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Double Integrals over Rectangles � � � � � � � � � � �

In much the same way that our attempt to solve the area problem led to the definition
of a definite integral, we now seek to find the volume of a solid and in the process we
arrive at the definition of a double integral.

Review of the Definite Integral

First let’s recall the basic facts concerning definite integrals of functions of a single
variable. If is defined for , we start by dividing the interval into
n subintervals of equal width and we choose sample points

in these subintervals. Then we form the Riemann sum

and take the limit of such sums as to obtain the definite integral of from 
to :

In the special case where , the Riemann sum can be interpreted as the sum of
the areas of the approximating rectangles in Figure 1, and represents the
area under the curve from to .
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In this chapter we extend the idea of a definite integral
to double and triple integrals of functions of two or
three variables. These ideas are then used to compute
volumes, surface areas, masses, and centroids of more

general regions than we were able to consider in
Chapter 6. We also use double integrals to calcu-
late probabilities when two random variables are
involved.



Volumes and Double Integrals

In a similar manner we consider a function of two variables defined on a closed rect-
angle

and we first suppose that . The graph of f is a surface with equation
. Let S be the solid that lies above R and under the graph of f, that is,

(See Figure 2.) Our goal is to find the volume of S.
The first step is to divide the rectangle into subrectangles. We do this by divid-

ing the interval into m subintervals of equal width 
and dividing into n subintervals of equal width . By
drawing lines parallel to the coordinate axes through the endpoints of these subinter-
vals as in Figure 3, we form the subrectangles

each with area .

If we choose a sample point in each , then we can approximate the part
of S that lies above each by a thin rectangular box (or “column”) with base and
height as shown in Figure 4. (Compare with Figure 1.) The volume of this
box is the height of the box times the area of the base rectangle:

If we follow this procedure for all the rectangles and add the volumes of the corre-
sponding boxes, we get an approximation to the total volume of S:

(See Figure 5.) This double sum means that for each subrectangle we evaluate at the
chosen point and multiply by the area of the subrectangle, and then we add the results.
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Our intuition tells us that the approximation given in (3) becomes better as m and
n become larger and so we would expect that

We use the expression in Equation 4 to define the volume of the solid that lies under
the graph of and above the rectangle . (It can be shown that this definition is con-
sistent with our formula for volume in Section 6.2.)

Limits of the type that appear in Equation 4 occur frequently, not just in finding
volumes but in a variety of other situations as well—as we will see in Section 12.5—
even when is not a positive function. So we make the following definition.

Definition The double integral of over the rectangle is

if this limit exists.

It can be proved that the limit in Definition 5 exists if is a continuous function.
(It also exists for some discontinuous functions as long as they are reasonably “well
behaved.”)

The sample point can be chosen to be any point in the subrectangle 
but if we choose it to be the upper right-hand corner of [namely , see Fig-
ure 3], then the expression for the double integral looks simpler:

By comparing Definitions 4 and 5, we see that a volume can be written as a double
integral:
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� The meaning of the double limit in
Equation 4 is that we can make the 
double sum as close as we like to the
number [for any choice of ] 
by taking and sufficiently large.nm

�xij*, yij*�V

� Notice the similarity between 
Definition 5 and the definition of 
a single integral in Equation 2.



If , then the volume of the solid that lies above the rectangle 
and below the surface is

The sum in Definition 5,

is called a double Riemann sum and is used as an approximation to the value of the 
double integral. [Notice how similar it is to the Riemann sum in (1) for a function of
a single variable.] If happens to be a positive function, then the double Riemann sum 
represents the sum of volumes of columns, as in Figure 5, and is an approximation to
the volume under the graph of .

EXAMPLE 1 Estimate the volume of the solid that lies above the square
and below the elliptic paraboloid . Divide 

into four equal squares and choose the sample point to be the upper right corner of
each square . Sketch the solid and the approximating rectangular boxes.

SOLUTION The squares are shown in Figure 6. The paraboloid is the graph of
and the area of each square is 1. Approximating the 

volume by the Riemann sum with , we have

This is the volume of the approximating rectangular boxes shown in Figure 7.

We get better approximations to the volume in Example 1 if we increase the num-
ber of squares. Figure 8 shows how the columns start to look more like the actual solid
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and the corresponding approximations become more accurate when we use 16, 64, and
256 squares. In the next section we will be able to show that the exact volume is 48.

EXAMPLE 2 If , evaluate the integral

SOLUTION It would be very difficult to evaluate this integral directly from Definition 5
but, because , we can compute the integral by interpreting it as a vol-
ume. If , then and , so the given double integral
represents the volume of the solid S that lies below the circular cylinder 
and above the rectangle R. (See Figure 9.) The volume of S is the area of a semicircle
with radius 1 times the length of the cylinder. Thus

The Midpoint Rule

The methods that we used for approximating single integrals (the Midpoint Rule, the
Trapezoidal Rule, Simpson’s Rule) all have counterparts for double integrals. Here we
consider only the Midpoint Rule for double integrals. This means that we use a double
Riemann sum to approximate the double integral, where the sample point in

is chosen to be the center of . In other words, is the midpoint of 
and is the midpoint of .

Midpoint Rule for Double Integrals

where is the midpoint of and is the midpoint of .�yj�1, yj�yj�xi�1, xi�xi
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EXAMPLE 3 Use the Midpoint Rule with to estimate the value of the
integral , where , .

