j=1 y0
j gj(x0) = 0, whence F (x0, y0) = f(x0) ≤ F (x, y0) for all x ≥ 0.

On the other hand, for y ≥ 0 we have

F (x0, y0) = f(x0) ≥ f(x0) +
m∑

j=1

yjgj(x0) = F (x0, y),

so that (x0, y0) is a saddle point. ��
We end this section with a nice geometric application of convex pro-

gramming (more precisely, of quadratic programming), which was noted by
J. Franklin, in his beautiful introduction to mathematical methods of eco-
nomics [82]. It is about a problem of J. Sylvester, requiring the least circle
which contains a given set of points in the plane.

Suppose the given points are a1, . . . , am. They lie inside the circle of center
x and radius r if

‖ak − x‖2 ≤ r2 for k = 1, . . . , m. (3.31)

We want to find x and r so as to minimize r. Letting

x0 =
1
2
(r2 − ‖x‖2),

we can replace the quadratic constraints (3.31) by linear ones,

x0 + 〈ak, x〉 ≥ bk for k = 1, . . . , m.

Here bk = ‖ak‖2/2. In this way, Sylvester’s problem becomes a problem of
quadratic programming,

minimize 2x0 + x2
1 + x2

2,

subject to the m linear inequalities

x0 + ak1x1 + ak2x2 ≥ bk (k = 1, . . . , m).

A numerical algorithm to solve problems of this kind is described in [51].
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Exercises

1. Minimize x2 + y2 − 6x − 4y, subject to x ≥ 0, y ≥ 0 and x2 + y2 ≤ 1.

2. Infer from Farkas’ lemma the fundamental theorem of Markov processes:
Suppose that (pij)i,j ∈ Mn(R) is a matrix with nonnegative coefficients
and

n∑
i=1

pij = 1 for all j = 1, . . . , n.

Then there exists a vector x ∈ Rn
+ such that

n∑
j=1

xj = 1 and
n∑

j=1

pijxj = xi for all i = 1, . . . , n.

3. (A variant of Farkas’ lemma) The following result is an analogue of the
Fredholm alternative for linear inequalities. Let A be an m×n real matrix,
and let b be a vector of Rm. Prove that one, and only one, of the following
two alternatives is true:
(i) the system Ax = b has a solution x ∈ Rn

+;
(ii) there exists a vector y ∈ Rn such that A�y ∈ Rm

+ and 〈y, b〉 < 0.

4. Suppose that C is a convex subset of Rn and a ∈ C. The tangent cone to
C at a is the closed cone TC(a) = R+(C − a), and the normal cone to C
at a is the closed cone NC(a) = {v ∈ Rn | 〈v, x − a〉 ≤ 0 for all x ∈ C}.
(i) Compute TC(a) and NC(a) when C is the unit disc.
(ii) Prove that the polar set of TC(a) is NC(a) (and vice versa).

5. Let f : Rn → R be a convex function and C = {x | f(x) ≤ 0}. Assume
there exists a point x such that f(x) < 0. Prove that

TC(a) = {v | f ′(a; v) ≤ 0} and NC(a) = R+∂f(a)

for all a ∈ Rn such that f(a) = 0.

6. (Self-dual cones) Suppose that C is one of the following cones: Rn
+,

Sym+(n, R) and {x ∈ Rn
+ | x2

1 ≥ x2
2 + · · · + x2

n}. Prove that NC(0) = −C.

7. Suppose that C is a convex subset of Rn and that f : Rn → R is a convex
function. Prove that the following assertions are equivalent for a ∈ C:
(i) a is a minimizer for f |C ;
(ii) f ′(x; v) ≥ 0 for all v ∈ TC(a);
(iii) 0 ∈ ∂f(a) + NC(a).

8. (The Karush–Kuhn–Tucker conditions) Suppose that f, g1, . . . , gm are
convex functions on Rn and that there is a point x ∈ Rn such that
gi(x) < 0 for i = 1, . . . , m. Then a ∈ Rn is a solution of the con-
vex programming problem for these data if and only if there is a vector
w = (w1, . . . , wm) ∈ Rm

+ such that



152 3 Convex Functions on a Normed Linear Space

0 ∈ ∂f(a) + w1∂g1(a) + · · · + wm∂gm(a)
gi(a) ≤ 0, wigi(a) = 0 for i = 1, . . . , m.

3.11 Fine Properties of Differentiability

The aim of this section is to prove two remarkable results which play a consid-
erable role in convex analysis: Rademacher’s theorem (asserting the differen-
tiability of Lipschitz functions almost everywhere) and Alexandrov’s theorem
(asserting the twice differentiability of convex functions almost everywhere).

Theorem 3.11.1 (Rademacher’s theorem) Every locally Lipschitz func-
tion f : Rn → Rm is almost everywhere differentiable.

Proof. Since a vector-valued function f is differentiable at a point if and
only if all of its components are differentiable at that point, we may restrict
ourselves to the case of real-valued functions. Also, since differentiability is a
local property, we may as well assume that f is Lipschitz. See Kirszbraun’s
Theorem 3.7.4.

The remainder of the proof will be done in three steps.

Step 1. Fix arbitrarily a vector v ∈ Rn, ‖v‖ = 1. We shall show that the
directional derivative f ′(x ; v) exists for almost every x ∈ Rn. In fact, for each
x ∈ Rn consider the limits

Df(x ; v) = lim inf
t→0

f(x + tv) − f(x)
t

and

Df(x ; v) = lim sup
t→0

f(x + tv) − f(x)
t

,

which exist in R. The set

Ev = {x ∈ Rn | Df(x ; v) < Df(x ; v)}
equals the set where the directional derivative f ′(x ; v) does not exist. As in
the proof of Theorem 3.8.3 we may conclude that Ev is Lebesgue measurable.
We shall show that Ev is actually Lebesgue negligible. In fact, by Lebesgue’s
theory on the differentiability of absolutely continuous functions (see [74] or
[103]) we infer that the functions

g(t) = f(x + tv), t ∈ R

are differentiable almost everywhere. This implies that the Lebesgue measure
of the intersection of Ev with any line L is Lebesgue negligible. Then, by
Fubini’s theorem, we conclude that Ev is itself Lebesgue negligible.

Step 2. According to the discussion above we know that
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∇f(x) =
( ∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
exists almost everywhere. We shall show that

f ′(x; v) = 〈v,∇f(x)〉
for almost every x ∈ Rn. In fact, for an arbitrary fixed ϕ ∈ C∞

c (Rn) we have∫
Rn

[f(x + tv) − f(x)
t

]
ϕ(x) dx = −

∫
Rn

f(x)
[ϕ(x) − ϕ(x − tv)

t

]
dx.

Since ∣∣∣f(x + tv) − f(x)
t

∣∣∣ ≤ Lip(f),

we can apply the dominated convergence theorem to get∫
Rn

f ′(x; v)ϕ(x) dx = −
∫

Rn

f(x)ϕ′(x; v) dx.

By taking into account Fubini’s theorem and the absolute continuity of f on
lines we can continue as follows:

−
∫

Rn

f(x)ϕ′(x; v) dx = −
n∑

k=1

vk

∫
Rn

f(x)
∂ϕ

∂xk
(x) dx

=
n∑

k=1

vk

∫
Rn

∂f

∂xk
(x)ϕ(x) dx

=
∫

Rn

〈v,∇f(x)〉ϕ(x) dx

and this leads us to the formula f ′(x; v) = 〈v,∇f(x)〉, as ϕ was arbitrarily
fixed.

Step 3. Consider now a countable family (vi)i of unit vectors, which is
dense in the unit sphere of Rn. By the above reasoning we infer that the
complement of each of the sets

Ai = {x ∈ Rn | Df(x; vi) and ∇f(x) exist and f ′(x; vi) = 〈vi,∇f(x)〉}
is Lebesgue negligible, and thus the same is true for the complement of

A =
∞⋂

i=1

Ai.

We shall show that f is differentiable at all points of A. This will be done
by considering the function

R(x, v, t) =
f(x + tv) − f(x)

t
− 〈v,∇f(x)〉,
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for x ∈ A, v ∈ Rn, ‖v‖ = 1, and t ∈ R\{0}. Since

|R(x, v, t) − R(x, v′, t)| ≤ Lip(f) · ‖v − v′‖ + ‖∇f(x)‖ · ‖v − v′‖
≤ (

√
n + 1) Lip(f) · ‖v − v′‖,

the function R(x, v, t) is Lipschitz in v.
Suppose there are given a point a ∈ A and a number ε > 0. Since the unit

sphere of Rn is compact and the family (vi)i is a dense subset, we can choose
a natural number N such that

inf
i∈{0,...,N}

‖v − vi‖ <
ε

2(
√

n + 1) Lip(f)

for all v with ‖v‖ = 1. By the definition of A, there exists a δ > 0 such that

|R(a, vi, t)| <
ε

2
for all i ∈ {0, . . . , N} and all |t| < δ. Then

|R(a, v, t)| ≤ inf
i∈{0,...,N}

(|R(a, vi, t)| + |R(a, vi, t) − R(a, v, t)|)

≤ ε

2
+ (

√
n + 1) Lip(f) · ε

2(
√

n + 1) Lip(f)
= ε

for all v in the unit sphere of Rn and all t with |t| < δ. This assures the
differentiability of f at a. ��

Rademacher’s theorem allows us to extend a number of important results
such as the area formula, the change of variable formula, and the invariance
of Sobolev spaces under Lipschitz isomorphisms, from the context of smooth
functions to that of Lipschitz functions. See L. C. Evans and R. F. Gariepy
[74], and W. P. Ziemer [252].

We pass now to the problem of almost everywhere second differentiability
of convex functions. In order to simplify exposition we shall make constant
use of Landau’s symbol o, where

f = o(g) for x → 0 means f = hg with lim
x→0

h(x) = 0.

Theorem 3.11.2 (A. D. Alexandrov [5]) Every convex function f on
Rn is twice differentiable almost everywhere in the following sense: f is twice
differentiable at a, with Alexandrov Hessian ∇2f(a) in Sym+(n, R), if ∇f(a)
exists, and if for every ε > 0 there exists δ > 0 such that

‖x − a‖ < δ implies sup
y∈∂f(x)

‖y − ∇f(a) − ∇2f(a)(x − a)‖ ≤ ε‖x − a‖.

Moreover, if a is such a point, then

lim
h→0

f(a + h) − f(a) − 〈∇f(a), h〉 − 1
2 〈∇2f(a)h, h〉

‖h‖2 = 0.
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Proof. By Theorem 3.7.1, the domain of the subdifferential ∂f is the whole
space Rn, while Theorem 3.8.3 shows that ∂f(x) = {df(x)} for all x in

X1 = {x ∈ Rn | f is differentiable at x},

which is a set whose complement is a negligible set.
We shall show that for almost all x in Rn there exists a matrix A in

Sym+(n, R) such that

df(y) = df(x) + A(y − x) + o(‖y − x‖) for all y ∈ X1. (3.32)

We need the fact that J = (I + ∂f)−1 is a nonexpansive map of Rn into
itself. See Corollary 3.7.6. This yields a new set,

X2 = {J(x) | J is differentiable at x and dJ(x) is nonsingular},

whose complement is also a negligible set. In fact, by Rademacher’s theorem,
J is differentiable almost everywhere. Since J is Lipschitz, we may apply the
area formula (see L. C. Evans and R. F. Gariepy [74, Theorem 3.3.2, p. 96])
to get∫

B

| det(dJ(x))| dx =
∫

Rn

#(B ∩ J−1(y)) dy for all Borel sets B in Rn,

where # is the counting measure. By this formula (and the fact that J is
onto) we infer that the complementary set of

{x | J is differentiable at x and dJ(x) is nonsingular}

is a negligible set. On the other hand, any Lipschitz function maps negligible
sets into negligible sets. See [218, Lemma 7.25]. Hence X2 is indeed a set whose
complementary set is negligible.

We shall show that the formula (3.32) works for all x in X3 = X1 ∩ X2
(which is a set with negligible complementary set). Our argument is based on
the following fact concerning the solvability of nonlinear equations in Rn: If
F : Bδ(0) → Rn is continuous, 0 < ε < δ and ‖F (x) − x‖ < ε for all x ∈ Rn

with ‖x‖ = δ, then F (Bδ(0)) ⊃ Bδ−ε(0). See W. Rudin [218, Lemma 7.23] for
a proof based on the Brouwer fixed point theorem.

By the definition of J ,

df(J(x)) = x − J(x)

for all x with J(x) ∈ X3 (⊂ X1). Suppose that J(x) + ỹ ∈ X1, where ỹ
is small. Since J is Lipschitz and dJ(x) is nonsingular, if ỹ is sufficiently
small, then there exists an x̃ such that J(x + x̃) = J(x) + ỹ. Moreover, we
may choose x̃ to verify ‖x̃‖ ≤ C‖ỹ‖ for some constant C > 0. Use a remark
above (on the solvability of nonlinear equations) and the fact that J(x+h) =
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J(x) + dJ(x)h + o(‖h‖). Since J is nonexpansive, we also have ‖ỹ‖ ≤ ‖x̃‖,
hence ‖x̃‖ and ‖ỹ‖ are comparable. Then

df(J(x) + ỹ) = df(J(x + x̃)) = x + x̃ − J(x + x̃)
= df(J(x)) + (I − dJ(x))x̃ + o(‖x̃‖).

Due to the relation J(x)+ỹ = J(x)+dJ(x)x̃+o(‖x̃‖) and the comparability
of ‖x̃‖ and ‖ỹ‖, we have

x̃ = (dJ(x))−1ỹ + o(‖ỹ‖).

Hence d(df)(J(x)) exists and equals (dJ(x))−1 − I.
It remains to prove that

f(J(x) + ỹ) = f(J(x)) + df(J(x))ỹ +
1
2
〈(

(dJ(x))−1 − I
)
ỹ, ỹ

〉
+ o(‖ỹ‖2)

for J(x) ∈ X3. Letting

R(ỹ) = f(J(x) + ỹ) − f(J(x)) − df(J(x))ỹ − 1
2
〈(

(dJ(x))−1 − I
)
ỹ, ỹ

〉
,

we get a locally Lipschitz function R such that R(0) = 0, and for almost all
small ỹ,

dR(ỹ) = o(‖ỹ‖).

By the mean value theorem we conclude that R(ỹ) = o(‖ỹ‖2) and the
proof is complete. ��

The result of Theorem 3.11.2 can be easily extended to conclude that
every proper convex function f : Rn → R ∪ {∞} is twice differentiable almost
everywhere on its effective domain.

Alexandrov’s theorem has important applications to convex geometric
analysis and partial differential equations. See the Comments at the end of
this chapter.

Both Theorems 3.11.1 and 3.11.2 remain valid in the more general frame-
work of semiconvex functions. A function f defined on a convex set in Rn is
said to be semiconvex if f + λ‖ · ‖2 is a convex function for some λ > 0. An
important example of a semiconvex function which is not necessarily convex
is the Asplund function. See Exercise 2.

Exercises

1. (The existence of distributional derivatives) Suppose that f : Rn → R is
a convex function. Prove that for all i, j ∈ {1, . . . , n} there exist signed
Radon measures µij (with µij = µji) such that
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Rn

f
∂2ϕ

∂xi∂xj
dx =

∫
Rn

ϕ dµij for every ϕ ∈ C2
c (Rn).

Moreover, the measures µii are nonnegative.
[Hint : Suppose first that f is smooth. For an arbitrarily fixed ξ =
(ξ1, . . . , ξn) ∈ Rn, ‖ξ‖ = 1, consider the linear functional

L(ϕ) =
n∑

i,j=1

∫
Rn

f
∂2ϕ

∂xi∂xj
ξiξj dx, ϕ ∈ C∞

c (Rn).

Then L(ϕ) ≥ 0 if ϕ ≥ 0; this is clear if f is smooth, and in the general case
we may use mollification. By a variant of the Riesz-Kakutani representation
theorem (see [74], Corollary 1, pp. 53-54) we get a positive Radon measure
µξ such that L(ϕ) =

∫
Rn ϕ dµξ for all ϕ ∈ C∞

c (Rn). Letting e1, . . . , en be
the canonical basis of Rn, we may choose µii = µei and

µij = µ(ei+ej)/2 − 1/2 · µei − 1/2 · µej for i 
= j. ]

2. (The Asplund function) Given a nonempty closed subset S of Rn we can
associate to it the function

ϕS(x) =
1
2

(‖x‖2 − d2
S(x)),

where dS(x) = inf{‖x − s‖ | s ∈ S} represents the distance from x to S.
(i) Notice that ϕS(x) = sup{〈x, s〉 − 1

2‖s‖2 | s ∈ S} and infer that ϕS is
a convex function.

(ii) Prove that ϕS is the conjugate of the function fS(x) = ‖x‖2/2 if
x ∈ S and fS(x) = ∞ otherwise.

(iii) Use Remark 3.7.9 (ii) to infer Bunt’s theorem (that is, Theorem 3.2.2).

3. Let f : Rn → Rm be a locally Lipschitz function and set

Z = {x | f(x) = 0}.

Prove that df(x) = 0 for almost every x ∈ Z.

4. Let f, g : Rn → Rm be locally Lipschitz functions and set

X = {x | g(f(x)) = x}.

Prove that dg(f(x))df(x) = I for almost every x ∈ X.

5. (D. Cordero-Erausquin [59]) Suppose that f is a proper convex function
with Ω = int(dom(f)). We denote by ∆Af the trace of the Alexandrov
Hessian and by ∆f the Laplacian of f in the sense of distributions. Prove
that ∫

Ω
ϕ∆Af dx ≤ −

∫
Ω

∇ϕ · ∇f dx

for all functions ϕ ∈ C∞
c (Ω), f ≥ 0.
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3.12 Prékopa–Leindler Type Inequalities

The aim of this section is to present several inequalities that play an im-
portant role in the geometric theory of convexity. The first one is related to
the isoperimetric problem and represents a reverse form of the Rogers–Hölder
inequality.

Theorem 3.12.1 (The Prékopa–Leindler inequality) Let 0 < λ < 1
and let f , g, and h be nonnegative integrable functions on Rn satisfying

h((1 − λ)x + λy) ≥ f(x)1−λg(y)λ

for all x, y ∈ Rn. Then∫
Rn

h(x) dx ≥
(∫

Rn

f(x) dx

)1−λ(∫
Rn

g(x) dx

)λ

.

The connection with the Rogers–Hölder inequality will become clear after
restating the above result in the form∫

Rn

sup
(1−λ)x+λy=z

f(x)1−λg(y)λ dz ≥
(∫

Rn

f(x) dx

)1−λ(∫
Rn

g(x) dx

)λ

,

as h can be replaced by the supremum inside the left integral, and then passing
to the more familiar form∫

Rn

sup
(1−λ)x+λy=z

f(x)g(y) dz ≥
(∫

Rn

fp(x) dx

)1/p(∫
Rn

gq(x) dx

)1/q

,

after replacing 1 − λ by 1/p, λ by 1/q, f by fp and g by gq. The upper
integral is used in the left-hand side because the integrand is not necessarily
measurable.

As we shall show later, the Prékopa–Leindler inequality is just the partic-
ular case of a very general result, the Borell–Brascamp–Lieb inequality.

An important consequence of Theorem 3.12.1 is as follows:

Theorem 3.12.2 (Lusternik’s general Brunn–Minkowski inequality)
Let s, t > 0 and let X and Y be nonempty bounded measurable sets in Rn such
that sX + tY is also measurable. Then

Voln(sX + tY )1/n ≥ s Voln(X)1/n + t Voln(Y )1/n.

Here Voln denotes the n-dimensional Lebesgue measure.

Proof. Since the Lebesgue measure Voln is positively homogeneous of degree
n (that is, Voln(αA) = αn Voln(A) for every Borel set A and every α ≥ 0),
we may restrict to the case where s = 1 − λ and t = λ for some λ ∈ (0, 1).
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Then we apply the Prékopa–Leindler inequality for f = χX , g = χY and
h = χ(1−λ)X+λY , which yields

Voln((1 − λ)X + λY ) =
∫

Rn

χ(1−λ)X+λY (x) dx

≥
(∫

Rn

χX(x) dx

)1−λ(∫
Rn

χY (x) dx

)λ

= Voln(X)1−λ Voln(Y )λ.

Applying this inequality for X replaced by Voln(X)−1/nX, Y replaced by
Voln(Y )−1/nY , and λ replaced by

λ Voln(Y )1/n

(1 − λ) Voln(X)1/n + λ Voln(Y )1/n
,

we obtain

Voln((1 − λ)X + λY )1/n ≥ (1 − λ) Voln(X)1/n + λ Voln(Y )1/n,

which ends the proof. ��

The hypothesis on the measurability of sX + tY cannot be deduced from
the measurability of X and Y . A counterexample can be found in a paper by
W. Sierpiński [225].

The Brunn–Minkowski inequality represents the particular case of Theo-
rem 3.12.2 above for convex bodies. A convex body is understood as a compact
convex set in Rn, with nonempty interior. In this case the measurability of
the sets sX + tY is automatic.

Theorem 3.12.3 (The Brunn–Minkowski inequality) Let λ ∈ (0, 1)
and let K and L be two convex bodies. Then

Voln((1 − λ)K + λL)1/n ≥ (1 − λ) Voln(K)1/n + λ Voln(L)1/n.

Equality holds precisely when K and L are equal up to translation and dilation.

Theorem 3.12.3 says that the function t → Voln((1−t)K+tL)1/n is concave
on [0, 1]. It is also log-concave as follows from the AM–GM inequality.

The volume V of a ball Br(0) in R3 and the area S of its surface are
connected by the relation

S =
dV

dR
.

This fact led H. Minkowski to define the surface area of a convex body K in
Rn by the formula

Sn−1(K) = lim
ε→0+

Voln(K + εB) − Voln(K)
ε

,
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where B denotes the closed unit ball of Rn. The agreement of this definition
with the usual definition of the surface of a smooth surface is discussed in
books by H. Federer [77] and Y. D. Burago and V. A. Zalgaller [45].

Theorem 3.12.4 (The isoperimetric inequality for convex bodies in
Rn) Let K be a convex body in Rn and let B denote the closed unit ball of
this space. Then (Voln(K)

Voln(B)

)1/n

≤
(Sn−1(K)

Sn−1(B)

)1/(n−1)

with equality if and only if K is a ball.

Proof. In fact, by the Brunn–Minkowski inequality,

Sn−1(K) = lim
ε→0+

Voln(K + εB) − Voln(K)
ε

≥ lim
ε→0+

(Voln(K)1/n + ε Voln(B)1/n)n − Voln(K)
ε

= n Voln(K)(n−1)/n Voln(B)1/n,

and it remains to notice that Sn−1(B) = n Voln(B). ��

The Prékopa–Leindler inequality represents the case p = 0 of the following
general result:

Theorem 3.12.5 (The Borell–Brascamp–Lieb inequality) Suppose
that 0 < λ < 1, −1/n ≤ p ≤ ∞, and f , g, and h are nonnegative integrable
functions on Rn satisfying

h((1 − λ)x + λy) ≥ Mp(f(x), g(y) ; 1 − λ, λ),

for all x, y ∈ Rn. Then∫
Rn

h(x) dx ≥ Mp/(np+1)

(∫
Rn

f(x) dx,

∫
Rn

g(x) dx ; 1 − λ, λ

)
.

Here p/(np + 1) means −∞, if p = −1/n, and 1/n, if p = ∞.

Proof. We start with the case n = 1. Without loss of generality we may assume
that ∫

R

f(x) dx = A > 0 and
∫

R

g(x) dx = B > 0.

