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Sequences � � � � � � � � � � � � � � � � � �

A sequence can be thought of as a list of numbers written in a definite order:

The number is called the first term, is the second term, and in general is the
nth term. We will deal exclusively with infinite sequences and so each term will
have a successor .

Notice that for every positive integer there is a corresponding number and so
a sequence can be defined as a function whose domain is the set of positive integers.
But we usually write instead of the function notation for the value of the func-
tion at the number .

NOTATION � The sequence { , , , . . .} is also denoted by

EXAMPLE 1 Some sequences can be defined by giving a formula for the term. In
the following examples we give three descriptions of the sequence: one by using the
preceding notation, another by using the defining formula, and a third by writing out
the terms of the sequence. Notice that n doesn’t have to start at 1.
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Infinite sequences and series were introduced briefly in
A Preview of Calculus in connection with Zeno’s para-
doxes and the decimal representation of numbers.
Their importance in calculus stems from Newton’s idea
of representing functions as sums of infinite series. For
instance, in finding areas he often integrated a func-
tion by first expressing it as a series and then inte-
grating each term of the series. We will pursue his
idea in Section 8.7 in order to integrate such functions
as . (Recall that we have previously been unable 
to do this.) And in Section 8.10 we will use series to

solve differential equations. Many of the functions that
arise in mathematical physics and chemistry, such as
Bessel functions, are defined as sums of series, so it 
is important to be familiar with the basic concepts of 
convergence of infinite sequences and series.

Physicists also use series in another way, as we will
see in Section 8.9. In studying fields as diverse as
optics, special relativity, and electromagnetism, they
analyze phenomena by replacing a function with the
first few terms in the series that represents it.e�x 2



EXAMPLE 2 Here are some sequences that don’t have a simple defining equation.
(a) The sequence , where is the population of the world as of January 1 in
the year .
(b) If we let be the digit in the decimal place of the number , then is a
well-defined sequence whose first few terms are

(c) The Fibonacci sequence is defined recursively by the conditions

Each term is the sum of the two preceding terms. The first few terms are

This sequence arose when the 13th-century Italian mathematician known as
Fibonacci solved a problem concerning the breeding of rabbits (see Exercise 37).

A sequence such as the one in Example 1(a), , can be pictured
either by plotting its terms on a number line, as in Figure 1, or by plotting its graph,
as in Figure 2. Note that, since a sequence is a function whose domain is the set of
positive integers, its graph consists of isolated points with coordinates

. . . . . .

From Figure 1 or 2 it appears that the terms of the sequence are
approaching 1 as becomes large. In fact, the difference

can be made as small as we like by taking sufficiently large. We indicate this by 
writing

In general, the notation

means that the terms of the sequence approach as becomes large. Notice that
the following definition of the limit of a sequence is very similar to the definition of a
limit of a function at infinity given in Section 2.5.
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Definition A sequence has the limit and we write

if we can make the terms as close to as we like by taking sufficiently
large. If exists, we say the sequence converges (or is convergent).
Otherwise, we say the sequence diverges (or is divergent).

Figure 3 illustrates Definition 1 by showing the graphs of two sequences that have
the limit .

If you compare Definition 1 with Definition 2.5.4 you will see that the only differ-
ence between and is that is required to be an inte-
ger. Thus, we have the following theorem, which is illustrated by Figure 4.

Theorem If and when is an integer, then 
.

In particular, since we know from Section 2.5 that when 
we have

if

If becomes large as n becomes large, we use the notation

In this case the sequence is divergent, but in a special way. We say that di-
verges to .

The Limit Laws given in Section 2.3 also hold for the limits of sequences and their
proofs are similar.
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� A more precise definition of the limit
of a sequence is given in Appendix D.



If and are convergent sequences and is a constant, then

The Squeeze Theorem can also be adapted for sequences as follows (see Figure 5).

If for and , then .

Another useful fact about limits of sequences is given by the following theorem,
which follows from the Squeeze Theorem because .

Theorem If , then .

EXAMPLE 3 Find .

SOLUTION The method is similar to the one we used in Section 2.5: Divide numerator
and denominator by the highest power of that occurs in the denominator and then
use the Limit Laws.

Here we used Equation 3 with .
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Limit Laws for Convergent Sequences

FIGURE 5
The sequence �bn� is squeezed between
the sequences �an� and �cn�.
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Squeeze Theorem for Sequences

� This shows that the guess we made
earlier from Figures 1 and 2 was correct.



SOLUTION Notice that both numerator and denominator approach infinity as .
We can’t apply l’Hospital’s Rule directly because it applies not to sequences but to
functions of a real variable. However, we can apply l’Hospital’s Rule to the related
function and obtain

Therefore, by Theorem 2 we have

EXAMPLE 5 Determine whether the sequence is convergent or divergent.

SOLUTION If we write out the terms of the sequence, we obtain

The graph of this sequence is shown in Figure 6. Since the terms oscillate between 1
and infinitely often, does not approach any number. Thus, does
not exist; that is, the sequence is divergent.

EXAMPLE 6 Evaluate if it exists.

SOLUTION

Therefore, by Theorem 4,

EXAMPLE 7 Discuss the convergence of the sequence , where
.

SOLUTION Both numerator and denominator approach infinity as but here we
have no corresponding function for use with l’Hospital’s Rule ( is not defined
when is not an integer). Let’s write out a few terms to get a feeling for what hap-
pens to as gets large:

It appears from these expressions and the graph in Figure 8 that the terms are
decreasing and perhaps approach 0. To confirm this, observe from Equation 5 that
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� The graph of the sequence in
Example 6 is shown in Figure 7 
and supports the answer.



so

We know that as . Therefore, as by the Squeeze 
Theorem.

EXAMPLE 8 For what values of is the sequence convergent?

SOLUTION We know from Section 2.5 and the graphs of the exponential functions in
Section 1.5 that for and for . There-
fore, putting and using Theorem 2, we have

For the cases and we have

and

If , then , so

and therefore by Theorem 4. If , then diverges as in
Example 5. Figure 9 shows the graphs for various values of . (The case is
shown in Figure 6.)

The results of Example 8 are summarized for future use as follows.

The sequence is convergent if and divergent for all other
values of .

Definition A sequence is called increasing if for all , that
is, It is called decreasing if for all . It is
called monotonic if it is either increasing or decreasing.
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� Creating Graphs of Sequences
Some computer algebra systems have
special commands that enable us to cre-
ate sequences and graph them directly.
With most graphing calculators, how-
ever, sequences can be graphed by
using parametric equations. For instance,
the sequence in Example 7 can be
graphed by entering the parametric
equations

and graphing in dot mode starting with
, setting the -step equal to . The

result is shown in Figure 8.
1tt � 1

x � t y � t!�t t

FIGURE 8
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EXAMPLE 9 The sequence is decreasing because

for all . (The right side is smaller because it has a larger denominator.)

EXAMPLE 10 Show that the sequence is decreasing.

SOLUTION 1 We must show that , that is,

This inequality is equivalent to the one we get by cross-multiplication:

Since , we know that the inequality is true. Therefore,
and so is decreasing.

SOLUTION 2 Consider the function :

Thus, is decreasing on and so . Therefore, is decreasing.

Definition A sequence is bounded above if there is a number such that

It is bounded below if there is a number such that

If it is bounded above and below, then is a bounded sequence.
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We know that not every bounded sequence is convergent [ satisfies
but is divergent, from Example 5] and not every monotonic sequence is

convergent . But if a sequence is both bounded and monotonic, then it
must be convergent. This fact is stated without proof as Theorem 7, but intuitively you
can understand why it is true by looking at Figure 10. If is increasing and 
for all , then the terms are forced to crowd together and approach some number .

Monotonic Sequence Theorem Every bounded, monotonic sequence is 
convergent.

EXAMPLE 11 Investigate the sequence defined by the recurrence relation

SOLUTION We begin by computing the first several terms:

These initial terms suggest that the sequence is increasing and the terms are
approaching 6. To confirm that the sequence is increasing, we use mathematical
induction to show that for all . This is true for because

. If we assume that it is true for , then we have

so

and

Thus

We have deduced that is true for . Therefore, the inequality is
true for all by induction.
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� Mathematical induction is often used
in dealing with recursive sequences. See
page 89 for a discussion of the Principle
of Mathematical Induction.



Since the sequence is increasing and bounded, the Monotonic Sequence
Theorem guarantees that it has a limit. The theorem doesn’t tell us what the value of
the limit is. But now that we know exists, we can use the given recur-
rence relation to write

Since , it follows that too (as , also). So we have

Solving this equation for , we get , as predicted.L � 6L
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18.

19. 20.

22.

23. 24.

26.

� � � � � � � � � � � � �

; 27–32 � Use a graph of the sequence to decide whether the
sequence is convergent or divergent. If the sequence is conver-
gent, guess the value of the limit from the graph and then prove
your guess. (See the margin note on page 568 for advice on
graphing sequences.)

27. 28.

29. 30.

31.

32.

� � � � � � � � � � � � �

33. If $1000 is invested at 6% interest, compounded annually,
then after years the investment is worth 
dollars.
(a) Find the first five terms of the sequence .
(b) Is the sequence convergent or divergent? Explain.
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n 2 � 1
an � 2 � cos n�17.1. (a) What is a sequence?

(b) What does it mean to say that ?
(c) What does it mean to say that ?

2. (a) What is a convergent sequence? Give two examples.
(b) What is a divergent sequence? Give two examples.

List the first six terms of the sequence defined by

Does the sequence appear to have a limit? If so, find it.

4. List the first eight terms of the sequence . Does
this sequence appear to have a limit? If so, find it. If not,
explain why.

5–8 � Find a formula for the general term of the sequence,
assuming that the pattern of the first few terms continues.

6.

7. 8.
� � � � � � � � � � � � �

9–26 � Determine whether the sequence converges or diverges.
If it converges, find the limit.

9. 10.

12.
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Show that the sequence defined by ,
is increasing and for all . Deduce that is con-
vergent and find its limit.

46. Show that the sequence defined by

satisfies and is decreasing. Deduce that the
sequence is convergent and find its limit.

47. We know that [from (6) with ].
Use logarithms to determine how large has to be so that

.

48. (a) Let , , , . . . ,
, where is a continuous function. If

, show that .
(b) Illustrate part (a) by taking , , and

estimating the value of to five decimal places.

49. Let and be positive numbers with . Let be their
arithmetic mean and their geometric mean:

Repeat this process so that, in general,

(a) Use mathematical induction to show that

(b) Deduce that both and are convergent.
(c) Show that . Gauss called the 

common value of these limits the arithmetic-geometric
mean of the numbers and .

50. A sequence is defined recursively by

Find the first eight terms of the sequence . What do you
notice about the odd terms and the even terms? By consid-
ering the odd and even terms separately, show that is
convergent and deduce that

This gives the continued fraction expansion

s2 � 1 �
1
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 an � s2
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2
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2
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L
a � 1f �x� � cos x
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n
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0 	 an � 2

an�1 �
1

3 � an
a1 � 2

�an �nan 	 3
an�1 � 3 � 1�ana1 � 145.34. Find the first 40 terms of the sequence defined by

and . Do the same if . Make a conjecture
about this type of sequence.

(a) Determine whether the sequence defined as follows is
convergent or divergent:

(b) What happens if the first term is ?

36. (a) If , what is the value of ?
(b) A sequence is defined by

Find the first ten terms of the sequence correct to five
decimal places. Does it appear that the sequence is con-
vergent? If so, estimate the value of the limit to three
decimal places.

(c) Assuming that the sequence in part (b) has a limit, use
part (a) to find its exact value. Compare with your esti-
mate from part (b).

37. (a) Fibonacci posed the following problem: Suppose that 
rabbits live forever and that every month each pair pro-
duces a new pair which becomes productive at age
2 months. If we start with one newborn pair, how many
pairs of rabbits will we have in the month? Show
that the answer is , where is the Fibonacci
sequence defined in Example 2(c).

(b) Let and show that .
Assuming that is convergent, find its limit.

38. Find the limit of the sequence

39–42 � Determine whether the sequence is increasing,
decreasing, or not monotonic. Is the sequence bounded?

40.

41. 42.
� � � � � � � � � � � � �

Suppose you know that is a decreasing sequence and 
all its terms lie between the numbers 5 and 8. Explain why 
the sequence has a limit. What can you say about the value 
of the limit?

44. A sequence is given by , .
(a) By induction or otherwise, show that is increasing 

and bounded above by 3. Apply the Monotonic
Sequence Theorem to show that exists.

(b) Find .limn l � an

limn l � an

�an �
an�1 � s2 � an

  a1 � s2�an �

�an �43.

an � 3 � ��1�n�nan � cos�n��2�

an �
2n � 3

3n � 4
an �

1

2n � 3
39.

{s2, s2s2, s2s2s2, . . .}

�an �
an�1 � 1 � 1�an�2an � fn�1�fn

� fn �fn

nth

a1 � 1    an�1 � 1��1 � an�  for n � 1

�an �
limn l � an�1limn l � an � L

a1 � 2

a1 � 1    an�1 � 4 � an  for n � 1

35.

a1 � 25a1 � 11

an�1 � �1
2 an

3an � 1

if an is an even number

if an is an odd number
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Logistic Sequences

A sequence that arises in ecology as a model for population growth is defined by the logis-
tic difference equation

where measures the size of the population of the generation of a single species. To
keep the numbers manageable, is a fraction of the maximal size of the population, so

. Notice that the form of this equation is similar to the logistic differential equa-
tion in Section 7.5. The discrete model—with sequences instead of continuous functions—is
preferable for modeling insect populations, where mating and death occur in a periodic
fashion.

An ecologist is interested in predicting the size of the population as time goes on,
and asks these questions: Will it stabilize at a limiting value? Will it change in a cyclical
fashion? Or will it exhibit random behavior?

Write a program to compute the first terms of this sequence starting with an initial
population . Use this program to do the following.

1. Calculate 20 or 30 terms of the sequence for and for two values of such that
. Graph the sequences. Do they appear to converge? Repeat for a different

value of between 0 and 1. Does the limit depend on the choice of ? Does it depend
on the choice of ?

2. Calculate terms of the sequence for a value of between 3 and 3.4 and plot them. What
do you notice about the behavior of the terms?

3. Experiment with values of between 3.4 and 3.5. What happens to the terms?

4. For values of between 3.6 and 4, compute and plot at least 100 terms and comment on
the behavior of the sequence. What happens if you change by 0.001? This type of
behavior is called chaotic and is exhibited by insect populations under certain conditions.

p0

k

k

k

k
p0p0

1 	 k 	 3
kp0 � 1

2

p0, where 0 	 p0 	 1
n

0 � pn � 1
pn

nthpn

pn�1 � kpn�1 � pn �

CAS

Laboratory
Project

Series � � � � � � � � � � � � � � � � � � �

If we try to add the terms of an infinite sequence we get an expression of the
form

which is called an infinite series (or just a series) and is denoted, for short, by the
symbol

But does it make sense to talk about the sum of infinitely many terms?
It would be impossible to find a finite sum for the series

because if we start adding the terms we get the cumulative sums 1, 3, 6, 10, 15,
21, . . . and, after the term, , which becomes very large as increases.nn�n � 1��2nth

1 � 2 � 3 � 4 � 5 � � � � � n � � � �

� anor�
�

n�1
 an

a1 � a2 � a3 � � � � � an � � � �1

�an��
n�1

8.2



However, if we start to add the terms of the series

we get , , , , , , . . . , , . . . . The table shows that as we add more and
more terms, these partial sums become closer and closer to 1. (See also Figure 11 in
A Preview of Calculus, page 7.) In fact, by adding sufficiently many terms of the series
we can make the partial sums as close as we like to 1. So it seems reasonable to say
that the sum of this infinite series is 1 and to write

We use a similar idea to determine whether or not a general series (1) has a sum.
We consider the partial sums

and, in general,

These partial sums form a new sequence , which may or may not have a limit. If
exists (as a finite number), then, as in the preceding example, we call it

the sum of the infinite series .

Definition Given a series , let denote its
partial sum:

If the sequence is convergent and exists as a real number,
then the series is called convergent and we write

The number is called the sum of the series. If the sequence is divergent,
then the series is called divergent.

Thus, the sum of a series is the limit of the sequence of partial sums. So when we
write we mean that by adding sufficiently many terms of the series we can
get as close as we like to the number . Notice that

�
�

n�1
 an � lim

n l �
 �

n

i�1
 ai

s
��

n�1 an � s

�sn �s

�
�

n�1
 an � sora1 � a2 � � � � � an � � � � � s

� an

limn l � sn � s�sn �

sn � �
n

i�1
 ai � a1 � a2 � � � � � an

nth
sn��

n�1 an � a1 � a2 � a3 � . . .2

� an

limn l � sn � s
�sn �

sn � a1 � a2 � a3 � � � � � an � �
n

i�1
 ai

 s4 � a1 � a2 � a3 � a4

 s3 � a1 � a2 � a3

 s2 � a1 � a2

 s1 � a1

�
�

n�1
 

1

2n �
1

2
�

1

4
�

1

8
�

1

16
� � � � �

1

2n � � � � � 1

1 � 1�2n63
64

31
32

15
16

7
8

3
4

1
2

1

2
�

1

4
�

1

8
�

1

16
�

1

32
�

1

64
� � � � �

1

2n � � � �
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n Sum of first n terms

1 0.50000000
2 0.75000000
3 0.87500000
4 0.93750000
5 0.96875000
6 0.98437500
7 0.99218750

10 0.99902344
15 0.99996948
20 0.99999905
25 0.99999997



EXAMPLE 1 An important example of an infinite series is the geometric series

Each term is obtained from the preceding one by multiplying it by the common ratio .
(We have already considered the special case where and .)

If , then . Since doesn’t
exist, the geometric series diverges in this case.

If , we have

and

Subtracting these equations, we get

If , we know from (8.1.6) that as , so

Thus, when the geometric series is convergent and its sum is .
If or , the sequence is divergent by (8.1.6) and so, by Equation 3,

does not exist. Therefore, the geometric series diverges in those cases.

We summarize the results of Example 1 as follows.

The geometric series

is convergent if and its sum is

If , the geometric series is divergent.

EXAMPLE 2 Find the sum of the geometric series

SOLUTION The first term is and the common ratio is . Since ,
the series is convergent by (4) and its sum is

5 �
10

3
�

20

9
�

40

27
� � � � �

5

1 � (� 2
3 ) �

5
5
3

� 3

� r � � 2
3 	 1r � �

2
3a � 5

5 �
10
3 �

20
9 �

40
27 � � � �

� r � � 1

� r � 	 1�
�

n�1
 arn�1 �

a

1 � r

� r � 	 1

�
�

n�1
 arn�1 � a � ar � ar 2 � � � �

4

limn l � sn

�rn �r � 1r � �1
a��1 � r�� r � 	 1

lim
n l �

 sn � lim 
n l �

 
a�1 � rn �

1 � r
�

a

1 � r
�

a

1 � r
 lim
n l �

 rn �
a

1 � r

n l �rn l 0�1 	 r 	 1

 sn �
a�1 � rn �

1 � r
3

 sn � rsn � a � arn

 rsn �  ar � ar 2 � � � � � arn�1 � arn

 sn �  a � ar � ar 2 � � � � � arn�1

r � 1

limn l � snsn � a � a � � � � � a � na l ��r � 1
r � 1

2a � 1
2

r

a � 0a � ar � ar 2 � ar 3 � � � � � arn�1 � � � � � �
�

n�1

 arn�1
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� Figure 1 provides a geometric dem-
onstration of the result in Example 1. If
the triangles are constructed as shown
and is the sum of the series, then, by
similar triangles,

s

a
�

a

a � ar
so s �

a

1 � r

s

FIGURE 1

aa

a

ara-ar

ar

ar@

ar#

ar@

s

� In words: The sum of a convergent
geometric series is

first term

1 � common ratio



EXAMPLE 3 Is the series convergent or divergent?

SOLUTION Let’s rewrite the term of the series in the form :

We recognize this series as a geometric series with and . Since ,
the series diverges by (4).

EXAMPLE 4 Write the number . . . as a ratio of integers.

SOLUTION

After the first term we have a geometric series with and . 
Therefore

EXAMPLE 5 Find the sum of the series , where .

SOLUTION Notice that this series starts with and so the first term is .
(With series, we adopt the convention that even when .) Thus

This is a geometric series with and . Since , it converges
and (4) gives

�
�

n�0
 xn �

1

1 � x
5

� r � � � x � 	 1r � xa � 1

�
�

n�0
 xn � 1 � x � x 2 � x 3 � x 4 � � � �

x � 0x 0 � 1
x 0 � 1n � 0

� x � 	 1�
�

n�0
 xn

 �
23

10
�

17

990
�

1147

495

 2.317 � 2.3 �

17

103

1 �
1

102

� 2.3 �

17

1000

99

100

r � 1�102a � 17�103

2.3171717 . . . � 2.3 �
17

103 �
17

105 �
17

107 � � � �

2.317 � 2.3171717

r � 1r � 4
3a � 4

�
�

n�1
 22n31�n � �

�

n�1
 

4n

3n�1 � �
�

n�1
 4( 4

3 ) n�1

arn�1nth

�
�

n�1
 22n31�n

FIGURE 2

0 n

sn

20

3
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n

1 5.000000
2 1.666667
3 3.888889
4 2.407407
5 3.395062
6 2.736626
7 3.175583
8 2.882945
9 3.078037

10 2.947975

sn
� What do we really mean when we
say that the sum of the series in Example
2 is ? Of course, we can’t literally add
an infinite number of terms, one by one.
But, according to Definition 2, the total
sum is the limit of the sequence of partial
sums. So, by taking the sum of sufficiently
many terms, we can get as close as we
like to the number . The table shows the
first ten partial sums and the graph in
Figure 2 shows how the sequence of par-
tial sums approaches .3

sn

3

3

� Another way to identify and is to
write out the first few terms:

4 �
16
3 �

64
9 � � � �

ra

Module 8.2 explores a series
that depends on an angle in a

triangle and enables you to see how rap-
idly the series converges when varies.�

�



EXAMPLE 6 Show that the series is convergent, and find its sum.

SOLUTION This is not a geometric series, so we go back to the definition of a conver-
gent series and compute the partial sums.

We can simplify this expression if we use the partial fraction decomposition

(see Section 5.7). Thus, we have

and so

Therefore, the given series is convergent and

EXAMPLE 7 Show that the harmonic series

is divergent.

SOLUTION For this particular series it’s convenient to consider the partial sums , ,
, and show that they become large.

 � 1 �
1
2 �

1
2 �

1
2 �

1
2 � 1 �

4
2

 � 1 �
1
2 � ( 1

4 �
1
4 ) � ( 1

8 � � � � �
1
8 ) � ( 1

16 � � � � �
1
16 )

 s16 � 1 �
1
2 � ( 1

3 �
1
4 ) � ( 1

5 � � � � �
1
8 ) � ( 1

9 � � � � �
1
16 )

 � 1 �
1
2 �

1
2 �

1
2 � 1 �

3
2

 � 1 �
1
2 � ( 1

4 �
1
4 ) � ( 1

8 �
1
8 �

1
8 �

1
8 )

 s8 � 1 �
1
2 � ( 1

3 �
1
4 ) � ( 1

5 �
1
6 �

1
7 �

1
8 )

 s4 � 1 �
1
2 � ( 1

3 �
1
4 ) � 1 �

1
2 � ( 1

4 �
1
4 ) � 1 �

2
2

 s2 � 1 �
1
2

s32, . . .s16s8,
s4s2

�
�

n�1
 
1

n
� 1 �

1

2
�

1

3
�

1

4
� � � �

�
�

n�1
 

1

n�n � 1�
� 1

lim
n l �

 sn � lim
n l �

 	1 �
1

n � 1
 � 1 � 0 � 1

 � 1 �
1

n � 1

 � 	1 �
1

2
 � 	1

2
�

1

3
 � 	1

3
�

1

4
 � � � � � 	1

n
�

1

n � 1

 sn � �

n

i�1
 

1

i�i � 1�
� �

n

i�1
 	1

i
�

1

i � 1


1

i�i � 1�
�

1

i
�

1

i � 1

sn � �
n

i�1
 

1

i�i � 1�
�

1

1 � 2
�

1

2 � 3
�

1

3 � 4
� � � � �

1

n�n � 1�

�
�

n�1
 

1

n�n � 1�
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� Notice that the terms cancel in pairs.
This is an example of a telescoping
sum: Because of all the cancellations,
the sum collapses (like an old-fashioned
collapsing telescope) into just two terms.

� Figure 3 illustrates Example 6 by
showing the graphs of the sequence 
of terms and the
sequence of partial sums. Notice
that and . See Exer-
cises 44 and 45 for two geometric 
interpretations of Example 6.

sn l 1an l 0
�sn �

an � 1�[n�n � 1�]

FIGURE 3

0 n

1

�sn�

�an�



Similarly, , , and in general

This shows that as and so is divergent. Therefore, the harmonic
series diverges.

Theorem If the series is convergent, then .

Proof Let . Then . Since is convergent,
the sequence is convergent. Let . Since as , we
also have . Therefore

NOTE 1 � With any series we associate two sequences: the sequence of its
partial sums and the sequence of its terms. If is convergent, then the limit of
the sequence is (the sum of the series) and, as Theorem 6 asserts, the limit of the
sequence is 0.

| NOTE 2 � The converse of Theorem 6 is not true in general. If , we
cannot conclude that is convergent. Observe that for the harmonic series 
we have as , but we showed in Example 7 that is divergent.

The Test for Divergence If does not exist or if , then the

series is divergent.

The Test for Divergence follows from Theorem 6 because, if the series is not diver-
gent, then it is convergent, and so .

EXAMPLE 8 Show that the series diverges.

SOLUTION

So the series diverges by the Test for Divergence.

NOTE 3 � If we find that , we know that is divergent. If we find
that , we know nothing about the convergence or divergence of .
Remember the warning in Note 2: If , the series might converge or
it might diverge.

� anlimn l � an � 0
� anlimn l � an � 0

� anlimn l � an � 0

lim
n l �

 an � lim
n l �

 
n 2

5n 2 � 4
� lim

n l �
 

1

5 � 4�n 2 �
1

5
� 0

�
�

n�1
 

n 2

5n 2 � 4

limn l � an � 0

�
�

n�1
 an

lim
n l �

 an � 0lim
n l �

 an7

� 1�nn l �an � 1�n l 0
� 1�n� an

limn l � an � 0

�an �
s�sn �

� an�an �
�sn �� an

 � s � s � 0

 lim
n l �

 an � lim
n l �

 �sn � sn�1� � lim
n l �

 sn � lim
n l �

 sn�1

limn l � sn�1 � s
n l �n � 1 l �limn l � sn � s�sn �

� anan � sn � sn�1sn � a1 � a2 � � � � � an

lim 
n l �

 an � 0�
�

n�1
 an6

�sn �n l �s2n l �

s2n � 1 �
n

2

s64 � 1 �
6
2s32 � 1 �

5
2
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� The method used in Example 7 for
showing that the harmonic series
diverges is due to the French scholar
Nicole Oresme (1323–1382).



Theorem If and are convergent series, then so are the series 
(where is a constant), , and , and

(i) (ii)

(iii)

These properties of convergent series follow from the corresponding Limit Laws
for Convergent Sequences in Section 8.1. For instance, here is how part (ii) of Theo-
rem 8 is proved:

Let

The partial sum for the series is

and, using Equation 5.2.9, we have

Therefore, is convergent and its sum is

EXAMPLE 9 Find the sum of the series .

SOLUTION The series is a geometric series with and , so

In Example 6 we found that

So, by Theorem 8, the given series is convergent and

 � 3 � 1 � 1 � 4
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NOTE 4 � A finite number of terms doesn’t affect the convergence or divergence of
a series. For instance, suppose that we were able to show that the series

is convergent. Since

it follows that the entire series is convergent. Similarly, if it is known
that the series converges, then the full series

is also convergent.

�
�

n�1
 an � �

N

n�1
 an � �

�

n�N�1
 an

��
n�N�1 an

��
n�1 n��n 3 � 1�
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� �

�

n�4
 

n
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n 3 � 1
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11–28 � Determine whether the series is convergent or
divergent. If it is convergent, find its sum.

11.

12.

13. 14.

16.

17. 18.

20.

21. 22.

23.

24.

25. 26.

28.

� � � � � � � � � � � � �

�
�

n�1
 ln 

n

n � 1�
�

n�1
 arctan n27.
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n�1
 

1

5 � 2�n�
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n�1
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6n

�
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 	 1

2n�1 �
2
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�
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n�1
 �sin	1

n
 � sin	 1

n � 1
�
�
�

n�1
 

2

n 2 � 4n � 3�
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n�1
 �2�0.1�n � �0.2�n 

�
�

n�1
 
�n � 1�2

n�n � 2��
�

n�1
 

1

n�n � 2�
19.

�
�

n�1
 
3

n�
�

n�1
 

n

n � 5

�
�

n�1
 

1

e 2n�
�

n�1
 3�n8n�115.

�
�

n�1
 
��6�n�1

5n�1�
�

n�1
 5( 2

3 )n�1

1 � 0.4 � 0.16 � 0.064 � � � �

5 �
10
3 �

20
9 �

40
27 � � � �

1. (a) What is the difference between a sequence and a series?
(b) What is a convergent series? What is a divergent series?

2. Explain what it means to say that .

; 3–8 � Find at least 10 partial sums of the series. Graph both
the sequence of terms and the sequence of partial sums on the
same screen. Does it appear that the series is convergent or
divergent? If it is convergent, find the sum. If it is divergent,
explain why.

4.

5. 6.

7. 8.

� � � � � � � � � � � � �

Let .

(a) Determine whether is convergent.
(b) Determine whether is convergent.

10. (a) Explain the difference between

(b) Explain the difference between

�
n
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 ajand�

n
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 ai

�
n
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 ajand�

n

i�1
 ai

��
n�1 an

�an �

an �
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1
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n�1
 tan n
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n�1
 
2n2 � 1

n2 � 1�
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n�1
 

12

��5�n3.

��
n�1 an � 5
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(b) Calculate the total time that the ball travels.
(c) Suppose that each time the ball strikes the surface 

with velocity it rebounds with velocity , where
. How long will it take for the ball to come 

to rest?

What is the value of if ?

; 44. Graph the curves , , for 
on a common screen. By finding the areas between

successive curves, give a geometric demonstration of the
fact, shown in Example 6, that

45. The figure shows two circles and of radius 1 that touch
at . is a common tangent line; is the circle that
touches , , and ; is the circle that touches , ,
and ; is the circle that touches , , and . This 
procedure can be continued indefinitely and produces an
infinite sequence of circles . Find an expression for 
the diameter of and thus provide another geometric
demonstration of Example 6.

46. A right triangle is given with and . 
is drawn perpendicular to , is drawn perpendicu-

lar to , , and this process is continued indefi-
nitely as shown in the figure. Find the total length of all the
perpendiculars

in terms of and .
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29–32 � Express the number as a ratio of integers.

30.

31. 32.
� � � � � � � � � � � � �

33–36 � Find the values of for which the series converges.
Find the sum of the series for those values of .

34.

35. 36.

� � � � � � � � � � � � �

37–38 � Use the partial fraction command on your CAS to find
a convenient expression for the partial sum, and then use this
expression to find the sum of the series. Check your answer by
using the CAS to sum the series directly.

37. 38.

� � � � � � � � � � � � �

If the partial sum of a series is

find and .

40. If the partial sum of a series is ,
find and .

41. When money is spent on goods and services, those that
receive the money also spend some of it. The people receiv-
ing some of the twice-spent money will spend some of that,
and so on. Economists call this chain reaction the multiplier
effect. In a hypothetical isolated community, the local gov-
ernment begins the process by spending dollars. Suppose
that each recipient of spent money spends and saves

of the money that he or she receives. The values 
and s are called the marginal propensity to consume and the
marginal propensity to save and, of course, .
(a) Let be the total spending that has been generated after

transactions. Find an equation for .
(b) Show that , where . The number

is called the multiplier. What is the multiplier if the
marginal propensity to consume is ?

Note: The federal government uses this principle to justify
deficit spending. Banks use this principle to justify lend-
ing a large percentage of the money that they receive in
deposits.

42. A certain ball has the property that each time it falls from a
height onto a hard, level surface, it rebounds to a height

, where . Suppose that the ball is dropped from
an initial height of meters.
(a) Assuming that the ball continues to bounce indefinitely,

find the total distance that it travels.
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(b) The Sierpinski carpet is a two-dimensional counterpart
of the Cantor set. It is constructed by removing the cen-
ter one-ninth of a square of side 1, then removing the
centers of the eight smaller remaining squares, and 
so on. (The figure shows the first three steps of the 
construction.) Show that the sum of the areas of the
removed squares is 1. This implies that the Sierpinski
carpet has area 0.

54. (a) A sequence is defined recursively by the equation
for , where and can be

any real numbers. Experiment with various values of 
and and use your calculator to guess the limit of the
sequence.

(b) Find in terms of and by expressing
in terms of and summing a series.

55. Consider the series

(a) Find the partial sums and . Do you recognize
the denominators? Use the pattern to guess a formula
for .

(b) Use mathematical induction to prove your guess.
(c) Show that the given infinite series is convergent, and

find its sum.

56. In the figure there are infinitely many circles approaching
the vertices of an equilateral triangle, each circle touching
other circles and sides of the triangle. If the triangle has
sides of length 1, find the total area occupied by the circles.

sn

s4s1, s2, s3,

�
�
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n

�n � 1�!

a2 � a1an�1 � an

a2a1limn l � an

a2

a1

a2a1n � 3an � 1
2 �an�1 � an�2 �

�an �

What is wrong with the following calculation?

(Guido Ubaldus thought that this proved the existence of
God because “something has been created out of nothing.”)

48. Suppose that is known to be a convergent
series. Prove that is a divergent series.

49. If is convergent and is divergent, show that 
the series is divergent. [Hint: Argue by 
contradiction.]

50. If and are both divergent, is necessar-
ily divergent?

Suppose that a series has positive terms and its partial
sums satisfy the inequality for all . Explain
why must be convergent.

52. The Fibonacci sequence was defined in Section 8.1 by the
equations

Show that each of the following statements is true.

(a)

(b)

(c)

The Cantor set, named after the German mathematician
Georg Cantor (1845–1918), is constructed as follows. We
start with the closed interval and remove the open
interval . That leaves the two intervals and 
and we remove the open middle third of each. Four intervals
remain and again we remove the open middle third of each
of them. We continue this procedure indefinitely, at each
step removing the open middle third of every interval that
remains from the preceding step. The Cantor set consists of
the numbers that remain in after all those intervals
have been removed.
(a) Show that the total length of all the intervals that are

removed is 1. Despite that, the Cantor set contains infi-
nitely many numbers. Give examples of some numbers
in the Cantor set.

[0, 1]

[ 2
3, 1][0, 13 ]( 1

3, 
2
3 )

[0, 1]
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The Integral and Comparison Tests; Estimating Sums � � � � �

In general, it is difficult to find the exact sum of a series. We were able to accomplish
this for geometric series and the series because in each of those cases
we could find a simple formula for the partial sum . But usually it is not easy 
to compute . Therefore, in this section and the next we develop tests that
enable us to determine whether a series is convergent or divergent without explicitly
finding its sum. In some cases, however, our methods will enable us to find good esti-
mates of the sum.

In this section we deal only with series with positive terms, so the partial sums are
increasing. In view of the Monotonic Sequence Theorem, to decide whether a series
is convergent or divergent, we need to determine whether the partial sums are bounded
or not.

Testing with an Integral

Let’s investigate the series whose terms are the reciprocals of the squares of the posi-
tive integers:

There’s no simple formula for the sum of the first terms, but the computer-
generated table of values given in the margin suggests that the partial sums are
approaching a number near 1.64 as and so it looks as if the series is convergent.

We can confirm this impression with a geometric argument. Figure 1 shows the
curve and rectangles that lie below the curve. The base of each rectangle is
an interval of length 1; the height is equal to the value of the function at the
right endpoint of the interval. So the sum of the areas of the rectangles is

If we exclude the first rectangle, the total area of the remaining rectangles is
smaller than the area under the curve for , which is the value of the
integral . In Section 5.10 we discovered that this improper integral is con-
vergent and has value 1. So the picture shows that all the partial sums are less than
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n

5 3.2317
10 5.0210
50 12.7524

100 18.5896
500 43.2834

1000 61.8010
5000 139.9681

sn � �
n

i�1

 
1

si 

Thus, the partial sums are bounded and the series converges. The sum of the series (the
limit of the partial sums) is also less than 2:

[The exact sum of this series was found by the Swiss mathematician Leonhard Euler
(1707–1783) to be , but the proof of this fact is beyond the scope of this book.]

Now let’s look at the series

The table of values of suggests that the partial sums aren’t approaching a finite num-
ber, so we suspect that the given series may be divergent. Again we use a picture for
confirmation. Figure 2 shows the curve , but this time we use rectangles
whose tops lie above the curve.

The base of each rectangle is an interval of length 1. The height is equal to the
value of the function at the left endpoint of the interval. So the sum of the
areas of all the rectangles is

This total area is greater than the area under the curve for , which is
equal to the integral . But we know from Section 5.10 that this improper
integral is divergent. In other words, the area under the curve is infinite. So the sum of
the series must be infinite, that is, the series is divergent.

The same sort of geometric reasoning that we used for these two series can be used
to prove the following test.

The Integral Test Suppose is a continuous, positive, decreasing function on
and let . Then the series is convergent if and only if the

improper integral is convergent. In other words:

(a) If is convergent, then is convergent.

(b) If is divergent, then is divergent.�
�
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NOTE � When we use the Integral Test it is not necessary to start the series or the
integral at . For instance, in testing the series

Also, it is not necessary that be always decreasing. What is important is that be
ultimately decreasing, that is, decreasing for larger than some number . Then

is convergent, so is convergent by Note 4 of Section 8.2.

EXAMPLE 1 Determine whether the series converges or diverges.

SOLUTION The function is positive and continuous for because
the logarithm function is continuous. But it is not obvious whether or not is
decreasing, so we compute its derivative:

Thus, when , that is, . It follows that is decreasing when
and so we can apply the Integral Test:

Since this improper integral is divergent, the series is also divergent by
the Integral Test.

EXAMPLE 2 For what values of is the series convergent?

SOLUTION If , then . If , then . 
In either case , so the given series diverges by the Test for 
Divergence [see (8.2.7)].

If , then the function is clearly continuous, positive, and
decreasing on . We found in Chapter 5 [see (5.10.2)] that

It follows from the Integral Test that the series converges if and
diverges if . (For , this series is the harmonic series discussed in
Example 7 in Section 8.2.)

The series in Example 2 is called the p-series. It is important in the rest of this
chapter, so we summarize the results of Example 2 for future reference as follows.
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For instance, the series

is convergent because it is a p-series with . But the series

is divergent because it is a p-series with .

Testing by Comparing

The series

reminds us of the series , which is a geometric series with and 
and is therefore convergent. Because the series (2) is so similar to a convergent series,
we have the feeling that it too must be convergent. Indeed, it is. The inequality

shows that our given series (2) has smaller terms than those of the geometric series
and therefore all its partial sums are also smaller than 1 (the sum of the geometric
series). This means that its partial sums form a bounded increasing sequence, which
is convergent. It also follows that the sum of the series is less than the sum of the 
geometric series:

Similar reasoning can be used to prove the following test, which applies only to
series whose terms are positive. The first part says that if we have a series whose terms
are smaller than those of a known convergent series, then our series is also convergent.
The second part says that if we start with a series whose terms are larger than those
of a known divergent series, then it too is divergent.

The Comparison Test Suppose that and are series with positive terms.

(a) If is convergent and for all , then is also convergent.

(b) If is divergent and for all , then is also divergent.

In using the Comparison Test we must, of course, have some known series for
the purpose of comparison. Most of the time we use either a -series [ con-
verges if and diverges if ; see (1)] or a geometric series [ con-
verges if and diverges if ; see (8.2.4)].� r � � 1� r � 	 1
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EXAMPLE 3 Determine whether the series converges or diverges.

SOLUTION For large the dominant term in the denominator is , so we compare the
given series with the series . Observe that

because the left side has a bigger denominator. (In the notation of the Comparison
Test, is the left side and is the right side.) We know that

is convergent ( -series with ). Therefore

is convergent by part (a) of the Comparison Test.

Although the condition or in the Comparison Test is given for all
, we need verify only that it holds for , where is some fixed integer, because

the convergence of a series is not affected by a finite number of terms. This is illus-
trated in the next example.

EXAMPLE 4 Test the series for convergence or divergence.

SOLUTION We used the Integral Test to test this series in Example 1, but we can also
test it by comparing it with the harmonic series. Observe that for 
and so

We know that is divergent ( -series with ). Thus, the given series is
divergent by the Comparison Test.

NOTE � The terms of the series being tested must be smaller than those of a conver-
gent series or larger than those of a divergent series. If the terms are larger than the
terms of a convergent series or smaller than those of a divergent series, then the Com-
parison Test doesn’t apply. Consider, for instance, the series

The inequality

is useless as far as the Comparison Test is concerned because is con-
vergent and . Nonetheless, we have the feeling that ought to be  � 1��2n � 1�an � bn
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convergent because it is very similar to the convergent geometric series . In such
cases the following test can be used.

The Limit Comparison Test Suppose that and are series with positive
terms. If

where c is a finite number and , then either both series converge or 
both diverge.

Although we won’t prove the Limit Comparison Test, it seems reasonable because
for large .

EXAMPLE 5 Test the series for convergence or divergence.

SOLUTION We use the Limit Comparison Test with

and obtain

Since this limit exists and is a convergent geometric series, the given series
converges by the Limit Comparison Test.

Estimating the Sum of a Series

Suppose we have been able to use the Integral Test to show that a series is con-
vergent and we now want to find an approximation to the sum of the series. 
Of course, any partial sum is an approximation to because . But 
how good is such an approximation? To find out, we need to estimate the size of the
remainder

The remainder is the error made when , the sum of the first terms, is used as an
approximation to the total sum.

We use the same notation and ideas as in the Integral Test. Comparing the areas of
the rectangles with the area under for in Figure 3, we see that

Similarly, we see from Figure 4 that
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So we have proved the following error estimate.

Remainder Estimate for the Integral Test If converges by the Integral Test
and , then

EXAMPLE 6
(a) Approximate the sum of the series by using the sum of the first 10 terms.
Estimate the error involved in this approximation. 
(b) How many terms are required to ensure that the sum is accurate to within ?

SOLUTION In both parts (a) and (b) we need to know . With ,
we have

(a)

According to the remainder estimate in (3), we have

So the size of the error is at most .

(b) Accuracy to within means that we have to find a value of such that
. Since

we want

Solving this inequality, we get

We need 32 terms to ensure accuracy to within .

If we add to each side of the inequalities in (3), we get
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because . The inequalities in (4) give a lower bound and an upper bound
for . They provide a more accurate approximation to the sum of the series than the
partial sum does.

EXAMPLE 7 Use (4) with to estimate the sum of the series .

SOLUTION The inequalities in (4) become

From Example 6 we know that

so

Using , we get

If we approximate by the midpoint of this interval, then the error is at most half
the length of the interval. So

If we compare Example 7 with Example 6, we see that the improved estimate in
(4) can be much better than the estimate . To make the error smaller than 
we had to use 32 terms in Example 6 but only 10 terms in Example 7.

If we have used the Comparison Test to show that a series converges by com-
parison with a series , then we may be able to estimate the sum by compar-
ing remainders, as the following example shows.

EXAMPLE 8 Use the sum of the first 100 terms to approximate the sum of the series
. Estimate the error involved in this approximation.

SOLUTION Since

the given series is convergent by the Comparison Test. The remainder for the
comparison series was estimated in Example 6. There we found that

Tn � y
�

n
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x 3  dx �
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2n 2

� 1�n 3
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1
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2n 2
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sn
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Therefore, the remainder for the given series satisfies

With we have

Using a programmable calculator or a computer, we find that

with error less than .0.00005

�
�

n�1
 

1

n 3 � 1
� �

100

n�1
 

1

n 3 � 1
� 0.6864538

R100 �
1

2�100�2 � 0.00005

n � 100

Rn � Tn �
1

2n 2

Rn
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9–10 � Use the Comparison Test to determine whether the
series is convergent or divergent.

9. 10.

� � � � � � � � � � � � �

11–24 � Determine whether the series is convergent or
divergent.

12.

14.

15. 16.

17. 18.

19.

22.

24.

� � � � � � � � � � � � �

25. Find the values of for which the following series is 
convergent:

�
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n�2
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n�ln n� p

p

�
�
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n � 5

s
3 n 7 � n 2�

�
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 sin	1

n
23.

�
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n 2 � 1

n 4 � 1
21.
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2n20.�
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n 2
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2 � 3n

�
�

n�1
 

2

n 3 � 4�
�

n�2
 

1

n ln n

�
�

n�1
 
ln n

n 2�
�

n�1
 ne�n2

13.

�
�

n�1
 	 5

n4 �
4

nsn

1 �

1

8
�

1

27
�

1

64
�

1

125
� � � �11.

�
�

n�1
 

1

2n � 1�
�

n�1
 

1

n 2 � n � 1

1. Draw a picture to show that

What can you conclude about the series?

2. Suppose is a continuous positive decreasing function for
and . By drawing a picture, rank the follow-

ing three quantities in increasing order:

Suppose and are series with positive terms and
is known to be convergent.

(a) If for all , what can you say about ? Why?
(b) If for all , what can you say about ? Why?

4. Suppose and are series with positive terms and
is known to be divergent.

(a) If for all n, what can you say about ? Why?
(b) If for all n, what can you say about ? Why?

5. It is important to distinguish between

and

What name is given to the first series? To the second? For
what values of does the first series converge? For what
values of does the second series converge?

6–8 � Use the Integral Test to determine whether the series is 
convergent or divergent.

6. 7. 8.

� � � � � � � � � � � � �
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5
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6

1
 f �x� dx

an � f �n�x � 1
f

�
�

n�2
 

1

n 1.3 	 y
�

1
 

1

x 1.3  dx
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(a) Use a graph of to show that if is the par-
tial sum of the harmonic series, then

(b) The harmonic series diverges, but very slowly. Use
part (a) to show that the sum of the first million terms is 
less than 15 and the sum of the first billion terms is less
than 22.

34. Show that if we want to approximate the sum of the series
so that the error is less than 5 in the ninth deci-

mal place, then we need to add more than terms!

The meaning of the decimal representation of a number
(where the digit is one of the numbers 0, 1,

2, . . . , 9) is that

Show that this series always converges.

36. Find all positive values of for which the series 
converges.

37. If is a convergent series with positive terms, is it true
that is also convergent?

38. Show that if and is convergent, then
is convergent.� ln�1 � an �

� anan � 0

� sin�an �
� an

��
n�1 b ln nb

0.d1d2d3d4 . . . �
d1

10
�

d2

102 �
d3

103 �
d4

104 � � � �

di0.d1d2d3 . . .
35.

1011,301

��
n�1 n�1.001

sn � 1 � ln n

nthsny � 1�x33.26. (a) Find the partial sum of the series . Estimate
the error in using as an approximation to the sum of 
the series.

(b) Use (4) with to give an improved estimate of 
the sum.

(c) Find a value of so that is within of the sum.

27. (a) Use the sum of the first 10 terms to estimate the sum of
the series . How good is this estimate?

(b) Improve this estimate using (4) with .
(c) Find a value of that will ensure that the error in the

approximation is less than .

28. Find the sum of the series correct to three decimal
places.

29. Estimate to within .

30. How many terms of the series would you
need to add to find its sum to within ?

31–32 � Use the sum of the first 10 terms to approximate the
sum of the series. Estimate the error.

31. 32.

� � � � � � � � � � � � �
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n

�n � 1�3n�
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n 4 � n 2
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n
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n�1 1�n2
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n � 10

s10

��
n�1 1�n4s10

Other Convergence Tests � � � � � � � � � � � � �

The convergence tests that we have looked at so far apply only to series with positive
terms. In this section we learn how to deal with series whose terms are not necessarily
positive.

Alternating Series

An alternating series is a series whose terms are alternately positive and negative.
Here are two examples:

We see from these examples that the term of an alternating series is of the form

where is a positive number. (In fact, .)
The following test says that if the terms of an alternating series decrease to 0 in

absolute value, then the series converges.

bn � � an �bn
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592 � CHAPTER 8 INFINITE SEQUENCES AND SERIES



The Alternating Series Test If the alternating series

satisfies

(a)

(b)

then the series is convergent.

We won’t present a formal proof of this test, but Figure 1 gives a picture of the idea
behind the proof. We first plot on a number line. To find we subtract , so

is to the left of . Then to find we add , so is to the right of . But, since
, is to the left of . Continuing in this manner, we see that the partial sums

oscillate back and forth. Since , the successive steps are becoming smaller and
smaller. The even partial sums , , , . . . are increasing and the odd partial sums 

, , , . . . are decreasing. Thus, it seems plausible that both are converging to some
number , which is the sum of the series.

EXAMPLE 1 The alternating harmonic series

satisfies

(a) because

(b)

so the series is convergent by the Alternating Series Test.

EXAMPLE 2 The series is alternating, but
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b2s2s1 � b1
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 bn � 0

for all nbn�1 � bn

bn � 0�
�

n�1
 ��1�n�1bn � b1 � b2 � b3 � b4 � b5 � b6 � � � �
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� Figure 2 illustrates Example 1 by
showing the graphs of the terms

and the partial sums .
Notice how the values of zigzag
across the limiting value, which appears
to be about . In fact, it can be proved
that the exact sum of the series is

.ln 2 � 0.693

0.7

sn 

snan � ��1�n�1�n

FIGURE 2

0 n

1

�sn�

�an�



so condition (b) is not satisfied. Instead, we look at the limit of the term of the
series:

This limit does not exist, so the series diverges by the Test for Divergence.

EXAMPLE 3 Test the series for convergence or divergence.

SOLUTION The given series is alternating so we try to verify conditions (a) and (b) of
the Alternating Series Test.

Unlike the situation in Example 1, it is not obvious that the sequence given by
is decreasing. However, if we consider the related function

, we find that

Since we are considering only positive , we see that if ,
that is, . Thus, is decreasing on the interval . This means that

and therefore when . (The inequality can
be verified directly but all that really matters is that the sequence is eventually
decreasing.)

Condition (b) is readily verified:

Thus, the given series is convergent by the Alternating Series Test.

The error involved in using the partial sum as an approximation to the total sum
is the remainder . The next theorem says that for series that satisfy the

conditions of the Alternating Series Test, the size of the error is smaller than ,
which is the absolute value of the first neglected term.

Alternating Series Estimation Theorem If is the sum of an alter-
nating series that satisfies

(a) and (b)

then

You can see geometrically why this is true by looking at Figure 1. Notice that
, , and so on.

EXAMPLE 4 Find the sum of the series correct to three decimal places.
(By definition, .)0! � 1

�
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� Instead of verifying condition (a) of
the Alternating Series Test by computing
a derivative, we could verify that

directly by using the tech-
nique of Solution 1 of Example 10 in
Section 8.1.

bn�1 	 bn



SOLUTION We first observe that the series is convergent by the Alternating Series Test
because

(a)

(b) so as

To get a feel for how many terms we need to use in our approximation, let’s write
out the first few terms of the series:

Notice that

and

By the Alternating Series Estimation Theorem we know that

This error of less than does not affect the third decimal place, so we have

correct to three decimal places.
In Section 8.7 we will prove that for all , so what we have

obtained in this example is actually an approximation to the number .

| NOTE � The rule that the error (in using to approximate ) is smaller than the first
neglected term is, in general, valid only for alternating series that satisfy the condi-
tions of the Alternating Series Estimation Theorem. The rule does not apply to other
types of series.

Absolute Convergence

Given any series , we can consider the corresponding series

whose terms are the absolute values of the terms of the original series.

Definition A series is called absolutely convergent if the series of
absolute values is convergent.

Notice that if is a series with positive terms, then and so absolute
convergence is the same as convergence.
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� We have convergence tests for series
with positive terms and for alternating
series. But what if the signs of the terms
switch back and forth irregularly? We
will see in Example 7 that the idea of
absolute convergence sometimes helps in
such cases.



EXAMPLE 5 The series

is absolutely convergent because

is a convergent -series ( ).

EXAMPLE 6 We know that the alternating harmonic series

is convergent (see Example 1), but it is not absolutely convergent because the corre-
sponding series of absolute values is

which is the harmonic series ( -series with ) and is therefore divergent.

Example 6 shows that it is possible for a series to be convergent but not absolutely
convergent. However, the following theorem shows that absolute convergence implies
convergence.

Theorem If a series is absolutely convergent, then it is convergent.

To see why Theorem 1 is true, observe that the inequality

is true because is either or . If is absolutely convergent, then 
is convergent, so is convergent. Therefore, by the Comparison Test,

is convergent. Then

is the difference of two convergent series and is therefore convergent.

EXAMPLE 7 Determine whether the series

is convergent or divergent.
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SOLUTION This series has both positive and negative terms, but it is not alternating. 
(The first term is positive, the next three are negative, and the following three are
positive. The signs change irregularly.) We can apply the Comparison Test to the
series of absolute values

Since for all , we have

We know that is convergent ( -series with ) and therefore 
is convergent by the Comparison Test. Thus, the given series is
absolutely convergent and therefore convergent by Theorem 1.

The Ratio Test

The following test is very useful in determining whether a given series is absolutely
convergent.

The Ratio Test

(a) If , then the series is absolutely convergent 

(and therefore convergent).

(b) If or , then the series 

is divergent.

The Ratio Test can be proved by comparing the given series to a geometric series.
It’s understandable that geometric series are involved because, for those series, the
ratio of consecutive terms is constant and the series converges if . In part (a)
of the Ratio Test, the ratio of consecutive terms isn’t constant but so,
for large , is almost constant and the series converges if .

NOTE � If , the Ratio Test gives no information. For instance,
for the convergent series we have

whereas for the divergent series we have
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� Figure 3 shows the graphs of the
terms and partial sums of the series
in Example 7. Notice that the series is
not alternating but has positive and neg-
ative terms.
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Therefore, if , the series might converge or it might
diverge. In this case the Ratio Test fails and we must use some other test.

EXAMPLE 8 Test the series for absolute convergence.

SOLUTION We use the Ratio Test with :

Thus, by the Ratio Test, the given series is absolutely convergent and therefore 
convergent.

EXAMPLE 9 Test the convergence of the series .

SOLUTION Since the terms are positive, we don’t need the absolute value
signs.

(see Equation 3.7.6). Since , the given series is divergent by the Ratio Test.

NOTE � Although the Ratio Test works in Example 9, another method is to use the
Test for Divergence. Since

it follows that does not approach 0 as . Therefore, the given series is diver-
gent by the Test for Divergence.
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� Series that involve factorials or other
products (including a constant raised to
the th power) are often conveniently
tested using the Ratio Test.

n

� Estimating Sums
We have used various methods for esti-
mating the sum of a series—the method
depended on which test was used to
prove convergence. What about series
for which the Ratio Test works? There are
two possibilities: If the series happens to
be an alternating series, as in Example
8, then it is best to use the Alternating
Series Estimation Theorem. If the terms
are all positive, then use the special
methods explained in Exercise 34.

(c)

3–8 � Test the series for convergence or divergence.

4.

5. 6. �
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lim 
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 � an�1

an
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1. (a) What is an alternating series?
(b) Under what conditions does an alternating series

converge?
(c) If these conditions are satisfied, what can you say about

the remainder after terms?

2. What can you say about the series in each of the
following cases?

(a) (b) lim 
n l �

 � an�1
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an
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� an

n
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24.

26.

27.

28.

� � � � � � � � � � � � �

29. The terms of a series are defined recursively by the
equations

Determine whether converges or diverges.

30. A series is defined by the equations

Determine whether converges or diverges.

For which of the following series is the Ratio Test inconclu-
sive (that is, it fails to give a definite answer)?

(a) (b)

(c) (d)

32. For which positive integers is the following series 
convergent?

(a) Show that converges for all .
(b) Deduce that for all .

34. Let be a series with positive terms and let .
Suppose that , so converges by the
Ratio Test. As usual, we let be the remainder after 
terms, that is,

(a) If is a decreasing sequence and , show, by
summing a geometric series, that

(b) If is an increasing sequence, show that
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n 223.8.

� � � � � � � � � � � � �

9. Is the 50th partial sum of the alternating series
an overestimate or an underestimate of the 

total sum? Explain.

; 10. Calculate the first 10 partial sums of the series

and graph both the sequence of terms and the sequence of
partial sums on the same screen. Estimate the error in using
the 10th partial sum to approximate the total sum.

For what values of is the following series convergent?

12–14 � Show that the series is convergent. How many terms of
the series do we need to add in order to find the sum to the indi-
cated accuracy?

12.

13.

14.

� � � � � � � � � � � � �

; 15–16 � Graph both the sequence of terms and the sequence of
partial sums on the same screen. Use the graph to make a rough
estimate of the sum of the series. Then use the Alternating
Series Estimation Theorem to estimate the sum correct to four
decimal places.

15. 16.

� � � � � � � � � � � � �

17–18 � Approximate the sum of the series to the indicated 
accuracy.

17. (four decimal places)

18. (five decimal places)

� � � � � � � � � � � � �

19–28 � Determine whether the series is absolutely convergent.

19. 20.

22. �
�

n�0
 
��3�n

n!�
�

n�1
 
��3�n

n 321.

�
�

n�1
 
n2

2n�
�

n�1
 
��1�n�1

sn

�
�

n�1
 
��1�n�1

n 6

�
�

n�0
 
��1�n

2nn!

�
�

n�0
 
��1�n

�2n�!�
�

n�1
 

��1�n�1

�2n � 1�!

(� error � 	 0.002)�
�

n�1
 
��1�nn

4n

(� error � 	 0.01)�
�

n�1
 
��2�n

n!

(� error � 	 0.001)�
�

n�1
 
��1�n�1

n 4

�
�

n�1
 
��1�n�1

n p

p11.

�
�

n�1
 
��1�n�1

n3

��
n�1 ��1�n�1�n

s50

�
�

n�1
 ��1�n�1 

ln n

n�
�

n�1
 ��1�n 3n � 1

2n � 1
7.

SECTION 8.4 OTHER CONVERGENCE TESTS � 599



36. Use the sum of the first 10 terms to approximate the sum of 
the series

Use Exercise 34 to estimate the error.

�
�

n�1
 

n

2n

35. (a) Find the partial sum of the series . Use
Exercise 34 to estimate the error in using as an
approximation to the sum of the series.

(b) Find a value of so that is within of the sum.
Use this value of to approximate the sum of the series.n

0.00005snn

s5

��
n�1 1�n2ns5

Power Series � � � � � � � � � � � � � � � � �

A power series is a series of the form

where is a variable and the ’s are constants called the coefficients of the series. For
each fixed , the series (1) is a series of constants that we can test for convergence or
divergence. A power series may converge for some values of and diverge for other
values of . The sum of the series is a function

whose domain is the set of all for which the series converges. Notice that resembles
a polynomial. The only difference is that has infinitely many terms.

For instance, if we take for all , the power series becomes the geometric
series

which converges when and diverges when (see Equation 8.2.5).
More generally, a series of the form

is called a power series in or a power series centered at a or a power series
about a. Notice that in writing out the term corresponding to in Equations 1
and 2 we have adopted the convention that even when . Notice
also that when all of the terms are 0 for and so the power series (2)
always converges when .

EXAMPLE 1 For what values of is the series convergent?

SOLUTION We use the Ratio Test. If we let , as usual, denote the nth term of the
series, then . If , we have

By the Ratio Test, the series diverges when . Thus, the given series converges
only when .x � 0

x � 0

� lim 
n l �

 �n � 1�� x � � � lim
n l �

 � an�1

an
� � lim

n l �
 � �n � 1�!xn�1

n!xn �
x � 0an � n!xn

an

�
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n�0
 n!xnx

x � a
n � 1x � a

x � a�x � a�0 � 1
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�x � a�

�
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n�0
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1
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f
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f �x� � c0 � c1x � c2x 2 � � � � � cnxn � � � �

x
x

x
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� Notice that

 � �n � 1�n!

�n � 1�! � �n � 1�n�n � 1� �  . . . � 3 � 2 � 1



EXAMPLE 2 For what values of does the series converge?

SOLUTION Let . Then

By the Ratio Test, the given series is absolutely convergent, and therefore conver-
gent, when and divergent when . Now

so the series converges when and diverges when or .
The Ratio Test gives no information when so we must consider

and separately. If we put in the series, it becomes , the
harmonic series, which is divergent. If , the series is , which con-
verges by the Alternating Series Test. Thus, the given power series converges for

.

We will see that the main use of a power series is that it provides a way to repre-
sent some of the most important functions that arise in mathematics, physics, and
chemistry. In particular, the sum of the power series in the next example is called a
Bessel function, after the German astronomer Friedrich Bessel (1784–1846), and the
function given in Exercise 23 is another example of a Bessel function. In fact, these
functions first arose when Bessel solved Kepler’s equation for describing planetary
motion. Since that time, these functions have been applied in many different physical
situations, including the temperature distribution in a circular plate and the shape of a
vibrating drumhead.

EXAMPLE 3 Find the domain of the Bessel function of order 0 defined by

SOLUTION Let . Then

Thus, by the Ratio Test, the given series converges for all values of . In other
words, the domain of the Bessel function is .

Recall that the sum of a series is equal to the limit of the sequence of partial sums.
So when we define the Bessel function in Example 3 as the sum of a series we mean 

���, �� � �J0
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Notice how closely the computer-
generated model (which involves Bessel
functions and cosine functions) matches
the photograph of a vibrating rubber
membrane.



that, for every real number ,

where

The first few partial sums are

Figure 1 shows the graphs of these partial sums, which are polynomials. They are all
approximations to the function , but notice that the approximations become better
when more terms are included. Figure 2 shows a more complete graph of the Bessel
function.

For the power series that we have looked at so far, the set of values of for which
the series is convergent has always turned out to be an interval [a finite interval for the 
geometric series and the series in Example 2, the infinite interval in Example
3, and a collapsed interval in Example 1]. The following theorem, which
we won’t prove, says that this is true in general.

Theorem For a given power series there are only three 
possibilities:

(i) The series converges only when .

(ii) The series converges for all .

(iii) There is a positive number such that the series converges if
and diverges if .

The number in case (iii) is called the radius of convergence of the power series.
By convention, the radius of convergence is in case (i) and in case (ii).
The interval of convergence of a power series is the interval that consists of all val-
ues of for which the series converges. In case (i) the interval consists of just a 
single point . In case (ii) the interval is . In case (iii) note that the inequality

can be rewritten as . When is an endpoint of the
interval, that is, , anything can happen—the series might converge at one
or both endpoints or it might diverge at both endpoints. Thus, in case (iii) there are
four possibilities for the interval of convergence:

The situation is illustrated in Figure 3.

FIGURE 3
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We summarize here the radius and interval of convergence for each of the examples
already considered in this section.

The Ratio Test can be used to determine the radius of convergence in most cases.
The Ratio Test always fails when is an endpoint of the interval of convergence, so
the endpoints must be checked with some other test.

EXAMPLE 4 Find the radius of convergence and interval of convergence of the series

SOLUTION Let . Then

By the Ratio Test, the given series converges if and diverges if .
Thus, it converges if and diverges if . This means that the radius of 
convergence is .

We know the series converges in the interval , but we must now test for 
convergence at the endpoints of this interval. If , the series becomes

which diverges. (Use the Integral Test or simply observe that it is a -series with
.) If , the series is

which converges by the Alternating Series Test. Therefore, the given power series
converges when , so the interval of convergence is .(�1
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Series Radius of convergence Interval of convergence

Geometric series

Example 1

Example 2

Example 3 ���, ��R � ��
�
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��1�nx 2n

22n�n!�2

�2, 4�R � 1�
�

n�1
 
�x � 3�n

n

�0�R � 0�
�

n�0
 n! x n

��1, 1�R � 1�
�

n�0
 x n



EXAMPLE 5 Find the radius of convergence and interval of convergence of the series

SOLUTION If , then

Using the Ratio Test, we see that the series converges if and it
diverges if . So it converges if and diverges if

. Thus, the radius of convergence is .
The inequality can be written as , so we test the series

at the endpoints and 1. When , the series is

which diverges by the Test for Divergence [ doesn’t converge to 0]. When
, the series is

which also diverges by the Test for Divergence. Thus, the series converges only
when , so the interval of convergence is .��5, 1��5 	 x 	 1
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13.

16.

18.

� � � � � � � � � � � � �

If is convergent, does it follow that the following
series are convergent?

(a) (b)

20. Suppose that converges when and
diverges when . What can be said about the
convergence or divergence of the following series?

(a) (b)

(c) (d) �
�

n�0
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n2n15.
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�2n � 1�!
14.�

�

n�0
 sn �x � 1�n

1. What is a power series?

2. (a) What is the radius of convergence of a power series?
How do you find it?

(b) What is the interval of convergence of a power series?
How do you find it?

3–18 � Find the radius of convergence and interval of conver-
gence of the series.

4.

6.

7. 8.

9. 10.

11. 12. �
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is called the Airy function after the English mathematician
and astronomer Sir George Airy (1801–1892).
(a) Find the domain of the Airy function.

; (b) Graph the first several partial sums on a common
screen.

(c) If your CAS has built-in Airy functions, graph on the
same screen as the partial sums in part (b) and observe
how the partial sums approximate .

A function is defined by

that is, its coefficients are and for all
. Find the interval of convergence of the series and

find an explicit formula for .

26. If , where for all , find the
interval of convergence of the series and a formula for .

27. Suppose the series has radius of convergence 2 and
the series has radius of convergence 3. What is the
radius of convergence of the series ? Explain.

28. Suppose that the radius of convergence of the power series
is . What is the radius of convergence of the power

series ?� cn x 2n
R� cn x n

� �cn � dn�x n

� dn x n

� cn x n

f �x�
n � 0cn�4 � cnf �x� � ��

n�0 cn x n

f �x�
n � 0

c2n�1 � 2c2n � 1

f �x� � 1 � 2x � x 2 � 2x 3 � x 4 � � � �

f25.

A

ACAS

sn�x�

21. If is a positive integer, find the radius of convergence of 
the series

; 22. Graph the first several partial sums of the series
, together with the sum function ,

on a common screen. On what interval do these partial sums
appear to be converging to ?

23. The function defined by

is called the Bessel function of order 1.
(a) Find its domain.

; (b) Graph the first several partial sums on a common
screen.

(c) If your CAS has built-in Bessel functions, graph on
the same screen as the partial sums in part (b) and
observe how the partial sums approximate .

24. The function defined by
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Representations of Functions as Power Series � � � � � � � �

In this section we learn how to represent certain types of functions as sums of power
series by manipulating geometric series or by differentiating or integrating such a
series. You might wonder why we would ever want to express a known function as a
sum of infinitely many terms. We will see later that this strategy is useful for inte-
grating functions that don’t have elementary antiderivatives, for solving differential
equations, and for approximating functions by polynomials. (Scientists do this to sim-
plify the expressions they deal with; computer scientists do this to represent functions
on calculators and computers.)

We start with an equation that we have seen before:

We first encountered this equation in Example 5 in Section 8.2, where we obtained it
by observing that the series is a geometric series with and . But here our
point of view is different. We now regard Equation 1 as expressing the function

as a sum of a power series.

EXAMPLE 1 Express as the sum of a power series and find the interval of
convergence.

SOLUTION Replacing by in Equation 1, we have
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� A geometric illustration of Equation 1
is shown in Figure 1. Because the sum of
a series is the limit of the sequence of
partial sums, we have

where

is the th partial sum. Notice that as 
increases, becomes a better
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FIGURE 1

ƒ=
1
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and some partial sums



Because this is a geometric series, it converges when , that is, , or
. Therefore, the interval of convergence is . (Of course, we could

have determined the radius of convergence by applying the Ratio Test, but that much
work is unnecessary here.)

EXAMPLE 2 Find a power series representation for .

SOLUTION In order to put this function in the form of the left side of Equation 1 we
first factor a 2 from the denominator:

This series converges when , that is, . So the interval of conver-
gence is .

EXAMPLE 3 Find a power series representation of .

SOLUTION Since this function is just times the function in Example 2, all we have to
do is to multiply that series by :

Another way of writing this series is as follows:

As in Example 2, the interval of convergence is .

Differentiation and Integration of Power Series

The sum of a power series is a function whose domain is the
interval of convergence of the series. We would like to be able to differentiate and inte-
grate such functions, and the following theorem (which we won’t prove) says that we
can do so by differentiating or integrating each individual term in the series, just as we
would for a polynomial. This is called term-by-term differentiation and integration.
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��1�n

2n�1  xn
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1
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x
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2 � x
�

1
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� It’s legitimate to move across 
the sigma sign because it doesn’t
depend on . [Use Theorem 8.2.8(i)
with .]c � x 3

n

x 3



Theorem If the power series has radius of convergence ,
then the function defined by

is differentiable (and therefore continuous) on the interval and

(i)

(ii)

The radii of convergence of the power series in Equations (i) and (ii) are both .

NOTE 1 � Equations (i) and (ii) in Theorem 2 can be rewritten in the form

(iii)

(iv)

We know that, for finite sums, the derivative of a sum is the sum of the derivatives and
the integral of a sum is the sum of the integrals. Equations (iii) and (iv) assert that the
same is true for infinite sums, provided we are dealing with power series. (For other
types of series of functions the situation is not as simple; see Exercise 34.)

NOTE 2 � Although Theorem 2 says that the radius of convergence remains the same
when a power series is differentiated or integrated, this does not mean that the inter-
val of convergence remains the same. It may happen that the original series converges
at an endpoint, whereas the differentiated series diverges there. (See Exercise 35.)

NOTE 3 � The idea of differentiating a power series term by term is the basis for a
powerful method for solving differential equations. We will discuss this method in Sec-
tion 8.10.

EXAMPLE 4 In Example 3 in Section 8.5 we saw that the Bessel function

is defined for all . Thus, by Theorem 2, is differentiable for all and its deriva-
tive is found by term-by-term differentiation as follows:

J0
�x� � �
�

n�0
 

d

dx
 
��1�nx 2n

22n�n!�2 � �
�

n�1
 
��1�n2nx 2n�1

22n�n!�2

xJ0x

J0�x� � �
�

n�0
 
��1�nx 2n

22n�n!�2

y ��
�

n�0
 cn�x � a�n�dx � �

�

n�0
 y cn�x � a�n dx

d

dx��
�

n�0
 cn�x � a�n� � �

�

n�0
 

d

dx
 �cn�x � a�n 

R

 � C � �
�

n�0
 cn 

�x � a�n�1

n � 1

 y f �x� dx � C � c0�x � a� � c1 
�x � a�2

2
� c2 

�x � a�3

3
� � � �

f 
�x� � c1 � 2c2�x � a� � 3c3�x � a�2 � � � � � �
�

n�1
 ncn�x � a�n�1

�a � R, a � R�

f �x� � c0 � c1�x � a� � c2�x � a�2 � � � � � �
�

n�0
 cn�x � a�n

f
R � 0� cn�x � a�n2
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� In part (ii), is 
written as , where

, so all the terms of 
the series have the same form.
C � C1 � ac0

c0�x � a� � C
x c0 dx � c0 x � C1



EXAMPLE 5 Express as a power series by differentiating Equation 1. What
is the radius of convergence?

SOLUTION Differentiating each side of the equation

we get

If we wish, we can replace n by n � 1 and write the answer as

According to Theorem 2, the radius of convergence of the differentiated series is the
same as the radius of convergence of the original series, namely, .

EXAMPLE 6 Find a power series representation for and its radius of 
convergence.

SOLUTION We notice that, except for a factor of , the derivative of this function is
. So we integrate both sides of Equation 1:

To determine the value of we put in this equation and obtain
. Thus, and

The radius of convergence is the same as for the original series: .

Notice what happens if we put in the result of Example 6. Since 
we see that

EXAMPLE 7 Find a power series representation for .

SOLUTION We observe that and find the required series by inte-
grating the power series for found in Example 1.

 � C � x �
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3
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1
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n � 1
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 �ln�1 � x� � y 
1
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 dx � C � x �

x 2

2
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x 3

3
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1��1 � x�
�1

ln�1 � x�

R � 1

1

�1 � x�2 � �
�

n�0
 �n � 1�xn

 
1

�1 � x�2 � 1 � 2x � 3x 2 � � � � � �
�

n�1
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1
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 xn
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To find we put and obtain . Therefore

Since the radius of convergence of the series for is 1, the radius of con-
vergence of this series for is also 1.

EXAMPLE 8
(a) Evaluate as a power series.

(b) Use part (a) to approximate correct to within .

SOLUTION
(a) The first step is to express the integrand, , as the sum of a power
series. As in Example 1, we start with Equation 1 and replace by :

Now we integrate term by term:

This series converges for , that is, for .

(b) In applying the Evaluation Theorem it doesn’t matter which antiderivative we
use, so let’s use the antiderivative from part (a) with :

This infinite series is the exact value of the definite integral, but since it is an alter-
nating series, we can approximate the sum using the Alternating Series Estimation
Theorem. If we stop adding after the term with , the error is smaller than the
term with :

So we have

y
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0
 

1

1 � x 7  dx �
1

2
�

1

8 � 28 �
1

15 � 215 �
1

22 � 222 � 0.49951374

1

29 � 229 � 6.4  10�11
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n � 3
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2
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1
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5
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� This example demonstrates one way
in which power series representations
are useful. Integrating by
hand is incredibly difficult. Different com-
puter algebra systems return different
forms of the answer, but they are all
extremely complicated. (If you have a
CAS, try it yourself.) The infinite series
answer that we obtain in Example 8(a) 
is actually much easier to deal with than
the finite answer provided by a CAS.

1��1 � x 7 �

� The power series for obtained
in Example 7 is called Gregory’s series
after the Scottish mathematician James
Gregory (1638–1675), who had anti-
cipated some of Newton’s discoveries.
We have shown that Gregory’s series is
valid when , but it turns out
(although it isn’t easy to prove) that it is
also valid when . Notice that
when the series becomes

This beautiful result is known as the 
Leibniz formula for .�

�

4
� 1 �

1

3
�

1

5
�

1

7
� � � �

x � 1
x � �1

�1 	 x 	 1

tan�1x
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; 17–20 � Find a power series representation for , and graph
and several partial sums on the same screen. What happens
as increases?

17. 18.

20.

� � � � � � � � � � � � �

21–24 � Evaluate the indefinite integral as a power series.

22.

23. 24.

� � � � � � � � � � � � �

25–28 � Use a power series to approximate the definite integral
to six decimal places.

25. 26.

27. 28.

� � � � � � � � � � � � �

29. Use the result of Example 6 to compute correct to
five decimal places.

30. Show that the function

is a solution of the differential equation

31. (a) Show that (the Bessel function of order 0 given in
Example 4) satisfies the differential equation

(b) Evaluate correct to three decimal places.

32. The Bessel function of order 1 is defined by

(a) Show that satisfies the differential equation

(b) Show that .J0
�x� � �J1�x�

x 2J1��x� � xJ1
�x� � �x 2 � 1�J1�x� � 0

J1

J1�x� � �
�

n�0
 

��1�nx 2n�1

n!�n � 1�!22n�1

x
1

0  J0�x� dx

x 2J0��x� � xJ0
�x� � x 2J0�x� � 0

J0

f ��x� � f �x� � 0

f �x� � �
�

n�0
 
��1�nx 2n

�2n�!

ln 1.1

y
0.5

0
 

dx

1 � x 6y
1�3

0
 x 2 tan�1�x 4 � dx

y
0.4

0
 ln�1 � x 4� dxy

0.2

0
 

1

1 � x 5  dx

y tan�1�x 2 � dxy 
arctan x

x
 dx

y 
x

1 � x 5  dxy 
1

1 � x 4  dx21.

f �x� � tan�1�2x�f �x� � ln	1 � x

1 � x
19.

f �x� �
1

x 2 � 25
f �x� � ln�3 � x�

n
sn�x�

ff1. If the radius of convergence of the power series 
is 10, what is the radius of convergence of the series

? Why?

2. Suppose you know that the series converges for
. What can you say about the following series?

Why?

3–10 � Find a power series representation for the function and
determine the interval of convergence.

3. 4.

5.

7. 8.

10.

� � � � � � � � � � � � �

(a) Use differentiation to find a power series representation
for

What is the radius of convergence?
(b) Use part (a) to find a power series for

(c) Use part (b) to find a power series for

12. (a) Find a power series representation for .
What is the radius of convergence?

(b) Use part (a) to find a power series for
.

13–16 � Find a power series representation for the function and
determine the radius of convergence.