SOLUTION In using the Midpoint Rule with , we evaluate 
at the centers of the four subrectangles shown in Figure 10. So , ,

, and . The area of each subrectangle is . Thus

Thus, we have

NOTE � In the next section we will develop an efficient method for computing 
double integrals and then we will see that the exact value of the double integral in
Example 3 is . (Remember that the interpretation of a double integral as a volume
is valid only when the integrand is a positive function. The integrand in Example 3
is not a positive function, so its integral is not a volume. In Examples 2 and 3 in
Section 12.2 we will discuss how to interpret integrals of functions that are not always
positive in terms of volumes.) If we keep dividing each subrectangle in Figure 10 into
four smaller ones with similar shape, we get the Midpoint Rule approximations dis-
played in the chart in the margin. Notice how these approximations approach the exact
value of the double integral, .

Average Value

Recall from Section 6.4 that the average value of a function of one variable defined
on an interval is

In a similar fashion we define the average value of a function of two variables
defined on a rectangle R to be

where is the area of R.
If , the equation

says that the box with base and height has the same volume as the solid that lies faveR
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under the graph of . [If describes a mountainous region and you chop off
the tops of the mountains at height , then you can use them to fill in the valleys so
that the region becomes completely flat. See Figure 11.]

EXAMPLE 4 The contour map in Figure 12 shows the snowfall, in inches, that fell on
the state of Colorado on December 24, 1982. (The state is in the shape of a rect-
angle that measures 388 mi west to east and 276 mi south to north.) Use the contour
map to estimate the average snowfall for Colorado as a whole on December 24.

SOLUTION Let’s place the origin at the southwest corner of the state. Then 
, and is the snowfall, in inches, at a location x miles to the east

and y miles to the north of the origin. If R is the rectangle that represents Colorado,
then the average snowfall for Colorado on December 24 was

fave �
1

A�R�
 yy

R

 f �x, y� dA  

f �x, y�0 � y � 276
0 � x � 388,

FIGURE 12

0
2

4

6

8

10
12
14
16

18
20

22
24

FIGURE 11

fave

z � f �x, y�f

SECTION 12.1 DOUBLE INTEGRALS OVER RECTANGLES � 845



where . To estimate the value of this double integral let’s use the
Midpoint Rule with . In other words, we divide R into 16 subrectangles
of equal size, as in Figure 13. The area of each subrectangle is

Using the contour map to estimate the value of at the center of each subrect-
angle, we get

Therefore

On December 24, 1982, Colorado received an average of approximately inches of
snow.
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Properties of Double Integrals

We list here three properties of double integrals that can be proved in the same man-
ner as in Section 5.2. We assume that all of the integrals exist. Properties 7 and 8 are
referred to as the linearity of the integral.

where c is a constant

If for all in , then
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6. A 20-ft-by-30-ft swimming pool is filled with water. The
depth is measured at 5-ft intervals, starting at one corner of
the pool, and the values are recorded in the table. Estimate
the volume of water in the pool.

7. Let be the volume of the solid that lies under the graph of
and above the rectangle given by

, . We use the lines and y � 4x � 32 � y � 62 � x � 4
f �x, y� � s52 � x 2 � y 2
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1. Find approximations to using the same
subrectangles as in Example 3 but choosing the sample
point to be the (a) upper left corner, (b) upper right corner,
(c) lower left corner, (d) lower right corner of each sub-
rectangle.

2. Find the approximation to the volume in Example 1 if the 
Midpoint Rule is used.

3. (a) Estimate the volume of the solid that lies below 
the surface and above the rectangle

, . Use a Riemann 
sum with , , and take the sample point to 
be the upper right corner of each subrectangle.

(b) Use the Midpoint Rule to estimate the volume of the 
solid in part (a).

4. If , use a Riemann sum with ,
to estimate the value of . Take 

the sample points to be the upper left corners of the 
subrectangles.

5. A table of values is given for a function defined on
.

(a) Estimate using the Midpoint Rule with
.

(b) Estimate the double integral with by choos-
ing the sample points to be the points farthest from the
origin.
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� Double integrals behave this way
because the double sums that define
them behave this way.
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11–13 � Evaluate the double integral by first identifying it as
the volume of a solid.

11.

12.

13.
� � � � � � � � � � � � �

14. The integral , where ,
represents the volume of a solid. Sketch the solid.

15. Use a programmable calculator or computer (or the sum 
command on a CAS) to estimate

where . Use the Midpoint Rule with the 
following numbers of squares of equal size: 1, 4, 16, 64,
256, and 1024.

16. Repeat Exercise 15 for the integral .

17. If is a constant function, , and 
, show that 

18. If , show that 0 � xx
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to divide into subrectangles. Let and be the Riemann
sums computed using lower left corners and upper right 
corners, respectively. Without calculating the numbers , ,
and , arrange them in increasing order and explain your
reasoning.

8. The figure shows level curves of a function in the square
. Use them to estimate to

the nearest integer.

9. A contour map is shown for a function on the square
.

(a) Use the Midpoint Rule with to estimate the
value of .

(b) Estimate the average value of .

10. The contour map shows the temperature, in degrees Fahren-
heit, at 3:00 P.M. on May 1, 1996, in Colorado. (The state
measures 388 mi east to west and 276 mi north to south.)
Use the Midpoint Rule to estimate the average temperature
in Colorado at that time.
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Iterated Integrals � � � � � � � � � � � � � � � �

Recall that it is usually difficult to evaluate single integrals directly from the definition
of an integral, but the Evaluation Theorem (Part 2 of the Fundamental Theorem of
Calculus) provides a much easier method. The evaluation of double integrals from first
principles is even more difficult, but in this section we see how to express a double
integral as an iterated integral, which can then be evaluated by calculating two single
integrals.