We define u, v : [0, 1] → R such that u(t) and v(t) are the smallest numbers
satisfying

1
A

∫ u(t)

−∞
f(x) dx =

1
B

∫ v(t)

−∞
g(x) dx = t.
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Clearly, the two functions are increasing and thus they are differentiable
almost everywhere. This yields

f(u(t))u′(t)
A

=
g(v(t))v′(t)

B
= 1 almost everywhere,

so that w(t) = (1 − λ)u(t) + λv(t) verifies

w′(t) = (1 − λ)u′(t) + λv′(t)

= (1 − λ)
A

f(u(t))
+ λ

B

g(v(t))

at every t with f(u(t)) > 0 and g(v(t)) > 0. Or,∫
R

h(x) dx ≥
∫ 1

0
h(w(t))w′(t) dt

and the last inequality can be continued as

≥
∫ 1

0
Mp

(
f(u(t)), g(v(t)) ; 1 − λ, λ

)
M1

( A

f(u(t))
,

B

g(v(t))
; 1 − λ, λ

)
dt

≥
∫ 1

0
Mp/(p+1)(A, B ; 1 − λ, λ) dt

= Mp/(p+1)(A, B ; 1 − λ, λ),

by a generalization of the discrete Rogers–Hölder inequality (provided by Sec-
tion 1.2, Exercise 4 (i), for n = 2, q = 1, and p + q ≥ 0).

The general case follows by induction. Suppose that it is true for all natural
numbers less than n.

For each s ∈ R, attach to f , g, and h section functions fs, gs, and hs,
following the model

fs : Rn−1 → R, fs(z) = f(z, s).

Let x, y ∈ Rn−1, let a, b ∈ R and put c = (1 − λ)a + λb. Then

hc((1 − λ)x + λy) = h((1 − λ)x + λy, (1 − λ)a + λb)
= h((1 − λ)(x, a) + λ(y, b))
≥ Mp(f(x, a), g(y, b) ; 1 − λ, λ)
= Mp(fa(x), gb(y) ; 1 − λ, λ)

and thus, by our inductive hypothesis,∫
Rn−1

hc(x) dx ≥ Mp/((n−1)p+1)

(∫
Rn−1

fa(x) dx,

∫
Rn−1

gb(x) dx ; 1 − λ, λ

)
.

Letting
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H(c) =
∫

Rn−1
hc(x) dx, F (a) =

∫
Rn−1

fa(x) dx, G(b) =
∫

Rn−1
gb(x) dx,

we have

H(c) = H((1 − λ)a + λb) ≥ Mr(F (a), G(b) ; 1 − λ, λ),

where r = p/((n−1)p+1), so by Fubini’s theorem and our inductive hypothesis
we conclude that∫

Rn

h(x) dx ≥
∫

R

∫
Rn−1

hc(z) dz dc =
∫

R

H(c) dc

≥ Mr/(r+1)

(∫
R

F (a) da,

∫
R

G(b) db ; 1 − λ, λ

)
= Mp/(np+1)

(∫
Rn

f(x) dx,

∫
Rn

g(x) dx ; 1 − λ, λ

)
.

��

The above argument of Theorem 3.12.5 goes back to R. Henstock and
A. M. Macbeath [101] (when n = 1) and illustrates a powerful tool of convex
analysis: the Brenier map. See the Comments at the end of this chapter.
Basically the same argument (plus some computation that make the objective
of Exercise 10) led F. Barthe [15], [16] to a simplified approach of the best
constants in some famous inequalities like the Young inequality and the reverse
Young inequality.

Exercises

1. Verify Minkowski’s formula for the surface area of a convex body K in the
following particular cases:
(i) K is a disc;
(ii) K is a rectangle;
(iii) K is a regular tetrahedron.

2. Infer from the isoperimetric inequality for convex bodies in Rn the following
classical result: If A is the area of a domain in plane, bounded by a curve
of length L, then

L2 ≥ 4πA

and the equality holds only for discs.

3. Settle the equality case in the Brunn–Minkowski inequality (as stated in
Theorem 3.12.3).
Remark. The equality case in the Prékopa–Leindler inequality is open.
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4. Let f = f(x, y) be an integrable log-concave function defined on an open
convex set Ω of Rm+n and for each x in the orthogonal projection pr1 Ω,
of Ω onto Rm, define

F (x) =
∫

Ω(x)
f(x, y) dy,

where Ω(x) = {y ∈ Rn | (x, y) ∈ Ω}. Infer from the Prékopa–Leindler
inequality that the function F (x) is log-concave on pr1 Ω.
[Hint : Suppose that xk ∈ pr1 Ω and yk ∈ Ω(xk) for k = 1, 2 and λ ∈ (0, 1).
Then

Ω((1 − λ)x1 + λx2) ⊃ (1 − λ)Ω(x1) + λΩ(x2)

and

f((1 − λ)x1 + λx2, (1 − λ)y1 + λy2) ≥ f(x1, y1)1−λf(x2, y2)λ. ]

5. Consider open convex sets Ωk in Rn and log-concave functions fk, from
Ωk into R+, where k = 1, 2.
(i) Prove that the function f(x, y) = f1(x)f2(y) is log-concave on the

open convex set Ω1 × Ω2.
(ii) Infer from (i) and Exercise 4 that the convolution f1∗f2 is log-concave

on Ω1 + Ω2.

6. Consider a convex body K in R3. Infer from Exercise 4 that the square root
of the area of the cross section of K by parallel hyperplanes is a concave
function. See Fig. 3.3.

Fig. 3.3. Unimodal cross sections.

More precisely, if v ∈ R3 and ‖v‖ 
= 0, then the function

A(t) =
√

Sn−1(K ∩ {x | 〈x, v〉 = t})

is concave on the interval consisting of all t for which

K ∩ {x | 〈x, v〉 = t} 
= ∅.
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7. (The essential form of the Prékopa–Leindler inequality; see H. J. Brascamp
and E. H. Lieb [39]) Let f, g ∈ L1(Rn) be two nonnegative functions and
let λ ∈ (0, 1). The function

S(x) = ess sup
y

f
(x − y

1 − λ

)1−λ

g
( y

λ

)λ

is measurable since

S(x) = sup
n

∫
Rn

f
(x − y

1 − λ

)1−λ

g
( y

λ

)λ

ϕn(y) dy

for every sequence (ϕn)n, dense in the unit ball of L1(Rn). Prove that

‖S‖L1 ≥ ‖f‖1−λ
L1 ‖g‖λ

L1 (3.33)

and derive from this result the classical Prékopa–Leindler inequality.

Remark. As noticed in [39], the essential form of the Prékopa–Leindler
inequality represents the limiting case as r → 0+, of the following reverse
Young inequality with sharp constants: Let 0 < p, q, r ≤ 1 with 1/p+1/q =
1+1/r, and let f ∈ Lp(Rn) and g ∈ Lq(Rn) be nonnegative functions. Then

‖f ∗ g‖Lr ≥ C(p, q, r, n)‖f‖Lp ‖g‖Lq .

8. A nonnegative regular measure µ defined on the (Lebesgue) measurable
subsets of Rn is called Mp-concave (for some p ∈ R) if

µ((1 − λ)X + λY ) ≥ Mp(µ(X), µ(Y ) ; 1 − λ, λ)

for all measurable sets X and Y in Rn and all λ ∈ (0, 1) such that the
set (1 − λ)X + λY is measurable. When p = 0, a Mp-concave measure is
also called log-concave. By the Prékopa–Leindler inequality, the Lebesgue
measure is M1/n-concave. Suppose that −1/n ≤ p ≤ ∞, and let f be a
nonnegative integrable function which is Mp-concave on an open convex
set C in Rn. Prove that the measure µ(X) =

∫
C∩X

f(x) dx is Mp/(np+1)-
concave. Infer that the standard Gauss measure in Rn,

dγn = (2π)−n/2e−‖x‖2/2dx,

is log-concave.

9. (S. Dancs and B. Uhrin [62]) Extend Theorem 3.12.5 by replacing the
Lebesgue measure by a Mq-concave measure, for some −∞ ≤ q ≤ 1/n.

10. (F. Barthe [15]) Let v1, . . . , vm be vectors in Rn (m ≥ n), and c1, . . . , cm be
positive numbers such that

∑m
k=1 ck = n. For λ = (λ1, . . . , λm) ∈ (0,∞)m,

consider the following two norms on Rn :
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Mλ(x) = inf

{( m∑
k=1

ckθ2
k/λk

)1/2

| x =
m∑

k=1

ckθkvk, θk ∈ R

}

and

Nλ(x) =
( m∑

k=1

ckλk〈x, vk〉2
)1/2

Prove that Eλ = {x ∈ Rn | Mλ(x) ≤ 1} is the polar of the ellipsoid
Fλ = {x ∈ Rn | Nλ(x) ≤ 1} and

Voln(Eλ) Voln(Fλ) = Voln(B)2,

where B denotes the closed unit ball of the Euclidean space Rn.
[Hint : Notice that the support function of the polar of Fλ, is

h(F◦
λ)(x) =

(
m∑

k=1

ckλk〈x, vk〉2
)1/2

which equals the support function of Eλ,

h(Eλ)(x) = sup

{
m∑

k=1

ckθk〈x, vk〉 |
m∑

k=1

ckθ2
k/λk ≤ 1, θk ∈ R

}
. ]

3.13 Mazur–Ulam Spaces and Convexity

Let E be a real normed linear space. The classical Mazur–Ulam theorem
asserts that every bijective isometry T : E → E is an affine map, that is,

T (λx + (1 − λ)y) = λT (x) + (1 − λ)T (y) (3.34)

for all x, y ∈ E and λ ∈ R. The essence of this result is the property of T to
preserve midpoints of line segments, that is,

T
(x + y

2

)
=

T (x) + T (y)
2

(3.35)

for all x, y ∈ E. In fact, the condition (3.35) implies (3.34) for dyadic affine
combinations, and thus for all convex combinations (since every isometry is
a continuous map). Finally, it is routine to pass from convex combinations to
general affine combinations in (3.34).

Surprisingly, the linear structure of E is needed only to support the notion
of midpoint. In fact, a property like (3.35), of midpoint preservation, works in
the framework of metric spaces as long as a well-behaved concept of midpoint
is available. This is made clear by the following definition:
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Definition 3.13.1 A Mazur–Ulam space is any metric space M = (M, d)
on which there is given a pairing � : M × M → M with the following four
properties:

• (the idempotent property) x � x = x for all x ∈ M ;
• (the commutative property) x � y = y � x for all x, y ∈ M ;
• (the midpoint property) d(x, y) = 2d(x, x � y) = 2d(y, x � y) for all

x, y ∈ M ;
• (the transformation property) T (x � y) = T (x) � T (y), for all x, y ∈ M

and all bijective isometries T : M → M .

A Mazur–Ulam space should be viewed as a triplet (M, d, �). In this con-
text, the point x � y is called a midpoint between x and y.

In a real normed space, the midpoint has the classical definition,

x � y =
x + y

2
,

and the Mazur–Ulam theorem is equivalent to the assertion that every real
normed space is a Mazur–Ulam space. It is exactly in this way we want to
extend the Mazur–Ulam theorem, by investigating other classes of Mazur–
Ulam spaces, of which there are many.

In the above example, � coincides with the arithmetic mean, A. The sim-
plest example of a Mazur–Ulam space where the midpoint is associated to the
geometric mean is M = (0,∞), endowed with the metric

δ(x, y) =
∣∣∣log

x

y

∣∣∣,
and the midpoint pairing x � y = G(x, y) =

√
xy.

The Mazur–Ulam theorem can be proved easily by noticing the presence
of sufficiently many reflections on any normed vector space. This idea can be
considerably extended.

Theorem 3.13.2 Suppose that M = (M, d) is a metric space such that for
every pair (a, b) of points of M there exists a bijective isometry G(a,b), from
M onto itself, having the following two properties:

(MU 1) G(a,b)a = b and G(a,b)b = a;
(MU 2) G(a,b) has a unique fixed point z (denoted a � b) and

d(G(a,b)x, x) = 2d(x, z) for all x ∈ M.

Then M is a Mazur–Ulam space.

The geometrical framework of Theorem 3.13.2 is illustrated in Fig. 3.4,
while its proof will constitute the objective of Lemma 3.13.4 below.

Every normed vector space verifies the hypotheses of Theorem 3.13.2. In
fact, in that case the maps G(a,b) are precisely the reflections
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Fig. 3.4. The geometrical framework of Theorem 3.13.2.

G(a,b)x = a + b − x.

The unique fixed point of G(a,b) is the midpoint of the line segment [a, b], that
is, a � b = (a + b)/2.

In the case of M = (R�
+, δ, G), the hypotheses of Theorem 3.13.2 are

fulfilled by the family of isometries

G(a,b)x =
ab

x
;

the fixed point of G(a,b) is precisely the geometric mean
√

ab, of a and b. A
higher dimensional generalization of this example is provided by the space
Sym++(n, R), endowed with the trace metric,

dtrace(A, B) =
( n∑

k=1

log2 λk

)1/2
, (3.36)

where λ1, . . . , λn are the eigenvalues of AB−1. Since similarities preserve eigen-
values, this metric is invariant under similarities, that is,

dtrace(A, B) = dtrace(C−1AC, C−1BC) for all C ∈ GL(n, R).

Note that AB−1 is similar with

A−1/2(AB−1)A1/2 = A1/2B−1/2(A1/2B−1/2)� > 0

and this fact assures the positivity of the eigenvalues of AB−1.
The proof that Sym++(n, R) admits a midpoint pairing follows from The-

orem 3.13.2. We shall need the following technical result:

Lemma 3.13.3 Given two matrices A and B in Sym++(n, R), their geomet-
ric mean

A � B = A1/2(A−1/2BA−1/2)1/2A1/2

is the unique matrix C in Sym++(n, R) such that

dtrace(A, C) = dtrace(B,C) =
1
2

dtrace(A, B).
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The geometric mean A � B of two positive definite matrices A and B was
introduced by Pusz and Woronowicz [207]. It is the unique solution of the
equation

XA−1X = B

and this fact has a number of useful consequences such as:

A � B = (AB)1/2 if A and B commute
A � B = B � A

(C∗AC) � (C∗BC) = C∗(A � B)C for all C ∈ GL(n, R)

as well as the fact that the maps

G(A,B)X = (A � B)X−1(A � B)

verify the condition (MU 1) in Theorem 3.13.2 above. As concerns the condi-
tion (MU 2), let us check first the fixed points of G(A,B). Clearly, A � B is a
fixed point. It is the only fixed point because any solution X ∈ Sym++(n, R)
of the equation

CX−1C = X,

with C ∈ Sym++(n, R), verifies the relation

(X−1/2CX−1/2)(X−1/2CX−1/2) = I.

Since the square root is unique, we get X−1/2CX−1/2 = I, that is, X = C.
The second part of the condition (MU 2) asks for

dtrace(G(A,B)X, X) = 2d(X, A � B),

that is,
dtrace((A � B)X−1(A � B), X) = 2dtrace(X, A � B),

for every X ∈ Sym++(n, R). This follows directly from the definition (3.36)
of the trace metric. Notice that σ(C2) = {λ2 | λ ∈ σ(C)} for all C in
Sym++(n, R).

Lemma 3.13.4 Suppose that M1 = (M1, d1) and M2 = (M2, d2) are two met-
ric spaces which verify the conditions (MU 1) and (MU 2) of Theorem 3.13.2.
Then

T (x � y) = Tx � Ty

for all bijective isometries T : M1 → M2, and all x, y ∈ M .

Proof. For x, y ∈ M1 arbitrarily fixed, consider the set G(x,y) of all bijective
isometries G : M1 → M1 such that Gx = x and Gy = y. Notice that the
identity of M1 belongs to G(x,y). Put

α = sup
G∈G(x,y)

d(Gz, z),
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where z = x � y. Since

d(Gz, z) ≤ d(Gz, x) + d(x, z) = d(Gz, Gx) + d(x, z) = 2d(x, z),

we infer that α < ∞. If G ∈ G(x,y), so is G′ = Gx,yG−1Gx,yG, which yields

d(G(x,y)G
−1G(x,y)Gz, z) ≤ α.

Then

d(G′z, z) = d(G(x,y)G
−1G(x,y)Gz, z) = d(G(x,y)G

−1G(x,y)Gz, Gx,yz)

= d(G−1G(x,y)Gz, z)
= d(G(x,y)Gz, Gz)
= 2d(Gz, z)

and thus d(Gz, z) ≤ α/2 for all G. Consequently α = 0 and this yields G(z) =
z for all G ∈ G(x,y).

Now, for T : M1 → M2 an arbitrary bijective isometry, we want to show
that Tz = z′, where z′ = Tx � Ty. In fact, G(x,y)T

−1G(Tx,Ty)T is a bijective
isometry in G(x,y), so

G(x,y)T
−1G(Tx,Ty)Tz = z.

This implies
G(Tx,Ty)Tz = Tz.

Since z′ is the only fixed point of G(Tx,Ty), we conclude that Tz = z′. ��

As observed by A. Vogt [241], the Mazur–Ulam theorem can be extended
to all surjective maps T : E → F (acting on real normed spaces of dimension
≥ 2) which preserve equality of distances,

‖x − y‖ = ‖u − v‖ implies ‖Tx − Ty‖ = ‖Tu − Tv‖.

It is open whether this result remains valid in the more general framework
of Theorem 3.13.2.

The Mazur–Ulam spaces constitute a natural framework for a generalized
theory of convexity, where the role of the arithmetic mean is played by a
midpoint pairing.

Suppose that M ′ = (M ′, d′, �′) and M ′′ = (M ′′, d′′, �′′) are two Mazur–
Ulam spaces, with M ′′ a subinterval of R. A continuous function f : M ′ → M ′′

is called convex (more precisely, (�′, �′′)-convex ) if

f(x �′ y) ≤ f(x) � ′′f(y) for all x, y ∈ M ′ (3.37)

and concave if the opposite inequality holds. If

f(x �′ y) = f(x) � ′′f(y) for all x, y ∈ M ′ (3.38)



170 3 Convex Functions on a Normed Linear Space

then the function f is called affine.
Every subinterval of R (endowed with the pairing associated to the arith-

metic mean) is a Mazur–Ulam space and thus the above framework provides
a generalization of the usual notion of convex function.

When M ′ = M ′′ = (R�
+, δ, G), the convex functions f : R�

+ → R�
+ in

the sense of (3.37) are precisely the multiplicatively convex functions. When
M ′ = R and M ′′ = (R�

+, δ, G), we recover the class of log-convex functions.
Things become considerably more technical when R�

+ is replaced by the
cone Sym++(n, R). Here a number of basic questions are still open, for exam-
ple, the generality of the Jensen inequality. The analogue of (1 − λ)x + λy in
the context of Sym++(n, R) is

A � λB = A1/2(A−1/2BA−1/2)λA1/2,

and this formula was investigated by F. Kubo and T. Ando [134] from the
point of view of noncommutative means. What is the analogue of a convex
combination for three (or finitely many) positive matrices? An interesting
approach was recently proposed by T. Ando, C.-K. Li and R. Mathias [8], but
the corresponding theory of convexity is still in its infancy.

Exercises

1. (The noncommutative analogue of two basic inequalities) The functional
calculus with positive elements in A = Mn(R) immediately yields the fol-
lowing generalization of Bernoulli’s inequality:

Aα ≥ I + α(A − I) if α ∈ (−∞, 0] ∪ [1,∞)
Aα ≤ I + α(A − I) if α ∈ [0, 1],

for all A ∈ A, A > 0. Infer that

A �α B ≥ (1 − a)A + αB if α ∈ (−∞, 0] ∪ [1,∞)
A �α B ≤ (1 − a)A + αB if α ∈ [0, 1],

for all A, B > 0 (which represents a generalization of Young’s inequality).

Remark. The same argument works in the general framework of C∗-alge-
bras. See [58] for details concerning these spaces.

2. (A generalization of the Rogers–Hölder inequality) Let A be as in the
preceding exercise and let ϕ : A → C be a linear functional such that
ϕ(A) ≥ 0 if A ≥ 0.
(i) Prove that

ϕ(A �α B) ≤ ϕ(A)1−αϕ(B)α

for all A, B ∈ A, with A, B > 0 and all α ∈ [0, 1]. This inequality
works in the range (−∞, 0] ∪ [1,∞) with opposite inequality sign.
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(ii) Letting ϕ(A) = 〈Ax, x〉 for some unit vector x, infer that

〈Aαx, x〉1/α ≤ 〈Ax, x〉 for all A ∈ A, A ≥ 0 and all α ∈ [0, 1].

3.14 Comments

The first modern exposition on convexity in Rn was written by W. Fenchel
[79]. He used the framework of lower semicontinuous proper convex functions
to provide a valuable extension of the classical theory.

L. N. H. Bunt proved Theorem 3.2.2 in his Ph.D. thesis (1934). His priority,
as well as the present status of Klee’s problem, are described in a paper by
J.-B. Hiriart-Urruty [104].

All the results in Section 3.3 on hyperplanes and separation theorems in
Rn are due to H. Minkowski [164]. Their extension to the general context of
linear topological spaces is presented in Appendix A.

Support functions, originally defined by H. Minkowski in the case of
bounded convex sets, have been studied for general convex sets in Rn by
W. Fenchel [78], [79], and in infinite-dimensional spaces by L. Hörmander
[107].

The critical role played by finite dimensionality in a number of important
results on convex functions is discussed by J. M. Borwein and A. S. Lewis in
[38, Chapter 9].

A Banach space E is called smooth if at each point of its unit sphere there
is a unique hyperplane of support for the closed unit ball. Equivalently, E
is smooth if and only if the norm function is Gâteaux differentiable at every
x 
= 0. In the context of separable Banach spaces, one can prove that the
points of the unit sphere S where the norm is Gâteaux differentiable form a
countable intersection of dense open subsets of S (and thus they constitute a
dense subset, according to the Baire category theorem). See [200, p. 43]. The
book by M. M. Day [64] contains a good account on the problem of renorming
Banach spaces to improve the smoothness properties.

A Banach space E is said to be a weak (strong) differentiability space if for
each convex open set U in E and each continuous convex function f : U → R

the set of points of Gâteaux (Fréchet) differentiability of f contains a dense
Gδ subset of E. E. Asplund [11], indicated rather general conditions under
which a Banach space has a renorming with this property. See R. R. Phelps
[199] for a survey on the differentiability properties of convex functions on a
Banach space.

The convex functions can be characterized in terms of distributional
derivatives: If Ω is an open convex subset of Rn, and f : Ω → R is a con-
vex function, then Df is monotone, and D2f is a positive and symmetric
(matrix-valued and locally bounded) measure. Conversely, if f is locally inte-
grable and D2f is a positive (matrix-valued) distribution on Ω, then f agrees
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almost everywhere on Ω with a convex function g such that Ω ⊂ dom g. See
[4, Proposition 7.11].

F. Mignot [163] proved the following generalization of Rademacher’s the-
orem: Every Lipschitz function from a separable Hilbert space into a Hilbert
space is Gâteaux differentiable at densely many points. However, as shown in
the case of the function

F : L2[0, 1] → R, F (f) =
(∫ 1

0
(f+(t))2 dt

)1/2

,

the set of points of Fréchet differentiability may be empty. The hypothesis on
separability is essential for the validity of Mignot’s result. A counterexample
is provided by the projection of �2(I) (for an uncountable index set I) onto
the cone of positive elements.

Proofs of Alexandrov’s theorem (Theorem 3.11.2) may be found in G. Al-
berti and L. Ambrosio [4], G. Bianchi, A. Colesanti and C. Pucci [28] (which
includes also some historical comments), M. G. Crandall, H. Ishii and P.-L. Li-
ons [61], L. C. Evans and R. Gariepy [74], and F. Mignot [163]. The proof in
our text follows [61]. In Mignot’s approach, Alexandrov’s theorem appears as
a consequence of the following differentiability property of monotone maps:

Differentiability of monotone maps. Let u be a maximal monotone
map on Rn and let D be the set of points x such that u(x) is a singleton. Then
u is differentiable at almost every a ∈ D, that is, there exists an n × n matrix
∇u(a) such that

lim
x→a

y∈u(x)

y − u(a) − ∇u(a)(x − a)
‖x − a‖ = 0.