14.

15. 16.

� � � � � � � � � � � � �

f �x� � arctan�x�3�f �x� �
x 3

�x � 2�2

f �x� �
x 2

�1 � 2x�2f �x� � ln�5 � x�13.

f �x� � x ln�1 � x�

f �x� � ln�1 � x�

f �x� �
x 2

�1 � x�3

f �x� �
1

�1 � x�3

f �x� �
1

�1 � x�2

11.

f �x� �
x

4x � 1
f �x� �

1

x � 5
9.

f �x� �
1 � x 2

1 � x 2f �x� �
1

4 � x 2

f �x� �
1

1 � 9x 26.f �x� �
1

1 � x 3

f �x� �
x

1 � x
f �x� �

1

1 � x

�
�

n�0
 

bn

n � 1
 x n�1

� x � 	 2
��

n�0 bn x n

��
n�1 ncn x n�1

��
n�0 cn x n

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �8.6



36. (a) Starting with the geometric series , find the sum
of the series

(b) Find the sum of each of the following series.

(i) , (ii)

(c) Find the sum of each of the following series.

(i) ,

(ii)

(iii) �
�

n�1
 
n2

2n

�
�

n�2
 
n2 � n

2n

� x � 	 1�
�

n�2
 n�n � 1�x n

�
�

n�1
 

n

2n� x � 	 1�
�

n�1
 nx n

� x � 	 1 �
�

n�1
 nx n�1

��
n�0 x n(a) Show that the function

is a solution of the differential equation

(b) Show that .

34. Let . Show that the series 
converges for all values of but the series of derivatives

diverges when , an integer. For what val-
ues of does the series converge?

35. Let

Find the intervals of convergence for , , and .f �f 
f

f �x� � �
�

n�1
 
x n

n2

� fn��x�x
nx � 2n�� fn
�x�

x
� fn�x�fn�x� � �sin nx��n2

f �x� � e x

f 
�x� � f �x�

f �x� � �
�

n�0
 
x n

n!

33.

Taylor and Maclaurin Series � � � � � � � � � � � �

In the preceding section we were able to find power series representations for a cer-
tain restricted class of functions. Here we investigate more general problems: Which
functions have power series representations? How can we find such representations?

We start by supposing that is any function that can be represented by a power series

Let’s try to determine what the coefficients must be in terms of . To begin, notice
that if we put in Equation 1, then all terms after the first one are 0 and we get

By Theorem 8.6.2, we can differentiate the series in Equation 1 term by term:

and substitution of in Equation 2 gives

Now we differentiate both sides of Equation 2 and obtain

Again we put in Equation 3. The result is

f ��a� � 2c2

x � a

� x � a � 	 Rf ��x� � 2c2 � 2 � 3c3�x � a� � 3 � 4c4�x � a�2 � � � �3

f 
�a� � c1

x � a

� x � a � 	 Rf 
�x� � c1 � 2c2�x � a� � 3c3�x � a�2 � 4c4�x � a�3 � � � �2

f �a� � c0

x � a
fcn

� x � a � 	 Rf �x� � c0 � c1�x � a� � c2�x � a�2 � c3�x � a�3 � c4�x � a�4 � � � �1

f

8.7
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Let’s apply the procedure one more time. Differentiation of the series in Equation 3
gives

and substitution of in Equation 4 gives

By now you can see the pattern. If we continue to differentiate and substitute ,
we obtain

Solving this equation for the th coefficient 

This formula remains valid even for if we adopt the conventions that and
. Thus, we have proved the following theorem.

Theorem If has a power series representation (expansion) at , that is, if

then its coefficients are given by the formula

Substituting this formula for back into the series, we see that if has a power
series expansion at , then it must be of the following form.

The series in Equation 6 is called the Taylor series of the function at a (or
about a or centered at a). For the special case the Taylor series becomes

This case arises frequently enough that it is given the special name Maclaurin series.
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 f ��a�
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n�0
 
 f �n��a�

n!
 �x � a�n6

a
fcn

cn �
 f �n��a�

n!

� x � a � 	 Rf �x� � �
�

n�0 
cn�x � a�n

af5

f �0� � f
0! � 1n � 0

cn �
 f �n��a�

n!

cn, we getn

f �n��a� � 2 � 3 � 4 � � � � � ncn � n!cn

x � a

f ��a� � 2 � 3c3 � 3!c3

x � a

� x � a � 	 Rf ��x� � 2 � 3c3 � 2 � 3 � 4c4�x � a� � 3 � 4 � 5c5�x � a�2 � � � �4
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� The Taylor series is named after the
English mathematician Brook Taylor
(1685–1731) and the Maclaurin series
is named in honor of the Scottish mathe-
matician Colin Maclaurin (1698–1746)
despite the fact that the Maclaurin series
is really just a special case of the Taylor
series. But the idea of representing par-
ticular functions as sums of power series
goes back to Newton, and the general
Taylor series was known to the Scottish
mathematician James Gregory in 1668
and to the Swiss mathematician John
Bernoulli in the 1690s. Taylor was
apparently unaware of the work of Greg-
ory and Bernoulli when he published his
discoveries on series in 1715 in his
book Methodus incrementorum directa 
et inversa. Maclaurin series are named
after Colin Maclaurin because he pop-
ularized them in his calculus textbook 
Treatise of Fluxions published in 1742.



NOTE � We have shown that if can be represented as a power series about , then
is equal to the sum of its Taylor series. But there exist functions that are not equal

to the sum of their Taylor series. An example of such a function is given in Exercise 54.

EXAMPLE 1 Find the Maclaurin series of the function and its radius of 
convergence.

SOLUTION If , then , so for all . Therefore, the
Taylor series for at 0 (that is, the Maclaurin series) is

To find the radius of convergence we let . Then

so, by the Ratio Test, the series converges for all and the radius of convergence
is .

The conclusion we can draw from Theorem 5 and Example 1 is that if has a
power series expansion at 0, then

So how can we determine whether does have a power series representation?
Let’s investigate the more general question: Under what circumstances is a func-

tion equal to the sum of its Taylor series? In other words, if has derivatives of all
orders, when is it true that

As with any convergent series, this means that is the limit of the sequence of par-
tial sums. In the case of the Taylor series, the partial sums are

Notice that is a polynomial of degree called the nth-degree Taylor polynomial
of at a. For instance, for the exponential function , the result of Example 1
shows that the Taylor polynomials at 0 (or Maclaurin polynomials) with , 2, and
3 are

The graphs of the exponential function and these three Taylor polynomials are drawn
in Figure 1.
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� As increases, appears to
approach in Figure 1. This suggests
that is equal to the sum of its Taylor
series.

e x

e x

Tn�x�n

0 x

y

y=´

y=T£(x)

(0, 1)

y=T™(x)

y=T¡(x)

y=T™(x)

y=T£(x)

FIGURE 1



In general, is the sum of its Taylor series if

If we let

so that

then is called the remainder of the Taylor series. If we can somehow show that
, then it follows that

We have therefore proved the following.

Theorem If , where is the nth-degree Taylor poly-
nomial of at and

for , then is equal to the sum of its Taylor series on the interval
.

In trying to show that for a specific function , we usually use
the following fact.

Taylor’s Inequality If for , then the remainder
of the Taylor series satisfies the inequality

To see why this is true for , we assume that . In particular, we
have , so for we have

An antiderivative of is , so by the Evaluation Theorem, we have

Thus
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Tnf �x� � Tn�x� � Rn�x�8

lim
n l �

 Tn�x� � lim
n l �

 � f �x� � Rn�x� � f �x� � lim
n l �

 Rn�x� � f �x�

limn l � Rn�x� � 0
Rn�x�

f �x� � Tn�x� � Rn�x�Rn�x� � f �x� � Tn�x�

f �x� � lim
n l �

 Tn�x�

f �x�
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But . So

A similar argument, using , shows that

So

Although we have assumed that , similar calculations show that this inequality
is also true for .

This proves Taylor’s Inequality for the case where . The result for any n is
proved in a similar way by integrating times. (See Exercise 53 for the case

.)

NOTE � In Section 8.9 we will explore the use of Taylor’s Inequality in approximat-
ing functions. Our immediate use of it is in conjunction with Theorem 8.

In applying Theorems 8 and 9 it is often helpful to make use of the following fact.

for every real number x

This is true because we know from Example 1 that the series converges for all
and so its term approaches 0.

EXAMPLE 2 Prove that is equal to the sum of its Maclaurin series.

SOLUTION If , then for all n. If d is any positive number and
, then . So Taylor’s Inequality, with and 

says that

for

Notice that the same constant works for every value of n. But, from Equa-
tion 10, we have

It follows from the Squeeze Theorem that and therefore
for all values of x. By Theorem 8, is equal to the sum of its 

Maclaurin series, that is,

for all xex � �
�

n�0
 
xn

n!
11

exlimn l � Rn�x� � 0
limn l � � Rn�x� � � 0

lim
n l �

 
ed

�n � 1�!
 � x �n�1 � ed lim

n l �
 � x �n�1

�n � 1�!
� 0

M � ed

� x � � d� Rn�x� � �
ed

�n � 1�!
 � x �n�1

M � ed,a � 0� f �n�1��x� � � ex � ed� x � � d
f �n�1��x� � exf �x� � ex

ex

nthx
� xn�n!

lim
n l �

 
xn

n!
� 010

n � 2
n � 1

n � 1
x 	 a

x � a

 � R1�x� � �
M

2
 � x � a �2

 R1�x� � �
M

2
 �x � a�2

f ��x� � �M

R1�x� �
M

2
 �x � a�2

R1�x� � f �x� � T1�x� � f �x� � f �a� � f 
�a��x � a�
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In particular, if we put in Equation 11, we obtain the following expression
for the number as a sum of an infinite series:

EXAMPLE 3 Find the Taylor series for at .

SOLUTION We have and so, putting in the definition of a Taylor
series (6), we get

Again it can be verified, as in Example 1, that the radius of convergence is .
As in Example 2 we can verify that , so

We have two power series expansions for , the Maclaurin series in Equation 11
and the Taylor series in Equation 13. The first is better if we are interested in values
of near 0 and the second is better if is near 2.

EXAMPLE 4 Find the Maclaurin series for and prove that it represents for
all .

SOLUTION We arrange our computation in two columns as follows:

Since the derivatives repeat in a cycle of four, we can write the Maclaurin series as 
follows:

Since is or , we know that for all x. So we
can take in Taylor’s Inequality:

By Equation 10 the right side of this inequality approaches 0 as , so
by the Squeeze Theorem. It follows that as , so

is equal to the sum of its Maclaurin series by Theorem 8.
sin xn l �Rn�x� l 0� Rn�x� �l 0

n l �

� Rn�x� � �
M

�n � 1�! � xn�1 � � � x �n�1

�n � 1�!
14

M � 1
� f �n�1��x� � � 1�cos x�sin xf �n�1��x�

� x �
x 3

3!
�

x 5

5!
�

x 7

7!
� � � � � �

�

n�0
��1�n 

x 2n�1

�2n � 1�!

f �0� �
 f 
�0�

1!
 x �

 f ��0�
2!

 x 2 �
 f ��0�

3!
 x 3 � � � �

 f �4��x� � sin x  f �4��0� � 0

 f ��x� � �cos x f ��0� � �1

 f ��x� � �sin x  f ��0� � 0

 f 
�x� � cos x  f 
�0� � 1

 f �x� � sin x  f �0� � 0

x
sin xsin x

xx

ex

for all xex � �
�

n�0
 
e 2

n!
 �x � 2�n13

limn l � Rn�x� � 0
R � �

�
�

n�0
 
 f �n��2�

n!
 �x � 2�n � �

�

n�0
 
e 2

n!
 �x � 2�n

a � 2f �n��2� � e 2

a � 2f �x� � ex

e � �
�

n�0
 

1

n!
� 1 �

1

1!
�

1

2!
�

1

3!
� � � �12

e
x � 1
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� Figure 2 shows the graph of 
together with its Taylor (or Maclaurin)
polynomials

Notice that, as increases, 
becomes a better approximation 
to .sin x

Tn�x�n

 T5�x� � x �
x 3

3!
�

x 5

5!

 T3�x� � x �
x 3

3!

 T1�x� � x

sin x

0 x

y

1

1

y=sin x

T∞

T£

T¡

FIGURE 2

� In 1748 Leonard Euler used Equation
12 to find the value of correct to 
digits. In 1999 Xavier Gourdon, again
using the series in (12), computed 
to more than a billion decimal places.
The special techniques he employed to
speed up the computation are explained
on his web page:

http://xavier.gourdon.free.fr

e

23e



We state the result of Example 4 for future reference.

EXAMPLE 5 Find the Maclaurin series for .

SOLUTION We could proceed directly as in Example 4 but it’s easier to differentiate the
Maclaurin series for given by Equation 15:

Since the Maclaurin series for converges for all , Theorem 8.6.2 tells us that
the differentiated series for also converges for all . Thus

EXAMPLE 6 Find the Maclaurin series for the function .

SOLUTION Instead of computing derivatives and substituting in Equation 7, it’s easier
to multiply the series for (Equation 16) by :

EXAMPLE 7 Represent as the sum of its Taylor series centered at .

SOLUTION Arranging our work in columns, we have

 f �	�

3 
 � �
1

2
 f ��x� � �cos x

 f �	�

3 
 � �
s3

2
 f ��x� � �sin x

 f 
	�

3 
 �
1

2
 f 
�x� � cos x

 f	�

3 
 �
s3

2
 f �x� � sin x

��3f �x� � sin x

x cos x � x �
�

n�0
��1�n 

x 2n

�2n�!
� �

�

n�0
��1�n 

x 2n�1

�2n�!

xcos x

f �x� � x cos x

for all x � �
�

n�0
��1�n 

x 2n

�2n�!

 cos x � 1 �
x 2

2!
�

x 4

4!
�

x 6

6!
� � � �16

xcos x
xsin x

 � 1 �
3x 2

3!
�

5x 4

5!
�

7x 6

7!
� � � � � 1 �

x 2

2!
�

x 4

4!
�

x 6

6!
� � � �

 cos x �
d

dx
 �sin x� �

d

dx
 	x �

x 3

3!
�

x 5

5!
�

x 7

7!
� � � �


sin x

cos x

for all x  � �
�

n�0
��1�n 

x 2n�1

�2n � 1�!

 sin x � x �
x 3

3!
�

x 5

5!
�

x 7

7!
� � � �15
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� The Maclaurin series for , , and
that we found in Examples 2, 4,

and 5 were first discovered, using differ-
ent methods, by Newton. These equa-
tions are remarkable because they say
we know everything about each of these
functions if we know all its derivatives at
the single number .0

cos x
sin xe x



and this pattern repeats indefinitely. Therefore, the Taylor series at is

The proof that this series represents for all is very similar to that in Example 4.
[Just replace by in (14).] We can write the series in sigma notation if we
separate the terms that contain :

The power series that we obtained by indirect methods in Examples 5 and 6 and 
in Section 8.6 are indeed the Taylor or Maclaurin series of the given functions 
because Theorem 5 asserts that, no matter how we obtain a power series representa-
tion , it is always true that . In other words, the coef-
ficients are uniquely determined.

We collect in the following table, for future reference, some important Maclaurin
series that we have derived in this section and the preceding one.

One reason that Taylor series are important is that they enable us to integrate func-
tions that we couldn’t previously handle. In fact, in the introduction to this chapter we
mentioned that Newton often integrated functions by first expressing them as power
series and then integrating the series term by term. The function can’t be
integrated by techniques discussed so far because its antiderivative is not an elemen-
tary function (see Section 5.8). In the following example we use Newton’s idea to inte-
grate this function.

EXAMPLE 8
(a) Evaluate as an infinite series.

(b) Evaluate correct to within an error of .0.001x
1
0  e�x 2

 dx

x e�x 2

 dx

f �x� � e�x 2

��1, 1tan�1x � �
�

n�0
��1�n 

x 2n�1

2n � 1
� x �

x 3

3
�

x 5

5
�

x 7

7
� � � �

���, ��cos x � �
�

n�0
��1�n 

x 2n

�2n�!
� 1 �

x 2

2!
�

x 4

4!
�

x 6

6!
� � � �

���, ��sin x � �
�

n�0
��1�n 

x 2n�1

�2n � 1�!
� x �

x 3

3!
�

x 5

5!
�

x 7

7!
� � � �

���, ��ex � �
�

n�0
 
xn

n!
� 1 �

x

1!
�

x 2

2!
�

x 3

3!
� � � �

��1, 1�
1

1 � x
� �

�

n�0
 xn � 1 � x � x 2 � x 3 � � � �

cn � f �n��a��n!f �x� � � cn�x � a�n

sin x � �
�

n�0
 
��1�n

s3

2�2n�! 	x �
�

3 
2n

� �
�

n�0
 

��1�n

2�2n � 1�!	x �
�

3 
2n�1

s3
x � ��3x

xsin x

�
s3

2
�

1

2 � 1!
 	x �

�

3 
 �
s3

2 � 2!
 	x �

�

3 
2

�
1

2 � 3!
 	x �

�

3 
3

� � � �

f	�

3 
 �

 f 
	�

3 

1!

 	x �
�

3 
 �

 f �	�

3 

2!

 	x �
�

3 
2

�

 f �	�

3 

3!

 	x �
�

3 
3

� � � �

��3
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Important Maclaurin series and 
their intervals of convergence

� We have obtained two different
series representations for , the
Maclaurin series in Example 4 and the
Taylor series in Example 7. It is best to
use the Maclaurin series for values of 

near and the Taylor series for 
near . Notice that the third Taylor
polynomial in Figure 3 is a good
approximation to near but 
not as good near . Compare it with
the third Maclaurin polynomial in
Figure 2, where the opposite is true.

T3

0
��3sin x

T3

��3
x0x

sin x

0 x

y

π
3

y=sin x

T£

FIGURE 3

Module 8.7/8.9 enables you to
see how successive Taylor poly-

nomials approach the original function.



SOLUTION
(a) First we find the Maclaurin series for . Although it’s possible to use
the direct method, let’s find it simply by replacing with in the series for 
given in the table of Maclaurin series. Thus, for all values of x,

Now we integrate term by term:

This series converges for all because the original series for converges for all .

(b) The Evaluation Theorem gives

The Alternating Series Estimation Theorem shows that the error involved in this
approximation is less than

Another use of Taylor series is illustrated in the next example. The limit could be
found with l’Hospital’s Rule, but instead we use a series.

EXAMPLE 9 Evaluate .

SOLUTION Using the Maclaurin series for , we have

because power series are continuous functions.

 �
1

2

 � lim 
x l 0

 	1

2
�

x

3!
�

x 2

4!
�

x 3

5!
� � � �


 � lim 
x l 0

 

x 2

2!
�

x 3

3!
�

x 4

4!
� � � �

x 2

 lim 
x l 0

 
ex � 1 � x

x 2 � lim 
x l 0

 
	1 �

x

1!
�

x 2

2!
�

x 3

3!
� � � �
 � 1 � x

x 2

ex

lim 
x l 0

 
ex � 1 � x

x 2

1

11 � 5!
�

1

1320
	 0.001

 � 1 �
1
3 �

1
10 �

1
42 �

1
216 � 0.7475

 � 1 �
1
3 �

1
10 �

1
42 �

1
216 � � � �

 y
1

0
 e�x 2

 dx � �x �
x 3

3 � 1!
�

x 5

5 � 2!
�

x 7

7 � 3!
�

x 9

9 � 4!
� � � ��

0

1

xe�x 2

x

 � C � x �
x 3

3 � 1!
�

x 5

5 � 2!
�

x 7

7 � 3!
� � � � � ��1�n 

x 2n�1

�2n � 1�n!
� � � �

 y e�x 2

 dx � y 	1 �
x 2

1!
�

x 4

2!
�

x 6

3!
� � � � � ��1�n 

x 2n

n!
� � � �
 dx

e�x 2

� �
�

n�0
 
��x 2 �n

n!
� �

�

n�0
 ��1�n 

x 2n

n!
� 1 �

x 2

1!
�

x 4

2!
�

x 6

3!
� � � �

ex�x 2x
f �x� � e�x 2
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� Some computer algebra systems 
compute limits in this way.

� We can take in the anti-
derivative in part (a).

C � 0



Multiplication and Division of Power Series

If power series are added or subtracted, they behave like polynomials (Theorem 8.2.8
shows this). In fact, as the following example illustrates, they can also be multiplied
and divided like polynomials. We find only the first few terms because the calculations
for the later terms become tedious and the initial terms are the most important ones.

EXAMPLE 10 Find the first three nonzero terms in the Maclaurin series for (a) 
and (b) .

SOLUTION
(a) Using the Maclaurin series for and in the table, we have

We multiply these expressions, collecting like terms just as for polynomials:

Thus

(b) Using the Maclaurin series in the table, we have

We use a procedure like long division:

Thus

Although we have not attempted to justify the formal manipulations used in Exam-
ple 10, they are legitimate. There is a theorem which states that if both 
and converge for and the series are multiplied as if they were
polynomials, then the resulting series also converges for and represents

. For division we require ; the resulting series converges for sufficiently
small .� x �

b0 � 0f �x�t�x�
� x � 	 R

� x � 	 Rt�x� � � bnxn
f �x� � � cnxn

tan x � x �
1
3 x 3 �

2
15 x 5 � � � �

tan x �
sin x

cos x
�

x �
x 3

3!
�

x 5

5!
� � � �

1 �
x 2

2!
�

x 4

4!
� � � �

ex sin x � x � x 2 �
1
3 x 3 � � � �

� � ��
1
3 x 3�x 2�x

� � ��
1
6 x 4�

1
6 x 3�

� � ��
1
6 x 4�

1
2 x 3�x 2�x

� � ��
1
6 x 3�x

� � ��
1
6 x 3�

1
2 x 2�x1 �

ex sin x � 	1 �
x

1!
�

x 2

2!
�

x 3

3!
� � � �
	x �

x 3

3!
� � � �


sin xex

tan x
ex sin x
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 215 x 5 � � � �

 13 x 3 �  16 x 5 � � � �

 13 x 3 �  130 x 5 � � � �

 x �
1
2 x 3 �  124 x 5 � � ��

 1 �
1
2 x 2 �

1
24 x 4 � � � ��x � 1

6 x 3 �  1
120 x 5 � � � �

 x �
1
3 x 3 �  215 x 5 � � � �
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� � � � � � � � � � � � �

; 25–28 � Find the Maclaurin series of (by any method) and its
radius of convergence. Graph and its first few Taylor polyno-
mials on the same screen. What do you notice about the relation-
ship between these polynomials and ?

25. 26.

28.
� � � � � � � � � � � � �

29. Use the Maclaurin series for to calculate correct to
five decimal places.

30. Use the Maclaurin series for to compute correct
to five decimal places.

31–34 � Evaluate the indefinite integral as an infinite series.

32.

33. 34.

� � � � � � � � � � � � �

35–38 � Use series to approximate the definite integral to
within the indicated accuracy.

35. (three decimal places)

36. (three decimal places)

37.

38.

� � � � � � � � � � � � �

39–41 � Use series to evaluate the limit.

39. 40.

� � � � � � � � � � � � �

42. Use the series in Example 10(b) to evaluate

We found this limit in Example 4 in Section 4.5 using l’Hospi-
tal’s Rule three times. Which method do you prefer?

lim
x l 0

 
tan x � x

x 3

lim
x l  0

 
sin x � x �

1
6 x 3

x 541.

lim
x l  0

 
1 � cos x

1 � x � e xlim
x l  0

 
x � tan�1x

x 3

(� error � 	 0.001)y
0.5

0
 x 2e�x 2

 dx

(� error � 	 10�8)y
0.1

0
 

dx

s1 � x 3

y
0.5

0
 cos�x 2 � dx

y
1

0
 sin�x 2 � dx

y e x 3

 dxy sx 3 � 1 dx

y 
sin x

x
 dxy sin�x 2 � dx31.

sin 3�sin x

e�0.2e x

f �x� � 2 xf �x� � cos�x 2 �27.

f �x� � 1�s1 � 2xf �x� � s1 � x

f

f
f

f �x� � �
1

sin x

x
if x � 0

if x � 0
24.

1. If for all , write a formula for .

2. (a) The graph of is shown. Explain why the series

is not the Taylor series of centered at 1.

(b) Explain why the series

is not the Taylor series of centered at 2.

3–6 � Find the Maclaurin series for using the definition of
a Maclaurin series. [Assume that has a power series expan-
sion. Do not show that .] Also find the associated
radius of convergence.

4.

6.
� � � � � � � � � � � � �

7–14 � Find the Taylor series for centered at the given
value of a. [Assume that has a power series expansion. Do not
show that .]

7. ,

8. ,

, 10. ,

11. , 12. ,

,

14. ,
� � � � � � � � � � � � �

15. Prove that the series obtained in Exercise 3 represents 
for all .

16. Prove that the series obtained in Exercise 13 represents
for all .

17–24 � Use a Maclaurin series derived in this section to obtain
the Maclaurin series for the given function.

17. 18.

19. 20.

21.

23. [Hint: Use .]sin2x � 1
2 �1 � cos 2x�f �x� � sin2x

f �x� � x cos 2x22.f �x� � x 2e�x

f �x� � sin�x 4 �f �x� � x tan�1x

f �x� � e�x�2f �x� � cos �x

xsin x

x
cos x

a � ���4f �x� � cos x

a � ��4f �x� � sin x13.

a � 4f �x� � sxa � 1f �x� � 1�x

a � 2f �x� � ln xa � 3f �x� � e x9.

a � �1f �x� � x 3

a � 2f �x� � 1 � x � x 2

Rn�x� l 0
f

f �x�

f �x� � ln�1 � x�f �x� � �1 � x��35.

f �x� � sin 2xf �x� � cos x3.

Rn�x� l 0
f

f �x�

f

2.8 � 0.5�x � 2� � 1.5�x � 2�2 � 0.1�x � 2�3 � � � �

y

0 x

f

1

1

f

1.6 � 0.8�x � 1� � 0.4�x � 1�2 � 0.1�x � 1�3 � � � �

f

b8xf �x� � ��
n�0 bn�x � 5�n

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �8.7



52.

� � � � � � � � � � � � �

53. Prove Taylor’s Inequality for , that is, prove that if
for , then

54. (a) Show that the function defined by

is not equal to its Maclaurin series.

; (b) Graph the function in part (a) and comment on its
behavior near the origin.

f �x� � �e�1�x 2

0

if x � 0

if x � 0

� R2�x� � �
M

6
 � x � a �3 for � x � a � � d

� x � a � � d� f ��x� � � M
n � 2

1 � ln 2 �
�ln 2�2

2!
�

�ln 2�3

3!
� � � �

43–46 � Use multiplication or division of power series to find
the first three nonzero terms in the Maclaurin series for each
function.

44.

45. 46.

� � � � � � � � � � � � �

47–52 � Find the sum of the series.

48.

49. 50.

51. 3 �
9

2!
�

27

3!
�

81

4!
� � � �

�
�

n�0
 

3n

5nn!�
�

n�0
 

��1�n� 2n�1

42n�1�2n � 1�!

�
�

n�0
 
��1�n� 2n

62n�2n�!�
�

n�0
��1�n 

x 4n

n!
47.

y � e x ln�1 � x�y �
ln�1 � x�

e x

y � sec xy � e�x 2

 cos x43.

The Binomial Series � � � � � � � � � � � � � � �

You may be acquainted with the Binomial Theorem, which states that if and are
any real numbers and is a positive integer, then

The traditional notation for the binomial coefficients is

which enables us to write the Binomial Theorem in the abbreviated form

In particular, if we put and , we get

One of Newton’s accomplishments was to extend the Binomial Theorem (Equation 1)
to the case in which is no longer a positive integer. (See the Writing Project on k

�1 � x�k � �
k

n�0
 	 k

n
xn1

b � xa � 1

�a � b�k � �
k

n�0
 	 k

n
ak�nbn

n � 1, 2, . . . , k	 k

n
 �
k�k � 1��k � 2� � � � �k � n � 1�

n!	 k

0
 � 1

� � � � � kab k�1 � bk

� � � � �
k�k � 1��k � 2� � � � �k � n � 1�

n!
 ak�nbn

�a � b�k � ak � kak�1b �
k�k � 1�

2!
 a k�2b 2 �

k�k � 1��k � 2�
3!

 ak�3b 3

k
ba

8.8
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page 626.) In this case the expression for is no longer a finite sum; it becomes
an infinite series. To find this series we compute the Maclaurin series of in
the usual way:

. .

. .

. .

Therefore, the Maclaurin series of is

This series is called the binomial series. If its th term is 

Thus, by the Ratio Test, the binomial series converges if and diverges if
.

The following theorem states that is equal to the sum of its Maclaurin
series. It is possible to prove this by showing that the remainder term approaches
0, but that turns out to be quite difficult. The proof outlined in Exercise 15 is much
easier.

The Binomial Series If is any real number and , then

where and

Although the binomial series always converges when , the question of
whether or not it converges at the endpoints, , depends on the value of . It turns k�1

� x � 	 1

	 k

0
 � 1�n � 1�	 k

n
 �
k�k � 1� � � � �k � n � 1�

n!

 � �
�

n�0
 	 k

n
xn

 �1 � x�k � 1 � kx �
k�k � 1�

2!
 x 2 �

k�k � 1��k � 2�
3!

 x 3 � � � �

� x � 	 1k2

Rn�x�
�1 � x�k

� x � � 1
� x � 	 1

 � � k � n �
n � 1

 � x � �
�1 �

k

n
�

1 �
1

n

 � x � l � x � as n l �

 � an�1

an
� � � k�k � 1� � � � �k � n � 1��k � n�xn�1

�n � 1�!
�

n!

k�k � 1� � � � �k � n � 1�xn �
an, thenn

�
�

n�0

 
 f �n��0�

n!
 xn � �

�

n�0

 
k�k � 1� � � � �k � n � 1�

n!
 xn

f �x� � �1 � x�k

 f �n��x� � k�k � 1� � � � �k � n � 1��1 � x�k�n f �n��0� � k�k � 1� � � � �k � n � 1�

 f ��x� � k�k � 1��k � 2��1 � x�k�3  f ��0� � k�k � 1��k � 2�

 f ��x� � k�k � 1��1 � x�k�2  f ��0� � k�k � 1�

 f 
�x� � k�1 � x�k�1  f 
�0� � k

 f �x� � �1 � x�k  f �0� � 1

�1 � x�k
�1 � x�k
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out that the series converges at 1 if and at both endpoints if . Notice
that if is a positive integer and , then the expression for contains a factor

, so � 0 for . This means that the series terminates and reduces to the
ordinary Binomial Theorem (Equation 1) when is a positive integer.

As we have seen, the binomial series is just a special case of the Maclaurin series;
it occurs so frequently that it is worth remembering.

EXAMPLE 1 Expand as a power series.

SOLUTION We use the binomial series with . The binomial coefficient is

and so, when ,

EXAMPLE 2 Find the Maclaurin series for the function and its radius

of convergence.

SOLUTION As given, is not quite of the form so we rewrite it as follows:

Using the binomial series with and with replaced by , we have

We know from (2) that this series converges when , that is, , so
the radius of convergence is .R � 4

� x � 	 4� �x�4 � 	 1

 �
1

2
 �1 �

1

8
 x �

1 � 3

2!82  x 2 �
1 � 3 � 5

3!83  x 3 � � � � �
1 � 3 � 5 � � � � � �2n � 1�

n!8n  xn � � � ��
� � � � �

(� 1
2)(� 3

2)(� 5
2) � � � (� 1

2 � n � 1)
n!

 	�
x

4
n

� � � ��
 � 

1

2
 �1 � 	�

1

2
	�
x

4
 �
(� 1

2 )(� 3
2 )

2!
 	�

x

4
2

�
(� 1

2)(� 3
2)(� 5

2)
3!

 	�
x

4
3

 
1

s4 � x
�

1

2
 	1 �

x

4
�1�2

�
1

2
 �

�

n�0
 	�

1
2

n 
	�
x

4
n

�x�4xk � �
1
2

1

s4 � x
�

1

�4	1 �
x

4

�

1

2�1 �
x

4

�
1

2
 	1 �

x

4
�1�2

�1 � x�kf �x�

f �x� �
1

s4 � x

 � �
�

n�0
 ��1�n�n � 1�xn

 
1

�1 � x�2 � �1 � x��2 � �
�

n�0
 	�2

n 
xn

� x � 	 1

 �
��1�n 2 � 3 � 4 � � � � � n�n � 1�

n!
� ��1�n�n � 1�

 	�2

n 
 �
��2���3���4� � � � ��2 � n � 1�

n!

k � �2

1

�1 � x�2

k
n � k( k

n )�k � k�
( k
n )n � kk

k � 0�1 	 k � 0
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15. Use the following steps to prove (2).

(a) Let . Differentiate this series to show
that

(b) Let and show that .
(c) Deduce that .

16. The period of a pendulum with length that makes a maxi-
mum angle with the vertical is

where and is the acceleration due to gravity.
(In Exercise 30 in Section 5.9 we approximated this integral
using Simpson’s Rule.)
(a) Expand the integrand as a binomial series and use the

result of Exercise 36 in Section 5.6 to show that

If is not too large, the approximation ,
obtained by using only the first term in the series, is 
often used. A better approximation is obtained by using
two terms:

(b) Notice that all the terms in the series after the first one
have coefficients that are at most . Use this fact to com-
pare this series with a geometric series and show that

(c) Use the inequalities in part (b) to estimate the period of 
a pendulum with meter and . How does 
it compare with the estimate ? What if

?�0 � 42�
T � 2�sL�t

�0 � 10�L � 1

2��L

t

  (1 �
1
4 k 2 ) � T � 2��L

t

 
4 � 3k 2

4 � 4k 2

1
4

T � 2��L

t

  (1 �
1
4 k 2 )

T � 2�sL�t�0

T � 2��L

t

 �1 �
12

22  k 2 �
1232

2242  k 4 �
123252

224262  k 6 � � � ��

tk � sin( 1
2 �0 )

T � 4 �L

t

 y
��2

0
 

dx

s1 � k 2 sin2x

�0

L

t�x� � �1 � x�k
h
�x� � 0h�x� � �1 � x��k

t�x�

�1 	 x 	 1t
�x� �
kt�x�
1 � x

x n( k
n )t�x� � ��

n�0 
1–6 � Use the binomial series to expand the function as a
power series. State the radius of convergence.

1. 2.

4.

6.

� � � � � � � � � � � � �

; 7–8 � Use the binomial series to expand the function as a
Maclaurin series and to find the first three Taylor polynomials

, , and . Graph the function and these Taylor polynomials
in the interval of convergence.

7. 8.

� � � � � � � � � � � � �

(a) Use the binomial series to expand .
(b) Use part (a) to find the Maclaurin series for .

10. (a) Expand as a power series.
(b) Use part (a) to estimate correct to four decimal

places.

11. (a) Expand as a power series.
(b) Use part (a) to find the sum of the series

12. (a) Expand as a power series.
(b) Use part (a) to find the sum of the series

(a) Use the binomial series to find the Maclaurin series of
.

(b) Use part (a) to evaluate .

14. (a) Use the binomial series to find the Maclaurin series of
.

(b) Use part (a) to evaluate .f �9��0�
f �x� � 1�s1 � x 3

f �10��0�
f �x� � s1 � x 2

13.

�
�

n�1
 
n 2

2n

f �x� � �x � x 2 ���1 � x�3

�
�

n�1
 

n

2n

f �x� � x��1 � x�2

s
3 8.2

s
3 8 � x

sin�1x
1�s1 � x 29.

�4 � x�3�21

s
3 8 � x

T3T2T1

x 2

s2 � x

x

s4 � x 2
5.

s
3 1 � x 2

1

�2 � x�33.

1

�1 � x�4s1 � x

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �8.8

� A binomial series is a special case 
of a Taylor series. Figure 1 shows the
graphs of the first three Taylor polyno-
mials computed from the answer to
Example 2.
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How Newton Discovered the Binomial Series

The Binomial Theorem, which gives the expansion of , was known to Chinese
mathematicians many centuries before the time of Newton for the case where the exponent

is a positive integer. In 1665, when he was 22, Newton was the first to discover the infinite
series expansion of when is a fractional exponent (positive or negative). He didn’t
publish his discovery, but he stated it and gave examples of how to use it in a letter (now
called the epistola prior) dated June 13, 1676, that he sent to Henry Oldenburg, secretary of
the Royal Society of London, to transmit to Leibniz. When Leibniz replied, he asked how
Newton had discovered the binomial series. Newton wrote a second letter, the epistola
posterior of October 24, 1676, in which he explained in great detail how he arrived at 
his discovery by a very indirect route. He was investigating the areas under the curves

from 0 to for , 1, 2, 3, 4, . . . . These are easy to calculate if is
even. By observing patterns and interpolating, Newton was able to guess the answers for
odd values of . Then he realized he could get the same answers by expressing 
as an infinite series.

Write a report on Newton’s discovery of the binomial series. Start by giving the state-
ment of the binomial series in Newton’s notation (see the epistola prior on page 285 of 
[4] or page 402 of [2]). Explain why Newton’s version is equivalent to Theorem 8.8.2 on
page 623. Then read Newton’s epistola posterior (page 287 in [4] or page 404 in [2]) and
explain the patterns that Newton discovered in the areas under the curves .
Show how he was able to guess the areas under the remaining curves and how he verified
his answers. Finally, explain how these discoveries led to the binomial series. The books by
Edwards [1] and Katz [3] contain commentaries on Newton’s letters.

1. C. H. Edwards, The Historical Development of the Calculus (New York: Springer-
Verlag, 1979), pp. 178–187.

2. John Fauvel and Jeremy Gray, eds., The History of Mathematics: A Reader (London:
MacMillan Press, 1987).

3. Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins,
1993), pp. 463–466.

4. D. J. Struik, ed., A Sourcebook in Mathematics, 1200–1800 (Princeton, N.J.:
Princeton University Press, 1969).

y � �1 � x 2 �n�2

�1 � x 2 �n�2n

nn � 0xy � �1 � x 2 �n�2

k�a � b�k
k

�a � b�k

Writing
Project

Applications of Taylor Polynomials � � � � � � � � � �

Suppose that is equal to the sum of its Taylor series at a:

In Section 8.7 we introduced the notation for the partial sum of this series
and called it the -degree Taylor polynomial of at . Thus

 � f �a� �
 f 
�a�

1!
 �x � a� �

 f ��a�
2!

 �x � a�2 � � � � �
 f �n��a�

n!
 �x � a�n

 Tn�x� � �
n

i�0
 
 f �i��a�

i!
 �x � a�i

afnth
nthTn�x�

f �x� � �
�

n�0
 
 f �n��a�

n!
 �x � a�n

f �x�
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Since is the sum of its Taylor series, we know that as and so 
can be used as an approximation to : . It is useful to be able to approx-
imate a function by a polynomial because polynomials are the simplest of functions.
In this section we explore the use of such approximations by physical scientists and
computer scientists.

Notice that the first-degree Taylor polynomial

is the same as the linearization of at a that we discussed in Sections 2.9 and 3.8.
Notice also that and its derivative have the same values at a that and have. In
general, it can be shown that the derivatives of at agree with those of up to and
including derivatives of order .

To illustrate these ideas let’s take another look at the graphs of and its first
few Taylor polynomials, as shown in Figure 1. The graph of is the tangent line to

at ; this tangent line is the best linear approximation to near . The
graph of is the parabola , and the graph of is the cubic curve

, which is a closer fit to the exponential curve than
. The next Taylor polynomial would be an even better approximation, and so on.
The values in the table give a numerical demonstration of the convergence of the

Taylor polynomials to the function . We see that when x � 0.2 the con-
vergence is very rapid, but when x � 3 it is somewhat slower. In fact, the farther x is
from 0, the more slowly converges to .

When using a Taylor polynomial to approximate a function , we have to ask
the questions: How good an approximation is it? How large should we take to be in
order to achieve a desired accuracy? To answer these questions we need to look at the
absolute value of the remainder:

There are three possible methods for estimating the size of the error:

1. If a graphing device is available, we can use it to graph and thereby
estimate the error.

2. If the series happens to be an alternating series, we can use the Alternating
Series Estimation Theorem.

3. In all cases we can use Taylor’s Inequality (Theorem 8.7.9), which says that if
, then

EXAMPLE 1
(a) Approximate the function by a Taylor polynomial of degree 2 
at .
(b) How accurate is this approximation when ?

SOLUTION
(a)

 f ��x� � 10
27 x�8�3

 f ��x� � �
2
9 x�5�3  f ��8� � �

1
144

 f 
�x� � 1
3 x�2�3  f 
�8� � 1

12

 f �x� � s
3 x � x 1�3 f �8� � 2

7 � x � 9
a � 8

f �x� � s
3 x

� Rn�x� � �
M

�n � 1�!
 � x � a �n�1

� f �n�1��x� � � M

� Rn�x� �

� Rn�x� � � � f �x� � Tn�x� �

n
fTn

exTn�x�

y � exTn�x�

T4T2

y � exy � 1 � x � x 2�2 � x 3�6
T3y � 1 � x � x 2�2T2

�0, 1�ex�0, 1�y � ex
T1

y � ex
n

faTn

f 
fT1

f

T1�x� � f �a� � f 
�a��x � a�

f �x� � Tn�x�f
Tnn l �Tn�x� l f �x�f
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Thus, the second-degree Taylor polynomial is

The desired approximation is

(b) The Taylor series is not alternating when , so we can’t use the Alternating
Series Estimation Theorem in this example. But we can use Taylor’s Inequality with 
n � 2 and a � 8:

where . Because , we have and so

Therefore, we can take M � 0.0021. Also , so and
. Then Taylor’s Inequality gives

Thus, if , the approximation in part (a) is accurate to within .

Let’s use a graphing device to check the calculation in Example 1. Figure 2 shows
that the graphs of and are very close to each other when is near 8.
Figure 3 shows the graph of computed from the expression

We see from the graph that

when . Thus, the error estimate from graphical methods is slightly better
than the error estimate from Taylor’s Inequality in this case.

EXAMPLE 2
(a) What is the maximum error possible in using the approximation 

when ? Use this approximation to find correct to six decimal
places.
(b) For what values of is this approximation accurate to within ?0.00005x

sin 12��0.3 � x � 0.3

sin x � x �
x 3

3!
�

x 5

5!

7 � x � 9

� R2�x� � 	 0.0003

� R2�x� � � � s
3 x � T2�x� �

� R2�x� �
xy � T2�x�y � s

3 x

0.00047 � x � 9

� R2�x� � �
0.0021

3!
� 13 �

0.0021

6
	 0.0004

� x � 8 � � 1
�1 � x � 8 � 17 � x � 9

f ��x� �
10

27
�

1

x 8�3 �
10

27
�

1

78�3 	 0.0021

x 8�3 � 78�3x � 7� f ��x� � � M

� R2�x� � �
M

3! � x � 8 �3

x 	 8

s
3 x � T2�x� � 2 �

1
12 �x � 8� �

1
288 �x � 8�2

 � 2 �
1
12 �x � 8� �

1
288 �x � 8�2

 T2�x� � f �8� �
 f 
�8�

1!
 �x � 8� �

 f ��8�
2!

 �x � 8�2
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SOLUTION
(a) Notice that the Maclaurin series

is alternating for all nonzero values of , and the successive terms decrease in size
because , so we can use the Alternating Series Estimation Theorem. The
error in approximating by the first three terms of its Maclaurin series is at most

If , then , so the error is smaller than

To find we first convert to radian measure.

Thus, correct to six decimal places, .

(b) The error will be smaller than if

Solving this inequality for , we get

So the given approximation is accurate to within when .

What if we use Taylor’s Inequality to solve Example 2? Since , we
have and so

So we get the same estimates as with the Alternating Series Estimation Theorem.
What about graphical methods? Figure 4 shows the graph of

and we see from it that when . This is the same esti-
mate that we obtained in Example 2. For part (b) we want , so we
graph both and in Figure 5. By placing the cursor on they � 0.00005y � � R6�x� �

� R6�x� � 	 0.00005
� x � � 0.3� R6�x� � 	 4.3  10�8

� R6�x� � � � sin x � (x �
1
6 x 3 �

1
120 x 5 ) �

� R6�x� � �
1

7!
 � x �7

� f �7��x� � � 1
f �7��x� � �cos x

� x � 	 0.820.00005

� x � 	 �0.252�1�7 � 0.821or� x �7 	 0.252

x

� x �7

5040
	 0.00005

0.00005

sin 12� � 0.207912

 � 0.20791169

 �
�

15
� 	 �

15
3 1

3!
� 	 �

15
5 1

5!

 sin 12� � sin	12�

180 
 � sin	 �

15

sin 12�

�0.3�7

5040
� 4.3  10�8

� x � � 0.3�0.3 � x � 0.3

� x 7

7! � � � x �7

5040

sin x
� x � 	 1

x

sin x � x �
x 3

3!
�

x 5

5!
�

x 7

7!
� � � �
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right intersection point we find that the inequality is satisfied when . Again
this is the same estimate that we obtained in the solution to Example 2.

If we had been asked to approximate instead of in Example 2, it
would have been wise to use the Taylor polynomials at (instead of )
because they are better approximations to for values of close to . Notice
that is close to (or radians) and the derivatives of are easy to com-
pute at .

Figure 6 shows the graphs of the Taylor polynomial approximations

to the sine curve. You can see that as increases, is a good approximation to
on a larger and larger interval.

One use of the type of calculation done in Examples 1 and 2 occurs in calculators
and computers. For instance, when you press the or key on your calculator, or
when a computer programmer uses a subroutine for a trigonometric or exponential or
Bessel function, in many machines a polynomial approximation is calculated. The
polynomial is often a Taylor polynomial that has been modified so that the error is
spread more evenly throughout an interval.

Applications to Physics

Taylor polynomials are also used frequently in physics. In order to gain insight into
an equation, a physicist often simplifies a function by considering only the first two or
three terms in its Taylor series. In other words, the physicist uses a Taylor polynomial
as an approximation to the function. Taylor’s Inequality can then be used to gauge the
accuracy of the approximation. The following example shows one way in which this
idea is used in special relativity.

EXAMPLE 3 In Einstein’s theory of special relativity the mass of an object moving
with velocity is

m �
m0

s1 � v 2�c 2

v

exsin

FIGURE 6

0 x

y

T¶

T∞

T£

y=sin x

T¡

sin x
Tn�x�n

T7�x� � x �
x 3

3!
�

x 5

5!
�

x 7

7!

 T5�x� � x �
x 3

3!
�

x 5

5!

T3�x� � x �
x 3

3!

 T1�x� � x

��3
sin x��360�72�

��3xsin x
a � 0a � ��3

sin 12�sin 72�

� x � 	 0.82
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Module 8.7/8.9 graphically
shows the remainders in Taylor

polynomial approximations.



where is the mass of the object when at rest and is the speed of light. The
kinetic energy of the object is the difference between its total energy and its energy
at rest:

(a) Show that when is very small compared with , this expression for agrees
with classical Newtonian physics: .
(b) Use Taylor’s Inequality to estimate the difference in these expressions for 
when m�s.

SOLUTION
(a) Using the expressions given for and , we get 

With , the Maclaurin series for is most easily computed as a
binomial series with . (Notice that because .) Therefore, we
have

and

If is much smaller than , then all terms after the first are very small when com-
pared with the first term. If we omit them, we get

(b) If , , and M is a number such that
, then we can use Taylor’s Inequality to write

We have and we are given that , so

� f ��x� � �
3m0c 2

4�1 � v 2�c 2 �5�2 �
3m0c 2

4�1 � 1002�c 2 �5�2 �� M�

� v � � 100 m�sf ��x� � 3
4 m0c 2�1 � x��5�2

� R1�x� � �
M

2!
 x 2

� f ��x� � � M
f �x� � m0c 2��1 � x��1�2 � 1x � �v 2�c 2

K � m0c 2	1

2
 
v2

c 2
 � 1
2 m0 v2

cv

 � m0c 2	1

2
 
v2

c 2 �
3

8
 
v4

c 4 �
5

16
 
v6

c 6 � � � �

 K � m0c 2�	1 �

1

2
 
v2

c 2 �
3

8
 
v4

c 4 �
5

16
 
v6

c 6 � � � �
 � 1�
 � 1 �

1
2 x �

3
8 x 2 �

5
16 x 3 � � � �

 �1 � x��1�2 � 1 �
1
2 x �

(� 1
2 )(� 3

2 )
2!

 x 2 �
(� 1

2 )(� 3
2 )(� 5

2)
3!

 x 3 � � � �

v 	 c� x � 	 1k � �
1
2

�1 � x��1�2x � �v2�c 2

 � m0c 2�	1 �
v2

c 2
�1�2

� 1�
 K � mc 2 � m0c 2 �

m0c 2

s1 � v 2�c 2
� m0c 2

mK

� v � � 100
K

K � 1
2 m0v2

Kcv

K � mc 2 � m0c 2

cm0
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� The upper curve in Figure 7 is the
graph of the expression for the kinetic
energy of an object with velocity in
special relativity. The lower curve shows
the function used for in classical New-
tonian physics. When is much smaller
than the speed of light, the curves are
practically identical.
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FIGURE 7
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Thus, with m�s,

So when m�s, the magnitude of the error in using the Newtonian expres-
sion for kinetic energy is at most .

Another application to physics occurs in optics. Figure 8 is adapted from Optics,
Second Edition by Eugene Hecht (Reading, MA: Addison-Wesley, 1987), page 133. It
depicts a wave from the point source S meeting a spherical interface of radius R cen-
tered at C. The ray SA is refracted toward P.

Using Fermat’s principle that light travels so as to minimize the time taken, Hecht
derives the equation

where and are indexes of refraction and , , , and are the distances indi-
cated in Figure 8. By the Law of Cosines, applied to triangles ACS and ACP, we have

Because Equation 1 is cumbersome to work with, Gauss, in 1841, simplified it by
using the linear approximation for small values of . (This amounts to
using the Taylor polynomial of degree 1.) Then Equation 1 becomes the following
simpler equation [as you are asked to show in Exercise 24(a)]:

The resulting optical theory is known as Gaussian optics, or first-order optics, and has
become the basic theoretical tool used to design lenses.

A more accurate theory is obtained by approximating by its Taylor polyno-
mial of degree 3 (which is the same as the Taylor polynomial of degree 2). This takes
into account rays for which is not so small, that is, rays that strike the surface at
greater distances h above the axis. In Exercise 24(b) you are asked to use this approxi-

�

cos �

n1

so
�

n2

si
�

n2 � n1

R
3

�cos � � 1

 �i � sR2 � �si � R�2 � 2R�si � R� cos �

 �o � sR2 � �so � R�2 � 2R�so � R� cos �2

siso�i�on2n1

n1

�o
�

n2

�i
�

1

R
 	n2si

�i
�

n1so

�o

1

FIGURE 8
Refraction at a spherical interface
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�4.2  10�10 �m0

� v � � 100

� R1�x� � �
1
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1004
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� Here we use the identity

cos�� � �� � �cos �
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12. , , ,

, , ,

14. , , ,

15. , , ,

, , ,
� � � � � � � � � � � � �

17. Use the information from Exercise 5 to estimate 
correct to five decimal places.

18. Use the information from Exercise 14 to estimate 
correct to five decimal places.

19. Use Taylor’s Inequality to determine the number of terms of
the Maclaurin series for that should be used to estimate

to within .

20. How many terms of the Maclaurin series for do
you need to use to estimate to within ?

; 21–22 � Use the Alternating Series Estimation Theorem or 
Taylor’s Inequality to estimate the range of values of for
which the given approximation is accurate to within the stated
error. Check your answer graphically.

21. ,

22. ,

� � � � � � � � � � � � �

23. A car is moving with speed 20 m�s and acceleration 2 m�s
at a given instant. Using a second-degree Taylor polyno-
mial, estimate how far the car moves in the next second.
Would it be reasonable to use this polynomial to estimate
the distance traveled during the next minute?

24. (a) Derive Equation 3 for Gaussian optics from Equation 1
by approximating in Equation 2 by its first-degree
Taylor polynomial.

(b) Show that if is replaced by its third-degree Taylor
polynomial in Equation 2, then Equation 1 becomes
Equation 4 for third-order optics. [Hint: Use the first 

cos �

cos �

2

(� error � 	 0.005)cos x � 1 �
x 2

2
�

x 4

24

(� error � 	 0.01)sin x � x �
x 3

6

x

0.001ln 1.4
ln�1 � x�

0.00001e 0.1
e x

cos 69�

sin 35�

0.5 � x � 1.5n � 3a � 1f �x� � ln�1 � 2x�16.

0 � x � ��6n � 3a � 0f �x� � tan x

0 � x � 2��3n � 4a � ��3f �x� � cos x

0 � x � 0.1n � 3a � 0f �x� � e x 2

13.

0.9 � x � 1.1n � 2a � 1f �x� � x�2

; 1. (a) Find the Taylor polynomials up to degree 6 for
centered at . Graph and these 

polynomials on a common screen.
(b) Evaluate and these polynomials at , ,

and .
(c) Comment on how the Taylor polynomials converge 

to .

; 2. (a) Find the Taylor polynomials up to degree 3 for
centered at . Graph and these poly-

nomials on a common screen.
(b) Evaluate and these polynomials at and 1.3.
(c) Comment on how the Taylor polynomials converge 

to .

; 3–8 � Find the Taylor polynomial for the function at
the number . Graph and on the same screen.

3. , ,

4. , ,

, ,

6. , ,

, ,

8. , ,
� � � � � � � � � � � � �

9–10 � Use a computer algebra system to find the Taylor poly-
nomials at for the given values of . Then graph these
polynomials and on the same screen.

9. ,

10. ,
� � � � � � � � � � � � �

11–16 �

(a) Approximate by a Taylor polynomial with degree at 
the number .

(b) Use Taylor’s Inequality to estimate the accuracy of the
approximation when x lies in the given 
interval.

; (c) Check your result in part (b) by graphing .

11. , , , 4 � x � 4.2n � 2a � 4f �x� � sx

� Rn�x� �

f �x� � Tn�x�

a
nf

n � 1, 3, 5, 7, 9f �x� � tan x

n � 2, 4, 6, 8f �x� � sec x

f
na � 0Tn

CAS

n � 2a � 1f �x� � s3 � x 2

n � 3a � 0f �x� � e x sin x7.

n � 4a � 2��3f �x� � cos x

n � 3a � ��6f �x� � sin x5.

n � 3a � 2f �x� � e x

n � 4a � 1f �x� � ln x

Tnfa
fTn�x�

f �x�

x � 0.9f

fa � 1f �x� � 1�x

f �x�

�
��2x � ��4f

fa � 0f �x� � cos x

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �8.9

mation to derive the more accurate equation

The resulting optical theory is known as third-order optics.
Other applications of Taylor polynomials to physics are explored in Exercises 25

and 26 and in the Applied Project on page 634.
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sion for by its first- or second-degree Taylor polynomial
at .
(a) Find expressions for these linear and quadratic 

approximations.

; (b) For copper, the tables give C and
-m. Graph the resistivity of copper 

and the linear and quadratic approximations for 
C C.

; (c) For what values of does the linear approximation
agree with the exponential expression to within one 
percent?

27. In Section 4.8 we considered Newton’s method for approxi-
mating a root of the equation , and from an 
initial approximation we obtained successive approxima-
tions , , . . . , where

Use Taylor’s Inequality with , , and to
show that if exists on an interval containing , ,
and , and , for all , then

[This means that if is accurate to decimal places, then
is accurate to about decimal places. More precisely,

if the error at stage is at most , then the error at stage
is at most .]�M�2K �10�2mn � 1

10�mn
2dxn�1

dxn

� xn�1 � r � �
M

2K � xn � r �2

x � I� f 
�x� � � K� f ��x� � � Mxn�1

xnrIf ��x�
x � ra � xnn � 1

xn�1 � xn �
 f �xn�
f 
�xn�

x3x2

x1

f �x� � 0r

t
� t � 1000 ��250 �

��20 � 1.7  10�8
� � 0.0039��

t � 20
��t�two terms in the binomial series for and . Also,

use .]

An electric dipole consists of two electric charges of equal
magnitude and opposite signs. If the charges are and 
and are located at a distance from each other, then the
electric field at the point in the figure is

By expanding this expression for as a series in powers of
, show that is approximately proportional to 

when is far away from the dipole.

26. The resistivity of a conducting wire is the reciprocal of
the conductivity and is measured in units of ohm-meters 
( -m). The resistivity of a given metal depends on the 
temperature according to the equation

where is the temperature in C. There are tables that list
the values of (called the temperature coefficient) and 
(the resistivity at C) for various metals. Except at very
low temperatures, the resistivity varies almost linearly with
temperature and so it is common to approximate the expres-

20 �
� 20�

�t

��t� � � 20e ��t�20�

�

�

P
D d

q _q

P
1�D3Ed�D

E

E �
q

D2 �
q

�D � d �2

PE
d

�qq
25.

� � sin �
�i

�1�o
�1
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Radiation from the Stars

Any object emits radiation when heated. A blackbody is a system that absorbs all the radia-
tion that falls on it. For instance, a matte black surface or a large cavity with a small hole in
its wall (like a blastfurnace) is a blackbody and emits blackbody radiation. Even the radia-
tion from the Sun is close to being blackbody radiation.

Proposed in the late 19th century, the Rayleigh-Jeans Law expresses the energy density of
blackbody radiation of wavelength as

where is measured in meters, is the temperature in kelvins (K), and is Boltzmann’s
constant. The Rayleigh-Jeans Law agrees with experimental measurements for long wave-
lengths but disagrees drastically for short wavelengths. [The law predicts that as

but experiments have shown that .] This fact is known as the ultraviolet
catastrophe.

In 1900 Max Planck found a better model (known now as Planck’s Law) for blackbody 
radiation:

f ��� �
8�hc��5

e hc���kT � � 1

f ��� l 0� l 0�

f ��� l �

kT�

f ��� �
8�kT

�4

�

Applied
Project
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where is measured in meters, is the temperature in kelvins, and

1. Use l’Hospital’s Rule to show that

for Planck’s Law. So, for short wavelengths, this law models blackbody radiation better
than the Rayleigh-Jeans Law.

2. Use a Taylor polynomial to show that, for large wavelengths, Planck’s Law gives
approximately the same values as the Rayleigh-Jeans Law.

; 3. Graph as given by both laws on the same screen and comment on the similarities and
differences. Use K (the temperature of the Sun). (You may want to change
from meters to the more convenient unit of micrometers: �m m.)

4. Use your graph in Problem 3 to estimate the value of for which is a maximum
under Planck’s Law.

; 5. Investigate how the graph of changes as varies. (Use Planck’s Law.) In particular,
graph for the stars Betelgeuse ( ), Procyon ( ), and Sirius
( ) as well as the Sun. How does the total radiation emitted (the area under
the curve) vary with ? Use the graph to comment on why Sirius is known as a blue
star and Betelgeuse as a red star.

T
T � 9200 K

T � 6400 KT � 3400 Kf
Tf

f ����

� 10�61
T � 5700 

f

lim
� l 0�

 f ��� � 0 and   lim
� l �

 f ��� � 0

 k � Boltzmann’s constant � 1.3807  10�23 J�K

 c � speed of light � 2.997925  108 m�s

 h � Planck’s constant � 6.6262  10�34 J�s

T�

Using Series to Solve Differential Equations � � � � � � � �

Many differential equations can’t be solved explicitly in terms of finite combinations
of simple familiar functions. This is true even for a simple-looking equation like

But it is important to be able to solve equations such as Equation 1 because they arise
from physical problems and, in particular, in connection with the Schrödinger equa-
tion in quantum mechanics. In such a case we use the method of power series; that is,
we look for a solution of the form

The method is to substitute this expression into the differential equation and determine
the values of the coefficients 

Before using power series to solve Equation 1, we illustrate the method on the sim-
pler equation in Example 1.

EXAMPLE 1 Use power series to solve the equation .

SOLUTION We assume there is a solution of the form

y � c0 � c1x � c2x 2 � c3x 3 � � � � � �
�

n�0
 cnxn2

y� � y � 0

y� � y � 0

c0, c1, c2, . . . .

y � f �x� � �
�

n�0
 cnxn � c0 � c1x � c2x 2 � c3x 3 � � � �

y� � 2xy
 � y � 01

8.10



We can differentiate power series term by term, so

In order to compare the expressions for and more easily, we rewrite as follows:

Substituting the expressions in Equations 2 and 4 into the differential equation, we
obtain

or

If two power series are equal, then the corresponding coefficients must be equal.
Therefore, the coefficients of in Equation 5 must be 0:

Equation 6 is called a recursion relation. If and are known, it allows us to
determine the remaining coefficients recursively by putting in
succession.

 Put n � 5: c7 � �
c5

6 � 7
� �

c1

5! 6 � 7
� �

c1

7!

 Put n � 4: c6 � �
c4

5 � 6
� �

c0

4! 5 � 6
� �

c0

6!

 Put n � 3: c5 � �
c3

4 � 5
�

c1

2 � 3 � 4 � 5
�

c1

5!

 Put n � 2: c4 � �
c2

3 � 4
�

c0

1 � 2 � 3 � 4
�

c0

4!

 Put n � 1: c3 � �
c1

2 � 3

 Put n � 0: c2 � �
c0

1 � 2

n � 0, 1, 2, 3, . . .
c1c0

n � 0, 1, 2, 3, . . .cn�2 � �
cn

�n � 1��n � 2�
6

�n � 2��n � 1�cn�2 � cn � 0

xn

�
�

n�0
 ��n � 2��n � 1�cn�2 � cn xn � 05

�
�

n�0
 �n � 2��n � 1�cn�2xn � �

�

n�0
 cnxn � 0

y� � �
�

n�0
 �n � 2��n � 1�cn�2 xn4

y�y�y

 y� � 2c2 � 2 � 3c3x � � � � � �
�

n�2
 n�n � 1�cnxn�23

 y
 � c1 � 2c2x � 3c3x 2 � � � � � �
�

n�1
 ncnxn�1
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� By writing out the first few terms of
(4), you can see that it is the same as
(3). To obtain (4) we replaced by

and began the summation at 
instead of .2

0n � 2
n



By now we see the pattern:

Putting these values back into Equation 2, we write the solution as

Notice that there are two arbitrary constants, and 

NOTE 1 � We recognize the series obtained in Example 1 as being the Maclaurin
series for and . Therefore, we could write the solution as

But we are not usually able to express power series solutions of differential equations
in terms of known functions.

EXAMPLE 2 Solve .

SOLUTION We assume there is a solution of the form

Then

and

as in Example 1. Substituting in the differential equation, we get

 �
�

n�0
 ��n � 2��n � 1�cn�2 � �2n � 1�cn xn � 0

 �
�

n�0
 �n � 2��n � 1�cn�2xn �  �

�

n�1
 2ncnxn � �

�

n�0
 cnxn � 0

 �
�

n�0
 �n � 2��n � 1�cn�2xn � 2x �

�

n�1
 ncn xn�1 � �

�

n�0
 cnxn � 0

 y� � �
�

n�2
 n�n � 1�cnxn�2 � �

�

n�0
 �n � 2��n � 1�cn�2xn

 y
 � �
�

n�1
 ncnxn�1

 y � �
�

n�0
 cnxn

y� � 2xy
 � y � 0

y�x� � c0 cos x � c1 sin x

sin xcos x

c1.c0

 � c0 �
�

n�0
 ��1�n 

x 2n

�2n�!
� c1 �

�

n�0
 ��1�n 

x 2n�1

�2n � 1�!

 � � c1	x �
x 3

3!
�

x 5

5!
�

x 7

7!
� � � � � ��1�n 

x 2n�1

�2n � 1�!
� � � �


 � c0	1 �
x 2

2!
�

x 4

4!
�

x 6

6!
� � � � � ��1�n 

x 2n

�2n�!
� � � �


 y � c0 � c1x � c2x 2 � c3x 3 � c4x 4 � c5x 5 � � � �

 For the odd coefficients, c2n�1 � ��1�n 
c1

�2n � 1�!

 For the even coefficients, c2n � ��1�n 
c0

�2n�!
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n�1
 2ncn xn � �

�

n�0
 2ncnxn



This equation is true if the coefficient of is 0:

We solve this recursion relation by putting successively in Equa-
tion 7:

In general, the even coefficients are given by

and the odd coefficients are given by

The solution is

 � � c1	x �
1

3!
 x 3 �

1 � 5

5!
 x 5 �

1 � 5 � 9

7!
 x 7 �

1 � 5 � 9 � 13

9!
 x 9 � � � �


 � c0	1 �
1

2!
 x 2 �

3

4!
 x 4 �

3 � 7

6!
 x 6 �

3 � 7 � 11

8!
 x 8 � � � �


 y � c0 � c1x � c2x 2 � c3x 3 � c4x 4 � � � �

c2n�1 �
1 � 5 � 9 � � � � � �4n � 3�

�2n � 1�!
 c1

c2n � �
3 � 7 � 11 � � � � � �4n � 5�

�2n�!
 c0

 Put n � 7: c9 �
13

8 � 9
 c7 �

1 � 5 � 9 � 13

9!
 c1

 Put n � 6: c8 �
11

7 � 8
 c6 � �

3 � 7 � 11

8!
 c0

 Put n � 5: c7 �
9

6 � 7
 c5 �

1 � 5 � 9

5! 6 � 7
 c1 �

1 � 5 � 9

7!
 c1

 Put n � 4: c6 �
7

5 � 6
 c4 � �

3 � 7

4! 5 � 6
 c0 � �

3 � 7

6!
 c0

 Put n � 3: c5 �
5

4 � 5
 c3 �

1 � 5

2 � 3 � 4 � 5
 c1 �

1 � 5

5!
 c1

 Put n � 2: c4 �
3

3 � 4
 c2 � �

3

1 � 2 � 3 � 4
 c0 � �

3

4!
 c0

 Put n � 1: c3 �
2

2 � 3
 c1

 Put n � 0: c2 �
�1

1 � 2
 c0

n � 0, 1, 2, 3, . . .

n � 0, 1, 2, 3, . . .cn�2 �
2n � 1

�n � 1��n � 2�
 cn7

�n � 2��n � 1�cn�2 � �2n � 1�cn � 0

xn
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or

NOTE 2 � In Example 2 we had to assume that the differential equation had a series
solution. But now we could verify directly that the function given by Equation 8 is
indeed a solution.

NOTE 3 � Unlike the situation of Example 1, the power series that arise in the solu-
tion of Example 2 do not define elementary functions. The functions

and

are perfectly good functions but they can’t be expressed in terms of familiar functions.
We can use these power series expressions for and to compute approximate val-
ues of the functions and even to graph them. Figure 1 shows the first few partial sums

(Taylor polynomials) for , and we see how they converge to . In
this way we can graph both and in Figure 2.

NOTE 4 � If we were asked to solve the initial-value problem

we would observe that

This would simplify the calculations in Example 2, since all of the even coefficients
would be 0. The solution to the initial-value problem is

y�x� � x � �
�

n�1
 
1 � 5 � 9 � � � � � �4n � 3�

�2n � 1�!
 x 2n�1

c1 � y
�0� � 1c0 � y�0� � 0

 y
�0� � 1y�0� � 0y� � 2xy
 � y � 0

y2y1

y1y1�x�T0, T2, T4, . . .

y2y1

 y2�x� � x � �
�

n�1
 
1 � 5 � 9 � � � � � �4n � 3�

�2n � 1�!
 x 2n�1

 y1�x� � 1 �
1

2!
 x 2 � �

�

n�2
 
3 � 7 � � � � � �4n � 5�

�2n�!
 x 2n

 � � c1	x � �
�

n�1
 
1 � 5 � 9 � � � � � �4n � 3�

�2n � 1�!
 x 2n�1


 y � c0	1 �
1

2!
 x 2 � �

�

n�2
 
3 � 7 � � � � � �4n � 5�

�2n�!
 x 2n
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10. The solution of the initial-value problem

is called a Bessel function of order 0.
(a) Solve the initial-value problem to find a power series

expansion for the Bessel function.

; (b) Graph several Taylor polynomials until you reach one
that looks like a good approximation to the Bessel func-
tion on the interval .��5, 5

y
�0� � 0y�0� � 1x 2 y� � xy
 � x 2 y � 0

1–9 � Use power series to solve the differential equation. 

1. 2.

5. 6.

, ,

8. , ,

9. , ,
� � � � � � � � � � � � �

y
�0� � 1y�0� � 0y� � x 2 y
 � xy � 0

y
�0� � 0y�0� � 1y� � x 2 y � 0

y
�0� � 0y�0� � 1y� � xy
 � y � 07.

y� � xyy� � 3xy
 � 3y � 0

y� � y4.y
 � x 2 y3.

y
 � xyy
 � y � 0
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(c) If a series is convergent by the Alternating Series Test,
how do you estimate its sum?

8. (a) Write the general form of a power series.
(b) What is the radius of convergence of a power series?
(c) What is the interval of convergence of a power 

series?

9. Suppose is the sum of a power series with radius of
convergence .
(a) How do you differentiate ? What is the radius of con-

vergence of the series for ?
(b) How do you integrate ? What is the radius of conver-

gence of the series for ?

10. (a) Write an expression for the th-degree Taylor polyno-
mial of centered at .

(b) Write an expression for the Taylor series of centered
at .

(c) Write an expression for the Maclaurin series of .
(d) How do you show that is equal to the sum of its 

Taylor series?
(e) State Taylor’s Inequality.

11. Write the Maclaurin series and the interval of convergence
for each of the following functions.
(a) (b)
(c) (d)
(e)

12. Write the binomial series expansion of . What is
the radius of convergence of this series?

�1 � x�k

tan�1x
cos xsin x
e x1��1 � x�

f �x�
f

a
f

af
n

x f �x� dx
f

f 

f

R
f �x�

1. (a) What is a convergent sequence?
(b) What is a convergent series?
(c) What does mean?
(d) What does mean?

2. (a) What is a bounded sequence?
(b) What is a monotonic sequence?
(c) What can you say about a bounded monotonic

sequence?

3. (a) What is a geometric series? Under what circumstances
is it convergent? What is its sum?

(b) What is a -series? Under what circumstances is it 
convergent?

4. Suppose and is the partial sum of the series.
What is ? What is ?

5. State the following.
(a) The Test for Divergence
(b) The Integral Test
(c) The Comparison Test
(d) The Limit Comparison Test
(e) The Alternating Series Test
(f) The Ratio Test

6. (a) What is an absolutely convergent series?
(b) What can you say about such a series?

7. (a) If a series is convergent by the Integral Test, how do you
estimate its sum?

(b) If a series is convergent by the Comparison Test, how do
you estimate its sum?

limn l � snlimn l � an

nthsn� an � 3

p

��
n�1 an � 3

limn l � an � 3

8 Review
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9. If , then .

10. If is divergent, then is divergent.

11. If converges for all , then
.

12. If and are divergent, then is divergent.

13. If and are divergent, then is divergent.

14. If is decreasing and for all , then is 
convergent.

15. If and converges, then converges.

16. If and , then .

17. If , where is continuous, positive, and decreasing
on and is convergent, then

�
�

n�1
 an � y

�

1
 f �x� dx

x
�

1  f �x� dx�1, ��
fan � f �n�

limn l � an � 0limn l � �an�1�an� 	 1an � 0

� ��1�nan� anan � 0

�an �nan � 0�an �

�anbn ��bn ��an �

�an � bn ��bn ��an �

f ��0� � 2
xf �x� � 2x � x 2 �

1
3 x 3 � � � �

� � an �� an

limn l � � n � 0�1 	 � 	 1Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. If , then is convergent.

2. If is convergent, then is convergent.

3. If is convergent, then is convergent.

4. If diverges when , then it diverges when
.

5. The Ratio Test can be used to determine whether 
converges.

6. The Ratio Test can be used to determine whether 
converges.

7. If and diverges, then diverges.

8. �
�

n�0
 
��1�n

n!
�

1

e

� an� bn0 � an � bn

� 1�n!

� 1�n 3

x � 10
x � 6� cnx n

� cn��6�n� cn6n

� cn��2�n� cn6n

� anlimn l � an � 0
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26. (a) Find the partial sum of the series and esti-
mate the error in using it as an approximation to the
sum of the series.

(b) Find the sum of this series correct to five decimal
places.

27. Use the sum of the first eight terms to approximate the sum
of the series . Estimate the error involved in
this approximation.

28. (a) Show that the series is convergent.

(b) Deduce that .

29. Prove that if the series is absolutely convergent, then
the series

is also absolutely convergent.

30–33 � Find the radius of convergence and interval of conver-
gence of the series.

30. 31.

32. 33.

� � � � � � � � � � � � �

34. Find the radius of convergence of the series

35. Find the Taylor series of at .

36. Find the Taylor series of at .

37–44 � Find the Maclaurin series for and its radius of con-
vergence. You may use either the direct method (definition of a
Maclaurin series) or known series such as geometric series,
binomial series, or the Maclaurin series for , , and .

37. 38.

39. 40.

41. 42.

43. 44.
� � � � � � � � � � � � �

45. Evaluate as an infinite series.y 
e x

x
 dx

f �x� � �1 � 3x��5f �x� � 1�s
4 16 � x

f �x� � 10 xf �x� � sin�x 4 �

f �x� � xe 2xf �x� � ln�1 � x�

f �x� � tan�1�x 2 �f �x� �
x 2

1 � x

tan�1xsin xe x

f

a � ��3f �x� � cos x

a � ��6f �x� � sin x

�
�

n�1
 
�2n�!
�n!�2  x n

�
�

n�0
 
2n�x � 3�n

sn � 3�
�

n�1
 
2n�x � 2�n

�n � 2�!

�
�

n�1
 
�x � 2�n

n4n�
�

n�1
 ��1�n 

x n

n 25n

�
�

n�1
 	n � 1

n 
an

��
n�1 an

lim
n l �

 
n n

�2n�!
� 0

�
�

n�1
 

n n

�2n�!

��
n�1 �2 � 5n��1

��
n�1 1�n6s51–7 � Determine whether the sequence is convergent or diver-

gent. If it is convergent, find its limit.

1. 2.

3. 4.

5. 6.

7.
� � � � � � � � � � � � �

8. A sequence is defined recursively by the equations ,
. Show that is increasing and 

for all . Deduce that is convergent and find its limit.

9–18 � Determine whether the series is convergent or
divergent.

9. 10.

11. 12.

13. 14.

15. 16.

17.

18.

� � � � � � � � � � � � �

19–22 � Find the sum of the series.

19. 20.

21.

22.

� � � � � � � � � � � � �

23. Express the repeating decimal as a 
fraction.

24. For what values of does the series converge?

25. Find the sum of the series correct to four 
decimal places.

�
�

n�1
 
��1�n�1

n 5

��
n�1 �ln x�nx

1.2345345345 . . .

�
�

n�0
 
��1�nx n

22nn!

�
�

n�1
 �tan�1�n � 1� � tan�1n

�
�

n�1
 

1

n�n � 3��
�

n�1
 
22n�1

5n

�
�

n�1
 
��5�2n

n 29n

�
�

n�1
 
1 � 3 � 5 � � � � � �2n � 1�

5nn!

�
�

n�2
 

1

n�ln n�2�
�

n�1
 ��1�n�1 

sn

n � 1

�
�

n�1
 ln	 n

3n � 1
�
�

n�1
 

sin n

1 � n 2

�
�

n�1
 

��1�n

sn � 1�
�

n�1
 
n 3

5n

�
�

n�1
 
n 2 � 1

n 3 � 1�
�

n�1
 

n

n 3 � 1

�an �n
an 	 2�an �an�1 � 1

3 �an � 4�
a1 � 1

��1 � 3�n�4n �

an � �sin n��nan � sin n

an �
n

ln n
an �

n 3

1 � n 2

an �
9n�1

10nan �
2 � n 3

1 � 2n 3
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where is the radius of Earth and is the acceleration due
to gravity.
(a) Express as a series in powers of .

; (b) Observe that if we approximate by the first term in 
the series, we get the expression that is usually
used when is much smaller than . Use the Alter-
nating Series Estimation Theorem to estimate the range
of values of for which the approximation is
accurate to within . (Use km.)

51. Use power series to solve the initial-value problem

52. Use power series to solve the equation

53. (a) Show that .
(b) Find the sum of the series

54. A function is defined by

Where is continuous?f

f �x� � lim 
n l �

 
x 2n � 1

x 2n � 1

f

�
�

n�1
 

1

2n  tan 
x

2n

tan 12 x � cot 12 x � 2 cot x

y� � xy
 � 2y � 0

y
�0� � 1y�0� � 0y� � xy
 � y � 0

R � 64001%
F � mth

Rh
F � mt

F
h�RF

tR46. Use series to approximate correct to two dec-
imal places.