Suppose that is a function of two variables that is continuous on the rectangle
. We use the notation to mean that is held fixed and

is integrated with respect to from to . This procedure is called
partial integration with respect to . (Notice its similarity to partial differentiation.)
Now is a number that depends on the value of , so it defines a function
of :

If we now integrate the function with respect to from to , we get

The integral on the right side of Equation 1 is called an iterated integral. Usually the
brackets are omitted. Thus

means that we first integrate with respect to from to and then with respect to 
from to .

Similarly, the iterated integral

means that we first integrate with respect to (holding fixed) from to 
and then we integrate the resulting function of with respect to from to 
Notice that in both Equations 2 and 3 we work from the inside out.

EXAMPLE 1 Evaluate the iterated integrals.

(a) (b)

SOLUTION
(a) Regarding as a constant, we obtain
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Thus, the function in the preceding discussion is given by in this
example. We now integrate this function of from 0 to 3:

(b) Here we first integrate with respect to :

Notice that in Example 1 we obtained the same answer whether we integrated with
respect to or first. In general, it turns out (see Theorem 4) that the two iterated inte-
grals in Equations 2 and 3 are always equal; that is, the order of integration does not
matter. (This is similar to Clairaut’s Theorem on the equality of the mixed partial
derivatives.)

The following theorem gives a practical method for evaluating a double integral by
expressing it as an iterated integral (in either order).

Fubini’s Theorem If is continuous on the rectangle 
, , then

More generally, this is true if we assume that is bounded on , is discon-
tinuous only on a finite number of smooth curves, and the iterated integrals
exist.

The proof of Fubini’s Theorem is too difficult to include in this book, but we can
at least give an intuitive indication of why it is true for the case where .
Recall that if is positive, then we can interpret the double integral as
the volume of the solid that lies above and under the surface . But
we have another formula that we used for volume in Chapter 6, namely,

where is the area of a cross-section of in the plane through perpendicular to
the -axis. From Figure 1 you can see that is the area under the curve whose
equation is , where is held constant and . Therefore

and we have
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� Theorem 4 is named after the 
Italian mathematician Guido Fubini
(1879–1943), who proved a very gen-
eral version of this theorem in 1907. 
But the version for continuous functions
was known to the French mathematician
Augustin- Louis Cauchy almost a century
earlier.



A similar argument, using cross-sections perpendicular to the -axis as in Figure 2,
shows that

EXAMPLE 2 Evaluate the double integral , where
, . (Compare with Example 3 in Section 12.1.)

SOLUTION 1 Fubini’s Theorem gives

SOLUTION 2 Again applying Fubini’s Theorem, but this time integrating with respect to
first, we have

EXAMPLE 3 Evaluate , where .

SOLUTION 1 If we first integrate with respect to , we get

SOLUTION 2 If we reverse the order of integration, we get

To evaluate the inner integral we use integration by parts with

 v � �
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x
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� Notice the negative answer in
Example 2; nothing is wrong with that.
The function in that example is not a
positive function, so its integral doesn’t
represent a volume. From Figure 3 we
see that is always negative on , so
the value of the integral is the negative
of the volume that lies above the graph
of and below .Rf

Rf

f

� For a function that takes on 
both positive and negative values,

is a difference of volumes:
, where is the volume above

and below the graph of and 
is the volume below and above 
the graph. The fact that the integral 
in Example 3 is means that these 
two volumes and are equal. (See
Figure 4.)
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and so

If we now integrate the first term by parts with and , we
get , , and

Therefore

and so

EXAMPLE 4 Find the volume of the solid that is bounded by the elliptic paraboloid
, the planes and , and the three coordinate planes.

SOLUTION We first observe that is the solid that lies under the surface
and above the square . (See Figure 5.) This

solid was considered in Example 1 in Section 12.1, but we are now in a position to
evaluate the double integral using Fubini’s Theorem. Therefore

In the special case where can be factored as the product of a function of 
only and a function of only, the double integral of can be written in a particularly
simple form. To be specific, suppose that and .
Then Fubini’s Theorem gives

In the inner integral is a constant, so is a constant and we can write
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� In Example 2, Solutions 1 and 2 are
equally straightforward, but in Example 3
the first solution is much easier than the
second one. Therefore, when we eval-
uate double integrals it is wise to choose
the order of integration that gives simpler
integrals.



since is a constant. Therefore, in this case, the double integral of can be
written as the product of two single integrals:

EXAMPLE 5 If , then

FIGURE 6

y

x

z

0

 � [�cos x]0

��2 [sin y]0

��2
� 1 � 1 � 1

 yy
R

 sin x cos y dA � y
��2

0
 sin x dx y

��2

0
 cos y dy

R � �0, ��2� � �0, ��2�

where R � �a, b� � �c, d �yy
R

 t�x�h�y� dA � y
b

a
 t�x� dx y

d

c
 h�y� dy

fx
b
a  t�x� dx

SECTION 12.2 ITERATED INTEGRALS � 853

13. ,

14. ,

15. ,

16. ,

� � � � � � � � � � � � �

17–18 � Sketch the solid whose volume is given by the iterated
integral.

17.

18.

� � � � � � � � � � � � �

19. Find the volume of the solid lying under the plane
and above the rectangle 

, .