In fact, if we apply this result to the subdifferential of a convex function
f : Rn → R, we obtain that for almost every a ∈ Rn where ∂f is a singleton
(that is, where f is differentiable), there exists a matrix ∇2f(a) such that

lim
x→a

y∈∂f(x)

y − ∇f(a) − ∇2f(a)(x − a)
‖x − a‖ = 0. (3.39)

If (3.39) holds, then A = ∇2f(a) proves to be the Alexandrov Hessian of
f at a. To show this, it suffices to restrict ourselves to the case where a = 0,
f(a) = 0 and ∇f(a) = 0. We shall prove that ϕ(h) = f(h) − 1

2 〈Ah, h〉 verifies
limh→0 ϕ(h)/‖h‖2 = 0. In fact, fixing an h 
= 0, by the nonsmooth version
of the mean value theorem (see [56, Theorem 2.3.7]) we get a point y in the
segment joining 0 to h, and a p ∈ ∂ϕ(y) such that ϕ(h) − ϕ(0) = 〈h, p〉. Then

ϕ(h) = 〈q − Ay, h〉
for some vector q ∈ ∂f(y). According to (3.39), limh→0 ‖q − A(y)‖/‖h‖ = 0,
which yields limh→0 ϕ(h)/‖h‖2 = 0.
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Important applications of the infimal convolution and Alexandrov’s theo-
rem to the theory of viscosity solutions are presented in the remarkable user’s
guide written by M. G. Crandall, H. Ishii and P.-L. Lions [61].

A survey of the convexity properties of solutions of partial differential
equations may be found in the notes of B. Kawohl [122]. We shall mention
here one application of the Prékopa–Leindler inequality which refers to the
diffusion equation

∂u

∂t
=

1
2

∆u − V (x)u for (x, t) ∈ Ω × (0,∞)

with zero Dirichlet boundary conditions (that is, limx→∂Ω u(x, t) = 0 for
each t). Here Ω is an open convex set in Rn and V is a nonnegative con-
tinuous function defined on Ω. When Ω = Rn and V = 0, the fundamental
solution is given by formula f(x, y, t) = (2πt)−n/2e−‖x−y‖2/2t, which is log-
concave on Rn × Rn. H. J. Brascamp and E. H. Lieb [40] have proved, based
on the Prékopa–Leindler inequality, that in general the fundamental solution
f(x, y, t) of the above Dirichlet problem is log-concave on Ω × Ω, whenever V
is a convex function. The idea is to show that f(x, y, t) is a pointwise limit of
convolutions of log-concave functions (in which case Exercise 5, Section 3.12,
applies). Later on, Ch. Borell [34] considered potentials V = V (x, σ) that
depend on a parameter, and this fact led him to more general results and a
Brownian motion treatment of the Brunn–Minkowski inequality.

The Borell–Brascamp–Lieb inequality was first stated and proved in full
generality by Ch. Borell [33] and H. J. Brascamp and E. H. Lieb [40]. Our pre-
sentation in Section 3.12 left untouched many important applications and ram-
ifications. Fortunately, they are covered in a remarkable paper by R. J. Gard-
ner [88] (nicely complemented by its electronic version [87]).

The Prékopa–Leindler inequality is related to optimal mass transport
(which in turn provides a powerful technique to derive a number of inter-
esting inequalities). Let µ and ν be two Borel probability measures on Rn. A
map T : Rn → Rn (defined µ-almost everywhere) is said to push µ forward
to ν (or to transport µ onto ν) if ν(B) = µ(T−1(B)) for every Borel set B
in Rn. Y. Brenier [41] found a very special map pushing forward one proba-
bility to another. His result was reconsidered by R. J. McCann [161], [162],
who noticed that the absolutely continuous Borel probability measures can
be transported by maps of the form T = ∇ϕ, where ϕ is convex. These maps
are usually referred to as Brenier maps. The differentiability properties of T
(motivated by the existence of the Alexandrov Hessian of ϕ) makes possible
an easy handling of T . For example, if

µ(B) =
∫

B

f(x) dx and ν(B) =
∫

B

g(x) dx

and T = ∇ϕ is the Brenier map (pushing µ forward to ν), then∫
Rn

h(y)g(y) dy =
∫

Rn

h(∇ϕ(x))f(x) dx
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for all bounded Borel functions h : R → R+. Assuming the change of variable
y = ∇ϕ(x) is working, the last formula leads to the so-called Monge–Ampère
equation,

f(x) = det(Hessx ϕ) · g(∇ϕ(x)). (3.40)

As noted by R. J. McCann [162], this equation is valid in general, provided
that Hessx ϕ is replaced by the Alexandrov Hessian of ϕ.

When n = 1, then we can find a T that transports µ to ν by defining T (t)
to be the smallest number such that∫ t

−∞
f(x) dx =

∫ T (t)

−∞
g(x) dx.

This is the key parametrization in proving the Prékopa–Leindler inequality
(first noticed in this form by R. Henstock and A. M. Macbeath [101]).

Applications of the mass transport theory may be found in the recent book
of C. Villani [240] (see also [87] and [88]). A sample is the following classical
result (due to L. Gross in the case where µ is the standard Gauss measure
dγn = (1/

√
2π)ne−‖x‖2/2dx), for which D. Cordero-Erausquin [59] has found

a simple argument based on the Brenier maps:

The logarithmic Sobolev inequality. Let µ be a probability measure
on Rn of the form dµ = e−V (x)dx, where V is a twice differentiable function
satisfying Hessx V ≥ cI for some c > 0. Then, for every smooth nonnegative
function f on Rn,

Entµ(f) ≤ 1
2c

Iµ(f).

Here

Entµ(f) =
∫

Rn

f log f dµ −
(∫

Rn

f dµ

)(∫
Rn

log f dµ

)
represents the entropy of f and

Iµ(f) =
∫

Rn

‖∇f‖2

f
dµ

represents the Fischer-information of f .
D. Cordero-Erausquin’s idea in the case of standard Gauss measures is

both simple and instructive. Without loss of generality we may assume that∫
Rn f dγn = 1. Denote by ∇ϕ the Brenier map that transports fdγn into dγn

and put θ(x) = ϕ(x) − ‖x‖2/2. Then

∇ϕ(x) = x + ∇θ(x) and I + Hessx θ ≥ 0.

The corresponding Monge–Ampère equation reads as

f(x)e−‖x‖2/2 = det(I + Hessx θ)e−‖x+∇θ(x)‖2/2,
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which yields (taking into account that log(1 + t) ≤ t for t > −1),

log f(x) = −‖x + ∇θ(x)‖2/2 + ‖x‖2/2 + log det(I + Hessx θ)

= −x · ∇θ(x) − ‖∇θ(x)‖2/2 + log det(I + Hessx θ)

≤ −x · ∇θ(x) − ‖∇θ(x)‖2/2 + ∆θ(x).

By integrating both sides with respect to fdγn we infer that∫
Rn

f log f dγn ≤
∫

Rn

f [∆θ − x · ∇θ] dγn − 1
2

∫
Rn

‖∇θ(x)‖2 dγn.

Now use Exercise 5, Section 3.11, to get∫
Rn

f∆θ dγn ≤ −
∫

Rn

∇f · ∇θ dγn.

This allows us to complete the proof as follows:∫
Rn

f log f dγn ≤ −
∫

Rn

∇f(x) · ∇θ(x) dγn − 1
2

∫
Rn

‖∇θ(x)‖2 dγn

= −1
2

∫
Rn

∥∥∥f1/2∇θ(x) +
∇f(x)
f1/2

∥∥∥2
dγn +

1
2

∫
Rn

‖∇f(x)‖2

f
dγn

≤ 1
2

∫
Rn

‖∇f(x)‖2

f
dγn =

1
2

Iγn
(f),

where the first equality is motivated by using integration by parts. ��
The logarithmic Sobolev inequality (in various forms) has proved useful

in several fields of mathematics. In PDE, it provides a control of the entropy
production for evolutive dissipative systems. In probability theory, it is a
tool to obtain concentration of measure phenomena or to study smoothness
properties of Markov processes. In combinatorial theory, it gives estimates on
mixing time of randomized algorithms. See C. Villani [240] and the references
therein.

D. Cordero-Erausquin, R. J. McCann and M. Schmuckenschläger [60] have
extended the Borell–Brascamp–Lieb inequality to the Riemannian setting.
Let M be a complete, connected, n-dimensional manifold equipped with a
Riemannian metric tensor given by C2-smooth functions gij in coordinates.
The role of (1 − t)x + ty is played by

Zt(x, y) = {z ∈ M | d(x, z) = td(x, y) and d(z, y) = (1 − t)d(x, y)}.

Put Zt(x, Y ) =
⋃

y∈Y Zt(x, y) and

vt(x, y) = lim
r→0

Voln[Zt(x, Br(y))]
Voln[Btr(y)]

.
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This ratio measures the volume distortion due to the curvature. In Euclidean
space, vt(x, y) = 1.

The Riemannian Borell–Brascamp–Lieb inequality. Let f, g, h be
nonnegative functions on M and let A, B be Borel subsets of M such that∫

A

f dV =
∫

B

g dV = 1,

where dV denotes the volume measure on M . Assume that for all (x, y) in
A × B and all z in Zt(x, y) we have

1/h(z)1/n ≤ (1 − t)
[v1−t(y, x)

f(x)

]1/n

+ t
[vt(x, y)

g(y)

]1/n

.

Then
∫

Rn h dV ≥ 1.

The Mazur–Ulam theorem appeared in [160]. The concept of a Mazur–
Ulam space was introduced by C. P. Niculescu [184], inspired by a recent
argument given by J. Väisälä [239] to the Mazur–Ulam theorem, and also
by a paper of J. D. Lawson and Y. Lim [140] on the geometric mean in the
noncommutative setting. The presence of Sym++(n, R) among the Mazur–
Ulam spaces is just the tip of the iceberg. In fact, many other symmetric
cones (related to the theory of Bruhat–Tits spaces in differential geometry)
have the same property. See [184] and references therein.

The theory of convex functions of one real variable can be generalized to
several variables in many different ways. A long time ago, P. Montel [171]
pointed out the alternative to subharmonic functions. They are motivated by
the fact that the higher analogue of the second derivative is the Laplacian.
In a more recent paper, B. Kawohl [121] discussed the question when the
superharmonic functions are concave. Nowadays, many other alternatives are
known. An authoritative monograph on this subject has been published by
L. Hörmander [108].

Linear programming is the mathematics of linear inequalities and thus it
represents a natural generalization of linear algebra (which deals with lin-
ear equations). The theoretical basis of linear and nonlinear programming
was published in 1902 by Julius Farkas, who gave a long proof of his result
(Lemma 3.10.3 in our text).



4

Choquet’s Theory and Beyond

The classical Hermite–Hadamard inequality, already presented in Section 1.9,
gives us an estimate, from below and from above, of the arithmetic mean of
a continuous convex function f : [a, b] → R:

f
(a + b

2

)
≤ 1

b − a

∫ b

a

f(x) dx ≤ f(a) + f(b)
2

.

Thinking of [a, b] as a loaded bar with a uniform mass distribution, its
barycenter is precisely the middle point (a+b)/2. In this setting the function f
can be interpreted as a force density. When f is convex, the inequality above
says that the arithmetic mean of f on [a, b] lies between the value of f at the
barycenter and the arithmetic mean of f at the endpoints. It is remarkable
that this fact extends to all continuous convex functions defined on arbitrary
compact convex sets. The details are covered by Choquet’s theory, which forms
the core of this chapter. This theory is quite demanding, and the reader should
have some knowledge of the Krein–Milman theorem and the Riesz–Kakutani
representation theory (along with the functional analysis and measure theory
implicit in an understanding of these theorems). Both topics are presented in
great detail in books like Analysis II by S. Lang [138]. For the convenience of
the reader we have included in Appendix A the basic facts on the separation
of convex sets in locally convex Hausdorff spaces, and also a proof of the
Krein–Milman theorem. The background on measure theory can be covered
from many sources. Besides [138], we mention here books by L. C. Evans and
R. F. Gariepy [74], E. Hewitt and K. Stromberg [103] and W. Rudin [218].

4.1 Steffensen–Popoviciu Measures

Throughout this chapter K will denote a (nonempty) compact convex subset
of a real locally convex Hausdorff space E, and C(K) will denote the space
of all real-valued continuous functions on K. We want to relate the geometry
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of K with the cone Conv(K), of all real-valued continuous convex functions
defined on K.

According to the Stone–Weierstrass theorem, Conv(K)−Conv(K) is dense
in C(K). In fact, due to the formula

sup {f1 − g1, f2 − g2} = sup {f1 + g2, f2 + g1} − (g1 + g2) ,

the set Conv(K)−Conv(K) is a linear sublattice of C(K) which contains the
unit and separates the points of K (since Conv(K) contains all restrictions to
K of the functionals x′ ∈ E′).

We shall need also the space

A(K) = Conv(K) ∩ −Conv(K),

of all real-valued continuous affine functions on K. This is a rich space, as the
following result shows:

Lemma 4.1.1 A(K) contains

E′|K + R · 1 = {x′|K + α | x′ ∈ E′ and α ∈ R}
as a dense subspace.

Proof. Let f ∈ A(K) and ε > 0. The following two subsets of E × R,

J1 = {(x, f(x)) | x ∈ K}
and

J2 = {(x, f(x) + ε) | x ∈ K},

are nonempty, compact, convex and disjoint. By a geometric version of the
Hahn–Banach theorem (see Theorem A.2.4), there exists a continuous linear
functional L on E × R and a number λ ∈ R such that

supL(J1) < λ < inf L(J2).

Hence the equation L(x, g(x)) = λ defines an element g ∈ E′|K + R · 1 such
that

f(x) < g(x) < f(x) + ε for all x ∈ K.

In fact, λ = L(x, 0) + g(x)L(0, 1), and thus g(x) = (λ − L(x, 0))/L(0, 1). This
solves the approximation (within ε) of f by elements of E′|K + R · 1. ��

The following example shows that the inclusion E′|K + R · 1 ⊂ A(K) may
be strict. For this, consider the set,

S = {(an)n | |an| ≤ 1/n2 for every n},

viewed as a subset of �2 endowed with the weak topology. Then S is compact
and convex and the function f((an)n) =

∑
n an defines an element of A(S).
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Moreover, f(0) = 0. However, there is no y in �2 such that f(x) = 〈x, y〉 for
all x ∈ S.

The connection between the points of a compact convex set K and the
positive functionals on C(K) is made visible through the concept of barycen-
ter. In physics, this concept is associated with material bodies. They can be
thought of as compact sets S in R3 on which there is given a mass distribu-
tion, that is, a Borel measure µ with µ(S) > 0. The barycenter is given by
the formula

xS =
1

µ(S)

∫
S

x dµ(x), (4.1)

and it is usual to say that xS is the barycenter of µ rather then S. This leads
to the notation xµ for the barycenter.

In what follows we shall show that a concept of barycenter can be attached
even to some signed Borel measures of positive total mass, defined on compact
convex sets K (in a real locally convex Hausdorff space E).

Definition 4.1.2 A Steffensen–Popoviciu measure is any signed Borel mea-
sure µ on K such that

µ(K) > 0 and
∫

K

f+(x) dµ(x) ≥ 0 for all f ∈ Conv(K). (4.2)

Clearly any Borel measure (of positive total mass) is also a Steffensen–
Popoviciu measure. The following result provides a full characterization of
these measures in the case of intervals.

Lemma 4.1.3 (T. Popoviciu [204]) Let µ be a signed Borel measure on
[a, b] with µ([a, b]) > 0. Then µ is a Steffensen–Popoviciu measure if and only
if it verifies the following condition of end positivity,∫ t

a

(t − x) dµ(x) ≥ 0 and
∫ b

t

(x − t) dµ(x) ≥ 0, (4.3)

for all t ∈ [a, b].

Proof. Clearly, (4.2) yields∫ b

a

(x′(x) + t)+ dµ(x) ≥ 0 for all x′ ∈ E′ and all t ∈ R

and this is equivalent to (4.3) since the dual of R consists of the homotheties
x′ : x → sx. The other implication, (4.3) ⇒ (4.2), is based on Theorem 1.5.7.
If f ≥ 0 is a piecewise linear convex function, then f can be represented as
a finite combination with nonnegative coefficients of functions of the form 1,
(x − t)+ and (t − x)+, so that∫ b

a

f(x) dµ(x) ≥ 0.
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The general case follows from this one, by approximating f+ by piecewise
linear convex functions. ��

An alternative argument for (4.3) ⇒ (4.2), based on the integral represen-
tation of convex functions on intervals, was noticed by A. M. Fink [81].

Corollary 4.1.4 Suppose that x1 ≤ · · · ≤ xn are real points and p1, . . . , pn

are real weights. Then the discrete measure µ =
∑n

k=1 pkδxk
is a Steffensen–

Popoviciu measure if and only if

n∑
k=1

pk > 0,

m∑
k=1

pk(xm − xk) ≥ 0 and
n∑

k=m

pk(xk − xm) ≥ 0 (4.4)

for all m ∈ {1, . . . , n}.
A special case when (4.4) holds is the following, used by Steffensen in his

famous extension of Jensen’s inequality (see Theorem 1.5.6):

n∑
k=1

pk > 0, and 0 ≤
m∑

k=1

pk ≤
n∑

k=1

pk, for all m ∈ {1, . . . , n}. (4.5)

Corollary 4.1.5 An absolutely continuous measure dµ = p(x)dx is a Steffen-
sen–Popoviciu measure on [a, b] if and only if∫ b

a

p(x) dx > 0,

∫ t

a

(t − x)p(x) dx ≥ 0 and
∫ b

t

(x − t)p(x) dx ≥ 0, (4.6)

for all t ∈ [a, b].

A stronger (but more suitable) condition than (4.6) is the following:∫ b

a

p(x) dx > 0 and 0 ≤
∫ t

a

p(x) dx ≤
∫ b

a

p(x) dx for all t ∈ [a, b]. (4.7)

As a consequence we obtain that (x2 + a)dx is a Steffensen–Popoviciu
measure on [−1, 1] for all a > −1/3. Notice that this is a signed measure if
a ∈ (−1/3, 0).

Integrating inequalities is not generally possible in the framework of signed
measures. However, for the Steffensen–Popoviciu measures this works under
certain restrictions, since (4.2) yields easily the following result:

Lemma 4.1.6 Suppose that µ is a Steffensen–Popoviciu measure on K. If
h ∈ A(K), f ∈ Conv(K), and h ≤ f , then∫

K

h(x) dµ(x) ≤
∫

K

f(x) dµ(x).

An immediate consequence is as follows:
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Corollary 4.1.7 Suppose that µ is a Steffensen–Popoviciu measure on K and
f is an affine function on K such that α ≤ f ≤ β for some real numbers α, β.
Then

α ≤ 1
µ(K)

∫
K

f(x) dµ(x) ≤ β.

According to the Riesz–Kakutani representation theorem (see [138], The-
orem 9, p. 338), any continuous linear functional F on C(K) can be uniquely
represented by a signed Borel measure µ on K, via the formula

F (f) =
∫

K

f(x) dµ(x), f ∈ C(K).

Moreover, F is positive if and only if µ is positive. As a consequence, we can
identify the linear functionals on a space C(K) with their representative Borel
measures.

By Corollary 4.1.7, if µ is a Steffensen–Popoviciu measure on K, then

‖µ|A(K)‖ = µ(K).

However, the norm of µ/µ(K) as a functional on C(K) can be arbitrarily
large. In fact, in the case where K = [−1, 1] and dµ = (x2 + a)dx, we have∫ 1

−1
(x2 + a) dx =

2
3

+ 2a,

and thus (2
3

+ 2a
)−1

∫ 1

−1
|x2 + a| dx =

1
1 + 3a

for a > −1/3. This marks a serious difference from the case of positive Borel
measures, where the norm of µ/µ(K) is always 1.

Lemma 4.1.8 Every Steffensen–Popoviciu measure µ on K admits a barycen-
ter, that is, a point xµ in K such that

f(xµ) =
1

µ(K)

∫
K

f(x) dµ(x) (4.8)

for all continuous linear functionals f on E.

The barycenter xµ is unique with this property. This is a consequence
of the separability of the topology of E. See Corollary A.1.5. In the case
of Euclidean spaces the norm and the weak convergence agree, so that the
formula (4.8) reduces to (4.1).

Due to Lemma 4.1.1, the equality (4.8) extends to all f ∈ A(K).

Proof of Lemma 4.1.8. We have to prove that
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f∈E′

Hf

)
∩ K 
= ∅,

where Hf denotes the closed hyperplane {x | f(x) = µ(f)/µ(K)} associated
to f ∈ E′. Since K is compact, it suffices to prove that( n⋂

k=1

Hfk

)
∩ K 
= ∅

for every finite family f1, . . . , fn of functionals in E′. Equivalently, attaching
to any such family of functionals the operator

T : K → Rn, T (x) = (f1(x), . . . , fn(x)),

we have to prove that T (K) contains the point p = 1
µ(K) (µ(f1), . . . , µ(fn)). In

fact, if p /∈ T (K), then a separation argument yields an a = (a1, . . . , an) ∈ Rn

such that
〈p, a〉 > sup

x∈K
〈T (x), a〉,

that is,
1

µ(K)

n∑
k=1

akµ(fk) > sup
x∈K

n∑
k=1

akfk(x).

Then g =
∑n

k=1 akfk will provide an example of a continuous affine func-
tion on K for which µ(g) > supx∈K g(x), a fact which contradicts Corol-
lary 4.1.7. ��

Two Steffensen–Popoviciu measures µ and ν on K are said to be equivalent
(abbreviated, µ ∼ ν) provided that∫

K

f(x) dµ(x) =
∫

K

f(x) dν(x) for all f ∈ A(K).

Using the density of E′|K + R · 1 into A(K), we can rewrite the fact that
x is the barycenter of µ as

µ ∼ δx.

We end this section with a monotonicity property.

Proposition 4.1.9 Suppose that K is as above, µ is a Borel probability mea-
sure on K and f : K → R is a continuous convex function. Then the function

M(t) =
∫

K

f(tx + (1 − t)xµ) dµ(x)

is convex and nondecreasing on [0, 1].
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When E = Rn and µ is the Lebesgue measure, the value of M at t equals
the arithmetic mean of f |Kt , where Kt denotes the image of K through the
mapping x → tx + (1 − t)xµ, that is,

M(t) =
1

µ(Kt)

∫
Kt

f(x) dµ(x).

Proposition 4.1.9 tells us that the arithmetic mean of f |Kt decreases to f(xµ)
when Kt shrinks to xµ. The proof is based on the following approximation
argument:

Lemma 4.1.10 Every Borel probability measure µ on K is the pointwise
limit of a net of discrete Borel probability measures µα, each having the same
barycenter as µ.

Proof. We have to prove that for each ε > 0 and each finite family f1, . . . , fn

of continuous real functions on K there exists a discrete Borel probability
measure ν such that

xν = xµ and sup
1≤k≤n

|ν(fk) − µ(fk)| < ε.