47–48 �

(a) Approximate by a Taylor polynomial with degree at the
number .

; (b) Graph and on a common screen.
(c) Use Taylor’s Inequality to estimate the accuracy of the

approximation when lies in the given 
interval.

; (d) Check your result in part (c) by graphing .

47. , , ,

48. , , ,
� � � � � � � � � � � � �

49. Use series to evaluate the following limit.

50. The force due to gravity on an object with mass at a
height above the surface of Earth is

F �
mtR2

�R � h�2

h
m

lim
x l 0

 
sin x � x

x 3

0 � x � ��6n � 2a � 0f �x� � sec x

0.9 � x � 1.1n � 3a � 1f �x� � sx

� Rn�x� �

xf �x� � Tn�x�

Tnf
a

nf

x
1
0  s1 � x 4 dx
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643

Before you look at the solution of the following example, cover it up and first try to
solve the problem yourself.

EXAMPLE Find the sum of the series .

SOLUTION The problem-solving principle that is relevant here is recognizing something
familiar. Does the given series look anything like a series that we already know?
Well, it does have some ingredients in common with the Maclaurin series for the
exponential function:

We can make this series look more like our given series by replacing by :

But here the exponent in the numerator matches the number in the denominator 
whose factorial is taken. To make that happen in the given series, let’s multiply and
divide by :

We see that the series between brackets is just the series for with the first three
terms missing. So

1. If , find .

2. Let be a sequence of points determined as in the figure. Thus ,
, and angle is a right angle. Find .

3. (a) Show that for ,

if the left side lies between and .
(b) Show that

(c) Deduce the following formula of John Machin (1680–1751):

4 arctan 15 � arctan 1
239 �

�

4

arctan 120
119 � arctan 1

239 �
�

4

��2���2

arctan x � arctan y � arctan 
x � y

1 � xy

xy � �1

limn l � �Pn APn�1APn Pn�1� Pn Pn�1 � � 2n�1
� AP1 � � 1�Pn �

f �15��0�f �x� � sin�x 3 �

�
�

n�0
 
�x � 2�n

�n � 3�!
� �x � 2��3�ex�2 � 1 � �x � 2� �

�x � 2�2

2! �
ex�2

 � �x � 2��3��x � 2�3

3!
�

�x � 2�4

4!
� � � ��

 �
�

n�0
 
�x � 2�n

�n � 3�!
�

1

�x � 2�3  �
�

n�0
 
�x � 2�n�3

�n � 3�!

�x � 2�3

ex�2 � �
�

n�0
 
�x � 2�n

n!
� 1 � �x � 2� �

�x � 2�2

2!
�

�x � 2�3

3!
� � � �

x � 2x

ex � �
�

n�0
 
xn

n!
� 1 � x �

x 2

2!
�

x 3

3!
� � � �

�
�

n�0
 
�x � 2�n

�n � 3�!
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(d) Use the Maclaurin series for to show that

(e) Show that

(f) Deduce that, correct to seven decimal places,

Machin used this method in 1706 to find correct to 100 decimal places. Recently, with
the aid of computers, the value of has been computed to increasingly greater accuracy.
In 1999, Takahashi and Kanada, using methods of Borwein and Brent Salamin, calcu-
lated the value of to 206,158,430,000 decimal places!

4. If , show that

If you don’t see how to prove this, try the problem-solving strategy of using analogy (see
page 88). Try the special cases and first. If you can see how to prove the
assertion for these cases, then you will probably see how to prove it in general.

5. To construct the snowflake curve, start with an equilateral triangle with sides of length . 
Step 1 in the construction is to divide each side into three equal parts, construct an equi-
lateral triangle on the middle part, and then delete the middle part (see the figure). Step 2
is to repeat Step 1 for each side of the resulting polygon. This process is repeated at each
succeeding step. The snowflake curve is the curve that results from repeating this process
indefinitely.
(a) Let , , and represent the number of sides, the length of a side, and the total

length of the th approximating curve (the curve obtained after Step of the con-
struction), respectively. Find formulas for , , and .

(b) Show that as .
(c) Sum an infinite series to find the area enclosed by the snowflake curve. 

Parts (b) and (c) show that the snowflake curve is infinitely long but encloses only a finite
area.

6. Find the sum of the series

where the terms are the reciprocals of the positive integers whose only prime factors are
2s and 3s.

7. Find the interval of convergence of and find its sum.

8. Suppose you have a large supply of books, all the same size, and you stack them at the
edge of a table, with each book extending farther beyond the edge of the table than the
one beneath it. Show that it is possible to do this so that the top book extends entirely
beyond the table. In fact, show that the top book can extend any distance at all beyond
the edge of the table if the stack is high enough. Use the following method of stacking:
The top book extends half its length beyond the second book. The second book extends a
quarter of its length beyond the third. The third extends one-sixth of its length beyond the
fourth, and so on. (Try it yourself with a deck of cards.) Consider centers of mass.

��
n�1 n3x n

1 �
1

2
�

1

3
�

1

4
�

1

6
�

1

8
�

1

9
�

1

12
� � � �

n l �pn l �
pnlnsn

nn
pnlnsn

1

k � 2k � 1

lim
n l �

 (a0 sn � a1 sn � 1 � a2 sn � 2 � � � � � ak sn � k ) � 0

a0 � a1 � a2 � � � � � ak � 0

�
�

�
�

� � 3.1415927 

0.004184075 	 arctan 1
239 	 0.004184077 

0.197395560 	 arctan 15 	 0.197395562 

arctan
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9. Let

Show that .

10. If , evaluate the expression

11. Suppose that circles of equal diameter are packed tightly in rows inside an equilateral
triangle. (The figure illustrates the case .) If is the area of the triangle and is
the total area occupied by the rows of circles, show that

12. A sequence is defined recursively by the equations

Find the sum of the series .

13. Consider the series whose terms are the reciprocals of the positive integers that can be
written in base 10 notation without using the digit 0. Show that this series is convergent
and the sum is less than 90.

14. Starting with the vertices , , , of a square, we construct
further points as shown in the figure: is the midpoint of is the midpoint of

is the midpoint of , and so on. The polygon spiral path 
approaches a point inside the square.
(a) If the coordinates of are , show that and

find a similar equation for the -coordinates.
(b) Find the coordinates of .

15. If has positive radius of convergence and , show that

16. (a) Show that the Maclaurin series of the function

is

where is the Fibonacci number, that is, , , and 
for . [Hint: Write and multiply
both sides of this equation by .]

(b) By writing as a sum of partial fractions and thereby obtaining the Maclaurin
series in a different way, find an explicit formula for the Fibonacci number.nth

f �x�
1 � x � x 2

x��1 � x � x 2� � c0 � c1x � c2 x 2 � . . .n � 3
fn � fn�1 � fn�2f2 � 1f1 � 1nthfn

�
�

n�1
 fn x nf �x� �

x

1 � x � x 2

n � 1ndn � �
n

i�1
 ici dn�i

e f �x� � ��
n�0 dn x nf �x� � ��

m�0 cm x m

P
y

1
2 xn � xn�1 � xn�2 � xn�3 � 2 �xn, yn �Pn

P
P1P2P3P4 P5P6 P7 . . .P3P4P2P3, P7

P1P2, P6P5

P4�0, 0�P3�1, 0�P2�1, 1�P1�0, 1�

��
n�0 an

n�n � 1�an � �n � 1��n � 2�an�1 � �n � 3�an�2a0 � a1 � 1

�an �

lim 
n l �

 
An

A
�

�

2s3

n
AnAn � 4

n

1 �
1

2p �
1

3p �
1

4p � � � �

1 �
1

2p �
1

3p �
1

4p � � � �

p � 1

u 3 � v3 � w3 � 3uvw � 1

 w �
x 2

2!
�

x 5

5!
�

x 8

8!
� � � �

 v � x �
x 4

4!
�

x 7

7!
�
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10!
� � � �

 u � 1 �
x 3

3!
�

x 6
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�

x 9
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� � � �
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9 Vectors and the Geometry of Space



Three-Dimensional Coordinate Systems � � � � � � � � �

To locate a point in a plane, two numbers are necessary. We know that any point 
in the plane can be represented as an ordered pair of real numbers, where is
the -coordinate and is the -coordinate. For this reason, a plane is called two-
dimensional. To locate a point in space, three numbers are required. We represent any
point in space by an ordered triple of real numbers.

In order to represent points in space, we first choose a fixed point (the origin)
and three directed lines through that are perpendicular to each other, called the
coordinate axes and labeled the -axis, -axis, and -axis. Usually we think of the 
- and -axes as being horizontal and the -axis as being vertical, and we draw the ori-

entation of the axes as in Figure 1. The direction of the -axis is determined by the
right-hand rule as illustrated in Figure 2: If you curl the fingers of your right hand
around the -axis in the direction of a counterclockwise rotation from the positive
-axis to the positive -axis, then your thumb points in the positive direction of the 
-axis.

The three coordinate axes determine the three coordinate planes illustrated in Fig-
ure 3(a). The -plane is the plane that contains the - and -axes; the -plane con-
tains the - and -axes; the -plane contains the - and -axes. These three coordinate
planes divide space into eight parts, called octants. The first octant, in the fore-
ground, is determined by the positive axes.

Because many people have some difficulty visualizing diagrams of three-dimen-
sional figures, you may find it helpful to do the following [see Figure 3(b)]. Look at 

FIGURE 3 (b)(a) Coordinate planes
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In this chapter we introduce vectors and coordinate
systems for three-dimensional space. This is the setting
for the study of functions of two variables because the
graph of such a function is a surface in space. Vectors

provide particularly simple descriptions of lines and
planes in space as well as velocities and accelerations
of objects that move in space.

FIGURE 2
Right-hand rule
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any bottom corner of a room and call the corner the origin. The wall on your left is in
the -plane, the wall on your right is in the -plane, and the floor is in the -plane.
The -axis runs along the intersection of the floor and the left wall. The -axis runs
along the intersection of the floor and the right wall. The -axis runs up from the floor
toward the ceiling along the intersection of the two walls. You are situated in the first
octant, and you can now imagine seven other rooms situated in the other seven octants
(three on the same floor and four on the floor below), all connected by the common
corner point .

Now if is any point in space, let be the (directed) distance from the -plane to
, let be the distance from the -plane to , and let be the distance from the 
-plane to . We represent the point by the ordered triple of real numbers

and we call , , and the coordinates of ; is the -coordinate, is the -coordi-
nate, and is the -coordinate. Thus, to locate the point we can start at the ori-
gin and move units along the -axis, then units parallel to the -axis, and then

units parallel to the -axis as in Figure 4.
The point determines a rectangular box as in Figure 5. If we drop a per-

pendicular from to the -plane, we get a point with coordinates called
the projection of on the -plane. Similarly, and are the projec-
tions of on the -plane and -plane, respectively.

As numerical illustrations, the points and are plotted in
Figure 6.

The Cartesian product is the set of all or-
dered triples of real numbers and is denoted by . We have given a one-to-one cor-
respondence between points in space and ordered triples in . It is called
a three-dimensional rectangular coordinate system. Notice that, in terms of coor-
dinates, the first octant can be described as the set of points whose coordinates are all
positive.

In two-dimensional analytic geometry, the graph of an equation involving and 
is a curve in . In three-dimensional analytic geometry, an equation in , , and rep-
resents a surface in .

EXAMPLE 1 What surfaces in are represented by the following equations?
(a) (b)

SOLUTION
(a) The equation represents the set , which is the set of all
points in whose -coordinate is . This is the horizontal plane that is parallel to
the -plane and three units above it as in Figure 7(a).xy

3z� 3
��x, y, z� � z � 3�z � 3

y � 5z � 3
� 3

� 3
zyx� 2

yx

� 3�a, b, c�P
� 3

� � � � � � ��x, y, z� � x, y, z � ��

(0, 0, c)

R(0, b, c)

P(a, b, c)

(0, b, 0)

z

y
x

0

S(a, 0, c)

Q(a, b, 0)

(a, 0, 0)

FIGURE 5 FIGURE 6

(3, _2, _6)
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x

0
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3
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y

z
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0

(_4, 3, _5)

3

_4

�3, �2, �6���4, 3, �5�
xzyzP

S�a, 0, c�R�0, b, c�xyP
�a, b, 0�QxyP

P�a, b, c�
zc

ybxaO
�a, b, c�zc

ybxaPcba
�a, b, c�PPxy
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z
yx

xyyzxz
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(b) The equation represents the set of all points in whose -coordinate
is 5. This is the vertical plane that is parallel to the -plane and five units to the
right of it as in Figure 7(b).

NOTE � When an equation is given, we must understand from the context whether it
represents a curve in or a surface in . In Example 1, represents a plane in

, but of course can also represent a line in if we are dealing with two-
dimensional analytic geometry. See Figure 7(b) and (c).

In general, if is a constant, then represents a plane parallel to the -plane,
is a plane parallel to the -plane, and is a plane parallel to the -plane.

In Figure 5, the faces of the rectangular box are formed by the three coordinate 
planes (the -plane), (the -plane), and (the -plane), and the
planes , , and .

EXAMPLE 2 Describe and sketch the surface in represented by the equation .

SOLUTION The equation represents the set of all points in whose - and -coordi-
nates are equal, that is, . This is a vertical plane that inter-
sects the -plane in the line , . The portion of this plane that lies in the
first octant is sketched in Figure 8.

The familiar formula for the distance between two points in a plane is easily
extended to the following three-dimensional formula.

Distance Formula in Three Dimensions The distance between the points
and is

To see why this formula is true, we construct a rectangular box as in Figure 9,
where and are opposite vertices and the faces of the box are parallel to the coor-
dinate planes. If and are the vertices of the box indicated in
the figure, then

Because triangles and are both right-angled, two applications of the
Pythagorean Theorem give

� P1P2 �2 � � P1B �2 � � BP2 �2

P1ABP1BP2

� BP2 � � � z2 � z1 �� AB � � � y2 � y1 �� P1A � � � x2 � x1 �

B�x2, y2, z1�A�x2, y1, z1�
P2P1

� P1P2 � � s�x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2

P2�x2, y2, z2 �P1�x1, y1, z1�
� P1P2 �

z � 0y � xxy
��x, x, z� � x � �, z � ��

yx� 3

y � x� 3

z � cy � bx � a
xyz � 0xzy � 0yzx � 0

xyz � kxzy � k
yzx � kk

� 2y � 5� 3
y � 5� 3� 2

(c) y=5, a line in R@FIGURE 7 (b) y=5, a plane in R#(a) z=3, a plane in R#
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and

Combining these equations, we get

Therefore

EXAMPLE 3 The distance from the point to the point is

EXAMPLE 4 Find an equation of a sphere with radius and center .

SOLUTION By definition, a sphere is the set of all points whose distance from 
is . (See Figure 10.) Thus, is on the sphere if and only if . Squaring

both sides, we have or

The result of Example 4 is worth remembering.

Equation of a Sphere An equation of a sphere with center and radius 
is

In particular, if the center is the origin , then an equation of the sphere is

EXAMPLE 5 Show that is the equation of a
sphere, and find its center and radius.

SOLUTION We can rewrite the given equation in the form of an equation of a sphere if
we complete squares:

Comparing this equation with the standard form, we see that it is the equation of a
sphere with center and radius .

EXAMPLE 6 What region in is represented by the following inequalities?

z � 01 � x 2 � y 2 � z2 � 4

� 3

s8 � 2s2��2, 3, �1�

 �x � 2�2 � �y � 3�2 � �z � 1�2 � 8

 �x 2 � 4x � 4� � �y 2 � 6y � 9� � �z2 � 2z � 1� � �6 � 4 � 9 � 1

x 2 � y 2 � z2 � 4x � 6y � 2z � 6 � 0

x 2 � y 2 � z2 � r 2

O

�x � h�2 � �y � k�2 � �z � l�2 � r 2

rC�h, k, l�

�x � h�2 � �y � k�2 � �z � l�2 � r 2 

� PC �2 � r 2
� PC � � rPrC

P�x, y, z�

C�h, k, l�r

 � s1 � 4 � 4 � 3

 � PQ � � s�1 � 2�2 � ��3 � 1�2 � �5 � 7�2

Q�1, �3, 5�P�2, �1, 7�

 � P1P2 � � s�x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2

 � �x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2

 � � x2 � x1 �2 � � y2 � y1 �2 � � z2 � z1 �2

 � P1P2 �2 � � P1A �2 � � AB �2 � � BP2 �2

� P1B �2 � � P1A �2 � � AB �2
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SOLUTION The inequalities

can be rewritten as

so they represent the points whose distance from the origin is at least 1 
and at most 2. But we are also given that , so the points lie on or below the 
xy-plane. Thus, the given inequalities represent the region that lies between (or on)
the spheres and and beneath (or on) the 
xy-plane. It is sketched in Figure 11.

x 2 � y 2 � z2 � 4x 2 � y 2 � z2 � 1

z � 0
�x, y, z�

 1 � sx 2 � y 2 � z 2 � 2

 1 � x 2 � y 2 � z2 � 4
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10. Find an equation of the sphere with center and
radius . Describe its intersection with each of the coordi-
nate planes.

11. Find an equation of the sphere that passes through the point 
and has center (3, 8, 1).

12. Find an equation of the sphere that passes through the ori-
gin and whose center is (1, 2, 3).

13–14 � Show that the equation represents a sphere, and find its
center and radius.

13.

14.
� � � � � � � � � � � � �

15. (a) Prove that the midpoint of the line segment from
to is

(b) Find the lengths of the medians of the triangle with ver-
tices , , and .

16. Find an equation of a sphere if one of its diameters has end-
points and .

17. Find equations of the spheres with center that
touch (a) the -plane, (b) the -plane, (c) the -plane.

18. Find an equation of the largest sphere with center (5, 4, 9)
that is contained in the first octant.

19–28 � Describe in words the region of represented by the
equation or inequality.

19. 20.

21. 22.

23. 24. y � z0 � z � 6

y � 0x � 3

x � 10y � �4

� 3

xzyzxy
�2, �3, 6�

�4, 3, 10��2, 1, 4�

C�4, 1, 5�B��2, 0, 5�A�1, 2, 3�

� x1 � x2

2
, 

 y1 � y2

2
, 

z1 � z2

2 �
P2�x2, y2, z2 �P1�x1, y1, z1�

4x 2 � 4y2 � 4z2 � 8x � 16y � 1

x 2 � y 2 � z 2 � x � y � z

�4, 3, �1�

s7
�6, 5, �2�1. Suppose you start at the origin, move along the -axis a dis-

tance of 4 units in the positive direction, and then move
downward a distance of 3 units. What are the coordinates 
of your position?

2. Sketch the points (3, 0, 1), , , and 
(1, 1, 0) on a single set of coordinate axes.

3. Which of the points , , and 
is closest to the -plane? Which point lies in the

-plane?

4. What are the projections of the point (2, 3, 5) on the -,
-, and -planes? Draw a rectangular box with the origin

and (2, 3, 5) as opposite vertices and with its faces parallel
to the coordinate planes. Label all vertices of the box. Find
the length of the diagonal of the box.

5. Describe and sketch the surface in represented by the
equation .

6. (a) What does the equation represent in ? What
does it represent in ? Illustrate with sketches.

(b) What does the equation represent in ? What
does represent? What does the pair of equations

, represent? In other words, describe the set
of points such that and . Illustrate
with a sketch.

7. Find the lengths of the sides of the triangle with vertices 
, , and . Is a right 

triangle? Is it an isosceles triangle?

8. Find the distance from to each of the following.
(a) The -plane (b) The -plane
(c) The -plane (d) The -axis
(e) The -axis (f) The -axis

9. Determine whether the points lie on a straight line.
(a)
(b) K�0, 3, �4�, L�1, 2, �2�, M�3, 0, 1�

A�5, 1, 3�, B�7, 9, �1�, C�1, �15, 11�

zy
xxz
yzxy

�3, 7, �5�

ABCC�6, �7, 4�B�5, �3, 0�A�3, �4, 1�

z � 5y � 3�x, y, z�
z � 5y � 3

z � 5
�3y � 3

�3
�2x � 4

x � y � 2
�3

xzyz
xy

yz
xzR�0, 3, 8�

Q��5, �1, 4�P�6, 2, 3�

�0, 4, �2���1, 0, 3�

x
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34. Consider the points such that the distance from to
is twice the distance from to .

Show that the set of all such points is a sphere, and find its
center and radius.

35. Find an equation of the set of all points equidistant from the
points and . Describe the set.

36. Find the volume of the solid that lies inside both of the
spheres and

.x 2 � y 2 � z2 � 4
x 2 � y 2 � z2 � 4x � 2y � 4z � 5 � 0

B�6, 2, �2�A��1, 5, 3�

B�6, 2, �2�PA��1, 5, 3�
PP

x

0

z

y

1

1 1

L¡

L™

P

25.

26.

27.

28.
� � � � � � � � � � � � �

29–32 � Write inequalities to describe the region.

29. The half-space consisting of all points to the left of the 
-plane

30. The solid rectangular box in the first octant bounded by the
planes , , and 

31. The region consisting of all points between (but not on) the
spheres of radius and centered at the origin, where

32. The solid upper hemisphere of the sphere of radius 2
centered at the origin

� � � � � � � � � � � � �

33. The figure shows a line in space and a second line 
which is the projection of on the -plane. (In other
words, the points on are directly beneath, or above, the
points on .)
(a) Find the coordinates of the point on the line .
(b) Locate on the diagram the points , , and , where 

the line intersects the -plane, the -plane, and the 
-plane, respectively.xz

yzxyL1

CBA
L1P

L1

L2

xyL1

L2, L1

r � R
Rr

z � 3y � 2x � 1

xz

xyz � 0

x 2 � z 2 � 9

1 � x 2 � y 2 � z2 � 25

x 2 � y 2 � z2 � 1
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The term vector is used by scientists to indicate a quantity (such as displacement or
velocity or force) that has both magnitude and direction. A vector is often represented
by an arrow or a directed line segment. The length of the arrow represents the magni-
tude of the vector and the arrow points in the direction of the vector. We denote a vec-
tor by printing a letter in boldface or by putting an arrow above the letter 

For instance, suppose a particle moves along a line segment from point to point
. The corresponding displacement vector , shown in Figure 1, has initial point

(the tail) and terminal point (the tip) and we indicate this by writing AB
l

.
Notice that the vector CD

l
has the same length and the same direction as even

though it is in a different position. We say that and are equivalent (or equal) and
we write . The zero vector, denoted by 0, has length . It is the only vector with
no specific direction.

Combining Vectors

Suppose a particle moves from , so its displacement vector is AB
l

. Then the par-
ticle changes direction and moves from , with displacement vector BC

l
as inB to C

A to B

0u � v
vu

vu �
v �B

AvB
A

�vl�.�v�

9.2

FIGURE 1
Equivalent vectors

A

B

v

C

D

u



Figure 2. The combined effect of these displacements is that the particle has moved
from . The resulting displacement vector AC

l
is called the sum of AB

l
and BC

l
and

we write

AC
l

AB
l

BC
l

In general, if we start with vectors and , we first move so that its tail coincides
with the tip of and define the sum of and as follows.

Definition of Vector Addition If and are vectors positioned so the initial point
of is at the terminal point of , then the sum is the vector from the
initial point of to the terminal point of .

The definition of vector addition is illustrated in Figure 3. You can see why this defi-
nition is sometimes called the Triangle Law.

In Figure 4 we start with the same vectors and as in Figure 3 and draw another
copy of with the same initial point as . Completing the parallelogram, we see that

. This also gives another way to construct the sum: If we place and
so they start at the same point, then lies along the diagonal of the parallelo-

gram with and as sides.

EXAMPLE 1 Draw the sum of the vectors shown in Figure 5.

SOLUTION First we translate and place its tail at the tip of , being careful to draw a
copy of that has the same length and direction. Then we draw the vector 
[see Figure 6(a)] starting at the initial point of and ending at the terminal point of
the copy of .

Alternatively, we could place so it starts where starts and construct by
the Parallelogram Law as in Figure 6(b).

It is possible to multiply a vector by a real number . (In this context we call the
real number a scalar to distinguish it from a vector.) For instance, we want to be
the same vector as , which has the same direction as but is twice as long. In
general, we multiply a vector by a scalar as follows.

Definition of Scalar Multiplication If is a scalar and is a vector, then the scalar
multiple is the vector whose length is times the length of and whose
direction is the same as if and is opposite to if . If or

, then .cv � 0v � 0
c � 0c � 0vc � 0v

v� c �cv
vc

vv � v
2vc

c

FIGURE 6

a

b

a+b

a

a+b
b

(a) (b)

a � bab
b

a
a � bb

ab

a and b

vu
u � vv

uu � v � v � u
uv

vu

vu
u � vuv

vu

vuu
vvu

��

A to C
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C

B

A

FIGURE 3
The Triangle Law

vu+v

u

FIGURE 4
The Parallelogram Law

v v+
u

u

u
v

FIGURE 5

a b

u+
v



This definition is illustrated in Figure 7. We see that real numbers work like scal-
ing factors here; that’s why we call them scalars. Notice that two nonzero vectors 
are parallel if they are scalar multiples of one another. In particular, the vector

has the same length as but points in the opposite direction. We call it
the negative of .

By the difference of two vectors we mean

So we can construct by first drawing the negative of , , and then adding it
to by the Parallelogram Law as in Figure 8(a). Alternatively, since
the vector , when added to , gives . So we could construct as in Fig-
ure 8(b) by means of the Triangle Law.

EXAMPLE 2 If are the vectors shown in Figure 9, draw .

SOLUTION We first draw the vector pointing in the direction opposite to and
twice as long. We place it with its tail at the tip of and then use the Triangle Law
to draw as in Figure 10.

Components

For some purposes it’s best to introduce a coordinate system and treat vectors alge-
braically. If we place the initial point of a vector at the origin of a rectangular coor-
dinate system, then the terminal point of has coordinates of the form or

, depending on whether our coordinate system is two- or three-dimensional
(see Figure 11). These coordinates are called the components of and we write

or

We use the notation for the ordered pair that refers to a vector so as not to
confuse it with the ordered pair that refers to a point in the plane.

For instance, the vectors shown in Figure 12 are all equivalent to the vector
OP
l

whose terminal point is . What they have in common is that the
terminal point is reached from the initial point by a displacement of three units to the
right and two upward. We can think of all these geometric vectors as representations
of the algebraic vector . The particular representation OP

l
from the origin

to the point is called the position vector of the point .PP�3, 2�
a � �3, 2	

P�3, 2�� �3, 2 	

�a1, a2�
�a1, a2 	

a � �a1, a2, a3 	a � �a1, a2 	

a
�a1, a2, a3�

�a1, a2�a
a

FIGURE 9

a

b

FIGURE 10

a
_2b

a-2b

a � ��2b�
a

b�2b

a � 2ba and b

FIGURE 8
Drawing u-v (a) (b)

uv

u-v

_v v

u-v

u

u � vuvu � v
v � �u � v� � u,u

�vvu � v

u � v � u � ��v�

u � v
v

v�v � ��1�v
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In three dimensions, the vector OP
l

is the position vector of the
point . (See Figure 13.) Let’s consider any other representation AB

l
of 

, where the initial point is and the terminal point is . Then 
we must have , , and and so ,

, and . Thus, we have the following result.

Given the points and , the vector with represen-
tation AB

l
is

EXAMPLE 3 Find the vector represented by the directed line segment with initial point
) and terminal point .

SOLUTION By (1), the vector corresponding to AB
l

is

The magnitude or length of the vector is the length of any of its representations
and is denoted by the symbol or . By using the distance formula to compute
the length of a segment , we obtain the following formulas.

The length of the two-dimensional vector is

The length of the three-dimensional vector is

How do we add vectors algebraically? Figure 14 shows that if and
, then the sum is , at least for the case where

the components are positive. In other words, to add algebraic vectors we add their
components. Similarly, to subtract vectors we subtract components. From the similar
triangles in Figure 15 we see that the components of are and . So to multi-
ply a vector by a scalar we multiply each component by that scalar.

ca2ca1ca

a � b � �a1 � b1, a2 � b2 	b � �b1, b2 	
a � �a1, a2 	

� a � � sa 2
1 � a 2

2 � a 2
3

a � �a1, a2, a3 	

� a � � sa 2
1 � a 2

2

a � �a1, a2 	

OP

 v 
� v �

v

a � ��2 � 2, 1 � ��3�, 1 � 4 	 � ��4, 4, �3 	

B��2, 1, 1�A�2, �3, 4

a � �x2 � x1, y2 � y1, z2 � z1 	

aB�x2, y2, z2 �A�x1, y1, z1�1

a3 � z2 � z1a2 � y2 � y1

a1 � x2 � x1z1 � a3 � z2y1 � a2 � y2x1 � a1 � x2

B�x2, y2, z2 �A�x1, y1, z1�a
P�a1, a2, a3�

� �a1, a2, a3 	a �

FIGURE 12
Representations of the vector v=k3, 2l

(1, 3)

(4, 5)

x

y

0

P(3, 2)

FIGURE 13
Representations of a=ka¡, a™, a£l
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If and , then

Similarly, for three-dimensional vectors,

EXAMPLE 4 If and , find and the vectors ,
, , and .

SOLUTION

We denote by the set of all two-dimensional vectors and by the set of all
three-dimensional vectors. More generally, we will later need to consider the set of
all -dimensional vectors. An -dimensional vector is an ordered -tuple:

where are real numbers that are called the components of . Addition
and scalar multiplication are defined in terms of components just as for the cases

and .

Properties of Vectors If , , and are vectors in and and are scalars, then

1. 2.

3. 4.

5. 6.

7. 8.

These eight properties of vectors can be readily verified either geometrically or
algebraically. For instance, Property 1 can be seen from Figure 4 (it’s equivalent to the
Parallelogram Law) or as follows for the case :n � 2

1a � a�cd �a � c�da�

�c � d �a � ca � dac�a � b� � ca � cb

a � ��a� � 0a � 0 � a

a � �b � c� � �a � b� � ca � b � b � a

dcVncba

n � 3n � 2

aa1, a2, . . . , an

a � �a1, a2, . . . , an 	

nnn
Vn

V3V2

 � �8, 0, 6 	 � ��10, 5, 25 	 � ��2, 5, 31 	

 2a � 5b � 2 �4, 0, 3 	 � 5 ��2, 1, 5 	

 3b � 3 ��2, 1, 5 	 � �3��2�, 3�1�, 3�5�	 � ��6, 3, 15 	

 � �4 � ��2�, 0 � 1, 3 � 5 	 � �6, �1, �2 	

 a � b � �4, 0, 3 	 � ��2, 1, 5 	

 � �4 � 2, 0 � 1, 3 � 5 	 � �2, 1, 8 	

 a � b � �4, 0, 3 	 � ��2, 1, 5 	

 � a � � s42 � 02 � 32 � s25 � 5

2a � 5b3ba � b
a � b� a �b � ��2, 1, 5 	a � �4, 0, 3 	

c�a1, a2, a3 	 � �ca1, ca2, ca3 	

�a1, a2, a3 	 � �b1, b2, b3 	 � �a1 � b1, a2 � b2, a3 � b3 	

�a1, a2, a3 	 � �b1, b2, b3 	 � �a1 � b1, a2 � b2, a3 � b3 	

ca � �ca1, ca2 	

a � b � �a1 � b1, a2 � b2 	a � b � �a1 � b1, a2 � b2 	

b � �b1, b2 	a � �a1, a2 	

656 � CHAPTER 9 VECTORS AND THE GEOMETRY OF SPACE

� Vectors in dimensions are used to
list various quantities in an organized
way. For instance, the components of a
six-dimensional vector

might represent the prices of six different
ingredients required to make a particu-
lar product. Four-dimensional vectors

are used in relativity theory,
where the first three components specify
a position in space and the fourth repre-
sents time.

� x, y, z, t	

p � � p1, p2, p3, p4, p5, p6 	

n



We can see why Property 2 (the associative law) is true by looking at Figure 16 and
applying the Triangle Law several times: The vector PQ

l
is obtained either by first con-

structing a � b and then adding c or by adding a to the vector b � c.
Three vectors in play a special role. Let

Then , , and are vectors that have length and point in the directions of the posi-
tive -, -, and -axes. Similarly, in two dimensions we define and

. (See Figure 17.)

If , then we can write

Thus, any vector in can be expressed in terms of the standard basis vectors , ,
and . For instance,

Similarly, in two dimensions, we can write

See Figure 18 for the geometric interpretation of Equations 3 and 2 and compare with
Figure 17.

EXAMPLE 5 If and , express the vector in
terms of , , and .

SOLUTION Using Properties 1, 2, 5, 6, and 7 of vectors, we have

 � 2 i � 4 j � 6k � 12 i � 21k � 14 i � 4 j � 15k

 2a � 3b � 2�i � 2 j � 3k� � 3�4 i � 7k�

kji
2a � 3bb � 4 i � 7 ka � i � 2 j � 3k

a � �a1, a2 	 � a1 i � a2 j3

�1, �2, 6 	 � i � 2 j � 6k

k
jiV3

 a � a1 i � a2 j � a3 k2

 � a1 �1, 0, 0 	 � a2 �0, 1, 0 	 � a3 �0, 0, 1 	

 a � �a1, a2, a3 	 � �a1, 0, 0 	 � �0, a2, 0 	 � �0, 0, a3 	

a � �a1, a2, a3 	

FIGURE 17
Standard basis vectors in V™ and V£ (a) (b)

z

x
y

j

i

k

0

y

x

j

(1, 0)

i

(0, 1)

j � �0, 1 	
i � �1, 0 	zyx

1kji

k � �0, 0, 1 	j � �0, 1, 0 	i � �1, 0, 0 	

V3

 � b � a

 � �b1 � a1, b2 � a2 	 � �b1, b2 	 � �a1, a2 	

 a � b � �a1, a2 	 � �b1, b2 	 � �a1 � b1, a2 � b2 	
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FIGURE 18

(b) a=a¡i+a™ j+a£k

(a) a=a¡i+a™ j

0

y

x

a

a¡i

a™ j

(a¡, a™)

a™ j

a£k

(a¡, a™, a£)

a¡i

z

x
y

a

FIGURE 16

b

c

a

(a+b)+c

P

Q

=a+(b+c)
a+b

b+c



A unit vector is a vector whose length is 1. For instance, , , and are all unit
vectors. In general, if , then the unit vector that has the same direction as is

In order to verify this, we let . Then and is a positive scalar, so 
has the same direction as . Also

EXAMPLE 6 Find the unit vector in the direction of the vector .

SOLUTION The given vector has length

so, by Equation 4, the unit vector with the same direction is

Applications

Vectors are useful in many aspects of physics and engineering. In Chapter 10 we will
see how they describe the velocity and acceleration of objects moving in space. Here
we look at forces.

A force is represented by a vector because it has both a magnitude (measured in
pounds or newtons) and a direction. If several forces are acting on an object, the resul-
tant force experienced by the object is the vector sum of these forces.

EXAMPLE 7 A 100-lb weight hangs from two wires as shown in Figure 19. Find the
tensions (forces) and in both wires and their magnitudes.

SOLUTION We first express and in terms of their horizontal and vertical compo-
nents. From Figure 20 we see that

The resultant of the tensions counterbalances the weight and so we must
have

Thus

Equating components, we get

Solving the first of these equations for and substituting into the second, we get

� T1 � sin 50� � � T1� cos 50�

cos 32�
 sin 32� � 100

� T2 �
 � T1 � sin 50� � � T2 � sin 32� � 100

 �� T1 � cos 50� � � T2 � cos 32� � 0

(�� T1 � cos 50� � � T2 � cos 32�) i � (� T1 � sin 50� � � T2 � sin 32�) j � 100 j

T1 � T2 � �w � 100 j

wT1 � T2

 T2 � � T2 � cos 32� i � � T2 � sin 32� j6

 T1 � �� T1 � cos 50� i � � T1 � sin 50� j5

T2T1

T2T1

1
3 �2 i � j � 2k� � 2

3 i �
1
3 j �

2
3 k

� 2 i � j � 2k � � s22 � ��1�2 � ��2�2 � s9 � 3

2 i � j � 2k

� u � � � ca � � � c � � a � �
1

� a �  � a � � 1

a
ucu � cac � 1�� a �

u �
1

� a �  a �
a

� a �  4

aa � 0
kji
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FIGURE 20

50°

w

T¡
50° 32°

32°

T™

FIGURE 19

100

T¡

50° 32°

T™



So the magnitudes of the tensions are

and

Substituting these values in (5) and (6), we obtain the tension vectors

T2 � 55.05 i � 34.40 jT1 � �55.05 i � 65.60 j

 � T2 � � � T1 � cos 50�

cos 32�
� 64.91 lb

 � T1 � �
100

sin 50� � tan 32� cos 50�
� 85.64 lb
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6. Copy the vectors in the figure and use them to draw the fol-
lowing vectors.
(a) (b)
(c) (d)
(e) (f)

7–10 � Find a vector with representation given by the
directed line segment AB

l
. Draw AB

l
and the equivalent represen-

tation starting at the origin.

7. , 8. ,

9. ,

10. ,
� � � � � � � � � � � � �

11–14 � Find the sum of the given vectors and illustrate 
geometrically.

11. , 12. ,

13. , 14. ,
� � � � � � � � � � � � �

15–18 � Find , a � b, a � b, , and .

15. ,

16. ,

17. ,

18. ,
� � � � � � � � � � � � �

b � i � j � ka � 3 i � 2k

b � j � 2ka � i � 2 j � k

b � i � 5 ja � 2 i � 3 j

b � �6, 2 	a � ��4, 3 	

3a � 4b2a� a �

�1, 0, �3 	�0, 3, 2 	�0, 0, 1 	�1, 0, 1 	

�5, 3 	��1, 2 	��2, 4 	�3, �1 	

B�1, �2, 3�A�1, �2, 0�

B�2, 3, �1�A�0, 3, 1�

B�3, 0�A��2, 2�B��3, 4�A��1, �1�

a

a b

b � 3a2a � b
�

1
2 b2a

a � ba � b

1. Are the following quantities vectors or scalars? Explain.
(a) The cost of a theater ticket
(b) The current in a river
(c) The initial flight path from Houston to Dallas
(d) The population of the world

2. What is the relationship between the point (4, 7) and the
vector ? Illustrate with a sketch.

3. Name all the equal vectors in the parallelogram shown.

4. Write each combination of vectors as a single vector.

(a) PQ
l

QR
l

(b) RP
l

PS
l

(c) QS
l

PS
l

(d) RS
l

SP
l

PQ
l

5. Copy the vectors in the figure and use them to draw the 
following vectors.
(a) (b)
(c) (d)

wvu

w � v � uv � w
u � vu � v

Q

R
S

P

���

��

B

E

A

D C

�4, 7 	

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �9.2



27. A clothesline is tied between two poles, 8 m apart. The line 
is quite taut and has negligible sag. When a wet shirt with 
a mass of 0.8 kg is hung at the middle of the line, the mid-
point is pulled down 8 cm. Find the tension in each half of
the clothesline.

28. The tension T at each end of the chain has magnitude 25 N.
What is the weight of the chain?

29. (a) Draw the vectors , , and
.

(b) Show, by means of a sketch, that there are scalars and
such that .

(c) Use the sketch to estimate the values of and .
(d) Find the exact values of and .

30. Suppose that and are nonzero vectors that are not paral-
lel and is any vector in the plane determined by and .
Give a geometric argument to show that can be written as

for suitable scalars and Then give an argu-
ment using components.

31. Suppose is a three-dimensional unit vector in the first
octant that starts at the origin and makes angles of 60 and
72 with the positive - and -axes, respectively. Express 
in terms of its components.

32. Suppose a vector makes angles , , and with the posi-
tive -, -, and -axes, respectively. Find the components of

and show that 

(The numbers , , and are called the direc-
tion cosines of .)

33. If and , describe the set of all
points such that .

34. If , , and , describe the 
set of all points such that ,
where .

35. Figure 16 gives a geometric demonstration of Property 2 of 
vectors. Use components to give an algebraic proof of this 
fact for the case .

36. Prove Property 5 of vectors algebraically for the case .
Then use similar triangles to give a geometric proof.

37. Use vectors to prove that the line joining the midpoints of 
two sides of a triangle is parallel to the third side and half 
its length.

n � 3

n � 2

k � � r1 � r2 �
� r � r1 � � � r � r2 � � k�x, y�

r2 � �x2, y2 	r1 � �x1, y1 	r � �x, y	

� r � r0 � � 1�x, y, z�
r0 � �x0, y0, z0 	r � �x, y, z	

a
cos 
cos �cos �

cos2� � cos2� � cos2
 � 1

a
zyx


��a

ayx�
�

a

t.sc � sa � tb
c

bac
ba

ts
ts

c � sa � tbt
s

c � �7, 1 	
b � �2, �1 	a � �3, 2 	

37° 37°

19. Find a unit vector with the same direction as .

20. Find a vector that has the same direction as but
has length 6.

21. If lies in the first quadrant and makes an angle with
the positive -axis and , find in component form.

22. If a child pulls a sled through the snow with a force of 50 N
exerted at an angle of above the horizontal, find the hor-
izontal and vertical components of the force.

23. Two forces and with magnitudes 10 lb and 12 lb act 
on an object at a point as shown in the figure. Find the 
resultant force acting at as well as its magnitude and its
direction. (Indicate the direction by finding the angle 
shown in the figure.)

24. Velocities have both direction and magnitude and thus are
vectors. The magnitude of a velocity vector is called speed.
Suppose that a wind is blowing from the direction N W
at a speed of 50 km�h. (This means that the direction 
from which the wind blows is west of the northerly
direction.) A pilot is steering a plane in the direction N E
at an airspeed (speed in still air) of 250 km�h. The true
course, or track, of the plane is the direction of the resul-
tant of the velocity vectors of the plane and the wind. The
ground speed of the plane is the magnitude of the resultant.
Find the true course and the ground speed of the plane.

25. A woman walks due west on the deck of a ship at 3 mi�h.
The ship is moving north at a speed of 22 mi�h. Find the
speed and direction of the woman relative to the surface of
the water.

26. Ropes 3 m and 5 m in length are fastened to a holiday deco-
ration that is suspended over a town square. The decoration
has a mass of 5 kg. The ropes, fastened at different heights,
make angles of and with the horizontal. Find the
tension in each wire and the magnitude of each tension.

3 m 5 m

52°
40°

40�52�

60�
45�

45�

P

45°
¨

30°

F™F¡

F


PF

P
F2F1

38 �

v� v � � 4x
��3v

��2, 4, 2 	

8 i � j � 4k
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So far we have added two vectors and multiplied a vector by a scalar. The question
arises: Is it possible to multiply two vectors so that their product is a useful quantity?
One such product is the dot product, which we consider in this section. Another is the
cross product, which is discussed in the next section.

Work and the Dot Product

An example of a situation in physics and engineering where we need to combine two
vectors occurs in calculating the work done by a force. In Section 6.5 we defined the
work done by a constant force in moving an object through a distance as ,
but this applies only when the force is directed along the line of motion of the object.
Suppose, however, that the constant force is a vector PR

l
pointing in some other

direction, as in Figure 1. If the force moves the object from to , then the dis-
placement vector is PQ

l
. So here we have two vectors: the force and the dis-

placement . The work done by is defined as the magnitude of the displacement,
, multiplied by the magnitude of the applied force in the direction of the motion,

which, from Figure 1, is

PS
l

F

So the work done by is defined to be

Notice that work is a scalar quantity; it has no direction. But its value depends on the
angle between the force and displacement vectors.

We use the expression in Equation 1 to define the dot product of two vectors even
when they don’t represent force or displacement.

Definition The dot product of two nonzero vectors is the number

where is the angle between , . (So is the smaller angle
between the vectors when they are drawn with the same initial point.) If either

is , we define .a � b � 00a or b

0 �  � �a and b

a � b � � a � � b � cos 

a and b

W � � D � (� F � cos ) � � F �� D � cos 1

F

cos �����
� D �

FD
FD �

QP
F �

W � FddF

z

x

y

b
a

38. Suppose the three coordinate planes are all mirrored and a 
light ray given by the vector first strikes
the -plane, as shown in the figure. Use the fact that 
the angle of incidence equals the angle of reflection to 
show that the direction of the reflected ray is given by

. Deduce that, after being reflected by 
all three mutually perpendicular mirrors, the resulting ray 
is parallel to the initial ray. (American space scientists 
used this principle, together with laser beams and an array
of corner mirrors on the Moon, to calculate very precisely
the distance from Earth to the Moon.)

b � �a1, �a2, a3 	

xz
a � �a1, a2, a3 	
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The Dot Product � � � � � � � � � � � � � � � �9.3

Q

F

R

S

P

¨

D

FIGURE 1



This product is called the dot product because of the dot in the notation . The
result of computing is not a vector. It is a real number, that is, a scalar. For this
reason, the dot product is sometimes called the scalar product.

In the example of finding the work done by a force in moving an object through
a displacement PQ

l
by calculating , it makes no sense for

the angle between to be or larger because movement from 
couldn’t take place. We make no such restriction in our general definition of ,
however, and allow to be any angle from .

EXAMPLE 1 If the vectors and have lengths 4 and 6, and the angle between them
is , find .

SOLUTION According to the definition,

EXAMPLE 2 A crate is hauled 8 m up a ramp under a constant force of 200 N applied
at an angle of 25 to the ramp. Find the work done.

SOLUTION If are the force and displacement vectors, as pictured in Figure 2,
then the work done is

Two nonzero vectors and are called perpendicular or orthogonal if the angle
between them is . For such vectors we have

and conversely if , then , so . The zero vector is con-
sidered to be perpendicular to all vectors. Therefore

Two vectors 

Because if and if , we see that
is positive for and negative for . We can think of as

measuring the extent to which a and b point in the same direction. The dot product
is positive if a and b point in the same general direction, 0 if they are perpendi-

cular, and negative if they point in generally opposite directions (see Figure 3). In the
extreme case where a and b point in exactly the same direction, we have , so

and

If a and b point in exactly opposite directions, then and so and
.a � b � �� a � � b �

cos  � �1 � �

a � b � � a � � b �
cos  � 1

 � 0

a � b

a � b � ��2 � ��2a � b
��2 �  � �cos  � 00 �  � ��2cos  � 0

a and b are orthogonal if and only if a � b � 0.2

0 � ��2cos  � 0a � b � 0

a � b � � a � � b � cos���2� � 0

 � ��2
ba

 � �200��8� cos 25� � 1450 N�m � 1450 J

W � F � D � � F � � D � cos 25�

F and D

�

a � b � � a � � b � cos���3� � 4 � 6 � 1
2 � 12

a � b��3
ba

0 to �
a � b

P to Q��2F and D
F � D � � F �� D � cos D �

F

a � b
a � b
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D

F
25°

FIGURE 2

FIGURE 3

a
b

a · b>0¨

a b
a · b=0

a
b

a · b<0
¨



The Dot Product in Component Form

Suppose we are given two vectors in component form:

We want to find a convenient expression for in terms of these components. If we
apply the Law of Cosines to the triangle in Figure 4, we get

Solving for the dot product, we obtain

The dot product of and is

Thus, to find the dot product of and we multiply corresponding components and
add. The dot product of two-dimensional vectors is found in a similar fashion:

EXAMPLE 3

EXAMPLE 4 Show that is perpendicular to .

SOLUTION Since

these vectors are perpendicular by (2).

EXAMPLE 5 Find the angle between the vectors and .

SOLUTION Let be the required angle. Since

and

and since

a � b � 2�5� � 2��3� � ��1��2� � 2

� b � � s52 � ��3�2 � 22 � s38� a � � s2 2 � 22 � ��1�2 � 3



b � �5, �3, 2 	a � �2, 2, �1 	

�2 i � 2 j � k� � �5 i � 4 j � 2k� � 2�5� � 2��4� � ��1��2� � 0

5 i � 4 j � 2k2 i � 2 j � k

 �i � 2 j � 3k� � �2 j � k� � 1�0� � 2�2� � ��3���1� � 7

 ��1, 7, 4 	 � �6, 2, � 1
2 	 � ��1��6� � 7�2� � 4(� 1

2 ) � 6

 �2, 4 	 � �3, �1 	 � 2�3� � 4��1� � 2

�a1, a2 	 � �b1, b2 	 � a1b1 � a2b2

ba

a � b � a1b1 � a2b2 � a3b3

b � �b1, b2, b3 	a � �a1, a2, a3 	

 � a1b1 � a2b2 � a3b3

 � 1
2 a1

2 � a2
2 � a3

2 � b1
2 � b2

2 � b3
2 � �a1 � b1�2 � �a2 � b2�2 � �a3 � b3�2�

a � b � 1
2 (� a �2 � � b �2 � � a � b �2)

 � � a �2 � � b �2 � 2a � b

� a � b �2 � � a �2 � � b �2 � 2� a �� b � cos 

a � b

b � �b1, b2, b3 	a � �a1, a2, a3 	
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a-b

b

a¨

FIGURE 4



we have, from the definition of the dot product

So the angle between and is

EXAMPLE 6 A force is given by a vector and moves a particle
from the point to the point . Find the work done.

SOLUTION The displacement vector is PQ
l

, so the work done is

If the unit of length is meters and the magnitude of the force is measured in new-
tons, then the work done is 36 J.

The dot product obeys many of the laws that hold for ordinary products of real
numbers. These are stated in the following theorem.

Properties of the Dot Product If , , and are vectors in and is a scalar, then

1. 2.

3. 4.

5.

Properties 1, 2, and 5 are immediate consequences of the definition of a dot prod-
uct. Property 3 is best proved using components:

The proof of Property 4 is left as Exercise 39.

Projections

Figure 5 shows representations PQ
l

and PR
l

of two vectors and with the same ini-
tial point . If is the foot of the perpendicular from to the line containing PQ

l
, then 

FIGURE 5
Vector projections proja b

Q

R

P
S

b
a

R

S
P

Q
a

proja b

b

RSP
ba

 � a � b � a � c

 � �a1b1 � a2b2 � a3b3� � �a1c1 � a2c2 � a3c3 �
 � a1b1 � a1c1 � a2b2 � a2c2 � a3b3 � a3c3

 � a1�b1 � c1� � a2�b2 � c2� � a3�b3 � c3�
 a � �b � c� � �a1, a2, a3 	 � �b1 � c1, b2 � c2, b3 � c3 	

0 � a � 0

�ca� � b � c�a � b� � a � �cb�a � �b � c� � a � b � a � c

a � b � b � aa � a � � a �2

cV3cba

 � 6 � 20 � 10 � 36

 W � F � D � �3, 4, 5 	 � �2, 5, 2 	

� �2, 5, 2 	D �

Q�4, 6, 2�P�2, 1, 0�
F � 3 i � 4 j � 5k

�or 84�� � cos�1� 2

3s38� � 1.46

ba

cos  �
a � b

� a � � b � �
2

3s38
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the vector with representation PS
l

is called the vector projection of onto and is 
denoted by . The scalar projection of onto (also called the component of

along ) is defined to be the magnitude of the vector projection, which is the num-
ber , where is the angle between and . (See Figure 6; you can think of
the scalar projection of as being the length of a shadow of .) This is denoted by

. Observe that it is negative if . (Note that we used the compo-
nent of the force along the displacement , , at the beginning of this section.)

The equation

shows that the dot product of and can be interpreted as the length of times the
scalar projection of onto . Since 

the component of along can be computed by taking the dot product of with the
unit vector in the direction of . To summarize:

Scalar projection of onto :

Vector projection of onto :

EXAMPLE 7 Find the scalar projection and vector projection of onto
.

SOLUTION Since , the scalar projection of onto is

The vector projection is this scalar projection times the unit vector in the direction
of :

At the beginning of this section we saw one use of projections in physics––we used
a scalar projection of a force vector in defining work. Other uses of projections occur
in three-dimensional geometry. In Exercise 33 you are asked to use a projection to find
the distance from a point to a line, and in Section 9.5 we use a projection to find the
distance from a point to a plane.

proja b �
3

s14
 

a

� a � �
3

14
 a � ��

3

7
, 

9

14
, 

3

14�
a

compa b �
a � b

� a � �
��2��1� � 3�1� � 1�2�

s14
�

3

s14

ab� a � � s��2�2 � 32 � 12 � s14

a � ��2, 3, 1 	
b � �1, 1, 2 	

proja b � �a � b

� a � � 
a

� a � �
a � b

� a �2  aab

compa b �
a � b

� a �ab

a
bab

� b � cos  �
a � b

� a � �
a

� a � � b

ab
aba

a � b � � a � � b � cos  � � a �(� b � cos )

FIGURE 6
Scalar projection �b � cos  ¨

b

a

R

S
Q¨

P

compD FDF
��2 �  � �compa b

bb
ba� b � cos 

ab
abproja b

ab
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17. Determine whether the given vectors are orthogonal,
parallel, or neither.
(a) ,
(b) ,
(c) ,
(d) ,

18. For what values of are the vectors and
orthogonal?

19. Find a unit vector that is orthogonal to both and .

20. For what values of is the angle between the vectors
and equal to ?

21–24 � Find the scalar and vector projections of onto .

21. ,

22. ,

23. ,

24. ,
� � � � � � � � � � � � �

25. Show that the vector is orthogonal
to . (It is called an orthogonal projection of .)

26. For the vectors in Exercise 22, find and illustrate by
drawing the vectors , , , and .

27. If , find a vector such that .

28. Suppose that and are nonzero vectors.
(a) Under what circumstances is ?
(b) Under what circumstances is ?

29. A constant force with vector representation
moves an object along a straight line

from the point to the point . Find the work
done if the distance is measured in meters and the magnitude
of the force is measured in newtons.

30. Find the work done by a force of 20 lb acting in the direc-
tion N W in moving an object 4 ft due west.

31. A woman exerts a horizontal force of 25 lb on a crate as she
pushes it up a ramp that is 10 ft long and inclined at an
angle of above the horizontal. Find the work done on
the box.

32. A wagon is pulled a distance of 100 m along a horizontal
path by a constant force of 50 N. The handle of the wagon
is held at an angle of above the horizontal. How much
work is done?

33. Use a scalar projection to show that the distance from a
point to the line is

� ax1 � by1 � c �
sa 2 � b 2

ax � by � c � 0P1�x1, y1�

30�

20�

50�

�4, 9, 15��2, 3, 0�
F � 10 i � 18 j � 6k

proja b � projb a
comp a b � comp b a

ba

comp a b � 2ba � �3, 0, �1 	

orth a bproja bba
orth a b

ba
orth a b � b � proja b

b � i � 6 j � 2ka � 2 i � 3 j � k

b � �1, 1, 1 	a � �4, 2, 0	

b � �2, 3 	a � �3, �1 	

b � �4, 1 	a � �2, 3 	

ab

60��1, 0, c	�1, 2, 1 	
c

i � ki � j

�b, b2, b 	
��6, b, 2 	b

b � �3 i � 9 j � 6ka � 2 i � 6 j � 4k
b � 3 i � 4 j � ka � �i � 2 j � 5k

b � ��3, 2 	a � �4, 6 	
b � �6, �8, 2 	a � ��5, 3, 7 	

1. Which of the following expressions are meaningful? Which
are meaningless? Explain.
(a) (b)
(c) (d)
(e) (f)

2. Find the dot product of two vectors if their lengths are 6 
and and the angle between them is .

3–8 � Find .

3. , , the angle between a and b is 

4. ,

5. ,

6. ,

7. ,

8. ,
� � � � � � � � � � � � �

9–10 � If u is a unit vector, find and .

9. 10.

� � � � � � � � � � � � �

11. (a) Show that .
(b) Show that .

12. A street vendor sells hamburgers, hot dogs, and soft
drinks on a given day. He charges $2 for a hamburger, $1.50
for a hot dog, and $1 for a soft drink. If and

, what is the meaning of the dot product
?

13–15 � Find the angle between the vectors. (First find an exact
expression and then approximate to the nearest degree.)

13. ,

14. ,

15. ,
� � � � � � � � � � � � �

16. Find, correct to the nearest degree, the three angles of the
triangle with the vertices , , and

.R�5, 4, 2�
Q�2, 1, �3�P�0, �1, 6�

b � i � 2 j � 3ka � j � k

b � �2, 1, �2 	a � �6, �3, 2 	

b � �5, 12 	a � �3, 4 	

A � P
P � �2, 1.5, 1 	

A � �a, b, c	

cba

i � i � j � j � k � k � 1
i � j � j � k � k � i � 0

w

u

v

w

u v

u � wu � v

b � 2 i � 4 j � 6ka � 4 j � 3k

b � 5 i � 9ka � i � 2 j � 3k

b � � t, �t, 5t 	a � �s, 2s, 3s	

b � �3, �1, 10 	a � �5, 0, �2 	

b � ��8, �3 	a � � 1
2 , 4	

��6� b � � 15� a � � 12

a � b

��41
3

� a � � �b � c�a � b � c
a � �b � c�� a � �b � c�
�a � b�c�a � b� � c

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �9.3



38. If , where , , and are all nonzero 
vectors, show that bisects the angle between and .

39. Prove Property 4 of the dot product. Use either the defini-
tion of a dot product (considering the cases , ,
and separately) or the component form.

40. Suppose that all sides of a quadrilateral are equal in length
and opposite sides are parallel. Use vector methods to show
that the diagonals are perpendicular.

41. Prove the Cauchy-Schwarz Inequality:

42. The Triangle Inequality for vectors is

(a) Give a geometric interpretation of the Triangle Inequality.
(b) Use the Cauchy-Schwarz Inequality from Exercise 41 to

prove the Triangle Inequality. [Hint: Use the fact that
and use Property 3 of the

dot product.]

43. The Parallelogram Law states that 

(a) Give a geometric interpretation of the Parallelogram
Law.

(b) Prove the Parallelogram Law. (See the hint in 
Exercise 42.)

� a � b �2 � � a � b �2 � 2 � a �2 � 2 � b �2

� a � b �2 � �a � b� � �a � b�

� a � b � � � a � � � b �

� a � b � � � a � � b �

c � 0
c � 0c � 0

bac
cbac � � a � b � � b � aUse this formula to find the distance from the point 

to the line .

34. If , and ,
show that the vector equation repre-
sents a sphere, and find its center and radius.

35. Find the angle between a diagonal of a cube and one of its
edges.

36. Find the angle between a diagonal of a cube and a diagonal
of one of its faces.

37. A molecule of methane, , is structured with the four
hydrogen atoms at the vertices of a regular tetrahedron 
and the carbon atom at the centroid. The bond angle is the
angle formed by the H— C—H combination; it is the angle
between the lines that join the carbon atom to two of the
hydrogen atoms. Show that the bond angle is about .
Hint: Take the vertices of the tetrahedron to be the points

, , , and as shown in the 
figure. Then the centroid is .

H

H
H

H

C

x

y

z

]( 1
2 , 12 , 12 )

�1, 1, 1��0, 0, 1��0, 1, 0��1, 0, 0�
[

109.5�

CH4

�r � a� � �r � b� � 0
b � �b1, b2, b3 	r � �x, y, z 	 , a � �a1, a2, a3 	

3x � 4y � 5 � 0
��2, 3�
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The cross product of two vectors and , unlike the dot product, is a vector.
For this reason it is also called the vector product. We will see that is useful
in geometry because it is perpendicular to both and . But we introduce this prod-
uct by looking at a situation where it arises in physics and engineering.

Torque and the Cross Product

If we tighten a bolt by applying a force to a wrench as in Figure 1, we produce a turn-
ing effect called a torque . The magnitude of the torque depends on two things:

� The distance from the axis of the bolt to the point where the force is
applied. This is , the length of the position vector .

� The scalar component of the force in the direction perpendicular to .
This is the only component that can cause a rotation and, from Figure 2, we
see that it is 

where is the angle between the vectors .r and F

� F � sin 

rF

r� r �

�

ba
a � b

baa � b

The Cross Product � � � � � � � � � � � � � � �9.4

FIGURE 1

FIGURE 2

r

� n

F

¨

¨

r

F
|F | sin ¨



We define the magnitude of the torque vector to be the product of these two factors:

The direction is along the axis of rotation. If is a unit vector that points in the direc-
tion in which a right-threaded bolt moves (see Figure 1), we define the torque to be
the vector

We denote this torque vector by and we call it the cross product or vector
product of .

The type of expression in Equation 1 occurs so frequently in the study of fluid flow,
planetary motion, and other areas of physics and engineering, that we define and study
the cross product of any pair of three-dimensional vectors .

Definition If are nonzero three-dimensional vectors, the cross product
of is the vector

where is the angle between , , and is a unit vector per-
pendicular to both and whose direction is given by the right-hand
rule: If the fingers of your right hand curl through the angle from ,
then your thumb points in the direction of . (See Figure 3.)

If either is , then we define to be .
Because is a scalar multiple of , it has the same direction as and so

is orthogonal to both 

Notice that two nonzero vectors are parallel if and only if the angle be-
tween them is . In either case, and so .

Two nonzero vectors are parallel if and only if .

This makes sense in the torque interpretation: If we pull or push the wrench in the
direction of its handle (so is parallel to ), we produce no torque.

EXAMPLE 1 A bolt is tightened by applying a 40-N force to a 0.25-m wrench as
shown in Figure 4. Find the magnitude of the torque about the center of the bolt.

SOLUTION The magnitude of the torque vector is

 � 10 sin 75� � 9.66 N�m � 9.66 J

 � � � � � r � F � � � r � � F � sin 75� � n � � �0.25��40� sin 75�

rF

a � b � 0a and b

a � b � 0sin  � 00 or �
a and b

a and ba � b

nna � b
0a � b0a or b

n
a and b

a and b
n0 �  � �a and b

a � b � �� a �� b � sin �n

a and b
a and b

a and b

r and F
� � r � F

� � (� r � � F � sin )n1

n

� � � � � r � � F � sin 
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FIGURE 3
The right-hand rule gives
the direction of axb.

a b

axb

¨

n

� In particular, any vector is parallel
to itself, so

a � a � 0

a

FIGURE 4

75°

40 N
0.25 m



If the bolt is right-threaded, then the torque vector itself is

where is a unit vector directed down into the page.

EXAMPLE 2 Find and .

SOLUTION The standard basis vectors both have length 1 and the angle between
them is . By the right-hand rule, the unit vector perpendicular to and is 
(see Figure 5), so

But if we apply the right-hand rule to the vectors and (in that order), we see that
points downward and so . Thus

From Example 2 we see that

so the cross product is not commutative. Similar reasoning shows that

In general, the right-hand rule shows that

Another algebraic law that fails for the cross product is the associative law for mul-
tiplication; that is, in general,

For instance, if , , and , then

whereas

However, some of the usual laws of algebra do hold for cross products:

Properties of the Cross Product If , , and are vectors and is a scalar, then

1. a � b � �b � a

2. (ca) � b � c(a � b) � a � (cb)

3. a � (b � c) � a � b � a � c

4. (a � b) � c � a � c � b � c

Property 2 is proved by applying the definition of a cross product to each of the
three expressions. Properties 3 and 4 (the Vector Distributive Laws) are more difficult
to establish; we won’t do so here.

ccba

 i � �i � j� � i � k � �j

 �i � i� � j � 0 � j � 0

c � jb � ia � i

�a � b� � c � a � �b � c�

b � a � �a � b

i � k � �jk � i � j

k � j � �ij � k � i

i � j � j � i

j � i � �k

n � �kn
ij

i � j � (� i �� j � sin���2�)k � k

n � kji��2
i and j

j � ii � j

n

� � � � � n � 9.66n
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A geometric interpretation of the length of the cross product can be seen by look-
ing at Figure 6. If and are represented by directed line segments with the same ini-
tial point, then they determine a parallelogram with base , altitude , and
area

The length of the cross product is equal to the area of the parallelogram
determined by and .

The Cross Product in Component Form

Suppose and are given in component form:

We can express in component form by using the Vector Distributive Laws
together with the results from Example 2:

If and , then

In order to make this expression for easier to remember, we use the notation
of determinants. A determinant of order 2 is defined by

For example,

A determinant of order 3 can be defined in terms of second-order determinants as 
follows:

� a1

b1

c1

a2

b2

c2

a3

b3

c3 � � a1 � b2

c2

b3

c3
� � a2 � b1

c1

b3

c3
� � a3 � b1

c1

b2

c2
�3

� 2

�6

1

4 � � 2�4� � 1��6� � 14

� a

c

b

d � � ad � bc

a � b

a � b � �a2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1 	

b � �b1, b2, b3 	a � �a1, a2, a3 	2

 � �a2b3 � a3b2�i � �a3b1 � a1b3�j � �a1b2 � a2b1�k

 � a1b2k � a1b3��j� � a2b1��k� � a2b3 i � a3b1 j � a3b2��i�

   � a3b1k � i � a3b2k � j � a3b3k � k

 � a2b1 j � i � a2b2 j � j � a2b3 j � k

 � a1b1 i � i � a1b2 i � j � a1b3 i � k

a � b � �a1 i � a2 j � a3k� � �b1 i � b2 j � b3k�

a � b

b � b1 i � b2 j � b3ka � a1 i � a2 j � a3k

ba

ba
a � b

A � � a �(� b � sin ) � � a � b �

� b � sin � a �
ba
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a

b

¨

�b � sin ¨

FIGURE 6

� Note that

i � i � 0  j � j � 0  k � k � 0



Observe that each term on the right side of Equation 3 involves a number in the first
row of the determinant, and is multiplied by the second-order determinant obtained
from the left side by deleting the row and column in which appears. Notice also the
minus sign in the second term. For example,

If we now rewrite (2) using second-order determinants and the standard basis 
vectors , , and , we see that the cross product of and

is

In view of the similarity between Equations 3 and 4, we often write

Although the first row of the symbolic determinant in Equation 5 consists of vectors,
if we expand it as if it were an ordinary determinant using the rule in Equation 3, we
obtain Equation 4. The symbolic formula in Equation 5 is probably the easiest way of
remembering and computing cross products.

EXAMPLE 3 If and , then

EXAMPLE 4 Find a vector perpendicular to the plane that passes through the points
, , and .

SOLUTION The vector PQ
l

PR
l

is perpendicular to both PQ
l

and PR
l

and is therefore
perpendicular to the plane through , , and . We know from (9.2.1) that

PQ
l

PR
l

� �1 � 1�i � ��1 � 4�j � �1 � 6�k � �5 j � 5k

� ��2 � 1�i � �5 � 4�j � ��1 � 6�k � �3 i � j � 7k

RQP
�

R�1, �1, 1�Q��2, 5, �1�P�1, 4, 6�

 � ��15 � 28� i � ��5 � 8� j � �7 � 6� k � �43 i � 13 j � k

 � � 3

7

4

�5 �  i � � 1

2

4

�5 �  j � � 1

2

3

7 �  k
 a � b � � i

1

2

j
3

7

k
4

�5 �
b � �2, 7, �5 	a � �1, 3, 4 	

a � b � � i
a1

b1

j
a2

b2

k
a3

b3 �5

a � b � � a2

b2

a3

b3
�  i � � a1

b1

a3

b3
�  j � � a1

b1

a2

b2
�  k4

b � b1 i � b2 j � b3 k
a � a1 i � a2 j � a3 kkji

 � 1�0 � 4� � 2�6 � 5� � ��1��12 � 0� � �38

 � 1

3

�5

2

0

4

�1

1

2 � � 1 � 0

4

1

2 � � 2 � 3

�5

1

2 � � ��1� � 3

�5

0

4 �

ai

ai

ai
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We compute the cross product of these vectors:

PQ
l

PR
l

So the vector is perpendicular to the given plane. Any nonzero
scalar multiple of this vector, such as , would also work.

EXAMPLE 5 Find the area of the triangle with vertices , ,
and .

SOLUTION In Example 4 we computed that PQ
l

PR
l

. The area of
the parallelogram with adjacent sides and is the length of the cross product:

PQ
l

PR
l

The area of the triangle is half the area of this parallelogram, that is, .

Triple Products

The product is called the scalar triple product of the vectors , , and .
Its geometric significance can be seen by considering the parallelepiped determined
by the vectors , , and . (See Figure 7.) The area of the base parallelogram is

. If is the angle between and , then the height of the paral-
lelepiped is . (We must use instead of in case .)
Thus, the volume of the parallelepiped is

Therefore, we have proved the following:

The volume of the parallelepiped determined by the vectors , , and is the
magnitude of their scalar triple product:

Instead of thinking of the parallelepiped as having its base parallelogram deter-
mined by and , we can think of it with base parallelogram determined by and .
In this way, we see that

But the dot product is commutative, so we can write

a � �b � c� � c � �a � b�

bacb

V � � a � �b � c� �

cba

V � Ah � � b � c � � a � � cos  � � � a � �b � c� �

 � ��2cos � cos  �h � � a � � cos  �
hb � caA � � b � c �

cba

cbaa � �b � c�

5
2 s82PQRA

� s��40�2 � ��15�2 � 152 � 5s82���
PRPQ

� ��40, �15, 15 	�

R�1, �1, 1�
Q��2, 5, �1�P�1, 4, 6�

��8, �3, 3 	
��40, �15, 15 	

 � ��5 � 35�i � �15 � 0�j � �15 � 0�k � �40 i � 15 j � 15k

� � i
�3

0

j
1

�5

k
�7

�5 ��
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a

b

¨

bxc

c
h
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Suppose that , , and are given in component form:

Then

This shows that we can write the scalar triple product of , , and as the determinant
whose rows are the components of these vectors:

EXAMPLE 6 Use the scalar triple product to show that the vectors ,
, and are coplanar; that is, they lie in the same

plane.

SOLUTION We use Equation 7 to compute their scalar triple product:

Therefore, the volume of the parallelepiped determined by , , and is 0. This
means that , , and are coplanar.

The product is called the vector triple product of , , and . The
proof of the following formula for the vector triple product is left as Exercise 30. 

Formula 8 will be used to derive Kepler’s First Law of planetary motion in Chap-
ter 10.

a � �b � c� � �a � c�b � �a � b�c8

cbaa � �b � c�

cba
cba

 � 1�18� � 4�36� � 7��18� � 0

 � 1 � �1

�9

4

18 � � 4 � 2

0

4

18 � � 7 � 2

0

�1

�9 �
 a � �b � c� � � 1

2

0

4

�1

�9

�7

4

18 �
c � �0, �9, 18 	b � �2, �1, 4 	

a � �1, 4, �7 	

a � �b � c� � � a1

b1

c1

a2

b2

c2

a3

b3

c3 �7

cba

 � a1 � b2

c2

b3

c3
� � a2 � b1

c1

b3

c3
� � a3 � b1

c1

b2

c2
�

a � �b � c� � a � �� b2

c2

b3

c3
�  i � � b1

c1

b3

c3
�  j � � b1

c1

b2

c2
�  k�

a � a1 i � a2 j � a3k    b � b1 i � b2 j � b3k    c � c1 i � c2 j � c3k

cba

a � �b � c� � �a � b� � c6
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7–11 � Find the cross product and verify that it is
orthogonal to both a and b.

7. ,

8. ,

9. ,

10. ,

11. ,
� � � � � � � � � � � � �

12. If a � i � 2k and b � j � k, find a � b. Sketch a, b, and 
a � b as vectors starting at the origin.

13. Find two unit vectors orthogonal to both and
.

14. Find two unit vectors orthogonal to both and
.

15. Find the area of the parallelogram with vertices ,
, , and .

16. Find the area of the parallelogram with vertices ,
, , and .

17–18 � (a) Find a vector orthogonal to the plane through the
points , , and , and (b) find the area of triangle .

17. , ,

18. , ,
� � � � � � � � � � � � �

19. A wrench 30 cm long lies along the positive -axis and
grips a bolt at the origin. A force is applied in the direction

at the end of the wrench. Find the magnitude of
the force needed to supply 100 J of torque to the bolt.

20. Let v � 5 j and let u be a vector with length 3 that starts at 
the origin and rotates in the xy-plane. Find the maximum
and minimum values of the length of the vector u � v. In
what direction does u � v point?

21–22 � Find the volume of the parallelepiped determined by
the vectors , , and .

21. , ,

22. , ,
� � � � � � � � � � � � �

23–24 � Find the volume of the parallelepiped with adjacent
edges , , and .

23. , , ,

24. , , ,
� � � � � � � � � � � � �

S�6, �1, 4�R��1, 0, 1�Q�2, 4, 5�P�0, 1, 2�

S�3, �1, �2�R�4, 1, 7�Q�2, 0, 3�P�1, 1, 1�

PSPRPQ

c � 2 i � 3kb � i � ja � 2 i � 3 j � 2k

c � �4, �2, 5 	b � �0, 1, 2 	a � �6, 3, �1 	

cba

�0, 3, �4 	

y

R�5, 2, 2�Q�3, 1, 0�P�2, 0, �3�

R�0, 0, 3�Q�0, 2, 0�P�1, 0, 0�

PQRRQP

N�3, 7, 3�M�3, 8, 6�L�1, 3, 6�
K�1, 2, 3�

D�2, �1�C�4, 2�B�0, 4�
A��2, 1�

i � j � k
i � j

�0, 4, 4 	
�1, �1, 1 	

b � i � 2 j � 3ka � 3 i � 2 j � 4k

b � 2 i � et j � e�t ka � i � et j � e�t k

b � �1, 2t, 3t 2 	a � � t, t 2, t 3 	

b � �6, 3, 1 	a � ��3, 2, 2 	

b � �3, 2, 1 	a � �1, �1, 0 	

a � b1. State whether each expression is meaningful. If not, explain
why. If so, state whether it is a vector or a scalar.
(a) (b)
(c) (d)
(e) (f)

2–3 � Find and determine whether u � v is directed
into the page or out of the page.

2. 3.

� � � � � � � � � � � � �

4. The figure shows a vector in the -plane and a vector 
in the direction of . Their lengths are and 
(a) Find .
(b) Use the right-hand rule to decide whether the com-

ponents of are positive, negative, or 0.

5. A bicycle pedal is pushed by a foot with a 60-N force as
shown. The shaft of the pedal is 18 cm long. Find the mag-
nitude of the torque about .

6. Find the magnitude of the torque about if a 36-lb force is
applied as shown.

30°
36 lb

4 ft

4 ft
P

P

10°

70°
60 N

P

P

x

z

y

b

a

a � b

� a � b �
� b � � 2.� a � � 3k

bxya

150°

|u |=6

|v |=8

60°
|u |=5

|v |=10

� u � v �
�a � b� � �c � d��a � b� � �c � d�
�a � b� � ca � �b � c�
a � �b � c�a � �b � c�

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �9.4



31. Use Exercise 30 to prove that

32. Prove that

33. Suppose that .
(a) If , does it follow that ?
(b) If , does it follow that ?
(c) If and , does it follow 

that ?

34. If , , and are noncoplanar vectors, let

(These vectors occur in the study of crystallography. Vectors
of the form , where each is an inte-
ger, form a lattice for a crystal. Vectors written similarly 
in terms of , , and form the reciprocal lattice.)
(a) Show that is perpendicular to if .
(b) Show that for .

(c) Show that .k1 � �k2 � k3 � �
1

v1 � �v2 � v3 �

i � 1, 2, 3k i � vi � 1
i � jvjk i

k3k2k1

nin1 v1 � n2 v2 � n3 v3

k3 �
v1 � v2

v1 � �v2 � v3 �

k2 �
v3 � v1

v1 � �v2 � v3 �

k1 �
v2 � v3

v1 � �v2 � v3 �

v3v2v1

b � c
a � b � a � ca � b � a � c

b � ca � b � a � c
b � ca � b � a � c

a � 0

�a � b� � �c � d� � � a � c
a � d

b � c
b � d �

a � �b � c� � b � �c � a� � c � �a � b� � 0

25. Use the scalar triple product to verify that the vectors
, , and 

are coplanar.

26. Use the scalar triple product to determine whether the
points , , , and lie in
the same plane.

27. (a) Let be a point not on the line that passes through
the points and . Show that the distance from the
point to the line is

where QR
l

and QP
l

.
(b) Use the formula in part (a) to find the distance from 

the point to the line through and
.

28. (a) Let be a point not on the plane that passes through the
points , , and . Show that the distance from to
the plane is

where QR
l

, QS
l

, and QP
l

.
(b) Use the formula in part (a) to find the distance from the

point to the plane through the points ,
, and .

29. Prove that .

30. Prove the following formula for the vector triple product:

a � �b � c� � �a � c�b � �a � b�c

�a � b� � �a � b� � 2�a � b�

S�0, 0, 3�R�0, 2, 0�
Q�1, 0, 0�P�2, 1, 4�

c �b �a �

d � � a � �b � c� �
� a � b �

PdSRQ
P

R��1, 4, 7�
Q�0, 6, 8�P�1, 1, 1�

b �a �

d � � a � b �
� a �

LP
dRQ

LP

S�6, 2, 8�R�3, �1, 2�Q�2, 4, 6�P�1, 0, 1�

c � 7 i � 3 j � 2kb � i � ja � 2 i � 3 j � k
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The Geometry of a Tetrahedron

A tetrahedron is a solid with four vertices, , , , and , and four triangular faces, as
shown in the figure.