20. Find the volume of the solid lying under the circular 
paraboloid and above the rectangle

.R � ��2, 2� � ��3, 3�
z � x 2 � y 2

1 � y � 4
R � ��x, y� 	 �1 � x � 0
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1–2 � Find and .

1. 2.

� � � � � � � � � � � � �

3–10 � Calculate the iterated integral.

3. 4.

5. 6.

7. 8.

9.

10.

� � � � � � � � � � � � �

11–16 � Calculate the double integral.

11. ,
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Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �12.2

� The function in
Example 5 is positive on , so the inte-
gral represents the volume of the solid
that lies above and below the graph
of shown in Figure 6.f

R

R
f �x, y� � sin x cos y



28. Graph the solid that lies between the surfaces
and for ,

. Use a computer algebra system to approximate the
volume of this solid correct to four decimal places.

29–30 � Find the average value of over the given rectangle.

29. ,
has vertices , , ,

30. ,
� � � � � � � � � � � � �

31. Use your CAS to compute the iterated integrals 

Do the answers contradict Fubini’s Theorem? Explain what
is happening.

32. (a) In what way are the theorems of Fubini and Clairaut 
similar?

(b) If is continuous on and 

for , , show that .txy � tyx � f �x, y�c 	 y 	 da 	 x 	 b

t�x, y� � y
x

a
 y

y

c
  f �s, t� dt ds

�a, b� � �c, d �f �x, y�

y
1

0
 y

1

0
 

x � y

�x � y�3  dx dyandy
1

0
 y

1

0
 

x � y

�x � y�3  dy dx

CAS

R � �0, ��2� � �0, 1�f �x, y� � x sin xy

�1, 0��1, 5���1, 5���1, 0�R
f �x, y� � x 2 y

f

	 y 	 � 1
	 x 	 � 1z � 2 � x 2 � y 2z � e�x 2

cos �x 2 � y 2 �
CAS21. Find the volume of the solid lying under the elliptic 

paraboloid and above the square
.

22. Find the volume of the solid lying under the hyper-
bolic paraboloid and above the square

.

23. Find the volume of the solid bounded by the surface
and the planes , , , ,

and .

24. Find the volume of the solid bounded by the elliptic parabo-
loid , the planes and ,
and the coordinate planes.

25. Find the volume of the solid in the first octant bounded by
the cylinder and the plane .

26. (a) Find the volume of the solid bounded by the surface
and the planes , , ,

, and .

; (b) Use a computer to draw the solid.

27. Use a computer algebra system to find the exact value of the
integral , where . Then use
the CAS to draw the solid whose volume is given by the
integral.

R � �0, 1� � �0, 1�xxR x 5y 3e xy dA
CAS

z � 0y � 3
y � 0x � �2x � 2z � 6 � xy

x � 2z � 9 � y 2

y � 2x � 3z � 1 � �x � 1�2 � 4y 2

z � 0
y � 1y � 0x � 1x � 0z � xsx 2 � y

R � ��1, 1� � �1, 3�
z � y 2 � x 2

R � ��1, 1� � ��2, 2�
x 2�4 � y 2�9 � z � 1

Double Integrals over General Regions � � � � � � � � �

For single integrals, the region over which we integrate is always an interval. But for 
double integrals, we want to be able to integrate a function not just over rectangles
but also over regions of more general shape, such as the one illustrated in Figure 1.
We suppose that is a bounded region, which means that can be enclosed in a rec-
tangular region as in Figure 2. Then we define a new function with domain by
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If the double integral of F exists over R, then we define the double integral of over 
D by

Definition 2 makes sense because R is a rectangle and so has been
previously defined in Section 12.1. The procedure that we have used is reasonable
because the values of are 0 when lies outside and so they contribute
nothing to the integral. This means that it doesn’t matter what rectangle we use as
long as it contains .

In the case where we can still interpret as the volume of
the solid that lies above and under the surface (the graph of ). You can
see that this is reasonable by comparing the graphs of and in Figures 3 and 4 and
remembering that is the volume under the graph of .

Figure 4 also shows that is likely to have discontinuities at the boundary points
of . Nonetheless, if is continuous on and the boundary curve of is “well
behaved” (in a sense outside the scope of this book), then it can be shown that

exists and therefore exists. In particular, this is the case for
the following types of regions.

A plane region is said to be of type I if it lies between the graphs of two con-
tinuous functions of , that is,

where and are continuous on . Some examples of type I regions are shown
in Figure 5.

In order to evaluate when is a region of type I, we choose a rect-
angle that contains , as in Figure 6, and we let be the function
given by Equation 1; that is, agrees with on and is outside . Then, by
Fubini’s Theorem,

Observe that if or because then lies outside .
Therefore
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because when . Thus, we have the following for-
mula that enables us to evaluate the double integral as an iterated integral.

If is continuous on a type I region D such that

then

The integral on the right side of (3) is an iterated integral that is similar to the ones
we considered in the preceding section, except that in the inner integral we regard 
as being constant not only in but also in the limits of integration, and 

We also consider plane regions of type II, which can be expressed as 

where and are continuous. Two such regions are illustrated in Figure 7.
Using the same methods that were used in establishing (3), we can show that

where D is a type II region given by Equation 4.

EXAMPLE 1 Evaluate , where is the region bounded by the 
parabolas and .