As K is compact and convex and the functions fk are continuous, there
exists a finite covering (Dα)α of K by open convex sets such that the oscillation
of each of the functions fk on each set Dα is less than ε. Let (ϕα)α be a
partition of unity, subordinated to the covering (Dα)α and put

ν =
∑
α

µ(ϕα)δx(α),

where x(α) is the barycenter of the measure f → µ(ϕαf)/µ(ϕα). As Dα is
convex and the support of ϕα is included in Dα, we have x(α) ∈ Dα. On the
other hand,

µ(h) =
∑
α

µ(hϕα) =
∑
α

µ(hϕα)
µ(ϕα)

µ(ϕα) =
∑
α

h(x(α)) µ(ϕα) = ν(h)

for all continuous affine functions h : K → R. Consequently, µ and ν have the
same barycenter. Finally, for each k,

|ν(fk) − µ(fk)| =
∣∣∣∑

α

µ(ϕα)fk(x(α)) −
∑
α

µ(ϕαfk)
∣∣∣

=
∣∣∣∑

α

µ(ϕα)
[
fk(x(α)) − µ(ϕαfk)

µ(ϕα)

]∣∣∣
≤ ε ·

∑
α

µ(ϕα) = ε. ��
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Proof of Proposition 4.1.9. A straightforward computation shows that M(t)
is convex and M(t) ≤ M(1). Then, assuming the inequality M(0) ≤ M(t),
from the convexity of M(t) we infer

M(t) − M(s)
t − s

≥ M(s) − M(0)
s

≥ 0

for all 0 ≤ s < t ≤ 1 that is, M(t) is nondecreasing. To end the proof, it
remains to show that M(t) ≥ M(0) = f(xµ). For this, choose a net (µα)α of
discrete Borel probability measures on K, as in Lemma 4.1.10 above. Clearly,

f(xµ) ≤
∫

K

f(tx + (1 − t)xµ) dµα(x) for all α

and thus the desired conclusion follows by passing to the limit over α. ��

Exercises

1. Prove that (
∏n

k=1(x
2
k + ak))dx1 · · · dxn is a Steffensen–Popoviciu measure

on [−1, 1]n, for all a1, . . . , an > −1/3.

2. Prove that any closed ball in Rn admits a Steffensen–Popoviciu measure
that is not positive.

3. (The failure of Theorem 1.5.7 in higher dimensions) Consider the piecewise
linear convex function

f(x, y) = sup{|x|, |y|, 2|x + y| − 3, 2|x − y| − 3},

defined on the square |x| ≤ 2, |y| ≤ 2. Prove that f cannot be represented
as a sum (with nonnegative coefficients) of a linear function and functions
of the form |g − α|, with g linear and α ∈ R.

4.2 The Jensen–Steffensen Inequality and Majorization

As in the preceding section, K will denote a compact convex subset of a locally
convex Hausdorff space E. The following result extends the left-hand side of
the Hermite–Hadamard inequality:

Theorem 4.2.1 (The generalized Jensen–Steffensen inequality) Sup-
pose that µ is a signed Borel measure on K with µ(K) > 0. Then the following
assertions are equivalent:
(i) µ is a Steffensen–Popoviciu measure;
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(ii) µ admits a barycenter xµ and

f(xµ) ≤ 1
µ(K)

∫
K

f(x) dµ(x).

for all continuous convex functions f : K → R.

In order to prove this result we shall need the fact that each continuous
convex function on K coincides with its lower envelope.

Given a function f in C(K), we can attach to it a lower envelope,

f(x) = sup{h(x) | h ∈ A(K) and f ≥ h},

and an upper envelope,

f(x) = inf{h(x) | h ∈ A(K) and h ≥ f}.

They are related by formulae of the form

f = −(−f),

so it suffices to investigate the properties of one type of envelope, say the
upper one:

Lemma 4.2.2 The upper envelope f is concave, bounded and upper semicon-
tinuous. Moreover:
(i) f ≤ f and f = f if f is concave;
(ii) if f, g ∈ C(K), then f + g ≤ f + g with equality if g ∈ A(K); also,

αf = αf if α ≥ 0;
(iii) the map f → f is nonexpansive, that is, |f − g| ≤ ‖f − g‖.

Proof. Most of this lemma follows directly from the definitions. We shall con-
centrate here on the less obvious assertion, namely the second part of (i). It
may be proved by reductio ad absurdum. Assume that f(x0) < f(x0) for some
x0 ∈ K. By Theorem A.2.4, there exists a closed hyperplane which strictly
separates the convex sets K1 = {(x0, f(x0))} and K2 = {(x, r) | f(x) ≥ r}.
This means the existence of a continuous linear functional L on E × R and of
a scalar λ such that

sup
(x,r)∈K2

L(x, r) < λ < L(x0, f(x0)). (4.9)

Then L(x0, f(x0)) > L(x0, f(x0)), which yields L(0, 1) > 0. The function

h =
λ − L(x, 0)

L(0, 1)

belongs to A(K) and L(x, h(x)) = λ for all x. By (4.9), we infer that h > f
and h(x0) < f(x0), a contradiction. ��
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Proof of Theorem 4.2.1. The implication (i) ⇒ (ii) follows from Lemmas 4.1.6
and 4.2.2. In fact,

f(xµ) = sup{h(xµ) | h ∈ A(K), h ≤ f}

= sup
{

1
µ(K)

∫
K

h dµ
∣∣∣ h ∈ A(K), h ≤ f

}
≤ 1

µ(K)

∫
K

f dµ.

The implication (ii) ⇒ (i) is clear. ��
The classical Jensen–Steffensen inequality (see Theorem 1.5.6) represents

the case where

µ =
n∑

k=1

pkδxk

is a discrete measure associated to a family of points x1 ≤ · · · ≤ xn in an
interval [a, b], and to a family of real weights p1, . . . , pn which verify the
condition (4.5) above. In fact, this is a Steffensen–Popoviciu measure with
barycenter

xµ =
∑n

k=1 pkxk∑n
k=1 pk

,

and Theorem 4.2.1 applies.
It is worth noticing that the Jensen–Steffensen inequality also holds under

the more general condition (4.4).
The discussion above leaves open the case of signed Borel measures of zero

total mass. This is settled by the following result:

Proposition 4.2.3 If µ is a signed Borel measure on K such that µ(K) = 0
and ∫

K

f(x) dµ(x) ≥ 0 for all f ∈ Conv(K), f ≥ 0,

then ∫
K

f(x) dµ(x) ≥ 0 for all f ∈ Conv(K).

Proof. In fact, by replacing µ by µε = µ + εδz (where z is any point of K and
ε > 0) we obtain a Steffensen–Popoviciu measure. By Theorem 4.2.1,

f(xµε) · (µ(K) + ε) ≤
∫

K

f(x) dµ(x) + εf(z)

for all continuous convex functions f on K, and the conclusion follows by
letting ε → 0. ��

Proposition 4.2.3 leads naturally to the extension of the concept of ma-
jorization from strings of real numbers to Steffensen–Popoviciu measures. The
idea is to see any such string as the support of a discrete probability measure.
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Definition 4.2.4 Given two Steffensen–Popoviciu measures µ and ν on K,
we say that µ is majorized by ν (abbreviated, µ ≺ ν or ν � µ) if

1
µ(K)

∫
K

f(x) dµ(x) ≤ 1
ν(K)

∫
K

f(x) dν(x)

for all continuous convex functions f : K → R.

Clearly, we may restrict ourselves to the case of normalized measures (that
is, of unit total mass). By Proposition 4.2.3, if µ and ν are two signed Borel
measures on K with µ(K) = ν(K) = 1, then the relation of majorization
µ ≺ ν can be derived from the following condition:∫

K

f(x) dµ(x) ≤
∫

K

f(x) dν(x) for all f ∈ Conv(K), f ≥ 0. (4.10)

This remark can be converted into more suitable criteria of majorization.
For example, when combined with the argument of Lemma 4.1.3, it yields the
following result:

Lemma 4.2.5 Let µ and ν be two normalized signed Borel measures on [a, b]
such that∫ t

a

(t−x) dµ(x) ≤
∫ t

a

(t−x) dν(x) and
∫ b

t

(x− t) dµ(x) ≤
∫ b

t

(x− t) dν(x)

for all t ∈ [a, b]. Then µ ≺ ν.

Corollary 4.2.6 (The weighted case of the Hardy–Littlewood–Pólya
inequality) Suppose there are given points x1, . . . , xn, y1, . . . , yn in an inter-
val [a, b], and positive weights p1, . . . , pn such that:
(i) x1 ≥ · · · ≥ xn;
(ii)

∑r
k=1 pkxk ≤ ∑r

k=1 pkyk for all r = 1, . . . , n − 1;
(iii)

∑n
k=1 pkxk =

∑n
k=1 pkyk.

Then
∑n

k=1 pkδxk
≺ ∑n

k=1 pkδyk
.

Proof. We have to show that µ =
∑n

k=1 pkδxk
and ν =

∑n
k=1 pkδyk

verify the
hypotheses of Lemma 4.2.5. For example, if t ∈ [a, b] and r is the first index
such that t ≥ xr, then∫ t

a

(t − x) dν(x) −
∫ t

a

(t − x) dµ(x) =
n∑

k=1

pk(t − yk)+ −
n∑

k=1

pk(t − xk)+

≥
n∑

k=r

pk(t − yk) −
n∑

k=r

pk(t − xk)

=
n∑

k=r

pk(xk − yk) ≥ 0.
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The result now follows. ��

More general results can be proved in the framework of Stieltjes measures.

Theorem 4.2.7 Let F, G : [a, b] → R be two functions with bounded variation
such that F (a) = G(a). Then, in order that∫ b

a

f(x) dF (x) ≤
∫ b

a

f(x) dG(x)

for all continuous convex functions f : [a, b] → R, it is necessary and sufficient
that F and G verify the following three conditions:

F (b) = G(b)∫ x

a

F (t) dt ≤
∫ x

a

G(t) dt for all x ∈ (a, b)∫ b

a

F (t) dt =
∫ b

a

G(t) dt.

Corollary 4.2.8 Let f, g ∈ L1[a, b] be two functions. Then fdx ≺ gdx if and
only if the following conditions are fulfilled:∫ b

a

f(x) dx =
∫ b

a

g(x) dx;
∫ b

a

xf(x) dx =
∫ b

a

xg(x) dx;∫ x

a

(x − t)f(t) dt ≤
∫ x

a

(x − t)g(t) dt, for all x ∈ [a, b].

The proof of Theorem 4.2.7 is an immediate consequence of the following
result due to V. I. Levin and S. B. Stec̆kin [141]:

Lemma 4.2.9 Let F : [a, b] → R be a function with bounded variation such
that F (a) = 0. Then∫ b

a

f(x) dF (x) ≥ 0 for all f ∈ Conv(K)

if and only if the following three conditions are fulfilled:

F (b) = 0,

∫ b

a

F (x) dx = 0, and
∫ x

a

F (t) dt ≥ 0 for all x ∈ (a, b).

Proof. Via an approximation argument we may restrict to the case where f
is also piecewise linear. Then, by using twice the integration by parts, we get∫ b

a

f(x) dF (x) = −
∫ b

a

F (x)f ′(x) dx =
∫ b

a

(∫ x

a

F (t) dt

)
f ′′(x) dx,
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whence the sufficiency part. For the necessity, notice that
∫ x

a
F (t) dt < 0 for

some x ∈ (a, b) yields an interval I around x on which the integral is still
negative. Choosing f such that f ′′ = 0 outside I, the above equalities lead to
a contradiction. The necessity of the other two conditions follows by checking
our statement for f = 1, −1, x − a, a − x (in this order). ��

Finally, let us note that the relation of majorization ≺ is a partial ordering
on the set of Steffensen–Popoviciu measures on K; use the denseness of the
space Conv(K)−Conv(K) into C(K). Moreover, according to Theorem 4.2.1,

µ ∼ δx implies δx ≺ µ.

Exercises

1. (G. Szegö) If a1 ≥ a2 ≥ · · · ≥ a2m−1 > 0 and f is a convex function in
[0, a1], prove that

2m−1∑
k=1

(−1)k−1f(ak) ≥ f
(2m−1∑

k=1

(−1)k−1ak

)
.

[Hint : Consider the measure µ =
∑2m−1

k=1 (−1)k−1δak
, whose barycenter is

xµ =
∑2m−1

k=1 (−1)k−1ak.]

2. (R. Bellman) Let a1 ≥ a2 ≥ · · · ≥ an ≥ 0 and let f be a convex function
on [0, a1] with f(0) ≤ 0. Prove that

n∑
k=1

(−1)k−1f(ak) ≥ f
( n∑

k=1

(−1)k−1ak

)
.

3. Suppose that x1 ≤ · · · ≤ xn is a family of points in an interval [a, b], and
p1, . . . , pn is a family of real weights. Prove that

n∑
k=1

pkf(xk) ≥ 0 for all f ∈ Conv([a, b])

if and only if
∑n

k=1 pk = 0,
∑n

k=1 pkxk = 0, and

r∑
k=1

pk(xr+1 − xk) ≥ 0 for all r ∈ {1, . . . , n − 1}.

4. Let p : [0, 1] → R be a continuous function which is nondecreasing on
[0, 1/2] and satisfies the condition f(x) = f(1 − x). Prove that∫ 1

0
f(x)p(x) dx ≤

(∫ 1

0
f(x) dx

)(∫ 1

0
p(x) dx

)
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for all f ∈ Conv([0, 1]). Infer that∫ 1

0
x(1 − x)f(x) dx ≤ 1

6

∫ 1

0
f(x) dx

and ∫ π

0
f(x) sinx dx ≤ 2

π

∫ π

0
f(x) dx,

provided that f is convex on appropriate intervals.
[Hint : It suffices to verify the conditions of Corollary 4.2.8 for f = p and
g =

∫ 1
0 p(x) dx. The third condition in Corollary 4.2.8 reads as

x2

2

∫ 1

0
p(t) dt ≥

∫ x

0

∫ t

0
p(s) dsdt for all x ∈ [0, 1].

For x ∈ [0, 1/2] we have to observe that
∫ x

0 p(t) dt is a convex function on
[0, 1/2], which yields

1
x

∫ x

0
p(t) dt ≤ 2

∫ 1/2

0
p(t) dt =

∫ 1

0
p(t) dt for all x ∈ [0, 1/2]. ]

4.3 Steffensen’s Inequalities

The aim of this section is to prove some inequalities associated to a class of
Steffensen–Popoviciu measures which satisfy condition (4.7) above.

Theorem 4.3.1 (Steffensen’s inequalities) Let g : [a, b] → R be an inte-
grable function such that λ =

∫ b

a
g(t) dt ∈ (0, b − a]. Then the following two

conditions are equivalent:

(i) 0 ≤ ∫ x

a
g(t) dt ≤ x − a and 0 ≤ ∫ b

x
g(t) dt ≤ b − x, for all x ∈ [a, b];

(ii)
∫ a+λ

a
f(t) dt ≤ ∫ b

a
f(t)g(t) dt ≤ ∫ b

b−λ
f(t) dt, for all nondecreasing func-

tions f : [a, b] → R.

Proof. (i) ⇒ (ii) In fact,∫ b

a

f(t)g(t) dt −
∫ a+λ

a

f(t) dt =
∫ a+λ

a

f(t)(g(t) − 1) dt +
∫ b

a+λ

f(t)g(t) dt

and the right-hand side equals∫ a+λ

a

f(t) d

(∫ t

a

g(s) ds − t + a

)
−
∫ b

a+λ

f(t) d

(∫ b

t

g(s) ds

)
= −

∫ a+λ

a

(∫ t

a

g(s) ds − t + a

)
df(t) +

∫ b

a+λ

(∫ b

t

g(s) ds

)
df(t),
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which gives us the left-hand side inequality of (ii). The other inequality can
be obtained in a similar manner.

(ii) ⇒ (i) Consider the case of nondecreasing functions −χ[a,x] and χ[x,b].
��

As was observed in Section 1.5, if F : [a, b] → R is a convex function (which
admits finite derivatives at the endpoints), then

λF ′(a) ≤ F (a + λ) − F (a) and F (b) − F (b − λ) ≤ λF ′(b)

for all λ ∈ [0, b− a]. Steffensen’s inequalities complement these inequalities as
follows: F (a + λ) − F (a) is less than or equal to

inf
{∫ b

a

F ′(t)g(t) dt
∣∣∣ g ∈ L1[a, b], 0 ≤ g ≤ 1,

∫ b

a

g(t) dt = λ

}
and F (b) − F (b − λ) is greater than or equal to

sup
{∫ b

a

F ′(t)g(t) dt
∣∣∣ g ∈ L1[a, b], 0 ≤ g ≤ 1,

∫ b

a

g(t) dt = λ

}
.

From Steffensen’s inequalities we can derive a stronger version of Iyengar’s
inequality:

Theorem 4.3.2 Consider a Riemann integrable function f : [a, b] → R such
that the slopes of the lines AC and CB, joining the endpoints A(a, f(a)) and
B(b, f(b)) of the graph of f to the other points C(x, f(x)) of the graph, vary
between −M and M . Then:∣∣∣∣ 1

b − a

∫ b

a

f(x) dx − f(a) + f(b)
2

∣∣∣∣ ≤ M

4
(b − a) − (f(b) − f(a))2

4M(b − a)
.

Proof. According to the trapezoidal approximation, it suffices to consider the
case where f is piecewise linear. In that case f is absolutely continuous and
it satisfies the inequalities

0 ≤
∫ x

a

f ′(t) + M

2M
dt =

f(x) − f(a) + M(x − a)
2M

≤ x − a

and

0 ≤
∫ b

x

f ′(t) + M

2M
dt =

f(b) − f(x) + M(b − x)
2M

≤ b − x

for all x ∈ [a, b]. The proof ends by applying Theorem 4.3.1 to the function
(f ′ + M)/(2M). ��

Iyengar’s inequality has applications to numerical integration.
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Exercises

1. (R. Apéry) Let f be a decreasing function on (0,∞) and g be a real-valued
measurable function on [0,∞) such that 0 ≤ g ≤ A for a suitable positive
constant A. Prove that∫ ∞

0
f(x)g(x) dx ≤ A

∫ λ

0
f(x) dx,

where λ = (
∫∞
0 g dx)/A.

2. (An extension of Steffensen’s inequalities due to J. Pečarić) Let G be
an increasing and differentiable function on [a, b] and let f : I → R be a
nonincreasing function, where I is an interval that contains the points a,
b, G(a) and G(b). If G(x) ≥ x for all x, prove that∫ b

a

f(x)G′(x) dx ≥
∫ G(b)

G(a)
f(x) dx.

If G(x) ≤ x for all x, then the reverse inequality holds. Infer from this
result Steffensen’s inequalities.

3. Infer from the preceding exercise the following inequality due to C. F.
Gauss: Let f be a nonincreasing function on (0,∞). Then for every λ > 0,

λ2
∫ ∞

λ

f(x) dx ≤ 4
9

∫ ∞

0
x2f(x) dx.

[Hint : Take G(x) = 4x3/27λ2 + λ, for λ > 0.]

4.4 Choquet’s Theorem

The aim of this section is to present a full extension of the Hermite–Hadamard
inequality (1.18) to the framework of continuous convex functions defined on
arbitrary compact convex spaces (when the mean values are computed via
Borel measures). We start with the metrizable case, following the classical
approach initiated by G. Choquet [53].

Theorem 4.4.1 (Choquet’s theorem: The Hermite–Hadamard in-
equality in the metrizable case) Let µ be a Borel measure on a metrizable
compact convex subset K of a locally convex Hausdorff space E. Then there ex-
ists a Borel probability measure λ on K such that the following two conditions
are verified:
(i) λ � µ and λ and µ have the same barycenter;
(ii) the set ExtK, of all extreme points of K, is a Borel set and λ is con-

centrated on ExtK (that is, λ(K\ ExtK) = 0).



4.4 Choquet’s Theorem 193

Under the hypotheses of Theorem 4.4.1 we get

f(xµ) ≤ 1
µ(K)

∫
K

f(x) dµ(x) ≤
∫

Ext K

f(x) dλ(x) (4.11)

for every continuous convex function f : K → R, a fact which represents a full
extension of (1.18) to the case of metrizable compact convex sets. Notice that
the right part of (4.11) reflects the maximum principle for convex functions.

In general, the measure λ is not unique, except for the case of simplices;
see [200, Section 10].

As was noticed in Theorem 4.2.1, the left-hand side inequality in 4.11 works
in the more general framework of Steffensen-Popoviciu measures. This is no
longer true for the right-hand side inequality. In fact, µ = δ−1−δ0+δ1 provides
an example of Steffensen-Popoviciu measure on K = [−1, 1] which is not
majorized by any Steffensen-Popoviciu measure concentrated on ExtK (that
is, by any convex combination of δ−1 and δ1). However, the right-hand side
of (4.11) is known to work for certain signed Borel measures. See Exercise 1.

Proof of Theorem 4.4.1. This will be done in four steps.
Step 1. We start by proving that ExtK is a countable intersection of open

sets (and thus it is a Borel set). Here the assumption on metrizability is
essential.

Suppose that the topology of K is given by the metric d and for each
integer n ≥ 1 consider the set

Kn =
{

x
∣∣∣ x =

y + z

2
, with y, z ∈ K and d(y, z) ≥ 1/2n

}
.

Clearly, ExtK = K\⋃n Kn and an easy compactness argument shows
that each Kn is closed. Consequently, ExtK =

⋂
n �Kn is a countable inter-

section of open sets.
Step 2. We may choose a maximal Borel probability measure λ � ν. To

show that Zorn’s lemma may be applied, consider a chain C = (λα)α in

P = {λ | λ � ν, λ Borel probability measure on K}.

As (λα)α is contained in the weak-star compact set

{λ | λ ∈ C(K), λ ≥ 0, λ(1) = 1},

by a compactness argument we may find a subnet (λβ)β which converges to
a measure λ̃ in the weak-star topology. A moment’s reflection shows that λ̃ is
an upper bound for C. Consequently, we may apply Zorn’s lemma to choose
a maximal Borel probability measure λ � ν. It remains to prove that λ does
the job.

Step 3. Since K is metrizable, it follows that C(K) (and thus A(K)) is
separable. This is a consequence of Urysohn’s lemma in general topology. See
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e.g. [124]. Every sequence (hn)n of affine functions with ‖hn‖ = 1, which is
dense in the unit sphere of A(K), separates the points of K in the sense that
for every x 
= y in K there is an hn such that hn(x) 
= hn(y). Consequently,
the function

ϕ =
∞∑

n=1

2−nh2
n

is continuous and strictly convex, from which it follows that

E = {x | ϕ(x) = ϕ(x)} ⊂ ExtK.

In fact, if x = (y + z)/2, where y and z are distinct points of K, then the
strict convexity of ϕ implies that

ϕ(x) <
ϕ(y) + ϕ(z)

2
≤ ϕ(y) + ϕ(z)

2
≤ ϕ(x).

Step 4. As a consequence of the maximality of λ, we shall show that

λ(ϕ) = λ(ϕ). (4.12)

Then ϕ−ϕ ≥ 0 and λ(ϕ−ϕ) = 0, which yields λ ({x | ϕ(x) = ϕ(x)}) = 0.
Hence λ is concentrated on E .

The proof of (4.12) is based on Lemma 4.2.2. Consider the sublinear func-
tional q : C(K) → R, given by q(f) = λ(f), and the linear functional L defined
on A(K) + R · ϕ by L(h + αϕ) = λ(h) + αλ(ϕ). By Lemma 4.2.2, if α ≥ 0,
then L(h + αϕ) = q(h + αϕ), while if α < 0, then

0 = αϕ − αϕ ≤ αϕ + (−αϕ) = αϕ − αϕ,

which yields

L(h + αϕ) = λ(h + αϕ) ≤ λ(h + αϕ) = q(h + αϕ).

By the Hahn–Banach extension theorem, there exists a linear extension ω of
L to C(K) such that ω ≤ q. If f ≤ 0, then f ≤ 0, so ω(f) ≤ q(f) = λ(f) ≤ 0.
Therefore ω ≥ 0 and the Riesz–Kakutani representation theorem allows us to
identify ω with a suitable Borel probability measure on K.