1. Let , , , and be vectors with lengths equal to the areas of the faces opposite the
vertices , , , and , respectively, and directions perpendicular to the respective faces
and pointing outward. Show that

2. The volume of a tetrahedron is one-third the distance from a vertex to the opposite
face, times the area of that face.
(a) Find a formula for the volume of a tetrahedron in terms of the coordinates of its

vertices , , , and .
(b) Find the volume of the tetrahedron whose vertices are , ,

, and .S�3, �1, 2�R�1, 1, 2�
Q�1, 2, 3�P�1, 1, 1�

SRQP

V

v1 � v2 � v3 � v4 � 0

SRQP
v4v3v2v1

SRQP

Discovery
Project

P

S
RQ



Equations of Lines and Planes � � � � � � � � � � � �

A line in the -plane is determined when a point on the line and the direction of the
line (its slope or angle of inclination) are given. The equation of the line can then be
written using the point-slope form.

Likewise, a line in three-dimensional space is determined when we know a point
on and the direction of . In three dimensions the direction of a line is

conveniently described by a vector, so we let be a vector parallel to . Let 
be an arbitrary point on and let and be the position vectors of and (that is,
they have representations OP0A and OPA). If is the vector with representation P0PA,
as in Figure 1, then the Triangle Law for vector addition gives . But, since

and are parallel vectors, there is a scalar such that . Thus

which is a vector equation of . Each value of the parameter gives the position
vector of a point on . In other words, as varies, the line is traced out by the tip of
the vector . As Figure 2 indicates, positive values of correspond to points on that
lie on one side of , whereas negative values of correspond to points that lie on the
other side of .

If the vector that gives the direction of the line is written in component form as
, then we have . We can also write and

, so the vector equation (1) becomes

Two vectors are equal if and only if corresponding components are equal. Therefore,
we have the three scalar equations:

where . These equations are called parametric equations of the line through
the point and parallel to the vector . Each value of the param-
eter gives a point on .L�x, y, z�t

v � �a, b, c	P0�x0, y0, z0�
Lt � �

z � z0 � cty � y0 � btx � x0 � at2

�x, y, z	 � �x0 � ta, y0 � tb, z0 � tc	

r0 � �x0, y0, z0 	
r � �x, y, z	tv � � ta, tb, tc	v � �a, b, c 	

Lv
P0

tP0

Ltr
tLr

tL

r � r0 � tv1

a � tvtva
r � r0 � a

a
PP0rr0L
P�x, y, z�Lv

LLP0�x0, y0, z0�
L

xy

9.5

3. Suppose the tetrahedron in the figure has a trirectangular vertex . (This means that the
three angles at are all right angles.) Let , , and be the areas of the three faces 
that meet at , and let be the area of the opposite face . Using the result of Prob-
lem 1, or otherwise, show that

(This is a three-dimensional version of the Pythagorean Theorem.)

D 2 � A2 � B 2 � C 2

PQRDS
CBAS

S

x

O

z

y

a

v
r

r¸L

P¸(x¸, y¸, z¸)

P(x, y, z)

FIGURE 1

x

z

y

L
t=0 t>0

t<0

r¸

FIGURE 2
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EXAMPLE 1
(a) Find a vector equation and parametric equations for the line that passes through
the point and is parallel to the vector .
(b) Find two other points on the line.

SOLUTION
(a) Here and , so the vector equa-
tion (1) becomes

or

Parametric equations are

(b) Choosing the parameter value gives , , and so 
is a point on the line. Similarly, gives the point .

The vector equation and parametric equations of a line are not unique. If we change
the point or the parameter or choose a different parallel vector, then the equations
change. For instance, if, instead of , we choose the point in Example 1,
then the parametric equations of the line become

Or, if we stay with the point but choose the parallel vector , we
arrive at the equations

In general, if a vector is used to describe the direction of a line , then
the numbers , , and are called direction numbers of . Since any vector parallel
to could also be used, we see that any three numbers proportional to , , and could
also be used as a set of direction numbers for .

Another way of describing a line is to eliminate the parameter from Equations 2.
If none of , , or is , we can solve each of these equations for equate the results,
and obtain

These equations are called symmetric equations of . Notice that the numbers , ,
and that appear in the denominators of Equations 3 are direction numbers of , that
is, components of a vector parallel to . If one of , , or is , we can still eliminate

For instance, if , we could write the equations of as

This means that lies in the vertical plane .x � x0L

y � y0

b
�

z � z0

c
x � x0

La � 0t.
0cbaL

Lc
baL

x � x0

a
�

y � y0

b
�

z � z0

c
3

t,0cba
tL

L
cbav

Lcba
Lv � �a, b, c	

z � 3 � 4ty � 1 � 8tx � 5 � 2t

2 i � 8 j � 4k�5, 1, 3�

z � 1 � 2ty � 5 � 4tx � 6 � t

�6, 5, 1��5, 1, 3�

�4, �3, 5�t � �1
�6, 5, 1�z � 1, y � 5x � 6t � 1

z � 3 � 2ty � 1 � 4tx � 5 � t

 r � �5 � t� i � �1 � 4t� j � �3 � 2t� k

 r � �5 i � j � 3k� � t�i � 4 j � 2k�

v � i � 4 j � 2kr0 � �5, 1, 3 	 � 5 i � j � 3k

i � 4 j � 2k�5, 1, 3�
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(5, 1, 3)
r¸

v=i+4j-2k

x

z

y

L

FIGURE 3

� Figure 3 shows the line in 
Example 1 and its relation to the given
point and to the vector that gives its
direction.
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EXAMPLE 2
(a) Find parametric equations and symmetric equations of the line that passes
through the points and .
(b) At what point does this line intersect the -plane?

SOLUTION
(a) We are not explicitly given a vector parallel to the line, but observe that the
vector with representation is parallel to the line and

Thus, direction numbers are , , and . Taking the point 
as ,we see that parametric equations (2) are

and symmetric equations (3) are

(b) The line intersects the -plane when , so we put in the symmetric
equations and obtain

This gives and , so the line intersects the -plane at the point .

In general, the procedure of Example 2 shows that direction numbers of the line
through the points and are , , and and
so symmetric equations of are

EXAMPLE 3 Show that the lines and with parametric equations

are skew lines; that is, they do not intersect and are not parallel (and therefore do
not lie in the same plane).

SOLUTION The lines are not parallel because the corresponding vectors and
are not parallel. (Their components are not proportional.) If and had

a point of intersection, there would be values of and such that

 4 �   t � �3 � 4s

 �2 �  3t � 3 � s

 1 �  t � 2s

st
L2L1�2, 1, 4 	

�1, 3, �1 	

 x � 2s  y � 3 � s  z � �3 � 4s

 x � 1 � t y � �2 � 3t z � 4 � t

L2L1

x � x0

x1 � x0
�

y � y0

y1 � y0
�

z � z0

z1 � z0

L
z1 � z0y1 � y0x1 � x0P1�x1, y1, z1�P0�x0, y0, z0 �

L

( 11
4 , 14 , 0)xyy � 1

4x � 11
4

x � 2

1
�

y � 4

�5
�

3

4

z � 0z � 0xy

x � 2

1
�

y � 4

�5
�

z � 3

4

z � �3 � 4t y � 4 � 5tx � 2 � t

P0

�2, 4, �3�c � 4b � �5a � 1

v � �3 � 2, �1 � 4, 1 � ��3�	 � �1, �5, 4 	

AB
l

v

xy
B�3, �1, 1�A�2, 4, �3�
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FIGURE 4

x

z

y

L

A

P

B 2
4

1

1

_1

� Figure 4 shows the line in
Example 2 and the point where it 
intersects the -plane.xy
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� The lines and in Example 3,
shown in Figure 5, are skew lines.
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But if we solve the first two equations, we get and , and these values
don’t satisfy the third equation. Therefore, there are no values of and that satisfy
the three equations. Thus, and do not intersect. Hence, and are skew
lines.

Planes

Although a line in space is determined by a point and a direction, a plane in space is
more difficult to describe. A single vector parallel to a plane is not enough to convey
the “direction” of the plane, but a vector perpendicular to the plane does completely
specify its direction. Thus, a plane in space is determined by a point in
the plane and a vector that is orthogonal to the plane. This orthogonal vector is
called a normal vector. Let be an arbitrary point in the plane, and let and 

be the position vectors of and . Then the vector is represented by P0PA.
(See Figure 6.) The normal vector is orthogonal to every vector in the given plane.
In particular, is orthogonal to and so we have

which can be rewritten as

Either Equation 4 or Equation 5 is called a vector equation of the plane.
To obtain a scalar equation for the plane, we write , , and

. Then the vector equation (4) becomes

or

Equation 6 is the scalar equation of the plane through with normal 
vector .

EXAMPLE 4 Find an equation of the plane through the point with normal
vector . Find the intercepts and sketch the plane.

SOLUTION Putting , , , , , and in Equation 6,
we see that an equation of the plane is

or

To find the -intercept we set in this equation and obtain . Simi-
larly, the -intercept is 4 and the -intercept is 3. This enables us to sketch the por-
tion of the plane that lies in the first octant (see Figure 7).

zy
x � 6y � z � 0x

 2x � 3y � 4z � 12

 2�x � 2� � 3�y � 4� � 4�z � 1� � 0

z0 � �1y0 � 4x0 � 2c � 4b � 3a � 2

n � �2, 3, 4 	
�2, 4, �1�

n � �a, b, c	
P0�x0, y0, z0 �

a�x � x0 � � b�y � y0 � � c�z � z0 � � 06

�a, b, c	 � �x � x0, y � y0, z � z0 	 � 0

r0 � �x0, y0, z0 	
r � �x, y, z 	n � �a, b, c	

n � r � n � r05

n � �r � r0 � � 04

r � r0n
n

r � r0PP0r
r0P�x, y, z�

nn
P0�x0, y0, z0�

L2L1L2L1

st
s � 8

5t � 11
5
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By collecting terms in Equation 6 as we did in Example 4, we can rewrite the equa-
tion of a plane as

where . Equation 7 is called a linear equation in , , and .
Conversely, it can be shown that if , , and are not all 0, then the linear equation
(7) represents a plane with normal vector . (See Exercise 53.)

EXAMPLE 5 Find an equation of the plane that passes through the points ,
, and .

SOLUTION The vectors and corresponding to PQ
l

and PR
l

are

Since both and lie in the plane, their cross product is orthogonal to the
plane and can be taken as the normal vector. Thus

With the point and the normal vector , an equation of the plane is

or

EXAMPLE 6 Find the point at which the line with parametric equations ,
, intersects the plane .

SOLUTION We substitute the expressions for , , and from the parametric equations
into the equation of the plane:

This simplifies to , so . Therefore, the point of intersection occurs
when the parameter value is . Then , ,

and so the point of intersection is 

Two planes are parallel if their normal vectors are parallel. For instance, the planes
and are parallel because their normal vectors

are and and . If two planes are not paral-
lel, then they intersect in a straight line and the angle between the two planes is de-
fined as the acute angle between their normal vectors (see Figure 9).

EXAMPLE 7
(a) Find the angle between the planes and .
(b) Find symmetric equations for the line of intersection of these two planes.

SOLUTION
(a) The normal vectors of these planes are

n2 � �1, �2, 3 	n1 � �1, 1, 1 	

L
x � 2y � 3z � 1x � y � z � 1

n2 � 2n1n2 � �2, 4, �6 	n1 � �1, 2, �3 	
2x � 4y � 6z � 3x � 2y � 3z � 4

��4, 8, 3�.z � 5 � 2 � 3
y � �4��2� � 8x � 2 � 3��2� � �4t � �2

t � �2�10t � 20

4�2 � 3t� � 5��4t� � 2�5 � t� � 18

zyx

4x � 5y � 2z � 18z � 5 � ty � �4t
x � 2 � 3t

 6x � 10y � 7z � 50

 12�x � 1� � 20�y � 3� � 14�z � 2� � 0

nP�1, 3, 2�

n � a � b � � i
2

4

j
�4

�1

k
4

�2 � � 12 i � 20 j � 14k

a � bba

b � �4, �1, �2 	a � �2, �4, 4 	

ba

R�5, 2, 0�Q�3, �1, 6�
P�1, 3, 2�

�a, b, c	
cba

zyxd � ��ax0 � by0 � cz0 �

ax � by � cz � d � 07
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� Figure 8 shows the portion of the
plane in Example 5 that is enclosed by
triangle .PQR
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and so, if is the angle between the planes,

(b) We first need to find a point on . For instance, we can find the point where the
line intersects the -plane by setting in the equations of both planes. This
gives the equations and , whose solution is , . So
the point lies on .

Now we observe that, since lies in both planes, it is perpendicular to both of
the normal vectors. Thus, a vector parallel to is given by the cross product

and so the symmetric equations of can be written as

NOTE � Since a linear equation in , , and represents a plane and two non-
parallel planes intersect in a line, it follows that two linear equations can represent 
a line. The points that satisfy both and

lie on both of these planes, and so the pair of linear equa-
tions represents the line of intersection of the planes (if they are not parallel). For
instance, in Example 7 the line was given as the line of intersection of the planes

and . The symmetric equations that we found for 
could be written as

which is again a pair of linear equations. They exhibit as the line of intersection of
the planes and . (See Figure 11.)

In general, when we write the equations of a line in the symmetric form

x � x0

a
�

y � y0

b
�

z � z0

c

y���2� � z���3��x � 1��5 � y���2�
L

y

�2
�

z

�3
and

x � 1

5
�

y

�2

Lx � 2y � 3z � 1x � y � z � 1
L

a2x � b2y � c2z � d2 � 0
a 1 x � b1 y � c1z � d1 � 0�x, y, z�

zyx

z
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� Figure 10 shows the planes in
Example 7 and their line of inter-
section .L

� Another way to find the line of inter-
section is to solve the equations of the
planes for two of the variables in terms
of the third, which can be taken as the
parameter.

FIGURE 11
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� Figure 11 shows how the line in
Example 7 can also be regarded as the
line of intersection of planes derived from
its symmetric equations.

L



we can regard the line as the line of intersection of the two planes

EXAMPLE 8 Find a formula for the distance from a point to the 
plane .

SOLUTION Let be any point in the given plane and let be the vector 
corresponding to P0BP1. Then

From Figure 12 you can see that the distance from to the plane is equal to the
absolute value of the scalar projection of onto the normal vector .
(See Section 9.3.) Thus

Since lies in the plane, its coordinates satisfy the equation of the plane and so we
have . Thus, the formula for can be written as

EXAMPLE 9 Find the distance between the parallel planes 
and .

SOLUTION First we note that the planes are parallel because their normal vectors
and are parallel. To find the distance between the planes,

we choose any point on one plane and calculate its distance to the other plane. In
particular, if we put in the equation of the first plane, we get and
so is a point in this plane. By Formula 8, the distance between and
the plane is

So the distance between the planes is .

EXAMPLE 10 In Example 3 we showed that the lines

are skew. Find the distance between them.

 L2: x � 2s  y � 3 � s  z � �3 � 4s

 L1: x � 1 � t y � �2 � 3t z � 4 � t

s3�6

D � � 5(1
2 ) � 1�0� � 1�0� � 1 �
s52 � 12 � ��1�2

�
3
2

3s3
�

s3

6

5x � y � z � 1 � 0
(1

2, 0, 0)( 1
2, 0, 0)

10x � 5y � z � 0

D�5, 1, �1 	�10, 2, �2 	

5x � y � z � 1
10x � 2y � 2z � 5

D � � ax1 � by1 � cz1 � d �
sa 2 � b 2 � c 2

8

Dax0 � by0 � cz0 � d � 0
P0

 � � �ax1 � by1 � cz1� � �ax0 � by0 � cz0 � �
sa 2 � b 2 � c 2

 � � a�x1 � x0 � � b�y1 � y0 � � c�z1 � z0 � �
sa 2 � b 2 � c 2

 D � � compn b � � � n � b �
� n �

n � �a, b, c	b
P1D

b � �x1 � x0, y1 � y0, z1 � z0 	

bP0�x0, y0, z0 �

ax � by � cz � d � 0
P1�x1, y1, z1�D

y � y0

b
�

z � z0

c
and

x � x0

a
�

y � y0

b
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SOLUTION Since the two lines and are skew, they can be viewed as lying on two
parallel planes and . The distance between and is the same as the dis-
tance between and , which can be computed as in Example 9. The common
normal vector to both planes must be orthogonal to both (the direc-
tion of ) and (the direction of ). So a normal vector is

If we put in the equations of , we get the point on and so an
equation for is

If we now set in the equations for , we get the point on . So 
the distance between and is the same as the distance from to

. By Formula 8, this distance is

D � � 13�1� � 6��2� � 5�4� � 3 �
s132 � ��6�2 � ��5�2

�
8

s230
� 0.53

13x � 6y � 5z � 3 � 0
�1, �2, 4�L2L1

P1�1, �2, 4�L1t � 0

13x � 6y � 5z � 3 � 0or13�x � 0� � 6�y � 3� � 5�z � 3� � 0

P2

L2�0, 3, �3�L2s � 0

n � v1 � v2 � � i
1

2

j
3

1

k
�1

4 � � 13 i � 6j � 5k

L2v2 � �2, 1, 4 	L1

v1 � �1, 3, �1 	
P2P1

L2L1P2P1

L2L1
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6–10 � Find parametric equations and symmetric equations for
the line.

6. The line through the origin and the point 

7. The line through the points and 

8. The line through the points and 

9. The line through the points and 

10. The line of intersection of the planes 
and 

� � � � � � � � � � � � �

11. Show that the line through the points and
is parallel to the line through the points 

and .

12. Show that the line through the points and 
is perpendicular to the line through the points 
and .

13. (a) Find symmetric equations for the line that passes
through the point and is parallel to the line
with parametric equations , ,

.
(b) Find the points in which the required line in part (a)

intersects the coordinate planes.

z � 5 � 7t
y � 3tx � 1 � 2t

�0, 2, �1�

��1, 6, 2�
��4, 2, 1�

�1, �1, 6��0, 1, 1�

�8, 8, 2�
�4, 2, �6��8, 8, 7�

�2, �1, �5�

x � z � 0
x � y � z � 1

�2, 1, �3�(0, 12 , 1)

�4, �3, 3���1, 0, 5�

�3, 2, �6��3, 1, �1�

�1, 2, 3�

1. Determine whether each statement is true or false.
(a) Two lines parallel to a third line are parallel.
(b) Two lines perpendicular to a third line are parallel.
(c) Two planes parallel to a third plane are parallel.
(d) Two planes perpendicular to a third plane are parallel.
(e) Two lines parallel to a plane are parallel.
(f ) Two lines perpendicular to a plane are parallel.
(g) Two planes parallel to a line are parallel.
(h) Two planes perpendicular to a line are parallel.
(i) Two planes either intersect or are parallel.
( j) Two lines either intersect or are parallel.
(k) A plane and a line either intersect or are parallel.

2–5 � Find a vector equation and parametric equations for 
the line.

2. The line through the point and parallel to the 
vector 

3. The line through the point and parallel to the 
vector 

4. The line through the origin and parallel to the line ,
,

5. The line through the point (1, 0, 6) and perpendicular to the
plane 

� � � � � � � � � � � � �

x � 3y � z � 5

z � 4 � 3ty � 1 � t
x � 2t

�3, 1, �8 	
��2, 4, 10�

2 i � 4 j � 5k
�1, 0, �3�
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31–34 � Determine whether the planes are parallel, perpendicu-
lar, or neither. If neither, find the angle between them.

31. ,

32. ,

33. ,

34. ,

� � � � � � � � � � � � �

35. (a) Find symmetric equations for the line of intersection of
the planes and .

(b) Find the angle between these planes.

36. Find an equation for the plane consisting of all points that
are equidistant from the points and .

37. Find an equation of the plane with -intercept , -intercept
, and -intercept .

38. (a) Find the point at which the given lines intersect:

and

(b) Find an equation of the plane that contains these lines.

39. Find parametric equations for the line through the point
that is parallel to the plane and 

perpendicular to the line , , .

40. Find parametric equations for the line through the point
that is perpendicular to the line ,

, and intersects this line.

41. Which of the following four planes are parallel? Are any of
them identical?

42. Which of the following four lines are parallel? Are any of
them identical?

, ,

43–44 � Use the formula in Exercise 27 in Section 9.4 to find
the distance from the point to the given line.

43. ; , ,

44. ; , ,

� � � � � � � � � � � � �

45–46 � Find the distance from the point to the given plane.

45. ,

46. ,
� � � � � � � � � � � � �

4x � 6y � z � 5�3, �2, 7�

x � 2y � 2z � 1�2, 8, 5�

z � 1 � 2ty � 3tx � 5 � t�1, 0, �1�

z � 5ty � 2 � 3tx � 2 � t�1, 2, 3�

L4: r � �2, 1, �3 	 � t�2, 2, �10 	

L3: x � 1 � t, y � 4 � t, z � 1 � t

L2: x � 1 � y � 2 � 1 � z

z � 2 � 5ty � tL1: x � 1 � t

 P3: �6x � 3y � 9z � 5 P4: z � 2x � y � 3

 P1:  4x � 2y � 6z � 3  P2:  4x � 2y � 2z � 6

z � 2ty � 1 � t
x � 1 � t�0, 1, 2�

z � 2ty � 1 � tx � 1 � t
x � y � z � 2�0, 1, 2�

 r � �2, 0, 2 	 � s��1, 1, 0 	

 r � �1, 1, 0 	 � t�1, �1, 2 	

czb
yax

�2, �4, 3���4, 2, 1�

3x � 4y � 5z � 6x � y � z � 2

6x � 3y � 2z � 52x � 2y � z � 4

�3x � 6y � 7z � 0x � 4y � 3z � 1

z � 4x � 3y�8x � 6y � 2z � 1

y � z � 1x � z � 1

14. (a) Find parametric equations for the line through 
that is perpendicular to the plane .

(b) In what points does this line intersect the coordinate
planes?

15–18 � Determine whether the lines and are parallel,
skew, or intersecting. If they intersect, find the point of 
intersection.

15. :

:

16. : ,

:

17. : , ,

: , ,

18. : , ,

: , ,
� � � � � � � � � � � � �

19–28 � Find an equation of the plane.

19. The plane through the point and perpendicular to
the vector 

20. The plane through the point and with normal 
vector 

21. The plane through the origin and parallel to the plane

22. The plane that contains the line , ,
and is parallel to the plane 

23. The plane through the points , , and 

24. The plane through the origin and the points 
and 

25. The plane that passes through the point and con-
tains the line , ,

26. The plane that passes through the point and 
contains the line with symmetric equations 

27. The plane that passes through the point and con-
tains the line of intersection of the planes 
and 

28. The plane that passes through the line of intersection of the
planes and and is perpendicular to
the plane 

� � � � � � � � � � � � �

29–30 � Find the point at which the line intersects the given
plane.

29. , , ;

30. , , ;
� � � � � � � � � � � � �

z � 1 � 2x � yz � 1 � ty � tx � 1 � t

2x � y � z � 5 � 0z � ty � �1x � 1 � 2t

x � y � 2z � 1
y � 2z � 3x � z � 1

2x � y � 3z � 1
x � y � z � 2

��1, 2, 1�

x � 2y � 3z
�1, �1, 1�

z � 7 � 4ty � 3 � 5tx � 4 � 2t
�6, 0, �2�

�5, 1, 3�
�2, �4, 6�

�1, 1, 0��1, 0, 1��0, 1, 1�

2x � 4y � 8z � 17z � 8 � t
y � tx � 3 � 2t

2x � y � 3z � 1

j � 2k
�4, 0, �3�

��2, 1, 5 	
�6, 3, 2�

z � 4 � sy � 1 � 2sx � 2 � sL2

z � 3ty � 2 � tx � 1 � tL1

z � sy � 4 � 3sx � 1 � 2sL2

z � �3ty � 1 � 9tx � �6tL1

x

1
�

y � 2

2
�

z � 2

3
L2

x � 1

2
�

y

1
�

z � 1

4
L1

x � 2

1
�

y � 1

3
�

z

2
L2

x � 4

2
�

y � 5

4
�

z � 1

�3
L1

L2L1

2x � y � z � 1
�5, 1, 0�
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52. Find the distance between the skew lines with parametric 
equations , , , and ,

, .

53. If , , and are not all 0, show that the equation
represents a plane and is a

normal vector to the plane.
Hint: Suppose and rewrite the equation in the

form

54. Give a geometric description of each family of planes.
(a)
(b)
(c) y cos  � z sin  � 1

x � y � cz � 1
x � y � z � c

a�x �
d

a� � b�y � 0� � c�z � 0� � 0

a � 0

�a, b, c	ax � by � cz � d � 0
cba

z � �2 � 6sy � 5 � 15s
x � 1 � 2sz � 2ty � 1 � 6tx � 1 � t

47–48 � Find the distance between the given parallel planes.

47. ,

48. ,
� � � � � � � � � � � � �

49. Show that the distance between the parallel planes
and is

50. Find equations of the planes that are parallel to the plane
and two units away from it.

51. Show that the lines with symmetric equations 
and are skew, and find the distance
between these lines.

x � 1 � y�2 � z�3
x � y � z

x � 2y � 2z � 1

D � � d1 � d2 �
sa 2 � b 2 � c 2

ax � by � cz � d2 � 0ax � by � cz � d1 � 0

x � 2y � 3z � 13x � 6y � 9z � 4

3x � 6y � 3z � 4z � x � 2y � 1

Functions and Surfaces � � � � � � � � � � � � � �

In this section we take a first look at functions of two variables and their graphs, which
are surfaces in three-dimensional space. We will give a much more thorough treatment
of such functions in Chapter 11.

Functions of Two Variables

The temperature at a point on the surface of the earth at any given time depends on
the longitude and latitude of the point. We can think of as being a function of
the two variables and , or as a function of the pair . We indicate this functional
dependence by writing .

The volume of a circular cylinder depends on its radius and its height . In 
fact, we know that . We say that is a function of and , and we write

.

Definition A function of two variables is a rule that assigns to each ordered
pair of real numbers in a set a unique real number denoted by .
The set is the domain of and its range is the set of values that takes on,
that is, .

We often write to make explicit the value taken on by at the general
point . The variables and are independent variables and is the dependent
variable. [Compare this with the notation for functions of a single variable.]

The domain is a subset of , the -plane. We can think of the domain as the set
of all possible inputs and the range as the set of all possible outputs. If a function is
given by a formula and no domain is specified, then the domain of is understood 
to be the set of all pairs for which the given expression is a well-defined real
number.

�x, y�
f

f
xy�2

y � f �x�
zyx�x, y�

fz � f �x, y�

� f �x, y� � �x, y� � D�
ffD

f �x, y�D�x, y�
f

V�r, h� � �r 2h
hrVV � �r 2h

hrV
T � f �x, y�

�x, y�yx
Tyx

T

9.6
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EXAMPLE 1 If , then is defined for all possible ordered
pairs of real numbers , so the domain is , the entire -plane. The range of 
is the set of all nonnegative real numbers. [Notice that and , so

for all and .]

EXAMPLE 2 Find the domains of the following functions and evaluate .

(a) (b)

SOLUTION

(a)

The expression for makes sense if the denominator is not 0 and the quantity under
the square root sign is nonnegative. So the domain of is

The inequality , or , describes the points that lie on or
above the line , while means that the points on the line 
must be excluded from the domain. (See Figure 1.)

(b)

Since is defined only when , that is, , the domain of 
is . This is the set of points to the left of the parabola .
(See Figure 2.)

Not all functions can be represented by explicit formulas. The function in the next
example is described verbally and by numerical estimates of its values.

EXAMPLE 3 The wave heights (in feet) in the open sea depend mainly on the speed
of the wind (in knots) and the length of time (in hours) that the wind has been

blowing at that speed. So is a function of and and we can write .
Observations and measurements have been made by meteorologists and oceanogra-
phers and are recorded in Table 1.

2

4

5

9

14

19

24

2

4

7

13

21

29

37

2

5

8

16

25

36

47

2

5

8

17

28

40

54

2

5

9

18

31

45

62

2

5

9

19

33

48

67

2

5

9

19

33

50

69

√
t 5 10 15 20 30 40 50

10

15

20

30

40

50

60

Duration (hours)

Wind
speed

(knots)

TABLE 1
Wave heights (in feet) produced

by different wind speeds for
various lengths of time

h � f �v, t�tvh
tv

h

x � y 2D � ��x, y� � x � y 2 �
fx � y 2y 2 � x � 0ln�y 2 � x�

f �3, 2� � 3 ln�22 � 3� � 3 ln 1 � 0

x � 1x � 1y � �x � 1
y � �x � 1x � y � 1 � 0

D � ��x, y� � x � y � 1 � 0,  x � 1�

f
f

f �3, 2� �
s3 � 2 � 1

3 � 1
�

s6

2

f �x, y� � x ln�y 2 � x�f �x, y� �
sx � y � 1

x � 1

f �3, 2�

yxf �x, y� � 0
y2 � 0x 2 � 00, ��

fxy�2�x, y�
f �x, y�f �x, y� � 4x 2 � y2
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FIGURE 1

FIGURE 2
Domain of f(x, y)=x ln(¥-x)

œ„„„„„„„
x-1

x+y+1
Domain of f(x, y)=

x0

y

_1

_1

x=1

x+y+1=0

x0

y

x=¥



For instance, the table indicates that if the wind has been blowing at 50 knots for
30 hours, then the wave heights are estimated to be 45 ft, so 

The domain of this function is given by and . Although there is no
exact formula for in terms of and , we will see that the operations of calculus
can still be carried out for such an experimentally defined function.

Graphs

One way of visualizing the behavior of a function of two variables is to consider its
graph.

Definition If is a function of two variables with domain D, then the graph of
is the set of all points in such that and is in D.

Just as the graph of a function of one variable is a curve with equation
so the graph of a function of two variables is a surface with equation
. We can visualize the graph of as lying directly above or below its

domain in the -plane (see Figure 3).

EXAMPLE 4 Sketch the graph of the function .

SOLUTION The graph of has the equation , or ,
which represents a plane. By finding the intercepts (as in Example 4 in Section 9.5),
we sketch the portion of this graph that lies in the first octant in Figure 4.

The function in Example 4 is a special case of the function

which is called a linear function. The graph of such a function has the equation
, or , so it is a plane. In much the same way

that linear functions of one variable are important in single-variable calculus, we will
see that linear functions of two variables play a central role in multivariable calculus.

EXAMPLE 5 Sketch the graph of the function .

SOLUTION Notice that, no matter what value we give , the value of is always
. The equation of the graph is , which doesn’t involve y. This means that

any vertical plane with equation (parallel to the -plane) intersects the graph
in a curve with equation , that is, a parabola. Figure 5 shows how the graph is
formed by taking the parabola in the -plane and moving it in the direction
of the y-axis. So the graph is a surface, called a parabolic cylinder, made up of
infinitely many shifted copies of the same parabola.

In sketching the graphs of functions of two variables, it’s often useful to start by
determining the shapes of cross-sections (slices) of the graph. For example, if we keep

fixed by putting (a constant) and letting vary, the result is a function of one yx � kx

xzz � x 2
z � x 2

xzy � k
z � x 2x 2

f �x, y�y

f �x, y� � x 2

ax � by � z � c � 0z � ax � by � c

f �x, y� � ax � by � c

3x � 2y � z � 6z � 6 � 3x � 2yf

f �x, y� � 6 � 3x � 2y

xyD
fSz � f �x, y�

Sfy � f �x�,
Cf

�x, y�z � f �x, y��3�x, y, z�f
f

tvh
t � 0v � 0h

f �50, 30� � 45
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FIGURE 3
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variable , whose graph is the curve that results when we intersect the sur-
face with the vertical plane . In a similar fashion we can slice the 
surface with the vertical plane and look at the curves . We can also
slice with horizontal planes . All three types of curves are called traces (or cross-
sections) of the surface .

EXAMPLE 6 Use traces to sketch the graph of the function .

SOLUTION The equation of the graph is . If we put , we get ,
so the -plane intersects the surface in a parabola. If we put (a constant), we
get . This means that if we slice the graph with any plane parallel to
the -plane, we obtain a parabola that opens upward. Similarly, if , the trace
is , which is again a parabola that opens upward. If we put , we
get the horizontal traces , which we recognize as a family of ellipses.
Knowing the shapes of the traces, we can sketch the graph of in Figure 6. Because
of the elliptical and parabolic traces, the surface is called an elliptic
paraboloid.

EXAMPLE 7 Sketch the graph of .

SOLUTION The traces in the vertical planes are the parabolas ,
which open upward. The traces in are the parabolas , which
open downward. The horizontal traces are , a family of hyperbolas. We
draw the families of traces in Figure 7 and we show how the traces appear when
placed in their correct planes in Figure 8.

In Figure 9 we fit together the traces from Figure 8 together to form the surface
, a hyperbolic paraboloid. Notice that the shape of the surface near the z � y 2 � x 2

y 2 � x 2 � k
z � �x 2 � k 2y � k

z � y 2 � k 2x � k

f �x, y� � y 2 � x 2

z � 4x 2 � y 2
f

4x 2 � y 2 � k
z � kz � 4x 2 � k 2

y � kyz
z � y 2 � 4k 2

x � kyz
z � y 2x � 0z � 4x 2 � y 2

f �x, y� � 4x 2 � y 2

z � f �x, y�
z � k

z � f �x, k�y � k
x � kz � f �x, y�

z � f �k, y�
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Traces in x=k are z=¥-k@ Traces in y=k are z=_≈+k@ Traces in z=k are ¥-≈=k

FIGURE 7
Vertical traces are parabolas;
horizontal traces are hyperbolas.
All traces are labeled with the
value of k.
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planes
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FIGURE 6
The graph of f(x, y)=4≈+¥  is
the elliptic paraboloid z=4≈+¥.
Horizontal traces are ellipses;
vertical traces are parabolas.
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origin resembles that of a saddle. This surface will be investigated further in Sec-
tion 11.7 when we discuss saddle points.

The idea of using traces to draw a surface is employed in three-dimensional graph-
ing software for computers. In most such software, traces in the vertical planes 
and are drawn for equally spaced values of and parts of the graph are elimi-
nated using hidden line removal. Figure 10 shows computer-generated graphs of sev-
eral functions. Notice that we get an especially good picture of a function when rota-
tion is used to give views from different vantage points. In parts (a) and (b) the graph
of is very flat and close to the -plane except near the origin; this is because 
is very small when or is large.

FIGURE 10

(c) f(x, y)=sin x+sin y

z

x y

x

z

y

(d) f(x, y)=
sin x sin y

xy

(a) f(x, y)=(≈+3¥)e_≈_¥ (b) f(x, y)=(≈+3¥)e_≈_¥
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FIGURE 9
The graph of f(x, y)=¥-≈ is the
hyperbolic paraboloid z=¥-≈.
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Quadric Surfaces

The graph of a second-degree equation in three variables , , and is called a
quadric surface. We have already sketched the quadric surfaces (an
elliptic paraboloid) and (a hyperbolic paraboloid) in Figures 6 and 9. In
the next example we investigate a quadric surface called an ellipsoid.

EXAMPLE 8 Sketch the quadric surface with equation

SOLUTION The trace in the xy-plane is , which we recognize as
an equation of an ellipse. In general, the horizontal trace in the plane is

which is an ellipse, provided that , that is, .
Similarly, the vertical traces are also ellipses:

Figure 11 shows how drawing some traces indicates the shape of the surface. It’s
called an ellipsoid because all of its traces are ellipses. Notice that it is symmetric
with respect to each coordinate plane; this is a reflection of the fact that its equation
involves only even powers of x, y, and .

The ellipsoid in Example 8 is not the graph of a function because some vertical
lines (such as the -axis) intersect it more than once. But the top and bottom halves
are graphs of functions. In fact, if we solve the equation of the ellipsoid for , we get 

So the graphs of the functions

and

are the top and bottom halves of the ellipsoid (see Figure 12). The domain of both 
and is the set of all points such that

so the domain is the set of all points that lie on or inside the ellipse .x 2 � y 2�9 � 1

1 � x 2 �
y 2

9
� 0  &?  x 2 �

y 2

9
� 1

�x, y�t

f

t�x, y� � �2�1 � x 2 �
y 2

9
f �x, y� � 2�1 � x 2 �

y 2

9

z � �2�1 � x 2 �
y 2

9
z2 � 4�1 � x 2 �

y 2

9 �
z

z

z

 x 2 �
z2

4
� 1 �

k 2

9
 y � k �if �3 � k � 3�

 
y 2

9
�

z2

4
� 1 � k 2  x � k �if �1 � k � 1�

�2 � k � 2k 2 � 4

z � kx 2 �
y 2

9
� 1 �

k 2

4

z � k
x 2 � y 2�9 � 1�z � 0�

x 2 �
y 2

9
�

z2

4
� 1

z � y2 � x 2
z � 4x 2 � y 2

zyx
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Table 2 shows computer-drawn graphs of the six basic types of quadric surfaces in
standard form. All surfaces are symmetric with respect to the -axis. If a quadric sur-
face is symmetric about a different axis, its equation changes accordingly.

z

FIGURE 12

g(x, y)=_2œ„„„„„„„1-≈-   ¥
1
9

f(x, y)=2œ„„„„„„„1-≈-   ¥
1
9
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0

z
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y

0
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Surface Equation Surface Equation

Ellipsoid Cone

Elliptic Paraboloid Hyperboloid of One Sheet

Hyperbolic Paraboloid Hyperboloid of Two Sheets
z

yx

z

y

x

z

yx

z

y
x

z

yx

z

yx

Horizontal traces are ellipses.

Vertical traces in the planes
and are

hyperbolas if but are
pairs of lines if .k � 0

k � 0
y � kx � k

z 2

c 2 �
x 2

a 2 �
y 2

b 2

All traces are ellipses.

If , the ellipsoid is
a sphere.

a � b � c

x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are ellipses.

Vertical traces are hyperbolas.

The axis of symmetry
corresponds to the variable
whose coefficient is negative.

x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are ellipses.

Vertical traces are parabolas.

The variable raised to the
first power indicates the axis
of the paraboloid.

z

c
�

x 2

a 2 �
y 2

b 2

Horizontal traces in are
ellipses if or .

Vertical traces are hyperbolas.

The two minus signs indicate
two sheets.

k � �ck � c
z � k

�
x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are
hyperbolas.

Vertical traces are parabolas.

The case where is
illustrated.

c � 0

z

c
�

x 2

a 2 �
y 2

b 2

TABLE 2 Graphs of quadric surfaces
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3. Let .
(a) Evaluate .
(b) Find the domain of .
(c) Find the range of .

4. Let .
(a) Evaluate .
(b) Evaluate .
(c) Find and sketch the domain of .
(d) Find the range of .

5–8 � Find and sketch the domain of the function.

5. 6.

7.

8.
� � � � � � � � � � � � �

9–13 � Sketch the graph of the function.

9. 10.

11. 12.

13.
� � � � � � � � � � � � �

14. (a) Find the traces of the function in the
planes , , and . Use these traces to
sketch the graph.

(b) Sketch the graph of . How is it
related to the graph of ?

(c) Sketch the graph of . How is it
related to the graph of ?

15. Match the function with its graph (labeled I–VI). Give rea-
sons for your choices.
(a) (b) f �x, y� � � xy �f �x, y� � � x � � � y �

t

h�x, y� � 3 � x 2 � y 2
f

t�x, y� � �x 2 � y 2

z � ky � kx � k
f �x, y� � x 2 � y 2

f �x, y� � 1 � x 2

f �x, y� � sin yf �x, y� � 1 � x � y

f �x, y� � xf �x, y� � 3

f �x, y� � sx 2 � y 2 � 1 � ln�4 � x 2 � y 2 �

f �x, y� �
sy � x 2

1 � x 2

f �x, y� � sx � syf �x, y� � sx � y

f
f

f �e, 1�
f �1, 1�

f �x, y� � ln�x � y � 1�

f
f

f �2, 0�
f �x, y� � x 2e3xy1. In Example 3 we considered the function , where

is the height of waves produced by wind at speed for a
time . Use Table 1 to answer the following questions.
(a) What is the value of ? What is its meaning?
(b) What is the meaning of the function ?

Describe the behavior of this function.
(c) What is the meaning of the function ?

Describe the behavior of this function.

2. The figure shows vertical traces for a function .
Which one of the graphs I–IV has these traces? Explain.

III IVz

y
x

z

y
x

I II

y

z

x

y

z

x

Traces in x=k Traces in y=k

k=_1

0_2

2

1

z

x

k=1

0 2

_2

_1

z

y

z � f �x, y�

h � f �v, 30�

h � f �30, t�
f �40, 15�

t
vh

h � f �v, t�
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EXAMPLE 9 Classify the quadric surface .

SOLUTION By completing the square we rewrite the equation as

Comparing this equation with Table 2, we see that it represents an elliptic parabo-
loid. Here, however, the axis of the paraboloid is parallel to the -axis, and it has
been shifted so that its vertex is the point . The traces in the plane 

are the ellipses

The trace in the -plane is the parabola with equation , .
The paraboloid is sketched in Figure 13.

z � 0y � 1 � �x � 3�2xy

y � k�x � 3�2 � 2z2 � k � 1

�k � 1�
y � k�3, 1, 0�

y

y � 1 � �x � 3�2 � 2z2

x 2 � 2z2 � 6x � y � 10 � 0

FIGURE 13
≈+2z@-6x-y+10=0

0

y

x
(3, 1, 0)

z



the graph of the hyperboloid of one sheet in Table 2.
(b) If we change the equation in part (a) to

, how is the graph affected?
(c) What if we change the equation in part (a) to

?

26. (a) Find and identify the traces of the quadric surface
and explain why the graph looks

like the graph of the hyperboloid of two sheets in 
Table 2.

(b) If the equation in part (a) is changed to
, what happens to the graph? Sketch

the new graph.

; 27–28 � Use a computer to graph the function using various
domains and viewpoints. Get a printout that gives a good view
of the “peaks and valleys.” Would you say the function has a
maximum value? Can you identify any points on the graph that
you might consider to be “local maximum points”? What about
“local minimum points”?

27.

28.
� � � � � � � � � � � � �

; 29–30 � Use a computer to graph the function using various
domains and viewpoints. Comment on the limiting behavior of 
the function. What happens as both and become large? What
happens as approaches the origin?

29. 30.

� � � � � � � � � � � � �

; 31. Graph the surfaces and on a com-
mon screen using the domain , and
observe the curve of intersection of these surfaces. Show
that the projection of this curve onto the -plane is an
ellipse.

32. Show that the curve of intersection of the surfaces
and 

lies in a plane.

33. Show that if the point lies on the hyperbolic parab-
oloid , then the lines with parametric equations

, , and ,
, both lie entirely on this

paraboloid. (This shows that the hyperbolic paraboloid is
what is called a ruled surface; that is, it can be generated
by the motion of a straight line. In fact, this exercise shows
that through each point on the hyperbolic paraboloid there
are two generating lines. The only other quadric surfaces
that are ruled surfaces are cylinders, cones, and hyperbo-
loids of one sheet.)

34. Find an equation for the surface consisting of all points 
for which the distance from to the -axis is twice the dis-
tance from to the -plane. Identify the surface.yzP

xP
P

z � c � 2�b � a�ty � b � t
x � a � tz � c � 2�b � a�ty � b � tx � a � t

z � y 2 � x 2
�a, b, c�

2x 2 � 4y 2 � 2z2 � 5y � 0x 2 � 2y 2 � z2 � 3x � 1

xy

� y � � 1.2� x � � 1.2
z � 1 � y 2z � x 2 � y 2

f �x, y� �
xy

x 2 � y 2f �x, y� �
x � y

x 2 � y 2

�x, y�
yx

f �x, y� � xye�x 2�y 2

f �x, y� � 3x � x 4 � 4y 2 � 10xy

x 2 � y2 � z2 � 1

�x 2 � y2 � z2 � 1

x 2 � y2 � 2y � z2 � 0

x 2 � y2 � z2 � 1

(c) (d)

(e) (f)

16–18 � Use traces to sketch the graph of the function.

16.

17. 18.
� � � � � � � � � � � � �

19–20 � Use traces to sketch the surface.

19. 20.
� � � � � � � � � � � � �

21–22 � Classify the surface by comparing with one of the
standard forms in Table 2. Then sketch its graph.

21.

22.
� � � � � � � � � � � � �

23. (a) What does the equation represent as a
curve in ?

(b) What does it represent as a surface in ?
(c) What does the equation represent?

24. (a) Identify the traces of the surface .
(b) Sketch the surface.
(c) Sketch the graphs of the functions 

and .

25. (a) Find and identify the traces of the quadric surface
and explain why the graph looks like x 2 � y2 � z2 � 1

t�x, y� � �sx 2 � y2

f �x, y� � sx 2 � y2

z2 � x 2 � y2

x 2 � z2 � 1
�3

�2
x 2 � y2 � 1

x 2 � 4y 2 � z2 � 2x � 0

x � 4y 2 � z2 � 4z � 4

y � x 2 � z2y � z2 � x 2

f �x, y� � x 2 � y 2f �x, y� � x 2 � 9y 2

f �x, y� � s16 � x 2 � 16y 2

V VIz

yx

z

yx

III IV z

yx

z

y

x

I II z

yx

z

yx

f �x, y� � sin(�x � � � y �)f �x, y� � �x � y�2

f �x, y� � �x 2 � y 2 �2f �x, y� �
1

1 � x 2 � y 2
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Cylindrical and Spherical Coordinates � � � � � � � � � �

In plane geometry the polar coordinate system is used to give a convenient description
of certain curves and regions. (See Appendix H.) In three dimensions there are two
coordinate systems that are similar to polar coordinates and give convenient descrip-
tions of some commonly occurring surfaces and solids. They will be especially useful
in Chapter 12 when we compute volumes and triple integrals.

Cylindrical Coordinates

In the cylindrical coordinate system, a point in three-dimensional space is repre-
sented by the ordered triple , where and are polar coordinates of the pro-
jection of onto the -plane and is the directed distance from the -plane to (see
Figure 1).

To convert from cylindrical to rectangular coordinates we use the equations

whereas to convert from rectangular to cylindrical coordinates we use

These equations follow from Equations 1 and 2 in Appendix H.1.

EXAMPLE 1
(a) Plot the point with cylindrical coordinates and find its rectangular 
coordinates.
(b) Find cylindrical coordinates of the point with rectangular coordinates

.

SOLUTION
(a) The point with cylindrical coordinates is plotted in Figure 2. From
Equations 1, its rectangular coordinates are

Thus, the point is in rectangular coordinates.(�1, s3, 1)

 z � 1

 y � 2 sin 
2�

3
� 2�s3

2 � � s3

 x � 2 cos 
2�

3
� 2��

1

2� � �1

�2, 2��3, 1�

�3, �3, �7�

�2, 2��3, 1�

z � ztan  �
y

x
r 2 � x 2 � y 22

z � zy � r sin x � r cos 1

PxyzxyP
r�r, , z�

P
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(b) From Equations 2 we have

so

Therefore, one set of cylindrical coordinates is . Another is
. As with polar coordinates, there are infinitely many choices.

Cylindrical coordinates are useful in problems that involve symmetry about an
axis, and the -axis is chosen to coincide with this axis of symmetry. For instance, the
axis of the circular cylinder with Cartesian equation is the -axis. In
cylindrical coordinates this cylinder has the very simple equation . (See Figure 3.)
This is the reason for the name “cylindrical” coordinates.

EXAMPLE 2 Describe the surface whose equation in cylindrical coordinates is .

SOLUTION The equation says that the -value, or height, of each point on the surface is
the same as r, the distance from the point to the -axis. Because doesn’t appear, it
can vary. So any horizontal trace in the plane is a circle of radius k.
These traces suggest that the surface is a cone. This prediction can be confirmed by
converting the equation to rectangular coordinates. From the first equation in (2) we
have

We recognize the equation (by comparison with Table 2 in Section 9.6)
as being a circular cone whose axis is the -axis (see Figure 4).

EXAMPLE 3 Find an equation in cylindrical coordinates for the ellipsoid
.

SOLUTION Since from Equations 2, we have

So an equation of the ellipsoid in cylindrical coordinates is .z2 � 1 � 4r 2

z2 � 1 � 4�x 2 � y 2 � � 1 � 4r 2

r 2 � x 2 � y 2

4x 2 � 4y 2 � z2 � 1

z
z2 � x 2 � y 2

z2 � r 2 � x 2 � y 2

z � k �k � 0�
z

z

z � r

FIGURE 3
r=c, a cylinder
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r � c
zx 2 � y 2 � c 2

z

(3s2, ���4, �7)
(3s2, 7��4, �7)

z � �7

 �
7�

4
� 2n�tan  �
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3
� �1

r � s32 � ��3�2 � 3s2
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Spherical Coordinates

The spherical coordinates of a point in space are shown in Figure 5,
where is the distance from the origin to , is the same angle as in cylin-
drical coordinates, and is the angle between the positive -axis and the line segment

. Note that

The spherical coordinate system is especially useful in problems where there is sym-
metry about a point, and the origin is placed at this point. For example, the sphere with
center the origin and radius has the simple equation (see Figure 6); this is the
reason for the name “spherical” coordinates. The graph of the equation is a ver-
tical half-plane (see Figure 7), and the equation represents a half-cone with the
-axis as its axis (see Figure 8).

The relationship between rectangular and spherical coordinates can be seen from
Figure 9. From triangles and we have

But and , so to convert from spherical to rectangular coordi-
nates, we use the equations

Also, the distance formula shows that

We use this equation in converting from rectangular to spherical coordinates.

�2 � x 2 � y 2 � z24

z � � cos �y � � sin � sin x � � sin � cos 3

y � r sin x � r cos 

r � � sin �z � � cos �

OPP�OPQ

z
� � c

 � c
� � cc

0 � � � �� � 0

OP
z�

P� � � OP �
P��, , ��
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EXAMPLE 4 The point is given in spherical coordinates. Plot the point
and find its rectangular coordinates.

SOLUTION We plot the point in Figure 10. From Equations 3 we have

Thus, the point is in rectangular coordinates.

EXAMPLE 5 The point is given in rectangular coordinates. Find spheri-
cal coordinates for this point.

SOLUTION From Equation 4 we have

and so Equations 3 give

(Note that because .) Therefore, spherical coordinates of the
given point are .

EXAMPLE 6 Find an equation in spherical coordinates for the hyperboloid of two
sheets with equation .

SOLUTION Substituting the expressions in Equations 3 into the given equation, we have

or

EXAMPLE 7 Find a rectangular equation for the surface whose spherical equation is
.

SOLUTION From Equations 4 and 3 we have

or

which is the equation of a sphere with center and radius .1
2(0, 12, 0)

x 2 � (y �
1
2 )2

� z2 � 1
4

x 2 � y 2 � z2 � �2 � � sin  sin � � y

� � sin  sin �

 �2�sin2� cos 2 � cos2�� � 1

 �2sin2� �cos2 � sin2� � cos2�� � 1

 �2 sin2� cos2 � �2 sin2� sin2 � �2 cos2� � 1

x 2 � y 2 � z2 � 1

�4, ��2, 2��3�
y � 2s3 � 0 � 3��2

  �
�

2
 cos  �

x

� sin �
� 0

 � �
2�

3
 cos � �

z

�
�

�2

4
� �

1

2

� � sx 2 � y 2 � z 2 � s0 � 12 � 4 � 4

(0, 2s3, �2)

(s3�2, s3�2, 1)�2, ��4, ��3�

 z � � cos � � 2 cos 
�

3
� 2(1

2 ) � 1

 y � � sin � sin  � 2 sin 
�

3
 sin 

�

4
� 2�s3

2 �� 1

s2� � �3

2

 x � � sin � cos  � 2 sin 
�

3
 cos 

�

4
� 2�s3

2 �� 1

s2� � �3
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EXAMPLE 8 Use a computer to draw a picture of the solid that remains when a hole
of radius 3 is drilled through the center of a sphere of radius 4.

SOLUTION To keep the equations simple, let’s choose the coordinate system so that the
center of the sphere is at the origin and the axis of the cylinder that forms the hole is
the -axis. We could use either cylindrical or spherical coordinates to describe the
solid, but the description is somewhat simpler if we use cylindrical coordinates.
Then the equation of the cylinder is and the equation of the sphere is

, or . The points in the solid lie outside the cylinder
and inside the sphere, so they satisfy the inequalities

To ensure that the computer graphs only the appropriate parts of these surfaces, we
find where they intersect by solving the equations and :

The solid lies between and , so we ask the computer to graph the
surfaces with the following equations and domains:

The resulting picture, shown in Figure 11, is exactly what we want.

FIGURE 11

 �s7 � z � s7 0 �  � 2� r � s16 � z 2

 �s7 � z � s7 0 �  � 2� r � 3

z � s7z � �s7

z � �s7 ? z2 � 7 ? 16 � z2 � 9 ? s16 � z 2 � 3

r � s16 � z 2r � 3

3 � r � s16 � z 2

r 2 � z2 � 16x 2 � y 2 � z2 � 16
r � 3

z
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5–6 � Change from rectangular to cylindrical coordinates.

5. (a) (b)

6. (a) (b)
� � � � � � � � � � � � �

7–8 � Plot the point whose spherical coordinates are given.
Then find the rectangular coordinates of the point.

7. (a) (b)

8. (a) (b)
� � � � � � � � � � � � �

�2, ��4, ��3��5, �, ��2�

�2, ��3, ��4��1, 0, 0�

�3, 4, 5��3, 3, �2�

(�1, �s3, 2)�1, �1, 4�

1. What are cylindrical coordinates? For what types of
surfaces do they provide convenient descriptions?

2. What are spherical coordinates? For what types of surfaces
do they provide convenient descriptions?

3–4 � Plot the point whose cylindrical coordinates are given.
Then find the rectangular coordinates of the point.

3. (a) (b)

4. (a) (b)
� � � � � � � � � � � � �

�5, ��6, 6��1, �, e�

�4, ���3, 5��3, ��2, 1�

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �9.7

� Most three-dimensional graphing 
programs can graph surfaces whose
equations are given in cylindrical or
spherical coordinates. As Example 8
demonstrates, this is often the most 
convenient way of drawing a solid.
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; Families of Surfaces

In this project you will discover the interesting shapes that members of families of surfaces
can take. You will also see how the shape of the surface evolves as you vary the constants.

1. Use a computer to investigate the family of functions

How does the shape of the graph depend on the numbers and ?

2. Use a computer to investigate the family of surfaces . In particular,
you should determine the transitional values of for which the surface changes from
one type of quadric surface to another.

3. Members of the family of surfaces given in spherical coordinates by the equation

have been suggested as models for tumors and have been called bumpy spheres and
wrinkled spheres. Use a computer to investigate this family of surfaces, assuming that 
and are positive integers. What roles do the values of and play in the shape of the
surface?

nmn
m

� � 1 � 0.2 sin m sin n�

c
z � x 2 � y 2 � cxy

ba

f �x, y� � �ax 2 � by 2 �e�x 2�y 2

Laboratory
Project

9–10 � Change from rectangular to spherical coordinates.

9. (a) (b)

10. (a) (b)
� � � � � � � � � � � � �

11–14 � Describe in words the surface whose equation is given.

11. 12.

13. 14.
� � � � � � � � � � � � �

15–20 � Identify the surface whose equation is given.

15. 16.

17. 18.

19. 20.
� � � � � � � � � � � � �

21–24 � Write the equation (a) in cylindrical coordinates and 
(b) in spherical coordinates.

21. 22.

23. 24.
� � � � � � � � � � � � �

25–28 � Sketch the solid described by the given inequalities.

25.

26. ,

27. , ,

28. ,
� � � � � � � � � � � � �

� � 20 � � � ��3

0 � � � sec �0 � � � ��6���2 �  � ��2

r � z � 20 �  � ��2

r 2 � z � 2 � r 2

z � x 2 � y 2x 2 � y 2 � 2y

x 2 � y 2 � z2 � 16x 2 � y 2 � z2 � 16

r 2 � 2z2 � 4r 2 � z2 � 25

� � 2 cos �r � 2 cos 

� sin � � 2z � r 2

 � ��3� � ��3

� � 3r � 3

�0, 0, �3�(1, s3, 2)
�0, 2, �2���3, 0, 0�

29. A cylindrical shell is 20 cm long, with inner radius 6 cm
and outer radius 7 cm. Write inequalities that describe the
shell in an appropriate coordinate system. Explain how you
have positioned the coordinate system with respect to the
shell.

30. (a) Find inequalities that describe a hollow ball with diame-
ter 30 cm and thickness 0.5 cm. Explain how you have
positioned the coordinate system that you have chosen.

(b) Suppose the ball is cut in half. Write inequalities that
describe one of the halves.

31. A solid lies above the cone and below the
sphere . Write a description of the solid in
terms of inequalities involving spherical coordinates.

; 32. Use a graphing device to draw the solid enclosed by the
paraboloids and .

; 33. Use a graphing device to draw a silo consisting of a 
cylinder with radius 3 and height 10 surmounted by a 
hemisphere.

34. The latitude and longitude of a point in the Northern
Hemisphere are related to spherical coordinates , , as
follows. We take the origin to be the center of the Earth and
the positive -axis to pass through the North Pole. The posi-
tive -axis passes through the point where the prime merid-
ian (the meridian through Greenwich, England) intersects
the equator. Then the latitude of is and the
longitude is . Find the great-circle distance
from Los Angeles (lat. N, long. W) to Mon-
tréal (lat. N, long. W). Take the radius of the
Earth to be 3960 mi. (A great circle is the circle of intersec-
tion of a sphere and a plane through the center of the sphere.)

73.60�45.50�
118.25�34.06�

� � 360� � �
� � 90� � ��P

x
z

��
P

z � 5 � x 2 � y 2z � x 2 � y 2

x 2 � y 2 � z2 � z
z � sx 2 � y 2
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7. For any vectors , , and in ,
.

8. For any vectors , , and in ,
.

9. For any vectors and in , .

10. For any vectors and in , .

11. The cross product of two unit vectors is a unit vector.

12. A linear equation represents a line 
in space.

13. The set of points is a circle.

14. If and , then .u � v � �u1v1, u2v2 	v � �v1, v2 	u � �u1, u2 	

{�x, y, z� � x 2 � y 2 � 1}

Ax � By � Cz � D � 0

�u � v� � v � u � vV3vu

�u � v� � u � 0V3vu

u � �v � w� � �u � v� � w
V3wvu

u � �v � w� � �u � v� � w
V3wvuDetermine whether the statement is true or false. If it is true, explain why.

If it is false, explain why or give an example that disproves the statement.

1. For any vectors and in , .

2. For any vectors and in , .

3. For any vectors and in , .

4. For any vectors and in and any scalar ,
.

5. For any vectors and in and any scalar ,
.

6. For any vectors , , and in ,
.�u � v� � w � u � w � v � w

V3wvu

k�u � v� � �ku� � v
kV3vu

k�u � v� � �ku� � v
kV3vu

� u � v � � � v � u �V3vu

u � v � v � uV3vu

u � v � v � uV3vu

T R U E – FA L S E  Q U I Z

13. Write a vector equation, parametric equations, and sym-
metric equations for a line.

14. Write a vector equation and a scalar equation for a plane.

15. (a) How do you tell if two vectors are parallel?
(b) How do you tell if two vectors are perpendicular?
(c) How do you tell if two planes are parallel?

16. (a) Describe a method for determining whether three points
, , and lie on the same line.

(b) Describe a method for determining whether four points
, , , and lie in the same plane.

17. (a) How do you find the distance from a point to a line?
(b) How do you find the distance from a point to a plane?
(c) How do you find the distance between two lines?

18. How do you sketch the graph of a function of two
variables?

19. Write equations in standard form of the six types of quadric
surfaces.

20. (a) Write the equations for converting from cylindrical to 
rectangular coordinates. In what situation would you use
cylindrical coordinates?

(b) Write the equations for converting from spherical to
rectangular coordinates. In what situation would you use
spherical coordinates?

SRQP

RQP

1. What is the difference between a vector and a scalar?

2. How do you add two vectors geometrically? How do you
add them algebraically?

3. If a is a vector and c is a scalar, how is ca related to a geo-
metrically? How do you find ca algebraically?

4. How do you find the vector from one point to another?

5. How do you find the dot product of two vectors if you
know their lengths and the angle between them? What if
you know their components?

6. How are dot products useful?

7. Write expressions for the scalar and vector projections of b
onto a. Illustrate with diagrams.

8. How do you find the cross product a � b of two vectors if
you know their lengths and the angle between them? What
if you know their components?

9. How are cross products useful?

10. (a) How do you find the area of the parallelogram deter-
mined by a and b?

(b) How do you find the volume of the parallelepiped 
determined by a, b, and c?

11. How do you find a vector perpendicular to a plane?

12. How do you find the angle between two intersecting planes?

a � b

9 Review
C O N C E P T  C H E C K
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11. (a) Find a vector perpendicular to the plane through the
points , , and .

(b) Find the area of triangle .

12. A constant force moves an object
along the line segment from to . Find the
work done if the distance is measured in meters and the
force in newtons.

13. A boat is pulled onto shore using two ropes, as shown in the
diagram. If a force of 255 N is needed, find the magnitude
of the force in each rope.

14. Find the magnitude of the torque about if a 50-N force is
applied as shown.

15–17 � Find parametric equations for the line that satisfies the
given conditions.

15. Passing through and in the direction of

16. Passing through and 

17. Passing through and parallel to the line with para-
metric equations , ,

� � � � � � � � � � � � �

18–21 � Find an equation of the plane that satisfies the given 
conditions.

18. Passing through and with normal vector

19. Passing through and parallel to the plane

20. Passing through , , and 

21. Passing through the line of intersection of the planes
and and perpendicular to the plane

� � � � � � � � � � � � �

x � y � 2z � 1
y � 2z � 3x � z � 1

��5, 3, 1��2, 0, 1���1, 2, 0�

x � 2y � 5z � 3
��4, 1, 2�

�2, 6, �3 	
�4, �1, �1�

z � 2 � 5ty � 1 � 3tx � 4t
�1, 0, 1�

�2, �3, 5���6, �1, 0�

v � 2 i � j � 3k
�1, 2, 4�

P

40 cm

50 N
30°

P

20°
30°

255 N

�5, 3, 8��1, 0, 2�
F � 3 i � 5 j � 10k

ABC
C�1, 4, 3�B�2, 0, �1�A�1, 0, 0�

1. (a) Find an equation of the sphere that passes through the
point and has center .

(b) Find the curve in which this sphere intersects the 
-plane.

(c) Find the center and radius of the sphere

2. Copy the vectors in the figure and use them to draw each of
the following vectors.
(a) (b)
(c) (d)

3. If u and v are the vectors shown in the figure, find and
. Is u � v directed into the page or out of it?

4. Calculate the given quantity if

(a) (b)
(c) (d)
(e) (f )
(g) (h)
(i) ( j)
(k) The angle between and (correct to the nearest

degree)

5. Find the values of such that the vectors and
are orthogonal.

6. Find two unit vectors that are orthogonal to both 
and .

7. Suppose that . Find
(a) (b)
(c) (d)

8. Show that if , , and are in , then

9. Find the acute angle between two diagonals of a cube.

10. Given the points , , , and
, find the volume of the parallelepiped with adja-

cent edges , , and .ADACAB
D�0, 3, 2�

C��1, 1, 4�B�2, 3, 0�A�1, 0, 1�

�a � b� � �b � c� � �c � a�� � a � �b � c��2

V3cba

�u � v� � vv � �u � w�
u � �w � v��u � v� � w

u � �v � w� � 2

i � 2 j � 3k
j � 2k

�2x, 4, x	
�3, 2, x	x

ba
proja bcomp a b
a � �b � c�c � c
a � �b � c�� b � c �
a � ba � b
� b �2a � 3b

c � j � 5kb � 3 i � 2 j � ka � i � j � 2k

45°

|v |=3

|u |=2

� u � v �
u � v

a
b

2a � b�
1
2 a

a � ba � b

x 2 � y2 � z2 � 8x � 2y � 6z � 1 � 0

yz

��1, 2, 1��6, �2, 3�

E X E R C I S E S



31. 32.
� � � � � � � � � � � � �

33–36 � Identify and sketch the graph of each surface.

33. 34.

35. 36.
� � � � � � � � � � � � �

37. The cylindrical coordinates of a point are . Find
the rectangular and spherical coordinates of the point.

38. The rectangular coordinates of a point are . Find
the cylindrical and spherical coordinates of the point.

39. The spherical coordinates of a point are . Find
the rectangular and cylindrical coordinates of the point.

40. Identify the surfaces whose equations are given.
(a) (b)

41–42 � Write the equation in cylindrical coordinates and in
spherical coordinates.

41. 42.
� � � � � � � � � � � � �

43. The parabola , is rotated about the -axis.
Write an equation of the resulting surface in cylindrical
coordinates.

44. Sketch the solid consisting of all points with spherical coor-
dinates such that , , and

.0 � � � 2 cos �
0 � � � ��60 �  � ��2��, , ��

zx � 0z � 4y 2

x 2 � y 2 � 4x 2 � y 2 � z2 � 4

� � ��4 � ��4

�4, ��3, ��6�

�2, 2, �1�

�2, ��6, 2�

y 2 � z 2 � 1 � x 2y2 � z2 � 1

y2 � z2 � xy2 � z2 � 1 � 4x 2

f �x, y� � s4 � x 2 � 4y2f �x, y� � 4 � x 2 � 4y222. Find the point in which the line with parametric equations
, , intersects the plane

.

23. Determine whether the lines given by the symmetric 
equations

and

are parallel, skew, or intersecting.

24. (a) Show that the planes and
are neither parallel nor perpendicular.

(b) Find, correct to the nearest degree, the angle between
these planes.

25. Find the distance between the planes 
and .

26. Find the distance from the origin to the line ,
, .

27–28 � Find and sketch the domain of the function.

27.

28.
� � � � � � � � � � � � �

29–32 � Sketch the graph of the function.

29. 30. f �x, y� � cos xf �x, y� � 6 � 2x � 3y

f �x, y� � ssin ��x 2 � y2�

f �x, y� � x ln�x � y2�

z � �1 � 2ty � 2 � t
x � 1 � t

3x � y � 4z � 24
3x � y � 4z � 2

2x � 3y � 4z � 5
x � y � z � 1

 
x � 1

6
�

y � 3

�1
�

z � 5

2

 
x � 1

2
�

y � 2

3
�

z � 3

4

2x � y � z � 2
z � 4ty � 1 � 3tx � 2 � t
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1. Each edge of a cubical box has length 1 m. The box contains nine spherical balls with
the same radius . The center of one ball is at the center of the cube and it touches the
other eight balls. Each of the other eight balls touches three sides of the box. Thus, the
balls are tightly packed in the box. (See the figure.) Find . (If you have trouble with
this problem, read about the problem-solving strategy entitled Use analogy on page 88.)

2. Let be a solid box with length , width , and height . Let be the set of all points
that are a distance at most 1 from some point of . Express the volume of in terms of

, , and .

3. Let be the line of intersection of the planes and ,
where is a real number.
(a) Find symmetric equations for .
(b) As the number varies, the line sweeps out a surface . Find an equation for the

curve of intersection of with the horizontal plane (the trace of in the 
plane ).

(c) Find the volume of the solid bounded by and the planes and .

4. A plane is capable of flying at a speed of 180 km�h in still air. The pilot takes off from
an airfield and heads due north according to the plane’s compass. After 30 minutes of
flight time, the pilot notices that, due to the wind, the plane has actually traveled 80 km
at an angle 5° east of north.
(a) What is the wind velocity?
(b) In what direction should the pilot have headed to reach the intended destination?

5. Suppose a block of mass is placed on an inclined plane, as shown in the figure. The
block’s descent down the plane is slowed by friction; if is not too large, friction will
prevent the block from moving at all. The forces acting on the block are the weight ,
where ( is the acceleration due to gravity); the normal force (the normal
component of the reactionary force of the plane on the block), where ; and the
force F due to friction, which acts parallel to the inclined plane, opposing the direction
of motion. If the block is at rest and is increased, must also increase until ulti-
mately reaches its maximum, beyond which the block begins to slide. At this angle

, it has been observed that is proportional to . Thus, when is maximal, we
can say that , where is called the coefficient of static friction and depends
on the materials that are in contact.
(a) Observe that N � F � W � 0 and deduce that .
(b) Suppose that, for , an additional outside force is applied to the block,

horizontally from the left, and let . If is small, the block may still slide
down the plane; if is large enough, the block will move up the plane. Let be
the smallest value of that allows the block to remain motionless (so that is
maximal).

By choosing the coordinate axes so that lies along the -axis, resolve each
force into components parallel and perpendicular to the inclined plane and show
that

and

(c) Show that

Does this equation seem reasonable? Does it make sense for ? As ?
Explain.

(d) Let be the largest value of that allows the block to remain motionless. (In
which direction is heading?) Show that

Does this equation seem reasonable? Explain.

hmax � mt tan� � s�

F
hhmax

 l 90� � s

hmin � mt tan� � s�

hmin cos  � �sn � mt sin hmin sin  � mt cos  � n

xF

� F �h
hminh

h� H � � h
H � s

�s � tan s

�s� F � � �sn
� F �n� F �s

� F �
� F �

� N � � n
Nt� W � � mt

W


m

z � 1z � 0S
z � t

Sz � tS
SLc

L
c

x � cy � cz � �1cx � y � z � cL

HWL
SB

SHWLB

r

r
Focus 
on 
Problem
Solving

¨

N F

W

FIGURE FOR PROBLEM 5

1 m

1 m
1 m1 m

FIGURE FOR PROBLEM 1
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Vector Functions and Space Curves � � � � � � � � � � �

In general, a function is a rule that assigns to each element in the domain an element
in the range. A vector-valued function, or vector function, is simply a function whose
domain is a set of real numbers and whose range is a set of vectors. We are most inter-
ested in vector functions whose values are three-dimensional vectors. This means
that for every number in the domain of there is a unique vector in denoted by

. If , , and are the components of the vector , then , , and are
real-valued functions called the component functions of and we can write

We use the letter to denote the independent variable because it represents time in
most applications of vector functions.

EXAMPLE 1 If

then the component functions are

By our usual convention, the domain of consists of all values of for which the
expression for is defined. The expressions , , and are all defined
when and . Therefore, the domain of is the interval .

The limit of a vector function is defined by taking the limits of its component
functions as follows.

If , then

provided the limits of the component functions exist.

lim
t l a

 r�t� � � lim
t l a

 f �t�, lim
t l a

 t�t�, lim
t l a

 h�t��

r�t� � � f �t�, t�t�, h�t��1

r

�0, 3�rt � 03 � t � 0
stln�3 � t�t 3r�t�

tr

h�t� � stt�t� � ln�3 � t�f �t� � t 3

r�t� � �t3, ln�3 � t�, st �

t

r�t� � � f �t�, t�t�, h�t�� � f �t� i � t�t�j � h�t�k

r
htfr�t�h�t�t�t�f �t�r�t�

V3rt
r

10.1

705

The functions that we have been using so far have
been real-valued functions. We now study functions
whose values are vectors because such functions are
needed to describe curves and surfaces in space. 

We will also use vector-valued functions to describe 
the motion of objects through space. In particular, 
we will use them to derive Kepler’s laws of planetary
motion.

� If , this definition is
equivalent to saying that the length and
direction of the vector approach the
length and direction of the vector .L

r�t�

lim t l a r�t� � L



Limits of vector functions obey the same rules as limits of real-valued functions
(see Exercise 33).

EXAMPLE 2 Find , where .

SOLUTION According to Definition 1, the limit of r is the vector whose components
are the limits of the component functions of r:

(by Equation 3.4.2)

A vector function is continuous at a if

In view of Definition 1, we see that is continuous at if and only if its component
functions , , and are continuous at .

There is a close connection between continuous vector functions and space curves.
Suppose that , , and are continuous real-valued functions on an interval . Then
the set of all points in space, where

and varies throughout the interval , is called a space curve. The equations in (2) are
called parametric equations of C and is called a parameter. We can think of as
being traced out by a moving particle whose position at time is . If
we now consider the vector function , then is the position
vector of the point on . Thus, any continuous vector function 
defines a space curve that is traced out by the tip of the moving vector , as shown
in Figure 1.

EXAMPLE 3 Describe the curve defined by the vector function

SOLUTION The corresponding parametric equations are

which we recognize from Equations 9.5.2 as parametric equations of a line pass-
ing through the point and parallel to the vector . Alternatively,
we could observe that the function can be written as , where

and , and this is the vector equation of a line as given
by Equation 9.5.1.

Plane curves can also be represented in vector notation. For instance, the curve
given by the parametric equations and (see Example 1 in Sec-
tion 1.7) could also be described by the vector equation

where and .j � �0, 1 �i � �1, 0 �

r�t� � � t 2 � 2t, t � 1 � � �t 2 � 2t� i � �t � 1�j

y � t � 1x � t 2 � 2t

v � �1, 5, 6 �r0 � �1, 2, �1 �
r � r0 � tv

�1, 5, 6 ��1, 2, �1�

z � �1 � 6ty � 2 � 5tx � 1 � t

r�t� � �1 � t, 2 � 5t, �1 � 6t�

r�t�C
rCP� f �t�, t�t�, h�t��

r�t�r�t� � � f �t�, t�t�, h�t��
� f �t�, t�t�, h�t��t

Ct
It

z � h�t�y � t�t�x � f �t�2

�x, y, z�C
Ihtf

ahtf
ar

lim
t l a

 r�t� � r�a�

r

 � i � k

lim
t l 0

 r�t� � �limt l 0
 �1 � t 3 �� i � �limt l 0

 te�t� j � �lim
t l 0

 
sin t

t � k

r�t� � �1 � t 3 � i � te�t j �
sin t

t
 klim

t l 0
 r�t�
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� This means that, as varies, there is
no abrupt change in the length or direc-
tion of the vector .r�t�

t

FIGURE 1
C is traced out by the tip of a moving
position vector r(t).

0

z

x
y

C

P{f(t), g(t), h(t)}

r(t)=kf(t), g(t), h(t)l



EXAMPLE 4 Sketch the curve whose vector equation is

SOLUTION The parametric equations for this curve are

Since , the curve must lie on the circular cylinder
. The point lies directly above the point , which moves 

counterclockwise around the circle in the xy-plane. (See Example 2 
in Section 1.7.) Since , the curve spirals upward around the cylinder as 
increases. The curve, shown in Figure 2, is called a helix.

The corkscrew shape of the helix in Example 4 is familiar from its occurrence in
coiled springs. It also occurs in the model of DNA (deoxyribonucleic acid, the genetic
material of living cells). In 1953 James Watson and Francis Crick showed that the
structure of the DNA molecule is that of two linked, parallel helices that are inter-
twined as in Figure 3.

EXAMPLE 5 Find a vector function that represents the curve of intersection of the
cylinder and the plane .

SOLUTION Figure 4 shows how the plane and the cylinder intersect, and Figure 5
shows the curve of intersection C, which is an ellipse.

The projection of C onto the xy-plane is the circle . So we
know from Example 2 in Section 1.7 that we can write

From the equation of the plane, we have

So we can write parametric equations for C as

0 � t � 2�z � 2 � sin ty � sin tx � cos t

z � 2 � y � 2 � sin t

0 � t � 2�y � sin tx � cos t

x 2 � y 2 � 1, z � 0

FIGURE 4 FIGURE 5

z

y

0

C

x

(0, _1, 3)

(1, 0, 2)

(_1, 0, 2)

(0, 1, 1)

z

yx

y+z=2

≈+¥=1

y � z � 2x 2 � y 2 � 1

tz � t
x 2 � y 2 � 1

�x, y, 0��x, y, z�x 2 � y 2 � 1
x 2 � y 2 � cos2t � sin2t � 1

z � ty � sin tx � cos t

r�t� � cos t i � sin t j � t k
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(1, 0, 0)
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The corresponding vector equation is

This equation is called a parametrization of the curve C. The arrows in Figure 5
indicate the direction in which C is traced as the parameter t increases.

Using Computers to Draw Space Curves

Space curves are inherently more difficult to draw by hand than plane curves; for an
accurate representation we need to use technology. For instance, Figure 6 shows a
computer-generated graph of the curve with parametric equations

It’s called a toroidal spiral because it lies on a torus. Another interesting curve, the
trefoil knot, with equations

is graphed in Figure 7. It wouldn’t be easy to plot either of these curves by hand.