SOLUTION The parabolas intersect when , that is, , so . 
We note that the region , sketched in Figure 8, is a type I region but not a type II
region and we can write

Since the lower boundary is and the upper boundary is , Equa-
tion 3 gives
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FIGURE 7
Some type II regions
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NOTE � When we set up a double integral as in Example 1, it is essential to draw a 
diagram. Often it is helpful to draw a vertical arrow as in Figure 8. Then the limits of 
integration for the inner integral can be read from the diagram as follows: The arrow 
starts at the lower boundary , which gives the lower limit in the integral, and 
the arrow ends at the upper boundary , which gives the upper limit of inte-
gration. For a type II region the arrow is drawn horizontally from the left boundary to
the right boundary.

EXAMPLE 2 Find the volume of the solid that lies under the paraboloid 
and above the region in the -plane bounded by the line and the parabola

.

SOLUTION 1 From Figure 9 we see that is a type I region and

Therefore, the volume under and above is

SOLUTION 2 From Figure 10 we see that can also be written as a type II region:

Therefore, another expression for is
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FIGURE 10
D as a type II region

FIGURE 9
D as a type I region
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� Figure 11 shows the solid whose 
volume is calculated in Example 2. It 
lies above the -plane, below the
paraboloid , and between
the plane and the parabolic
cylinder .y � x 2

y � 2x
z � x 2 � y 2

xy



EXAMPLE 3 Evaluate where is the region bounded by the line 
and the parabola .

SOLUTION The region is shown in Figure 12. Again is both type I and type II,
but the description of as a type I region is more complicated because the lower
boundary consists of two parts. Therefore, we prefer to express as a type II
region:

Then (5) gives

If we had expressed as a type I region using Figure 12(a), then we would have
obtained

but this would have involved more work than the other method.

EXAMPLE 4 Find the volume of the tetrahedron bounded by the planes
, , , and .

SOLUTION In a question such as this, it’s wise to draw two diagrams: one of the three-
dimensional solid and another of the plane region over which it lies. Figure 13
shows the tetrahedron bounded by the coordinate planes , , the vertical
plane , and the plane . Since the plane inter-
sects the -plane (whose equation is ) in the line , we see that Tx � 2y � 2z � 0xy
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lies above the triangular region in the -plane bounded by the lines ,
, and . (See Figure 14.)

The plane can be written as , so the required
volume lies under the graph of the function and above

Therefore

EXAMPLE 5 Evaluate the iterated integral .

SOLUTION If we try to evaluate the integral as it stands, we are faced with the task 
of first evaluating . But it’s impossible to do so in finite terms since

is not an elementary function. (See the end of Section 5.8.) So we must
change the order of integration. This is accomplished by first expressing the given
iterated integral as a double integral. Using (3) backward, we have

where

We sketch this region in Figure 15. Then from Figure 16 we see that an alterna-
tive description of is

This enables us to use (5) to express the double integral as an iterated integral in the
reverse order:

Properties of Double Integrals

We assume that all of the following integrals exist. The first three properties of double
integrals over a region follow immediately from Definition 2 and Properties 7, 8,
and 9 in Section 12.1.
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If for all in , then 

The next property of double integrals is similar to the property of single integrals
given by the equation .

If , where and don’t overlap except perhaps on their bound-
aries (see Figure 17), then

Property 9 can be used to evaluate double integrals over regions that are neither
type I nor type II but can be expressed as a union of regions of type I or type II. Fig-
ure 18 illustrates this procedure. (See Exercises 41 and 42.)

The next property of integrals says that if we integrate the constant function
over a region , we get the area of :

Figure 19 illustrates why Equation 10 is true: A solid cylinder whose base is and
whose height is 1 has volume , but we know that we can also write
its volume as .

Finally, we can combine Properties 7, 8, and 10 to prove the following property.
(See Exercise 45.)
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(a) D is neither type I nor type II. (b) D=D¡ � D™, D¡ is type I, D™ is type II.FIGURE 18

D

yy
D

 f �x, y� dA � yy
D1

 f �x, y� dA � yy
D2

 f �x, y� dA9

D2D1D � D1 � D2

x
b
a  f �x� dx � x

c
a f �x� dx � x

b
c  f �x� dx

yy
D

 f �x, y� dA � yy
D

 t�x, y� dA8

D�x, y�f �x, y� � t�x, y�

yy
D

 c f �x, y� dA � c yy
D

 f �x, y� dA7

yy
D

 � f �x, y� � t�x, y�� dA � yy
D

 f �x, y� dA � yy
D

 t�x, y� dA6

860 � CHAPTER 12 MULTIPLE INTEGRALS

0

y

x

D

D¡ D™

FIGURE 17

FIGURE 19
Cylinder with base D and height 1

D y

0

z

x

z=1



If for all in , then

EXAMPLE 6 Use Property 11 to estimate the integral , where is the
disk with center the origin and radius 2.

SOLUTION Since and , we have
and therefore

Thus, using , , and in Property 11, we obtain

4�

e
� yy

D

 e sin x cos y dA � 4�e 

A�D� � ��2�2M � em � e�1 � 1�e

e�1 � e sin x cos y � e 1 � e

�1 � sin x cos y � 1
�1 � cos y � 1�1 � sin x � 1

DxxD e sin x cos y dA

mA�D� � yy
D

 f �x, y� dA � MA�D�

D�x, y�m � f �x, y� � M11
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13. ,

is the triangular region with vertices (0, 2), (1, 1), and 

14. , is bounded by 

15.

is bounded by the circle with center the origin and radius 2

16. , is the triangular region with vertices ,

, and 
� � � � � � � � � � � � �

17–24 � Find the volume of the given solid.