If f is in Conv(K), then −f is concave and Lemma 4.2.2 yields

ω(−f) ≤ q(−f) = λ(−f) = λ(−f)

that is, λ ≺ ω. Or, λ is maximal, which forces ω = λ. Consequently,

λ(ϕ) = ω(ϕ) = L(ϕ) = λ(ϕ),

which ends the proof. ��
As E. Bishop and K. de Leeuw [30] stated, if K is non-metrizable, then

ExtK need not be a Borel set. However, they were able to prove a Choquet-
type theorem. By combining their argument (as presented in [200, Section 4])
with Theorem 4.4.1 above, one can prove the following more general result:
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Theorem 4.4.2 (The Choquet–Bishop–de Leeuw theorem) Let µ be
a Borel measure on a compact convex subset K of a locally convex Hausdorff
space E. Then there exists a Borel probability measure λ on K such that the
following two conditions are fulfilled:
(i) λ � µ and λ and µ have the same barycenter;
(ii) λ vanishes on every Baire subset of K which is disjoint from the set of

extreme points of K.

Choquet’s theory has deep applications to many areas of mathematics such
as function algebras, invariant measures and potential theory. R. R. Phelps’
book [200] contains a good account on this matter. We shall add here a few
words concerning the connection of Theorem 4.4.1 with some old and new
inequalities.

When K is the interval [a, b] endowed with the normalized Lebesgue mea-
sure dx/(b−a), then xµ is exactly the midpoint (a+ b)/2 and ExtK = {a, b}.
Any Borel probability measure λ concentrated on ExtK is necessarily a con-
vex combination of Dirac measures,

λ = αδa + (1 − α)δb

for some α ∈ [0, 1]. Checking the right-hand side inequality in (4.11) for
f = x − a and f = b − x we get

1 − α ≥ 1/2 and α ≥ 1/2,

that is, α = 1/2. Consequently, in this case (4.11) coincides with (1.18) and
we conclude that Theorem 4.4.1 provides a full generalization of the Hermite–
Hadamard inequality.

In the same way we can infer from Theorem 4.4.1 the following result:

Theorem 4.4.3 Let f be a continuous convex function defined on an n-
dimensional simplex K = [a0, . . . , an] in Rn and let µ be a Borel measure
on K. Then

f(xµ) ≤ 1
µ(K)

∫
K

f(x) dµ

≤ 1
Voln(K)

n∑
k=0

Voln([a0, . . . , âk, . . . , an] · f(ak).

Here [a0, . . . , âk, . . . , an] denotes the subsimplex obtained by replacing ak by
xµ; this is the subsimplex opposite to ak, when adding xµ as a new vertex.

Corollary 4.4.4 (The weighted form of the Hermite–Hadamard in-
equality) For every continuous convex function f : [a, b] → R and every
Borel measure µ on [a, b], we have

f(xµ) ≤ 1
µ([a, b])

∫ b

a

f(x) dµ(x) ≤ b − xµ

b − a
· f(a) +

xµ − a

b − a
· f(b), (4.13)
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where

xµ =
1

µ([a, b])

∫ b

a

x dµ(x)

represents the barycenter of µ.

When dµ(x) = p(x) dx, for some nonnegative continuous function p(x)
whose graph is symmetric with respect to the middle point (a + b)/2, then
xµ = (a + b)/2 and Corollary 4.4.4 reduces to a result due to L. Féjer.

In the case of closed balls K = BR(a) in Rn, ExtK coincides with the
sphere SR(a). According to Theorem 4.4.1, if f : BR(a) → R is a continuous
convex function and µ is the normalized Lebesgue measure on BR(a), then

f(a) ≤ 1
Vol BR(a)

∫∫∫
BR(a)

f(x) dV ≤ 1
Area SR(a)

∫∫
SR(a)

f(x) dS. (4.14)

A similar result works in the case of subharmonic functions, see the Com-
ments at the end of this chapter. As noticed by P. Montel [171], in the context
of C2-functions on open convex sets in Rn, the class of subharmonic functions
is strictly larger than the class of convex function. For example, the function
2x2 − y2 is subharmonic but not convex on R2.

Many interesting inequalities relating weighted means represent averages
over the (n − 1)-dimensional simplex:

∆n = {u = (u1, . . . , un) | u1, . . . , un ≥ 0, u1 + · · · + un = 1}.

Clearly, ∆n is compact and convex and its extreme points are the “corners”
(1, 0, . . . , 0), . . . , (0, 0, . . . , 1).

An easy consequence of Theorem 4.4.1 is the following refinement of the
Jensen–Steffensen inequality for functions on intervals:

Theorem 4.4.5 Suppose that f : [a, b] → R is a continuous convex function.
Then for every n-tuple x = (x1, . . . , xn) of elements of [a, b] and every Borel
measure µ on ∆n we have

f
( n∑

k=1

wkxk

)
≤ 1

µ(∆n)

∫
∆n

f(x · u) dµ ≤
n∑

k=1

wkf(xk). (4.15)

Here (w1, . . . , wn) denotes the barycenter of ∆n with respect to µ. The above
inequalities should be reversed if f is concave on [a, b].

Under the hypotheses of Theorem 4.4.5, the weighted identric mean I(x, µ)
is defined by the formula

I(x, µ) = exp
∫

∆n

ln(x · u) dµ(u)

and the weighted logarithmic mean L(x, µ) is defined by the formula
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L(x, µ) =
(∫

∆n

1
x · u

dµ(u)
)−1

.

By (4.15), we infer easily that L(x, µ) ≤ I(x, µ) and that both lie be-
tween the weighted arithmetic mean A(x, µ) =

∑n
k=1 wkxk and the weighted

geometric mean G(x, µ) =
∏n

k=1 xwk

k , that is,

G(x, µ) ≤ L(x, µ) ≤ I(x, µ) ≤ A(x, µ), (4.16)

a fact which constitutes the weighted geometric-logarithmic-identric-arithmetic
mean inequality.

An important example of a Borel probability measure on ∆n is the Dirich-
let measure of parameters p1, . . . , pn > 0,

Γ(p1 + · · · + pn)
Γ(p1) · · ·Γ(pn)

xp1−1
1 · · ·xpn−1−1

n−1 (1 − x1 − · · · − xn−1)pn−1 dx1 · · · dxn−1.

Its barycenter is the point (
∑n

k=1 pk)−1 · (p1, . . . , pn).

Exercises

1. (A. M. Fink [81]) Let f be a convex function in C2([a, b]) and let µ be a
Borel measure on [a, b] such that µ([a, b]) > 0 and the solution y = y(x) of
the boundary value problem y′′ = p, y(a) = y(b) = 0, is ≤ 0 on [a, b].
(i) Prove that

1
µ([a, b])

∫ b

a

f(x) dµ(x) ≤ b − xµ

b − a
· f(a) +

xµ − a

b − a
· f(b),

where xµ =
∫ b

a
x dµ(x)/µ([a, b]).

(ii) Consider the particular case where [a, b] = [−1, 1] and dµ(x) = (x2 −
1/6) dx. Prove that y(x) = x2(x2 − 1)/12 ≤ 0 and xµ = 0, hence∫ 1

−1
f(x)

(
x2 − 1

6

)
dx ≤ f(−1) + f(1)

6

for all convex functions f in C2([−1, 1]).
(iii) Consider the particular case where [a, b] = [−1, 1] and dµ(x) = (x2 −

x) dx. Prove that y = (x2 − 1)(x − 1)2/12 ≤ 0 and xµ = −1, hence∫ 1

−1
f(x)(x2 − x) dx ≤ 2

3
f(−1)

for all convex functions f in C2([−1, 1]). Notice that (x2 − x) dx is
not a Steffensen–Popoviciu measure on [−1, 1].
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[Hint : Let G(x, t) be the Green’s function for the boundary value problem
in the statement. Then G(x, t) = G(t, x) and

y(x) =
∫ b

a

G(x, t) dµ(t)

so that we can compute
∫ b

a
f ′′(x)y(x) dx by using the Fubini theorem. To

end the proof, notice that∫ b

a

G(t, x)f ′′(x) dx = f(t) − f(a)
b − t

b − a
− f(b)

t − a

b − a
. ]

2. (A higher dimensional analogue of the Hermite–Hadamard inequality) Let
f be a continuous concave function defined on a compact convex subset
K ⊂ Rn of positive volume. Prove that

1
n + 1

sup
x∈K

f(x) +
n

n + 1
inf

x∈Ext K
f(x) ≤ 1

Voln(K)

∫
K

f(x) dx ≤ f(xk),

where xk is the barycenter of K.

3. (R. R. Phelps [200]) Let E be a normed linear space. Prove that

xn → x weakly in E

if and only if the sequence (xn)n is norm bounded and limn→∞ f(xn) =
f(x) for each extreme point f of the closed unit ball in E′.
[Hint : Let K be the closed unit ball in E′. Then K is convex and weak-
star compact (see Theorem A.1.6). Each point x ∈ E gives rise to an affine
mapping Ax : K → R, Ax(x′) = x′(x). Then apply Theorem 4.4.2. ]

4. (R. Haydon) Let E be a real Banach space and let K be a weak-star
compact convex subset of E′ such that ExtK is norm separable. Prove
that K is the norm closed convex hull of ExtK (and hence is itself norm
separable).

5. Let K be a nonempty compact convex set in a locally convex Hausdorff
space E. Given f ∈ C(K), prove that:
(i) f(x) = inf{g(x) | g ∈ −Conv(K) and g ≥ f};
(ii) for each pair of functions g1, g2 ∈ −Conv(K) with g1, g2 ≥ f , there

is a function g ∈ −Conv(K) such that g1, g2 ≥ g ≥ f ;
(iii) µ(f) = inf{µ(g) | g ∈ −Conv(K) and g ≥ f}.

6. (G. Mokobodzki) Infer from the preceding exercise that a Borel probability
measure µ on K is maximal if and only if µ(f) = µ(f) for all continuous
convex functions f on K (equivalently, for all functions f ∈ C(K)).
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4.5 Comments

The highlights of classical Choquet theory have been presented by R. R. Phelps
[200]. However, the connection between the Hermite–Hadamard inequality and
Choquet’s theory remained unnoticed until very recently. In 2001, during a
conference presentation at the University of Timisoara, C. P. Niculescu called
the attention to this matter and sketched the theory of Steffensen–Popoviciu
measures. Details appeared in [181] and [182]. Unfortunately, the claim of
Theorems 4 and 5 in [181] on the existence of Borel probability measures ma-
jorizing a given Steffensen-Popoviciu measure is false. This leaves open the
extension of Theorem 4.1.1 to the case of signed Borel measures.

Proposition 4.1.9 was first noticed by S. S. Dragomir in a special case. In
its present form it is due to C. P. Niculescu [180].

The Steffensen inequalities appeared in his paper [228]. Using the right-
hand side inequality in Theorem 4.3.1 (ii), he derived in [229] what is now
known as the Jensen–Steffensen inequality. The proof of Theorem 4.3.1 which
appears in this book is due to P. M. Vasić and J. Pečarić. See [196, Section 6.2].

K. S. K. Iyengar published his inequality in [113]. Its generalization, as pre-
sented in Theorem 4.3.2, follows the paper by C. P. Niculescu and F. Popovici
[187].

As noticed in Theorem 1.10.1, the relation of majorization x ≺ y can
be characterized by the existence of a doubly stochastic matrix P such that
x = Py. Thinking of x and y as discrete probability measures, this fact can
be rephrased as saying that y is a dilation of x. The book by R. R. Phelps
[200] indicates the details of an extension (due to P. Cartier, J. M. G. Fell
and P. A. Meyer) of this characterization to the general framework of Borel
probability measures on compact convex sets (in a locally convex Hausdorff
space).

Related to the relation of majorization is the notion of Schur convexity.
Let D be an open convex subset of Rn which is symmetric, that is, invariant
under each permutation of the coordinates. A function f : D → R is said to
be Schur convex (or Schur increasing) if it is nondecreasing relative to ≺.
Similarly for Schur concave functions, also called Schur decreasing. A Schur
convex function is always symmetric. An obvious example is

F (x1, . . . , xn) =
n∑

k=1

f(xk)

where f : R → R is a convex function. More generally, every symmetric and
convex (concave) function on D is Schur convex (concave).

A symmetric C1-function f on D is Schur convex if and only if ∂f
∂xi

− ∂f
∂xj

is always of the same sign as xi − xj , for all i, j ∈ {1, . . . , n}.
The area of a triangle is a Schur concave function of its sides. The radius

of the circumscribed circle of a triangle is a Schur convex function of its sides.
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The books by A. W. Marshall and I. Olkin [155] and Y. L. Tong [237]
contain significant applications of Schur convexity.

Following our paper [186], we shall show that the Hermite–Hadamard in-
equality also works in the context of subharmonic functions. The key remark
is the possibility of extending the result of Exercise 4 in Section 1.9 to several
variables.

Let Ω be a bounded open subset of Rn with smooth boundary. Then the
Dirichlet problem {

∆ϕ = 1 on Ω
ϕ = 0 on ∂Ω

(4.17)

has a unique solution, which is negative on Ω, according to the maximum
principle for elliptic problems. See [211]. By Green’s formula, for every u in
C2(Ω) ∩ C1(Ω) we have∫

Ω

∣∣∣∣ u ϕ
∆u ∆ϕ

∣∣∣∣ dV =
∫

∂Ω

∣∣∣∣ u ϕ
∇u ∇ϕ

∣∣∣∣ · ndS,

that is, in view of (4.17),∫
Ω

u dV =
∫

Ω
u∆ϕ dV

=
∫

Ω
ϕ∆u dV +

∫
∂Ω

u(∇ϕ · n) dS −
∫

∂Ω
ϕ(∇u · n) dS

=
∫

Ω
ϕ∆u dV +

∫
∂Ω

u(∇ϕ · n) dS

for every u ∈ C2(Ω) ∩ C1(Ω). We are then led to the following result:

Theorem (The Hermite–Hadamard inequality for subharmonic func-
tions) If u ∈ C2(Ω) ∩ C1(Ω) is subharmonic (that is, ∆u ≥ 0 on Ω) and ϕ
satisfies (4.17), then ∫

Ω
u dV <

∫
∂Ω

u(∇ϕ · n) dS

except for harmonic functions (when equality occurs).

The equality case needs the remark that
∫
Ω ϕ∆u dV = 0 yields ϕ∆u = 0

on Ω, and thus ∆u = 0 on Ω; notice that ϕ∆u is continuous and ϕ∆u ≤ 0
since ϕ < 0 on Ω.

In the case of balls Ω = BR(a) in R3, the solution of the problem (4.17)
is ϕ(x) = (‖x‖2 − R2)/6 and ∇ϕ · n = x/3 · x/‖x‖ = ‖x‖/3, so that by
combining the maximum principle for elliptic problems with the conclusion of
the above theorem we obtain the following Hermite–Hadamard type inequality
for subharmonic functions:



4.5 Comments 201

u(a) ≤ 1
Vol BR(a)

∫∫∫
BR(a)

u(x) dV <
1

Area SR(a)

∫∫
SR(a)

u(x) dS

for every u ∈ C2(BR(a)) ∩ C1(BR(a)) with ∆u ≥ 0, which is not harmonic.
Consider now the Green kernel G(x, y) associated with −∆ on Ω. The

solution u ∈ C(Ω) ∩ C2(Ω) of the Dirichlet problem{
∆u = f on Ω
u = 0 on ∂Ω

(4.18)

where f ∈ L1(Ω), and f ≥ 0, can be represented as

u(x) =
∫

Ω
G(x, y)f(y) dV. (4.19)

By varying f , the set of all such functions u constitutes a subcone SH+
0 (Ω),

of the convex cone SH+(Ω) of all nonnegative superharmonic functions on Ω.
Recall that a function u is called superharmonic if −u is subharmonic. The
maximum principle for elliptic problems assures that u ≥ 0 (and the same is
true for G).

Theorem (The extension of Berwald’s inequality for subharmonic
functions) Assume that 0 < r ≤ 1 ≤ s and

C = C(r, s; µ, ν) = sup
y∈Ω

(∫
Ω

G(x, y)sdµ(x)
)1/s

/

(∫
Ω

G(x, y)rdν(x)
)1/r

< ∞,

where µ and ν are two Borel probability measures on Ω. Then(∫
Ω

us(x)dµ(x)
)1/s

≤ C

(∫
Ω

ur(x)dν(x)
)1/r

(4.20)

for every u ∈ SH+
0 (Ω) and the constant C = C(r, s; µ, ν) is sharp.

If µ and ν are absolutely continuous with respect to the Lebesgue mea-
sure on Ω, then the inequality (4.20) extends (by density) to the whole cone
SH+(Ω).

Proof. We use the representation formula (4.19). Then, by applying the
Rogers-Hölder inequality, the Fubini theorem and finally the Minkowski in-
equality, we get
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Ω

us(x)dµ(x) =
∫

Ω
us−1(x)

(∫
Ω

G(x, y)f(y)dV

)
dµ(x)

=
∫

Ω

(∫
Ω

G(x, y)us−1(x)dµ(x)
)

f(y) dV

≤
∫

Ω

(∫
Ω

G(x, y)sdµ(x)
)1/s

·
(∫

Ω
u(s−1)s′

(x)dµ(x)
)1/s′

f(y) dV

≤ C

(∫
Ω

us(x)dµ(x)
)1/s′ ∫

Ω

(∫
Ω

G(x, y)rdν(x)
)1/r

f(y) dV

≤ C

(∫
Ω

us(x)dµ(x)
)1/s′(∫

Ω

(∫
Ω

G(x, y)f(y)dV

)r

dν(x)
)1/r

≤ C

(∫
Ω

us(x)dµ(x)
)1/s′(∫

Ω
ur(x)dν(x)

)1/r

,

where s′ is the conjugate of s. This yields the formula (4.20). The fact that
C = C(r, s; µ, ν) is sharp follows by considering the case of functions u (x) =
G(x, y), for y ∈ Ω arbitrarily fixed. ��

The result of theorem above is valid for every function u representable via
nonnegative kernels by formulae of the type (4.19), with f continuous and
nonnegative.

For Ω = (a, b), the Green kernel is

G(x, y) =
{

(y − a)(b − x) if a ≤ y ≤ x ≤ b
(x − a)(b − y) if a ≤ x ≤ y ≤ b

and thus for dµ(x) = dν(x) = dx/(b − a) we have

C(r, s; dx/(b − a), dx/(b − a)) = (r + 1)1/r
/ (s + 1)1/s

.

This allows us to recover Berwald’s inequality in the range 0 < r ≤ 1 ≤ s < ∞,
for continuous concave functions of a real variable.

As noticed by G. Choquet [53], the similarities between the convex func-
tions and the subharmonic functions can be explained by the existence of a
much larger theory concerning the pairs (X, S), where X is a Hausdorff com-
pact space and S is a convex cone of lower semicontinuous and bounded below
functions f : X → R ∪ {∞}. Within this framework, the role of the relation
of majorization on the set Prob(X), of all Borel probability measures on X,
is played by the relation

µ ≤S ν if and only if µ(s) ≤ ν(s) for all s ∈ S.
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Background on Convex Sets

The Hahn–Banach theorem is a deep result in functional analysis which pro-
vides important consequences to convex function theory. Its proof and some
of its applications are presented here for the convenience of the reader.

A.1 The Hahn–Banach Extension Theorem

Throughout, E will denote a real linear space.
A functional p : E → R is subadditive if p(x + y) ≤ p(x) + p(y) for all

x, y ∈ E; p is positively homogeneous if p(λx) = λp(x) for each λ ≥ 0 and each
x in E; p is sublinear if it has both the above properties. A sublinear functional
p is a seminorm if p(λx) = |λ|p(x) for all scalars. Finally, a seminorm p is a
norm if

p(x) = 0 =⇒ x = 0.

If p is a sublinear functional, then p(0) = 0 and −p(−x) ≤ p(x). If p is a
seminorm, then p(x) ≥ 0 for all x in E and {x | p(x) = 0} is a linear subspace
of E.

Theorem A.1.1 (The Hahn–Banach theorem) Let p be a sublinear func-
tional on E, let E0 be a linear subspace of E, and let f0 : E0 → R be a linear
functional dominated by p, that is, f0(x) ≤ p(x) for all x ∈ E0. Then f0 has
a linear extension f to E which is also dominated by p.

Proof. We consider the set P of all pairs (h, H), where H is a linear subspace
of E that contains E0 and h : H → R is a linear functional dominated by p
that extends f0. P is nonempty (as (f0, E0) ∈ P). One can easily prove that
P is inductively ordered with respect to the order relation

(h, H) ≺ (h′, H ′) ⇐⇒ H ⊂ H ′ and h′|H = h,

so that by Zorn’s lemma we infer that P contains a maximal element (g, G).
It remains to prove that G = E.
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If G 
= E, then we can choose an element z ∈ E\G and denote by G′ the
set of all elements of the form x + λz, with x ∈ G and λ ∈ R. Clearly, G′ is a
linear space that contains G strictly and the formula

g′(x + λz) = g(x) + αλ

defines (for every α ∈ R) a linear functional on G′ that extends g. We shall
show that α can be chosen so that g′ is dominated by p (a fact that contradicts
the maximality of (g, G)).

In fact, g′ is dominated by p if

g(x) + αλ ≤ p(x + λz)

for every x ∈ G and every λ ∈ R. If λ ≥ 0, this means:

g(x) + α ≤ p(x + z) for every x ∈ G.

If λ < 0, we get (after simplification by −λ),

g(x) − α ≤ p(x − z) for every x ∈ G.

Therefore, we have to choose α such that

g(u) − p(u − z) ≤ α ≤ p(v + z) − g(v)

for every u, v ∈ G. This choice is possible because

g(u) + g(v) = g(u + v) ≤ p(u + v) ≤ p(u − z) + p(v + z)

for all u, v ∈ G, which yields

sup
u∈G

(g(u) − p(u − z)) ≤ inf
v∈G

(p(v + z) − g(v)).

The proof is now complete. ��

Corollary A.1.2 If p is a sublinear functional on a real linear space E, then
for every element x0 ∈ E there exists a linear functional f : E → R such that
f(x0) = p(x0) and f(x) ≤ p(x) for all x in E.

Proof. Take E0 = {λx0 | λ ∈ R} and f0(λx0) = λp(x0) in Theorem A.1.1. ��

The continuity of a linear functional on a topological linear space E means
that it is bounded in a neighborhood of the origin. We shall denote by E′ the
dual space of E that is, the space of all continuous linear functionals on E.

In the context of normed linear spaces, the remark above allows us to
define the norm of a continuous linear functional f : E → R by the formula
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‖f‖ = sup
‖x‖≤1

|f(x)|.

With respect to this norm, the dual space of a normed linear space is
always complete.

It is worth noting the following variant of Theorem A.1.1 in the context
of real normed linear spaces:

Theorem A.1.3 (The Hahn–Banach theorem) Let E0 be a linear sub-
space of the normed linear space E, and let f0 : E0 → R be a continuous
linear functional. Then f0 has a continuous linear extension f to E, with
‖f‖ = ‖f0‖.
Corollary A.1.4 If E is a normed linear space, then for each x0 ∈ E with
x0 
= 0 there exists a continuous linear functional f : E → R such that f(x0) =
‖x0‖ and ‖f‖ = 1.

Corollary A.1.5 If E is a normed linear space and x is an element of E
such that f(x) = 0 for all f in the dual space of E, then x = 0.

The weak topology on E is the locally convex topology associated to the
family of seminorms

pF (x) = sup{|f(x)| ∣∣ f ∈ F},

where F runs over all nonempty finite subsets of E′. A sequence (xn)n con-
verges to x in the weak topology (abbreviated, xn

w→ x) if and only if
f(xn) → f(x) for every f ∈ E′. When E = Rn this is the coordinate-wise con-
vergence and agrees with the norm convergence. In general, the norm function
is only weakly lower semicontinuous, that is,

xn
w→ x =⇒ ‖x‖ ≤ lim inf

n→∞ ‖xn‖.