Even when a computer is used to draw a space curve, optical illusions make it dif-
ficult to get a good impression of what the curve really looks like. (This is especially
true in Figure 7. See Exercise 34.) The next example shows how to cope with this
problem.

EXAMPLE 6 Use a computer to sketch the curve with vector equation 
This curve is called a twisted cubic.

SOLUTION We start by using the computer to plot the curve with parametric equations
, , for . The result is shown in Figure 8(a), but it’s

hard to see the true nature of the curve from that graph alone. Most three-dimen-
sional computer graphing programs allow the user to enclose a curve or surface in a
box instead of displaying the coordinate axes. When we look at the same curve in a
box in Figure 8(b), we have a much clearer picture of the curve. We can see that it
climbs from a lower corner of the box to the upper corner nearest us, and it twists as
it climbs.

�2 � t � 2z � t 3y � t 2x � t

r�t� � � t, t 2, t 3 �.

z

x

y

FIGURE 6
A toroidal spiral

z

x
y

FIGURE 7
A trefoil knot

z � sin 1.5ty � �2 � cos 1.5t� sin tx � �2 � cos 1.5t� cos t

z � cos 20ty � �4 � sin 20t� sin tx � �4 � sin 20t� cos t

0 � t � 2�r�t� � cos t i � sin t j � �2 � sin t�k
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We get an even better idea of the curve when we view it from different vantage
points. Part (c) shows the result of rotating the box to give another viewpoint. Parts
(d), (e), and (f) show the views we get when we look directly at a face of the box. In
particular, part (d) shows the view from directly above the box. It is the projection
of the curve on the -plane, namely, the parabola . Part (e) shows the projec-
tion on the -plane, the cubic curve . It’s now obvious why the given curve is
called a twisted cubic.

Another method of visualizing a space curve is to draw it on a surface. For
instance, the twisted cubic in Example 6 lies on the parabolic cylinder .
(Eliminate the parameter from the first two parametric equations, and .)
Figure 9 shows both the cylinder and the twisted cubic, and we see that the curve
moves upward from the origin along the surface of the cylinder. We also used this
method in Example 4 to visualize the helix lying on the circular cylinder (see Figure 2).

A third method for visualizing the twisted cubic is to realize that it also lies on the
cylinder . So it can be viewed as the curve of intersection of the cylinders

and . (See Figure 10.)

FIGURE 10
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2
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FIGURE 8
Views of the twisted cubic
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11–18 � Sketch the curve with the given vector equation. Indi-
cate with an arrow the direction in which increases.

11. 12.

13. 14.

15.

16.

17.

18.
� � � � � � � � � � � � �

19. Show that the curve with parametric equations ,
, lies on the cone , and use this

fact to help sketch the curve.

20. Show that the curve with parametric equations ,
, is the curve of intersection of the

surfaces and . Use this fact to help
sketch the curve.

; 21–24 � Use a computer to graph the curve with the given vec-
tor equation. Make sure you choose a parameter domain and
viewpoints that reveal the true nature of the curve.

21.

22.

23.

24.
� � � � � � � � � � � � �

; 25. Graph the curve with parametric equations
, ,

. Explain the appearance of the graph by
showing that it lies on a cone.

; 26. Graph the curve with parametric equations

Explain the appearance of the graph by showing that it lies
on a sphere.

27. Show that the curve with parametric equations ,
, passes through the points (1, 4, 0)

and (9, �8, 28) but not through the point (4, 7, �6).

28–30 � Find a vector function that represents the curve of
intersection of the two surfaces.

28. The cylinder and the surface 

29. The cone and the plane z � 1 � yz � sx 2 � y 2

z � xyx 2 � y 2 � 4

z � 1 � t 3y � 1 � 3t
x � t 2

 z � 0.5 cos 10t

 y � s1 � 0.25 cos 2 10t sin t

 x � s1 � 0.25 cos 2 10t cos t

z � 1 � cos 16t
y � �1 � cos 16t� sin tx � �1 � cos 16t� cos t

r�t� � �sin t, sin 2t, sin 3t�

r�t� � �t 2, st � 1, s5 � t�
r�t� � � t 4 � t 2 � 1, t, t 2 �

r�t� � �sin t, cos t, t 2 �

x 2 � y 2 � 1z � x 2
z � sin2ty � cos t

x � sin t

z2 � x 2 � y 2z � ty � t sin t
x � t cos t

r�t� � sin t i � sin t j � s2 cos t k

r�t� � t 2 i � t 4 j � t 6 k

r�t� � t i � t j � cos t k

r�t� � �sin t, 3, cos t�

r�t� � �1 � t, 3t, �t�r�t� � � t, cos 2t, sin 2t�

r�t� � � t 3, t 2 �r�t� � � t 4 � 1, t�

t
1–2 � Find the domain of the vector function.

1.

2.

� � � � � � � � � � � � �

3–4 � Find the limit.

3.

4.

� � � � � � � � � � � � �

5–10 � Match the parametric equations with the graphs 
(labeled I–VI). Give reasons for your choices.

5. , ,

6. , ,

7. , ,

8. , ,

9. , ,

10. , ,

� � � � � � � � � � � � �

III IV

I II

V VI z

x y

z

x y

z

x
y

z

x y

z

x y

z

x y

z � ln ty � sin tx � cos t

z � sin 5ty � sin tx � cos t

z � e�ty � e�t sin 10tx � e�t cos 10t

z � t 2y � 1	�1 � t 2 �x � t

z � e�ty � t2x � t

z � sin 4ty � tx � cos 4t

lim
t l �

 
arctan t, e�2t, 
ln t

t �
lim

t l 0�
 �cos t, sin t, t ln t�

r�t� �
t � 2

t � 2
 i � sin t j � ln�9 � t2� k 

r�t� � �t2, st � 1, s5 � t �

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �10.1



Derivatives and Integrals of Vector Functions � � � � � � �

Later in this chapter we are going to use vector functions to describe the motion of
planets and other objects through space. Here we prepare the way by developing the
calculus of vector functions.

Derivatives

The derivative of a vector function is defined in much the same way as for real-
valued functions:

if this limit exists. The geometric significance of this definition is shown in Figure 1.
If the points and have position vectors and , then PQ

l
represents the 

FIGURE 1 (b) The tangent vector(a) The secant vector

y

0

z

x

P

C

Q

r(t+h)-r(t)

r(t)
r(t+h)

r(t+h)-r(t)

h

x

0

z

y

C

P
Q

r(t+h)
r(t)

rª(t)

r�t � h�r�t�QP

dr
dt

� r��t� � lim
h l 0

 
r�t � h� � r�t�

h
1

rr�

10.2

(d)

34. The view of the trefoil knot shown in Figure 7 is accurate,
but it doesn’t reveal the whole story. Use the parametric
equations

to sketch the curve by hand as viewed from above, with
gaps indicating where the curve passes over itself. Start by
showing that the projection of the curve onto the -plane
has polar coordinates and , so 
varies between 1 and 3. Then show that has maximum and
minimum values when the projection is halfway between

and .

; When you have finished your sketch, use a computer to
draw the curve with viewpoint directly above and compare
with your sketch. Then use the computer to draw the curve
from several other viewpoints. You can get a better impres-
sion of the curve if you plot a tube with radius 0.2 around
the curve. (Use the tubeplot command in Maple.)

r � 3r � 1

z
r	 � tr � 2 � cos 1.5t

xy

 z � sin 1.5t

 y � �2 � cos 1.5t� sin t x � �2 � cos 1.5t� cos t

lim
t l a

 �u�t� 
 v�t�� � lim
t l a

 u�t� 
 lim
t l a

 v�t�30. The paraboloid and the parabolic cylinder

� � � � � � � � � � � � �

; 31. Try to sketch by hand the curve of intersection of the circu-
lar cylinder and the parabolic cylinder .
Then find parametric equations for this curve and use these
equations and a computer to graph the curve.

; 32. Try to sketch by hand the curve of intersection of the 
parabolic cylinder and the top half of the ellipsoid

. Then find parametric equations for 
this curve and use these equations and a computer to graph 
the curve.

33. Suppose and are vector functions that possess limits as
and let be a constant. Prove the following prop-

erties of limits.

(a)

(b)

(c) lim
t l a

 �u�t� � v�t�� � lim
t l a

 u�t� � lim
t l a

 v�t�

lim
t l a

 cu�t� � c lim
t l a

 u�t�

lim
t l a

 �u�t� � v�t�� � lim
t l a

 u�t� � lim
t l a

 v�t�

ct l a
vu

x 2 � 4y 2 � 4z2 � 16
y � x 2

z � x 2x 2 � y 2 � 4

y � x 2
z � 4x 2 � y 2
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vector , which can therefore be regarded as a secant vector. If ,
the scalar multiple has the same direction as .
As , it appears that this vector approaches a vector that lies on the tangent line.
For this reason, the vector is called the tangent vector to the curve defined by 
at the point , provided that exists and . The tangent line to at is
defined to be the line through parallel to the tangent vector . We will also have
occasion to consider the unit tangent vector, which is

The following theorem gives us a convenient method for computing the derivative
of a vector function : just differentiate each component of .

Theorem If , where , ,
and are differentiable functions, then

Proof

EXAMPLE 1
(a) Find the derivative of .
(b) Find the unit tangent vector at the point where .

SOLUTION
(a) According to Theorem 2, we differentiate each component of r:

(b) Since and , the unit tangent vector at the point 
is

EXAMPLE 2 For the curve , find and sketch the position
vector and the tangent vector .

SOLUTION We have

r��1� �
1

2
 i � jandr��t� �

1

2st
 i � j

r��1�r�1�
r��t�r�t� � st i � �2 � t�j

T�0� �
r��0�

� r��0� � �
j � 2k
s1 � 4

�
1

s5
 j �

2

s5
 k

�1, 0, 0�r��0� � j � 2kr�0� � i

r��t� � 3t 2 i � �1 � t�e�t j � 2 cos 2t k

t � 0
r�t� � �1 � t 3 � i � te�t j � sin 2t k

 � � f ��t�, t��t�, h��t��

 � 
 lim
�t l 0

 
 f �t � �t� � f �t�

�t
, lim

�t l 0
 
t�t � �t� � t�t�

�t
, lim

�t l 0
 
h�t � �t� � h�t�

�t �
 � lim

�t l 0
 
  f �t � �t� � f �t�

�t
, 

t�t � �t� � t�t�
�t

, 
h�t � �t� � h�t�

�t �
 � lim

�t l 0
 

1

�t
 �� f �t � �t�, t�t � �t�, h�t � �t�� � � f �t�, t�t�, h�t���

 r��t� � lim
�t l 0

 
1

�t
 �r�t � �t� � r�t��

r��t� � � f ��t�, t��t�, h��t�� � f ��t� i � t��t�j � h��t�k

h
tfr�t� � � f �t�, t�t�, h�t�� � f �t� i � t�t�j � h�t�k2

rr

T�t� �
r��t�

� r��t� �

r��t�P
PCr��t� � 0r��t�P

rr��t�
h l 0

r�t � h� � r�t��1	h��r�t � h� � r�t��
h � 0r�t � h� � r�t�
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The curve is a plane curve and elimination of the parameter from the equations
, gives , . In Figure 2 we draw the position vector

starting at the origin and the tangent vector starting at the corre-
sponding point .

EXAMPLE 3 Find parametric equations for the tangent line to the helix with para-
metric equations

at the point .

SOLUTION The vector equation of the helix is , so

The parameter value corresponding to the point is , so the tan-
gent vector there is . The tangent line is the line through

parallel to the vector , so by Equations 9.5.2 its parametric
equations are

Just as for real-valued functions, the second derivative of a vector function r is the
derivative of , that is, . For instance, the second derivative of the function
in Example 3 is

A curve given by a vector function on an interval is called smooth if is
continuous and (except possibly at any endpoints of ). For instance, the
helix in Example 3 is smooth because is never 0.

EXAMPLE 4 Determine whether the semicubical parabola is
smooth.

SOLUTION Since

we have and, therefore, the curve is not smooth. The point that
corresponds to is (1, 0), and we see from the graph in Figure 4 that there is a
sharp corner, called a cusp, at (1, 0). Any curve with this type of behavior—an
abrupt change in direction—is not smooth.

t � 0
r��0� � �0, 0 � � 0

r��t� � �3t 2, 2t�

r�t� � �1 � t 3, t 2 �

r��t�
Ir��t� � 0

r�Ir�t�

r��t� � ��2 cos t, �sin t, 0 �

r� � �r���r�

z �
�

2
� ty � 1x � �2t

��2, 0, 1 ��0, 1, �	2�
r���	2� � ��2, 0, 1 �

t � �	2�0, 1, �	2�

r��t� � ��2 sin t, cos t, 1 �

r�t� � �2 cos t, sin t, t�

�0, 1, �	2�

z � ty � sin tx � 2 cos t

0

y

2

x1

r(1)
rª(1)

(1, 1)

FIGURE 2

�1, 1�
r��1�r�1� � i � j

x � 0y � 2 � x 2y � 2 � tx � st
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A curve, such as the semicubical parabola, that is made up of a finite number of
smooth pieces is called piecewise smooth. 

Differentiation Rules

The next theorem shows that the differentiation formulas for real-valued functions
have their counterparts for vector-valued functions.

Theorem Suppose and are differentiable vector functions, is a scalar,
and is a real-valued function. Then

1.

2.

3.

4.

5.

6. (Chain Rule)

This theorem can be proved either directly from Definition 1 or by using Theorem 2
and the corresponding differentiation formulas for real-valued functions. The proof of
Formula 4 follows; the remaining proofs are left as exercises.

Proof of Formula 4 Let

Then

so the ordinary Product Rule gives

 � u��t� � v�t� � u�t� � v��t�

 � 
3

i�1
 f �i�t�ti�t� � 

3

i�1
 fi�t�t�i�t�

 � 
3

i�1
 � f �i�t�ti�t� � fi�t�t�i�t��

 
d

dt
 �u�t� � v�t�� �

d

dt
 

3

i�1
 fi�t�ti�t� � 

3

i�1
 

d

dt
 � fi�t�ti�t��

u�t� � v�t� � f1�t�t1�t� � f2�t�t2�t� � f3�t�t3�t� � 
3

i�1
 fi�t�ti�t�

v�t� � � t1�t�, t2�t�, t3�t��u�t� � � f1�t�, f2�t�, f3�t��

d

dt
 �u� f �t��� � f ��t�u�� f �t��

d

dt
 �u�t� 
 v�t�� � u��t� 
 v�t� � u�t� 
 v��t�

d

dt
 �u�t� � v�t�� � u��t� � v�t� � u�t� � v��t�

d

dt
 � f �t�u�t�� � f ��t�u�t� � f �t�u��t�

d

dt
 �cu�t�� � cu��t�

d

dt
 �u�t� � v�t�� � u��t� � v��t�

f
cvu3
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EXAMPLE 5 Show that if (a constant), then is orthogonal to for all

SOLUTION Since

and is a constant, Formula 4 of Theorem 3 gives

Thus, , which says that is orthogonal to .
Geometrically, this result says that if a curve lies on a sphere with center the ori-

gin, then the tangent vector is always perpendicular to the position vector 

Integrals

The definite integral of a continuous vector function can be defined in much the
same way as for real-valued functions except that the integral is a vector. But then we
can express the integral of in terms of the integrals of its component functions , ,
and as follows. (We use the notation of Chapter 5.)

and so

This means that we can evaluate an integral of a vector function by integrating each
component function.

We can extend the Fundamental Theorem of Calculus to continuous vector func-
tions as follows:

where is an antiderivative of , that is, . We use the notation for
indefinite integrals (antiderivatives).

EXAMPLE 6 If , then

where is a vector constant of integration, and

y
�	2

0
 r�t� dt � [2 sin t i � cos t j � t 2 k]0

� 	2
� 2 i � j �

� 2

4
 k

C

 � 2 sin t i � cos t j � t 2 k � C

 y r�t� dt � �y 2 cos t dt� i � �y sin t dt� j � �y 2t dt� k

r�t� � 2 cos t i � sin t j � 2t k

x r�t� dtR��t� � r�t�rR

y
b

a
 r�t� dt � R�t�]b

a � R�b� � R�a�

y
b

a
 r�t� dt � �y

b

a
 f �t� dt� i � �y

b

a
 t�t� dt� j � �y

b

a
 h�t� dt� k

 � lim
n l �

 ��
n

i�1
 f �t*i � �t� i � �

n

i�1
 t�t*i � �t� j � �

n

i�1
 h�t*i � �t� k�

 y
b

a
 r�t� dt � lim

n l �
 

n

i�1
 r�t*i � �t

h
tfr

r�t�

r�t�.r��t�

r�t�r��t�r��t� � r�t� � 0

0 �
d

dt
 �r�t� � r�t�� � r��t� � r�t� � r�t� � r��t� � 2r��t� � r�t�

c 2

r�t� � r�t� � � r�t� �2 � c 2

t.r�t�r��t�� r�t� � � c
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11.

12.

13.

14.
� � � � � � � � � � � � �

15–16 � Find the unit tangent vector at the point with the
given value of the parameter .

15. ,

16. ,
� � � � � � � � � � � � �

17. If , find and 

18. If , find , , and 

19–22 � Find parametric equations for the tangent line to the
curve with the given parametric equations at the specified point.

19. ; (1, 1, 1)

20. ;

21. , , ;

22. , , ;
� � � � � � � � � � � � �

; 23–24 � Find parametric equations for the tangent line to the
curve with the given parametric equations at the specified point.
Illustrate by graphing both the curve and the tangent line on a
common screen.

23. , , ;

24. , , ;
� � � � � � � � � � � � �

25. Determine whether the curve is smooth.
(a) (b)
(c)

26. (a) Find the point of intersection of the tangent lines to the
curve at the points
where and .

; (b) Illustrate by graphing the curve and both tangent lines.

27. The curves and 
intersect at the origin. Find their angle of intersection
correct to the nearest degree.

28. At what point do the curves and
intersect? Find their angle of

intersection correct to the nearest degree.

29–34 � Evaluate the integral.

29. y
1

0
 �16t3 i � 9t2 j � 25t 4 k� dt

r2�s� � �3 � s, s � 2, s 2 �
r1�t� � � t, 1 � t, 3 � t 2 �

r2�t� � �sin t, sin 2t, t�r1�t� � � t, t 2, t 3 �

t � 0.5t � 0
r�t� � �sin � t, 2 sin � t, cos � t�

r�t� � �cos3t, sin3t�
r�t� � � t 3 � t, t 4, t 5 �r�t� � � t 3, t 4, t 5 �

�1, 3, 3�z � 3e�2 ty � 3e 2 tx � cos t

��	4, 1, 1�z � s2 sin ty � s2 cos tx � t

�0, 2, 1�z � t 2y � 2stx � ln t

�1, 0, 1�z � e�ty � e�t sin tx � e�t cos t

��1, 1, 1�x � t 2 � 1, y � t 2 � 1, z � t � 1

x � t 5, y � t 4, z � t 3

r��t� � r��t�.r��0�T�0�r�t� � �e 2 t, e�2 t, te 2 t�

r��t� 
 r��t�.r��t�, T�1�, r��t�, r�t� � � t, t 2, t 3 �

t � 1r�t� � 4st i � t 2 j � t k

t � 0r�t� � cos t i � 3t j � 2 sin 2t k

t
T�t�

r�t� � t a 
 �b � t c�

r�t� � a � t b � t 2 c

r�t� � sin�1t i � s1 � t 2 j � k

r�t� � et2

i � j � ln�1 � 3t�k1. The figure shows a curve given by a vector function .
(a) Draw the vectors and .
(b) Draw the vectors

(c) Write expressions for and the unit tangent 
vector T(4).

(d) Draw the vector T(4).

2. (a) Make a large sketch of the curve described by the vector
function , , and draw the vectors
r(1), r(1.1), and r(1.1) � r(1).

(b) Draw the vector starting at (1, 1) and compare it
with the vector

Explain why these vectors are so close to each other in
length and direction.

3–8 �

(a) Sketch the plane curve with the given vector equation.
(b) Find .
(c) Sketch the position vector and the tangent vector 

for the given value of .

3. ,

4. ,

5. ,

6. ,

7. ,

8. ,
� � � � � � � � � � � � �

9–14 � Find the derivative of the vector function.

9.

10. r�t� � �cos 3t, t, sin 3t�

r�t� � �t 2, 1 � t, st�

t � �	4r�t� � sec t i � tan t j

t � 0r�t� � e t i � e�2 t j

t � �	3r�t� � 2 sin t i � 3 cos t j

t � 1r�t� � �1 � t� i � t 2 j

t � 1r�t� � � t 3, t 2 �

t � �	4r�t� � �cos t, sin t �

t
r��t�r�t�

r��t�

r�1.1� � r�1�
0.1

r��1�

0 � t � 2r�t� � � t 2, t�

y

x0 1

1

RC

Q

P

r(4.5)

r(4.2)

r(4)

r��4�

r�4.2� � r�4�
0.2

and
r�4.5� � r�4�

0.5

r�4.2� � r�4�r�4.5� � r�4�
r�t�C
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40. Prove Formula 6 of Theorem 3.

41. If and
find .

42. If and are the vector functions in Exercise 41, find
.

43. Show that if is a vector function such that exists, then

44. Find an expression for .

45. If , show that .

[Hint: ]
46. If a curve has the property that the position vector is

always perpendicular to the tangent vector , show that 
the curve lies on a sphere with center the origin.

47. If , show that

u��t� � r�t� � �r��t� 
 r�t��

u�t� � r�t� � �r��t� 
 r��t��

r��t�
r�t�

� r�t� �2 � r�t� � r�t�

d

dt
 � r�t� � �

1

� r�t� �  r�t� � r��t�r�t� � 0

d

dt
 �u�t� � �v�t� 
 w�t���

d

dt
 �r�t� 
 r��t�� � r�t� 
 r��t�

r�r

�d	dt� �u�t� 
 v�t��
vu

�d	dt� �u�t� � v�t��v�t� � t i � cos t j � sin t k,
u�t� � i � 2t 2 j � 3t 3 k

30.

31.

32.

33.

34.

� � � � � � � � � � � � �

35. Find if and .

36. Find if and
.

37. Prove Formula 1 of Theorem 3.

38. Prove Formula 3 of Theorem 3.

39. Prove Formula 5 of Theorem 3.

r�0� � i � j � 2k
r��t� � sin t i � cos t j � 2t kr�t�

r�0� � jr��t� � t 2 i � 4t 3 j � t 2 kr�t�

y �cos � t i � sin � t j � t k� dt

y �e t i � 2t j � ln t k� dt

y
4

1
 �st i � te�t j �

1

t 2  k� dt

y
�	4

0
 �cos 2t i � sin 2t j � t sin t k� dt

y
1

0
 � 4

1 � t 2  j �
2t

1 � t 2  k� dt

Arc Length and Curvature � � � � � � � � � � � � �

In Section 6.3 we defined the length of a plane curve with parametric equations ,
, , as the limit of lengths of inscribed polygons and, for the case

where and are continuous, we arrived at the formula

The length of a space curve is defined in exactly the same way (see Figure 1). Sup-
pose that the curve has the vector equation , , or,
equivalently, the parametric equations , , , where , , and 
are continuous. If the curve is traversed exactly once as increases from to , then
it can be shown that its length is

Notice that both of the arc length formulas (1) and (2) can be put into the more com-
pact form

L � y
b

a
 � r��t� � dt3

 � y
b

a
 ��dx

dt �2

� �dy

dt �2

� �dz

dt�2

 dt

 L � y
b

a
 s� f ��t��2 � �t��t��2 � �h��t��2 dt2

bat
h�t�f �z � h�t�y � t�t�x � f �t�

a � t � br�t� � � f �t�, t�t�, h�t��

L � y
b

a
 s� f ��t��2 � �t��t��2 dt � y

b

a
 ��dx

dt �2

� �dy

dt �2

 dt1

t�f �
a � t � by � t�t�

x � f �t�

10.3
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FIGURE 1
The length of a space curve is the limit
of lengths of inscribed polygons.
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because, for plane curves ,

whereas, for space curves ,

EXAMPLE 1 Find the length of the arc of the circular helix with vector equation
from the point to the point .

SOLUTION Since , we have

The arc from to is described by the parameter interval
and so, from Formula 3, we have

A single curve can be represented by more than one vector function. For in-
stance, the twisted cubic

could also be represented by the function

where the connection between the parameters and is given by . We say that
Equations 4 and 5 are parametrizations of the curve . (The same curve is traced
out in different ways by the parametrizations and .) If we were to use Equation 3
to compute the length of using Equations 4 and 5, we would get the same answer.
In general, it can be shown that when Equation 3 is used to compute the length of any
piecewise-smooth curve, the arc length is independent of the parametrization that is
used.

Now we suppose that is a piecewise-smooth curve given by a vector function
, , and is traversed exactly once as increases

from to . We define its arc length function by

Thus, is the length of the part of between and . (See Figure 3.) If we
differentiate both sides of Equation 6 using Part 1 of the Fundamental Theorem of Cal-
culus, we obtain

It is often useful to parametrize a curve with respect to arc length because arc
length arises naturally from the shape of the curve and does not depend on a particu-
lar coordinate system. If a curve is already given in terms of a parameter and 
is the arc length function given by Equation 6, then we may be able to solve for as at

s�t�tr�t�

ds

dt
� � r��t� �7

r�t�r�a�Cs�t�

s�t� � y
t

a
 � r��u� � du � y

t

a
 �� dx

du�2

� � dy

du�2

� � dz

du�2

 du6

sba
tCa � t � br�t� � f �t� i � t�t�j � h�t�k

C

C
r2r1

CC
t � euut

0 � u � ln 2r2�u� � �eu, e 2u, e 3u �5

1 � t � 2r1�t� � � t, t 2, t 3 �4

C

L � y
2�

0
 � r��t� � dt � y

2�

0
 s2 dt � 2s2�

0 � t � 2�
�1, 0, 2���1, 0, 0�

� r��t� � � s��sin t�2 � cos2t � 1 � s2

r��t� � �sin t i � cos t j � k

�1, 0, 2���1, 0, 0�r�t� � cos t i � sin t j � t k

� r��t� � � � f ��t� i � t��t�j � h��t�k � � s� f ��t��2 � �t��t��2 � �h��t��2

r�t� � f �t� i � t�t�j � h�t�k

� r��t� � � � f ��t� i � t��t�j � � s� f ��t��2 � �t��t��2

r�t� � f �t� i � t�t�j
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� Figure 2 shows the arc of the helix
whose length is computed in Example 1.
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FIGURE 2

� Recall that a piecewise-smooth curve
is made up of a finite number of smooth
pieces.

FIGURE 3
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function of : . Then the curve can be reparametrized in terms of by substi-
tuting for : . Thus, if s � 3 for instance, is the position vector of the
point 3 units of length along the curve from its starting point.

EXAMPLE 2 Reparametrize the helix with respect to arc
length measured from in the direction of increasing .

SOLUTION The initial point corresponds to the parameter value . From
Example 1 we have

and so

Therefore, and the required reparametrization is obtained by substituting
for :

Curvature

If is a smooth curve defined by the vector function , then . Recall that the
unit tangent vector is given by

and indicates the direction of the curve. From Figure 4 you can see that changes
direction very slowly when is fairly straight, but it changes direction more quickly
when bends or twists more sharply.

The curvature of at a given point is a measure of how quickly the curve changes
direction at that point. Specifically, we define it to be the magnitude of the rate of
change of the unit tangent vector with respect to arc length. (We use arc length so that
the curvature will be independent of the parametrization.)

Definition The curvature of a curve is

where is the unit tangent vector.

The curvature is easier to compute if it is expressed in terms of the parameter 
instead of , so we use the Chain Rule (Theorem 10.2.3, Formula 6) to write

But from Equation 7, so

��t� � � T��t� �
� r��t� �9

ds	dt � � r��t� �

� � � dT
ds � � � dT	dt

ds	dt �and
dT
dt

�
dT
ds

 
ds

dt

s
t

T

� � � dT
ds �

8

C
C

C
T�t�

T�t� �
r��t�

� r��t� �  

T�t�
r��t� � 0rC

r�t�s�� � cos(s	s2) i � sin(s	s2) j � (s	s2) k
t

t � s	s2

s � s�t� � y
t

0
 � r��u� � du � y

t

0
 s2 du � s2 t

ds

dt
� � r��t� � � s2

t � 0�1, 0, 0�

t�1, 0, 0�
r�t� � cos t i � sin t j � t k

r�t�3��r � r�t�s��t
st � t�s�s
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FIGURE 4
Unit tangent vectors at equally spaced
points on C
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EXAMPLE 3 Show that the curvature of a circle of radius is .

SOLUTION We can take the circle to have center the origin, and then a parametrization
is

Therefore

so

and

This gives , so using Equation 9, we have

The result of Example 3 shows that small circles have large curvature and large cir-
cles have small curvature, in accordance with our intuition. We can see directly from
the definition of curvature that the curvature of a straight line is always 0 because the
tangent vector is constant.

Although Formula 9 can be used in all cases to compute the curvature, the formula
given by the following theorem is often more convenient to apply.

Theorem The curvature of the curve given by the vector function is

Proof Since and , we have

so the Product Rule (Theorem 10.2.3, Formula 3) gives

Using the fact that (see Section 9.4), we have

Now for all , so and are orthogonal by Example 5 in Section 10.2.
Therefore, by the definition of a cross product,

� r� 
 r� � � �ds

dt�2

� T 
 T� � � �ds

dt�2

� T � � T� � � �ds

dt�2

� T� �

T�Tt� T�t� � � 1

r� 
 r� � �ds

dt�2

�T 
 T��

T 
 T � 0

r� �
d 2s

dt 2  T �
ds

dt
 T�

r� � � r� �T �
ds

dt
 T

� r� � � ds	dtT � r�	� r� �

��t� � � r��t� 
 r��t� �
� r��t� �3

r10

��t� � � T��t��
� r��t� � �

1

a

� T��t� � � 1

T��t� � �cos t i � sin t j

T�t� �
r��t�

� r��t� � � �sin t i � cos t j

� r��t� � � aandr��t� � �a sin t i � a cos t j

r�t� � a cos t i � a sin t j

1	aa
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Thus

and

EXAMPLE 4 Find the curvature of the twisted cubic at a general
point and at .

SOLUTION We first compute the required ingredients:

Theorem 10 then gives

At the origin the curvature is .

For the special case of a plane curve with equation , we choose as the
parameter and write . Then and .
Since and , we have . We also have

and so, by Theorem 10,

EXAMPLE 5 Find the curvature of the parabola at the points , ,
and .

SOLUTION Since and , Formula 11 gives

The curvature at is . At it is . At it 
is . Observe from the expression for or the graph of in
Figure 5 that as . This corresponds to the fact that the parabola
appears to become flatter as .x l ��

x l ����x� l 0
���x���2� � 2	173	2 � 0.03

�2, 4���1� � 2	53	2 � 0.18�1, 1���0� � 2�0, 0�

��x� � � y� �
�1 � �y��2 �3	2 �

2

�1 � 4x 2 �3	2

y� � 2y� � 2x

�2, 4�
�1, 1��0, 0�y � x 2

��x� � � f ��x� �
�1 � � f ��x��2 �3	211

� r��x� � � s1 � � f ��x��2

r��x� 
 r��x� � f ��x� kj 
 j � 0i 
 j � k
r��x� � f ��x� jr��x� � i � f ��x� jr�x� � x i � f �x� j

xy � f �x�

��0� � 2

��t� � � r��t� 
 r��t� �
� r��t� �3 �

2s1 � 9t 2 � 9t 4

�1 � 4t 2 � 9t 4 �3	2

 � r��t� 
 r��t� � � s36t 4 � 36t 2 � 4 � 2s9t 4 � 9t 2 � 1

 r��t� 
 r��t� � � i
1

0

j
2t

2

k
3t 2

6t � � 6t 2 i � 6t j � 2k

 � r��t� � � s1 � 4t 2 � 9t 4

r��t� � �0, 2, 6t� r��t� � �1, 2t, 3t 2 �

�0, 0, 0�
r�t� � � t, t 2, t 3 �

� � � T� �
� r� � � � r� 
 r� �

� r� �3

� T� � � � r� 
 r� �
�ds	dt�2 � � r� 
 r� �

� r� �2
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FIGURE 5
The parabola y=≈ and its
curvature function
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The Normal and Binormal Vectors

At a given point on a smooth space curve , there are many vectors that are orthog-
onal to the unit tangent vector . We single one out by observing that, because

for all , we have by Example 5 in Section 10.2, so 
is orthogonal to . Note that is itself not a unit vector. But if is also smooth,
we can define the principal unit normal vector (or simply unit normal) as

The vector is called the binormal vector. It is perpendicular to
both and and is also a unit vector. (See Figure 6.)

EXAMPLE 6 Find the unit normal and binormal vectors for the circular helix

SOLUTION We first compute the ingredients needed for the unit normal vector:

This shows that the normal vector at a point on the helix is horizontal and points
toward the -axis. The binormal vector is

The plane determined by the normal and binormal vectors and at a point on
a curve is called the normal plane of at . It consists of all lines that are orthog-
onal to the tangent vector . The plane determined by the vectors and is called
the osculating plane of at . The name comes from the Latin osculum, meaning
“kiss.” It is the plane that comes closest to containing the part of the curve near . (For
a plane curve, the osculating plane is simply the plane that contains the curve.)

The circle that lies in the osculating plane of at , has the same tangent as at
, lies on the concave side of (toward which points), and has radius (the

reciprocal of the curvature) is called the osculating circle (or the circle of curvature)
of at . It is the circle that best describes how behaves near ; it shares the same
tangent, normal, and curvature at .

EXAMPLE 7 Find the equations of the normal plane and osculating plane of the helix
in Example 6 at the point .P�0, 1, �	2�

P
PCPC

� � 1	�NCP
CPC

P
PC

NTT
PCC

PBN

B�t� � T�t� 
 N�t� �
1

s2
 � i

�sin t

�cos t

j
cos t

�sin t

k
1

0
� �

1

s2
 �sin t, �cos t, 1 �

z

 N�t� �
T��t�

� T��t� � � �cos t i � sin t j � ��cos t, �sin t, 0 �

� T��t� � �
1

s2
 T��t� �

1

s2
 ��cos t i � sin t j�

 T�t� �
r��t�

� r��t� � �
1

s2
 ��sin t i � cos t j � k�

� r��t� � � s2 r��t� � �sin t i � cos t j � k

r�t� � cos t i � sin t j � t k

NT
B�t� � T�t� 
 N�t�

N�t� �
T��t�

� T��t� �

N�t�
r�T��t�T�t�

T��t�T�t� � T��t� � 0t� T�t� � � 1
T�t�

r�t�

722 � CHAPTER 10 VECTOR FUNCTIONS

� We can think of the normal vector 
as indicating the direction in which the
curve is turning at each point.

N(t)

T(t)
B(t)

FIGURE 6

� Figure 7 illustrates Example 6 by
showing the vectors , , and at two
locations on the helix. In general, the
vectors , , and , starting at the vari-
ous points on a curve, form a set of
orthogonal vectors, called the 
frame, that moves along the curve as 
varies. This frame plays an impor-
tant role in the branch of mathematics
known as differential geometry and in its
applications to the motion of spacecraft.
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SOLUTION The normal plane at has normal vector , so an equa-
tion is

The osculating plane at contains the vectors and , so its normal vector is
. From Example 6 we have

A simpler normal vector is , so an equation of the osculating plane is

EXAMPLE 8 Find and graph the osculating circle of the parabola at the origin.

SOLUTION From Example 5 the curvature of the parabola at the origin is . So
the radius of the osculating circle at the origin is and its center is . Its
equation is therefore

For the graph in Figure 9 we use parametric equations of this circle:

We summarize here the formulas for unit tangent, unit normal and binormal vec-
tors, and curvature.

� � � dT
ds � � � T��t� �

� r��t� � � � r��t� 
 r��t� �
� r��t� �3

B�t� � T�t� 
 N�t�N�t� �
T��t�

� T��t� �T�t� �
r��t�

� r��t� �

y � 1
2 �

1
2 sin tx � 1

2 cos t

x 2 � (y �
1
2 )2

� 1
4

(0, 12 )1	� � 1
2

��0� � 2

y � x 2

z � �x �
�

2
or1�x � 0� � 0�y � 1� � 1�z �

�

2 � � 0

�1, 0, 1 �

B��

2 � � 
 1

s2
, 0, 

1

s2�B�t� �
1

s2
 �sin t, �cos t, 1 �

T 
 N � B
NTP

z � x �
�

2
or�1�x � 0� � 0�y � 1� � 1�z �

�

2 � � 0

r���	2� � ��1, 0, 1 �P
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� Figure 8 shows the helix and the
osculating plane in Example 7.

FIGURE 8
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FIGURE 9

; 6. Use a computer to graph the curve with parametric
equations , , . Find the total
length of this curve correct to four decimal places.

7–9 � Reparametrize the curve with respect to arc length meas-
ured from the point where in the direction of increasing .

7.

8.

9.
� � � � � � � � � � � � �

r�t� � 3 sin t i � 4t j � 3 cos t k

r�t� � �1 � 2t� i � �3 � t� j � 5t k

r�t� � e t sin t i � e t cos t j

tt � 0

z � sin ty � sin 3tx � cos t

1–4 � Find the length of the curve.

1. ,

2. ,

3. ,

4. ,
� � � � � � � � � � � � �

5. Use Simpson’s Rule with to estimate the length of
the arc of the twisted cubic , , from the
origin to the point .�2, 4, 8�

z � t 3y � t 2x � t
n � 10

1 � t � er�t� � t 2 i � 2t j � ln t k

0 � t � 1r�t� � s2 t i � e t j � e�t k

0 � t � �r�t� � � t 2, sin t � t cos t, cos t � t sin t�

�10 � t � 10r�t� � �2 sin t, 5t, 2 cos t�
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(b) Estimate the curvature at and at by sketching the 
osculating circles at those points.

; 28–29 � Use a graphing calculator or computer to graph both
the curve and its curvature function on the same screen. Is
the graph of what you would expect?

28. 29.
� � � � � � � � � � � � �

30–31 � Two graphs, and , are shown. One is a curve
and the other is the graph of its curvature function
. Identify each curve and explain your choices.

30. 31.

� � � � � � � � � � � � �

32. Use Theorem 10 to show that the curvature of a plane para-
metric curve , is

where the dots indicate derivatives with respect to .

33–34 � Use the formula in Exercise 32 to find the curvature.

33. ,

34. ,
� � � � � � � � � � � � �

35–36 � Find the vectors , , and at the given point.

35. ,

36. ,
� � � � � � � � � � � � �

37–38 � Find equations of the normal plane and osculating
plane of the curve at the given point.

37. , , ;

38. , , ;
� � � � � � � � � � � � �

; 39. Find equations of the osculating circles of the ellipse
at the points and . Use a graph-

ing calculator or computer to graph the ellipse and both
osculating circles on the same screen.

; 40. Find equations of the osculating circles of the parabola
at the points and . Graph both oscu-

lating circles and the parabola.

41. At what point on the curve , , is the nor-
mal plane parallel to the plane ?6x � 6y � 8z � 1

z � t 4y � 3tx � t 3

(1, 12 )�0, 0�y � 1
2 x 2

�0, 3��2, 0�9x 2 � 4y 2 � 36

�1, 1, 1�z � t 3y � t 2x � t

�0, �, �2�z � 2 cos 3ty � tx � 2 sin 3t

�1, 0, 1�r�t� � �e t, e t sin t, e t cos t�

(1, 23 , 1)r�t� � �t 2, 23 t 3, t�
BNT

y � t � t 2x � 1 � t 3

y � et sin tx � et cos t

t

� � � x�y�� � y�x�� �
�x� 2 � y� 2 �3	2

y � t�t�x � f �t�

y

x

a

b

y

x

a

b

y � ��x�
y � f �x�

ba

y � x 4y � xe�x

�
��x�

QP10. Reparametrize the curve

with respect to arc length measured from the point (1, 0) in
the direction of increasing . Express the reparametrization
in its simplest form. What can you conclude about the
curve?

11–14 �

(a) Find the unit tangent and unit normal vectors and .
(b) Use Formula 9 to find the curvature.

11.

12. ,

13. 14.
� � � � � � � � � � � � �

15–17 � Use Theorem 10 to find the curvature.

15.

16.

17.
� � � � � � � � � � � � �

18. Find the curvature of at the 
point (1, 0, 0).

19. Find the curvature of at the point 
(0, 1, 1).

; 20. Graph the curve with parametric equations

and find the curvature at the point .

21–23 � Use Formula 11 to find the curvature.

21. 22. 23.
� � � � � � � � � � � � �

24–25 � At what point does the curve have maximum
curvature? What happens to the curvature as ?

24. 25.
� � � � � � � � � � � � �

26. Find an equation of a parabola that has curvature 4 at the 
origin.

27. (a) Is the curvature of the curve shown in the figure
greater at or at ? Explain.

1

1 x0

y P

Q

C

QP
C

y � e xy � ln x

x l �

y � 4x 5	2y � cos xy � x 3

�1, 4, �1�

z � �t 2y � 4t 3	2x � t

r�t� � �s2 t, e t, e�t �

r�t� � �e t cos t, e t sin t, t�

r�t� � sin t i � cos t j � sin t k

r�t� � t i � t j � �1 � t 2 � k

r�t� � t 2 i � t k

r�t� � � t 2, 2t, ln t�r�t� � � 1
3 t 3, t 2, 2t�

t � 0r�t� � � t 2, sin t � t cos t, cos t � t sin t�

r�t� � �2 sin t, 5t, 2 cos t�

N�t�T�t�

t

r�t� � � 2

t 2 � 1
� 1� i �

2t

t 2 � 1
 j
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(c)

(d)

48. Show that the circular helix

where and are positive constants, has constant curvature
and constant torsion. [Use the result of Exercise 47(d).]

49. The DNA molecule has the shape of a double helix (see
Figure 3 on page 707). The radius of each helix is about
10 angstroms (1 ). Each helix rises about 
during each complete turn, and there are about 
complete turns. Estimate the length of each helix.

50. Let’s consider the problem of designing a railroad track to
make a smooth transition between sections of straight track.
Existing track along the negative -axis is to be joined
smoothly to a track along the line for .
(a) Find a polynomial of degree 5 such that the

function defined by

is continuous and has continuous slope and continuous
curvature.

; (b) Use a graphing calculator or computer to draw the graph
of .F

F�x� � �0

P�x�
1

if x � 0

if 0 � x � 1

if x � 1

F
P � P�x�

x � 1y � 1
x

2.9 
 108
34 ÅÅ � 10�8 cm

ba

r�t� � �a cos t, a sin t, bt�

� �
�r� 
 r�� � r

� r� 
 r� �2

� ���s��3 B

r � �s � �2�s��3 � T � �3�s�s� � ���s��2 � N42. Is there a point on the curve in Exercise 41 where the oscu-
lating plane is parallel to the plane ? (Note:
You will need a CAS for differentiating, for simplifying,
and for computing a cross product.)

43. Show that the curvature is related to the tangent and nor-
mal vectors by the equation

44. Show that the curvature of a plane curve is ,
where is the angle between and ; that is, is the angle
of inclination of the tangent line.

45. (a) Show that is perpendicular to .
(b) Show that is perpendicular to .
(c) Deduce from parts (a) and (b) that for

some number called the torsion of the curve. (The
torsion measures the degree of twisting of a curve.)

(d) Show that for a plane curve the torsion is .

46. The following formulas, called the Frenet-Serret formulas,
are of fundamental importance in differential geometry:

1.

2.
3.

(Formula 1 comes from Exercise 43 and Formula 3 comes
from Exercise 45.) Use the fact that to deduce
Formula 2 from Formulas 1 and 3.

47. Use the Frenet-Serret formulas to prove each of the follow-
ing. (Primes denote derivatives with respect to . Start as in
the proof of Theorem 10.)
(a) (b) r� 
 r� � ��s��3 Br� � s�T � ��s��2 N

t

N � B 
 T

dB	ds � ��N

dN	ds � ��T � �B

dT	ds � �N

� �s� � 0

��s�
dB	ds � ���s�N

TdB	ds
BdB	ds

�iT�
� � � d�	ds �

dT
ds

� �N

�

x � y � z � 1
CAS

In this section we show how the ideas of tangent and normal vectors and curvature can
be used in physics to study the motion of an object, including its velocity and accel-
eration, along a space curve. In particular, we follow in the footsteps of Newton by
using these methods to derive Kepler’s First Law of planetary motion.

Suppose a particle moves through space so that its position vector at time is .
Notice from Figure 1 that, for small values of , the vector

approximates the direction of the particle moving along the curve . Its magnitude
measures the size of the displacement vector per unit time. The vector (1) gives the
average velocity over a time interval of length and its limit is the velocity vector
at time :t

v�t�h

r�t�

r�t � h� � r�t�
h

1

h
r�t�t
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Thus, the velocity vector is also the tangent vector and points in the direction of the
tangent line.

The speed of the particle at time is the magnitude of the velocity vector, that is,
This is appropriate because, from (2) and from Equation 10.3.7, we have

As in the case of one-dimensional motion, the acceleration of the particle is defined
as the derivative of the velocity:

EXAMPLE 1 The position vector of an object moving in a plane is given by
, . Find its velocity, speed, and acceleration when and 

illustrate geometrically.

SOLUTION The velocity and acceleration at time are

and the speed is

When , we have

These velocity and acceleration vectors are shown in Figure 2.

EXAMPLE 2 Find the velocity, acceleration, and speed of a particle with position
vector .

SOLUTION

The vector integrals that were introduced in Section 10.2 can be used to find posi-
tion vectors when velocity or acceleration vectors are known, as in the following
example.

 � v�t� � � s4t 2 � e 2t � �1 � t�2e 2t

 a�t� � v��t� � �2, e t, �2 � t�e t �

 v�t� � r��t� � �2t, e t, �1 � t�e t �

r�t� � � t 2, e t, te t�

� v�1� � � s13a�1� � 6 i � 2 jv�1� � 3 i � 2 j

t � 1

� v�t� � � s�3t 2 �2 � �2t�2 � s9t 4 � 4t 2

 a�t� � r��t� � 6t i � 2 j

 v�t� � r��t� � 3t 2 i � 2t j

t

t � 1t � 0r�t� � t 3 i � t 2 j

a�t� � v��t� � r��t�

� v�t� � � � r��t� � �
ds

dt
� rate of change of distance with respect to time

� v�t� �.
t

v�t� � lim 
h l 0

 
r�t � h� � r�t�

h
� r��t�2
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� Figure 3 shows the path of the par-
ticle in Example 2 with the velocity and
acceleration vectors when .t � 1
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EXAMPLE 3 A moving particle starts at an initial position with initial
velocity . Its acceleration is . Find its veloc-
ity and position at time .

SOLUTION Since , we have

To determine the value of the constant vector , we use the fact that
. The preceding equation gives , so and

Since , we have

Putting , we find that , so

In general, vector integrals allow us to recover velocity when acceleration is known
and position when velocity is known:

r�t� � r�t0� � y
t

t0

 v�u� duv�t� � v�t0� � y
t

t0

 a�u� du

FIGURE 4
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(1, 0, 0)

r�t� � ( 2
3 t 3 � t � 1) i � �t 3 � t� j � ( 1

2 t 2 � t)k

D � r�0� � it � 0

 � ( 2
3 t 3 � t) i � �t 3 � t�j � ( 1

2 t 2 � t)k � D

 � y ��2t 2 � 1� i � �3t 2 � 1� j � �t � 1� k� dt

 r�t� � y v�t� dt

v�t� � r��t�

 � �2t 2 � 1� i � �3t 2 � 1�j � �t � 1�k

 v�t� � 2t 2 i � 3t 2 j � t k � i � j � k

C � i � j � kv�0� � Cv�0� � i � j � k
C

 � 2t 2 i � 3t 2 j � t k � C

 � y �4t i � 6t j � k� dt

 v�t� � y a�t� dt

a�t� � v��t�

t
a�t� � 4t i � 6t j � kv�0� � i � j � k

r�0� � �1, 0, 0 �
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� The expression for that we
obtained in Example 3 was used to plot
the path of the particle in Figure 4 for
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If the force that acts on a particle is known, then the acceleration can be found from
Newton’s Second Law of Motion. The vector version of this law states that if, at any
time , a force acts on an object of mass producing an acceleration , then

EXAMPLE 4 An object with mass that moves in a circular path with constant angu-
lar speed has position vector . Find the force acting
on the object and show that it is directed toward the origin.

SOLUTION

Therefore, Newton’s Second Law gives the force as

Notice that . This shows that the force acts in the direction opposite
to the radius vector and therefore points toward the origin (see Figure 5). Such a
force is called a centripetal (center-seeking) force.

EXAMPLE 5 A projectile is fired with angle of elevation and initial velocity . (See
Figure 6.) Assuming that air resistance is negligible and the only external force is
due to gravity, find the position function of the projectile. What value of maxi-
mizes the range (the horizontal distance traveled)?

SOLUTION We set up the axes so that the projectile starts at the origin. Since the force
due to gravity acts downward, we have

where m	s . Thus

Since , we have

where . Therefore

Integrating again, we obtain

But , so the position vector of the projectile is given by

If we write (the initial speed of the projectile), then

v0 � v0 cos � i � v0 sin � j

� v0 � � v0

r�t� � �
1
2 tt 2 j � tv03

D � r�0� � 0

r�t� � �
1
2 tt 2 j � tv0 � D

r��t� � v�t� � �tt j � v0

C � v�0� � v0

v�t� � �tt j � C

v��t� � a

a � �t j

2
t � � a � � 9.8

F � ma � �mt j

�r�t�

v0�

r�t�
F�t� � �m�2r�t�

F�t� � ma�t� � �m�2�a cos �t i � a sin �t j�

 a�t� � v��t� � �a�2 cos �t i � a�2 sin �t j

 v�t� � r��t� � �a� sin �t i � a� cos �t j

r�t� � a cos �t i � a sin �t j�
m

F�t� � ma�t�

a�t�mF�t�t
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� The angular speed of the object mov-
ing with position is , where

is the angle shown in Figure 5.	
� � d		dtP
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and Equation 3 becomes

The parametric equations of the trajectory are therefore 

The horizontal distance is the value of when . Setting , we obtain
or . The latter value of then gives

Clearly, has its maximum value when , that is, .

Tangential and Normal Components of Acceleration

When we study the motion of a particle, it is often useful to resolve the acceleration
into two components, one in the direction of the tangent and the other in the direction
of the normal. If we write for the speed of the particle, then

and so

If we differentiate both sides of this equation with respect to , we get

If we use the expression for the curvature given by Equation 10.3.9, then we have

The unit normal vector was defined in the preceding section as , so (6)
gives

and Equation 5 becomes

Writing and for the tangential and normal components of acceleration, we have

where

This resolution is illustrated in Figure 7.

aN � �v2andaT � v�8

a � aTT � aNN

aNaT

a � v�T � �v2N7

T� � � T� �N � �vN

N � T�	� T� �

� T� � � �vso� � � T� �
� r� � � � T� �

v
6

a � v� � v�T � vT�5

t

v � vT

T�t� �
r��t�

� r��t� � �
v�t�

� v�t� � �
v
v

v � � v �

� � �	4sin 2� � 1d

d � x � �v0 cos �� 
2v0 sin �

t

�
v2

0�2 sin � cos ��
t

�
v2

0 sin 2�

t

tt � �2v0 sin ��	tt � 0
y � 0y � 0xd

y � �v0 sin ��t �
1
2 tt 2x � �v0 cos ��t4

r�t� � �v0 cos ��t i � [�v0 sin ��t �
1
2 tt 2 ] j
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� If you eliminate from Equations 4,
you will see that is a quadratic function
of . So the path of the projectile is part
of a parabola.
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Let’s look at what Formula 7 says. The first thing to notice is that the binormal vec-
tor B is absent. No matter how an object moves through space, its acceleration always
lies in the plane of T and N (the osculating plane). (Recall that T gives the direction
of motion and N points in the direction the curve is turning.) Next we notice that the
tangential component of acceleration is , the rate of change of speed, and the normal
component of acceleration is , the curvature times the square of the speed. This
makes sense if we think of a passenger in a car—a sharp turn in a road means a large
value of the curvature , so the component of the acceleration perpendicular to the
motion is large and the passenger is thrown against a car door. High speed around the
turn has the same effect; in fact, if you double your speed, is increased by a factor
of 4.

Although we have expressions for the tangential and normal components of accel-
eration in Equations 8, it is desirable to have expressions that depend only on , , and

. To this end we take the dot product of with as given by Equation 7:

(since and )

Therefore

Using the formula for curvature given by Theorem 10.3.10, we have

EXAMPLE 6 A particle moves with position function . Find the tan-
gential and normal components of acceleration.

SOLUTION

Therefore, Equation 9 gives the tangential component as

Since

Equation 10 gives the normal component as

aN � � r��t� 
 r��t� �
� r��t� � �

6s2 t 2

s8t 2 � 9t 4

r��t� 
 r��t� � � i
2t

2

j
2t

2

k
3t 2

6t � � 6t 2 i � 6t 2 j

aT �
r��t� � r��t�

� r��t� � �
8t � 18t 3

s8t 2 � 9t 4

 � r��t� � � s8t 2 � 9t 4

 r��t� � 2 i � 2 j � 6t k

 r��t� � 2t i � 2t j � 3t 2 k

 r�t� � t 2 i � t 2 j � t 3 k

r�t� � � t 2, t 2, t 3 �

aN � �v2 � � r��t� 
 r���t� �
� r��t� �3 � r��t� �2 � � r��t� 
 r���t� �

� r��t� �10

aT � v� �
v � a

v
�

r��t� � r��t�

� r��t� �  9

T � N � 0T � T � 1 � vv�

 � vv�T � T � �v3T � N

 v � a � vT � �v�T � �v2N�

av � vTr�
r�r

aN

�

�v2
v�
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Kepler’s Laws of Planetary Motion

We now describe one of the great accomplishments of calculus by showing how the
material of this chapter can be used to prove Kepler’s laws of planetary motion. After
20 years of studying the astronomical observations of the Danish astronomer Tycho
Brahe, the German mathematician and astronomer Johannes Kepler (1571–1630) for-
mulated the following three laws.

Kepler’s Laws

1. A planet revolves around the Sun in an elliptical orbit with the Sun at one
focus.

2. The line joining the Sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the
cube of the length of the major axis of its orbit.

In his book Principia Mathematica of 1687, Sir Isaac Newton was able to show
that these three laws are consequences of two of his own laws, the Second Law of
Motion and the Law of Universal Gravitation. In what follows we prove Kepler’s First
Law. The remaining laws are left as a project (with hints).

Since the gravitational force of the Sun on a planet is so much larger than the forces
exerted by other celestial bodies, we can safely ignore all bodies in the universe except
the Sun and one planet revolving about it. We use a coordinate system with the Sun at
the origin and we let be the position vector of the planet. (Equally well,
could be the position vector of the Moon or a satellite moving around Earth or a comet
moving around a star.) The velocity vector is and the acceleration vector is

. We use the following laws of Newton:

where is the gravitational force on the planet, and are the masses of the planet
and the Sun, is the gravitational constant, , and is the unit vec-
tor in the direction of .

We first show that the planet moves in one plane. By equating the expressions for
in Newton’s two laws, we find that

and so is parallel to . It follows that . We use Formula 5 in Theorem
10.2.3 to write

Therefore

where is a constant vector. (We may assume that ; that is, and are not par-
allel.) This means that the vector is perpendicular to for all values of t, so hr � r�t�

vrh � 0h

r 
 v � h

 � v 
 v � r 
 a � 0 � 0 � 0

 
d

dt
 �r 
 v� � r� 
 v � r 
 v�

r 
 a � 0ra

a � �
GM

r 3  r

F

r
u � �1	r�rr � � r �G

MmF

 Law of Gravitation:  F � �
GMm

r 3  r � �
GMm

r 2  u

 Second Law of Motion: F � ma

a � r�
v � r�

rr � r�t�
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the planet always lies in the plane through the origin perpendicular to . Thus, the
orbit of the planet is a plane curve.

To prove Kepler’s First Law we rewrite the vector as follows:

Then

(by Formula 9.4.8)

But and, since , it follows from Example 5 in Section 10.2
that . Therefore

and so

Integrating both sides of this equation, we get

where is a constant vector.
At this point it is convenient to choose the coordinate axes so that the standard basis

vector points in the direction of the vector . Then the planet moves in the -plane.
Since both and are perpendicular to , Equation 11 shows that lies in the 

-plane. This means that we can choose the - and -axes so that the vector lies in 
the direction of , as shown in Figure 8.

If is the angle between and , then are polar coordinates of the planet.
From Equation 11 we have

where . Then

where . But

where . So

r �
h 2	�GM �

1 � e cos 	
�

eh 2	c

1 � e cos 	

h � � h �

r � �v 
 h� � �r 
 v� � h � h � h � � h �2 � h 2

e � c	�GM�

r �
r � �v 
 h�

GM � c cos 	
�

1

GM
 
r � �v 
 h�
1 � e cos 	

c � � c �

 � GMr u � u � � r � � c � cos 	 � GMr � rc cos 	

 r � �v 
 h� � r � �GM u � c� � GM r � u � r � c

�r, 	�rc	
c

iyxxy
chuv 
 h

xyhk

c

v 
 h � GM u � c11

 �v 
 h�� � v� 
 h � a 
 h � GM u�

 a 
 h � GM u�

u � u� � 0
� u�t� � � 1u � u � � u �2 � 1

 � �GM��u � u��u � �u � u�u��

 a 
 h �
�GM

r 2  u 
 �r 2u 
 u�� � �GM u 
 �u 
 u��

 � r 2�u 
 u��

 � ru 
 �ru� � r�u� � r 2�u 
 u�� � rr��u 
 u�

 h � r 
 v � r 
 r� � ru 
 �ru��

h

h
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Writing , we obtain the equation

In Appendix H it is shown that Equation 12 is the polar equation of a conic section
with focus at the origin and eccentricity . We know that the orbit of a planet is a
closed curve and so the conic must be an ellipse.

This completes the derivation of Kepler’s First Law. We will guide you through the
derivation of the Second and Third Laws in the Applied Project on page 735. The
proofs of these three laws show that the methods of this chapter provide a powerful
tool for describing some of the laws of nature.

e

r �
ed

1 � e cos 	
12

d � h 2	c
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3. ,

4. ,

5. ,

6. ,

7. ,

; 8. ,
� � � � � � � � � � � � �

9–12 � Find the velocity, acceleration, and speed of a particle
with the given position function.

9.

10.

11.

12.
� � � � � � � � � � � � �

13–14 � Find the velocity and position vectors of a particle that
has the given acceleration and the given initial velocity and
position.

13. , ,

14. , ,
� � � � � � � � � � � � �

15–16 �

(a) Find the position vector of a particle that has the given
acceleration and the given initial velocity and position.

; (b) Use a computer to graph the path of the particle.

15. , ,

16. , ,
� � � � � � � � � � � � �

17. The position function of a particle is given by
. When is the speed a minimum?r�t� � � t 2, 5t, t 2 � 16t�

r�0� � jv�0� � i � ka�t� � t i � t 2 j � cos 2t k

r�0� � i � kv�0� � 0a�t� � i � 2 j � 2t k

r�0� � 2 i � 3 jv�0� � i � j � ka�t� � �10 k

r�0� � 0v�0� � i � ja�t� � k

r�t� � t sin t i � t cos t j � t 2 k

r�t� � s2 t i � e t j � e�t k

r�t� � �2 cos t, 3t, 2 sin t�

r�t� � � t, t 2, t 3 �

t � 1r�t� � t i � t 2 j � t 3 k

t � 0r�t� � sin t i � t j � cos t k

t � �	6r�t� � sin t i � 2 cos t j

t � 0r�t� � e t i � e�t j

t � 1r�t� � �st, 1 � t�
t � 1r�t� � � t 2 � 1, t�1. The table gives coordinates of a particle moving through

space along a smooth curve.
(a) Find the average velocities over the time intervals [0, 1],

[0.5, 1], [1, 2], and [1, 1.5].
(b) Estimate the velocity and speed of the particle at .

2. The figure shows the path of a particle that moves with
position vector at time .
(a) Draw a vector that represents the average velocity of the

particle over the time interval .
(b) Draw a vector that represents the average velocity over

the time interval .
(c) Write an expression for the velocity vector v(2).
(d) Draw an approximation to the vector v(2) and estimate

the speed of the particle at .

3–8 � Find the velocity, acceleration, and speed of a particle 
with the given position function. Sketch the path of the particle 
and draw the velocity and acceleration vectors for the specified
value of .t

y

x0 21

2

1

r(2.4)

r(2)

r(1.5)

t � 2

1.5 � t � 2

2 � t � 2.4

tr�t�

t � 1

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �10.4

t x y

0 2.7 9.8 3.7
0.5 3.5 7.2 3.3
1.0 4.5 6.0 3.0
1.5 5.9 6.4 2.8
2.0 7.3 7.8 2.7

z



constant heading and a constant speed of , determine
the angle at which the boat should head.

29–32 � Find the tangential and normal components of the
acceleration vector.

29. 30.

31.

32.
� � � � � � � � � � � � �

33. The magnitude of the acceleration vector is . Use
the figure to estimate the tangential and normal components
of .

34. If a particle with mass moves with position vector ,
then its angular momentum is defined as

and its torque as .
Show that . Deduce that if for all ,
then is constant. (This is the law of conservation of
angular momentum.)

35. The position function of a spaceship is

and the coordinates of a space station are . The cap-
tain wants the spaceship to coast into the space station.
When should the engines be turned off?

36. A rocket burning its onboard fuel while moving through
space has velocity and mass at time . If the
exhaust gases escape with velocity relative to the rocket,
it can be deduced from Newton’s Second Law of Motion
that

(a) Show that .

(b) For the rocket to accelerate in a straight line from rest to
twice the speed of its own exhaust gases, what fraction
of its initial mass would the rocket have to burn as fuel?

v�t� � v�0� � ln 
m�0�
m�t�

 ve

m 
dv
dt

�
dm

dt
 ve 

ve

tm�t�v�t�

�6, 4, 9�

r�t� � �3 � t� i � �2 � ln t� j � �7 �
4

t 2 � 1� k

L�t�
t��t� � 0L��t� � ��t�

��t� � mr�t� 
 a�t�L�t� � mr�t� 
 v�t�

r�t�m

y

x0

a

a

10 cm	s2a

r�t� � t i � cos2t j � sin2t k

r�t� � cos t i � sin t j � t k

r�t� � t i � t 2 j � 3t kr�t� � �3t � t 3 � i � 3t 2 j

5 m	s18. What force is required so that a particle of mass has the
position function ?

19. A force with magnitude 20 N acts directly upward from the 
-plane on an object with mass 4 kg. The object starts at

the origin with initial velocity . Find its
position function and its speed at time .

20. Show that if a particle moves with constant speed, then the
velocity and acceleration vectors are orthogonal.

21. A projectile is fired with an initial speed of 500 m	s and
angle of elevation . Find (a) the range of the projectile,
(b) the maximum height reached, and (c) the speed at
impact.

22. Rework Exercise 21 if the projectile is fired from a position
200 m above the ground.

23. A ball is thrown at an angle of to the ground. If the ball
lands 90 m away, what was the initial speed of the ball?

24. A gun is fired with angle of elevation . What is the 
muzzle speed if the maximum height of the shell is 500 m?

25. A gun has muzzle speed . Find two angles of eleva-
tion that can be used to hit a target 800 m away.

26. A batter hits a baseball 3 ft above the ground toward the
center field fence, which is 10 ft high and 400 ft from home
plate. The ball leaves the bat with speed at an angle

above the horizontal. Is it a home run? (In other words,
does the ball clear the fence?)

; 27. Water traveling along a straight portion of a river normally
flows fastest in the middle, and the speed slows to almost
zero at the banks. Consider a long stretch of river flowing
north, with parallel banks 40 m apart. If the maximum
water speed is 3 , we can use a quadratic function as a
basic model for the rate of water flow units from the west
bank: .
(a) A boat proceeds at a constant speed of from a

point on the west bank while maintaining a heading
perpendicular to the bank. How far down the river on
the opposite bank will the boat touch shore? Graph the
path of the boat.

(b) Suppose we would like to pilot the boat to land at the
point on the east bank directly opposite . If we
maintain a constant speed of and a constant 
heading, find the angle at which the boat should head.
Then graph the actual path the boat follows. Does the
path seem realistic?

28. Another reasonable model for the water speed of the river in
Exercise 27 is a sine function: . If a
boater would like to cross the river from to withBA

f �x� � 3 sin��x	40�

5 m	s
AB

A
5 m	s

f �x� � 3
400 x�40 � x�

x
m	s

50�
115 ft	s

150 m	s

30�

45�

30�

t
v�0� � i � j

xy

r�t� � t 3 i � t 2 j � t 3 k
m
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Kepler’s Laws

Johannes Kepler stated the following three laws of planetary motion on the basis of masses
of data on the positions of the planets at various times.

Kepler’s Laws

1. A planet revolves around the Sun in an elliptical orbit with the Sun at one focus.

2. The line joining the Sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the cube of the
length of the major axis of its orbit.

Kepler formulated these laws because they fitted the astronomical data. He wasn’t able to
see why they were true or how they related to each other. But Sir Isaac Newton, in his
Principia Mathematica of 1687, showed how to deduce Kepler’s three laws from two of
Newton’s own laws, the Second Law of Motion and the Law of Universal Gravitation. In
Section 10.4 we proved Kepler’s First Law using the calculus of vector functions. In this
project we guide you through the proofs of Kepler’s Second and Third Laws and explore
some of their consequences.

1. Use the following steps to prove Kepler’s Second Law. The notation is the same as in 
the proof of the First Law in Section 10.4. In particular, use polar coordinates so that

.

(a) Show that .

(b) Deduce that .

(c) If is the area swept out by the radius vector in the time interval
as in the figure, show that

(d) Deduce that

This says that the rate at which is swept out is constant and proves Kepler’s
Second Law.

2. Let be the period of a planet about the Sun; that is, is the time required for it to
travel once around its elliptical orbit. Suppose that the lengths of the major and minor
axes of the ellipse are and .

(a) Use part (d) of Problem 1 to show that .

(b) Show that .

(c) Use parts (a) and (b) to show that .

This proves Kepler’s Third Law. [Notice that the proportionality constant is
independent of the planet.]

4� 2	�GM�

T 2 �
4� 2

GM
 a 3

h 2

GM
� ed �

b 2

a

T � 2�ab	h

2b2a

TT

A

dA

dt
� 1

2 h � constant

dA

dt
� 1

2 r 2 
d	

dt

�t0, t�
r � r�t�A � A�t�

r 2 
d	

dt
� h

h � r 2 
d	

dt
 k

r � �r cos 	� i � �r sin 	� j
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3. The period of Earth’s orbit is approximately 365.25 days. Use this fact and Kepler’s
Third Law to find the length of the major axis of Earth’s orbit. You will need the 
mass of the Sun, kg, and the gravitational constant,

	kg .

4. It’s possible to place a satellite into orbit about Earth so that it remains fixed above a
given location on the equator. Compute the altitude that is needed for such a satellite.
Earth’s mass is ; its radius is . (This orbit is called the
Clarke Geosynchronous Orbit after Arthur C. Clarke, who first proposed the idea in
1948. The first such satellite, Syncom II, was launched in July 1963.)

6.37 
 106 m5.98 
 1024 kg

2G � 6.67 
 10�11 N�m2
M � 1.99 
 1030

In Section 9.6 we looked at surfaces that are graphs of functions of two variables. Here
we use vector functions to discuss more general surfaces, called parametric surfaces.

In much the same way that we describe a space curve by a vector function of
a single parameter , we can describe a surface by a vector function of two param-
eters and . We suppose that

is a vector-valued function defined on a region in the -plane. So x, y, and , the
component functions of r, are functions of the two variables u and with domain D.
The set of all points in such that

and varies throughout , is called a parametric surface and Equations 2 are
called parametric equations of . Each choice of u and gives a point on S; by mak-
ing all choices, we get all of S. In other words, the surface is traced out by the tip of
the position vector as moves throughout the region (see Figure 1).

EXAMPLE 1 Identify and sketch the surface with vector equation

r�u, v� � 2 cos u i � v j � 2 sin u k

FIGURE 1
A parametric surface

0

z

x y

S

r(u, √)
0

√

u

D
(u, √)

r

D�u, v�r�u, v�
S

vS
SD�u, v�

z � z�u, v�y � y�u, v�x � x�u, v�2

� 3�x, y, z�
v

zuvD

r�u, v� � x�u, v� i � y�u, v� j � z�u, v� k1

vu
r�u, v�t

r�t�
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SOLUTION The parametric equations for this surface are

So for any point on the surface, we have

This means that vertical cross-sections parallel to the -plane (that is, with y con-
stant) are all circles with radius 4. Since and no restriction is placed on , the
surface is a circular cylinder with radius 2 whose axis is the y-axis (see Figure 2).

In Example 1 we placed no restrictions on the parameters u and and so we got the
entire cylinder. If, for instance, we restrict u and by writing the parameter domain as

then and we get the quarter-cylinder with length 3 illustrated
in Figure 3.

If a parametric surface S is given by a vector function , then there are two
useful families of curves that lie on S, one family with u constant and the other with

constant. These families correspond to vertical and horizontal lines in the -plane.
If we keep constant by putting becomes a vector function of the
single parameter and defines a curve lying on . (See Figure 4.)

Similarly, if we keep constant by putting given by
that lies on . We call these curves grid curves. (In Example 1, for instance,

the grid curves obtained by letting u be constant are horizontal lines whereas the grid
curves with constant are circles.) In fact, when a computer graphs a parametric sur-
face, it usually depicts the surface by plotting these grid curves, as we see in the fol-
lowing example.

EXAMPLE 2 Use a computer algebra system to graph the surface

Which grid curves have u constant? Which have constant?

SOLUTION We graph the portion of the surface with parametric domain 
in Figure 5. It has the appearance of a spiral tube. To identify the grid 0 � v � 2�

0 � u � 4�,

v

r�u, v� � ��2 � sin v� cos u, �2 � sin v� sin u, u � cos v �

v

Sr�u, v0 �
v � v0, we get a curve C2v

FIGURE 4

r

0

z

y
x

C¡

C™
0 u

D

√=√¸

(u¸, √¸)

u=u¸

√

SC1v
u � u0, then r�u0, v�u

uvv

r�u, v�

x � 0, z � 0, 0 � y � 3,

0 � v � 30 � u � �	2

v
v

vy � v
xz

x 2 � z2 � 4 cos2u � 4 sin2u � 4

�x, y, z�

z � 2 sin uy � vx � 2 cos u
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curves, we write the corresponding parametric equations:

If is constant, then and are constant, so the parametric equations 
resemble those of the helix in Example 4 in Section 10.1. So the grid curves with 
constant are the spiral curves in Figure 5. We deduce that the grid curves with u
constant must be the curves that look like circles in the figure. Further evidence for
this assertion is that if u is kept constant, , then the equation 
shows that the -values vary from to .

In Examples 1 and 2 we were given a vector equation and asked to graph the cor-
responding parametric surface. In the following examples, however, we are given the
more challenging problem of finding a vector function to represent a given surface. In
the rest of this chapter we will often need to do exactly that.

EXAMPLE 3 Find a vector function that represents the plane that passes through the
point with position vector and that contains two nonparallel vectors a and b.

SOLUTION If P is any point in the plane, we can get from to by moving a certain
distance in the direction of and another distance in the direction of . So there are
scalars u and such that P0PA . (Figure 6 illustrates how this works, by 
means of the Parallelogram Law, for the case where and are positive. See also
Exercise 30 in Section 9.2.) If r is the position vector of P, then

OP0A� P0PA

So the vector equation of the plane can be written as

where u and are real numbers.
If we write , , , and ,

then we can write the parametric equations of the plane through the point 
as follows:

EXAMPLE 4 Find a parametric representation of the sphere

SOLUTION The sphere has a simple representation in spherical coordinates, so
let’s choose the angles and in spherical coordinates as the parameters (see Sec-
tion 9.7). Then, putting in the equations for conversion from spherical to
rectangular coordinates (Equations 9.7.3), we obtain

as the parametric equations of the sphere. The corresponding vector equation is

r��, 	� � a sin � cos 	 i � a sin � sin 	 j � a cos � k

z � a cos �y � a sin � sin 	x � a sin � cos 	

� � a
	�

� � a

x 2 � y 2 � z2 � a 2

z � z0 � ua3 � vb3y � y0 � ua2 � vb2x � x0 � ua1 � vb1

�x0, y0, z0 �
b � �b1, b2, b3 �a � �a1, a2, a3 �r0 � �x0, y0, z0 �r � �x, y, z�

v

r�u, v� � r0 � ua � vb

� r0 � ua � vbr �

vu
� ua � vbv

ba
PP0

r0P0

u0 � 1u0 � 1z
z � u0 � cos vu � u0

v
cos vsin vv

z � u � cos vy � �2 � sin v� sin ux � �2 � sin v� cos u
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We have and , so the parameter domain is the rectangle
. The grid curves with constant are the circles of constant

latitude (including the equator). The grid curves with constant are the meridians
(semicircles), which connect the north and south poles.

EXAMPLE 5 Find a parametric representation for the cylinder

SOLUTION The cylinder has a simple representation in cylindrical coordinates,
so we choose as parameters and in cylindrical coordinates. Then the parametric
equations of the cylinder are

where and .

EXAMPLE 6 Find a vector function that represents the elliptic paraboloid .

SOLUTION If we regard and as parameters, then the parametric equations are simply

and the vector equation is

In general, a surface given as the graph of a function of and , that is, with an
equation of the form , can always be regarded as a parametric surface by
taking and as parameters and writing the parametric equations as

Parametric representations (also called parametrizations) of surfaces are not unique.
The next example shows two ways to parametrize a cone.

EXAMPLE 7 Find a parametric representation for the surface , that is,
the top half of the cone .

SOLUTION 1 One possible representation is obtained by choosing x and y as parameters:

z � 2sx 2 � y 2y � yx � x

z2 � 4x 2 � 4y 2
z � 2sx 2 � y 2

z � f �x, y�y � yx � x

yx
z � f �x, y�

yx

r�x, y� � x i � y j � �x 2 � 2y 2 � k

z � x 2 � 2y 2y � yx � x

yx

z � x 2 � 2y 2

0 � z � 10 � 	 � 2�

z � zy � 2 sin 	x � 2 cos 	

z	
r � 2

0 � z � 1x 2 � y 2 � 4

FIGURE 8FIGURE 7

	
�D � �0, �� 
 �0, 2��

0 � 	 � 2�0 � � � �
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� One of the uses of parametric sur-
faces is in computer graphics. Figure 7
shows the result of trying to graph the
sphere by solving the
equation for and graphing the top and
bottom hemispheres separately. Part 
of the sphere appears to be missing
because of the rectangular grid system
used by the computer. The much better
picture in Figure 8 was produced by a
computer using the parametric equations
found in Example 4.

z
x 2 � y 2 � z2 � 1



So the vector equation is

SOLUTION 2 Another representation results from choosing as parameters the polar 
coordinates r and . A point on the cone satisfies , ,
and . So a vector equation for the cone is

where and .

Surfaces of Revolution

Surfaces of revolution can be represented parametrically and thus graphed using a
computer. For instance, let’s consider the surface obtained by rotating the curve

, , about the -axis, where . Let be the angle of rotation 
as shown in Figure 9. If is a point on , then

Therefore, we take and as parameters and regard Equations 3 as parametric equa-
tions of . The parameter domain is given by , .

EXAMPLE 8 Find parametric equations for the surface generated by rotating the curve
, , about the -axis. Use these equations to graph the surface of

revolution.

SOLUTION From Equations 3, the parametric equations are

and the parameter domain is , . Using a computer to plot
these equations and rotate the image, we obtain the graph in Figure 10.

We can adapt Equations 3 to represent a surface obtained through revolution about
the - or -axis. (See Exercise 28.)zy

0 � 	 � 2�0 � x � 2�

z � sin x sin 	y � sin x cos 	x � x

x0 � x � 2�y � sin x

0 � 	 � 2�a � x � bS
	x

z � f �x� sin 	y � f �x� cos 	x � x3

S�x, y, z�
	f �x� � 0xa � x � by � f �x�

S

0 � 	 � 2�r � 0

r�r, 	� � r cos 	 i � r sin 	 j � 2r k

z � 2sx 2 � y 2 � 2r
y � r sin 	x � r cos 	�x, y, z�	

r�x, y� � x i � y j � 2sx 2 � y 2 k

740 � CHAPTER 10 VECTOR FUNCTIONS

0

z

y

x

¨
z

x

(x, y, z)

y=ƒ

ƒ

ƒ

FIGURE 9

FIGURE 10
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� For some purposes the parametric 
representations in Solutions 1 and 2 are
equally good, but Solution 2 might be
preferable in certain situations. If we are
interested only in the part of the cone
that lies below the plane , for
instance, all we have to do in Solution 2
is change the parameter domain to

0 � 	 � 2�0 � r �
1
2

z � 1

1–4 � Identify the surface with the given vector equation.