17. Under the paraboloid and above the region
bounded by and 

18. Under the paraboloid and above the region
bounded by and 

19. Under the surface and above the triangle with
vertices , , and 

20. Bounded by the paraboloid and the planes
, , ,

21. Bounded by the planes , , , and
x � y � z � 1

z � 0y � 0x � 0

x � y � 1z � 0y � 0x � 0
z � x 2 � y 2 � 4

�1, 2��4, 1��1, 1�
z � xy

x � y 2 � yy � x
z � 3x 2 � y 2

x � y 2y � x 2
z � x 2 � y 2

�6, 0��2, 4�

�0, 0�Dyy
D

 ye x dA
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yy
D

 �2x � y� dA,

y � sx, y � x 2Dyy
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 �x � y� dA

�3, 2�D
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 y 3 dA1–6 � Evaluate the iterated integral.

1. 2.

3. 4.

5. 6.

� � � � � � � � � � � � �

7–16 � Evaluate the double integral.

7.

8.

9.

10.

11. , is bounded by , ,

12. , D � ��x, y� 	 0 � y � 1, 0 � x � y
yy
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41–42 � Express as a union of regions of type I or type II
and evaluate the integral.

41.

42.

� � � � � � � � � � � � �

43–44 � Use Property 11 to estimate the value of the integral.

43. ,

44. ,

is the disk with center the origin and radius 
� � � � � � � � � � � � �

45. Prove Property 11.

46. In evaluating a double integral over a region , a sum of 
iterated integrals was obtained as follows:

Sketch the region and express the double integral as an 
iterated integral with reversed order of integration.

47. Evaluate , where

[Hint: Exploit the fact that is symmetric with respect to
both axes.]

48. Use symmetry to evaluate , where 
is the region bounded by the square with vertices 
and .

49. Compute , where is the disk
, by first identifying the integral as the volume 

of a solid.

50. Graph the solid bounded by the plane and
the paraboloid and find its exact volume.
(Use your CAS to do the graphing, to find the equations of
the boundary curves of the region of integration, and to
evaluate the double integral.)

z � 4 � x 2 � y 2
x � y � z � 1CAS
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(1, 1)
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 x 2 dA

D22. Bounded by the cylinder and the planes 
, in the first octant

23. Bounded by the cylinder and the planes ,
, in the first octant

24. Bounded by the cylinders and 
� � � � � � � � � � � � �

; 25. Use a graphing calculator or computer to estimate the 
-coordinates of the points of intersection of the curves

and . If is the region bounded by
these curves, estimate .

; 26. Find the approximate volume of the solid in the first octant 
that is bounded by the planes , , and and 
the cylinder . (Use a graphing device to estimate
the points of intersection.)

27–28 � Use a computer algebra system to find the exact 
volume of the solid.

27. Under the surface and above the region
bounded by the curves and 
for 

28. Between the paraboloids and
and inside the cylinder 

� � � � � � � � � � � � �

29–34 � Sketch the region of integration and change the order
of integration.

29. 30.

31. 32.

33. 34.

� � � � � � � � � � � � �

35–40 � Evaluate the integral by reversing the order of 
integration.
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40.
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Suppose that we want to evaluate a double integral , where is one of
the regions shown in Figure 1. In either case the description of in terms of rectan-
gular coordinates is rather complicated but is easily described using polar coordinates.

Recall from Figure 2 that the polar coordinates of a point are related to the rec-
tangular coordinates by the equations

The regions in Figure 1 are special cases of a polar rectangle

which is shown in Figure 3. In order to compute the double integral ,
where is a polar rectangle, we divide the interval into subintervals 
of equal width and we divide the interval into subintervals

of equal width . Then the circles and the rays 
divide the polar rectangle R into the small polar rectangles shown in Figure 4.

FIGURE 3
Polar rectangle

FIGURE 4
Dividing R into polar subrectangles
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Double Integrals in Polar Coordinates � � � � � � � � � �12.4

� See Appendix H for information 
about polar coordinates.
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The “center” of the polar subrectangle

has polar coordinates

We compute the area of using the fact that the area of a sector of a circle with radius
and central angle is . Subtracting the areas of two such sectors, each of which

has central angle , we find that the area of is

Although we have defined the double integral in terms of ordinary
rectangles, it can be shown that, for continuous functions , we always obtain the
same answer using polar rectangles. The rectangular coordinates of the center of 
are , so a typical Riemann sum is

If we write , then the Riemann sum in Equation 1 can be
written as

which is a Riemann sum for the double integral

Therefore, we have

Change to Polar Coordinates in a Double Integral If is continuous on a polar
rectangle given by , , where ,
then
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The formula in (2) says that we convert from rectangular to polar coordinates in a 
double integral by writing and , using the appropriate limits of 

| integration for and , and replacing by . Be careful not to forget the addi-
tional factor r on the right side of Formula 2. A classical method for remembering this
is shown in Figure 5, where the “infinitesimal” polar rectangle can be thought of as an
ordinary rectangle with dimensions and and therefore has “area”

EXAMPLE 1 Evaluate , where is the region in the upper half-plane
bounded by the circles and .

SOLUTION The region can be described as

It is the half-ring shown in Figure 1(b), and in polar coordinates it is given by
, . Therefore, by Formula 2,

EXAMPLE 2 Find the volume of the solid bounded by the plane and the parabo-
loid .