By Corollary A.1.5 it follows that E′ separates E in the sense that

x, y ∈ E and f(x) = f(y) for all f ∈ E′ =⇒ x = y.

As a consequence we infer that the weak topology is separated (equiva-
lently, Hausdorff).

For E′ we can speak of the normed topology, of the weak topology (asso-
ciated to E′′ = (E′)′) and also of the weak-star topology , which is associated
to the family of seminorms pF defined as above, with the difference that F
runs over all nonempty finite subsets of E. The weak-star topology on E′ is
separated.

A net (fi)i∈I (over some directed set I) converges to f in the weak-star
topology (abbreviated, fi

w∗
→ f) if and only if fi(x) → f(x) for all x ∈ E.
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Theorem A.1.6 (The Banach–Alaoglu theorem) If E is a normed lin-
ear space, then the closed unit ball of its dual space is compact in the weak-star
topology. Consequently, each net of points of this ball has a converging subnet.

See [64, p. 47] for details.
When E is a separable normed linear space, the closed unit ball of E′ is

also a metrizable space in the weak-star topology (and in this case dealing
with sequences suffices as well). We come to the separability situation very
often, by replacing E with a subspace generated by a suitable sequence of
elements.

Remark A.1.7 According to the Banach–Alaoglu theorem, if E is a normed
linear space, then each weak-star closed subset of the closed unit ball of the
dual of E is weak-star compact. This is a big source of compact convex sets
in mathematics. For example, so is the set Prob(X), of all Borel probability
measures on a compact Hausdorff space X. These are the regular σ-additive
measures µ on the Borel subsets of X with µ(X) = 1. The Riesz–Kakutani
representation theorem (see [103, p. 177]) allows us to identify Prob(X) with
the following weak-star closed subset of norm-1 functionals of C(X)′:

K = {L | L ∈ C(X)′, L(1) = 1 = ‖L‖}.

Notice that K consists of positive functionals, that is,

f ∈ C(X), f ≥ 0 implies L(f) ≥ 0.

In fact, if the range of f is included in [0, 2r], then ‖f − r‖ ≤ r, so that
r ≥ |L(f − r)| = |L(f) − r|, that is, L(f) ∈ [0, 2r].

Corollary A.1.4 yields an important canonical embedding of each normed
linear space E into its second dual E′′:

JE : E → E′′, JE(x)(x′) = x′(x).

One can easily show that JE is a linear isometry.
A Banach space E is said to be reflexive if JE is onto (that is, if E is

isometric with its second dual through JE). Besides the finite dimensional
Banach spaces, other examples of reflexive Banach spaces are Hilbert spaces
and the spaces Lp(µ) for 1 < p < ∞. One can easily prove the following
permanence properties:

(R1) every closed subspace of a reflexive space is reflexive;
(R2) the dual of a reflexive space is also a reflexive space;
(R3) reflexivity preserves under renorming by an equivalent norm.

Property (R3) follows from the following characterization of reflexivity:

Theorem A.1.8 (The Eberlein–Šmulyan theorem) A Banach space E
is reflexive if and only if every bounded sequence of elements of E admits a
weakly converging subsequence.
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The necessity part is a consequence of the Banach–Alaoglu theorem (The-
orem A.1.6). In fact, we may restrict ourselves to the case where E is also sep-
arable. The sufficiency part follows from the remark that JE maps the closed
unit ball of E into a w′-dense (and also w′-closed) subset of the closed unit
ball of E′′. Full details are available in books such as those by H. W. Alt [6],
J. B. Conway [58] or M. M. Day [64].

A.2 Separation of Convex Sets

The notion of a hyperplane in a real linear space E was introduced in Sec-
tion 3.3 as the translate of the kernel of a nonzero linear functional. It can
be equally defined as a maximal proper affine subset. In fact, if h : E → R is
a nonzero linear functional, we may choose a v ∈ E with h(v) = 1. Then all
x ∈ E can be represented as

x = (x − h(x)v) + h(x)v

where x − h(x)v ∈ ker h. This shows that ker h is a linear space of codimen-
sion 1, and thus all its translates are maximal proper affine subsets.

Conversely, if H is a maximal proper affine set in E and x0 ∈ H, then
−x0 + H is a linear subspace (necessarily of codimension 1). Hence there
exists a vector v 
= 0 such that E is the direct sum of −x0 + H and Rv, that
is, all x ∈ E can be uniquely represented as

x = (−x0 + y) + λv

for suitable y ∈ H and λ ∈ R. The formula h(x) = λ defines a linear functional
h such that h(v) = 1 and h(x) = 0 if and only if x ∈ −x0 + H. Consequently,

H = {x | h(x) = h(x0)}.

Suppose now that E is a Hausdorff linear topological space. Then the
discussion above shows that the closed hyperplanes H in E coincide with the
constancy sets of nonzero continuous and linear functionals. In fact, it suffices
to consider the case where H is a closed subspace of codimension 1. In that case
E/H is 1-dimensional and thus it is algebraically and topologically isomorphic
to R. By composing such an isomorphism with the canonical projection from
E onto E/H we obtain a continuous linear functional h for which H = ker h.

To each hyperplane {x | h(x) = λ} we can attach two half-spaces,

{x | h(x) ≤ λ} and {x | h(x) ≥ λ}.

We say that two sets A and B are separated by a hyperplane H if they
are contained in different half-spaces. The separation is strict if at least one
of the two sets does not intersect H.

A basic result concerning the separability by hyperplanes is as follows:
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Theorem A.2.1 (Mazur’s theorem) Let K be a convex set with nonempty
interior in a real linear topological Hausdorff space E and let A be an affine
subset which contains no interior point of K. Then there exists a closed hy-
perplane H such that H ⊃ A and H ∩ K = ∅.

In other words, there exists a continuous linear functional h : E → R and
a number α ∈ R such that h(x) = α if x ∈ A and h(x) < α if x ∈ K.

Proof. We may assume that K is a convex neighborhood of the origin since
otherwise we choose an interior point x0 in K and replace K and A by K −x0
and A − x0 respectively. Notice that translations are isomorphisms, so they
preserve the nature of K and A. Denote by E0 the linear span of A. Then A
is a hyperplane in E0, which yields a linear functional f0 : E0 → R such that

A = {x ∈ E0 | f0(x) = 1}.

The Minkowski functional of K,

pK(x) = inf{λ > 0 | x ∈ λK}
is sublinear and {x | pk(x) < 1} coincides with the interior of K. In fact, if x
is an interior point of K, then x+V ⊂ K for a convex neighborhood V of the
origin. Due to the continuity of the map λ → λx, there must exist a λ ∈ (0, 1)
with λx ∈ V . Then x + λx ∈ x + V ⊂ K, so that pK(x) < 1. Conversely, if
pK(x) < 1, then x ∈ λK for some λ ∈ (0, 1), which yields

x ∈ x + (1 − λ)K ⊂ λK + (1 − λ)K = K.

Notice that (1 − λ)K is a neighborhood of the origin.
Since A contains no interior point of K it follows that f0(x) = 1 ≤ pK(x)

for all x ∈ A. If x ∈ A and λ > 0, then f0(λx) ≤ pK(λx), while for λ ≤ 0 we
have f0(λx) ≤ 0 ≤ pK(λx). Consequently f0 ≤ pK on E0. By Theorem A.1.1,
f0 has a linear extension f to E such that f ≤ pK . Put H = {x | f(x) = 1}.
Then H is a hyperplane. Since |f(x)| ≤ pK(x) < 1 for x in K, it follows that
f is bounded on a neighborhood of 0 and thus continuous. Therefore H is a
closed hyperplane and it is clear that H ⊃ A and H ∩ K = ∅. ��

Corollary A.2.2 If U is a nonempty open convex set and F is a linear sub-
space such that F ∩ U = ∅, then there exists a continuous linear functional f
such that f(x) = 0 if x ∈ F and f(x) > 0 if x ∈ U .

In order to prove a strict separation result we need the following lemma
of independent interest:

Lemma A.2.3 Suppose that K1 and K2 are two nonempty convex sets in a
real linear topological space E with K1 ∩ K2 = ∅. If one of them is open, then
there exists a closed hyperplane separating K1 from K2.
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Proof. If K1 is open, then the set

U = K1 − K2 =
⋃

k2∈K2

(K1 − k2)

is open. Since K1 and K2 are convex, U is convex too. Moreover, 0 /∈ U since
K1 ∩ K2 = ∅. By Corollary A.2.2 there exists a continuous linear functional
f such that f(x) > 0 on U . Therefore f(x) > f(y) for all x ∈ K1 and all
y ∈ K2. Letting

α = inf{f(x) | x ∈ K1},

one can show immediately that K1 and K2 are separated by the closed hy-
perplane H = {x | f(x) = α}. ��

Theorem A.2.4 (Strong separation theorem) Let K1 and K2 be two
nonempty convex sets in a real locally convex Hausdorff space E such that
K1 ∩ K2 = ∅. If K1 is compact and K2 is closed, then there exists a closed
hyperplane strictly separating K1 from K2.

Particularly, if K is a closed convex set in a locally convex space E and
x ∈ E is not in K, then there exists a functional f ∈ E′ such that

f(x) > sup{f(y) | y ∈ K}.

Proof. By our hypothesis, there exists an open convex neighborhood W of the
origin such that (K1 + W ) ∩ (K2 + W ) = ∅. This follows directly by using
reductio ad absurdum. Since the sets K1 + W and K2 + W are convex and
open, from Lemma A.2.3 we infer the existence of a separating hyperplane H.
A moment’s reflection shows that H separates strictly K1 from K2. ��

The closed convex hull of a subset A of a locally convex space E is the
smallest closed convex set co(A) containing A (that is, the intersection of
all closed convex sets containing A). From Theorem A.2.4 we can infer the
following result on the support of closed convex sets:

Corollary A.2.5 If A is a nonempty subset of a real locally convex Hausdorff
space E, then the closed convex hull co(A) is the intersection of all the closed
half-spaces containing A. Equivalently,

co(A) =
⋂

f∈E′
{x | f(x) ≤ sup

y∈A
f(y)}.

This corollary implies:

Corollary A.2.6 In a real locally convex Hausdorff space E, the closed con-
vex sets and the weakly closed convex sets are the same.
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Finally it is worth mentioning a non-topological version of the separation
results above, which is important in optimization theory.

Given a set A in a linear space E, a point a of A is said to be a core point
if for every v ∈ E, v 
= a, there exists an ε > 0 such that a + δv ∈ A for every
δ with |δ| < ε.

Theorem A.2.7 Let K and M be two nonempty convex sets in a real linear
space E. If K contains core points and M contains no core point of K, then
K and M can be separated by a hyperplane.

The details can be easily filled out by adapting the argument given in the
topological case.

A.3 The Krein–Milman Theorem

In Section 3.3 we proved that every compact convex set in Rn is the convex
hull of its extreme points. This result can be extended to a very general setting.

Theorem A.3.1 Let E be a locally convex Hausdorff space and K be a
nonempty compact convex subset of E. If U is an open convex subset of K
such that ExtK ⊂ U , then U = K.

Proof. Suppose that U 
= K and consider the family U of all open convex sets
in K which are not equal to K. By Zorn’s lemma, each set U ∈ U is contained
in a maximal element V of U .

For each x ∈ K and t ∈ [0, 1], let ϕx,t : K → K be the continuous map
defined by ϕx,t(y) = ty + (1 − t)x.

Assuming x ∈ V and t ∈ [0, 1), we shall show that ϕ−1
x,t(V ) is an open

convex set which contains V properly, hence ϕ−1
x,t(V ) = K. In fact, this is

clear when t = 0. If t ∈ (0, 1), then ϕx,t is a homeomorphism and ϕ−1
x,t(V ) is

an open convex set in K. Moreover,

ϕx,t(V ) ⊂ V,

which yields V ⊂ ϕ−1
x,t(V ), hence ϕ−1

x,t(V ) = K by the maximality of V .
Therefore ϕx,t(K) ⊂ V . For any open convex set W in K the intersection
V ∩ W is also open and convex, and the maximality of V yields that either
V ∪W = V or V ∪W = K. In conclusion K\V is precisely a singleton {e}. But
such a point is necessarily an extreme point of K, which is a contradiction. ��

Corollary A.3.2 (Krein–Milman theorem) Let K be a nonempty com-
pact convex subset of a locally convex Hausdorff space E. Then K is the closed
convex hull of ExtK.
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Proof. By Theorem A.2.4, the set L = co(ExtK) is the intersection of all
open convex sets containing L. If U is an open subset of K and U ⊃ L, then
U ⊃ ExtK. Hence U = K and L = K. ��

The above proof of the Krein–Milman theorem yields the existence of
extreme points as a consequence of the formula K = co(ExtK). However this
can be checked directly. Call a subset A of K extremal if it is closed, nonempty
and verifies the following property:

x, y ∈ K and (1 − λ)x + λy ∈ A for some λ ∈ (0, 1) =⇒ x, y ∈ A.

By Zorn’s lemma we can choose a minimal extremal subset, say S. We
show that S is a singleton (which yields an extreme point of K). In fact, if
S contains more than one point, the separation Theorem A.2.4 proves the
existence of a functional f ∈ E′ which is not constant on S. But in this case
the set

S0 = {x ∈ S | f(x) = sup
y∈S

f(y)}

will contradict the minimality of S. Now the formula K = co(ExtK) can
easily be proved by noticing that the inclusion co(ExtK) ⊂ K cannot be
strict.

Another application of Theorem A.3.1 is the following generalization of
Theorem 3.4.6:

Corollary A.3.3 (Bauer maximum principle) Suppose that K is a non-
empty compact convex set as in Theorem A.3.1. Then every upper semicontin-
uous convex function f : K → [−∞,∞) attains its supremum at an extreme
point.

Proof. Since f is upper semicontinuous, the family of sets

Un = {x ∈ K | f(x) < n} (n ∈ N),

provides an open covering of K, so K = Un for some n, which shows that
f is bounded above. Put M = sup{f(x) | x ∈ K}. If f does not attain its
supremum at a point of ExtK, then U = {x ∈ K | f(x) < M} is an open
convex set containing ExtK. By Theorem A.3.1 we conclude that U = K,
which is a contradiction. ��

It is interesting to note the following converse to Theorem A.3.1:

Theorem A.3.4 (D. P. Milman) Suppose that K is a compact convex set
(in a locally convex Hausdorff space E) and C is a subset of K such that K
is the closed convex hull of C. Then the extreme points of K are contained in
the closure of C.
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Coming back to Theorem 3.3.5, the fact that every point x of a compact
convex set K in Rn is a convex combination of extreme points of K,

x =
m∑

k=1

λkxk,

can be reformulated as an integral representation,

f(x) =
m∑

k=1

λkf(xk) =
∫

Ext K

f dµ (A.1)

for all f ∈ (Rn)′. Here µ =
∑m

k=1 λkδxk
is a convex combination of Dirac

measures δxk
and thus µ itself is a Borel probability measure on ExtK.

The integral representation (A.1) can be extended to all Borel probability
measures µ on a compact convex set K (in a locally convex Hausdorff space
E). We shall need some definitions.

Given a Borel probability measure µ on K, and a Borel subset S ⊂ K, we
say that µ is concentrated on S if µ(K\S) = 0. For example, a Dirac measure
δx is concentrated on x.

A point x ∈ K is said to be the barycenter of µ provided that

f(x) =
∫

K

f dµ for all f ∈ E′.

Since the functionals separate the points of E, the point x is uniquely de-
termined by µ. With this preparation, we can reformulate the Krein–Milman
theorem as follows:

Theorem A.3.5 Every point of a compact convex subset K (of a locally con-
vex Hausdorff space E), is the barycenter of a Borel probability measure on
K, which is supported by the closure of the extreme points of K.

H. Bauer pointed out that the extremal points of K are precisely the points
x ∈ K for which the only Borel probability measure µ which admits x as a
barycenter is δx. See [200, p. 6]. This fact together with Theorem A.3.5 yields
D. P. Milman’s aforementioned converse of the Krein–Milman theorem. For
an alternative argument see [64, pp. 103–104].

Theorem A.3.5 led G. Choquet [53] to his theory on integral representation
for elements of a closed convex cone.
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Elementary Symmetric Functions

The elementary symmetric functions of n variables are defined by

e0(x1, x2, . . . , xn) = 1
e1(x1, x2, . . . , xn) = x1 + x2 + · · · + xn

e2(x1, x2, . . . , xn) =
∑
i<j

xixj

...
en(x1, x2, . . . , xn) = x1x2 · · ·xn.

The different ek being of different degrees, they are not comparable. How-
ever, they are connected by nonlinear inequalities. To state them, it is more
convenient to consider their averages,

Ek(x1, x2, . . . , xn) = ek(x1, x2, . . . , xn)
/(

n
k

)
and to write Ek for Ek(x1, x2, . . . , xn) in order to avoid excessively long for-
mulæ.

B.1 Newton’s Inequalities

The simplest set of inequalities relating the elementary symmetric functions
was discovered by I. Newton [175] and C. Maclaurin [149]:

Theorem B.1.1 Let F be an n-tuple of nonnegative numbers. Then:

E2
k(F) > Ek−1(F) · Ek+1(F), 1 ≤ k ≤ n − 1 (N)

and
E1(F) > E

1/2
2 (F) > · · · > E1/n

n (F) (M)

unless all entries of F coincide.
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Actually Newton’s inequalities (N) work for n-tuples of real, not necessarily
positive, elements. An analytic proof along Maclaurin’s ideas will be presented
below. In Section B.2 we shall indicate an alternative argument, based on
mathematical induction, which yields more Newton type inequalities, in an
interpolative scheme.

The inequalities (M) can be deduced from (N) since

(E0E2)(E1E3)2(E2E4)3 · · · (Ek−1Ek+1)k < E2
1E4

2E6
3 · · ·E2k

k

gives Ek
k+1 < Ek+1

k or, equivalently,

E
1/k
k > E

1/(k+1)
k+1 .

Among the inequalities noticed above, the most notable is of course the
AM–GM inequality:(x1 + x2 + · · · + xn

n

)n

≥ x1x2 · · ·xn

for all x1, x2, . . . , xn ≥ 0. A hundred years after C. Maclaurin, A.-L. Cauchy
[50] gave his beautiful inductive argument. Notice that the AM–GM inequal-
ity was known to Euclid [73] in the special case where n = 2.

Remark B.1.2 Newton’s inequalities were intended to solve the problem of
counting the number of imaginary roots of an algebraic equation. In Chapter 2
of Part 2 of Arithmetica Universalis, entitled De Forma Æquationis, Newton
made (without proof) the following statement: Given an equation with real
coefficients,

a0x
n + a1x

n−1 + · · · + an = 0 (a0 
= 0),

the number of its imaginary roots cannot be less than the number of changes
of sign that occur in the sequence

a2
0,

(
a1(
n
1

))2

− a2(
n
2

) · a0(
n
0

) , . . . ,

(
an−1(

n
n−1

))2

− an(
n
n

) · an−2(
n

n−2

) , a2
n.

Accordingly, if all the roots are real, then all the entries in the above
sequence must be nonnegative (a fact which yields Newton’s inequalities).

Trying to understand which was Newton’s argument, C. Maclaurin [149]
gave a direct proof of the inequalities (N) and (M), but the Newton counting
problem remained open until 1865, when J. Sylvester [234, 235] succeeded in
proving a remarkable general result.

Quite unexpectedly, it is the real algebraic geometry (not analysis) which
gives us the best understanding of Newton’s inequalities. The basic fact (dis-
covered by J. Sylvester) concerns the semi-algebraic character of the set of all
real polynomials with all roots real:
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Theorem B.1.3 (J. Sylvester) For each natural number n ≥ 2 there exists
a set of at most n − 1 polynomials with integer coefficients,

Rn,1(x1, . . . , xn), . . . , Rn,k(n)(x1, . . . , xn), (Rn)

such that the monic real polynomials of order n,

P (x) = xn + a1x
n−1 + · · · + an,

which have only real roots are precisely those for which

Rn,1(a1, . . . , an) ≥ 0, . . . , Rn,k(n)(a1, . . . , an) ≥ 0.

The above result can be seen as a generalization of the well-known fact
that the roots of a quadratic polynomial x2 + a1x + a2 are real if and only if
its discriminant

D2(1, a1, a2) = a2
1 − 4a2 (D2)

is nonnegative.
Theorem B.1.3 is built on the Sturm method of counting real roots, taking

into account that only the leading coefficients enter into play. It turns out that
they are nothing but the principal subresultant coefficients (with convenient
signs added), which are determinants extracted from the Sylvester matrix.

A set (Rn,k)k(n)
k as in Theorem B.1.3 will be called a Sylvester family (of

order n).
In Sylvester’s approach, Rn,1(a1, . . . , an) equals the discriminant Dn of

the polynomial P (x) = xn + a1x
n−1 + · · · + an, that is,

Dn = Dn(1, a1, . . . , an) =
∏

1≤i<j≤n

(xi − xj)2,

where x1, . . . , xn are the roots of P (x); Dn is a symmetric and homogeneous
(of degree n2 − n) polynomial in Z[x1, . . . , xn]. For details, see [19]. Unfortu-
nately, at present no compact formula for Dn is known. According to [220], the
number of nonzero coefficients in the expression for the discriminant increases
rapidly with the degree; e.g., D9 has 26095 terms.

For n ∈ {2, 3} one can indicate Sylvester families consisting of just a single
polynomial, the corresponding discriminant. An inspection of the argument
given by L. Euler to solve in radicals the quartic equations allows us to write
down a Sylvester family for n = 4. See the paper by C. P. Niculescu [177].

Remark B.1.4 Given a Sylvester family for n = N , we can easily indicate
such a family for each n ∈ {1, . . . , N}; the trick is to replace a P (x) of degree
n by xN−nP (x), which is of degree N .

Also, any Sylvester family (Rn,k)k(n)
k=1 (for some n ≥ 2), allows us to decide

which monic real polynomial P (x) = xn + a1x
n−1 + · · · + an has only non-

negative roots. A set of (necessary and) sufficient conditions consists of the
following inequalities:
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−a1 ≥ 0, . . . , (−1)nan ≥ 0

and
Rn,1(a1, . . . , an) ≥ 0, . . . , Rn,k(n)(a1, . . . , an) ≥ 0.

In fact, under the above circumstances, x < 0 yields P (x) 
= 0.

The Newton inequalities (N) were proved in [99] following Maclaurin’s
argument. The basic ingredient is the following lemma, a consequence of re-
peated application of Rolle’s theorem, which we give here under the formula-
tion of J. Sylvester [235]:

Lemma B.1.5 If

F (x, y) = c0x
n + c1x

n−1y + · · · + cnyn

is a homogeneous function of the n-th degree in x and y, which has all its
roots x/y real, then the same is true for all non-identical 0 equations

∂i+jF

∂xi∂yj
= 0,

obtained from it by partial differentiation with respect to x and y. Further,
if E is one of these equations, and it has a multiple root α, then α is also a
root, of multiplicity one higher, of the equation from which E is derived by
differentiation.

Any polynomial of the n-th degree, with real roots, can be represented as

E0x
n −

(
n

1

)
E1x

n−1 +
(

n

2

)
E1x

n−2 − · · · + (−1)nEn

and we shall apply Lemma B.1.5 to the associated homogeneous polynomial

F (x, y) = E0x
n −

(
n

1

)
E1x

n−1y +
(

n

2

)
E1x

n−2y2 − · · · + (−1)nEnyn.