1.

2.

3.

4.
� � � � � � � � � � � � �

r�x, 	� � �x, x cos 	, x sin 	 �

r�x, 	� � �x, cos 	, sin 	 �

r�u, v� � �1 � 2u� i � ��u � 3v� j � �2 � 4u � 5v� k

r�u, v� � u cos v i � u sin v j � u 2 k
; 5–10 � Use a computer to graph the parametric surface. Get a

printout and indicate on it which grid curves have constant
and which have constant.

5.

6.
�1 � v � 1�1 � u � 1,

r�u, v� � �u � v, u 2, v2 � ,

�1 � u � 1, �1 � v � 1
r�u, v� � �u 2 � 1, v3 � 1, u � v� , 

v
u
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17–24 � Find a parametric representation for the surface.

17. The plane that passes through the point and con-
tains the vectors and .

18. The lower half of the ellipsoid 

19. The part of the hyperboloid that lies to
the right of the -plane

20. The part of the elliptic paraboloid that
lies in front of the plane 

21. The part of the sphere that lies above the
cone 

22. The part of the cylinder that lies between the
planes and 

23. The part of the plane that lies inside the cylinder

24. The part of the plane that lies inside the cylinder

� � � � � � � � � � � � �

25–26 � Use a computer algebra system to produce a graph
that looks like the given one.

25. 26.

� � � � � � � � � � � � �

; 27. Find parametric equations for the surface obtained by 
rotating the curve , , about the -axis 
and use them to graph the surface.

; 28. Find parametric equations for the surface obtained by 
rotating the curve , , about the 
-axis and use them to graph the surface.

29. (a) Show that the parametric equations ,
, , , ,

represent an ellipsoid.

; (b) Use the parametric equations in part (a) to graph the
ellipsoid for the case , , .

; 30. The surface with parametric equations

where and , is called a Möbius 0 � 	 � 2��
1
2 � r �

1
2

 z � r sin�		2�

 y � 2 sin 	 � r cos�		2�

 x � 2 cos 	 � r cos�		2�

c � 3b � 2a � 1

0 � v � 2�0 � u � �z � c cos uy � b sin u sin v
x � a sin u cos v

y
�2 � y � 2x � 4y 2 � y 4

x0 � x � 3y � e �x

0

_1
_1

1
0

1
0

_1

z

y x

3

0

_3
_3

0
0 5

z

y
x

CAS

x 2 � y 2 � 1
z � x � 3

x 2 � y 2 � 16
z � 5

y � 3y � �1
x 2 � z2 � 1

z � sx 2 � y 2

x 2 � y 2 � z2 � 4

x � 0
x � y 2 � 2z2 � 4

xz
x 2 � y2 � z2 � 1

2x 2 � 4y2 � z2 � 1

i � j � ki � j � k
�1, 2, �3�

7. ,
,

8. ,
,

9. , ,

10. , ,
� � � � � � � � � � � � �

11–16 � Match the equations with the graphs labeled I–VI and
give reasons for your answers. Determine which families of grid
curves have u constant and which have constant.

11.

12.

13.

14.

15. , ,

16. ,
,

� � � � � � � � � � � � �

z

yx

V VI

x
y

z

z

yx

IVIII z

y

x

IIz

x y

I z

y
x

z � 3u � �1 � u� sin v
y � �1 � u��3 � cos v� sin 4�u

x � �1 � u��3 � cos v� cos 4�u

z � uy � �1 � cos u� sin vx � �u � sin u� cos v

z � u cos vy � u sin v,x � u 3,

r�u, v� � u cos v i � u sin v j � v k

r�u, v� � u cos v i � u sin v j � u k

r�u, v� � cos v i � sin v j � u k

v

z � u sin vy � u cos u cos vx � u sin u cos v

z � sin vy � sin u sin 2vx � cos u sin 2v

0.1 � v � 6.20 � u � 2�
r�u, v� � �cos u sin v, sin u sin v, cos v � ln tan�v	2��

0 � v � 2�0 � u � �
r�u, v� � �cos3u cos3v, sin3u cos3v, sin3v�
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strip. Graph this surface with several viewpoints. What is
unusual about it?

; 31. (a) What happens to the spiral tube in Example 2 (see Fig-
ure 5) if we replace by and by ?

(b) What happens if we replace by and 
by ?

32. (a) Find a parametric representation for the torus obtained 
by rotating about the -axis the circle in the -plane
with center and radius . [Hint: Take as
parameters the angles and shown in the figure.]

; (b) Use the parametric equations found in part (a) to graph
the torus for several values of and .ba

�	
a � b�b, 0, 0�

xzz

sin 2u
sin ucos 2ucos u

cos usin usin ucos u
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6. (a) What is the definition of curvature?
(b) Write a formula for curvature in terms of and .
(c) Write a formula for curvature in terms of and .
(d) Write a formula for the curvature of a plane curve with

equation .

7. (a) Write formulas for the unit normal and binormal vectors
of a smooth space curve .

(b) What is the normal plane of a curve at a point? What is
the osculating plane? What is the osculating circle?

8. (a) How do you find the velocity, speed, and acceleration of
a particle that moves along a space curve?

(b) Write the acceleration in terms of its tangential and nor-
mal components.

9. State Kepler’s Laws.

10. What is a parametric surface? What are its grid curves?

r�t�

y � f �x�

r��t�r��t�
T��t�r��t�

1. What is a vector function? How do you find its derivative
and its integral?

2. What is the connection between vector functions and space
curves?

3. (a) What is a smooth curve?
(b) How do you find the tangent vector to a smooth curve at

a point? How do you find the tangent line? The unit tan-
gent vector?

4. If and are differentiable vector functions, is a scalar,
and is a real-valued function, write the rules for differenti-
ating the following vector functions.
(a) (b) (c)
(d) (e) (f)

5. How do you find the length of a space curve given by a 
vector function r�t�?

u� f �t��u�t� 
 v�t�u�t� � v�t�
f �t�u�t�cu�t�u�t� � v�t�

f
cvu

10 Review
C O N C E P T  C H E C K

6. If is a differentiable vector function, then

7. If is the unit tangent vector of a smooth curve, then the
curvature is .

8. The binormal vector is .

9. The osculating circle of a curve C at a point has the same 
tangent vector, normal vector, and curvature as C at that 
point.

10. Different parametrizations of the same curve result in iden-
tical tangent vectors at a given point on the curve.

B�t� � N�t� 
 T�t�

� � � dT	dt �
T�t�

d

dt � r�t� � � � r��t� �

r�t�Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. The curve with vector equation is 
a line.

2. The curve with vector equation is smooth.

3. The curve with vector equation is
smooth.

4. The derivative of a vector function is obtained by differenti-
ating each component function.

5. If and are differentiable vector functions, then

d

dt
 �u�t� 
 v�t�� � u��t� 
 v��t�

v�t�u�t�

r�t� � �cos t, t 2, t 4 �

r�t� � � t, t 3, t 5 �

r�t� � t 3 i � 2t 3 j � 3t 3 k

T R U E – FA L S E  Q U I Z
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(c) Write an expression for the unit tangent vector T(3) and
draw it.

17. A particle moves with position function
. Find the velocity, speed, and

acceleration of the particle.

18. A particle starts at the origin with initial velocity
. Its acceleration is .

Find its position function.

19. An athlete throws a shot at an angle of 45° to the horizontal 
at an initial speed of 43 ft	s. It leaves his hand 7 ft above
the ground.
(a) Where is the shot 2 seconds later?
(b) How high does the shot go?
(c) Where does the shot land?

20. Find the tangential and normal components of the accelera-
tion vector of a particle with position function

21. Find a parametric representation for the part of the sphere
that lies between the planes and

.

; 22. Use a computer to graph the surface with vector equation

Get a printout that gives a good view of the surface and
indicate on it which grid curves have constant and which
have constant.

23. A disk of radius is rotating in the counterclockwise direc-
tion at a constant angular speed . A particle starts at the
center of the disk and moves toward the edge along a fixed
radius so that its position at time , , is given by

, where

(a) Show that the velocity of the particle is

where is the velocity of a point on the edge
of the disk.

vd � R��t�

v � cos �t i � sin �t j � tvd

v

R�t� � cos �t i � sin �t j

r�t� � tR�t�
t � 0t

�
1

v
u

r�u, v� � ��1 � cos u� sin v, u, �u � sin u� cos v�

z � �1
z � 1x 2 � y2 � z2 � 4

r�t� � t i � 2t j � t 2 k

a�t� � 6t i � 12t 2 j � 6t ki � j � 3k

r�t� � t ln t i � t  j � e�t k

y

x0

C

r(3.2)

r(3)

1

1

1. (a) Sketch the curve with vector function

(b) Find and .

2. Let .
(a) Find the domain of .
(b) Find .
(c) Find  .

3. Find a vector function that represents the curve of intersec-
tion of the cylinder and the plane .

; 4. Find parametric equations for the tangent line to the curve
, , at the point . Graph the curve

and the tangent line on a common screen.

5. If , evaluate .

6. Let be the curve with equations , ,
. Find (a) the point where intersects the -plane,

(b) parametric equations of the tangent line at , and
(c) an equation of the normal plane to at .

7. Use Simpson’s Rule with to estimate the length of
the arc of the curve with equations , ,

from to .

8. Find the length of the curve ,
.

9. The helix intersects the curve
at the point . Find the

angle of intersection of these curves.

10. Reparametrize the curve 
with respect to arc length measured from the point 
in the direction of increasing .

11. For the curve given by , find (a) the
unit tangent vector, (b) the unit normal vector, and (c) the
curvature.

12. Find the curvature of the ellipse , at
the points and .

13. Find the curvature of the curve at the point .

; 14. Find an equation of the osculating circle of the curve
at the origin. Graph both the curve and its

osculating circle.

15. Find an equation of the osculating plane of the curve
, , at the point .

16. The figure shows the curve traced by a particle with posi-
tion vector at time .
(a) Draw a vector that represents the average velocity of the

particle over the time interval .
(b) Write an expression for the velocity v(3).

3 � t � 3.2

tr�t�
C

�0, �, 1�z � cos 2ty � tx � sin 2t

y � x 4 � x 2

�1, 1�y � x 4

�0, 4��3, 0�
y � 4 sin tx � 3 cos t

r�t� � � t 3	3, t 2	2, t�

t
�1, 0, 1�

r�t� � e t i � e t sin t j � e t cos t k

�1, 0, 0�r2�t� � �1 � t� i � t 2 j � t 3 k
r1�t� � cos t i � sin t j � t k

0 � t � 1
r�t� � �2t 3	2, cos 2t, sin 2t�

�2, 1, 17��1, 4, 2�z � t 2 � 1
y � 4	tx � st

n � 4

�1, 1, 0�C
�1, 1, 0�

xzCz � ln t
y � 2t � 1x � 2 � t 3C

x
1
0  r�t� dtr�t� � t 2 i � t cos �t j � sin �t k

�1, 1, 1�z � t 3y � t 4x � t 2

x � z � 5x 2 � y 2 � 16

r��t�
lim t l 0 r�t�

r
r�t� � �s2 � t, �et � 1�	t, ln�t � 1��

r��t�r��t�

t � 0r�t� � t i � cos �t j � sin �t k

E X E R C I S E S



might be the function ,
, whose graph is the arc of the circle

shown in the figure. It looks reasonable at first glance. 
Show that the function

is continuous and has continuous slope, but does not
have continuous curvature. Therefore, is not an appro-
priate transfer curve.

; (b) Find a fifth-degree polynomial to serve as a transfer
curve between the following straight line segments:

for and for . Could this be
done with a fourth-degree polynomial? Use a graphing
calculator or computer to sketch the graph of the 
“connected” function and check to see that it looks like
the one in the figure.

y

x0

y=x

y=0
transfer curve

1

y

x0

y=F(x)
1

1

œ„2

x � 1y � xx � 0y � 0

f

F�x� � �1

s1 � x 2

s2 � x

if x � 0

if 0 � x � 1	s2

if x � 1	s2

0 � x � 1	s2
f �x� � s1 � x 2x � 1	s2(b) Show that the acceleration of the particle is

where is the acceleration of a point on the
rim of the disk. The extra term is called the Coriolis
acceleration; it is the result of the interaction of the
rotation of the disk and the motion of the particle. One
can obtain a physical demonstration of this acceleration
by walking toward the edge of a moving merry-go-
round.

(c) Determine the Coriolis acceleration of a particle that
moves on a rotating disk according to the equation

24. Find the curvature of the curve with parametric equations

25. In designing transfer curves to connect sections of straight
railroad tracks, it is important to realize that the acceleration
of the train should be continuous so that the reactive force
exerted by the train on the track is also continuous. Because
of the formulas for the components of acceleration in 
Section 10.4, this will be the case if the curvature varies
continuously.
(a) A logical candidate for a transfer curve to join existing

tracks given by for and for y � s2 � xx � 0y � 1

y � y
t

0
 cos(1

2 �	 2) d	x � y
t

0
 sin(1

2 �	 2) d	

r�t� � e�t cos �t i � e�t sin �t j

2vd

ad � R��t�

a � 2vd � t ad

a

744 � CHAPTER 10 VECTOR FUNCTIONS



1. A particle moves with constant angular speed around a circle whose center is at the
origin and whose radius is . The particle is said to be in uniform circular motion.
Assume that the motion is counterclockwise and that the particle is at the point 
when . The position vector at time is

(a) Find the velocity vector and show that . Conclude that is tangent to the
circle and points in the direction of the motion.

(b) Show that the speed of the particle is the constant . The period of the
particle is the time required for one complete revolution. Conclude that

(c) Find the acceleration vector . Show that it is proportional to and that it points
toward the origin. An acceleration with this property is called a centripetal acceler-
ation. Show that the magnitude of the acceleration vector is .

(d) Suppose that the particle has mass . Show that the magnitude of the force that is
required to produce this motion, called a centripetal force, is

2. A circular curve of radius on a highway is banked at an angle so that a car can
safely traverse the curve without skidding when there is no friction between the road
and the tires. The loss of friction could occur, for example, if the road is covered with a
film of water or ice. The rated speed of the curve is the maximum speed that a car
can attain without skidding. Suppose a car of mass is traversing the curve at the rated
speed Two forces are acting on the car: the vertical force, , due to the weight of
the car, and a force exerted by, and normal to, the road. (See the figure.)

The vertical component of balances the weight of the car, so that .
The horizontal component of produces a centripetal force on the car so that, by New-
ton’s Second Law and part (d) of Problem 1,

(a) Show that .
(b) Find the rated speed of a circular curve with radius 400 ft that is banked at an angle

of .
(c) Suppose the design engineers want to keep the banking at , but wish to increase

the rated speed by . What should the radius of the curve be?50%
12�

12�

v2
R � Rt tan 	

� F � sin 	 �
mv2

R

R

F
� F � cos 	 � mtF

F
mtvR.

m
vR

	R

� F � �
m� v �2

R

Fm
� a � � R�2

ra

T �
2�R

� v � �
2�

�

T�R� v �

r
v v t

y

x

vv � r � 0v

r�t� � R cos �t i � R sin �t j

t � 0t � 0
�R, 0�

R
�P
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3. A projectile is fired from the origin with angle of elevation and initial speed .
Assuming that air resistance is negligible and that the only force acting on the projec-
tile is gravity, , we showed in Example 5 in Section 10.4 that the position vector of the
projectile is

We also showed that the maximum horizontal distance of the projectile is achieved
when and in this case the range is .
(a) At what angle should the projectile be fired to achieve maximum height and what is

the maximum height?
(b) Fix the initial speed and consider the parabola , whose graph

is shown in the figure. Show that the projectile can hit any target inside or on the
boundary of the region bounded by the parabola and the -axis, and that it can’t hit
any target outside this region.

(c) Suppose that the gun is elevated to an angle of inclination in order to aim at a
target that is suspended at a height directly over a point units downrange. The
target is released at the instant the gun is fired. Show that the projectile always hits
the target, regardless of the value , provided the projectile does not hit the ground
“before” .

4. (a) A projectile is fired from the origin down an inclined plane that makes an angle 
with the horizontal. The angle of elevation of the gun and the initial speed of the
projectile are and , respectively. Find the position vector of the projectile and
the parametric equations of the path of the projectile as functions of the time .
(Ignore air resistance.)

(b) Show that the angle of elevation that will maximize the downhill range is the
angle halfway between the plane and the vertical.

(c) Suppose the projectile is fired up an inclined plane whose angle of inclination is .
Show that, in order to maximize the (uphill) range, the projectile should be fired in
the direction halfway between the plane and the vertical.

(d) In a paper presented in 1686, Edmond Halley summarized the laws of gravity and
projectile motion and applied them to gunnery. One problem he posed involved
firing a projectile to hit a target a distance up an inclined plane. Show that the
angle at which the projectile should be fired to hit the target but use the least
amount of energy is the same as the angle in part (c). (Use the fact that the energy
needed to fire the projectile is proportional to the square of the initial speed, so
minimizing the energy is equivalent to minimizing the initial speed.)

5. A projectile of mass is fired from the origin at an angle of elevation . In addition to
gravity, assume that air resistance provides a force that is proportional to the velocity
and that opposes the motion. Then, by Newton’s Second Law, the total force acting on 

�m

R

	

�

t
v0�

	

D
v0

Dh
�

y

0 xR_R

y

0 xD

x

x 2 � 2Ry � R2 � 0v0

R � v2
0	t� � 45�
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1
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the projectile satisfies the equation

where is the position vector and is the constant of proportionality.
(a) Show that Equation 1 can be integrated to obtain the equation

where .

(b) Multiply both sides of the equation in part (a) by and show that the left-hand
side of the resulting equation is the derivative of the product . Then inte-
grate to find an expression for the position vector .

; 6. Investigate the shape of the surface with parametric equations

Start by graphing the surface from several points of view. Explain the appearance of the
graphs by determining the traces in the horizontal planes , , and .

7. A ball rolls off a table with a speed of 2 ft	s. The table is 3.5 ft high.
(a) Determine the point at which the ball hits the floor and find its speed at the instant 

of impact.
(b) Find the angle between the path of the ball and the vertical line drawn through the

point of impact. (See the figure.)
(c) Suppose the ball rebounds from the floor at the same angle with which it hits the

floor, but loses of its speed due to energy absorbed by the ball on impact.
Where does the ball strike the floor on the second bounce?

8. A cable has radius and length and is wound around a spool with radius without
overlapping. What is the shortest length along the spool that is covered by the cable?

RLr

20%

	

z � �
1
2z � �1z � 0

x � sin u    y � sin v    z � sin�u � v� 
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e �k	m� t
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k � 0R

m 
d 2R
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Functions of Several Variables � � � � � � � � � � � �

In Section 9.6 we discussed functions of two variables and their graphs. Here we study
functions of two or more variables from four points of view:

� verbally (by a description in words)
� numerically (by a table of values)
� algebraically (by an explicit formula)
� visually (by a graph or level curves)

Recall that a function of two variables is a rule that assigns to each ordered pair
of real numbers in its domain a unique real number denoted by . In

Example 3 in Section 9.6 we looked at the wave heights in the open sea as a func-
tion of the wind speed and the length of time that the wind has been blowing at that
speed. We presented a table of observed wave heights that represent the function

numerically. The function in the next example is also described verbally
and numerically.

EXAMPLE 1 In regions with severe winter weather, the wind-chill index is often used
to describe the apparent severity of the cold. This index I is a subjective temperature
that depends on the actual temperature T and the wind speed . So I is a function 
of T and , and we can write . The following table records values of I
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Physical quantities often depend on two or more variables. In this chapter 
we extend the basic ideas of differential calculus to such functions.

TABLE 1
Wind-chill index as a function of air 

temperature and wind speed



compiled by the National Oceanic and Atmospheric Administration and the National
Weather Service.

For instance, the table shows that if the temperature is and the wind speed is
40 km�h, then subjectively it would feel as cold as a temperature of about 
with no wind. So

EXAMPLE 2 In 1928 Charles Cobb and Paul Douglas published a study in which they
modeled the growth of the American economy during the period 1899–1922. They
considered a simplified view of the economy in which production output is deter-
mined by the amount of labor involved and the amount of capital invested. While
there are many other factors affecting economic performance, their model proved to
be remarkably accurate. The function they used to model production was of the form

where P is the total production (the monetary value of all goods produced in a year),
L is the amount of labor (the total number of person-hours worked in a year), and K
is the amount of capital invested (the monetary worth of all machinery, equipment,
and buildings). In Section 11.3 we will show how the form of Equation 1 follows
from certain economic assumptions.

Cobb and Douglas used economic data published by the government to obtain
Table 2. They took the year 1899 as a baseline and P, L, and K for 1899 were each
assigned the value 100. The values for other years were expressed as percentages of 
the 1899 figures.

Cobb and Douglas used the method of least squares to fit the data of Table 2 to
the function

(See Exercise 45 for the details.)
If we use the model given by the function in Equation 2 to compute the produc-

tion in the years 1910 and 1920, we get the values

which are quite close to the actual values, 159 and 231.
The production function (1) has subsequently been used in many settings, ranging

from individual firms to global economic questions. It has become known as the 
Cobb-Douglas production function.

The domain of the production function in Example 2 is 
because and represent labor and capital and are therefore never negative. For a
function given by an algebraic formula, recall that the domain consists of all pairs

for which the expression for is a well-defined real number.

EXAMPLE 3 Find the domain and range of

SOLUTION The domain of is

D � ��x, y� � 9 � x 2 � y 2 � 0� � ��x, y� � x 2 � y 2 � 9�

t

t�x, y� � s9 � x 2 � y 2

f �x, y��x, y�
f

KL
��L, K� � L � 0, K � 0�

 P�194, 407� � 1.01�194�0.75�407�0.25 � 235.8

 P�147, 208� � 1.01�147�0.75�208�0.25 � 161.9

P�L, K � � 1.01L0.75K 0.252

P�L, K � � bL�K 1��1

f �4, 40� � �11

�11 �C
4 �C
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TABLE 2

. Year P L K

1899 100 100 100
1900 101 105 107
1901 112 110 114
1902 122 117 122
1903 124 122 131
1904 122 121 138
1905 143 125 149
1906 152 134 163
1907 151 140 176
1908 126 123 185
1909 155 143 198
1910 159 147 208
1911 153 148 216
1912 177 155 226
1913 184 156 236
1914 169 152 244
1915 189 156 266
1916 225 183 298
1917 227 198 335
1918 223 201 366
1919 218 196 387
1920 231 194 407
1921 179 146 417
1922 240 161 431



which is the disk with center and radius 3 (see Figure 1). The range of is

Since is a positive square root, . Also

So the range is

Visual Representations

One way to visualize a function of two variables is through its graph. Recall from
Section 9.6 that the graph of is the surface with equation .

EXAMPLE 4 Sketch the graph of .

SOLUTION The graph has equation . We square both sides of this
equation to obtain , or , which we recognize as
an equation of the sphere with center the origin and radius 3. But, since , the
graph of is just the top half of this sphere (see Figure 2).

EXAMPLE 5 Use a computer to draw the graph of the Cobb-Douglas production func-
tion .

SOLUTION Figure 3 shows the graph of P for values of the labor L and capital K that
lie between 0 and 300. The computer has drawn the surface by plotting vertical
traces. We see from these traces that the value of the production P increases as
either L or K increases, as is to be expected.

Another method for visualizing functions, borrowed from mapmakers, is a contour
map on which points of constant elevation are joined to form contour lines, or level
curves.

Definition The level curves of a function of two variables are the curves with
equations , where is a constant (in the range of ).

A level curve is the set of all points in the domain of at which takes
on a given value . In other words, it shows where the graph of has height .kfk

fff �x, y� � k

fkf �x, y� � k
f

P

300

200

100

0

K

300
200

100
0 L

300
200

100
0FIGURE 3

P�L, K � � 1.01L0.75K 0.25

t

z � 0
x 2 � y 2 � z2 � 9z2 � 9 � x 2 � y 2

z � s9 � x 2 � y 2

t�x, y� � s9 � x 2 � y 2

z � f �x, y�f

�z � 0 � z � 3� � �0, 3	

s9 � x 2 � y 2 � 3?9 � x 2 � y 2 � 9

z � 0z

�z � z � s9 � x 2 � y 2, �x, y� � D�

t�0, 0�
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You can see from Figure 4 the relation between level curves and horizontal traces.
The level curves are just the traces of the graph of in the horizontal plane

projected down to the -plane. So if you draw the level curves of a function
and visualize them being lifted up to the surface at the indicated height, then you can
mentally piece together a picture of the graph. The surface is steep where the level
curves are close together. It is somewhat flatter where they are farther apart.

One common example of level curves occurs in topographic maps of mountainous
regions, such as the map in Figure 5. The level curves are curves of constant elevation
above sea level. If you walk along one of these contour lines you neither ascend nor
descend. Another common example is the temperature at locations with longitude

and latitude . Here the level curves are called isothermals and join locations with 

FIGURE 6
World mean sea-level temperatures

in January in degrees Celsius

yx
�x, y�

LONESOME MTN.

5000

4500

4500
4000

5000

5500

Lonesome Creek
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B

FIGURE 4 FIGURE 5

yx

0

z

45

k=35
k=40

k=20
k=25

k=30

k=45

f(x, y)=20

xyz � k
ff �x, y� � k
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the same temperature. Figure 6 shows a weather map of the world indicating the aver-
age January temperatures. The isothermals are the curves that separate the colored bands.

EXAMPLE 6 A contour map for a function is shown in Figure 7. Use it to estimate
the values of and .

SOLUTION The point (1, 3) lies partway between the level curves with -values 70
and 80. We estimate that

Similarly, we estimate that

EXAMPLE 7 Sketch the level curves of the function for the
values , , , .

SOLUTION The level curves are

This is a family of lines with slope . The four particular level curves with
, , , and are , , , and

. They are sketched in Figure 8. The level curves are equally
spaced parallel lines because the graph of is a plane (see Figure 4 in Section 9.6).

EXAMPLE 8 Sketch the level curves of the function

SOLUTION The level curves are

This is a family of concentric circles with center and radius . The
cases , , , are shown in Figure 9. Try to visualize these level curves lifted
up to form a surface and compare with the graph of (a hemisphere) in Figure 2.

EXAMPLE 9 Sketch some level curves of the function .

SOLUTION The level curves are

x 2

k�4
�

 y 2

k
� 1or4x 2 � y 2 � k

h�x, y� � 4x 2 � y 2

y

x0

k=3
k=2

k=1

k=0

(3, 0)

FIGURE 9
Contour map of g(x, y)=œ„„„„„„„„„9-≈-¥

t

321k � 0
s9 � k 2�0, 0�

x 2 � y 2 � 9 � k 2ors9 � x 2 � y 2 � k

k � 0, 1, 2, 3fort�x, y� � s9 � x 2 � y 2

f
3x � 2y � 6 � 0

3x � 2y � 03x � 2y � 6 � 03x � 2y � 12 � 01260k � �6
�

3
2

3x � 2y � �k � 6� � 0or6 � 3x � 2y � k

1260k � �6
f �x, y� � 6 � 3x � 2y

f �4, 5� � 56

f �1, 3� � 73

z

f �4, 5�f �1, 3�
f
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FIGURE 7

FIGURE 8
Contour map of f(x, y)=6-3x-2y
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which, for , describes a family of ellipses with semiaxes and . Fig-
ure 10(a) shows a contour map of h drawn by a computer with level curves corre-
sponding to . Figure 10(b) shows these level curves lifted
up to the graph of h (an elliptic paraboloid) where they become horizontal traces.
We see from Figure 10 how the graph of h is put together from the level curves.

EXAMPLE 10 Plot level curves for the Cobb-Douglas production function of
Example 2.

SOLUTION In Figure 11 we use a computer to draw a contour plot for the Cobb-
Douglas production function

Level curves are labeled with the value of the production P. For instance, the level
curve labeled 140 shows all values of the labor L and capital investment K that
result in a production of . We see that, for a fixed value of P, as L increases
K decreases, and vice versa.

For some purposes, a contour map is more useful than a graph. That is certainly
true in Example 10. (Compare Figure 11 with Figure 3.) It is also true in estimating
function values, as in Example 6.

Figure 12 shows some computer-generated level curves together with the corre-
sponding computer-generated graphs. Notice that the level curves in part (c) crowd 

FIGURE 11 100

100

200

300

K

L200 300

100
140

180
220

P � 140

P�L, K � � 1.01P0.75K 0.25

FIGURE 10
The graph of h(x, y)=4≈+¥

is formed by lifting the level curves. (a) Contour map

x

y

y

z

x

(b) Horizontal traces are raised level curves

k � 0.25, 0.5, 0.75, . . . , 4

sksk�2k � 0
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together near the origin. That corresponds to the fact that the graph in part (d) is very
steep near the origin.

Functions of Three or More Variables

A function of three variables, , is a rule that assigns to each ordered triple 
in a domain a unique real number denoted by . For instance, the tem-
perature at a point on the surface of the Earth depends on the longitude x and lati-
tude y of the point and on the time t, so we could write .

EXAMPLE 11 Find the domain of if

SOLUTION The expression for is defined as long as , so the domain
of is

This is a half-space consisting of all points that lie above the plane .z � y

D � ��x, y, z� � � 3 � z � y�

f
z � y � 0f �x, y, z�

f �x, y, z� � ln�z � y� � xy sin z

f

T � f �x, y, t�
T

f �x, y, z�D � � 3
�x, y, z�f

FIGURE 12

(b) Two views of f(x, y)=_xye_≈_¥(a) Level curves of f(x, y)=_xye_≈_¥

x

y z

y
x

z

(c) Level curves of f(x, y)=
_3y

≈+¥+1

y

x

(d) f(x, y)=
_3y

≈+¥+1

z

y

x
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It’s very difficult to visualize a function of three variables by its graph, since that
would lie in a four-dimensional space. However, we do gain some insight into by
examining its level surfaces, which are the surfaces with equations ,
where is a constant. If the point moves along a level surface, the value of

remains fixed.

EXAMPLE 12 Find the level surfaces of the function

SOLUTION The level surfaces are , where . These form a family 
of concentric spheres with radius . (See Figure 13.) Thus, as varies over
any sphere with center , the value of remains fixed.

Functions of any number of variables can be considered. A function of n variables
is a rule that assigns a number to an -tuple of
real numbers. We denote by the set of all such n-tuples. For example, if a company
uses different ingredients in making a food product, is the cost per unit of the 
ingredient, and units of the ingredient are used, then the total cost of the ingre-
dients is a function of the variables :

The function is a real-valued function whose domain is a subset of . Some-
times we will use vector notation in order to write such functions more compactly: If

, we often write in place of . With this nota-
tion we can rewrite the function defined in Equation 3 as

where and denotes the dot product of the vectors c and x
in .

In view of the one-to-one correspondence between points in and
their position vectors in , we have three ways of looking at a
function f defined on a subset of :

1. As a function of real variables 

2. As a function of a single point variable 

3. As a function of a single vector variable 

We will see that all three points of view are useful.

x � 
x1, x2, . . . , xn �
�x1, x2, . . . , xn �

x1, x2, . . . , xnn

�n
Vnx � 
x1, x2, . . . , xn �

� n�x1, x2, . . . , xn�
Vn

c � xc � 
c1, c2, . . . , cn �

f �x� � c � x

f �x1, x2, . . . , xn �f �x�x � 
x1, x2, . . . , xn �

� nf

C � f �x1, x2, . . . , xn � � c1x1 � c2x2 � � � � � cnxn3

x1, x2, . . . , xnn
Cithxi

ithcin
�n

�x1, x2, . . . , xn �nz � f �x1, x2, . . . , xn �

f �x, y, z�O
�x, y, z�sk

k � 0x 2 � y 2 � z2 � k

f �x, y, z� � x 2 � y 2 � z2

f �x, y, z�
�x, y, z�k

f �x, y, z� � k
f

f

756 � CHAPTER 11 PARTIAL DERIVATIVES

FIGURE 13
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(c) Describe in words the meaning of the question “For
what value of is ?” Then answer the
question.

(d) What is the meaning of the function ?
Describe the behavior of this function.

(e) What is the meaning of the function ?
Describe the behavior of this function.

I � f �T, 50�

I � f ��4, v�

f �T, 80� � �14T
1. In Example 1 we considered the function , where

is the wind-chill index, is the actual temperature, and 
is the wind speed. A numerical representation is given in
Table 1.
(a) What is the value of ? What is its meaning?
(b) Describe in words the meaning of the question “For

what value of is ?” Then answer the
question.

f ��12, v� � �26v

f �8, 60�

vTI
I � f �T, v�

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �11.1



7. Let .
(a) Evaluate .
(b) Find the domain of .
(c) Find the range of .

8. Let 
(a) Evaluate .
(b) Find the domain of .
(c) Find the range of .

9. A contour map for a function is shown. Use it to esti-
mate the values of and . What can you
say about the shape of the graph?

10. Two contour maps are shown. One is for a function 
whose graph is a cone. The other is for a function t whose
graph is a paraboloid. Which is which, and why?

11. Locate the points and in the map of Lonesome Moun-
tain (Figure 5). How would you describe the terrain 
near ? Near ?

12. Make a rough sketch of a contour map for the function
whose graph is shown.

z

y
x

BA

BA

x

I

x

IIy y

f

y

x0 1

1
70 60 50 40

30

20

10

f �3, �2�f ��3, 3�
f

t

t

t�2, �2, 4�
t�x, y, z� � ln�25 � x 2 � y2 � z2�

f
f

f �2, �1, 6�
f �x, y, z� � esz�x2�y22. The temperature-humidity index (or humidex, for short) is

the perceived air temperature when the actual temperature is
and the relative humidity is , so we can write .

The following table of values of is an excerpt from a 
table compiled by the National Oceanic and Atmospheric
Administration.

TABLE 3 Apparent temperature as a function
of temperature and humidity

(a) What is the value of ? What is its meaning?
(b) For what value of is ?
(c) For what value of is ?
(d) What are the meanings of the functions 

and ? Compare the behavior of these two
functions of .

3. Verify for the Cobb-Douglas production function

discussed in Example 2 that the production will be doubled 
if both the amount of labor and the amount of capital are 
doubled. Is this also true for the general production function

?

4. The temperature-humidity index discussed in Exercise 2
has been modeled by the following fourth-degree
polynomial:

Check to see how closely this model agrees with the values
in Table 3 for a few values of and . Do you prefer the
numerical or algebraic representation of this function?

5. Find and sketch the domain of the function
.

6. Find and sketch the domain of the function
. What is the range of ?ff �x, y� � s1 � x � y2

f �x, y� � ln�9 � x 2 � 9y 2 �

hT

 � 0.00000199T 2h 2

 � 0.00122874T 2h � 0.00085282Th 2

 � 0.00683783T 2 � 0.05481717h 2

 � 10.14333127h � 0.22475541Th

 I�T, h� � �42.379 � 2.04901523T

I

P�L, K � � bL�K 1��

P�L, K � � 1.01L0.75K 0.25

h
I � f �100, h�

I � f �80, h�
f �T, 50� � 88T
f �90, h� � 100h

f �95, 70�

77

82

87

93

99

78

84

90

96

104

79

86

93

101

110

81

88

96

107

120

82

90

100

114

132

83

93

106

124

144

T
h 20 30 40 50 60 70

80

85

90

95

100

Relative humidity (%)

A
ct

ua
l t

em
pe

ra
tu

re
 (

°F
)

I
I � f �T, h�hT

I

SECTION 11.1 FUNCTIONS OF SEVERAL VARIABLES � 757



31–36 � Match the function (a) with its graph (labeled A–F on
page 759) and (b) with its contour map (labeled I–VI). Give
reasons for your choices.

31. 32.

33. 34.

35. 36.
� � � � � � � � � � � � �

37–40 � Describe the level surfaces of the function.

37.

38.

39.

40.
� � � � � � � � � � � � �

41–42 � Describe how the graph of is obtained from the
graph of .

41. (a) (b)
(c) (d)

42. (a) (b)
(c)

� � � � � � � � � � � � �

; 43. Use a computer to investigate the family of functions
. How does the shape of the graph depend 

on ?

; 44. Graph the functions

and

In general, if t is a function of one variable, how is the
graph of obtained from the graph 
of t?

; 45. (a) Show that, by taking logarithms, the general Cobb-
Douglas function can be expressed as

(b) If we let and , the equation in
part (a) becomes the linear equation . Use
Table 2 (in Example 2) to make a table of values of

and for the years 1899–1922. Then use
a graphing calculator or computer to find the least
squares regression line through the points

.
(c) Deduce that the Cobb-Douglas production function is

.P � 1.01L0.75K 0.25

�ln�L�K�, ln�P�K��

ln�P�K�ln�L�K�

y � �x � ln b
y � ln�P�K �x � ln�L�K �

ln 
P

K
� ln b � � ln 

L

K

P � bL�K 1��

f �x, y� � t(sx 2 � y 2 )

f �x, y� �
1

sx 2 � y 2

f �x, y� � sin(sx 2 � y 2 )f �x, y� � lnsx 2 � y 2

f �x, y� � esx2�y2f �x, y� � sx 2 � y 2

c
f �x, y� � e cx2�y2

t�x, y� � f �x � 3, y � 4�
t�x, y� � f �x, y � 2�t�x, y� � f �x � 2, y�

t�x, y� � 2 � f �x, y�t�x, y� � �f �x, y�
t�x, y� � 2 f �x, y�t�x, y� � f �x, y� � 2

f
t

f �x, y, z� � x 2 � y 2

f �x, y, z� � x 2 � y 2 � z2

f �x, y, z� � x 2 � 3y 2 � 5z2

f �x, y, z� � x � 3y � 5z

z � sin2x �
1
4 y 2z � sin x sin y

z � x 3 � 3xy 2z �
1

x 2 � 4y 2

z � x 2 y 2e �x 2�y 2

z � sin sx 2 � y 2

13–14 � A contour map of a function is shown. Use it to make
a rough sketch of the graph of .

13. 14.

� � � � � � � � � � � � �

15–22 � Draw a contour map of the function showing several
level curves.

15. 16.

17. 18.

19. 20.

21. 22.
� � � � � � � � � � � � �

23–24 � Sketch both a contour map and a graph of the function
and compare them.

23.

24.
� � � � � � � � � � � � �

25. A thin metal plate, located in the -plane, has temperature
at the point . The level curves of are called

isothermals because at all points on an isothermal the tem-
perature is the same. Sketch some isothermals if the temper-
ature function is given by

26. If is the electric potential at a point in the 
-plane, then the level curves of are called equipotential

curves because at all points on such a curve the electric 
potential is the same. Sketch some equipotential curves if

, where is a positive constant.

; 27–30 � Use a computer to graph the function using various
domains and viewpoints. Get a printout of one that, in your
opinion, gives a good view. If your software also produces level
curves, then plot some contour lines of the same function and
compare with the graph.

27.

28.

29. (monkey saddle)

30. (dog saddle)
� � � � � � � � � � � � �

f �x, y� � xy 3 � yx 3

f �x, y� � xy 2 � x 3

f �x, y� � �1 � 3x 2 � y2�e1�x2�y2

f �x, y� � e x cos y

cV�x, y� � c�sr 2 � x 2 � y 2

Vxy
�x, y�V�x, y�

T�x, y� � 100��1 � x 2 � 2y 2 �

T�x, y�T�x, y�
xy

f �x, y� � s36 � 9x 2 � 4y 2

f �x, y� � x 2 � 9y 2

f �x, y� � y��x 2 � y2�f �x, y� � x � y 2

f �x, y� � y sec xf �x, y� � sx � y

f �x, y� � e y�xf �x, y� � y � ln x

f �x, y� � x 2 � y 2f �x, y� � xy

y

x

_8

_6

_4

8

y

x

13

14

12
11

f
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Limits and Continuity � � � � � � � � � � � � � � �

Let’s compare the behavior of the functions

as x and y both approach 0 [and therefore the point approaches the origin].

TABLE 1 Values of TABLE 2 Values of 

Tables 1 and 2 show values of and , correct to three decimal places,
for points near the origin. (Notice that neither function is defined at the origin.)
It appears that as approaches (0, 0), the values of are approaching 1
whereas the values of aren’t approaching any number. It turns out that these
guesses based on numerical evidence are correct, and we write

and does not exist

In general, we use the notation

to indicate that the values of approach the number L as the point 
approaches the point along any path that stays within the domain of .

Definition We write

and we say that the limit of as approaches is if we can
make the values of as close to as we like by taking the point 
sufficiently close to the point , but not equal to .

Other notations for the limit in Definition 1 are

and f �x, y� l L  as  �x, y� l �a, b�lim 
x l a
y l b

 f �x, y� � L

�a, b��a, b�
�x, y�Lf �x, y�

L�a, b��x, y�f �x, y�

 
lim

� x, y� l � a, b�
 
 f �x, y� � L

1

f�a, b�
�x, y�f �x, y�

 
lim

� x, y� l � a, b�
 
 f �x, y� � L

lim
� x, y� l � 0, 0�

 
 
x 2 � y 2

x 2 � y 2lim
� x, y� l � 0, 0�

 
 
sin�x 2 � y 2 �

x 2 � y 2 � 1

t�x, y�
f �x, y��x, y�

�x, y�
t�x, y�f �x, y�

0.000

�0.600

�0.923

�1.000

�0.923

�0.600

0.000

0.600

0.000

�0.724

�1.000

�0.724

0.000

0.600

0.923

0.724

0.000

�1.000

0.000

0.724

0.923

1.000

1.000

1.000

1.000

1.000

1.000

0.923

0.724

0.000

�1.000

0.000

0.724

0.923

0.600

0.000

�0.724

�1.000

�0.724

0.000

0.600

0.000

�0.600

�0.923

�1.000

�0.923

�0.600

0.000

x
y �1.0 �0.5 �0.2 0 0.2 0.5   1.0

�1.0

�0.5

�0.2

0

0.2

0.5

1.0

0.455

0.759

0.829

0.841

0.829

0.759

0.455

0.759

0.959

0.986

0.990

0.986

0.959

0.759

0.829

0.986

0.999

1.000

0.999

0.986

0.829

0.841

0.990

1.000

1.000

0.990

0.841

0.829

0.986

0.999

1.000

0.999

0.986

0.829

0.759

0.959

0.986

0.990

0.986

0.959

0.759

0.455

0.759

0.829

0.841

0.829

0.759

0.455

x
y �1.0 �0.5 �0.2 0 0.2 0.5 1.0

�1.0

�0.5

�0.2

0

0.2

0.5

1.0

t�x, y�f �x, y�

�x, y�

t�x, y� �
x 2 � y 2

x 2 � y 2andf �x, y� �
sin�x 2 � y 2 �

x 2 � y 2

11.2

760 � CHAPTER 11 PARTIAL DERIVATIVES

� A more precise definition of the limit
of a function of two variables is given in
Appendix D.



For functions of a single variable, when we let approach , there are only two
possible directions of approach, from the left or from the right. We recall from Chap-
ter 2 that if , then does not exist.

For functions of two variables the situation is not as simple because we can let
approach from an infinite number of directions in any manner whatsoever

(see Figure 1) as long as stays within the domain of .
Definition 1 says that the distance between and L can be made arbitrarily

small by making the distance from to sufficiently small (but not 0). The
definition refers only to the distance between and . It does not refer to the
direction of approach. Therefore, if the limit exists, then must approach the
same limit no matter how approaches . Thus, if we can find two different
paths of approach along which the function has different limits, then it follows
that does not exist.

If as along a path and as
along a path , where , then does 

not exist.

EXAMPLE 1 Show that does not exist.

SOLUTION Let . First let’s approach along the 
-axis. Then gives for all , so

We now approach along the -axis by putting . Then for 
all , so

(See Figure 2.) Since has two different limits along two different lines, the given
limit does not exist. (This confirms the conjecture we made on the basis of numeri-
cal evidence at the beginning of this section.)

EXAMPLE 2 If , does exist?

SOLUTION If , then . Therefore

If , then , so

Although we have obtained identical limits along the axes, that does not show that
the given limit is 0. Let’s now approach along another line, say . For all

,

Therefore

(See Figure 3.) Since we have obtained different limits along different paths, the
given limit does not exist.

�x, y� l �0, 0� along y � xasf �x, y� l 1
2

f �x, x� �
x 2

x 2 � x 2 �
1

2

x � 0
y � x�0, 0�

�x, y� l �0, 0� along the y-axisasf �x, y� l 0

f �0, y� � 0�y 2 � 0x � 0

�x, y� l �0, 0� along the x-axisasf �x, y� l 0

f �x, 0� � 0�x 2 � 0y � 0

lim 
�x, y� l �0, 0�

 f �x, y�f �x, y� � xy��x 2 � y 2 �

f

�x, y� l �0, 0� along the y-axisasf �x, y� l �1

y � 0
f �0, y� �

�y 2

y 2 � �1x � 0y

�x, y� l �0, 0� along the x-axisasf �x, y� l 1

x � 0f �x, 0� � x 2�x 2 � 1y � 0x
�0, 0�f �x, y� � �x 2 � y 2 ���x 2 � y 2 �

lim
� x, y� l � 0, 0�

 
 
x 2 � y 2

x 2 � y 2

lim�x, y� l �a, b� f �x, y�L1 � L2C2�x, y� l �a, b�
f �x, y� l L2C1�x, y� l �a, b�f �x, y� l L1

lim�x, y� l �a, b� f �x, y�
f �x, y�
�a, b��x, y�

f �x, y�
�a, b��x, y�

�a, b��x, y�
f �x, y�

f�x, y�
�a, b��x, y�

limx l a f �x� limx l a� f �x� � limx l a� f �x�

ax
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Figure 4 sheds some light on Example 2. The ridge that occurs above the line 
corresponds to the fact that for all points on that line except the 
origin.

EXAMPLE 3 If , does exist?

SOLUTION With the solution of Example 2 in mind, let’s try to save time by letting
along any nonvertical line through the origin. Then , where 

is the slope, and

So

Thus, has the same limiting value along every nonvertical line through the origin.
But that does not show that the given limit is 0, for if we now let 
along the parabola , we have

so

Since different paths lead to different limiting values, the given limit does not exist.

Now let’s look at limits that do exist. Just as for functions of one variable, the cal-
culation of limits for functions of two variables can be greatly simplified by the use of
properties of limits. The Limit Laws listed in Section 2.3 can be extended to functions
of two variables. The limit of a sum is the sum of the limits, the limit of a product is
the product of the limits, and so on. In particular, the following equations are true.

The Squeeze Theorem also holds.

EXAMPLE 4 Find if it exists.

SOLUTION As in Example 3, we could show that the limit along any line through the
origin is 0. This doesn’t prove that the given limit is 0, but the limits along the
parabolas and also turn out to be 0, so we begin to suspect that the
limit does exist and is equal to 0.

To prove it we look at the distance from to 0:

Notice that because . So

x 2

x 2 � y 2 � 1

y2 � 0x 2 � x 2 � y2

� 3x 2y

x 2 � y 2 � 0 � � � 3x 2y

x 2 � y 2 � �
3x 2 � y �
x 2 � y 2

f �x, y�

x � y 2y � x 2

lim
�x, y� l �0, 0�

 
 

3x 2y

x 2 � y 2

lim
�x, y� l �a, b�

 
 c � clim

�x, y� l �a, b�
 
 y � blim

�x, y� l �a, b�
 
 x � a2

�x, y� l �0, 0� along x � y 2asf �x, y� l 1
2

f �x, y� � f �y 2, y� �
y 2 � y 2

�y 2 �2 � y 4 �
y 4

2y 4 �
1

2

x � y 2
�x, y� l �0, 0�

f

�x, y� l �0, 0� along y � mxasf �x, y� l 0

f �x, y� � f �x, mx� �
x�mx�2

x 2 � �mx�4 �
m 2x 3

x 2 � m 4x 4 �
m 2x

1 � m 4x 2

my � mx�x, y� l �0, 0�

lim
� x, y� l �0, 0�

 
 f �x, y�f �x, y� �

xy 2

x 2 � y 4

�x, y�f �x, y� � 1
2

y � x
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� Figure 5 shows the graph of the func-
tion in Example 3. Notice the ridge
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Thus

Now we use the Squeeze Theorem. Since

and [by (2)]

we conclude that

Continuity

Recall that evaluating limits of continuous functions of a single variable is easy. It can
be accomplished by direct substitution because the defining property of a continuous
function is . Continuous functions of two variables are also defined
by the direct substitution property.

Definition A function of two variables is called continuous at if

We say is continuous on if is continuous at every point in .

The intuitive meaning of continuity is that if the point changes by a small
amount, then the value of changes by a small amount. This means that a sur-
face that is the graph of a continuous function has no hole or break.

Using the properties of limits, you can see that sums, differences, products, and
quotients of continuous functions are continuous on their domains. Let’s use this fact
to give examples of continuous functions.

A polynomial function of two variables (or polynomial, for short) is a sum of
terms of the form , where is a constant and and are nonnegative integers.
A rational function is a ratio of polynomials. For instance,

is a polynomial, whereas

is a rational function.
The limits in (2) show that the functions , , and 

are continuous. Since any polynomial can be built up out of the simple functions ,
, and by multiplication and addition, it follows that all polynomials are continuous

on . Likewise, any rational function is continuous on its domain because it is a quo-
tient of continuous functions.

� 2
ht

f
h�x, y� � ct�x, y� � yf �x, y� � x

t�x, y� �
2xy � 1

x 2 � y 2

f �x, y� � x 4 � 5x 3y 2 � 6xy 4 � 7y � 6

nmccxmyn

f �x, y�
�x, y�

D�a, b�fDf

lim
�x, y� l �a, b�

 
 f �x, y� � f �a, b�

�a, b�f3

limx l a f �x� � f �a�

lim
�x, y� l �0, 0�

 
 

3x 2y

x 2 � y 2 � 0

lim
�x, y� l �0, 0�

 
 3� y � � 0lim

�x, y� l �0, 0�
 
 0 � 0

0 �
3x 2 � y �
x 2 � y 2 � 3� y �
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EXAMPLE 5 Evaluate .

SOLUTION Since is a polynomial, it is continuous
everywhere, so we can find the limit by direct substitution:

EXAMPLE 6 Where is the function continuous?

SOLUTION The function is discontinuous at because it is not defined there. 
Since is a rational function, it is continuous on its domain, which is the set

.

EXAMPLE 7 Let

Here is defined at but is still discontinuous at 0 because 
does not exist (see Example 1).

EXAMPLE 8 Let

We know is continuous for since it is equal to a rational function
there. Also, from Example 4, we have

Therefore, is continuous at , and so it is continuous on .

Just as for functions of one variable, composition is another way of combining 
two continuous functions to get a third. In fact, it can be shown that if is a contin-
uous function of two variables and is a continuous function of a single variable 
that is defined on the range of , then the composite function defined by

is also a continuous function.

EXAMPLE 9 Where is the function continuous?

SOLUTION The function is a rational function and therefore continuous
except on the line . The function is continuous everywhere. So
the composite function

is continuous except where . The graph in Figure 7 shows the break in the
graph of above the -axis.yh

x � 0

t� f �x, y�� � arctan�y�x� � h�x, y�

t�t� � arctan tx � 0
f �x, y� � y�x

h�x, y� � arctan�y�x�

h�x, y� � t� f �x, y��
h � t � ff

t

f

� 2�0, 0�f

lim
�x, y� l �0, 0�

 
 f �x, y� � lim

�x, y� l �0, 0�
 
 

3x 2y

x 2 � y 2 � 0 � f �0, 0�

�x, y� � �0, 0�f

f �x, y� � 
0

3x 2y

x 2 � y 2
if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

lim�x, y� l �0, 0� t�x, y�t�0, 0�t

t�x, y� � 
0

x 2 � y 2

x 2 � y 2
if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

D � ��x, y� � �x, y� � �0, 0��
f

�0, 0�f

f �x, y� �
x 2 � y 2

x 2 � y 2

lim
�x, y� l �1, 2�

 
 �x 2y 3 � x 3y 2 � 3x � 2y� � 12 � 23 � 13 � 22 � 3 � 1 � 2 � 2 � 11

f �x, y� � x 2y 3 � x 3y 2 � 3x � 2y

lim
�x, y� l �1, 2�

 
 �x 2y 3 � x 3y 2 � 3x � 2y�
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� Figure 6 shows the graph of the 
continuous function in Example 8.
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Everything that we have done in this section can be extended to functions of three
or more variables. The notation

means that the values of approach the number as the point 
approaches the point along any path in the domain of . The function is
continuous at if

For instance, the function

is a rational function of three variables and so is continuous at every point in except
where . In other words, it is discontinuous on the sphere with cen-
ter the origin and radius 1.

x 2 � y 2 � z2 � 1
� 3

f �x, y, z� �
1

x 2 � y 2 � z2 � 1

lim
�x, y, z� l �a, b, c�

 
 f �x, y, z� � f �a, b, c�

�a, b, c�
ff�a, b, c�

�x, y, z�Lf �x, y, z�

lim
�x, y, z� l �a, b, c�

 
 f �x, y, z� � L
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14.

15.

16.

17.

18.

� � � � � � � � � � � � �

; 19–20 � Use a computer graph of the function to explain why
the limit does not exist.

19.

20.

� � � � � � � � � � � � �

21–22 � Find and the set on which is 
continuous.

21. ,

22. ,
� � � � � � � � � � � � �

; 23–24 � Graph the function and observe where it is discontinu-
ous. Then use the formula to explain what you have observed.

23. 24.

� � � � � � � � � � � � �

f �x, y� �
1

1 � x 2 � y 2f �x, y� � e 1��x�y�

f �x, y� � y ln xt�z� � sin z

f �x, y� � 2x � 3y � 6t�t� � t 2 � st

hh�x, y� � t� f �x, y��

lim
�x, y� l �0, 0�

 
 

xy 3

x 2 � y 6

lim
�x, y� l �0, 0�

 
 
2x 2 � 3xy � 4y 2

3x 2 � 5y 2

lim
�x, y, z� l �0, 0, 0�

 
 
x 2 � 2y 2 � 3z 2

x 2 � y 2 � z 2

lim
�x, y, z� l �0, 0, 0�

 
 
xy � yz 2 � xz 2

x 2 � y 2 � z 4

lim
�x, y, z� l �3, �2, 2�

 
 e x 2z cos�y � z�

lim
�x, y� l �0, 0�

 
 

x 2 � y 2

sx 2 � y 2 � 1 � 1

lim
�x, y� l �2, 0�

 
 

xy � 2y

x 2 � y 2 � 4x � 4
1. Suppose that . What can you say

about the value of ? What if is continuous?

2. Explain why each function is continuous or discontinuous.
(a) The outdoor temperature as a function of longitude,

latitude, and time
(b) Elevation (height above sea level) as a function of longi-

tude, latitude, and time
(c) The cost of a taxi ride as a function of distance traveled

and time

3–4 � Use a table of numerical values of for near
the origin to make a conjecture about the value of the limit of

as . Then explain why your guess is 
correct.

3. 4.

� � � � � � � � � � � � �

5–18 � Find the limit, if it exists, or show that the limit does 
not exist.

5.

6.

7. 8.

9. 10.

11. 12.

13. lim
�x, y� l �0, 0�

 
 

2x 2y

x 4 � y 2

lim
�x, y� l �0, 0�

 
 

x 2 sin2y

x 2 � 2y 2lim
�x, y� l �0, 0�

 
 

xy

sx 2 � y 2

lim
�x, y� l �0, 0�

 
 
x 3 � xy 2

x 2 � y 2lim
�x, y� l �0, 0�

 
 

8x 2y 2

x 4 � y 4

lim
�x, y� l �0, 0�

 
 
�x � y�2

x 2 � y 2lim
�x, y� l �0, 0�

 
 

x 2

x 2 � y 2

lim
�x, y� l �6, 3�

 
 xy cos�x � 2y�

lim
�x, y� l �5, �2�

 
 �x 5 � 4x 3y � 5xy 2 �

f �x, y� �
2xy

x 2 � 2y 2f �x, y� �
x 2y 3 � x 3y 2 � 5

2 � xy

�x, y� l �0, 0�f �x, y�

�x, y�f �x, y�

ff �3, 1�
lim�x, y� l �3, 1� f �x, y� � 6
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33–34 � Use polar coordinates to find the limit. [If are
polar coordinates of the point with , note that

as .]

33.

34.

� � � � � � � � � � � � �

35. Use spherical coordinates to find

; 36. At the beginning of this section we considered the function

and guessed that as on the basis
of numerical evidence. Use polar coordinates to confirm the
value of the limit. Then graph the function.

�x, y� l �0, 0�f �x, y� l 1

f �x, y� �
sin�x 2 � y 2 �

x 2 � y 2

lim
�x, y, z� l �0, 0, 0�

 
 

xyz

x 2 � y 2 � z 2

lim
�x, y� l  �0, 0�

 
 �x 2 � y 2 � ln�x 2 � y 2 �

lim
�x, y� l  �0, 0�

 
 
x 3 � y 3

x 2 � y 2

�x, y� l �0, 0�r l 0�

r � 0�x, y�
�r, 
�25–32 � Determine the largest set on which the function is 

continuous.

25. 26.

27.

28.

29.

30.

31.

32.

� � � � � � � � � � � � �

f �x, y� � 
0

xy

x 2 � xy � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

f �x, y� � 
1

x 2 y 3

2x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

f �x, y, z� � sx � y � z

f �x, y, z� �
xyz

x 2 � y 2 � z

G�x, y� � sin�1�x 2 � y 2 �

F�x, y� � arctan(x � sy )

F�x, y� �
x � y

1 � x 2 � y 2F�x, y� �
1

x 2 � y

Partial Derivatives � � � � � � � � � � � � � � �

On a hot day, extreme humidity makes us think the temperature is higher than it really 
is, whereas in very dry air we perceive the temperature to be lower than the ther-
mometer indicates. The National Weather Service has devised the heat index (also
called the temperature-humidity index, or humidex) to describe the combined effects
of temperature and humidity. The heat index I is the perceived air temperature when
the actual temperature is T and the relative humidity is H. So I is a function of T and
H and we can write . The following table of values of I is an excerpt from
a table compiled by the National Weather Service.

TABLE 1 Heat index as a function of temperature and humidity

If we concentrate on the highlighted column of the table, which corresponds to a
relative humidity of H � 70%, we are considering the heat index as a function of the 

T
H

Relative humidity (%)

Actual
temperature

(°F)

90

92

94

96

98

100

50 55 60 65 70 75 80 85 90

96

100

104

109

114

119

98

103

107

113

118

124

100

105

111

116

123

129

103

108

114

121

127

135

106

112

118

125

133

141

109

115

122

130

138

147

112

119

127

135

144

154

115

123

132

141

150

161

119

128

137

146

157

168

I

I � f �T, H �

11.3
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single variable T for a fixed value of H. Let’s write . Then de-
scribes how the heat index I increases as the actual temperature T increases when the
relative humidity is 70%. The derivative of t when is the rate of change of
I with respect to T when :

We can approximate it using the values in Table 1 by taking h � 2 and :

Averaging these values, we can say that the derivative is approximately 3.75.
This means that, when the actual temperature is and the relative humidity is
70%, the apparent temperature (heat index) rises by about for every degree
that the actual temperature rises!

Now let’s look at the highlighted row in Table 1, which corresponds to a fixed
temperature of . The numbers in this row are values of the function

, which describes how the heat index increases as the relative humid-
ity H increases when the actual temperature is . The derivative of this func-
tion when H � 70% is the rate of change of I with respect to H when H � 70%:

By taking h � 5 and �5, we approximate using the tabular values:

By averaging these values we get the estimate . This says that, when the
temperature is 96 °F and the relative humidity is 70%, the heat index rises about 
for every percent that the relative humidity rises.

In general, if is a function of two variables and , suppose we let only vary
while keeping fixed, say , where is a constant. Then we are really consider-
ing a function of a single variable , namely, . If has a derivative at ,
then we call it the partial derivative of with respect to x at and denote it by

. Thus

t�x� � f �x, b�wherefx�a, b� � t��a�1

fx�a, b�
�a, b�f

att�x� � f �x, b�x
by � by

xyxf

0.9 �F
G��70� � 0.9

 G��70� �
G�65� � G�70�

�5
�

 f �96, 65� � f �96, 70�
�5

�
121 � 125

�5
� 0.8

 G��70� �
G�75� � G�70�

5
�

 f �96, 75� � f �96, 70�
5

�
130 � 125

5
� 1

G��70�

G��70� � lim
h l 0

 
G�70 � h� � G�70�

h
� lim

h l 0
 
 f �96, 70 � h� � f �96, 70�

h

T � 96 �F
G�H� � f �96, H�

T � 96 �F

3.75 �F
96 �F

t��96�

 t��96� �
t�94� � t�96�

�2
�

 f �94, 70� � f �96, 70�
�2

�
118 � 125

�2
� 3.5

 t��96� �
t�98� � t�96�

2
�

 f �98, 70� � f �96, 70�
2

�
133 � 125

2
� 4

�2

t��96� � lim
h l 0

 
t�96 � h� � t�96�

h
� lim

h l 0
 
 f �96 � h, 70� � f �96, 70�

h

T � 96 �F
T � 96 �F

t�T�t�T� � f �T, 70�
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By the definition of a derivative, we have

and so Equation 1 becomes

Similarly, the partial derivative of with respect to y at , denoted by ,
is obtained by keeping fixed and finding the ordinary derivative at of the
function :

With this notation for partial derivatives, we can write the rates of change of the
heat index I with respect to the actual temperature T and relative humidity H when

and H � 70% as follows:

If we now let the point vary in Equations 2 and 3, and become functions
of two variables.

If is a function of two variables, its partial derivatives are the functions
and defined by

There are many alternative notations for partial derivatives. For instance, instead of 
we can write or (to indicate differentiation with respect to the first variable)

or . But here can’t be interpreted as a ratio of differentials.

Notations for Partial Derivatives If , we write

 fy�x, y� � fy �
�f

�y
�

�

�y
 f �x, y� �

�z

�y
� f2 � D2 f � Dy f

 fx�x, y� � fx �
�f

�x
�

�

�x
 f �x, y� �

�z

�x
� f1 � D1 f � Dx f

z � f �x, y�

�f��x�f��x
D1 ff1fx

 fy�x, y� � lim
h l 0

 
 f �x, y � h� � f �x, y�

h

 fx�x, y� � lim
h l 0

 
 f �x � h, y� � f �x, y�

h

fyfx

f4

fyfx�a, b�

fH�96, 70� � 0.9fT�96, 70� � 3.75

T � 96 �F

fy�a, b� � lim
h l 0

 
 f �a, b � h� � f �a, b�

h
3

G�y� � f �a, y�
b�x � a�x
fy�a, b��a, b�f

fx�a, b� � lim
h l 0

 
 f �a � h, b� � f �a, b�

h
2

t��a� � lim
h l 0

 
t�a � h� � t�a�

h
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To compute partial derivatives, all we have to do is remember from Equation 1 that 
the partial derivative with respect to is just the ordinary derivative of the function 
of a single variable that we get by keeping fixed. Thus, we have the following rule.

Rule for Finding Partial Derivatives of

1. To find , regard as a constant and differentiate with respect to .

2. To find , regard as a constant and differentiate with respect to .

EXAMPLE 1 If , find and .

SOLUTION Holding constant and differentiating with respect to , we get

and so

Holding constant and differentiating with respect to , we get

Interpretations of Partial Derivatives

To give a geometric interpretation of partial derivatives, we recall that the equation
represents a surface (the graph of ). If , then the point

lies on . By fixing , we are restricting our attention to the curve in
which the vertical plane intersects S. (In other words, is the trace of in the
plane .) Likewise, the vertical plane intersects in a curve . Both of the
curves and pass through the point . (See Figure 1.)

Notice that the curve is the graph of the function , so the slope 
of its tangent at is . The curve is the graph of the function

, so the slope of its tangent at is .
Thus, the partial derivatives and can be interpreted geometrically

as the slopes of the tangent lines at to the traces and of in the planes
and .

As we have seen in the case of the heat index function, partial derivatives can also
be interpreted as rates of change. If , then represents the rate of
change of with respect to when is fixed. Similarly, represents the rate 
of change of with respect to when is fixed.

EXAMPLE 2 If , find and and interpret these
numbers as slopes.

SOLUTION We have

The graph of is the paraboloid and the vertical plane 
intersects it in the parabola , . (As in the preceding discussion, we y � 1z � 2 � x 2

y � 1z � 4 � x 2 � 2y 2f

 fy�1, 1� � �4 fx�1, 1� � �2

 fy�x, y� � �4y fx�x, y� � �2x

fy�1, 1�fx�1, 1�f �x, y� � 4 � x 2 � 2y 2

xyz
�z��yyxz

�z��xz � f �x, y�

x � ay � b
SC2C1P�a, b, c�

fy�a, b�fx�a, b�
G��b� � fy�a, b�PT2G�y� � f �a, y�
C2t��a� � fx�a, b�PT1

t�x� � f �x, b�C1

PC2C1

C2Sx � ay � b
SC1y � b

C1y � bSP�a, b, c�
f �a, b� � cfSz � f �x, y�

 fy�2, 1� � 3 � 22 � 12 � 4 � 1 � 8

 fy�x, y� � 3x 2y 2 � 4y

yx

 fx�2, 1� � 3 � 22 � 2 � 2 � 13 � 16

 fx�x, y� � 3x 2 � 2xy 3

xy

fy�2, 1�fx�2, 1�f �x, y� � x 3 � x 2y 3 � 2y 2

yf �x, y�xfy

xf �x, y�yfx

z � f �x, y�

y
tx
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FIGURE 1
The partial derivatives of f at (a, b) are
the slopes of the tangents to C¡ and C™.
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label it in Figure 2.) The slope of the tangent line to this parabola at the point
is . Similarly, the curve in which the plane intersects

the paraboloid is the parabola , , and the slope of the tangent line
at is . (See Figure 3.)

Figure 4 is a computer-drawn counterpart to Figure 2. Part (a) shows the plane 
intersecting the surface to form the curve and part (b) shows and . [We have
used the vector equations for and 
for .] Similarly, Figure 5 corresponds to Figure 3.

FIGURE 4 FIGURE 5

1y
0

4

3

2z

1

0

2
1

x

0

(a)

1y
0

4

3

2z

1

0

2
1

x
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(b)

1y
0
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3

2z

1

0

2
1

x

0

(b)

1y
0

4

3

2z

1

0

2
1

x

0

(a)

T1

r�t� � 
1 � t, 1, 1 � 2t�C1r�t� � 
 t, 1, 2 � t 2 �
T1C1C1

y � 1

(1, 1, 1)

z

y

x

z=4-≈-2¥

(1, 1)
2

x=1

C™

FIGURE 3FIGURE 2

z
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(1, 1, 1)

z=4-≈-2¥

(1, 1)
2

y=1

C¡

fy�1, 1� � �4�1, 1, 1�
x � 1z � 3 � 2y 2

x � 1C2fx�1, 1� � �2�1, 1, 1�
C1
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EXAMPLE 3 If , calculate and .

SOLUTION Using the Chain Rule for functions of one variable, we have

EXAMPLE 4 Find and if is defined implicitly as a function of and 
by the equation

SOLUTION To find , we differentiate implicitly with respect to , being careful to
treat as a constant:

Solving this equation for , we obtain

Similarly, implicit differentiation with respect to gives

Functions of More than Two Variables

Partial derivatives can also be defined for functions of three or more variables. For
example, if is a function of three variables , , and , then its partial derivative with
respect to is defined as

and it is found by regarding and as constants and differentiating with
respect to . If , then can be interpreted as the rate of change
of with respect to x when y and are held fixed. But we can’t interpret it geometri-
cally because the graph of f lies in four-dimensional space.

In general, if is a function of variables, , its partial deriva-
tive with respect to the ith variable is

�u

�xi
� lim

h l 0
 
 f �x1, . . . , xi�1, xi � h, xi�1, . . . , xn � � f �x1, . . . , xi, . . . , xn�

h

xi

u � f �x1, x2, . . . , xn �nu

zw
fx � �w��xw � f �x, y, z�x

f �x, y, z�zy

fx�x, y, z� � lim
h l 0

 
 f �x � h, y, z� � f �x, y, z�

h

x
zyxf

�z

�y
� �

y 2 � 2xz

z2 � 2xy

y

�z

�x
� �

x 2 � 2yz

z2 � 2xy

�z��x

3x 2 � 3z2 
�z

�x
� 6yz � 6xy 

�z

�x
� 0

y
x�z��x

x 3 � y 3 � z3 � 6xyz � 1

yxz�z��y�z��x

 
�f

�y
� cos� x

1 � y� �
�

�y
 � x

1 � y� � �cos� x

1 � y� �
x

�1 � y�2

 
�f

�x
� cos� x

1 � y� �
�

�x
 � x

1 � y� � cos� x

1 � y� �
1

1 � y

�f

�y

�f

�x
f �x, y� � sin� x

1 � y�
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� Some computer algebra systems 
can plot surfaces defined by implicit
equations in three variables. Figure 6
shows such a plot of the surface defined
by the equation in Example 4.

FIGURE 6



and we also write

EXAMPLE 5 Find , , and if .

SOLUTION Holding and constant and differentiating with respect to , we have

Similarly,

Higher Derivatives

If is a function of two variables, then its partial derivatives and are also func-
tions of two variables, so we can consider their partial derivatives , , ,
and , which are called the second partial derivatives of . If , we use
the following notation:

Thus, the notation (or ) means that we first differentiate with respect to 
and then with respect to , whereas in computing the order is reversed.

EXAMPLE 6 Find the second partial derivatives of

SOLUTION In Example 1 we found that

Therefore

 fyy �
�

�y
 �3x 2y 2 � 4y� � 6x 2 y � 4 fyx �

�

�x
 �3x 2y 2 � 4y� � 6xy 2

 fxy �
�

�y
 �3x 2 � 2xy 3 � � 6xy 2 fxx �

�

�x
 �3x 2 � 2xy 3 � � 6x � 2y 3

fy�x, y� � 3x 2y 2 � 4yfx�x, y� � 3x 2 � 2xy 3

f �x, y� � x 3 � x 2y 3 � 2y 2

fyxy
x�2f��y �xfxy

 � fy �y � fyy � f22 �
�

�y
 � �f

�y� �
�2f

�y 2 �
�2z

�y 2

 � fy �x � fyx � f21 �
�

�x
 � �f

�y� �
�2f

�x �y
�

�2z

�x �y

 � fx �y � fxy � f12 �
�

�y
 � �f

�x� �
�2f

�y �x
�

�2z

�y �x

 � fx �x � fxx � f11 �
�

�x
 � �f

�x� �
�2f

�x 2 �
�2z

�x 2

z � f �x, y�f� fy�y

� fy�x� fx�y� fx �x

fyfxf

fz �
exy

z
andfy � xex y ln z

fx � yex y ln z

xzy

f �x, y, z� � ex y ln zfzfyfx

�u

�xi
�

�f

�xi
� fx i

� fi � Di f
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Notice that in Example 6. This is not just a coincidence. It turns out that
the mixed partial derivatives and are equal for most functions that one meets in
practice. The following theorem, which was discovered by the French mathematician
Alexis Clairaut (1713–1765), gives conditions under which we can assert that .
The proof is given in Appendix E.

Clairaut’s Theorem Suppose is defined on a disk that contains the point
. If the functions and are both continuous on , then

Partial derivatives of order 3 or higher can also be defined. For instance,

fxyy � � fxy�y �
�

�y
 � �2f

�y �x� �
�3f

�y 2 �x

fxy�a, b� � fyx�a, b�

Dfyxfxy�a, b�
Df

fxy � fyx

fyxfxy

fxy � fyx
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� Figure 7 shows the graph of the func-
tion in Example 6 and the graphs of its
first- and second-order partial derivatives
for , . Notice
that these graphs are consistent with our
interpretations of and as slopes of
tangent lines to traces of the graph of .
For instance, the graph of decreases 
if we start at and move in the
positive -direction. This is reflected in
the negative values of . You should
compare the graphs of and with
the graph of to see the relationships.fy

fyyfyx

fx

x
�0, �2�

f
f

fyfx

�2 � y � 2�2 � x � 2

f

� Alexis Clairaut was a child prodigy 
in mathematics, having read l’Hospital’s
textbook on calculus when he was ten
and presented a paper on geometry to
the French Academy of Sciences when
he was 13. At the age of 18, Clairaut
published Recherches sur les courbes à
double courbure, which was the first 
systematic treatise on three-dimensional
analytic geometry and included the 
calculus of space curves.



and using Clairaut’s Theorem it can be shown that if these functions
are continuous.

EXAMPLE 7 Calculate if .

SOLUTION

Partial Differential Equations

Partial derivatives occur in partial differential equations that express certain physical
laws. For instance, the partial differential equation

is called Laplace’s equation after Pierre Laplace (1749–1827). Solutions of this equa-
tion are called harmonic functions and play a role in problems of heat conduction,
fluid flow, and electric potential.

EXAMPLE 8 Show that the function is a solution of Laplace’s 
equation.

SOLUTION

Therefore, satisfies Laplace’s equation.

The wave equation

describes the motion of a waveform, which could be an ocean wave, a sound wave, a
light wave, or a wave traveling along a vibrating string. For instance, if repre-
sents the displacement of a vibrating violin string at time and at a distance from
one end of the string (as in Figure 8), then satisfies the wave equation. Here the
constant depends on the density of the string and on the tension in the string.

EXAMPLE 9 Verify that the function satisfies the wave equation.

SOLUTION

So satisfies the wave equation.u

 utt � �a 2 sin�x � at� � a 2uxx ut � �a cos�x � at�

 uxx � �sin�x � at� ux � cos�x � at�

u�x, t� � sin�x � at�

a
u�x, t�

xt
u�x, t�

�2u

�t 2 � a2 
�2u

�x 2

u

uxx � uyy � ex sin y � ex sin y � 0

 uyy � �ex sin y uxx � ex sin y

 uy � ex cos y ux � ex sin y

u�x, y� � ex sin y

�2u

�x 2 �
�2u

�y 2 � 0

 fxxyz � �9 cos�3x � yz� � 9yz sin�3x � yz�

 fxxy � �9z cos�3x � yz�

 fxx � �9 sin�3x � yz�

 fx � 3 cos�3x � yz�

f �x, y, z� � sin�3x � yz�fxxyz

fxyy � fyxy � fyyx
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The Cobb-Douglas Production Function

In Example 2 in Section 11.1 we described the work of Cobb and Douglas in model-
ing the total production P of an economic system as a function of the amount of labor
L and the capital investment K. Here we use partial derivatives to show how the par-
ticular form of their model follows from certain assumptions they made about the
economy.

If the production function is denoted by , then the partial derivative
is the rate at which production changes with respect to the amount of labor.

Economists call it the marginal production with respect to labor or the marginal pro-
ductivity of labor. Likewise, the partial derivative is the rate of change of pro-
duction with respect to capital and is called the marginal productivity of capital. In
these terms, the assumptions made by Cobb and Douglas can be stated as follows.

(i) If either labor or capital vanishes, then so will production.

(ii) The marginal productivity of labor is proportional to the amount of produc-
tion per unit of labor.

(iii) The marginal productivity of capital is proportional to the amount of pro-
duction per unit of capital.

Because the production per unit of labor is , assumption (ii) says that

for some constant . If we keep K constant , then this partial differential
equation becomes an ordinary differential equation:

If we solve this separable differential equation by the methods of Section 7.3 (see also
Exercise 67), we get

Notice that we have written the constant as a function of because it could depend
on the value of .

Similarly, assumption (iii) says that

and we can solve this differential equation to get

Comparing Equations 6 and 7, we have

P�L, K � � bL�K �8

P�L0, K� � C2�L0 �K �7

�P

�K
� � 

P

K

K0

K0C1

P�L, K0 � � C1�K0 �L�6

dP

dL
� � 

P

L
5

�K � K0 ��

�P

�L
� � 

P

L

P�L

�P��K

�P��L
P � P�L, K �
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where b is a constant that is independent of both L and K. Assumption (i) shows that
and .

Notice from Equation 8 that if labor and capital are both increased by a factor m,
then

If , then , which means that production is also 
increased by a factor of m. That is why Cobb and Douglas assumed that 
and therefore

This is the Cobb-Douglas production function that we discussed in Section 11.1.