SOLUTION If we put in the equation of the paraboloid, we get . This
means that the plane intersects the paraboloid in the circle , so the solid
lies under the paraboloid and above the circular disk given by [see
Figures 6 and 1(a)]. In polar coordinates is given by , .
Since , the volume is

If we had used rectangular coordinates instead of polar coordinates, then we would
have obtained

which is not easy to evaluate because it involves finding the following integrals:
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� Here we use trigonometric identity

as discussed in Section 5.7. Alterna-
tively, we could have used Formula 63
in the Table of Integrals:
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What we have done so far can be extended to the more complicated type of region
shown in Figure 7. It’s similar to the type II rectangular regions considered in Sec-
tion 12.3. In fact, by combining Formula 2 in this section with Formula 12.3.5, we
obtain the following formula.

If is continuous on a polar region of the form

then

In particular, taking , , and in this formula, we
see that the area of the region bounded by , , and is

and this agrees with Formula 3 in Appendix H.2.

EXAMPLE 3 Find the volume of the solid that lies under the paraboloid ,
above the -plane, and inside the cylinder .

SOLUTION The solid lies above the disk whose boundary circle has equation
or, after completing the square,

(see Figures 8 and 9). In polar coordinates we have and ,
so the boundary circle becomes , or . Thus, the disk is
given by

and, by Formula 3, we have

Using Formula 74 in the Table of Integrals with , we get
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Now we use Formula 64 in the Table of Integrals:
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1

2
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2
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��2
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9–14 � Evaluate the given integral by changing to polar 
coordinates.

9. ,
where is the disk with center the origin and radius 3

10. ,
where 

11. , where D is the region bounded by the
semicircle and the y-axis

12. , where is the region in the first quadrant
enclosed by the circle 

13. ,
where 

14. , where is the region in the first quadrant that lies
between the circles and 

� � � � � � � � � � � � �

15–21 � Use polar coordinates to find the volume of the given
solid.

15. Under the paraboloid and above the 
disk 

16. Inside the sphere and outside the 
cylinder 

17. A sphere of radius 

18. Bounded by the paraboloid and the 
plane 

19. Above the cone and below the sphere

20. Bounded by the paraboloids and

21. Inside both the cylinder and the ellipsoid

� � � � � � � � � � � � �

22. (a) A cylindrical drill with radius is used to bore a hole
through the center of a sphere of radius . Find the vol-
ume of the ring-shaped solid that remains.

(b) Express the volume in part (a) in terms of the height 
of the ring. Notice that the volume depends only on ,
not on or .r2r1

h
h

r2

r1

4x 2 � 4y 2 � z2 � 64
x 2 � y 2 � 4

z � 4 � x 2 � y 2
z � 3x 2 � 3y 2

x 2 � y 2 � z2 � 1
z � sx 2 � y 2

z � 4
z � 10 � 3x 2 � 3y 2

a

x 2 � y 2 � 4
x 2 � y 2 � z 2 � 16

x 2 � y 2 � 9
z � x 2 � y 2

x 2 � y 2 � 2xx 2 � y 2 � 4
DxxD x dA

R � ��x, y� 	 1 � x 2 � y 2 � 4, �x � y � x

xxR arctan� y�x� dA

x 2 � y 2 � 25
Rxx

R
 yex dA

x � s4 � y 2

xxD e�x 2�y 2
 dA

R � ��x, y� 	 1 � x 2 � y 2 � 9, y � 0

xxR sx 2 � y 2 dA

D
xxD xy dA

1–6 � A region is shown. Decide whether to use polar coor-
dinates or rectangular coordinates and write 
as an iterated integral, where is an arbitrary continuous func-
tion on .

1. 2.

3. 4.

5. 6.

� � � � � � � � � � � � �

7–8 � Sketch the region whose area is given by the integral and
evaluate the integral.

7. 8.

� � � � � � � � � � � � �

y
��2

0
 y

4 cos �

0
 r dr d�y
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20
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R

0 31
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R

0 2
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R
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R

R
f

xxR f �x, y� dA
R
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� Instead of using tables, we 
could have used the identity

twice.cos2� � 1
2 �1 � cos 2��



32. (a) We define the improper integral (over the entire plane 

where is the disk with radius and center the origin. 
Show that

(b) An equivalent definition of the improper integral in
part (a) is

where is the square with vertices . Use this
to show that

(c) Deduce that

(d) By making the change of variable , show that

(This is a fundamental result for probability and 
statistics.)

33. Use the result of Exercise 32 part (c) to evaluate the follow-
ing integrals.

(a) (b) y
�

0
 sx e�x dxy

�

0
 x 2e�x 2 dx

y
�

��
 e�x 2�2 dx � s2�

t � s2 x

y
�

��
 e�x 2 dx � s�

y
�

��
 e�x 2 dx y

�

��
 e�y 2 dy � �

��a, �a�Sa

yy
� 2

 e��x 2�y 2 � dA � lim
a l �

 yy
Sa

 e��x 2�y 2 � dA

y
�

��
 y

�

��
 e��x 2�y 2 � dA � �

aDa

 � lim
a l �

  yy
Da

 e��x 2�y 2 � dA

 I � yy
� 2

 e��x 2�y 2 � dA � y
�

��
 y

�

��
 e��x 2�y 2 � dy dx

� 2�23–24 � Use a double integral to find the area of the region.

23. One loop of the rose 

24. The region enclosed by the cardioid 
� � � � � � � � � � � � �

25–28 � Evaluate the iterated integral by converting to polar 
coordinates.

25.

26.

27. 28.