Considering the case of the derivatives

∂n−2F

∂xk∂yn−2−k
(for k = 0, . . . , n − 2),

we arrive at the fact that all the quadratic polynomials

Ek−1x
2 − 2Ekxy + Ek+1y

2

for k = 0, . . . , n−2 also have real roots. Consequently, the Newton inequalities
express precisely this fact in the language of discriminants. That is why we
shall refer to (N) as the quadratic Newton inequalities.
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Stopping a step ahead, we get what S. Rosset [217] called the cubic Newton
inequalities:

6EkEk+1Ek+2Ek+3 + 3E2
k+1E

2
k+2 ≥ 4EkE3

k+2 + E2
kE2

k+3 + 4E3
k+1Ek+3 (N3)

for k = 0, . . . , n − 3. They are motivated by the well-known fact that a cubic
real polynomial

x3 + a1x
2 + a2x + a3

has only real roots if and only if its discriminant

D3 = D3(1, a1, a2, a3)

= 18a1a2a3 + a2
1a

2
2 − 27a2

3 − 4a3
2 − 4a3

1a3

is nonnegative. Consequently, the equation

Ekx3 − 3Ek+1x
2y + 3Ek+2xy2 − Ek+3y

3 = 0

has all its roots x/y real if and only if (N3) holds.
S. Rosset [217] derived the inequalities (N3) by an inductive argument and

noticed that they are strictly stronger than (N). In fact, (N3) can be rewritten
as

4(Ek+1Ek+3 − E2
k+2)(EkEk+2 − E2

k+1) ≥ (Ek+1Ek+2 − EkEk+3)2

which yields (N).
As concerns the Newton inequalities (Nn) of order n ≥ 2 (when applied

to strings of m ≥ n elements), they consist of at most n − 1 sets of relations,
the first one being

Dn

(
1, (−1)1

(
n

1

)
Ek+1

Ek
, (−1)2

(
n

2

)
Ek+2

Ek
, . . . , (−1)n

(
n

n

)
Ek+n

Ek

)
≥ 0

for k ∈ {0, . . . , m − n}.
Notice that each of these inequalities is homogeneous (for example, the

last one consists of terms of weight n2 − n) and the sum of all coefficients in
the left hand side is 0.

B.2 More Newton Inequalities

Our argument will yield a bit more, precisely the log concavity of the functions
Ek : k → Ek(F):

Theorem B.2.1 Suppose that α, β ∈ R+ and j, k ∈ N are numbers such that

α + β = 1 and jα + kβ ∈ {0, . . . , n}.

Then
Ejα+kβ(F) ≥ Eα

j (F) · Eβ
k (F),

for every n-tuple F of nonnegative real numbers. Moreover, equality occurs if
and only if all entries of F are equal.
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The proof will be done by induction on the length of F .
According to Rolle’s theorem, if all roots of a polynomial P ∈ R[X] are

real (respectively, real and distinct), then the same is true for its derivative
P ′. Given an n-tuple F = (x1, . . . , xn), we shall attach to it the polynomial

PF (x) = (x − x1) · · · (x − xn) =
n∑

k=0

(−1)k

(
n

k

)
Ek(x1, . . . , xn)xn−k.

The (n−1)-tuple F ′ = {y1, . . . , yn−1}, consisting of all roots of the deriva-
tive of PF (x) will be called the derived n-tuple of F . Because

(x − y1) · · · (x − yn−1) =
n−1∑
k=0

(−1)k

(
n − 1

k

)
Ek(y1, . . . , yn−1)xn−k

and

(x − y1) · · · (x − yn−1) =
1
n

· dPF
dx

(x)

=
n∑

k=0

(−1)k n − k

n

(
n

k

)
Ek(x1, . . . , xn)xn−k−1

=
n−1∑
k=0

(−1)k

(
n − 1

k

)
Ek(x1, . . . , xn)xn−1−k

we are led to the following result, which enables us to reduce the number of
variables when dealing with symmetric functions.

Lemma B.2.2 Ej(F) = Ej(F ′) for every j ∈ {0, . . . , |F| − 1}.
Another simple but useful fact is the following:

Lemma B.2.3 Suppose that F is an n-tuple of real numbers and 0 /∈ F . Put
F−1 = {1/a | a ∈ F}. Then

Ej(F−1) = En−j(F)/En(F)

for every j ∈ {0, . . . , n}.

Proof of Theorem B.2.1. For |F| = 2 we have to prove just one inequality,
namely, x1x2 ≤ (x1 + x2)2/4, which is clearly valid for every x1, x2 ∈ R; the
equality occurs if and only if x1 = x2.

Suppose now that the assertion of Theorem B.2.1 holds for all k-tuples
with k ≤ n − 1. Let F be a n-tuple of nonnegative numbers (n ≥ 3), let
j, k ∈ N, and α, β ∈ R+\{0} be numbers such that

α + β = 1 and jα + kβ ∈ {0, . . . , n}.
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According to Lemma B.2.2 (and our inductive hypothesis), we have

Ejα+kβ(F) ≥ Eα
j (F) · Eβ

k (F),

except for the case where j < k = n or k < j = n. Suppose, for example, that
j < k = n; then necessarily jα + nβ < n. We have to show that

Ejα+nβ(F) ≥ Eα
j (F) · Eβ

n(F).

If 0 ∈ F , then En(F) = 0, and the inequality is clear; the equality occurs if
and only if Ejα+nβ(F ′) = Ejα+nβ(F) = 0, that is (according to our inductive
hypothesis), when all entries of F coincide.

If 0 /∈ F , then by Lemma B.2.3 we have to prove that

En−jα−nβ(F−1) ≥ Eα
n−j(F−1),

or, equivalently (see Lemma B.2.2), En−jα−nβ((F−1)′) ≥ Eα
n−j((F−1)′),

which is true by our hypothesis. ��
Notice that the argument above covers Newton’s inequalities even for n-

tuples of real (not necessarily positive) elements.
The general problem of comparing monomials in E1, . . . , En was com-

pletely solved by G. H. Hardy, J. E. Littlewood and G. Pólya in [99, Theo-
rem 77, p. 64]:

Theorem B.2.4 Let α1, . . . , αn, β1, . . . , βn be nonnegative numbers. Then

Eα1
1 (F) · · ·Eαn

n (F) ≤ Eβ1
1 (F) · · ·Eβn

n (F)

for every n-tuple F of positive numbers if and only if

αm + 2αm+1 + · · · + (n − m + 1)αn ≥ βm + 2βm+1 + · · · + (n − m + 1)βn

for 1 ≤ m ≤ n, with equality when m = 1.

An alternative proof, also based on Newton’s inequalities (N), is given in
[155, p. 93].

B.3 A Result of H. F. Bohnenblust

The elementary symmetric functions er are positively homogeneous of degree r
and verify a property of concavity which was already noticed in the case of
en = x1 · · ·xn (see Section 3.9, Exercise 2):

Theorem B.3.1 (Bohnenblust’s inequality) The sum of two n-tuples of
nonnegative numbers F = {x1, . . . , xn} and G = {y1, . . . , yn} is defined by the
formula F + G = {x1 + y1, . . . , xn + yn}. Then

er(F + G)1/r ≥ er(F)1/r + er(G)1/r

for every r = 1, . . . , n. Moreover, the equality occurs only when the entries of
F and G are proportional.
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In other words, the functions er(F)1/r are strictly concave (as functions
of x1, . . . , xn).

The argument given here is due to M. Marcus and J. Lopes [154]. It com-
bines a special case of Minkowski’s inequality with the following lemma:

Lemma B.3.2 (Marcus–Lopes inequality) Under the hypotheses of The-
orem B.3.1, for r = 1, . . . , n and n-tuples of nonnegative numbers not all zero,
we have

er(F + G)
er−1(F + G)

≥ er(F)
er−1(F)

+
er(G)

er−1(G)
.

The inequality is strict unless r = 1 or there exists a λ > 0 such that
F = λG.

Proof. For r = 1 the inequality is actually an equality. For r = 2, we have to
look at the following identity:

e2(F + G)
e1(F + G)

− e2(F)
e1(F)

− e2(G)
e1(G)

=

∑n
k=1(xk

∑n
j=1 yj − yk

∑n
j=1 xj)2

2e1(F + G) e1(F) e1(G)
.

Assume now that r > 2. For an n-tuple H = {z1, . . . , zn} we shall denote
Hk̂ = {z1, . . . , ẑk, . . . , zn}, where the cap indicates omission. Then:

n∑
k=1

xker−1(Fk̂) = rer(F) (B.1)

xker−1(Fk̂) + er(Fk̂) = er(F). (B.2)

Summing on k in (B.2) we obtain

ner(F) =
n∑

k=1

xker−1(Fk̂) +
n∑

k=1

er(Fk̂),

and thus from (B.1) we infer that
∑n

k=1 er(Fk̂) = (n − r)er(F). Since

er(F) − er(Fk̂) = xker−1(Fk̂)

= xker−1(F) − x2
ker−2(Fk̂)

we obtain

rer(F) =
n∑

k=1

xker−1(F) −
n∑

k=1

x2
ker−2(Fk̂)

and thus

er(F)
er−1(F)

=
1
r

[ n∑
k=1

xk −
n∑

k=1

x2
k er−2(Fk̂)
er−1(F)

]

=
1
r

[ n∑
k=1

xk −
n∑

k=1

x2
k

xk + er−1(Fk̂)
/
er−2(Fk̂)

]
.
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Therefore

∆ =
er(F + G)

er−1(F + G)
− er(F)

er−1(F)
− er(G)

er−1(G)

=
1
r

n∑
k=1

[ x2
k

xk + fr−1(Fk̂)
+

y2
k

yk + fr−1(Gk̂)
− (xk + yk)2

xk + yk + fr−1((F + G)k̂)

]
where fs(F) = es(F)/es−1(F).

The proof ends by induction. Assume that the statement of the theorem
is true for r − 1, that is,

fr−1((F + G)k̂) > fr−1(Fk̂) + fr−1(Gk̂), (B.3)

unless Fk̂ and Gk̂ are proportional (when equality holds). Then

∆ >
1
r

n∑
k=1

[ x2
k

xk + fr−1(Fk̂)
+

y2
k

yk + fr−1(Gk̂)

− (xk + yk)2

xk + yk + fr−1(Fk̂) + fr−1(Gk̂)

]
=

1
r

n∑
k=1

[xkfr−1(Gk̂) − ykfr−1(Fk̂)]2

[xk + fr−1(Fk̂)][yk + fr−1(Gk̂)][xk + yk + fr−1(Fk̂) + fr−1(Gk̂)]

provided that at least one of the inequalities (B.3) is strict. ��

Proof of Theorem B.3.1. In fact, by Minkowski’s inequality for p = 0 and
Lemma B.3.2, we have

er(F + G)1/r =
[ er(F + G)
er−1(F + G)

· er−1(F + G)
er−2(F + G)

· · · e1(F + G)
e0(F + G)

]1/r

≥
{[ er(F)

er−1(F)
+

er(G)
er−1(G)

]
· · ·

[e1(F)
e0(F)

+
e1(G)
e0(G)

]}1/r

≥
( r∏

k=1

ek(F)
ek−1(F)

)1/r

+
( r∏

k=1

ek(G)
ek−1(G)

)1/r

= er(F)1/r + er(G)1/r.

The problem of equality is left to the reader. ��

Bohnenblust’s inequality has important consequences to positive matrices
A ∈ Mn(C), A = (aij)n

i,j=1. In this case all eigenvalues λ1(A), . . . , λn(A) are
nonnegative and the symmetric elementary functions of them can be easily
computed via the Cauchy–Binet formulae:
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n∑
k=1

λk(A) =
n∑

k=1

akk

∑
i<j

λi(A)λj(A) = det
(

a11 a12
a21 a22

)
+ · · · + det

(
an−1 n−1 an−1 n

an n−1 an n

)
...

n∏
k=1

λk(A) = det(aij)n
i,j=1.

As a consequence, Theorem B.3.1 implies the result of Exercise 4 in Sec-
tion 3.4: If A, B are positive matrices, and α ∈ (0, 1), then(

det((1 − α)A + αB)
)1/n ≥ (1 − α)(det A)1/n + α(det B)1/n

≥ (det A)(1−α)/n(det B)α/n.

Newton’s inequalities (as well as all Newton inequalities of higher order)
have equivalent formulations in terms of positive matrices (and their principal
minors). We shall recall here the analogue of the AM–GM inequality: If A is
a positive matrix in Mn(R), then(Trace A

n

)n

> det A,

unless A is a multiple of the identity I.
In differential geometry, the higher-order mean curvatures are defined as

the elementary symmetric functions of the principal curvatures. In fact, if S
is a hypersurface in Rn and p is a point of S, one considers the Gauss map,
g : p → N(p), whose differential at p is diagonalized by the principal curvature
directions at p,

dgp(ej) = −kjej for j = 1, . . . , n.

Then the j-th-order mean curvatures Hj are given by

n−1∏
k=1

(1 + tkj) =
n−1∑
j=0

(
n − 1

j

)
Hjt

j .

See R. Osserman [193] for details. It would be interesting to explore the ap-
plications of various inequalities of convexity to this area.
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The Variational Approach of PDE

The aim of this appendix is to illustrate a number of problems in partial
differential equations (PDE) which can be solved by seeking a global minimum
of suitable convex functionals. This idea goes back to advanced calculus. See
the comments at the end of Section 3.8.

C.1 The Minimum of Convex Functionals

The main criterion for the existence and uniqueness of global minimum of
convex functions is actually a far reaching generalization of the orthogonal
projection:

Theorem C.1.1 Let C be a closed convex set in a reflexive Banach space V
and let J : C → R be a convex function such that:
(i) J is weakly lower semicontinuous, that is,

un → u weakly in V implies J(u) ≤ lim inf
n→∞ J(un);

(ii) Either C is bounded, or lim‖u‖→∞ J(u) = ∞.
Then J admits at least one global minimum and the points of global minimum
constitutes a convex set.

If, moreover, J is strictly convex, then there is a unique global minimum.

Proof. Put
m = inf

u∈C
J(u).

Clearly, m < ∞, and there exists a sequence (un)n of elements in C such
that J(un) → m. By our hypotheses, the sequence (un)n is bounded, so by
Theorem A.1.6, we may assume (replacing (un)n by a subsequence) that it is
also weakly converging to an element u in C. Here we used the fact that C is
weakly closed (which is a consequence of Corollary A.2.6). Then
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m ≤ J(u) ≤ lim inf
n→∞ J(un) = m,

and thus u is a global minimum. The remainder of the proof is left to the
reader as an exercise. ��

In the differentiable case we state the following useful version of Theo-
rem C.1.1:

Theorem C.1.2 Let V be a reflexive Banach space V and let J : V → R be
a Gâteaux differentiable convex functional with the following properties:
(i) For each u ∈ V , the map J ′(u) : v → J ′(u; v) is an element of V ′;
(ii) lim‖u‖→∞ J(u) = ∞.
Then J admits at least one global minimum and the points of global minimum
are precisely the points u such that

J ′(u ; v) = 0 for all v ∈ V.

If, moreover, J is strictly convex, then there is a unique global minimum.

Proof. First notice that J is weakly lower semicontinuous. In fact, by Theo-
rem 3.9.1,

J(un) ≥ J(u) + J ′(u ; un − u)

for all n, while J ′(u ; un − u) = J ′(u)(un − u) → 0 by our hypotheses. Hence,
according to Theorem C.1.1, J admits global minima.

If u is a global minimum, then for each v ∈ V there is a δ > 0 such that

J(u + εv) − J(u)
ε

≥ 0 whenever |ε| < δ.

This yields J ′(u ; v) ≥ 0. Replacing v by −v, we obtain

−J ′(u ; v) = J ′(u ; − v) ≥ 0,

and thus J ′(u ; v) = 0. Conversely, if J ′(u ; v) = 0 for all v ∈ V , then by
Theorem 3.9.1 we get

J(v) ≥ J(u) + J ′(u, v − u) = J(u),

that is, u is a global minimum. ��

Typically, Theorem C.1.1 applies to functionals of the form

J(u) =
1
2

‖u − w‖2 + ϕ(u), u ∈ V,

where V is an Lp-space with p ∈ (1,∞), w is an arbitrary fixed element of
V and ϕ : V → R is a weakly lower semicontinuous convex function. Theo-
rem C.1.2 covers a large range of well-behaved convex functionals, with impor-
tant consequences to the problem of existence of solutions of partial differential
equations:
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Corollary C.1.3 Let Ω be a nonempty open set in Rn and let p > 1. Consider
a function g ∈ C1(R) which verifies the following properties:
(i) g(0) = 0 and g(t) ≥ α|t|p for a suitable constant α > 0;
(ii) The derivative g′ is increasing and |g′(t)| ≤ β|t|p−1 for a suitable con-

stant β > 0.
Then the linear space V = Lp(Ω) ∩ L2(Ω) is reflexive when endowed with the
norm

‖u‖V = ‖u‖Lp + ‖u‖L2 ,

and for all f ∈ L2(Ω) the functional

J(u) =
∫

Ω
g(u(x)) dx +

1
2

∫
Ω

|u(x)|2 dx +
∫

Ω
f(x)u(x) dx, u ∈ V

is convex and Gâteaux differentiable with

J ′(u; v) =
∫

Ω
g′(u(x))v(x) dx +

∫
Ω

u(x)v(x) dx +
∫

Ω
f(x)v(x) dx.

Moreover, J admits a unique global minimum ū, which is the solution of
the equation

J ′(u ; v) = 0 for all v ∈ V.

Proof. V is a closed subspace of L2(Ω) and thus it is a reflexive space. Then
notice that

|g(t)| = |g(t) − g(0)|

=
∣∣∣∣∫ t

0
g′(s) ds

∣∣∣∣ ≤ β

p
|t|p,

from which it follows easily that J is well defined. Letting

J1(u) =
∫

Ω
g(u(x)) dx,

by Lagrange’s mean value theorem,

J1(u + tv) =
∫

Ω
g(u(x) + tv(x)) dx

=
∫

Ω
g(u(x)) dx + t

∫
Ω

g′(u(x) + τ(x)v(x))v(x) dx,

where 0 < τ(x) < t for all x, provided that t > 0. Then

J1(u + tv) − J1(u)
t

=
∫

Ω
g′(u(x) + τ(x)v(x))v(x) dx,

and letting t → 0+ we get the desired formula for J ′(u; v).
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Again by Lagrange’s mean value theorem, and the fact that g′ is increasing,
we have

J1(v) = J1(u) +
∫

Ω
g′(u(x) + τ(x)(v(x) − u(x))) · (v(x) − u(x)) dx

≥ J1(u) +
∫

Ω
g′(u(x)) · (v(x) − u(x)) dx

= J1(u) + J ′
1(u, v − u),

which shows that J1 is convex. Then the functional J is the sum of a convex
function and a strictly convex function.

Finally,

J(u) ≥ α

∫
Ω

|u(x)|p dx +
1
2

∫
Ω

|u(x)|2 dx −
∣∣∣∣∫

Ω
f(x)u(x) dx

∣∣∣∣
≥ α‖u‖p

Lp +
1
2

‖u‖2
L2 − ‖f‖L2 ‖u‖L2 ,

from which it follows that

lim
‖u‖V →∞

J(u) = ∞,

and the conclusion follows from Theorem C.1.2. ��

The result of Corollary C.1.3 extends (with obvious changes) to the case
where V is defined as the space of all u ∈ L2(Ω) such that Au ∈ Lp(Ω) for
a given linear differential operator A. Also, we can consider finitely many
functions gk (verifying the conditions (i) and (ii) for different exponents
pk > 1) and finitely many linear differential operators Ak. In that case we
shall deal with the functional

J(u) =
m∑

k=1

∫
Ω

gk(Aku) dx +
1
2

∫
Ω

|u|2 dx +
∫

Ω
fu dx,

defined on V =
⋂m

k=1 Lpk(Ω) ∩ L2(Ω); V is reflexive when endowed with the
norm

‖u‖V =
m∑

k=1

‖Aku‖Lpk + ‖u‖L2 .

C.2 Preliminaries on Sobolev Spaces

Some basic results on Sobolev spaces are recalled here for the convenience of
the reader. The details are available from many sources, including [6], [74],
[211] and [252].
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Let Ω be a bounded open set in Rn with Lipschitz boundary ∂Ω, and let
m be a positive integer.

The Sobolev space Hm(Ω) consists of all functions u ∈ L2(Ω) which admit
weak derivatives Dαu in L2(Ω), for all multi-indices α with |α| ≤ m. This
means the existence of functions vα ∈ L2(Ω) such that∫

Ω
vα · ϕ dx = (−1)|α|

∫
Ω

u · Dαϕdx (C.1)

for all ϕ in the space C∞
c (Ω) and all α with |α| ≤ m. Due to the denseness

of C∞
c (Ω) in L2(Ω), the functions vα are uniquely defined by (C.1), and they

are usually denoted as Dαu.
One can prove easily that Hm(Ω) is a Hilbert space when endowed with

the norm ‖ · ‖Hm associated to the inner product

〈u, v〉Hm =
∑

|α|≤m

∫
Ω

Dαu · Dαv dx.

Notice that Cm(Ω) is a dense subspace of Hm(Ω).

Theorem C.2.1 (The trace theorem) There is a continuous linear oper-
ator

γ = (γ0, . . . , γm−1) : Hm(Ω) → L2(∂Ω)m−1

such that

γ0u = u|∂Ω, γ1u =
∂u

∂n
, . . . , γm−1u =

∂m−1u

∂nm−1

for all u in Cm(Ω).

The closure of C∞
c (Ω) in Hm(Ω) is the Sobolev space Hm

0 (Ω). This space
coincides with the kernel of the trace operator γ, indicated in Theorem C.2.1.

On H1
0 (Ω), the norm ‖ · ‖H1 can be replaced by an equivalent norm,

‖u‖H1
0

=
(∫

Ω
‖∇u‖2 dx

)1/2

.

In fact, there exists a constant c > 0 such that

‖u‖H1
0

≤ ‖u‖H1 ≤ c‖u‖H1
0

for all u ∈ H1
0 (Ω).

This is a consequence of a basic inequality in partial differential equations:

Theorem C.2.2 (Poincaré’s inequality) If Ω is a bounded open subset of
Rn, then there exists a constant C > 0 such that

‖u‖L2 ≤ C

(∫
Ω

‖∇u‖2 dx

)1/2

for all u ∈ H1
0 (Ω).
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Proof. Since C∞
c (Ω) is dense into H1

0 (Ω), it suffices to prove Poincaré’s in-
equality for functions u ∈ C∞

c (Ω) ⊂ C∞
c (Rn). The fact that Ω is bounded,

yields two real numbers a and b such that

Ω ⊂ {x = (x′, xn) ∈ Rn−1 × R | a ≤ xn ≤ b}.

We have
u(x′, xn) =

∫ xn

a

∂u

∂xn
(x′, t) dt,

and an application of the Cauchy–Buniakovski–Schwarz inequality gives us

|u(x′, xn)|2 ≤ (xn − a)
∫ xn

a

∣∣∣ ∂u

∂xn
(x′, t)

∣∣∣2 dt

≤ (xn − a)
∫

R

∣∣∣ ∂u

∂xn
(x′, t)

∣∣∣2 dt.

Then ∫
Rn−1

|u(x′, t)|2 dx′ ≤ (xn − a)
∫

Rn

∣∣∣ ∂u

∂xn
(x)

∣∣∣2 dx,

which leads to∫
Rn

|u(x)|2 dx =
∫ b

a

∫
Rn−1

|u(x′, t)|2 dx′ ≤ (b − a)2

2

∫
Rn

∣∣∣ ∂u

∂xn
(x)

∣∣∣2 dx

and now the assertion of Theorem C.2.2 is clear. ��

By Poincaré’s inequality, the inclusion Hm
0 (Ω) ⊂ Hm(Ω) is strict when-

ever Ω is bounded. Notice that Hm
0 (Rn) = Hm(Rn), due to the possibility

to approximate (via mollification) the functions in Hm(Rn) by functions in
C∞

c (Rn).

C.3 Applications to Elliptic Boundary-Value Problems

In what follows we shall illustrate the role of the variational methods in solving
some problems in partial differential equations. More advanced applications
may be found in books like those by G. Duvaut and J.-L. Lions [69] and
I. Ekeland and R. Temam [70].