P�L, K � � bL�K 1��

� � � � 1
P�mL, mK� � mP�L, K �� � � � 1

P�mL, mK � � b�mL���mK �� � m���bL�K � � m���P�L, K�

� � 0� � 0
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(b) In general, what can you say about the signs of 
and ?

(c) What appears to be the value of the following limit?

4. The wave heights in the open sea depend on the speed 
of the wind and the length of time that the wind has been
blowing at that speed. Values of the function are
recorded in feet in the following table.
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�I

�v

�I��v
�I��T1. The temperature at a location in the Northern Hemisphere

depends on the longitude , latitude , and time , so we can
write . Let’s measure time in hours from the
beginning of January.
(a) What are the meanings of the partial derivatives

, and ?
(b) Honolulu has longitude and latitude . Sup-

pose that at 9:00 A.M. on January 1 the wind is blowing
hot air to the northeast, so the air to the west and south
is warm and the air to the north and east is cooler.
Would you expect , and

to be positive or negative? Explain.

2. At the beginning of this section we discussed the function
, where is the heat index, is the temperature,

and is the relative humidity. Use Table 1 to estimate
and . What are the practical interpreta-

tions of these values?

3. The wind-chill index is the perceived temperature when
the actual temperature is and the wind speed is , so we
can write . Table 2 (at the bottom of the page) is
an excerpt from a table of values of compiled by the
National Atmospheric and Oceanic Administration.
(a) Estimate the values of and . What

are the practical interpretations of these values?
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tyx
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8. A contour map is given for a function . Use it to estimate
and .

9. If , find and and
interpret these numbers as slopes. Illustrate with either
hand-drawn sketches or computer plots.

10. If , find and and
interpret these numbers as slopes. Illustrate with either
hand-drawn sketches or computer plots.

; 11–12 � Find and and graph , , and with domains and
viewpoints that enable you to see the relationships between
them.

11. 12.
� � � � � � � � � � � � �

13–34 � Find the first partial derivatives of the function.

13.

14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

33.

34.
� � � � � � � � � � � � �

35–38 � Find the indicated partial derivatives.

35. ;

36. ; fy��6, 4�f �x, y� � sin�2x � 3y�

fx�3, 4�f �x, y� � sx 2 � y 2

u � sin�x1 � 2x2 � � � � � nxn �

u � sx 2
1 � x 2

2 � � � � � x 2
n

f �x, y, z, t� � xy 2z3t 4

f �x, y, z, t� �
x � y

z � t

u � x y�zu � xe�t sin 


w � sr 2 � s 2 � t 2w � ln�x � 2y � 3z�

f �x, y, z� � x 2e yzf �x, y, z� � xy 2z3 � 3yz

f �x, y� � y
x

y
 cos�t 2 � dtz � ln(x � sx 2 � y 2 )

f �x, t� � e sin�t�x�f �u, v� � tan�1�u�v�

f �s, t� � st 2��s 2 � t 2 �w � sin � cos �

f �x, y� � x yf �x, y� �
x � y

x � y

z � y ln xz � xe 3y

f �x, y� � x 5 � 3x 3y 2 � 3xy 4

f �x, y� � 3x � 2y 4

f �x, y� � xe�x 2�y 2

f �x, y� � x 2 � y 2 � x 2 y

fyfxffyfx

fy�1, 0�fx�1, 0�f �x, y� � s4 � x 2 � 4y 2

fy�1, 2�fx�1, 2�f �x, y� � 16 � 4x 2 � y 2

3 x

y

1

3

_2
0

6 8

10

14
16

12

18

2
4

_4

fy�2, 1�fx�2, 1�
f(a) What are the meanings of the partial derivatives 

and ?
(b) Estimate the values of and . What

are the practical interpretations of these values?
(c) What appears to be the value of the following limit?

5–6 � Determine the signs of the partial derivatives for the
function whose graph is shown.

5. (a) (b)

6. (a) (b)
(c) (d)

� � � � � � � � � � � � �

7. The following surfaces, labeled , , and , are graphs of a
function and its partial derivatives and . Identify each
surface and give reasons for your choices.

a

8

_8

_4

_3 _1 0 1 3
0

_2

y
x

z 0

2

4

2_2

b_4

_3 _1 0 1 3
0

_2

y
x

z 0

2

4

2_2

c

8

_8
_3 _1 0 1 3

0
_2

y
x

z 0

2

4

2_2

_4

fyfxf
cba

fyy��1, 2�fxx��1, 2�
fy��1, 2�fx��1, 2�

fy�1, 2�fx�1, 2�

1x

y

z

2

f

lim
v l �

 
�h

�t

ft�40, 15�fv�40, 15�
�h��t

�h��v
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60. Level curves are shown for a function . Determine whether
the following partial derivatives are positive or negative at
the point .
(a) (b) (c)
(d) (e)

61. Verify that the function is a solution of the
heat conduction equation .

62. Determine whether each of the following functions is a
solution of Laplace’s equation .
(a)
(b)
(c)
(d)
(e)

63. Verify that the function is a solution
of the three-dimensional Laplace equation

.

64. Show that each of the following functions is a solution of
the wave equation .
(a)
(b)
(c)
(d)

65. If and are twice differentiable functions of a single vari-
able, show that the function

is a solution of the wave equation given in Exercise 64.

66. Show that the Cobb-Douglas production function
satisfies the equation

67. Show that the Cobb-Douglas production function satisfies
by solving the differential equation

(See Equation 5.)

68. The temperature at a point on a flat metal plate is
given by , where is measured TT�x, y� � 60��1 � x 2 � y 2 �

�x, y�

dP

dL
� � 

P

L

P�L, K0 � � C1�K0 �L�

L 
�P

�L
� K 

�P

�K
� �� � ��P

P � bL�K �

u�x, t� � f �x � at� � t�x � at�

tf

u � sin�x � at� � ln�x � at�
u � �x � at�6 � �x � at�6
u � t��a 2t 2 � x 2 �
u � sin�kx� sin�akt�

utt � a 2uxx

uxx � uyy � uzz � 0

u � 1�sx 2 � y 2 � z 2

u � e�x cos y � e�y cos x
u � ln sx 2 � y 2

u � x 3 � 3xy 2
u � x 2 � y 2
u � x 2 � y 2

uxx � uyy � 0

ut � �2uxx

u � e��2k2 t sin kx

10 8 6 4 2

y

x

P

fyyfxy

fxxfyfx

P

f37. ;

38. ;
� � � � � � � � � � � � �

39–40 � Use the definition of partial derivatives as limits (4) to
find and .

39. 40.
� � � � � � � � � � � � �

41–44 � Use implicit differentiation to find and .

41. 42.

43.

44.
� � � � � � � � � � � � �

45–46 � Find and .

45. (a) (b)

46. (a) (b)
(c)

� � � � � � � � � � � � �

47–50 � Find all the second partial derivatives.

47. 48.

49. 50.
� � � � � � � � � � � � �

51–52 � Verify that the conclusion of Clairaut’s Theorem
holds, that is, .

51. 52.
� � � � � � � � � � � � �

53–58 � Find the indicated partial derivative.

53. ;

54. ;

55. ;

56. ;

57. ;

58. ;

� � � � � � � � � � � � �

59. Use the table of values of to estimate the values of
, , and .

12.5

18.1

20.0

10.2

17.5

22.4

9.3

15.9

26.1

x
y

2.5

3.0

3.5

1.8 2.0 2.2

fxy�3, 2�fx�3, 2.2�fx�3, 2�
f �x, y�

�6u

�x �y 2 �z 3u � x ay bz c

�3z

�y 2 �x
z � x sin y

fyzyf �x, y, z� � e xyz

fxyzf �x, y, z� � x 5 � x 4y 4z3 � yz2

fxxyf �x, y� � e xy 2

fxxxf �x, y� � x 2 y 3 � 2x 4y

u � xye yu � ln sx 2 � y 2

uxy � uyx

z � y tan 2xu � e�s sin t

f �x, y� � ln�3x � 5y�f �x, y� � x 4 � 3x 2y 3

z � f �x�y�
z � f �xy�z � f �x�t�y�

z � f �x � y�z � f �x� � t�y�

�z��y�z��x

xy 2z3 � x 3y 2z � x � y � z

x 2 � y 2 � z2 � 2x�y � z�

xyz � cos�x � y � z�xy � yz � xz

�z��y�z��x

f �x, y� � s3x � yf �x, y� � x 2 � xy � 2y 2

fy�x, y�fx�x, y�

fv�2, 0, 3�f �u, v, w� � w tan�uv�

fz�3, 2, 1�f �x, y, z� � x��y � z�
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75. The ellipsoid intersects the plane
in an ellipse. Find parametric equations for the

tangent line to this ellipse at the point .

76. In a study of frost penetration it was found that the tempera-
ture at time (measured in days) at a depth (measured
in feet) can be modeled by the function

where and is a positive constant.
(a) Find . What is its physical significance?
(b) Find . What is its physical significance?
(c) Show that satisfies the heat equation for a

certain constant .

; (d) If , , and , use a computer to
graph .

(e) What is the physical significance of the term in the
expression ?

77. If , find .
[Hint: Instead of finding first, note that it is easier to
use Equation 1 or Equation 2.]

78. If , find .

79. Let

; (a) Use a computer to graph .
(b) Find and when .
(c) Find and using Equations 2 and 3.
(d) Show that and .
(e) Does the result of part (d) contradict Clairaut’s

Theorem? Use graphs of and to illustrate your
answer.

fyxfxy

CAS

fyx�0, 0� � 1fxy�0, 0� � �1
fy�0, 0�fx�0, 0�

�x, y� � �0, 0�fy�x, y�fx�x, y�
f

f �x, y� � 
0

x 3y � xy 3

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

fx�0, 0�f �x, y� � s
3 x 3 � y 3

fx�x, y�
fx�1, 0�f �x, y� � x�x 2 � y 2 ��3�2e sin�x 2y�

sin��t � �x�
��x

T�x, t�
T1 � 10T0 � 0� � 0.2

k
Tt � kTxxT

�T��t
�T��x

�� � 2��365

T�x, t� � T0 � T1e��x sin��t � �x�

xtT

�1, 2, 2�
y � 2

4x 2 � 2y 2 � z2 � 16in C and in meters. Find the rate of change of temper-
ature with respect to distance at the point in (a) the 
-direction and (b) the -direction.

69. The total resistance produced by three conductors with 
resistances , , connected in a parallel electrical cir-
cuit is given by the formula

Find .

70. The gas law for a fixed mass of an ideal gas at absolute
temperature , pressure , and volume is ,
where is the gas constant. Show that

71. The kinetic energy of a body with mass and velocity is
. Show that

72. If , , are the sides of a triangle and , , are the
opposite angles, find , , by implicit dif-
ferentiation of the Law of Cosines.

73. You are told that there is a function whose partial deriva-
tives are and and whose
second-order partial derivatives are continuous. Should you
believe it?

; 74. The paraboloid intersects the plane
in a parabola. Find parametric equations for the tan-

gent line to this parabola at the point . Use a com-
puter to graph the paraboloid, the parabola, and the tangent
line on the same screen.

�1, 2, �4�
x � 1

z � 6 � x � x 2 � 2y 2

fy�x, y� � 3x � yfx�x, y� � x � 4y
f

�A��c�A��b�A��a
CBAcba

�K

�m
 
�2K

�v2 � K

K � 1
2 mv2

vm

�P

�V
 
�V

�T
 
�T

�P
� �1

R
PV � mRTVPT

m

�R��R1

1

R
�

1

R1
�

1

R2
�

1

R3

R3R2R1

R

yx
�2, 1�

x, y�
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Tangent Planes and Linear Approximations � � � � � � � �

One of the most important ideas in single-variable calculus is that as we zoom in
toward a point on the graph of a differentiable function the graph becomes indistin-
guishable from its tangent line and we can approximate the function by a linear func-
tion. (See Sections 2.9 and 3.8.) Here we develop similar ideas in three dimensions.
As we zoom in toward a point on a surface that is the graph of a differentiable func-
tion of two variables, the surface looks more and more like a plane (its tangent plane)
and we can approximate the function by a linear function of two variables. We also
extend the idea of a differential to functions of two or more variables.

Tangent Planes

Suppose a surface has equation , where has continuous first partial
derivatives, and let be a point on . As in the preceding section, let andC1SP�x0, y0, z0 �

fz � f �x, y�S

11.4



be the curves obtained by intersecting the vertical planes and with
the surface . Then the point lies on both and . Let and be the tangent
lines to the curves and at the point . Then the tangent plane to the surface 
at the point is defined to be the plane that contains both tangent lines and . (See
Figure 1.)

We will see in Section 11.6 that if is any other curve that lies on the surface 
and passes through , then its tangent line at also lies in the tangent plane. There-
fore, you can think of the tangent plane to at as consisting of all possible tangent
lines at to curves that lie on and pass through . The tangent plane at is the plane
that most closely approximates the surface near the point .

We know from Equation 9.5.6 that any plane passing through the point 
has an equation of the form

By dividing this equation by and letting and , we can write
it in the form

If Equation 1 represents the tangent plane at , then its intersection with the plane
must be the tangent line . Setting in Equation 1 gives

and we recognize these as the equations (in point-slope form) of a line with slope .
But from Section 11.3 we know that the slope of the tangent is . There-
fore, .

Similarly, putting in Equation 1, we get , which must
represent the tangent line , so .

Suppose has continuous partial derivatives. An equation of the tangent
plane to the surface at the point is

EXAMPLE 1 Find the tangent plane to the elliptic paraboloid at the 
point .

SOLUTION Let . Then

Then (2) gives the equation of the tangent plane at as

or

Figure 2(a) shows the elliptic paraboloid and its tangent plane at (1, 1, 3) that we
found in Example 1. In parts (b) and (c) we zoom in toward the point (1, 1, 3) by
restricting the domain of the function . Notice that the more we
zoom in, the flatter the graph appears and the more it resembles its tangent plane.

f �x, y� � 2x 2 � y 2

 z � 4x � 2y � 3

 z � 3 � 4�x � 1� � 2�y � 1�

�1, 1, 3�

 fx�1, 1� � 4  fy�1, 1� � 2

 fx�x, y� � 4x fy�x, y� � 2y

f �x, y� � 2x 2 � y 2

�1, 1, 3�
z � 2x 2 � y 2

z � z0 � fx�x0, y0 ��x � x0 � � fy�x0, y0 ��y � y0 �

P�x0, y0, z0 �z � f �x, y�
f2

b � fy�x0, y0 �T2

z � z0 � b�y � y0 �x � x0

a � fx�x0, y0 �
fx�x0, y0 �T1

a

y � y0z � z0 � a�x � x0 �

y � y0T1y � y0

P

z � z0 � a�x � x0� � b�y � y0 �1

b � �B�Ca � �A�CC

A�x � x0 � � B�y � y0 � � C�z � z0 � � 0

P�x0, y0, z0 �
PS

PPSP
PS

PP
SC

T2T1P
SPC2C1

T2T1C2C1PS
x � x0y � y0C2
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y

x

z

T¡

T™

C¡

C™
P

0

FIGURE 1
The tangent plane contains the
tangent lines T¡ and T™.

� Note the similarity between the equa-
tion of a tangent plane and the equation
of a tangent line:

y � y0 � f ��x0 ��x � x0 �



In Figure 3 we corroborate this impression by zooming in toward the point (1, 1)
on a contour map of the function . Notice that the more we zoom
in, the more the level curves look like equally spaced parallel lines, which is charac-
teristic of a plane.

Linear Approximations

In Example 1 we found that an equation of the tangent plane to the graph of the func-
tion at the point (1, 1, 3) is . Therefore, in view
of the visual evidence in Figures 2 and 3, the linear function of two variables

is a good approximation to when is near (1, 1). The function L is called
the linearization of f at (1, 1) and the approximation

is called the linear approximation or tangent plane approximation of f at (1, 1).
For instance, at the point (1.1, 0.95) the linear approximation gives

which is quite close to the true value of .
But if we take a point farther away from (1, 1), such as (2, 3), we no longer get a good
approximation. In fact, whereas .f �2, 3� � 17L�2, 3� � 11

f �1.1, 0.95� � 2�1.1�2 � �0.95�2 � 3.3225

f �1.1, 0.95� � 4�1.1� � 2�0.95� � 3 � 3.3

f �x, y� � 4x � 2y � 3

�x, y�f �x, y�

L�x, y� � 4x � 2y � 3

z � 4x � 2y � 3f �x, y� � 2x 2 � y 2

FIGURE 3
Zooming in toward (1, 1)

on a contour map of
f(x, y)=2≈+¥ 0.95 1.05

1.05

0.8 1.2

1.2

0.5 1.5

1.5

f �x, y� � 2x 2 � y 2

(a) (b) (c)

FIGURE 2   The elliptic paraboloid z=2≈+¥ appears to coincide with its tangent plane as we zoom in toward (1, 1, 3).
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In general, we know from (2) that an equation of the tangent plane to the graph of
a function f of two variables at the point is

The linear function whose graph is this tangent plane, namely

is called the linearization of f at and the approximation

is called the linear approximation or the tangent plane approximation of at
We have defined tangent planes for surfaces , where has continuous

first partial derivatives. What happens if and are not continuous? Figure 4 pictures
such a function; its equation is

You can verify (see Exercise 40) that its partial derivatives exist at the origin and, in
fact, and , but and are not continuous. The linear approx-
imation would be , but at all points on the line . So a
function of two variables can behave badly even though both of its partial derivatives
exist. To rule out such behavior, we formulate the idea of a differentiable function of
two variables.

Recall that for a function of one variable, , if x changes from a to 
we defined the increment of as

In Chapter 3 we showed that if is differentiable at a, then

Now consider a function of two variables, , and suppose x changes from
a to and y changes from b to . Then the corresponding increment of

is

Thus, the increment represents the change in the value of when changes
from to . By analogy with (5) we define the differentiability
of a function of two variables as follows.

Definition If , then is differentiable at if can be
expressed in the form

where and as .��x, �y� l �0, 0��2 l 0�1

�z � fx�a, b� �x � fy�a, b� �y � �1 �x � �2 �y

�z�a, b�fz � f �x, y�7

�a � �x, b � �y��a, b�
�x, y�f�z

�z � f �a � �x, b � �y� � f �a, b�6

z
b � �ya � �x

z � f �x, y�

where  � l 0  as  �x l 0�y � f ��a� �x � � �x5

f

�y � f �a � �x� � f �a�

y
a � �x,y � f �x�

y � xf �x, y� � 1
2f �x, y� � 0

fyfxfy�0, 0� � 0fx�0, 0� � 0

f �x, y� � 
0

xy

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

fyfx

fz � f �x, y�
�a, b�.f

f �x, y� � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�4

�a, b�

L�x, y� � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�3

z � f �a, b� � fx�a, b��x � a� � fy�a, b��y � b�

�a, b, f �a, b��
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� This is Equation 3.5.8.

x

y
z

FIGURE 4

f(x, y)=
xy

≈+¥
 if (x, y)≠(0, 0),

f(0, 0)=0



Definition 7 says that a differentiable function is one for which the linear approxi-
mation (4) is a good approximation when is near . In other words, the tan-
gent plane approximates the graph of f well near the point of tangency.

It’s sometimes hard to use Definition 7 directly to check the differentiability of 
a function, but the following theorem provides a convenient sufficient condition for
differentiability.

Theorem If the partial derivatives and exist near and are continu-
ous at , then is differentiable at .

EXAMPLE 2 Show that is differentiable at (1, 0) and find its lineariza-
tion there. Then use it to approximate .

SOLUTION The partial derivatives are

Both and are continuous functions, so is differentiable by Theorem 8. The
linearization is

The corresponding linear approximation is

so

Compare this with the actual value of .

EXAMPLE 3 At the beginning of Section 11.3 we discussed the heat index (perceived
temperature) as a function of the actual temperature and the relative humidity 
and gave the following table of values from the National Weather Service.

Find a linear approximation for the heat index when is near and
is near 70%. Use it to estimate the heat index when the temperature is and

the relative humidity is 72%.
97 �FH

96 �FTI � f �T, H �

96

100

104

109

114

119

98

103

107

113

118

124

100

105

111

116

123

129

103

108

114

121

127

135

106

112

118

125

133

141

109

115

122

130

138

147

112

119

127

135

144

154

115

123

132

141

150

161

119

128

137

146

157

168

T
H

Relative humidity (%)

Actual
temperature

(°F)

90

92

94

96

98

100

50 55 60 65 70 75 80 85 90

HTI

f �1.1, �0.1� � 1.1e�0.11 � 0.98542

 f �1.1, �0.1� � 1.1 � 0.1 � 1

 xexy � x � y

 � 1 � 1�x � 1� � 1 � y � x � y

 L�x, y� � f �1, 0� � fx�1, 0��x � 1� � fy�1, 0��y � 0�

ffyfx

 fy�1, 0� � 1 fx�1, 0� � 1

 fy�x, y� � x 2exy fx�x, y� � exy � xyexy

f �1.1, �0.1�
f �x, y� � xexy

�a, b�f�a, b�
�a, b�fyfx8

�a, b��x, y�
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FIGURE 5
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� Theorem 8 is proved in Appendix E.

� Figure 5 shows the graphs of the 
function and its linearization in
Example 2.
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SOLUTION We read from the table that . In Section 11.3 we used 
the tabular values to estimate that and . (See
pages 766–767.) So the linear approximation is

In particular,

Therefore, when and H � 72%, the heat index is

Differentials

For a function of one variable, , we define the differential dx to be an inde-
pendent variable; that is, dx can be given the value of any real number. The differen-
tial of is then defined as

(See Section 3.8.) Figure 6 shows the relationship between the increment and 
the differential : represents the change in height of the curve and 
represents the change in height of the tangent line when changes by an amount

.

For a differentiable function of two variables, , we define the differen-
tials and to be independent variables; that is, they can be given any values. Then
the differential , also called the total differential, is defined by

(Compare with Equation 9.) Sometimes the notation is used in place of .
If we take and in Equation 10, then the dif-

ferential of is

dz � fx�a, b��x � a� � fy�a, b��y � b�

z
dy � �y � y � bdx � �x � x � a

dzd f

dz � fx�x, y� dx � fy�x, y� dy �
�z

�x
 dx �

�z

�y
 dy10

dz
dydx

z � f �x, y�

xa a+Îx

y

0

dx=Îx

y=ƒ

dy

Îy

y=f(a)+fª(a)(x-a)
tangent line

FIGURE 6

dx � �x
x

dyy � f �x��ydy
�y

dy � f ��x� dx9

y

y � f �x�

I � 131 �F

T � 97 �F

f �97, 72� � 125 � 3.75�1� � 0.9�2� � 130.55

 � 125 � 3.75�T � 96� � 0.9�H � 70�

 f �T, H� � f �96, 70� � fT�96, 70��T � 96� � fH�96, 70��H � 70�

fH�96, 70� � 0.9fT�96, 70� � 3.75
f �96, 70� � 125
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So, in the notation of differentials, the linear approximation (4) can be written as

Figure 7 is the three-dimensional counterpart of Figure 6 and shows the geometric
interpretation of the differential and the increment : represents the change in
height of the tangent plane, whereas represents the change in height of the surface

when changes from to .

EXAMPLE 4
(a) If , find the differential .
(b) If changes from 2 to and changes from 3 to , compare the values of

and .

SOLUTION
(a) Definition 10 gives

(b) Putting , , , and , we get

The increment of is

Notice that but is easier to compute.dz�z � dz

 � 0.6449

 � ��2.05�2 � 3�2.05��2.96� � �2.96�2 	 � �22 � 3�2��3� � 32 	

 �z � f �2.05, 2.96� � f �2, 3�

z

 � 0.65

 dz � �2�2� � 3�3�	0.05 � �3�2� � 2�3�	��0.04�

dy � �y � �0.04y � 3dx � �x � 0.05x � 2

dz �
�z

�x
 dx �

�z

�y
 dy � �2x � 3y� dx � �3x � 2y� dy

dz�z
2.96y2.05x
dzz � f �x, y� � x 2 � 3xy � y 2

FIGURE 7 z-f(a, b)=fx(a, b)(x-a)+fy(a, b)(y-b)

y

x

z

Îx=
dx

0

{a, b, f(a, b)}

(a, b, 0)

(a+Îx, b+Îy, 0)

{ a+Îx, b+Îy, f(a+Îx, b+Îy)}

f(a, b)

f(a, b)

Îy=dy
tangent plane

surface z=f(x, y)

dz

Îz

�a � �x, b � �y��a, b��x, y�z � f �x, y�
�z

dz�zdz

f �x, y� � f �a, b� � dz
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� In Example 4, is close to 
because the tangent plane is a 
good approximation to the surface

near . 
(See Figure 8.)

�2, 3, 13�z � x 2 � 3xy � y 2

�zdz

FIGURE 8
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EXAMPLE 5 The base radius and height of a right circular cone are measured as 
10 cm and 25 cm, respectively, with a possible error in measurement of as much as 

cm in each. Use differentials to estimate the maximum error in the calculated
volume of the cone.

SOLUTION The volume of a cone with base radius and height is . So
the differential of is

Since each error is at most cm, we have , . To find the
largest error in the volume we take the largest error in the measurement of and of
. Therefore, we take and along with , . This gives

Thus, the maximum error in the calculated volume is about cm cm .

Functions of Three or More Variables

Linear approximations, differentiability, and differentials can be defined in a similar
manner for functions of more than two variables. A differentiable function is defined
by an expression similar to the one in Definition 7. For such functions the linear
approximation is

and the linearization is the right side of this expression.
If , then the increment of is

The differential is defined in terms of the differentials , , and of the inde-
pendent variables by

EXAMPLE 6 The dimensions of a rectangular box are measured to be 75 cm, 60 cm,
and 40 cm, and each measurement is correct to within cm. Use differentials to
estimate the largest possible error when the volume of the box is calculated from
these measurements.

SOLUTION If the dimensions of the box are , , and , its volume is and so

We are given that , , and . To find the largest error
in the volume, we therefore use , , and together with

, , and :

 � 1980

 �V � dV � �60��40��0.2� � �75��40��0.2� � �75��60��0.2�

z � 40y � 60x � 75
dz � 0.2dy � 0.2dx � 0.2

� �z � � 0.2� �y � � 0.2� �x � � 0.2

dV �
�V

�x
 dx �

�V

�y
 dy �

�V

�z
 dz � yz dx � xz dy � xy dz

V � xyzzyx

0.2

dw �
�w

�x
 dx �

�w

�y
 dy �

�w

�z
 dz

dzdydxdw

�w � f �x � �x, y � �y, z � �z� � f �x, y, z�

ww � f �x, y, z�
L�x, y, z�

f �x, y, z� � f �a, b, c� � fx�a, b, c��x � a� � fy�a, b, c��y � b� � fz�a, b, c��z � c�

33 � 6320�

dV �
500�

3
 �0.1� �

100�

3
 �0.1� � 20�

h � 25r � 10dh � 0.1dr � 0.1h
r

� �h � � 0.1� �r � � 0.10.1

dV �
�V

�r
 dr �

�V

�h
 dh �

2�rh

3
 dr �

�r 2

3
 dh

V
V � �r 2h�3hrV

0.1

786 � CHAPTER 11 PARTIAL DERIVATIVES



Thus, an error of only cm in measuring each dimension could lead to an error of
as much as 1980 cm in the calculated volume! This may seem like a large error, but
it’s only about 1% of the volume of the box.

Tangent Planes to Parametric Surfaces

Parametric surfaces were introduced in Section 10.5. We now find the tangent plane
to a parametric surface traced out by a vector function

at a point with position vector . If we keep constant by putting ,
then becomes a vector function of the single parameter and defines a grid
curve lying on . (See Figure 9.) The tangent vector to at is obtained by tak-
ing the partial derivative of with respect to :

Similarly, if we keep constant by putting , we get a grid curve given by
that lies on , and its tangent vector at is

If is not , then the surface is called smooth (it has no “corners”). For a
smooth surface, the tangent plane is the plane that contains the tangent vectors and

, and the vector is a normal vector to the tangent plane.

EXAMPLE 7 Find the tangent plane to the surface with parametric equations ,
, at the point .

SOLUTION We first compute the tangent vectors:

 rv �
�x

�v
 i �

�y

�v
 j �

�z

�v
 k � 2v j � 2 k

 ru �
�x

�u
 i �

�y

�u
 j �

�z

�u
 k � 2u i � k

�1, 1, 3�z � u � 2vy � v2
x � u 2

ru � rvrv

ru

S0ru � rv

ru �
�x

�u
 �u0, v0 � i �

�y

�u
 �u0, v0 � j �

�z

�u
 �u0, v0 � k

P0Sr�u, v0 �
C2v � v0v

FIGURE 9

0 u

D

√=√¸

(u¸, √¸)

u=u¸

√

0

z

yx

C¡

C™

ru
r√

P¸

r

rv �
�x

�v
 �u0, v0 � i �

�y

�v
 �u0, v0 � j �

�z

�v
 �u0, v0 � k

vr
P0C1SC1

vr�u0, v�
u � u0ur�u0, v0 �P0

r�u, v� � x�u, v� i � y�u, v� j � z�u, v� k

S

3
0.2
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FIGURE 10

z

x

y

� Figure 10 shows the self-intersecting
surface in Example 7 and its tangent
plane at .�1, 1, 3�
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12. ,
� � � � � � � � � � � � �

13. Find the linear approximation of the function
at and use it to

approximate .

; 14. Find the linear approximation of the function
at and use it to approximate

. Illustrate by graphing and the tangent plane.

15. Find the linear approximation of the function
at and use it to approx-

imate the number .

16. The wave heights in the open sea depend on the speed 
of the wind and the length of time that the wind has been
blowing at that speed. Values of the function are
recorded in the following table.

Use the table to find a linear approximation to the wave
height function when is near 40 knots and is near
20 hours. Then estimate the wave heights when the wind
has been blowing for 24 hours at 43 knots.

tv

2

4

5

9

14

19

24

2

4

7

13

21

29

37

2

5

8

16

25

36

47

2

5

8

17

28

40

54

2

5

9

18

31

45

62

2

5

9

19

33

48

67

2

5

9

19

33

50

69

v
t 5 10 15 20 30 40 50

10

15

20

30

40

50

60

Duration (hours)

W
in

d 
sp

ee
d 

(k
no

ts
)

h � f �v, t�
t

vh

s�3.02� 2 � �1.97� 2 � �5.99� 2

�3, 2, 6�f �x, y, z� � sx 2 � y 2 � z 2

ff �6.9, 2.06�
�7, 2�f �x, y� � ln�x � 3y�

f �1.95, 1.08�
�2, 1�f �x, y� � s20 � x 2 � 7y 2

��3, 2�f �x, y� � sin�2x � 3y�1–4 � Find an equation of the tangent plane to the given
surface at the specified point.

1. ,

2. ,

3. ,

4. ,
� � � � � � � � � � � � �

; 5–6 � Graph the surface and the tangent plane at the given
point. (Choose the domain and viewpoint so that you get a 
good view of both the surface and the tangent plane.) Then
zoom in until the surface and the tangent plane become 
indistinguishable.

5. ,

6. ,
� � � � � � � � � � � � �

7–8 � Draw the graph of and its tangent plane at the given
point. (Use your computer algebra system both to compute the
partial derivatives and to graph the surface and its tangent plane.)
Then zoom in until the surface and the tangent plane become
indistinguishable.

7.

8.

� � � � � � � � � � � � �

9–12 � Explain why the function is differentiable at the 
given point. Then find the linearization of the function 
at that point.

9. ,

10. ,

11. , �1, 0�f �x, y� � tan�1�x � 2y�

�6, 3�f �x, y� � x�y

�1, 4�f �x, y� � xsy

L�x, y�

f �x, y� �
s1 � 4x 2 � 4y2

1 � x 4 � y4 ,  �1, 1, 1�

f �x, y� � e��x2�y2��15�sin 2x � cos2y�,  �2, 3, f �2, 3��

fCAS

�5, 1, 2�z � sx � y

�1, 1, 5�z � x 2 � xy � 3y 2

�1, 4, 0�z � y ln x

�1, �1, 1�z � s4 � x 2 � 2y 2

�1, �1, 1�z � e x2�y2

��1, 2, 4�z � 4x 2 � y 2 � 2y

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �11.4

Thus, a normal vector to the tangent plane is

Notice that the point corresponds to the parameter values and ,
so the normal vector there is

Therefore, an equation of the tangent plane at is

or  x � 2y � 2z � 3 � 0

 �2�x � 1� � 4�y � 1� � 4�z � 3� � 0

�1, 1, 3�

�2 i � 4 j � 4 k

v � 1u � 1�1, 1, 3�

ru � rv � � i
2u

0

j
0

2v

k
1

2 � � �2v i � 4u j � 4uv k



29. A boundary stripe 3 in. wide is painted around a rectangle
whose dimensions are 100 ft by 200 ft. Use differentials to
approximate the number of square feet of paint in the stripe.

30. The pressure, volume, and temperature of a mole of an ideal
gas are related by the equation , where is
measured in kilopascals, in liters, and in kelvins. Use
differentials to find the approximate change in the pressure
if the volume increases from 12 L to 12.3 L and the temper-
ature decreases from 310 K to 305 K.

31. If is the total resistance of three resistors, connected in
parallel, with resistances , , , then

If the resistances are measured in ohms as ,
, and , with a possible error of in

each case, estimate the maximum error in the calculated
value of .

32. Four positive numbers, each less than 50, are rounded to the
first decimal place and then multiplied together. Use differ-
entials to estimate the maximum possible error in the com-
puted product that might result from the rounding.

; 33–36 � Find an equation of the tangent plane to the given
parametric surface at the specified point. Use a computer to
graph the surface and the tangent plane.

33. , , ;

34. , , ;

35. ;

36. ;

� � � � � � � � � � � � �

37–38 � Show that the function is differentiable by finding 
values of and that satisfy Definition 7.

37. 38.
� � � � � � � � � � � � �

39. Prove that if is a function of two variables that is 
differentiable at , then is continuous at .
[Hint: Show that .]

40. (a) The function

was graphed in Figure 4. Show that and 
both exist but is not differentiable at .

[Hint: Use the result of Exercise 39.]
(b) Explain why and are not continuous at .�0, 0�fyfx

�0, 0�ffy�0, 0�
fx�0, 0�

f �x, y� � 
0

xy

x 2 � y 2 if

if

�x, y� � �0, 0�

�x, y� � �0, 0�

lim
��x, �y� l �0, 0�

 
 f �a � �x, b � �y� � f �a, b�

�a, b�f�a, b�
f

f �x, y� � xy � 5y 2f �x, y� � x 2 � y 2

�2�1

�1, 1, 0�r�u, v� � �u � v� i � u cos v j � v sin u k

�0, 0, 0�r�u, v� � uv i � uev j � veu k

�1, 0, 1�z � v2y � u � v2x � u2

�2, 3, 0�z � u � vy � 3u2x � u � v

R

0.5%R3 � 50 �R2 � 40 �
R1 � 25 �

1

R
�

1

R1
�

1

R2
�

1

R3

R3R2R1

R

TV
PPV � 8.31T

17. Use the table in Example 3 to find a linear approximation to
the heat index function when the temperature is near 
and the relative humidity is near 80%. Then estimate the
heat index when the temperature is and the relative
humidity is 78%.

18. The wind-chill index is the perceived temperature when
the actual temperature is and the wind speed is , so we
can write . The following table of values is an
excerpt from a table compiled by the National Atmospheric
and Oceanic Administration.

Use the table to find a linear approximation to the wind
chill index function when is near and is near
30 km�h. Then estimate the wind chill index when the 
temperature is and the wind speed is 27 km�h.

19–22 � Find the differential of the function.

19. 20.

21. 22.
� � � � � � � � � � � � �

23. If and changes from to 
compare the values of and .

24. If and changes from to
, compare the values of and .

25. The length and width of a rectangle are measured as 30 cm
and 24 cm, respectively, with an error in measurement of at
most cm in each. Use differentials to estimate the maxi-
mum error in the calculated area of the rectangle.

26. The dimensions of a closed rectangular box are measured as
80 cm, 60 cm, and 50 cm, respectively, with a possible error
of cm in each dimension. Use differentials to estimate
the maximum error in calculating the surface area of the box.

27. Use differentials to estimate the amount of tin in a closed
tin can with diameter 8 cm and height 12 cm if the tin is

cm thick.

28. Use differentials to estimate the amount of metal in a closed
cylindrical can that is 10 cm high and 4 cm in diameter if
the metal in the top and bottom is cm thick and the
metal in the sides is cm thick.0.05

0.1

0.04

0.2

0.1

dz�z�2.96, �0.95�
�3, �1��x, y�z � x 2 � xy � 3y 2

dz�z
�1.05, 2.1�,�1, 2��x, y�z � 5x 2 � y 2

u � r��s � 2t�w � lnsx 2 � y 2 � z 2

v � y cos xyu � e t sin 
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v16 �CT
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The Chain Rule � � � � � � � � � � � � � � � �

We recall that the Chain Rule for functions of a single variable gives the rule for dif-
ferentiating a composite function: If and , where and are differ-
entiable functions, then is indirectly a differentiable function of and

For functions of more than one variable, the Chain Rule has several versions, each
of them giving a rule for differentiating a composite function. The first version
(Theorem 2) deals with the case where and each of the variables and 
is, in turn, a function of a variable . This means that is indirectly a function of ,

, and the Chain Rule gives a formula for differentiating as a function
of . We assume that is differentiable (Definition 11.4.7). Recall that this is the case
when and are continuous (Theorem 11.4.8).

The Chain Rule (Case 1) Suppose that is a differentiable function
of and , where and are both differentiable functions of .
Then is a differentiable function of and

Proof A change of in produces changes of in and in . These, in turn,
produce a change of in , and from Definition 11.4.7 we have

where and as . [If the functions and are not
defined at , we can define them to be 0 there.] Dividing both sides of this equa-
tion by , we have

If we now let , then because is differentiable
and therefore continuous. Similarly, . This, in turn, means that and

, so

 �
�f

�x
 
dx

dt
�

�f

�y
 
dy

dt

 �
�f

�x
 
dx

dt
�

�f

�y
 
dy

dt
� 0 �

dx

dt
� 0 �

dy

dt

 �
�f

�x
 lim
�t l 0

 
�x

�t
�

�f

�y
 lim
�t l 0

 
�y

�t
� lim

�t l 0
 �1 lim

�t l 0
 
�x

�t
� lim

�t l 0
 �2 lim

�t l 0
 
�y

�t

 
dz

dt
� lim

�t l 0
 
�z

�t

�2 l 0
�1 l 0�y l 0

t�x � t�t � �t� � t�t� l 0�t l 0

�z

�t
�

�f

�x
 
�x

�t
�

�f

�y
 
�y

�t
� �1 

�x

�t
� �2 

�y

�t

�t
�0, 0�

�2�1��x, �y� l �0, 0��2 l 0�1 l 0

�z �
�f

�x
�x �

�f

�y
�y � �1 �x � �2 �y

z�z
y�yx�xt�t

dz

dt
�

�f

�x
 
dx

dt
�

�f

�y
 
dy

dt

tz
ty � h�t�x � t�t�yx

z � f �x, y�2

fyfx

ft
zz � f �t�t�, h�t��

tzt
yxz � f �x, y�

dy

dt
�

dy

dx
 
dx

dt
1

ty
tfx � t�t�y � f �x�

11.5
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Since we often write in place of , we can rewrite the Chain Rule in the
form

EXAMPLE 1 If , where and , find when 
.

SOLUTION The Chain Rule gives

It’s not necessary to substitute the expressions for and in terms of . We simply
observe that when we have x � sin 0 � 0 and y � cos 0 � 1. Therefore,

The derivative in Example 1 can be interpreted as the rate of change of with
respect to as the point moves along the curve with parametric equations

, . (See Figure 1.) In particular, when , the point is
and is the rate of increase as we move along the curve through

. If, for instance, represents the temperature at the
point , then the composite function represents the tempera-
ture at points on and the derivative represents the rate at which the temper-
ature changes along .

EXAMPLE 2 The pressure (in kilopascals), volume (in liters), and temperature 
(in kelvins) of a mole of an ideal gas are related by the equation .

Find the rate at which the pressure is changing when the temperature is and
increasing at a rate of and the volume is 100 L and increasing at a rate of

.

SOLUTION If represents the time elapsed in seconds, then at the given instant we have
, , , . Since

the Chain Rule gives

The pressure is decreasing at a rate of about kPa�s.0.042

 �
8.31

100
 �0.1� �

8.31�300�
1002  �0.2� � �0.04155

 
dP

dt
�

�P

�T
 
dT

dt
�

�P

�V
 
dV

dt
�

8.31

V
 
dT

dt
�

8.31T

V 2  
dV

dt

P � 8.31
T

V

dV�dt � 0.2V � 100dT�dt � 0.1T � 300
t

0.2 L�s
0.1 K�s

300 K
PV � 8.31TT

VP

C
dz�dtC

z � T�sin 2t, cos t��x, y�
z � T�x, y� � x 2y � 3xy 4�0, 1�

Cdz�dt � 6�0, 1�
�x, y�t � 0y � cos tx � sin 2t

C�x, y�t
z

dz

dt �
t�0

� �0 � 3��2 cos 0� � �0 � 0���sin 0� � 6

t � 0
tyx

 � �2xy � 3y 4 ��2 cos 2t� � �x 2 � 12xy 3 ���sin t�

 
dz

dt
�

�z

�x
 
dx

dt
�

�z

�y
 
dy

dt

t � 0
dz�dty � cos tx � sin 2tz � x 2y � 3xy4

dz

dt
�

�z

�x
 
dx

dt
�

�z

�y
 
dy

dt

�f��x�z��x
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� Notice the similarity to the definition
of the differential:

dz �
�z

�x
 dx �

�z

�y
 dy

FIGURE 1
The curve x=sin 2t, y=cos t

x

(0, 1)

y



We now consider the situation where but each of and is a function
of two variables and : , . Then is indirectly a function of 
and and we wish to find and . Recall that in computing we hold 
fixed and compute the ordinary derivative of with respect to . Therefore, we can
apply Theorem 2 to obtain

A similar argument holds for and so we have proved the following version of
the Chain Rule.

The Chain Rule (Case 2) Suppose that is a differentiable function
of and , where and are differentiable functions of s
and t. Then

EXAMPLE 3 If , where and , find and .

SOLUTION Applying Case 2 of the Chain Rule, we get

Case 2 of the Chain Rule contains three types of variables: and are independ-
ent variables, and are called intermediate variables, and is the dependent vari-
able. Notice that Theorem 3 has one term for each intermediate variable and each of
these terms resembles the one-dimensional Chain Rule in Equation 1.

To remember the Chain Rule it is helpful to draw the tree diagram in Figure 2. We
draw branches from the dependent variable to the intermediate variables and to
indicate that is a function of and . Then we draw branches from and to the
independent variables and . On each branch we write the corresponding partial
derivative. To find we find the product of the partial derivatives along each path
from to and then add these products:

Similarly, we find by using the paths from to .
Now we consider the general situation in which a dependent variable is a func-

tion of intermediate variables , , each of which is, in turn, a function of mxn. . . ,x1n
u
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independent variables , . Notice that there are terms, one for each interme-
diate variable. The proof is similar to that of Case 1.

The Chain Rule (General Version) Suppose that is a differentiable function of
the variables , , and each is a differentiable function of the 
variables , , . Then is a function of , , and

for each , , .

EXAMPLE 4 Write out the Chain Rule for the case where and
, , , and .

SOLUTION We apply Theorem 4 with and . Figure 3 shows the tree dia-
gram. Although we haven’t written the derivatives on the branches, it’s understood
that if a branch leads from to , then the partial derivative for that branch is .
With the aid of the tree diagram we can now write the required expressions:

EXAMPLE 5 If , where , , and , find the
value of when , , .

SOLUTION With the help of the tree diagram in Figure 4, we have

When , , and , we have , , and , so

EXAMPLE 6 If and is differentiable, show that satis-
fies the equation

SOLUTION Let and . Then and the Chain Rule
gives
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Therefore

EXAMPLE 7 If has continuous second-order partial derivatives and
and , find (a) and (b) .

SOLUTION
(a) The Chain Rule gives

(b) Applying the Product Rule to the expression in part (a), we get

But, using the Chain Rule again (see Figure 5), we have

Putting these expressions into Equation 5 and using the equality of the mixed second-
order derivatives, we obtain

Implicit Differentiation

The Chain Rule can be used to give a more complete description of the process of
implicit differentiation that was introduced in Sections 3.6 and 11.3. We suppose that
an equation of the form defines implicitly as a differentiable function of
, that is, , where for all in the domain of . If is differen-

tiable, we can apply Case 1 of the Chain Rule to differentiate both sides of the equa-
tion with respect to . Since both and are functions of , we obtain
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But , so if we solve for and obtain

To derive this equation we assumed that defines implicitly as a func-
tion of . The Implicit Function Theorem, proved in advanced calculus, gives con-
ditions under which this assumption is valid. It states that if is defined on a disk con-
taining , where , , and and are continuous on the
disk, then the equation defines as a function of near the point 
and the derivative of this function is given by Equation 6.

EXAMPLE 8 Find if .

SOLUTION The given equation can be written as

so Equation 6 gives

Now we suppose that is given implicitly as a function by an equation
of the form . This means that for all in the
domain of . If and are differentiable, then we can use the Chain Rule to differ-
entiate the equation as follows:

But

so this equation becomes

If , we solve for and obtain the first formula in Equations 7. The for-
mula for is obtained in a similar manner.
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� The solution to Example 8 should be
compared to the one in Example 2 in
Section 3.6.



Again, a version of the Implicit Function Theorem gives conditions under which 
our assumption is valid. If is defined within a sphere containing , where

, , and , , and are continuous inside the sphere,
then the equation defines as a function of and near the point

and the partial derivatives of this function are given by (7).

EXAMPLE 9 Find and if .

SOLUTION Let . Then, from Equations 7, we
have
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14. , where ,
� � � � � � � � � � � � �

15–19 � Use the Chain Rule to find the indicated partial 
derivatives.

15. , , , ;

, when ,

16. , , , ;

, when ,

17. , , ;

, , when , ,

18. , , ;

, , when , ,

19. , , ,

;

, ,

� � � � � � � � � � � � �

20–22 � Use Equation 6 to find .

20.

21. cos�x � y� � xe y

y 5 � x 2y 3 � 1 � ye x2

dy�dx

�u

�t

�u

�r

�u

�p

z � p � r � t

y � p � r � tx � p � r � tu �
x � y

y � z

t � 0s � 2r � 1
�z

�t

�z

�s

�z

�r

y � rse tx � re stz �
x

y

v � 0u � 1t � 2
�z

�v

�z

�u

�z

�t

y � u � tv2x � t 2uvz � y 2 tan x

t � 1s � 0
�u

�t

�u

�s

z � t 2y � e stx � stu � xy � yz � zx

t � 0s � 1
�w

�t

�w

�s

z � s sin ty � s cos tx � stw � x 2 � y 2 � z2

t � t�w, x, y, z�s � s�w, x, y, z�u � f �s, t�1–4 � Use the Chain Rule to find or .

1. , ,

2. , ,

3. , , ,

4. , , ,
� � � � � � � � � � � � �

5–8 � Use the Chain Rule to find and .

5. , ,

6. , ,

7. , ,

8. , ,
� � � � � � � � � � � � �

9. If , where , , , ,
, , , and , find

when .

10. Let , where ,
, , , ,

, , and . Find
and .

11–14 � Use a tree diagram to write out the Chain Rule for the
given case. Assume all functions are differentiable.

11. , where ,

12. , where , ,

13. ,
where , , r � r�x, y, z�q � q�x, y, z�p � p�x, y, z�
v � f �p, q, r�

z � z�t, u�y � y�t, u�x � x�t, u�w � f �x, y, z�

y � y�r, s, t�x � x�r, s, t�u � f �x, y�

Wt�1, 0�Ws�1, 0�
Fv�2, 3� � 10Fu�2, 3� � �1vt�1, 0� � 4

vs�1, 0� � 5v�1, 0� � 3ut�1, 0� � 6us�1, 0� � �2
u�1, 0� � 2W�s, t� � F�u�s, t�, v�s, t��

t � 3dz�dt
fy�2, 7� � �8fx�2, 7� � 6h��3� � �4h�3� � 7

t��3� � 5t�3� � 2y � h�t�x � t�t�z � f �x, y�

� � s � t� � 3s � tz � sin � tan �


 � ss 2 � t 2r � stz � e r cos 


y � 1 � se�tx � se tz � x�y

y � stx � s � tz � x 2 � xy � y 2

�z��t�z��s

z � e t cos ty � e t sin tx � e tw � xy � yz 2

z � 1 � 2ty � 1 � tx � t 2w � xe y�z

y � cos tx � sin tz � x ln�x � 2y�

y � stx � � tz � sin x cos y

dw�dtdz�dt
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� The solution to Example 9 should be
compared to the one in Example 4 in
Section 11.3.



while is decreasing at a rate of 3 m�s. At that instant find
the rates at which the following quantities are changing.
(a) The volume (b) The surface area
(c) The length of a diagonal

32. The voltage in a simple electrical circuit is slowly
decreasing as the battery wears out. The resistance is
slowly increasing as the resistor heats up. Use Ohm’s Law,

, to find how the current is changing at the moment
when , A, V�s, and

.

33. The pressure of 1 mole of an ideal gas is increasing at a rate
of kPa�s and the temperature is increasing at a rate of

K�s. Use the equation in Example 2 to find the rate of
change of the volume when the pressure is 20 kPa and the
temperature is K.

34. Car A is traveling north on Highway 16 and Car B is travel-
ing west on Highway 83. Each car is approaching the inter-
section of these highways. At a certain moment, car A is
0.3 km from the intersection and traveling at 90 km�h 
while car B is 0.4 km from the intersection and traveling 
at 80 km�h. How fast is the distance between the cars
changing at that moment?

35–38 � Assume that all the given functions are differentiable.

35. If , where and , (a) find
and and (b) show that

36. If , where and , show
that

37. If , show that .

38. If , where and , show that

� � � � � � � � � � � � �

39–44 � Assume that all the given functions have continuous 
second-order partial derivatives.

39. Show that any function of the form

is a solution of the wave equation

[Hint: Let , .]v � x � atu � x � at

�2z

�t 2 � a 2 
�2z

�x 2

z � f �x � at� � t�x � at�

� �z

�x�2

� � �z

�y�2

�
�z

�s
 
�z

�t

y � s � tx � s � tz � f �x, y�

�z

�x
�

�z

�y
� 0z � f �x � y�

��u

�x�2

� ��u

�y�2

� e�2s���u

�s�2

� ��u

�t �2�
y � e s sin tx � e s cos tu � f �x, y�

� �z

�x�2

� � �z

�y�2

� ��z

�r�2

�
1

r 2  � �z

�

�2

�z��
�z��r
y � r sin 
x � r cos 
z � f �x, y�

320 

0.15 
0.05

dR�dt � 0.03 ��s
dV�dt � �0.01I � 0.08R � 400 �
IV � IR

R
V

h22.
� � � � � � � � � � � � �

23–26 � Use Equations 7 to find and .

23. 24.

25. 26.
� � � � � � � � � � � � �

27. The temperature at a point is , measured in
degrees Celsius. A bug crawls so that its position after 

seconds is given by , where 
and are measured in centimeters. The temperature func-
tion satisfies and . How fast is the
temperature rising on the bug’s path after 3 seconds?

28. Wheat production in a given year, , depends on the 
average temperature and the annual rainfall . Scientists 
estimate that the average temperature is rising at a rate 
of 0.15 °C�year and rainfall is decreasing at a rate of
0.1 cm�year. They also estimate that, at current production
levels, and .
(a) What is the significance of the signs of these partial 

derivatives?
(b) Estimate the current rate of change of wheat production,

.

29. The speed of sound traveling through ocean water with
salinity 35 parts per thousand has been modeled by the
equation

where is the speed of sound (in meters per second), is
the temperature (in degrees Celsius), and is the depth
below the ocean surface (in meters). A scuba diver began a
leisurely dive into the ocean water; the diver’s depth and
surrounding water temperature over time are recorded in the
following graphs. Estimate the rate of change (with respect
to time) of the speed of sound through the ocean water
experienced by the diver 20 minutes into the dive. What are
the units?

30. The radius of a right circular cone is increasing at a rate of 
in�s while its height is decreasing at a rate of in�s.

At what rate is the volume of the cone changing when the
radius is 120 in. and the height is 140 in.?

31. The length �, width , and height of a box change with 
time. At a certain instant the dimensions are and

m, and � and are increasing at a rate of 2 m�s ww � h � 2
� � 1 m

hw

2.51.8

t
(min)

T

10

12

10 20 30 40

14

16

8

t
(min)

D

5

10

10 20 30 40

15

20

D
TC

C � 1449.2 � 4.6T � 0.055T 2 � 0.00029T 3 � 0.016D

dW�dt

�W��R � 8�W��T � �2

RT
W

Ty�2, 3� � 3Tx�2, 3� � 4
y

xx � s1 � t, y � 2 �
1
3 tt

T�x, y��x, y�

ln�x � yz� � 1 � xy 2z3xe y � yz � ze x � 0

xyz � cos�x � y � z�xy 2 � yz 2 � zx 2 � 3

�z��y�z��x

sin x � cos y � sin x cos y
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44. Suppose , where and .
(a) Show that

(b) Find a similar formula for .
� � � � � � � � � � � � �

45. Suppose that the equation implicitly defines
each of the three variables , , and as functions of the
other two: , , . If is dif-
ferentiable and , , and are all nonzero, show that

�z

�x
 
�x

�y
 
�y

�z
� �1

FzFyFx

Fx � h�y, z�y � t�x, z�z � f �x, y�
zyx

F�x, y, z� � 0

�2z��s �t

  �
�z

�x
 
�2x

�t 2 �
�z

�y
 
�2 y

�t 2

 
�2z

�t 2 �
�2z

�x 2  ��x

�t �2

� 2 
�2z

�x �y
 
�x

�t
 
�y

�t
�

�2z

�y 2  ��y

�t �2

y � h�s, t�x � t�s, t�z � f �x, y�40. If , where and , show
that

41. If , where , , find .
(Compare with Example 7.)

42. If , where , , find (a) ,
(b) , and (c) .

43. If , where , , show that 

�2z

�x 2 �
�2z

�y 2 �
�2z

�r 2 �
1

r 2  
�2z

�
 2 �
1

r
 
�z

�r

y � r sin 
x � r cos 
z � f �x, y�

�2z��r �
�z��

�z��ry � r sin 
x � r cos 
z � f �x, y�

�2z��r �sy � 2rsx � r 2 � s 2z � f �x, y�

�2u

�x 2 �
�2u

�y 2 � e�2s��2u

�s 2 �
�2u

�t 2�
y � e s sin tx � e s cos tu � f �x, y�

Directional Derivatives and the Gradient Vector � � � � � � �

The weather map in Figure 1 shows a contour map of the temperature function 
for the states of California and Nevada at 3:00 P.M. on October 10, 1997. The level
curves, or isothermals, join locations with the same temperature. The partial deriva-
tive at a location such as Reno is the rate of change of temperature with respect to
distance if we travel east from Reno; is the rate of change of temperature if we
travel north. But what if we want to know the rate of change of temperature when we
travel southeast (toward Las Vegas), or in some other direction? In this section we
introduce a type of derivative, called a directional derivative, that enables us to find
the rate of change of a function of two or more variables in any direction.

Directional Derivatives

Recall that if , then the partial derivatives and are defined as

 fy�x0, y0 � � lim
h l 0

 
 f �x0, y0 � h� � f �x0, y0 �

h

 fx�x0, y0 � � lim
h l 0

 
 f �x0 � h, y0 � � f �x0, y0 �

h
1

fyfxz � f �x, y�
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and represent the rates of change of in the - and -directions, that is, in the direc-
tions of the unit vectors and .

Suppose that we now wish to find the rate of change of at in the direction
of an arbitrary unit vector . (See Figure 2.) To do this we consider the sur-
face with equation (the graph of ) and we let . Then the
point lies on . The vertical plane that passes through in the direction
of intersects in a curve . (See Figure 3.) The slope of the tangent line to at
the point is the rate of change of in the direction of .

If is another point on and , are the projections of , on the
-plane, then the vector P�BQ� is parallel to and so

P�BQ�

for some scalar . Therefore, , , so ,
, and

If we take the limit as , we obtain the rate of change of (with respect to dis-
tance) in the direction of , which is called the directional derivative of in the direc-
tion of .

Definition The directional derivative of at in the direction of a
unit vector is

if this limit exists.

Du f �x0, y0 � � lim
h l 0

 
 f �x0 � ha, y0 � hb� � f �x0, y0 �

h

u � 
a, b �
�x0, y0 �f2

u
fu

zh l 0

�z

h
�

z � z0

h
�

 f �x0 � ha, y0 � hb� � f �x0, y0 �
h

y � y0 � hb
x � x0 � hay � y0 � hbx � x0 � hah

� hu � 
ha, hb �

uxy
QPQ�P�CQ�x, y, z�
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By comparing Definition 2 with Equations 1, we see that if , then
and if , then . In other words, the partial derivatives

of with respect to and are just special cases of the directional derivative.

EXAMPLE 1 Use the weather map in Figure 1 to estimate the value of the directional
derivative of the temperature function at Reno in the southeasterly direction.

SOLUTION The unit vector directed toward the southeast is , but we
won’t need to use this expression. We start by drawing a line through Reno toward
the southeast. (See Figure 4.)

We approximate the directional derivative by the average rate of change of
the temperature between the points where this line intersects the isothermals 
and . The temperature at the point southeast of Reno is and the
temperature at the point northwest of Reno is . The distance between
these points looks to be about 75 miles. So the rate of change of the temperature in
the southeasterly direction is

When we compute the directional derivative of a function defined by a formula, we
generally use the following theorem.

Theorem If is a differentiable function of and , then has a directional
derivative in the direction of any unit vector and

Proof If we define a function of the single variable by

t�h� � f �x0 � ha, y0 � hb�

ht

Du f �x, y� � fx�x, y�a � fy�x, y�b

u � 
a, b �
fyxf3

Du T �
60 � 50

75
�

10
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then by the definition of a derivative we have

On the other hand, we can write , where , , so
the Chain Rule (Theorem 11.5.2) gives

If we now put , then , , and

Comparing Equations 4 and 5, we see that

If the unit vector makes an angle with the positive -axis (as in Figure 2), then
we can write and the formula in Theorem 3 becomes

EXAMPLE 2 Find the directional derivative if

and is the unit vector given by angle . What is ?

SOLUTION Formula 6 gives

Therefore

The Gradient Vector

Notice from Theorem 3 that the directional derivative can be written as the dot prod-
uct of two vectors:

 � 
 fx�x, y�, fy�x, y�� � u

 � 
 fx�x, y�, fy�x, y�� � 
a, b �

 Du f �x, y� � fx�x, y�a � fy�x, y�b7

Du f �1, 2� � 1
2 [3s3�1�2 � 3�1� � (8 � 3s3)�2�] �

13 � 3s3

2

 � 1
2[3 s3x 2 � 3x � (8 � 3s3)y]

 � �3x 2 � 3y� 
s3

2
� ��3x � 8y� 1

2

 Du f �x, y� � fx�x, y� cos 
�

6
� fy�x, y� sin 

�

6

Du f �1, 2�
 � ��6u

f �x, y� � x 3 � 3xy � 4y 2

Du f �x, y�

Du f �x, y� � fx�x, y� cos 
 � fy�x, y� sin 
6

u � 
cos 
, sin 
 �
x
u

Du f �x0, y0 � � fx�x0, y0 �a � fy�x0, y0 �b

t��0� � fx�x0, y0 �a � fy�x0, y0 �b5

y � y0x � x0h � 0

 t��h� �
�f

�x
 
dx

dh
�

�f

�y
 
dy

dh
� fx�x, y�a � fy�x, y�b

y � y0 � hbx � x0 � hat�h� � f �x, y�

 � Du f �x0, y0 �

 t��0� � lim
h l 0

 
t�h� � t�0�

h
� lim

h l 0
 
 f �x0 � ha, y0 � hb� � f �x0, y0 �

h
4
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The first vector in this dot product occurs not only in computing directional deriv-
atives but in many other contexts as well. So we give it a special name (the gradient
of ) and a special notation (grad or , which is read “del ”).

Definition If is a function of two variables and , then the gradient of 
is the vector function defined by

EXAMPLE 3 If , then

and

With this notation for the gradient vector, we can rewrite the expression (7) for the
directional derivative as

This expresses the directional derivative in the direction of as the scalar projection
of the gradient vector onto .

EXAMPLE 4 Find the directional derivative of the function at the
point in the direction of the vector .

SOLUTION We first compute the gradient vector at :

Note that is not a unit vector, but since , the unit vector in the direction
of is

Therefore, by Equation 9, we have

Functions of Three Variables

For functions of three variables we can define directional derivatives in a similar man-
ner. Again can be interpreted as the rate of change of the function in the
direction of a unit vector .u

Du f �x, y, z�

 �
�4 � 2 � 8 � 5

s29
�

32

s29

Du f �2, �1� � � f �2, �1� � u � ��4 i � 8 j� � � 2

s29
 i �

5

s29
 j�

u �
v

� v � �
2

s29
 i �

5

s29
 j

v
� v � � s29v

 � f �2, �1� � �4 i � 8 j

 � f �x, y� � 2xy 3 i � �3x 2y 2 � 4�j

�2, �1�

v � 2 i � 5 j�2, �1�
f �x, y� � x 2y 3 � 4y

u
u

Du f �x, y� � � f �x, y� � u9

 � f �0, 1� � 
2, 0 �

 � f �x, y� � 
 fx, fy� � 
cos x � yexy, xexy�

f �x, y� � sin x � exy

� f �x, y� � 
 fx�x, y�, fy�x, y�� �
�f

�x
 i �

�f

�y
 j

� f
fyxf8

f� fff
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Definition The directional derivative of at in the direction of
a unit vector is

if this limit exists.

If we use vector notation, then we can write both definitions (2 and 10) of the direc-
tional derivative in the compact form

where if and if . This is reasonable since
the vector equation of the line through in the direction of the vector is given by

(Equation 9.5.1) and so represents the value of at a point
on this line.

If is differentiable and , then the same method that was used
to prove Theorem 3 can be used to show that

For a function of three variables, the gradient vector, denoted by or
grad , is

or, for short,

Then, just as with functions of two variables, Formula 12 for the directional derivative
can be rewritten as

EXAMPLE 5 If , (a) find the gradient of and (b) find the direc-
tional derivative of at in the direction of .

SOLUTION
(a) The gradient of is 

 � 
sin yz, xz cos yz, xy cos yz�

 � f �x, y, z� � 
 fx�x, y, z�, fy�x, y, z�, fz�x, y, z��

f

v � i � 2 j � k�1, 3, 0�f
ff �x, y, z� � x sin yz

Du f �x, y, z� � � f �x, y, z� � u14

� f � 
 fx, fy, fz� �
�f

�x
 i �

�f

�y
 j �

�f

�z
 k13

� f �x, y, z� � 
 fx�x, y, z�, fy�x, y, z�, fz�x, y, z��

f
� ff

Du f �x, y, z� � fx�x, y, z�a � fy�x, y, z�b � fz�x, y, z�c12

u � 
a, b, c�f �x, y, z�

ff �x0 � hu�x � x0 � tu
ux0

n � 3x0 � 
x0, y0, z0 �n � 2x0 � 
x0, y0 �

Du f �x0 � � lim
h l 0

 
 f �x0 � hu� � f �x0 �

h
11

Du f �x0, y0, z0 � � lim
h l 0

 
 f �x0 � ha, y0 � hb, z0 � hc� � f �x0, y0, z0 �

h

u � 
a, b, c�
�x0, y0, z0 �f10
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(b) At we have . The unit vector in the direction of
is

Therefore, Equation 14 gives

Maximizing the Directional Derivative

Suppose we have a function of two or three variables and we consider all possible
directional derivatives of at a given point. These give the rates of change of in all
possible directions. We can then ask the questions: In which of these directions does

change fastest and what is the maximum rate of change? The answers are provided
by the following theorem.

Theorem Suppose is a differentiable function of two or three variables.
The maximum value of the directional derivative is and it
occurs when has the same direction as the gradient vector .

Proof From Equation 9 or 14 we have

where is the angle between and . The maximum value of is 1 and this
occurs when . Therefore, the maximum value of is and it occurs
when , that is, when has the same direction as .

EXAMPLE 6
(a) If , find the rate of change of at the point in the direction
from to .
(b) In what direction does have the maximum rate of change? What is this maxi-
mum rate of change?

SOLUTION
(a) We first compute the gradient vector:

The unit vector in the direction of is , so the rate of
change of in the direction from to is

 � 1(� 3
5 ) � 2(4

5 ) � 1

 Du f �2, 0� � � f �2, 0� � u � 
1, 2 � � 
� 3
5, 

4
5 �

QPf
u � 
� 3

5, 
4
5 �PQ

l
� 
�1.5, 2 �

  � f �2, 0� � 
1, 2 �

 � f �x, y� � 
 fx, fy � � 
ey, xey�

f
Q( 1

2, 2)P
P�2, 0�ff �x, y� � xey

� fu
 � 0
� � f �Du f
 � 0

cos 
u� f


Du f � � f � u � � � f �� u � cos 
 � � � f � cos 


� f �x�u
� � f �x� �Du f �x�

f15

f

ff
f

 � 3��
1

s6� � ��3

2

 � 3k � � 1

s6
 i �

2

s6
 j �

1

s6
 k�

 Du f �1, 3, 0� � � f �1, 3, 0� � u

u �
1

s6
 i �

2

s6
 j �

1

s6
 k

v � i � 2 j � k
� f �1, 3, 0� � 
0, 0, 3��1, 3, 0�
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(b) According to Theorem 15, increases fastest in the direction of the gradient
vector . The maximum rate of change is

EXAMPLE 7 Suppose that the temperature at a point in space is given by
, where is measured in degrees Celsius and 

, , in meters. In which direction does the temperature increase fastest at the point
? What is the maximum rate of increase?

SOLUTION The gradient of is

At the point the gradient vector is

By Theorem 15 the temperature increases fastest in the direction of the gradient
vector or, equivalently, in the direction of

or the unit vector . The maximum rate of
increase is the length of the gradient vector:

Therefore, the maximum rate of increase of temperature is .

Tangent Planes to Level Surfaces

Suppose is a surface with equation , that is, it is a level surface of a
function of three variables, and let be a point on . Let be any curve
that lies on the surface and passes through the point . Recall from Section 10.1 that
the curve is described by a continuous vector function . Let

be the parameter value corresponding to ; that is, . Since lies
on , any point must satisfy the equation of , that is,

If , , and are differentiable functions of and is also differentiable, then we can
use the Chain Rule to differentiate both sides of Equation 16 as follows:

But, since and , Equation 17 can be writ-
ten in terms of a dot product as

�F � r��t� � 0

r��t� � 
x��t�, y��t�, z��t���F � 
Fx, Fy, Fz �

�F

�x
 
dx

dt
�

�F

�y
 
dy

dt
�

�F

�z
 
dz

dt
� 017

Ftzyx

F�x�t�, y�t�, z�t�� � k16

S�x�t�, y�t�, z�t��S
Cr�t0� � 
x0, y0, z0 �Pt0

r�t� � 
x�t�, y�t�, z�t��C
PS

CSP�x0, y0, z0 �F
F�x, y, z� � kS

5s41�8 � 4 �C�m

 � �T�1, 1, �2� � � 5
8 � �i � 2 j � 6 k � �

5s41

8

��i � 2 j � 6 k��s41�i � 2 j � 6 k
�T�1, 1, �2� � 5

8 ��i � 2 j � 6 k�

�T�1, 1, �2� � 160
256 ��i � 2 j � 6 k� � 5

8 ��i � 2 j � 6 k�

�1, 1, �2�

 � 
160

�1 � x 2 � 2y 2 � 3z2 �2  ��x i � 2y j � 3z k�

 � �
160x

�1 � x 2 � 2y 2 � 3z2 �2  i �
320y

�1 � x 2 � 2y 2 � 3z2 �2  j �
480z

�1 � x 2 � 2y 2 � 3z2 �2  k

 �T �
�T

�x
 i �

�T

�y
 j �

�T

�z
 k

T

�1, 1, �2�
zyx

TT�x, y, z� � 80��1 � x 2 � 2y 2 � 3z2 �
�x, y, z�

� � f �2, 0� � � � 
1, 2 � � � s5

� f �2, 0� � 
1, 2 �
f
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In particular, when we have , so

Equation 18 says that the gradient vector at , , is perpendicular to the 
tangent vector to any curve on that passes through . (See Figure 9.) If

, it is therefore natural to define the tangent plane to the level sur-
face at as the plane that passes through and has normal
vector . Using the standard equation of a plane (Equation 9.5.6), we can
write the equation of this tangent plane as

The normal line to at is the line passing through and perpendicular to the
tangent plane. The direction of the normal line is therefore given by the gradient vec-
tor and so, by Equation 9.5.3, its symmetric equations are

In the special case in which the equation of a surface is of the form 
(that is, is the graph of a function of two variables), we can rewrite the equation
as

and regard as a level surface (with ) of . Then

so Equation 19 becomes

which is equivalent to Equation 11.4.2. Thus, our new, more general, definition of a
tangent plane is consistent with the definition that was given for the special case of
Section 11.4.

EXAMPLE 8 Find the equations of the tangent plane and normal line at the point
to the ellipsoid

SOLUTION The ellipsoid is the level surface (with ) of the function

F�x, y, z� �
x 2

4
� y 2 �

z2

9

k � 3

x 2

4
� y 2 �

z2

9
� 3

��2, 1, �3�

fx�x0, y0 ��x � x0 � � fy�x0, y0 ��y � y0 � � �z � z0 � � 0

 Fz�x0, y0, z0 � � �1 

 Fy�x0, y0, z0 � � fy�x0, y0 �

 Fx�x0, y0, z0 � � fx�x0, y0 �

Fk � 0S

F�x, y, z� � f �x, y� � z � 0

fS
z � f �x, y�S

x � x0

Fx�x0, y0, z0 �
�

y � y0

Fy�x0, y0, z0 �
�

z � z0

Fz�x0, y0, z0 �
20

�F�x0, y0, z0 �

PPS

Fx�x0, y0, z0 ��x � x0 � � Fy�x0, y0, z0 ��y � y0 � � Fz�x0, y0, z0 ��z � z0 � � 019

�F�x0, y0, z0 �
PP�x0, y0, z0 �F�x, y, z� � k

�F�x0, y0, z0 � � 0
PSCr��t0 �

�F�x0, y0, z0 �P

�F�x0, y0, z0 � � r��t0 � � 018

r�t0� � 
x0, y0, z0 �t � t0
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Therefore, we have

Then Equation 19 gives the equation of the tangent plane at as

which simplifies to .
By Equation 20, symmetric equations of the normal line are

Significance of the Gradient Vector

We now summarize the ways in which the gradient vector is significant. We first con-
sider a function of three variables and a point in its domain. On the one
hand, we know from Theorem 15 that the gradient vector gives the direc-
tion of fastest increase of . On the other hand, we know that is orthog-
onal to the level surface of through . (Refer to Figure 9.) These two properties
are quite compatible intuitively because as we move away from on the level surface

, the value of does not change at all. So it seems reasonable that if we move in the
perpendicular direction, we get the maximum increase.

In like manner we consider a function of two variables and a point in
its domain. Again the gradient vector gives the direction of fastest increase
of . Also, by considerations similar to our discussion of tangent planes, it can be
shown that is perpendicular to the level curve that passes
through . Again this is intuitively plausible because the values of remain constant
as we move along the curve. (See Figure 11.)

If we consider a topographical map of a hill and let represent the height
above sea level at a point with coordinates , then a curve of steepest ascent can
be drawn as in Figure 12 by making it perpendicular to all of the contour lines. This
phenomenon can also be noticed in Figure 5 in Section 11.1, where Lonesome Creek
follows a curve of steepest descent.
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Computer algebra systems have commands that plot sample gradient vectors. Each
gradient vector is plotted starting at the point . Figure 13 shows such a
plot (called a gradient vector field ) for the function superimposed
on a contour map of f. As expected, the gradient vectors point “uphill” and are per-
pendicular to the level curves.

x

y

0 3 6 9

_3
_6

_9

FIGURE 13

f �x, y� � x 2 � y 2
�a, b�� f �a, b�

808 � CHAPTER 11 PARTIAL DERIVATIVES

directional derivative of this snowfall function at Muskegon,
Michigan, in the direction of Ludington. What are the units?

3. A table of values for the wind chill index is
given in Exercise 3 on page 776. Use the table to estimate
the value of , where .

4–6 � Find the directional derivative of at the given point in
the direction indicated by the angle .

4. , ,

5. , ,

6. , ,
� � � � � � � � � � � � �


 � ��2�5, 0�f �x, y� � xe�2y


 � ���6�4, 1�f �x, y� � s5x � 4y


 � 3��4�4, �2�f �x, y� � sin�x � 2y�
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1. A contour map of barometric pressure (in millibars) is
shown for 7:00 A.M. on September 12, 1960, when Hur-
ricane Donna was raging. Estimate the value of the direc-
tional derivative of the pressure function at Raleigh, North
Carolina, in the direction of the eye of the hurricane. What
are the units of the directional derivative?

2. The contour map shows the average annual snowfall (in
inches) near Lake Michigan. Estimate the value of the 
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(b) Use the result of part (a) to find the direction in which
the function decreases fastest at
the point .

24. Find the directions in which the directional derivative of
at the point (1, 0) has the value 1.

25. Find all points at which the direction of fastest change of
the function is .

26. Near a buoy, the depth of a lake at the point with coordi-
nates is , where , , and

are measured in meters. A fisherman in a small boat starts
at the point and moves toward the buoy, which is
located at . Is the water under the boat getting deeper
or shallower when he departs? Explain.

27. The temperature in a metal ball is inversely proportional
to the distance from the center of the ball, which we take to
be the origin. The temperature at the point is .
(a) Find the rate of change of at in the direction

toward the point .
(b) Show that at any point in the ball the direction of great-

est increase in temperature is given by a vector that
points toward the origin.

28. The temperature at a point is given by 

where is measured in and , , in meters.
(a) Find the rate of change of temperature at the point

in the direction toward the point .
(b) In which direction does the temperature increase fastest 

at ?
(c) Find the maximum rate of increase at .

29. Suppose that over a certain region of space the electrical
potential is given by

(a) Find the rate of change of the potential at in
the direction of the vector .

(b) In which direction does change most rapidly at ?
(c) What is the maximum rate of change at ?

30. Suppose that you are climbing a hill whose shape is given
by the equation and you are
standing at a point with coordinates .
(a) In which direction should you proceed initially in order

to reach the top of the hill fastest?
(b) If you climb in that direction, at what angle above the

horizontal will you be climbing initially?

31. Let be a function of two variables that has continuous 
partial derivatives and consider the points , ,

, and . The directional derivative of at in
the direction of the vector is 3 and the directional deriv-
ative at in the direction of is 26. Find the directional
derivative of at in the direction of the vector .AD

l
Af

AC
l

A
AB
l

AfD�6, 15�C�1, 7�
B�3, 3�A�1, 3�

f

�60, 100, 764�
z � 1000 � 0.01x 2 � 0.02y 2

P
PV

v � i � j � k
P�3, 4, 5�

V�x, y, z� � 5x 2 � 3xy � xyz

V

P
P

�3, �3, 3�P�2, �1, 2�

zyx�CT

T�x, y, z� � 200e�x 2�3y 2�9z 2

�x, y, z�

�2, 1, 3�
�1, 2, 2�T

120��1, 2, 2�

T

�0, 0�
�80, 60�

z
yxz � 200 � 0.02x 2 � 0.001y 3�x, y�

i � jf �x, y� � x 2 � y 2 � 2x � 4y

f �x, y� � x 2 � sin xy

�2, �3�
f �x, y� � x 4y � x 2 y 3

7–10 �

(a) Find the gradient of .
(b) Evaluate the gradient at the point .
(c) Find the rate of change of at in the direction of the 

vector .

7. , ,

8. , ,

9. , ,

10. , ,

� � � � � � � � � � � � �

11–15 � Find the directional derivative of the function at the
given point in the direction of the vector .

11. , ,

12. , ,

13. , ,

14. , ,

15. , ,
� � � � � � � � � � � � �

16. Use the figure to estimate .

17. Find the directional derivative of at in
the direction of .

18. Find the directional derivative of 
at in the direction of the origin.

19–22 � Find the maximum rate of change of at the given
point and the direction in which it occurs.