Dirichlet Problems

Let Ω be a bounded open set in Rn and let f ∈ C(Ω). A function u ∈
C2(Ω) ∩ C(Ω) is said to be a classical solution of the Dirichlet problem{

−∆u + u = f in Ω
u = 0 on ∂Ω,

(C.2)
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provided that it satisfies the equation and the boundary condition pointwise.
If u is a classical solution to this problem then the equation −∆u + u = f

is equivalent to∫
Ω
(−∆u + u) · v dx =

∫
Ω

f · v dx for all v ∈ H1
0 (Ω).

By Green’s formula,∫
Ω
(−∆u + u) · v dx = −

∫
∂Ω

∂u

∂n
· v dx +

∫
Ω

u · v dx +
n∑

k=1

∫
Ω

∂u

∂xk
· ∂v

∂xk
dx,

so that we arrive at the following restatement of (C.2):

n∑
k=1

∫
Ω

∂u

∂xk
· ∂v

∂xk
dx +

∫
Ω

u · v dx =
∫

Ω
f · v dx (C.3)

for all v ∈ C∞
c (Ω). It turns out that (C.3) makes sense for u ∈ H1

0 (Ω) and
f ∈ L2(Ω). We shall say that a function u ∈ H1

0 (Ω) is a weak solution for the
Dirichlet problem (C.2) with f ∈ L2(Ω) if it satisfies (C.3) for all v ∈ H1

0 (Ω).
The existence and uniqueness of the weak solution for the Dirichlet prob-

lem (C.2) follows from Theorem C.1.2, applied to the functional

J(u) =
1
2

‖u‖2
H1

0
− 〈f, u〉L2 , u ∈ H1

0 (Ω).

In fact, this functional is strictly convex and twice Gâteaux differentiable,
with

J ′(u ; v) = 〈u, v〉H1
0

− 〈f, v〉L2

J ′′(u ; v, w) = 〈w, v〉H1
0
.

According to Theorem C.1.2, the unique point of global minimum of J is
the unique solution of the equation

J ′(u; v) = 0 for all v ∈ H1
0 (Ω),

and clearly, the latter is equivalent with (C.3).

Neumann Problems

Let Ω be a bounded open set in Rn (with Lipschitz boundary) and let f ∈
C(Ω). A function u ∈ C2(Ω) ∩ C1(Ω) is said to be a classical solution of the
Neumann problem ⎧⎨⎩−∆u + u = f in Ω

∂u

∂n
= 0 on ∂Ω,

(C.4)
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provided that it satisfies the equation and the boundary condition pointwise.
If u is a classical solution to this problem, then the equation −∆u+u = f

is equivalent to∫
Ω
(−∆u + u) · v dx =

∫
Ω

f · v dx for all v ∈ H1(Ω),

and thus with
n∑

k=1

∫
Ω

∂u

∂xk
· ∂v

∂xk
dx +

∫
Ω

u · v dx =
∫

Ω
f · v dx for all v ∈ H1(Ω), (C.5)

taking into account Green’s formula and the boundary condition ∂u
∂n = 0 on

∂Ω. As in the case of Dirichlet problem, we can introduce a concept of a weak
solution for the Neumann problem (C.4) with f ∈ L2(Ω). We shall say that
a function u ∈ H1(Ω) is a weak solution for the problem (C.4) if it satisfies
(C.5) for all v ∈ H1(Ω).

The existence and uniqueness of the weak solution for the Neumann prob-
lem follows from Theorem C.1.2, applied to the functional

J(u) =
1
2

‖u‖2
H1 − 〈f, u〉L2 , u ∈ H1(Ω).

The details are similar to the above case of Dirichlet problem.
Corollary C.1.3 (and its generalization to finite families of functions g)

allow us to prove the existence and uniqueness of considerably more subtle
Neumann problems such as⎧⎨⎩−∆u + u + u3 = f in Ω

∂u

∂n
= 0 on ∂Ω,

(C.6)

where f ∈ L2(Ω). This corresponds to the case where

g1(t) = · · · = gn(t) = t2/2, gn+1(t) = t4/4,

Aku = ∂u/∂xk for k = 1, . . . , n, An+1u = u,

p1 = · · · = pn = 2, pn+1 = 4,

and

J(u) =
1
2

‖u‖2
H1 +

1
4

‖u‖4
L4 − 〈f, u〉L2 , u ∈ V = H1(Ω) ∩ L4(Ω).

According to Corollary C.1.3, there is a unique global minimum of J and
this is done by the equation

J ′(u ; v) = 0 for all v ∈ V,

that is, by
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n∑
k=1

∫
Ω

∂u

∂xk
· ∂v

∂xk
dx +

∫
Ω

u · v dx +
∫

Ω
u3 · v dx =

∫
Ω

f · v dx

for all v ∈ V . Notice that the latter equation represents the weak form of
(C.6).

The conditions under which weak solutions provide classical solutions are
discussed in textbooks like that by M. Renardy and R. C. Rogers [211].

C.4 The Galerkin Method

It is important to give here an idea how the global minimum of convex func-
tionals can be determined via numerical algorithms. For this, consider a re-
flexive real Banach space V , with Schauder basis (ek)k. This means that every
u ∈ V admits a unique representation

u =
∞∑

k=1

ckek

with ck ∈ R, the convergence being in the norm topology. As a consequence,
for each n ∈ N there is a linear projection

Pn : V → V, Pnu =
n∑

k=1

ckek.

Since Pnu → u for every u, the Banach–Steinhaus theorem in functional
analysis assures that sup ‖Pn‖ < ∞.

Consider a functional J : V → R which is twice Gâteaux differentiable and
for each u ∈ V there exist ∇J(u) ∈ V ′ and H(u) ∈ L(V, V ′) such that

J ′(u ; v) = 〈∇J(u), v〉
J ′′(u ; v, w) = 〈H(u)v, w〉

for all u, v, w ∈ V . In addition, we assume that H(u) satisfies estimates of the
form: {

|〈H(u)v, w〉| ≤ M‖v‖ ‖w‖
〈H(u)v, v〉 ≥ α‖v‖2 (C.7)

for all u, v, w ∈ V . Here M and α are positive constants.
By Taylor’s formula, J is strictly convex and lim‖u‖→∞ J(u) = ∞. Then,

by Theorem C.1.2, J is lower semicontinuous and admits a unique global
minimum.

In the Galerkin method , the global minimum u of J is found by a finite
dimensional approximation process. More precisely, one considers the restric-
tion of J to Vn = Span{e1, . . . , en} and one computes the global minimum un

of this restriction by solving the equation
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〈∇J(un), v〉 = 0 for all v ∈ Vn.

The existence of un follows again from Theorem C.1.2. Remarkably, these
minimum points approximate the global minimum u in the following strong
way:

Theorem C.4.1 We have

lim
n→∞ ‖un − u‖ = 0.

Proof. Letting vn = Pnu, we know that vn → u. By Taylor’s formula, for each
n there is a λn ∈ (0, 1) such that

J(vn) = J(u) + 〈∇J(u), vn − u〉 +
1
2

〈H(u + λn(vn − u))(vn − u), vn − u〉.

Combining this with the first estimate in (C.7), we get J(vn) → J(u). By
the choice of un, it yields that

J(u) ≤ J(un) ≤ J(vn),

so that J(un) → J(u) too. Also, sup J(un) < ∞.
Since lim‖u‖→∞ J(u) = ∞, we deduce that the sequence (un)n is norm

bounded. According to Theorem A.1.6, it follows that (un)n has a weak con-
verging subsequence, say uk(n)

w→ u′. Since J is lower semicontinuous, we
have

J(u′) ≤ lim inf
n→∞ J(uk(n)) ≤ J(u),

from which it follows that u′ = u and un
w→ u. Again by Taylor’s formula, for

each n there is a µn ∈ (0, 1) such that

J(un) = J(u) + 〈∇J(u), un − u〉 +
1
2

〈H(u + µn(un − u))(un − u), un − u〉.

This relation, when combined with the second estimate in (C.7), leads to

2
α

‖un − u‖2 ≤ |J(un) − J(u)| + |〈∇J(u), un − u〉|

and the conclusion of the theorem is now obvious. ��



D

Horn’s Conjecture

In this appendix we shall deal with a problem posed by H. Weyl [244] in
1912: Let A, B and C be Hermitian n × n matrices and denote the string of
eigenvalues of A by α, where

α : α1 ≥ · · · ≥ αn,

and similarly write β and γ for the spectra of B and C. What α, β and γ can
be the eigenvalues of the Hermitian matrices A, B and C when C = A + B?

There is one obvious condition, namely that the trace of C is the sum of
the traces of A and B:

n∑
k=1

γk =
n∑

k=1

αk +
n∑

k=1

βk. (D.1)

Weyl was able to indicate supplementary additional conditions in terms
of linear inequalities on the possible eigenvalues. They will be presented in
Section D.1.

Weyl’s problem was studied extensively by A. Horn [111] who solved it for
small n and proposed a complete set of necessary inequalities to accompany
(D.1) for n ≥ 5. Horn’s inequalities have the form∑

k∈K

γk ≤
∑
i∈I

αi +
∑
j∈J

βj , (D.2)

where
I = {i1, . . . , ir}, J = {j1, . . . , jr}, K = {k1, . . . , kr}

are subsets of {1, . . . , n} with the same cardinality r ∈ {1, . . . , n − 1} in
a certain finite set Tn

r . Let us call such triplets (I, J, K) admissible. When
r = 1, the condition of admissibility is

i1 + j1 = k1 + 1.
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If r > 1, this condition is:∑
i∈I

i +
∑
j∈J

j =
∑
k∈K

k +
(

r + 1
2

)

and, for all 1 ≤ p ≤ r − 1 and all (U, V, W ) ∈ T r
p ,

∑
u∈U

iu +
∑
v∈V

jv =
∑

w∈W

kw +
(

p + 1
2

)
.

Notice that Horn’s inequalities are defined by an inductive procedure.

Horn’s Conjecture A triplet (α, β, γ) of elements of Rn
≥ occurs as eigen-

values of Hermitian matrices A, B, C ∈ Mn(C), with C = A + B, if and only
if the equality (D.1) and Horn’s inequalities (D.2) hold for every (I, J, K) in
Tn

r , and every r < n.

Nowadays this conjecture is a theorem due to recent work by A. A. Kly-
achko [129] and A. Knutson and T. Tao [131]. It appeals to advanced facts
from algebraic geometry and representation theory (beyond the goal of this
book).

The interested reader may consult the papers by R. Bhatia [27] and W. Ful-
ton [84] for a thorough introduction to the mathematical world of Horn’s
conjecture.

We shall restrict here to some superficial aspects, based on the extremal
property of eigenvalues.

D.1 Weyl’s Inequalities

The spectrum of every Hermitian matrix A ∈ Mn(C) consists of n real eigen-
values λ1(A), . . . , λn(A), (each counted with its multiplicity). As we shall
prove later, the eigenvalues λk(A) depend continuously on A. See Theo-
rem D.1.4. The downwards/upwards rearrangements of these eigenvalues will
be denoted by λ↓

k(A) and λ↑
k(A). Most of the time, the string of eigenvalues

of A will be denoted α1 ≥ · · · ≥ αn.
The spectral representation theorem, asserts that every Hermitian matrix

A ∈ Mn(C) diagonalizes in a suitable orthonormal basis of Cn. In fact,

A =
n∑

k=1

αk〈 · , uk〉uk (D.3)

for an orthonormal basis (uk)k, constituted by eigenvectors of A.
As an easy consequence, we infer the equalities
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α1 = max
‖x‖=1

〈Ax, x〉 (D.4)

αn = min
‖x‖=1

〈Ax, x〉, (D.5)

which in turn yield

{〈Ax, x〉 | x ∈ Cn, ‖x‖ = 1} = [αn, α1]. (D.6)

Notice that the function x → 〈Ax, x〉 is continuous and the unit sphere is
compact and connected.

The relations (D.4) and (D.5) provide the following two inequalities in
Horn’s list of necessary conditions:

γ1 ≤ α1 + β1 (D.7)
γn ≥ αn + βn. (D.8)

The first inequality shows that λ↓
1(A) is a convex function of A, while the

second shows that λ↓
n(A) is concave. The two conclusions are equivalent, since

λ↓
k(−A) = −λ↓

n−k+1(A) = −λ↑
k(A). (D.9)

A refinement of (D.4) and (D.5) is as follows:

Theorem D.1.1 (Fischer’s minimax principle) If A ∈ Mn(C) is a Her-
mitian matrix, then its eigenvalues α1 ≥ · · · ≥ αn can be computed by the
formulae

αk = max
V ⊂C

n

dim V =k

min
x∈V

‖x‖=1

〈Ax, x〉 = min
V ⊂C

n

dim V =n−k+1

max
x∈V

‖x‖=1

〈Ax, x〉.

Proof. Let u1, . . . , un be the orthonormal basis which appears in the spectral
representation (D.3) of A. The vector space W = Span{uk, uk+1, . . . , un} is
(n−k+1)-dimensional and thus every k-dimensional vector subspace V ⊂ Cn

will contain a point z ∈ W ∩ V with ‖z‖ = 1. According to (D.6),

〈Az, z〉 ∈ [αn, αk]

from which it follows that

min
x∈V

‖x‖=1

〈Ax, x〉 ≤ αk.

Finally we note that equality occurs for V = Span{u1, . . . , uk}. ��

Theorem D.1.1 yields Weyl’s monotonicity principle:

A ≤ B implies λ↓
k(A) ≤ λ↓

k(B).
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Theorem D.1.2 (Weyl’s inequalities) We have

γi+j−1 ≤ αi + βj if i + j − 1 ≤ n

γi+j−n ≥ αi + βj if i + j − n ≥ 1.
(D.10)

Proof. Suppose that A, B, C have the spectral representations:

A =
n∑

k=1

αk〈 · , uk〉uk; B =
n∑

k=1

βk〈 · , vk〉vk; C =
n∑

k=1

γk〈 · , wk〉wk.

Since

dim Span{ui, . . . , un} + dim Span{vj , . . . , vn} + dim Span{w1, . . . , wi+j−1}

is (n − i + 1) + (n − j + 1) + (i + j − 1) = 2n + 1, the above three spaces
must have in common a vector x with ‖x‖ = 1. Then, according to (D.4) and
(D.5),

〈Ax, x〉 ≤ αi, 〈Bx, x〉 ≤ βj , 〈(A + B)x, x〉 ≥ γi+j−1

and the proof is complete. ��

Corollary D.1.3 The following inequalities hold:

αi + βn ≤ γi ≤ αi + β1.

Theorem D.1.4 (Weyl’s perturbation theorem) For every pair of Her-
mitian matrices A, B in Mn(R), we have

max
1≤k≤n

|λk(A) − λk(B)| ≤ ‖A − B‖.

Particularly, the eigenvalues λk(A) are continuous functions of A.

Proof. In fact, for every Hermitian matrix A we have

‖A‖ = sup
‖x‖=1

|〈Ax, x〉| = max{|λ↓
1(A)|, |λ↓

n(A)|}.

Consequently, by applying Corollary D.1.3 to A, B − A and C = B, we get

λk(A) − ‖B − A‖ ≤ λk(B) ≤ λk(A) + ‖B − A‖.

��

Weyl’s perturbation theorem has applications to numerical analysis.
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D.2 The Case n = 2

In this section we indicate a proof to Horn’s conjecture in the case of 2 × 2
Hermitian matrices. In this case the set of Horn’s inequalities reduces to Weyl’s
inequalities (D.10). We shall prove that for all families of real numbers α1 ≥
α2, β1 ≥ β2, γ1 ≥ γ2, which verify Weyl’s inequalities,

γ1 ≤ α1 + β1 γ2 ≤ α2 + β1 γ2 ≤ α1 + β2,

and the trace formula (D.1),

γ1 + γ2 = α1 + α2 + β1 + β2,

there exist symmetric matrices A, B, C ∈ M2(R) with C = A + B, σ(A) =
(α1, α2), σ(B) = (β1, β2) and σ(C) = (γ1, γ2).

Assume, for the sake of simplicity, that the spectra of A and B are respec-
tively α = (4, 2) and β = (2,−2). Then the conditions above may be read
as

γ1 + γ2 = 6, γ1 ≥ γ2 (D.11)
γ1 ≤ 6, γ2 ≤ 2. (D.12)

This shows that γ has the form γ = (6−a, a), with 0 ≤ a ≤ 2; clearly, γ1 ≥ γ2.
We shall prove that every pair (6 − a, a) with 0 ≤ a ≤ 2 can be the spectrum
of a sum A + B.

In fact, the relations (D.11) and (D.12) lead us to consider (in the plane
0γ1γ2) the line segment XY , where X = (6, 0) and Y = (4, 2). Starting with
the matrices

A =
(

4 0
0 2

)
and

R�
θ

(
2 0
0 −2

)
Rθ,

where

Rθ =
(

cos θ sin θ
− sin θ cos θ

)
,

we should remark that the spectrum (λ↓
1(Cθ), λ

↓
2(Cθ)) of the matrix

Cθ =
(

4 0
0 2

)
+ R�

θ

(
2 0
0 −2

)
Rθ

lies on the line segment XY for all θ ∈ [0, π/2]. In fact, since the eigenvalues
of a matrix are continuous functions on the entries of that matrix, the map

θ → (λ↓
1(Cθ), λ

↓
2(Cθ))

is continuous. The trace formula shows that the image of this map is a subset
of the line γ1+γ2 = 6. X corresponds to θ = 0, and Y corresponds to θ = π/2.
Since the image should be a line segment, we conclude that each point of XY
represents the spectrum of a matrix Cθ with θ ∈ [0, π/2].
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D.3 Majorization Inequalities and the Case n = 3

According to Schur’s Theorem (Theorem 1.10.2), if A is Hermitian matrix
with diagonal elements a11, . . . , ann and eigenvalues λ1, . . . , λn, then

(a11, . . . , ann) ≺ (λ1, . . . , λn).

Since the spectrum is invariant under unitary equivalence of matrices, this
result yields a maximum principle, first observed by Ky Fan:

r∑
k=1

αk = max
(xk)r

k=1
orthonormal

family

r∑
k=1

〈Axk, xk〉 for r = 1, . . . , n.

Particularly, the sums
∑r

k=1 λ↓
k(A) are convex functions on A. This leads

to Ky Fan’s inequalities:

r∑
k=1

γk ≤
r∑

k=1

αk +
r∑

k=1

βk, for r = 1, . . . , n, (D.13)

which can be restated as

λ(A + B) ≺ λ↓(A) + λ↓(B). (D.14)

The complementary inequality,

λ↓(A) + λ↑(B) ≺ λ(A + B), (D.15)

also works and it was proved in an equivalent form by V. B. Lidskii [143] and
later by H. Wielandt [246]:

Theorem D.3.1 (Lidskii–Wielandt inequalities) Let A, B, C be three
Hermitian matrices with C = A + B. Then for every 1 ≤ r ≤ n and ev-
ery 1 ≤ i1 < · · · < ir ≤ n we have the inequalities

r∑
k=1

γik
≤

r∑
k=1

αik
+

r∑
k=1

βk (D.16)

as well as the corresponding inequalities obtained by interchanging A and B.

Proof. C. K. Li and R. Mathias [142] We must prove the inequality

r∑
k=1

[λ↓
ik

(A + B) − λ↓
ik

(A)] ≤
r∑

k=1

λ↓
k(B). (D.17)

Without loss of generality we may assume that λ↓
r(B) = 0; for this, replace

B by B − λ↓
r(B) · I.
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Let B = B+ − B− be the canonical decomposition of B into the posi-
tive and negative parts. Since B ≤ B+, Weyl’s monotonicity principle yields
λ↓

ik
(A + B) ≤ λ↓

ik
(A + B+), so that the left hand side of (D.17) is

r∑
k=1

[λ↓
ik

(A + B+) − λ↓
ik

(A)],

which in turn is less than or equal to

n∑
k=1

[λ↓
k(A + B+) − λ↓

k(A)] = trace(B+).

Or, trace(B+) =
∑r

k=1 λ↓
k(B) since λ↓

r(B) = 0. ��

We are now in a position to list all the Horn inequalities in the case of
3 × 3-dimensional Hermitian matrices:

• Weyl’s inequalities,

γ1 ≤ α1 + β1 γ2 ≤ α1 + β2 γ2 ≤ α2 + β1

γ3 ≤ α1 + β3 γ3 ≤ α3 + β1 γ3 ≤ α2 + β2;

• Ky Fan’s inequality,

γ1 + γ2 ≤ α1 + α2 + β1 + β2;

• Lidskii–Wielandt inequalities (taking into account the symmetric role of
A and B),

γ1 + γ3 ≤ α1 + α3 + β1 + β2

γ2 + γ3 ≤ α2 + α3 + β1 + β2

γ1 + γ3 ≤ α1 + α2 + β1 + β3

γ2 + γ3 ≤ α1 + α2 + α3 + β2 + β3;

• Horn’s inequality,

γ2 + γ3 ≤ α1 + α3 + β1 + β3.

The last inequality follows from (D.15), which in the case n = 3 may be
read as

(α1 + β3, α2 + β2, α3 + β1) ≺ (γ1, γ2, γ3).

Adding to the above twelve inequalities the trace formula

γ1 + γ2 + γ3 = α1 + α2 + α3 + β1 + β2 + β3
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we get a set of necessary and sufficient conditions for the existence of three
symmetric matrices A, B, C ∈ M3(R), with C = A + B, and spectra equal
respectively to

α1 ≥ α2 ≥ α3; β1 ≥ β2 ≥ β3; γ1 ≥ γ2 ≥ γ3.

The proof is similar to the case n = 2. The eigenvalues of A+UBU�, as U
varies over unitary matrices, is a convex polyhedron in R3 and this polyhedron
is described by (D.1) and Horn’s inequalities.

For larger n, things become much more intricate. For example, for n = 7,
there are 2062 such inequalities, not all of them independent.

As the cases n = 2 and n = 3 suggest, Horn’s conjecture is a problem of
intersections. And indeed, the Schubert calculus in algebraic geometry proved
to be at the heart of the matter. The reader is urged to read the paper by
R. Bhatia [27] to get the flavor of the mathematics implied in this solution.

Needless to say, many other related problems have been solved with this
occasion. The paper by W. Fulton [84] contains a good account on this matter.
We end by recalling here the multiplicative companion to Horn’s inequalities:

Theorem D.3.2 Let α1 ≥ α2 ≥ α3, β1 ≥ β2 ≥ β3, γ1 ≥ γ2 ≥ γ3, be triplets
of nonnegative real numbers. Then there exist matrices A and B with singular
numbers sk(A) = αk, sk(B) = βk, sk(AB) = γk, if and only if∏

k∈K

γk ≤
∏
i∈I

αi

∏
j∈J

βj

for all admissible triplets (I, J, K).
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53. G. Choquet, Les cônes convexes faiblement complets dans l’analyse,
Proc. Intern. Congr. Mathematicians, Stockholm, 1962, 317–330.
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Cambridge Mathematical Library, 1952; reprinted 1988.

100. H. Heinig and L. Maligranda, Weighted inequalities for monotone
and concave functions, Studia Math. 116 (1995), 133–165.



246 References

101. R. Henstock and A. M. Macbeath, On the measure of sum sets I. The
theorems of Brunn, Minkowski and Lusternik, Proc. London Math.
Soc. 3 (1953), 182–194.

102. Ch. Hermite, Sur deux limites d’une intégrale définie, Mathesis 3
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202. G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus Analysis, Vols. I
and II, Springer-Verlag, 1925. English edition, Springer-Verlag, 1972.

203. T. Popoviciu, Sur quelques propriétés des fonctions d’une ou de deux
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Pečarić’s, 192
Poincaré’s, 227
Prékopa–Leindler, 158, 164
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