19. , (1, 0)

20. ,

21. ,

22. , (1, 1, 1)
� � � � � � � � � � � � �

23. (a) Show that a differentiable function decreases most
rapidly at in the direction opposite to the gradient 
vector, that is, in the direction of .�� f �x�

x
f

f �x, y, z� � x 2y 3z 4

�4, 3, �1�f �x, y, z� � x � y�z

�1, 2�f �x, y� � ln�x 2 � y 2 �

f �x, y� � sin�xy�

f

P�2, 1, 3�
f �x, y, z� � x 2 � y 2 � z 2

Q�5, 4�
P�2, 8�f �x, y� � sxy

y

x0

(2, 2)

±f(2, 2)

u

Du f �2, 2�

v � i � j � k�1, 2, �2�t�x, y, z� � x tan�1�y�z�

v � 
1, 2, 3 ��4, 1, 1�f �x, y, z� � x��y � z�

v � 
�6, 6, �3 �
�1, 2, �2�f �x, y, z� � sx 2 � y 2 � z 2

v � 3 i � 2 j�0, ��3�t�r, 
� � e�r sin 


v � 
4, �3 ��3, 4�f �x, y� � 1 � 2xsy

v

u � 
�2
3 , �1

3 , 23 �
P�2, 0, 3�f �x, y, z� � xy � yz2 � xz3

u � � 1

s3
, 

�1

s3
, 

1

s3�P�1, �2, 1�f �x, y, z� � xy 2z3

u � 
� 4
5 , 35 �P�1, �3�f �x, y� � y ln x

u � 
 5
13 , 12

13 �P�1, 2�f �x, y� � 5xy 2 � 4x 3y

u
Pf

P
f
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41. If , find the gradient vector and
use it to find the tangent line to the level curve 
at the point . Sketch the level curve, the tangent line,
and the gradient vector.

42. If , find the gradient vector and
use it to find the tangent line to the level curve 
at the point . Sketch the level curve, the tangent line,
and the gradient vector.

43. Show that the equation of the tangent plane to the ellipsoid
at the point can be 

written as

44. Find the points on the ellipsoid where
the tangent plane is parallel to the plane .

45. Find the points on the hyperboloid 
where the normal line is parallel to the line that joins the
points and .

46. Show that the ellipsoid and the sphere
are tangent to

each other at the point . (This means that they have
a common tangent plane at the point.)

47. Show that the sum of the -, -, and -intercepts of any 
tangent plane to the surface is a 
constant.

48. Show that every normal line to the sphere
passes through the center of the sphere.

49. Find parametric equations for the tangent line to the curve
of intersection of the paraboloid and the ellip-
soid at the point .

50. (a) The plane intersects the cylinder
in an ellipse. Find parametric equations for

the tangent line to this ellipse at the point .

; (b) Graph the cylinder, the plane, and the tangent line on
the same screen.

51. (a) Two surfaces are called orthogonal at a point of inter-
section if their normal lines are perpendicular at that
point. Show that surfaces with equations 
and are orthogonal at a point where

and if and only if

at .
(b) Use part (a) to show that the surfaces 

and are orthogonal at every point of
intersection. Can you see why this is true without using
calculus?

52. (a) Show that the function is continuous and
the partial derivatives and exist at the origin but the
directional derivatives in all other directions do not
exist.

fyfx

f �x, y� � s
3 xy

x 2 � y 2 � z2 � r 2
z2 � x 2 � y 2

P

FxGx � FyGy � FzGz � 0

�G � 0�F � 0
PG�x, y, z� � 0

F�x, y, z� � 0

�1, 2, 1�
x 2 � y 2 � 5

y � z � 3

��1, 1, 2�4x 2 � y 2 � z2 � 9
z � x 2 � y 2

x 2 � y 2 � z2 � r 2

sx � sy � sz � sc
zyx

�1, 1, 2�
x 2 � y 2 � z2 � 8x � 6y � 8z � 24 � 0

3x 2 � 2y 2 � z2 � 9

�5, 3, 6��3, �1, 0�

x 2 � y 2 � 2z2 � 1

3x � y � 3z � 1
x 2 � 2y 2 � 3z2 � 1

xx0

a 2 �
 yy0

b 2 �
zz0

c 2 � 1

�x0, y0, z0 �x 2�a 2 � y 2�b 2 � z2�c 2 � 1

�3, �1�
t�x, y� � 2

�t�3, �1�t�x, y� � x � y 2

�2, 1�
f �x, y� � 8

� f �2, 1�f �x, y� � x 2 � 4y 232. For the given contour map draw the curves of steepest
ascent starting at and at .

33. Show that the operation of taking the gradient of a function
has the given property. Assume that and are differen-
tiable functions of and and , are constants.
(a)
(b)

(c)

(d)

34. Sketch the gradient vector for the function 
whose level curves are shown. Explain how you chose the
direction and length of this vector.

35–38 � Find equations of (a) the tangent plane and (b) the
normal line to the given surface at the specified point.

35.

36.

37. ,

38. ,
� � � � � � � � � � � � �

; 39– 40 � Use a computer to graph the surface, the tangent plane,
and the normal line on the same screen. Choose the domain
carefully so that you avoid extraneous vertical planes. Choose
the viewpoint so that you get a good view of all three objects.

39. ,

40. ,
� � � � � � � � � � � � �

�1, 2, 3�xyz � 6

�1, 1, 1�xy � yz � zx � 3

�1, 0, 5�xe yz � 1

�1, 0, 0�z � 1 � xe y cos z

x � y 2 � z 2 � 2, ��1, 1, 0�

x 2 � 2y 2 � 3z 2 � 21, �4, �1, 1�

20

2

4

6

4 6 x

y

(4, 6)
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0
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f� f �4, 6�

�un � nu n�1 �u

��u
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v 2

��uv� � u �v � v �u
��au � bv� � a �u � b �v
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vu
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54. Show that if is differentiable at ,
then

[Hint: Use Definition 11.4.7 directly.]

lim 
x l x 0

 
 f �x� � f �x0 � � � f �x0 � � �x � x0 �

� x � x0 � � 0

x0 � 
x0, y0 �z � f �x, y�
; (b) Graph near the origin and comment on how the graph

confirms part (a).

53. Suppose that the directional derivatives of are known
at a given point in two nonparallel directions given by unit 
vectors and . Is it possible to find at this point? If so,
how would you do it?

� fvu

f �x, y�

f

Maximum and Minimum Values � � � � � � � � � � �

As we saw in Chapter 4, one of the main uses of ordinary derivatives is in finding max-
imum and minimum values. In this section we see how to use partial derivatives to
locate maxima and minima of functions of two variables. In particular, in Example 6
we will see how to maximize the volume of a box without a lid if we have a fixed
amount of cardboard to work with.

Definition A function of two variables has a local maximum at if
when is near . [This means that 

for all points in some disk with center .] The number is
called a local maximum value. If when is near ,
then is a local minimum value.

If the inequalities in Definition 1 hold for all points in the domain of , then
has an absolute maximum (or absolute minimum) at .
The graph of a function with several maxima and minima is shown in Figure 1. You

can think of the local maxima as mountain peaks and the local minima as valley bottoms.

Theorem If has a local maximum or minimum at and the first-order
partial derivatives of exist there, then and .

Proof Let . If has a local maximum (or minimum) at , then 
has a local maximum (or minimum) at , so by Fermat’s Theorem (see
Theorem 4.2.4). But (see Equation 11.3.1) and so .
Similarly, by applying Fermat’s Theorem to the function , we obtain

.

Notice that the conclusion of Theorem 2 can be stated in the notation of the gradi-
ent vector as . If we put and in the equation of
a tangent plane (Equation 11.4.2), we get . Thus, the geometric interpretation of
Theorem 2 is that if the graph of has a tangent plane at a local maximum or mini-
mum, then the tangent plane must be horizontal.

A point is called a critical point (or stationary point) of if and
, or if one of these partial derivatives does not exist. Theorem 2 says that

if has a local maximum or minimum at , then is a critical point of .
However, as in single-variable calculus, not all critical points give rise to maxima or
minima. At a critical point, a function could have a local maximum or a local mini-
mum or neither.

f�a, b��a, b�f
fy�a, b� � 0

fx�a, b� � 0f�a, b�

f
z � z0

fy�a, b� � 0fx�a, b� � 0� f �a, b� � 0

fy�a, b� � 0
G�y� � f �a, y�

fx�a, b� � 0t��a� � fx�a, b�
t��a� � 0a

t�a, b�ft�x� � f �x, b�

fy�a, b� � 0fx�a, b� � 0f
�a, b�f2

�a, b�f
f�x, y�

f �a, b�
�a, b��x, y�f �x, y� � f �a, b�

f �a, b��a, b��x, y�
f �x, y� � f �a, b��a, b��x, y�f �x, y� � f �a, b�

�a, b�1

11.7

SECTION 11.7 MAXIMUM AND MINIMUM VALUES � 811

FIGURE 1

x

z

y

absolute
maximum

absolute
minimum

local
minimum

local
maximum



EXAMPLE 1 Let . Then

These partial derivatives are equal to 0 when and , so the only critical
point is . By completing the square, we find that

Since and , we have for all values of and .
Therefore, is a local minimum, and in fact it is the absolute minimum 
of . This can be confirmed geometrically from the graph of which is the elliptic
paraboloid with vertex shown in Figure 2.

EXAMPLE 2 Find the extreme values of .

SOLUTION Since and , the only critical point is . Notice that for
points on the -axis we have , so (if ). However, for
points on the -axis we have , so (if ). Thus, every disk
with center contains points where takes positive values as well as points
where takes negative values. Therefore, can’t be an extreme value for

, so has no extreme value.

Example 2 illustrates the fact that a function need not have a maximum or mini-
mum value at a critical point. Figure 3 shows how this is possible. The graph of is
the hyperbolic paraboloid , which has a horizontal tangent plane ( )
at the origin. You can see that is a maximum in the direction of the -axis
but a minimum in the direction of the -axis. Near the origin the graph has the shape
of a saddle and so is called a saddle point of .

We need to be able to determine whether or not a function has an extreme value at
a critical point. The following test, which is proved in Appendix E, is analogous to the
Second Derivative Test for functions of one variable.

Second Derivatives Test Suppose the second partial derivatives of are 
continuous on a disk with center , and suppose that and

[that is, is a critical point of ]. Let

(a) If and , then is a local minimum.

(b) If and , then is a local maximum.

(c) If , then is not a local maximum or minimum.

NOTE 1 � In case (c) the point is called a saddle point of and the graph of 
crosses its tangent plane at .

NOTE 2 � If , the test gives no information: could have a local maximum or
local minimum at , or could be a saddle point of .

NOTE 3 � To remember the formula for it’s helpful to write it as a determinant:

D � � fxx

fyx

fxy

fyy
� � fxx fyy � � fxy�2

D
f�a, b��a, b�

fD � 0
�a, b�

ff�a, b�

f �a, b�D � 0

f �a, b�fxx�a, b� � 0D � 0

f �a, b�fxx�a, b� � 0D � 0

D � D�a, b� � fxx�a, b� fyy�a, b� � � fxy�a, b�	2

f�a, b�fy�a, b� � 0
fx�a, b� � 0�a, b�

f3

f�0, 0�
y

xf �0, 0� � 0
z � 0z � y 2 � x 2

f

ff
f �0, 0� � 0f

f�0, 0�
y � 0f �x, y� � y 2 � 0x � 0y

x � 0f �x, y� � �x 2 � 0y � 0x
�0, 0�fy � 2yfx � �2x

f �x, y� � y 2 � x 2

�1, 3, 4�
f,f

f �1, 3� � 4
yxf �x, y� � 4�y � 3�2 � 0�x � 1�2 � 0

f �x, y� � 4 � �x � 1�2 � �y � 3�2

�1, 3�
y � 3x � 1

fy�x, y� � 2y � 6fx�x, y� � 2x � 2

f �x, y� � x 2 � y 2 � 2x � 6y � 14
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EXAMPLE 3 Find the local maximum and minimum values and saddle points of
.

SOLUTION We first locate the critical points:

Setting these partial derivatives equal to 0, we obtain the equations

To solve these equations we substitute from the first equation into the second
one. This gives

so there are three real roots: , , . The three critical points are , ,
and .

Next we calculate the second partial derivatives and :

Since , it follows from case (c) of the Second Derivatives Test
that the origin is a saddle point; that is, has no local maximum or minimum at

. Since and , we see from case (a) 
of the test that is a local minimum. Similarly, we have

and , so is also a
local minimum.

The graph of is shown in Figure 4.

EXAMPLE 4 Find and classify the critical points of the function

Also find the highest point on the graph of .f

f �x, y� � 10x 2y � 5x 2 � 4y 2 � x 4 � 2y 4

FIGURE 5
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f �1, 1� � �1

fxx�1, 1� � 12 � 0D�1, 1� � 128 � 0�0, 0�
f

D�0, 0� � �16 � 0

D�x, y� � fxx fyy � � fxy�2 � 144x 2y 2 � 16

fyy � 12y 2fxy � �4fxx � 12x 2

D�x, y�
��1, �1�

�1, 1��0, 0��11x � 0

0 � x 9 � x � x�x 8 � 1� � x�x 4 � 1��x 4 � 1� � x�x 2 � 1��x 2 � 1��x 4 � 1�

y � x 3
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� A contour map of the function in
Example 3 is shown in Figure 5. The
level curves near and 
are oval in shape and indicate that as
we move away from or 
in any direction the values of are
increasing. The level curves near ,
on the other hand, resemble hyperbolas.
They reveal that as we move away from
the origin (where the value of is ), the
values of decrease in some directions
but increase in other directions. Thus, the
contour map suggests the presence of
the minima and saddle point that we
found in Example 3.
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SOLUTION The first-order partial derivatives are

So to find the critical points we need to solve the equations

From Equation 4 we see that either

In the first case ( ), Equation 5 becomes , so and we
have the critical point .

In the second case , we get

and, putting this in Equation 5, we have . So we have
to solve the cubic equation

Using a graphing calculator or computer to graph the function

as in Figure 6, we see that Equation 7 has three real roots. By zooming in, we can
find the roots to four decimal places:

(Alternatively, we could have used Newton’s method or a rootfinder to locate these
roots.) From Equation 6, the corresponding -values are given by

If , then x has no corresponding real values. If , then
. If , then . So we have a total of five critical

points, which are analyzed in the following chart. All quantities are rounded to two 
decimal places.

x � �2.6442y � 1.8984x � �0.8567
y � 0.6468y � �2.5452

x � �s5y � 2.5

x

 y � 1.8984 y � 0.6468 y � �2.5452

t�y� � 4y 3 � 21y � 12.5

4y 3 � 21y � 12.5 � 07

25y � 12.5 � 4y � 4y 3 � 0

x 2 � 5y � 2.56

�10y � 5 � 2x 2 � 0�
�0, 0�

y � 0�4y�1 � y 2 � � 0x � 0

10y � 5 � 2x 2 � 0orx � 0

 5x 2 � 4y � 4y 3 � 05

 2x�10y � 5 � 2x 2 � � 04

fy � 10x 2 � 8y � 8y 3fx � 20xy � 10x � 4x 3

814 � CHAPTER 11 PARTIAL DERIVATIVES

Critical point Value of D Conclusion

0.00 �10.00 80.00 local maximum

8.50 �55.93 2488.71 local maximum

�1.48 �5.87 �187.64 saddle point��0.86, 0.65�

��2.64, 1.90�

�0, 0�

fxxf

FIGURE 6

_3 2.7



Figures 7 and 8 give two views of the graph of and we see that the surface
opens downward. [This can also be seen from the expression for : the domi-
nant terms are when and are large.] Comparing the values of 

at its local maximum points, we see that the absolute maximum value of is
. In other words, the highest points on the graph of are

.

EXAMPLE 5 Find the shortest distance from the point to the plane
.

SOLUTION The distance from any point to the point is

but if lies on the plane , then and so we
have . We can minimize by minimizing the
simpler expression

By solving the equations

we find that the only critical point is . Since , , and , we
have and , so by the Second Derivatives fxx � 0D�x, y� � fxx fyy � � fxy�2 � 24 � 0

fyy � 10fxy � 4fxx � 4(11
6 , 53 )

 fy � 2y � 4�6 � x � 2y� � 4x � 10y � 24 � 0

 fx � 2�x � 1� � 2�6 � x � 2y� � 4x � 4y � 14 � 0

d 2 � f �x, y� � �x � 1�2 � y 2 � �6 � x � 2y�2

dd � s�x � 1� 2 � y 2 � �6 � x � 2y� 2

z � 4 � x � 2yx � 2y � z � 4�x, y, z�

d � s�x � 1�2 � y 2 � �z � 2�2

�1, 0, �2��x, y, z�

x � 2y � z � 4
�1, 0, �2�

FIGURE 9
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� The five critical points of the function
in Example 4 are shown in red in the

contour map of in Figure 9.f
f



Test has a local minimum at . Intuitively, we can see that this local minimum
is actually an absolute minimum because there must be a point on the given plane
that is closest to . If and , then

The shortest distance from to the plane is .

EXAMPLE 6 A rectangular box without a lid is to be made from 12 m of cardboard.
Find the maximum volume of such a box.

SOLUTION Let the length, width, and height of the box (in meters) be , , and , as
shown in Figure 10. Then the volume of the box is

We can express as a function of just two variables and by using the fact that
the area of the four sides and the bottom of the box is

Solving this equation for , we get , so the expression for
becomes

We compute the partial derivatives:

If is a maximum, then , but or gives , so
we must solve the equations

These imply that and so . (Note that and must both be positive in
this problem.) If we put in either equation we get , which gives

, , and .
We could use the Second Derivatives Test to show that this gives a local maxi-

mum of , or we could simply argue from the physical nature of this problem that
there must be an absolute maximum volume, which has to occur at a critical point 
of , so it must occur when , , . Then , so the
maximum volume of the box is 4 m .

Absolute Maximum and Minimum Values

For a function of one variable the Extreme Value Theorem says that if is continu-
ous on a closed interval , then has an absolute minimum value and an absolute
maximum value. According to the Closed Interval Method in Section 4.2, we found
these by evaluating not only at the critical numbers but also at the endpoints and .baf

f�a, b	
ff

3
V � 2 � 2 � 1 � 4z � 1y � 2x � 2V

V

z � �12 � 2 � 2���2�2 � 2�	 � 1y � 2x � 2
12 � 3x 2 � 0x � y
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V � 0y � 0x � 0�V��x � �V��y � 0V

�V

�y
�
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�V

�x
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V
z � �12 � xy���2�x � y�	z
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yxV
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2
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� Example 5 could also be solved 
using vectors. Compare with the 
methods of Section 9.5.

FIGURE 10
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There is a similar situation for functions of two variables. Just as a closed interval
contains its endpoints, a closed set in is one that contains all its boundary points.
[A boundary point of D is a point such that every disk with center con-
tains points in D and also points not in D.] For instance, the disk

which consists of all points on and inside the circle , is a closed set
because it contains all of its boundary points (which are the points on the circle

). But if even one point on the boundary curve were omitted, the set would
not be closed. (See Figure 11.)

A bounded set in is one that is contained within some disk. In other words, it
is finite in extent. Then, in terms of closed and bounded sets, we can state the follow-
ing counterpart of the Extreme Value Theorem in two dimensions.

Extreme Value Theorem for Functions of Two Variables If is continuous on a
closed, bounded set in , then attains an absolute maximum value

and an absolute minimum value at some points and
in .

To find the extreme values guaranteed by Theorem 8, we note that, by Theorem 2,
if has an extreme value at , then is either a critical point of or a
boundary point of . Thus, we have the following extension of the Closed Interval
Method.

To find the absolute maximum and minimum values of a continuous func-
tion on a closed, bounded set :

1. Find the values of at the critical points of in .

2. Find the extreme values of on the boundary of .

3. The largest of the values from steps 1 and 2 is the absolute maximum
value; the smallest of these values is the absolute minimum value.

EXAMPLE 7 Find the absolute maximum and minimum values of the function
on the rectangle .

SOLUTION Since is a polynomial, it is continuous on the closed, bounded rectangle
, so Theorem 8 tells us there is both an absolute maximum and an absolute mini-

mum. According to step 1 in (9), we first find the critical points. These occur when

so the only critical point is , and the value of there is .
In step 2 we look at the values of on the boundary of , which consists of the

four line segments , , , shown in Figure 12. On we have and

This is an increasing function of , so its minimum value is and its
maximum value is . On we have and

0 � y � 2f �3, y� � 9 � 4y

x � 3L 2f �3, 0� � 9
f �0, 0� � 0x

0 � x � 3f �x, 0� � x 2

y � 0L1L 4L3L 2L1

Df
f �1, 1� � 1f�1, 1�

fy � �2x � 2 � 0fx � 2x � 2y � 0

D
f

D � ��x, y� � 0 � x � 3, 0 � y � 2�f �x, y� � x 2 � 2xy � 2y

Df

Dff

Df
9

D
f�x1, y1��x1, y1�f

D�x2, y2�
�x1, y1�f �x2, y2 �f �x1, y1�

f� 2D
f8

� 2

x 2 � y 2 � 1

x 2 � y 2 � 1

D � ��x, y� � x 2 � y 2 � 1�

�a, b��a, b�
� 2
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(a) Closed sets

(b) Sets that are not closed
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This is a decreasing function of , so its maximum value is and its mini-
mum value is . On we have and

By the methods of Chapter 4, or simply by observing that , we
see that the minimum value of this function is and the maximum value
is . Finally, on we have and

with maximum value and minimum value . Thus, on the
boundary, the minimum value of is 0 and the maximum is 9.

In step 3 we compare these values with the value at the critical point
and conclude that the absolute maximum value of on is and the
absolute minimum value is . Figure 13 shows the graph of .ff �0, 0� � f �2, 2� � 0

f �3, 0� � 9Df
f �1, 1� � 1

f
f �0, 0� � 0f �0, 2� � 4

0 � y � 2f �0, y� � 2y

x � 0L4f �0, 2� � 4
f �2, 2� � 0

f �x, 2� � �x � 2�2

0 � x � 3f �x, 2� � x 2 � 4x � 4

y � 2L3f �3, 2� � 1
f �3, 0� � 9y
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4.

� � � � � � � � � � � � �

5–14 � Find the local maximum and minimum values and 
saddle point(s) of the function. If you have three-dimensional
graphing software, graph the function with a domain and view-
point that reveal all the important aspects of the function.

5.

6.

7.

8.

9.

10.

11. 12.

13. 14.
� � � � � � � � � � � � �

f �x, y� � �2x � x 2 ��2y � y 2 �f �x, y� � x sin y

f �x, y� � x 2 � y 2 �
1

x 2 y 2f �x, y� � e x cos y

f �x, y� � 2x 3 � xy 2 � 5x 2 � y 2

f �x, y� � xy � 2x � y

f �x, y� � e 4y�x2�y2

f �x, y� � x 2 � y 2 � x 2 y � 4

f �x, y� � x 3y � 12x 2 � 8y

f �x, y� � 9 � 2x � 4y � x 2 � 4y 2

y

x

_2.5

_2.9
_2.7

_
1

_
1.

5
1.9
1.7
1.5

1.5

10.
5

0

_2

1

1

_1

_1

f �x, y� � 3x � x 3 � 2y 2 � y 41. Suppose (1, 1) is a critical point of a function with 
continuous second derivatives. In each case, what can you 
say about ?
(a)

(b)

2. Suppose (0, 2) is a critical point of a function t with 
continuous second derivatives. In each case, what can you 
say about t?
(a)

(b)

(c)

3–4 � Use the level curves in the figure to predict the location
of the critical points of and whether has a saddle point or a
local maximum or minimum at each of those points. Explain
your reasoning. Then use the Second Derivatives Test to
confirm your predictions.

3.

x

y

4
4.2

5
6

1

1

3.7

3.7

3.2

3.2
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1
0
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f �x, y� � 4 � x 3 � y 3 � 3xy

ff
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fyy�1, 1� � 2fxy�1, 1� � 1, fxx�1, 1� � 4, 
f
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has exactly one critical point, and that has a local maxi-
mum there that is not an absolute maximum. Then use a
computer to produce a graph with a carefully chosen
domain and viewpoint to see how this is possible.

31. Find the shortest distance from the point to the 
plane .

32. Find the point on the plane that is closest to
the point .

33. Find the points on the surface that are closest
to the origin.

34. Find the points on the surface that are closest to 
the origin.

35. Find three positive numbers whose sum is 100 and whose
product is a maximum.

36. Find three positive numbers , , and whose sum is 100
such that is a maximum.

37. Find the volume of the largest rectangular box with edges 
parallel to the axes that can be inscribed in the ellipsoid 

38. Solve the problem in Exercise 37 for a general ellipsoid 

39. Find the volume of the largest rectangular box in the first
octant with three faces in the coordinate planes and one ver-
tex in the plane .

40. Find the dimensions of the rectangular box with largest 
volume if the total surface area is given as 64 cm .

41. Find the dimensions of a rectangular box of maximum vol-
ume such that the sum of the lengths of its 12 edges is a
constant .

42. The base of an aquarium with given volume is made of
slate and the sides are made of glass. If slate costs five
times as much (per unit area) as glass, find the dimensions
of the aquarium that minimize the cost of the materials.

43. A cardboard box without a lid is to have a volume of
32,000 cm Find the dimensions that minimize the amount 
of cardboard used.

44. Three alleles (alternative versions of a gene) A, B, and O 
determine the four blood types A (AA or AO), B (BB or
BO), O (OO), and AB. The Hardy-Weinberg Law states that
the proportion of individuals in a population who carry two
different alleles is

where , , and are the proportions of A, B, and O in the
population. Use the fact that to show that 
is at most .

45. Suppose that a scientist has reason to believe that two quan-
tities and are related linearly, that is, , at y � mx � byx

2
3

Pp � q � r � 1
rqp

P � 2pq � 2pr � 2rq

3.

V

c

2

x � 2y � 3z � 6

x 2

a2 �
y 2

b 2 �
z2

c 2 � 1

9x 2 � 36y 2 � 4z2 � 36

x ay bzc
zyx

x 2 y 2z � 1

z2 � xy � 1

�1, 2, 3�
x � y � z � 4

x � y � z � 1
�2, 1, �1�

f
; 15–18 � Use a graph and/or level curves to estimate the local

maximum and minimum values and saddle point(s) of the func-
tion. Then use calculus to find these values precisely.

15.

16.

17. ,
,

18. ,
,

� � � � � � � � � � � � �

; 19–22 � Use a graphing device as in Example 4 (or Newton’s
method or a rootfinder) to find the critical points of correct to
three decimal places. Then classify the critical points and find
the highest or lowest points on the graph.

19.

20.

21.

22.
� � � � � � � � � � � � �

23–28 � Find the absolute maximum and minimum values of 
on the set .

23. , is the closed triangular region
with vertices , , and 

24. , is the closed triangular
region with vertices , , and 

25. ,

26. ,

27. , is the region bounded by
the parabola and the line 

28. ,
� � � � � � � � � � � � �

; 29. For functions of one variable it is impossible for a con-
tinuous function to have two local maxima and no local
minimum. But for functions of two variables such functions
exist. Show that the function

has only two critical points, but has local maxima at both 
of them. Then use a computer to produce a graph with a
carefully chosen domain and viewpoint to see how this is
possible.

; 30. If a function of one variable is continuous on an interval
and has only one critical number, then a local maximum has
to be an absolute maximum. But this is not true for functions
of two variables. Show that the function

f �x, y� � 3xe y � x 3 � e 3y

f �x, y� � ��x 2 � 1�2 � �x 2 y � x � 1�2

D � ��x, y� � x � 0, y � 0, x 2 � y 2 � 3�f �x, y� � xy 2

y � 4y � x 2
Df �x, y� � 1 � xy � x � y

D � ��x, y� � 0 � x � 4, 0 � y � 5�
f �x, y� � 4x � 6y � x 2 � y 2

D � ��x, y� � � x � � 1, � y � � 1�
f �x, y� � x 2 � y 2 � x 2 y � 4

�1, 4��5, 0��1, 0�
Df �x, y� � 3 � xy � x � 2y

�0, 3��2, 0��0, 0�
Df �x, y� � 1 � 4x � 5y

D
f

f �x, y� � e x � y 4 � x 3 � 4 cos y

f �x, y� � 2x � 4x 2 � y 2 � 2xy 2 � x 4 � y 4

f �x, y� � 5 � 10xy � 4x 2 � 3y � y 4

f �x, y� � x 4 � 5x 2 � y 2 � 3x � 2

f

0 � y � ��40 � x � ��4
f �x, y� � sin x � sin y � cos�x � y�

0 � y � 2�0 � x � 2�
f �x, y� � sin x � sin y � sin�x � y�

f �x, y� � xye�x2�y2

f �x, y� � 3x 2 y � y 3 � 3x 2 � 3y 2 � 2
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Thus, the line is found by solving these two equations in the
two unknowns and . (See Section 1.2 for a further
discussion and applications of the method of least squares.)

46. Find an equation of the plane that passes through the point
and cuts off the smallest volume in the first octant.�1, 2, 3�

y

x

(⁄, ›)

0

(xi, yi)

mxi+b

di

bm
least approximately, for some values of and . The scien-
tist performs an experiment and collects data in the form of
points , , , and then plots these
points. The points don’t lie exactly on a straight line, so the
scientist wants to find constants and so that the line

“fits” the points as well as possible. (See the
figure.) Let be the vertical deviation of
the point from the line. The method of least squares
determines and so as to minimize , the sum of
the squares of these deviations. Show that, according to this
method, the line of best fit is obtained when

 m �
n

i�1
 xi

2 � b �
n

i�1
 xi � �

n

i�1
 xiyi

 m �
n

i�1
 xi � bn � �

n

i�1
 yi

�n
i�1 d i

2bm
�xi, yi�

di � yi � �mxi � b�
y � mx � b

bm

. . . , �xn, yn ��x2, y2 ��x1, y1�

bm
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Designing a Dumpster

For this project we locate a trash dumpster in order to study its shape and construction. We 
then attempt to determine the dimensions of a container of similar design that minimize
construction cost.

1. First locate a trash dumpster in your area. Carefully study and describe all details of its
construction, and determine its volume. Include a sketch of the container.

2. While maintaining the general shape and method of construction, determine the dimen-
sions such a container of the same volume should have in order to minimize the cost of
construction. Use the following assumptions in your analysis:

� The sides, back, and front are to be made from 12-gauge (0.1046 inch thick) steel
sheets, which cost $0.70 per square foot (including any required cuts or bends).

� The base is to be made from a 10-gauge (0.1345 inch thick) steel sheet, which costs
$0.90 per square foot.

� Lids cost approximately $50.00 each, regardless of dimensions.

� Welding costs approximately $0.18 per foot for material and labor combined.

Give justification of any further assumptions or simplifications made of the details of 
construction.

3. Describe how any of your assumptions or simplifications may affect the final result.

4. If you were hired as a consultant on this investigation, what would your conclusions be?
Would you recommend altering the design of the dumpster? If so, describe the savings
that would result.

Applied
Project
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Quadratic Approximations and Critical Points

The Taylor polynomial approximation to functions of one variable that we discussed in
Chapter 8 can be extended to functions of two or more variables. Here we investigate qua-
dratic approximations to functions of two variables and use them to give insight into the
Second Derivatives Test for classifying critical points.

In Section 11.4 we discussed the linearization of a function of two variables at a 
point :

Recall that the graph of is the tangent plane to the surface at and
the corresponding linear approximation is . The linearization is also
called the first-degree Taylor polynomial of at .

1. If has continuous second-order partial derivatives at , then the second-degree
Taylor polynomial of at is

and the approximation is called the quadratic approximation to 
at . Verify that has the same first- and second-order partial derivatives as 

at .

2. (a) Find the first- and second-degree Taylor polynomials and of 
at (0, 0).

; (b) Graph , , and . Comment on how well and approximate .

3. (a) Find the first- and second-degree Taylor polynomials and for 
at (1, 0).

(b) Compare the values of , , and at (0.9, 0.1).

; (c) Graph , , and . Comment on how well and approximate .

4. In this problem we analyze the behavior of the polynomial 
(without using the Second Derivatives Test) by identifying the graph as a paraboloid.
(a) By completing the square, show that if , then

(b) Let . Show that if and , then has a local minimum 
at (0, 0).

(c) Show that if and , then has a local maximum at (0, 0).
(d) Show that if , then (0, 0) is a saddle point.

5. (a) Suppose is any function with continuous second-order partial derivatives such that
and (0, 0) is a critical point of . Write an expression for the second-

degree Taylor polynomial, , of at (0, 0).
(b) What can you conclude about from Problem 4?
(c) In view of the quadratic approximation , what does part (b) sug-

gest about ?f
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Lagrange Multipliers � � � � � � � � � � � � � � �

In Example 6 in Section 11.7 we maximized a volume function subject to the 
constraint , which expressed the side condition that the surface
area was 12 m . In this section we present Lagrange’s method for maximizing or min-
imizing a general function subject to a constraint (or side condition) of the
form .

It is easier to explain the geometric basis of Lagrange’s method for functions of two
variables. So we start by trying to find the extreme values of subject to a con-
straint of the form . In other words, we seek the extreme values of 
when the point is restricted to lie on the level curve . Figure 1 shows
this curve together with several level curves of . These have the equations
where , , , , . To maximize subject to is to find the
largest value of such that the level curve intersects . It appears
from Figure 1 that this happens when these curves just touch each other, that is, when
they have a common tangent line. (Otherwise, the value of c could be increased fur-
ther.) This means that the normal lines at the point where they touch are iden-
tical. So the gradient vectors are parallel; that is, for some
scalar .

This kind of argument also applies to the problem of finding the extreme values of
subject to the constraint . Thus, the point is restricted

to lie on the level surface with equation . Instead of the level curves in
Figure 1, we consider the level surfaces and argue that if the maximum
value of is , then the level surface is tangent to the
level surface and so the corresponding gradient vectors are parallel.

This intuitive argument can be made precise as follows. Suppose that a function 
has an extreme value at a point on the surface and let be a curve with
vector equation that lies on and passes through . If is the
parameter value corresponding to the point , then . The compos-
ite function represents the values that takes on the curve .
Since has an extreme value at , it follows that has an extreme value at

, so . But if is differentiable, we can use the Chain Rule to write

This shows that the gradient vector is orthogonal to the tangent vector
to every such curve . But we already know from Section 11.6 that the gradient

vector of , , is also orthogonal to . (See Equation 11.6.18.) This r��t0 ��t�x0, y0, z0 �t

Cr��t0 �
� f �x0, y0, z0 �

 � � f �x0, y0, z0 � � r��t0 �

 0 � h��t0 � � fx�x0, y0, z0 �x��t0 � � fy�x0, y0, z0 �y��t0 � � fz�x0, y0, z0 �z��t0 �

fh��t0� � 0t0

h�x0, y0, z0 �f
Cfh�t� � f �x�t�, y�t�, z�t��
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means that the gradient vectors and must be parallel. There-
fore, if , there is a number such that

The number in Equation 1 is called a Lagrange multiplier. The procedure based
on Equation 1 is as follows.

Method of Lagrange Multipliers To find the maximum and minimum values of
subject to the constraint (assuming that these extreme 

values exist):

(a) Find all values of , , , and such that

and

(b) Evaluate at all the points that result from step (a). The largest of
these values is the maximum value of ; the smallest is the minimum
value of .

If we write the vector equation in terms of its components, then the equa-
tions in step (a) become

This is a system of four equations in the four unknowns , , , and , but it is not neces-
sary to find explicit values for .

For functions of two variables the method of Lagrange multipliers is similar to the
method just described. To find the extreme values of subject to the constraint

, we look for values of , , and such that

This amounts to solving three equations in three unknowns:

Our first illustration of Lagrange’s method is to reconsider the problem given in
Example 6 in Section 11.7.

EXAMPLE 1 A rectangular box without a lid is to be made from 12 m of cardboard.
Find the maximum volume of such a box.

SOLUTION As in Example 6 in Section 11.7 we let , , and be the length, width, and
height, respectively, of the box in meters. Then we wish to maximize

subject to the constraint

t�x, y, z� � 2xz � 2yz � xy � 12

V � xyz

zyx

2

t�x, y� � kfy � �tyfx � �tx

t�x, y� � kand� f �x, y� � � �t�x, y�

�yxt�x, y� � k
f �x, y�

�
�zyx

t�x, y, z� � kfz � �tzfy � �tyfx � �tx

� f � � �t

f
f

�x, y, z�f

 t�x, y, z� � k

 � f �x, y, z� � � �t�x, y, z�

�zyx

t�x, y, z� � kf �x, y, z�

�

� f �x0, y0, z0 � � � �t�x0, y0, z0 �1

��t�x0, y0, z0 � � 0
�t�x0, y0, z0 �� f �x0, y0, z0 �
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� In deriving Lagrange’s method we
assumed that . In each of our
examples you can check that 
at all points where .t�x, y, z� � k

�t � 0
�t � 0

� Lagrange multipliers are named after
the French-Italian mathematician 
Joseph-Louis Lagrange (1736–1813).
See page 281 for a biographical sketch
of Lagrange.



Using the method of Lagrange multipliers, we look for values of , , , and such
that and . This gives the equations

which become

There are no general rules for solving systems of equations. Sometimes some inge-
nuity is required. In the present example you might notice that if we multiply (2) by

(3) by , and (4) by , then the left sides of these equations will be identical.
Doing this, we have

We observe that because would imply from (2), (3),
and (4) and this would contradict (5). Therefore, from (6) and (7) we have

which gives . But (since would give ), so . From (7)
and (8) we have

which gives and so (since ) . If we now put in
(5), we get

Since , , and are all positive, we therefore have , , and as
before.

EXAMPLE 2 Find the extreme values of the function on the 
circle .

SOLUTION We are asked for the extreme values of subject to the constraint
. Using Lagrange multipliers, we solve the equations

, , which can be written as

or as

x 2 � y 2 � 111

 4y � 2y�10

 2x � 2x�9

t�x, y� � 1fy � �tyfx � �tx

t�x, y� � 1� f � � �t

t�x, y� � x 2 � y 2 � 1
f

x 2 � y 2 � 1
f �x, y� � x 2 � 2y 2

y � 2x � 2z � 1zyx

4z2 � 4z2 � 4z2 � 12

x � y � 2zy � 2zx � 02xz � xy

2yz � xy � 2xz � 2yz

x � yV � 0z � 0z � 0xz � yz

2xz � xy � 2yz � xy

yz � xz � xy � 0� � 0� � 0

 xyz � ��2xz � 2yz�8

 xyz � ��2yz � xy�7

 xyz � ��2xz � xy�6

zyx,

2xz � 2yz � xy � 125

 xy � ��2x � 2y�4

 xz � ��2z � x�3

 yz � ��2z � y�2

2xz � 2yz � xy � 12Vz � �tzVy � �tyVx � �tx

t�x, y, z� � 12�V � � �t

�zyx
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� Another method for solving the system
of equations (2–5) is to solve each of
Equations 2, 3, and 4 for and then to
equate the resulting expressions.

�

� In geometric terms, Example 2 asks
for the highest and lowest points on 
the curve in Figure 2 that lies on the
paraboloid and directly
above the constraint circle .x 2 � y 2 � 1

z � x 2 � 2y 2

C
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From (9) we have or . If , then (11) gives . If , then
from (10), so then (11) gives . Therefore, has possible extreme values 

at the points , , , and . Evaluating at these four points, we
find that

Therefore, the maximum value of on the circle is and
the minimum value is . Checking Figure 2, we see that these values
look reasonable.

EXAMPLE 3 Find the extreme values of on the disk .

SOLUTION According to the procedure in (11.7.9), we compare the values of at the
critical points with values at the points on the boundary. Since and ,
the only critical point is . We compare the value of at that point with the
extreme values on the boundary from Example 2:

Therefore, the maximum value of on the disk is and
the minimum value is .

EXAMPLE 4 Find the points on the sphere that are closest to and
farthest from the point .

SOLUTION The distance from a point to the point is

but the algebra is simpler if we instead maximize and minimize the square of the 
distance:

The constraint is that the point lies on the sphere, that is,

According to the method of Lagrange multipliers, we solve , . This
gives

The simplest way to solve these equations is to solve for , , and in terms of 
from (12), (13), and (14), and then substitute these values into (15). From (12) we
have

x �
3

1 � �
orx�1 � �� � 3orx � 3 � x�

�zyx

x 2 � y 2 � z2 � 415

 2�z � 1� � 2z�14

 2�y � 1� � 2y�13

 2�x � 3� � 2x�12

t � 4� f � � �t

t�x, y, z� � x 2 � y 2 � z2 � 4

�x, y, z�

d 2 � f �x, y, z� � �x � 3�2 � �y � 1�2 � �z � 1�2

d � s�x � 3�2 � �y � 1�2 � �z � 1�2

�3, 1, �1��x, y, z�

�3, 1, �1�
x 2 � y 2 � z2 � 4

f �0, 0� � 0
f �0, �1� � 2x 2 � y 2 � 1f

f �0, �1� � 2f ��1, 0� � 1f �0, 0� � 0

f�0, 0�
fy � 4yfx � 2x

f

x 2 � y 2 � 1f �x, y� � x 2 � 2y 2

f ��1, 0� � 1
f �0, �1� � 2x 2 � y 2 � 1f

f ��1, 0� � 1f �1, 0� � 1f �0, �1� � 2f �0, 1� � 2

f��1, 0��1, 0��0, �1��0, 1�
fx � �1y � 0

� � 1y � �1x � 0� � 1x � 0
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� The geometry behind the use of
Lagrange multipliers in Example 2 is
shown in Figure 3. The extreme values 
of correspond to 
the level curves that touch the circle

.x 2 � y 2 � 1

f �x, y� � x 2 � 2y 2

FIGURE 3
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[Note that because is impossible from (12).] Similarly, (13) and
(14) give

Therefore, from (15) we have

which gives , , so

These values of then give the corresponding points :

and

It’s easy to see that has a smaller value at the first of these points, so the closest
point is and the farthest is .

Two Constraints

Suppose now that we want to find the maximum and minimum values of a function
subject to two constraints (side conditions) of the form and

. Geometrically, this means that we are looking for the extreme values of
when is restricted to lie on the curve of intersection of the level surfaces

and . (See Figure 5.) Suppose has such an extreme value
at a point . We know from the beginning of this section that is orthog-
onal to there. But we also know that is orthogonal to and is
orthogonal to , so and are both orthogonal to . This means that
the gradient vector is in the plane determined by and

. (We assume that these gradient vectors are not zero and not parallel.)
So there are numbers and (called Lagrange multipliers) such that

In this case Lagrange’s method is to look for extreme values by solving five equations
in the five unknowns , , , , and . These equations are obtained by writing Equa-
tion 16 in terms of its components and using the constraint equations:

 h�x, y, z� � c

 t�x, y, z� � k

 fz � �tz � �hz

 fy � �ty � �hy

 fx � �tx � �hx

��zyx

� f �x0, y0, z0 � � � �t�x0, y0, z0 � � � �h�x0, y0, z0 �16

��
�h�x0, y0, z0 �

�t�x0, y0, z0 �� f �x0, y0, z0 �
C�h�th�x, y, z� � c

�ht�x, y, z� � k�tC
� fP�x0, y0, z0�

fh�x, y, z� � ct�x, y, z� � k
C�x, y, z�f

h�x, y, z� � c
t�x, y, z� � kf �x, y, z�

(�6�s11, �2�s11, 2�s11)(6�s11, 2�s11, �2�s11)
f

��
6

s11
, �

2

s11
, 

2

s11�� 6

s11
, 

2

s11
, �

2

s11�
�x, y, z��

� � 1 �
s11

2

1 � � � �s11�2�1 � ��2 � 11
4

32

�1 � ��2 �
12

�1 � ��2 �
��1�2

�1 � ��2 � 4

z � �
1

1 � �
y �

1

1 � �

� � 11 � � � 0
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� Figure 4 shows the sphere and the
nearest point in Example 4. Can you
see how to find the coordinates of 
without using calculus?

P
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EXAMPLE 5 Find the maximum value of the function on the
curve of intersection of the plane and the cylinder .

SOLUTION We maximize the function subject to the con-
straints and . The Lagrange
condition is , so we solve the equations

Putting [from (19)] in (17), we get , so . Similarly, (18)
gives . Substitution in (21) then gives

and so , . Then , , and, from (20),
. The corresponding values of are

Therefore, the maximum value of on the given curve is .3 � s29f

�
2

s29
� 2��

5

s29� � 3�1 �
7

s29� � 3 � s29

fz � 1 � x � y � 1 � 7�s29
y � �5�s29x � �2�s29� � �s29�2�2 � 29

4

1

�2 �
25

4�2 � 1

y � 5��2��
x � �1��2x� � �2� � 3

 x 2 � y 2 � 121

 x � y � z � 120

 3 � �19

 2 � �� � 2y�18

 1 � � � 2x�17

� f � � �t � � �h
h�x, y, z� � x 2 � y 2 � 1t�x, y, z� � x � y � z � 1

f �x, y, z� � x � 2y � 3z

x 2 � y 2 � 1x � y � z � 1
f �x, y, z� � x � 2y � 3z
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FIGURE 6
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� The cylinder intersects 
the plane in an ellipse
(Figure 6). Example 5 asks for the 
maximum value of when is
restricted to lie on the ellipse.

�x, y, z�f

x � y � z � 1
x 2 � y 2 � 1

; 2. (a) Use a graphing calculator or computer to graph the 
circle . On the same screen, graph several
curves of the form until you find two that 
just touch the circle. What is the significance of the 
values of for these two curves?

(b) Use Lagrange multipliers to find the extreme values of
subject to the constraint .

Compare your answers with those in part (a).

3–17 � Use Lagrange multipliers to find the maximum and
minimum values of the function subject to the given
constraint(s).

3. ;

4. ;

5. ;

6. ; x 4 � y 4 � 1f �x, y� � x 2 � y 2

x 2 � 2y 2 � 6f �x, y� � x 2y

x 2 � y 2 � 13f �x, y� � 4x � 6y

x 2 � y 2 � 1f �x, y� � x 2 � y 2

x 2 � y 2 � 1f �x, y� � x 2 � y

c

x 2 � y � c
x 2 � y 2 � 1

1. Pictured are a contour map of and a curve with equation
. Estimate the maximum and minimum values 

of subject to the constraint that . Explain your 
reasoning.

y

x0

70
60

50
40

30

20

10

g(x, y)=8

t�x, y� � 8f
t�x, y� � 8

f
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24. Use Lagrange multipliers to prove that the triangle with 
maximum area that has a given perimeter is equilateral.
[Hint: Use Heron’s formula for the area:

, where and , ,
are the lengths of the sides.]

25–35 � Use Lagrange multipliers to give an alternate solution
to the indicated exercise in Section 11.7.

25. Exercise 31 26. Exercise 32

27. Exercise 33 28. Exercise 34

29. Exercise 35 30. Exercise 36

31. Exercise 37 32. Exercise 38

33. Exercise 39 34. Exercise 40

35. Exercise 41
� � � � � � � � � � � � �

36. Find the maximum and minimum volumes of a rectangular
box whose surface area is 1500 cm and whose total edge
length is 200 cm.

37. The plane intersects the paraboloid
in an ellipse. Find the points on this ellipse 

that are nearest to and farthest from the origin.

38. The plane intersects the cone
in an ellipse.

; (a) Graph the cone, the plane, and the ellipse.
(b) Use Lagrange multipliers to find the highest and lowest

points on the ellipse.

39–40 � Find the maximum and minimum values of subject
to the given constraints. Use a computer algebra system to solve
the system of equations that arises in using Lagrange multi-
pliers. (If your CAS finds only one solution, you may need to
use additional commands.)

39. ; ,

40. ; ,
� � � � � � � � � � � � �

41. (a) Find the maximum value of 

given that are positive numbers and
, where is a constant.

(b) Deduce from part (a) that if are positive
numbers, then

This inequality says that the geometric mean of num-
bers is no larger than the arithmetic mean of the
numbers. Under what circumstances are these two
means equal to each other?

n

s
n x1x2 � � � xn �

x1 � x2 � � � � � xn

n

x1, x2, . . . , xn

cx1 � x2 � � � � � xn � c
x1, x2, . . . , xn

f �x1, x2, . . . , xn � � s
n x1x2 � � � xn

x 2 � z 2 � 4x 2 � y 2 � zf �x, y, z� � x � y � z

xy � yz � 19x 2 � 4y 2 � 36z 2 � 36f �x, y, z� � ye x�z

fCAS

z 2 � x 2 � y 2
4x � 3y � 8z � 5

z � x 2 � y 2
x � y � 2z � 2

2

zyxs � p�2A � ss�s � x��s � y��s � z�

p
7. ;

8. ;

9. ;

10. ;

11. ;

12. ;

13. ;

14. ;

15. ; ,

16. ;

,

17. ; ,

� � � � � � � � � � � � �

18–19 � Find the extreme values of on the region described
by the inequality.

18. ,

19. ,

� � � � � � � � � � � � �

20. (a) If your computer algebra system plots implicitly defined
curves, use it to estimate the minimum and maximum
values of subject to the con-
straint by graphical methods.

(b) Solve the problem in part (a) with the aid of Lagrange
multipliers. Use your CAS to solve the equations. 
Compare your answers with those in part (a).

21. The total production of a certain product depends on the
amount of labor used and the amount of capital invest-
ment. In Sections 11.1 and 11.3 we discussed how the
Cobb-Douglas model follows from certain
economic assumptions, where and are positive constants
and . If the cost of a unit of labor is and the cost of
a unit of capital is , and the company can spend only 
dollars as its total budget, then maximizing the production 
is subject to the constraint . Show that the
maximum production occurs when

22. Referring to Exercise 21, we now suppose that the produc-
tion is fixed at , where is a constant. 
What values of and minimize the cost function

?

23. Use Lagrange multipliers to prove that the rectangle with 
maximum area that has a given perimeter is a square.p

C�L, K � � mL � nK
KL

QbL�K 1�� � Q

K �
�1 � ��p

n
andL �

�p

m

mL � nK � p
P

pn
m� � 1

�b
P � bL�K 1��

KL
P

�x � 3�2 � �y � 3�2 � 9
f �x, y� � x 3 � y 3 � 3xy

CAS

x 2 � 4y 2 � 1f �x, y� � e �xy

x 2 � y 2 � 16f �x, y� � 2x 2 � 3y 2 � 4x � 5

f

y 2 � z2 � 1xy � 1f �x, y, z� � yz � xy

x 2 � 2z2 � 1x � y � z � 0

f �x, y, z� � 3x � y � 3z

y 2 � z2 � 4x � y � z � 1f �x, y, z� � x � 2y

x 2
1 � x 2

2 � � � � � x 2
n � 1

f �x1, x2, . . . , xn� � x1 � x2 � � � � � xn

x 2 � y 2 � z2 � t 2 � 1f �x, y, z, t� � x � y � z � t

x 2 � y 2 � z2 � 1f �x, y, z� � x 4 � y 4 � z4

x 4 � y 4 � z4 � 1f �x, y, z� � x 2 � y 2 � z2

x 2 � y 2 � z2 � 1f �x, y, z� � x 2 y 2z2

x 2 � 2y 2 � 3z2 � 6f �x, y, z� � xyz

x 2 � 10y 2 � z 2 � 5f �x, y, z� � 8x � 4z

x 2 � y 2 � z 2 � 35f �x, y, z� � 2x � 6y � 10z
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to show that

for any numbers . This inequality
is known as the Cauchy-Schwarz Inequality.

a1, . . . , an, b1, . . . , bn

� aibi � s� a 2
i  s� b 2

i 

42. (a) Maximize subject to the constraints 
and .

(b) Put

yi �
bi

s� b 2
i 

xi �
ai

s� a 2
i 

    and    

�n y i
2 � 1

�n x 2
i � 1�n

i�1 xiyi

APPLIED PROJECT ROCKET SCIENCE � 829

Rocket Science

Many rockets, such as the Pegasus XL currently used to launch satellites and the Saturn V
that first put men on the Moon, are designed to use three stages in their ascent into space. 
A large first stage initially propels the rocket until its fuel is consumed, at which point the
stage is jettisoned to reduce the mass of the rocket. The smaller second and third stages
function similarly in order to place the rocket’s payload into orbit about Earth. (With this
design, at least two stages are required in order to reach the necessary velocities, and using
three stages has proven to be a good compromise between cost and performance.) Our goal
here is to determine the individual masses of the three stages to be designed in such a way
as to minimize the total mass of the rocket while enabling it to reach a desired velocity.

For a single-stage rocket consuming fuel at a constant rate, the change in velocity result-
ing from the acceleration of the rocket vehicle has been modeled by

where is the mass of the rocket engine including initial fuel, is the mass of the pay-
load, is a structural factor determined by the design of the rocket (specifically, it is the
ratio of the mass of the rocket vehicle without fuel to the total mass of the rocket with
payload), and is the (constant) speed of exhaust relative to the rocket.

Now consider a rocket with three stages and a payload of mass . We will consider out-
side forces negligible and assume that and remain constant for each stage. If is the
mass of the stage, we can initially consider the rocket engine to have mass and its
payload to have mass ; the second and third stages can be handled similarly.

1. Show that the velocity attained after all three stages have been jettisoned is given by

2. We wish to minimize the total mass of the rocket engine subject 
to the constraint that the desired velocity from Problem 1 is attained. The method of
Lagrange multipliers is appropriate here, but difficult to implement using the current
expressions. To simplify, we define variables so that the constraint equation may be
expressed as . Since is now difficult to express in terms
of the ’s, we wish to use a simpler function that will be minimized at the same place.
Show that

 
M3 � A

A
�

�1 � S �N3

1 � SN3

 
M2 � M3 � A

M3 � A
�

�1 � S �N2

1 � SN2

 
M1 � M2 � M3 � A

M2 � M3 � A
�

�1 � S �N1

1 � SN1

Ni

Mvf � c�ln N1 � ln N2 � ln N3 �
Ni

vf

M � M1 � M2 � M3

vf � c�ln� M1 � M2 � M3 � A

SM1 � M2 � M3 � A� � ln� M2 � M3 � A

SM2 � M3 � A� � ln� M3 � A

SM3 � A��
M2 � M3 � A

M1ith
MiSc

A
c

S
PMr

�V � �c ln�1 �
�1 � S�Mr

P � Mr
�

Applied
Project
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and conclude that

3. Verify that is minimized at the same location as ; use Lagrange multi-
pliers and the results of Problem 2 to find expressions for the values of where the
minimum occurs subject to the constraint . [Hint: Use
properties of logarithms to help simplify the expressions.]

4. Find an expression for the minimum value of as a function of .

5. If we want to put a three-stage rocket into orbit 100 miles above Earth’s surface, a final
velocity of approximately is required. Suppose that each stage is built with
a structural factor and an exhaust speed of .
(a) Find the minimum total mass of the rocket engines as a function of .
(b) Find the mass of each individual stage as a function of . (They are not equally

sized!)

6. The same rocket would require a final velocity of approximately in order
to escape Earth’s gravity. Find the mass of each individual stage that would minimize
the total mass of the rocket engines and allow the rocket to propel a 500-pound probe
into deep space.

24,700 mi�h

A
AM

c � 6000 mi�hS � 0.2
17,500 mi�h

vfM

vf � c�ln N1 � ln N2 � ln N3 �
Ni

Mln��M � A��A�

M � A

A
�

�1 � S �3N1N2N3

�1 � SN1��1 � SN2 ��1 � SN3 �

Hydro-Turbine Optimization

The Great Northern Paper Company in Millinocket, Maine, operates a hydroelectric gener-
ating station on the Penobscot River. Water is piped from a dam to the power station. The
rate at which the water flows through the pipe varies, depending on external conditions.

The power station has three different hydroelectric turbines, each with a known (and
unique) power function that gives the amount of electric power generated as a function of
the water flow arriving at the turbine. The incoming water can be apportioned in different
volumes to each turbine, so the goal is to determine how to distribute water among the
turbines to give the maximum total energy production for any rate of flow.

Using experimental evidence and Bernoulli’s equation, the following quadratic models
were determined for the power output of each turbine, along with the allowable flows of
operation:

, ,

where

1. If all three turbines are being used, we wish to determine the flow to each turbine that
will give the maximum total energy production. Our limitations are that the flows must 

Qi

 QT � total flow through the station in cubic feet per second

 KWi � power generated by turbine i in kilowatts

 Qi � flow through turbine i in cubic feet per second

250 � Q3 � 1225250 � Q2 � 1110250 � Q1 � 1110

 KW3 � ��27.02 � 0.1380Q3 � 3.84 � 10�5Q 2
3 ��170 � 1.6 � 10�6Q 2

T �

 KW2 � ��24.51 � 0.1358Q2 � 4.69 � 10�5Q 2
2 ��170 � 1.6 � 10�6Q 2

T �

 KW1 � ��18.89 � 0.1277Q1 � 4.08 � 10�5Q 2
1 ��170 � 1.6 � 10�6Q 2

T �
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sum to the total incoming flow and the given domain restrictions must be observed.
Consequently, use Lagrange multipliers to find the values for the individual flows (as
functions of ) that maximize the total energy production subject
to the constraints and the domain restrictions on each .

2. For which values of is your result valid?

3. For an incoming flow of , determine the distribution to the turbines and verify
(by trying some nearby distributions) that your result is indeed a maximum.

4. Until now we assumed that all three turbines are operating; is it possible in some situa-
tions that more power could be produced by using only one turbine? Make a graph of
the three power functions and use it to help decide if an incoming flow of 
should be distributed to all three turbines or routed to just one. (If you determine that
only one turbine should be used, which one?) What if the flow is only ?

5. Perhaps for some flow levels it would be advantageous to use two turbines. If the
incoming flow is , which two turbines would you recommend using? Use
Lagrange multipliers to determine how the flow should be distributed between the two
turbines to maximize the energy produced. For this flow, is using two turbines more
efficient than using all three?

6. If the incoming flow is , what would you recommend to the company?3400 ft3�s

1500 ft3�s

600 ft3�s

1000 ft3�s

2500 ft3�s

QT

QiQ1 � Q2 � Q3 � QT

KW1 � KW2 � KW3QT
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7. How do you find a tangent plane to each of the following
types of surfaces?
(a) A graph of a function of two variables,
(b) A level surface of a function of three variables,

(c) A parametric surface given by a vector function 

8. Define the linearization of at . What is the corre-
sponding linear approximation? What is the geometric inter-
pretation of the linear approximation?

9. (a) What does it mean to say that is differentiable 
at ?

(b) How do you usually verify that is differentiable?

10. If , what are the differentials , , and ?

11. State the Chain Rule for the case where and 
and are functions of one variable. What if and are
functions of two variables?

12. If is defined implicitly as a function of and by an
equation of the form , how do you find 
and ?�z��y

�z��xF�x, y, z� � 0
yxz

yxy
xz � f �x, y�

dzdydxz � f �x, y�

f
�a, b�

f

�a, b�f

r�u, v�
F�x, y, z� � k

z � f �x, y�

1. (a) What is a function of two variables?
(b) Describe two methods for visualizing a function of two

variables. What is the connection between them?

2. What is a function of three variables? How can you visual-
ize such a function?

3. What does

mean? How can you show that such a limit does not exist?

4. (a) What does it mean to say that is continuous at ?
(b) If is continuous on , what can you say about its

graph?

5. (a) Write expressions for the partial derivatives and
as limits.

(b) How do you interpret and geometrically?
How do you interpret them as rates of change?

(c) If is given by a formula, how do you calculate 
and 

6. What does Clairaut’s Theorem say?

fy?
fxf �x, y�

fy�a, b�fx�a, b�
fy�a, b�

fx�a, b�

�2f
�a, b�f

lim
�x, y� l �a, b�

 
 f �x, y� � L
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16. (a) If has a local maximum at , what can you say
about its partial derivatives at ?

(b) What is a critical point of ?

17. State the Second Derivatives Test.

18. (a) What is a closed set in ? What is a bounded set?
(b) State the Extreme Value Theorem for functions of two

variables.
(c) How do you find the values that the Extreme Value 

Theorem guarantees?

19. Explain how the method of Lagrange multipliers works 
in finding the extreme values of subject to the con-
straint . What if there is a second constraint

?h�x, y, z� � c
t�x, y, z� � k

f �x, y, z�

�2

f
�a, b�

�a, b�f13. (a) Write an expression as a limit for the directional deriva-
tive of at in the direction of a unit vector

. How do you interpret it as a rate? How do
you interpret it geometrically?

(b) If is differentiable, write an expression for 
in terms of and .

14. (a) Define the gradient vector for a function of two or
three variables.

(b) Express in terms of .
(c) Explain the geometric significance of the gradient.

15. What do the following statements mean?
(a) has a local maximum at .
(b) has an absolute maximum at .
(c) has a local minimum at .
(d) has an absolute minimum at .
(e) has a saddle point at .�a, b�f

�a, b�f
�a, b�f

�a, b�f
�a, b�f

� fDu f

f� f

fyfx

Du f �x0, y0 �f

u � 
a, b �
�x0, y0 �f

7. If has a local minimum at and is differentiable at
, then .

8. .

9. If , then .

10. If is a critical point of and 

then has a saddle point at .

11. If , then .

12. If has two local maxima, then must have a local 
minimum.

ff �x, y�

�s2 � Du f �x, y� � s2f �x, y� � sin x � sin y

�2, 1�f

fxx�2, 1� fyy�2, 1� � � fxy�2, 1�	2

f�2, 1�

� f �x, y� � 1�yf �x, y� � ln y

lim
�x, y� l �1, 1�

 
 

x � y

x 2 � y 2 � lim
�x, y� l �1, 1�

 
 

1

x � y
�

1

2

� f �a, b� � 0�a, b�
f�a, b�fDetermine whether the statement is true or false. If it is true, explain why.

If it is false, explain why or give an example that disproves the statement.

1.

2. There exists a function with continuous second-order 
partial derivatives such that and

.

3.

4.

5. If as along every straight line
through , then .

6. If and both exist, then is differentiable 
at .�a, b�

ffy�a, b�fx�a, b�

lim�x, y� l �a, b� f �x, y� � L�a, b�
�x, y� l �a, b�f �x, y� l L

Dk f �x, y, z� � fz�x, y, z�

fxy �
�2f

�x �y

fy�x, y� � x � y 2
fx�x, y� � x � y 2

f

fy�a, b� � lim
y l b

 
 f �a, y� � f �a, b�

y � b
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(b) Estimate the value of , where .
Interpret your result.

(c) Estimate the value of .

12. Find a linear approximation to the temperature function
in Exercise 11 near the point (6, 4). Then use it to

estimate the temperature at the point (5, 3.8).

13–17 � Find the first partial derivatives.

13. 14.

15. 16.

17.
� � � � � � � � � � � � �

18. The speed of sound traveling through ocean water is a 
function of temperature, salinity, and pressure. It has been
modeled by the function

where is the speed of sound (in meters per second), is
the temperature (in degrees Celsius), is the salinity (the
concentration of salts in parts per thousand, which means
the number of grams of dissolved solids per 1000 g of
water), and is the depth below the ocean surface (in
meters). Compute , , and when

, parts per thousand, and m.
Explain the physical significance of these partial derivatives.

19–22 � Find all second partial derivatives of .

19. 20.

21. 22.
� � � � � � � � � � � � �

23. If , show that .
x

y
 
�u

�x
�

1

ln x
 
�u

�y
� 2uu � x y

v � r cos�s � 2t�f �x, y, z� � x ky lz m

z � xe�2yf �x, y� � 4x 3 � xy 2

f

D � 100S � 35T � 10 �C
�C��D�C��S�C��T

D

S
TC

     � �1.34 � 0.01T ��S � 35� � 0.016D

 C � 1449.2 � 4.6T � 0.055T 2 � 0.00029T 3

T� p, q, r� � p ln�q � er�

w �
x

y � z
t�u, v� � u tan�1v

u � e�r sin 2
f �x, y� � s2x � y 2

T�x, y�

30

52

78

98

96

92

38

56

74

87

90

92

45

60

72

80

86

91

51

62

68

75

80

87

55

61

66

71

75

78

x
y 0 2 4 6 8

0

2

4

6

8

10

Txy�6, 4�

u � �i � j��s2Du T�6, 4�1–2 � Find and sketch the domain of the function.

1.

2.
� � � � � � � � � � � � �

3–4 � Sketch the graph of the function.

3.

4.
� � � � � � � � � � � � �

5–6 � Sketch several level curves of the function.

5.

6.
� � � � � � � � � � � � �

7. Make a rough sketch of a contour map for the function
whose graph is shown.

8. A contour map of a function is shown. Use it to make a
rough sketch of the graph of .

9–10 � Evaluate the limit or show that it does not exist.

9. 10.

� � � � � � � � � � � � �

11. A metal plate is situated in the -plane and occupies the 
rectangle , , where and are meas-
ured in meters. The temperature at the point in the
plate is , where is measured in degrees Celsius.
Temperatures at equally spaced points were measured and
recorded in the table.
(a) Estimate the values of the partial derivatives 

and . What are the units?Ty�6, 4�
Tx�6, 4�

TT �x, y�
�x, y�

yx0 � y � 80 � x � 10
xy

lim
�x, y� l �0, 0�

 
 

2xy

x 2 � 2y 2lim
�x, y� l �1, 1�

 
 

2xy

x 2 � 2y 2

y

x

1

1.5

2

4

f
f

2
x

z

2
y

f �x, y� � x 2 � 4y

f �x, y� � e��x 2�y 2 �

f �x, y� � sx 2 � y 2 � 1

f �x, y� � 1 � x 2 � y 2

f �x, y, z� � sz � x 2 � y 2

f �x, y� � sin�1x � tan�1y
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radian�s. How fast is the area of the triangle changing
when in, in, and ?

41. If , where , , and has continuous
second partial derivatives, show that

42. If , find and .

43. Find the gradient of the function .

44. (a) When is the directional derivative of a maximum?
(b) When is it a minimum?
(c) When is it 0?
(d) When is it half of its maximum value?

45–46 � Find the directional derivative of at the given point
in the indicated direction.

45. , ,
in the direction toward the point 

46. , ,
in the direction of 

� � � � � � � � � � � � �

47. Find the maximum rate of change of 
at the point . In which direction does it occur?

48. Find the direction in which increases most
rapidly at the point . What is the maximum rate of
increase?

49. The contour map shows wind speed in knots during Hur-
ricane Andrew on August 24, 1992. Use it to estimate the
value of the directional derivative of the wind speed at
Homestead, Florida, in the direction of the eye of the 
hurricane.

Key West
30

35
40

45

55
60

60 65
65

70

75

70 80

50

55

0
(Distance in miles)

10 20 30 40

Homestead

�0, 1, 2�
f �x, y, z� � ze xy

�2, 1�
f �x, y� � x 2 y � sy

v � 2 i � j � 2k
�1, 2, 3�f �x, y, z� � x 2 y � xs1 � z

�4, 1�
�1, 5�f �x, y� � 2sx � y 2

f

f

f �x, y, z� � z2e x sy

�z

�y

�z

�x
yz 4 � x 2z 3 � e xyz

x 2 
�2z

�x 2 � y 2 
�2z

�y 2 � �4uv 
�2z

�u �v
� 2v 

�z

�v

fv � y�xu � xyz � f �u, v�


 � ��6y � 50x � 40
0.0524. If , show that

25–29 � Find equations of (a) the tangent plane and (b) the
normal line to the given surface at the specified point.

25. ,

26. ,

27. ,

28. ,

29. ,
� � � � � � � � � � � � �

; 30. Use a computer to graph the surface and 
its tangent plane and normal line at on the same
screen. Choose the domain and viewpoint so that you get a
good view of all three objects.

31. Find the points on the sphere where the
tangent plane is parallel to the plane .

32. Find if .

33. Find the linear approximation of the function
at the point (2, 3, 4) and use it 

to estimate the number .

34. The two legs of a right triangle are measured as 5 m and
12 m with a possible error in measurement of at most 

cm in each. Use differentials to estimate the maximum
error in the calculated value of (a) the area of the triangle
and (b) the length of the hypotenuse.

35. If , where , , and 
, use the Chain Rule to find .

36. If , where and ,
use the Chain Rule to find and .

37. Suppose , where , ,
, , , ,

, , , and .
Find and when and .

38. Use a tree diagram to write out the Chain Rule for the case
where , , and

are all differentiable functions.

39. If , where is differentiable, show that

40. The length of a side of a triangle is increasing at a rate of
3 in�s, the length of another side is decreasing at a rate of
2 in�s, and the contained angle is increasing at a rate of 


y
x

y 
�z

�x
� x 

�z

�y
� x

fz � y � f �x 2 � y 2 �

v � v�p, q, r, s�
u � u�p, q, r, s�w � f �t, u, v�, t � t�p, q, r, s�

t � 2s � 1�z��t�z��s
fy�3, 6� � 8fx�3, 6� � 7ht�1, 2� � 10hs�1, 2� � �5

h�1, 2� � 6tt�1, 2� � 4ts�1, 2� � �1t�1, 2� � 3
y � h�s, t�x � t�s, t�z � f �x, y�

�z��v�z��u
y � u � v2x � u 2 � vz � cos xy � y cos x

dw�dtz � t 2 � 4
y � t 3 � 4tx � e 2 tw � sx � y 2�z

0.2

�1.98�3
s�3.01� 2 � �3.97� 2

f �x, y, z� � x 3
sy 2 � z 2

z � x 2 tan�1ydz

2x � y � 3z � 2
x 2 � y 2 � z2 � 1

�1, 2, 5�
z � x 3 � 2xy

�3, 4, 1�r�u, v� � �u � v� i � u 2 j � v 2 k

�1, 1, 1�xy � yz � zx � 3

�2, �1, 1�x 2 � 2y 2 � 3z 2 � 3

�0, 0, 1�z � e x cos y

�1, �2, 1�z � 3x 2 � y 2 � 2x

�2�

�x 2 �
�2�

�y 2 �
�2�

�z2 �
2

�

� � sx 2 � y 2 � z 2
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60. ;

61. ;

62. ;
,

� � � � � � � � � � � � �

63. Find the points on the surface that are closest to 
the origin.

64. A package in the shape of a rectangular box can be mailed
by U.S. Parcel Post if the sum of its length and girth (the
perimeter of a cross-section perpendicular to the length) is
at most 108 in. Find the dimensions of the package with
largest volume that can be mailed by Parcel Post.

65. A pentagon is formed by placing an isosceles triangle on a
rectangle, as shown in the figure. If the pentagon has fixed 
perimeter , find the lengths of the sides of the pentagon
that maximize the area of the pentagon.

66. A particle of mass moves on the surface . Let
, be the - and -coordinates of the particle 

at time .
(a) Find the velocity vector and the kinetic energy

of the particle.
(b) Determine the acceleration vector .
(c) Let and , . Find 

the velocity vector, the kinetic energy, and the accelera-
tion vector.

y�t� � t sin tx�t� � t cos tz � x 2 � y 2
a

K � 1
2 m � v �2

v
t

yxy � y�t�x � x�t�
z � f �x, y�m

¨

=

=

P

xy 2z3 � 2

x � y � 2z � 2x � y � z � 1
f �x, y, z� � x 2 � 2y 2 � 3z2

x 2 � y 2 � z 2 � 3f �x, y, z� � xyz

1

x 2 �
1

y 2 � 1f �x, y� �
1

x
�

1

y
50. Find parametric equations of the tangent line at the point

to the curve of intersection of the surface
and the plane .

51–54 � Find the local maximum and minimum values and
saddle points of the function. If you have three-dimensional
graphing software, graph the function with a domain and view-
point that reveal all the important aspects of the function.

51.

52.

53.

54.
� � � � � � � � � � � � �

55–56 � Find the absolute maximum and minimum values of 
on the set .

55. ; is the closed triangular
region in the -plane with vertices , , and 

56. ; is the disk 
� � � � � � � � � � � � �

; 57. Use a graph and �or level curves to estimate the local 
maximum and minimum values and saddle points of

. Then use calculus to find 
these values precisely.

; 58. Use a graphing calculator or computer (or Newton’s method 
or a computer algebra system) to find the critical points of

correct to three 
decimal places. Then classify the critical points and find 
the highest point on the graph.

59–62 � Use Lagrange multipliers to find the maximum and
minimum values of subject to the given constraint(s).

59. ; x 2 � y 2 � 1f �x, y� � x 2 y

f

f �x, y� � 12 � 10y � 2x 2 � 8xy � y 4

f �x, y� � x 3 � 3x � y 4 � 2y 2

x 2 � y 2 � 4Df �x, y� � e�x 2�y 2
�x 2 � 2y 2 �

�6, 0��0, 6��0, 0�xy
Df �x, y� � 4xy 2 � x 2 y 2 � xy 3

D
f

f �x, y� � �x 2 � y�e y�2

f �x, y� � 3xy � x 2 y � xy 2

f �x, y� � x 3 � 6xy � 8y 3

f �x, y� � x 2 � xy � y 2 � 9x � 6y � 10

z � 4z � 2x 2 � y 2
��2, 2, 4�
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1. A rectangle with length and width is cut into four smaller rectangles by two lines
parallel to the sides. Find the maximum and minimum values of the sum of the squares
of the areas of the smaller rectangles.

2. Marine biologists have determined that when a shark detects the presence of blood in
the water, it will swim in the direction in which the concentration of the blood increases
most rapidly. Based on certain tests in seawater, the concentration of blood (in parts per
million) at a point on the surface is approximated by

where and are measured in meters in a rectangular coordinate system with the blood
source at the origin.
(a) Identify the level curves of the concentration function and sketch several members

of this family together with a path that a shark will follow to the source.
(b) Suppose a shark is at the point when it first detects the presence of blood in

the water. Find an equation of the shark’s path by setting up and solving a differen-
tial equation.

3. A long piece of galvanized sheet metal inches wide is to be bent into a symmetric
form with three straight sides to make a rain gutter. A cross-section is shown in the
figure.
(a) Determine the dimensions that allow the maximum possible flow; that is, find the

dimensions that give the maximum possible cross-sectional area.
(b) Would it be better to bend the metal into a gutter with a semicircular cross-section

than a three-sided cross-section?

4. For what values of the number is the function

continuous on ?

5. Suppose is a differentiable function of one variable. Show that all tangent planes to
the surface intersect in a common point.

6. (a) Newton’s method for approximating a root of an equation (see Section 4.8)
can be adapted to approximating a solution of a system of equations 
and . The surfaces and intersect in a curve that
intersects the -plane at the point , which is the solution of the system. If an
initial approximation is close to this point, then the tangent planes to the
surfaces at intersect in a straight line that intersects the -plane in a point

, which should be closer to . (Compare with Figure 2 in Section 4.8.)
Show that

where , , and their partial derivatives are evaluated at . If we continue this
procedure, we obtain successive approximations .�xn, yn �

�x1, y1�tf

y2 � y1 �
 fx t � ftx

fx ty � fy tx
andx2 � x1 �

 fty � fy t

fx ty � fy tx

�r, s��x2, y2 �
xy�x1, y1�

�x1, y1�
�r, s�xy

z � t�x, y�z � f �x, y�t�x, y� � 0
f �x, y� � 0

f �x� � 0

z � x f �y�x�
f

� 3

f �x, y, z� � 
0

�x � y � z�r

x 2 � y 2 � z 2 if

if

�x, y, z� � 0

�x, y, z� � 0

r

¨¨
x x

w-2x

w

�x0, y0 �

yx

C�x, y� � e��x 2�2y 2 ��104

P�x, y�

WL

836

Focus 
on
Problem
Solving



(b) It was Thomas Simpson (1710–1761) who formulated Newton’s method as we
know it today and who extended it to functions of two variables as in part (a). (See
the biography of Simpson on page 422.) The example that he gave to illustrate the
method was to solve the system of equations

In other words, he found the points of intersection of the curves in the figure. Use
the method of part (a) to find the coordinates of the points of intersection correct to
six decimal places.

7. (a) Show that when Laplace’s equation

is written in cylindrical coordinates, it becomes

(b) Show that when Laplace’s equation is written in spherical coordinates, it becomes

8. Among all planes that are tangent to the surface , find the ones that are 
farthest from the origin.

9. If the ellipse is to enclose the circle , what values of 
and minimize the area of the ellipse?b

ax 2 � y 2 � 2yx 2�a 2 � y 2�b 2 � 1

xy 2z 2 � 1

�2u

��2 �
2

�
 
�u

��
�

cot �

�2  
�u

��
�

1

�2  
�2u

��2 �
1

�2 sin2�
 
�2u

�
 2 � 0

�2u

�r 2 �
1

r
 
�u

�r
�

1

r 2  
�2u

�
 2 �
�2u

�z2 � 0

�2u

�x 2 �
�2u

�y 2 �
�2u

�z2 � 0 

y

4

2

0 2 4 x

xx+yy=1000

xy+yx=100

x y � y x � 100x x � y y � 1000
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