� � � � � � � � � � � � �

29. A swimming pool is circular with a 40-ft diameter. The
depth is constant along east-west lines and increases
linearly from 2 ft at the south end to 7 ft at the north end.
Find the volume of water in the pool.

30. An agricultural sprinkler distributes water in a circular pat-
tern of radius 100 ft. It supplies water to a depth of feet
per hour at a distance of feet from the sprinkler.
(a) What is the total amount of water supplied per hour to 

the region inside the circle of radius centered at the
sprinkler?

(b) Determine an expression for the average amount of
water per hour per square foot supplied to the region
inside the circle of radius .

31. Use polar coordinates to combine the sum

into one double integral. Then evaluate the double integral.

y
1

1�s2
 y

x

s1�x 2
 xy dy dx � y

s2

1
 y

x

0
 xy dy dx � y

2

s2
 y

s4�x 2

0
 xy dy dx

R

R

r
e�r

y
2

0
 y

s2x�x 2

0
 sx 2 � y 2 dy dxy

2

0
 y

s4�y 2

�s4�y 2

 x 2 y 2 dx dy

y
a

�a
 y

sa 2�y 2

0
 �x 2 � y 2 �3�2 dx dy

y
1

0
 y

s1�x 2

0
 e x 2�y 2 dy dx

r � 1 � sin �

r � cos 3�
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Applications of Double Integrals � � � � � � � � � � �

We have already seen one application of double integrals: computing volumes.
Another geometric application is finding areas of surfaces and this will be done in the
next section. In this section we explore physical applications such as computing mass,
electric charge, center of mass, and moment of inertia. We will see that these physical
ideas are also important when applied to probability density functions of two random
variables.

Density and Mass

In Chapter 6 we were able to use single integrals to compute moments and the center
of mass of a thin plate or lamina with constant density. But now, equipped with the
double integral, we can consider a lamina with variable density. Suppose the lamina
occupies a region of the -plane and its density (in units of mass per unit area) at xyD

12.5



a point in is given by , where is a continuous function on . This
means that

where and are the mass and area of a small rectangle that contains and
the limit is taken as the dimensions of the rectangle approach 0. (See Figure 1.)

To find the total mass of the lamina we divide a rectangle containing into
subrectangles of the same size (as in Figure 2) and consider to be 0 outside

. If we choose a point in , then the mass of the part of the lamina that
occupies is approximately , where is the area of . If we add all
such masses, we get an approximation to the total mass:

If we now increase the number of subrectangles, we obtain the total mass of the
lamina as the limiting value of the approximations:

Physicists also consider other types of density that can be treated in the same man-
ner. For example, if an electric charge is distributed over a region and the charge
density (in units of charge per unit area) is given by at a point in , then
the total charge is given by

EXAMPLE 1 Charge is distributed over the triangular region in Figure 3 so that the
charge density at is , measured in coulombs per square meter
(C�m ). Find the total charge.

SOLUTION From Equation 2 and Figure 3 we have

Thus, the total charge is C.

Moments and Centers of Mass

In Section 6.5 we found the center of mass of a lamina with constant density; here we
consider a lamina with variable density. Suppose the lamina occupies a region and
has density function . Recall from Chapter 6 that we defined the moment of a��x, y�

D
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particle about an axis as the product of its mass and its directed distance from the axis.
We divide into small rectangles as in Figure 2. Then the mass of is approximately

, so we can approximate the moment of with respect to the -axis by

If we now add these quantities and take the limit as the number of subrectangles be-
comes large, we obtain the moment of the entire lamina about the x-axis:

Similarly, the moment about the y-axis is 

As before, we define the center of mass so that and . The
physical significance is that the lamina behaves as if its entire mass is concentrated at
its center of mass. Thus, the lamina balances horizontally when supported at its cen-
ter of mass (see Figure 4).

The coordinates of the center of mass of a lamina occupying the
region and having density function are

where the mass is given by

EXAMPLE 2 Find the mass and center of mass of a triangular lamina with vertices
, , and if the density function is .

SOLUTION The triangle is shown in Figure 5. (Note that the equation of the upper
boundary is .) The mass of the lamina is

 � 4 y
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Then the formulas in (5) give

The center of mass is at the point .

EXAMPLE 3 The density at any point on a semicircular lamina is proportional to the
distance from the center of the circle. Find the center of mass of the lamina.

SOLUTION Let’s place the lamina as the upper half of the circle (see Fig-
ure 6). Then the distance from a point to the center of the circle (the origin) is

. Therefore, the density function is

where is some constant. Both the density function and the shape of the lamina
suggest that we convert to polar coordinates. Then and the region 
is given by , . Thus, the mass of the lamina is

Both the lamina and the density function are symmetric with respect to the -axis, so
the center of mass must lie on the -axis, that is, . The -coordinate is given by

Therefore, the center of mass is located at the point .�0, 3a��2���
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Moment of Inertia

The moment of inertia (also called the second moment) of a particle of mass 
about an axis is defined to be , where is the distance from the particle to the axis.
We extend this concept to a lamina with density function and occupying a
region by proceeding as we did for ordinary moments. We divide into small rect-
angles, approximate the moment of inertia of each subrectangle about the -axis, and
take the limit of the sum as the number of subrectangles becomes large. The result is
the moment of inertia of the lamina about the x-axis:

Similarly, the moment of inertia about the y-axis is

It is also of interest to consider the moment of inertia about the origin, also called
the polar moment of inertia:

Note that .

EXAMPLE 4 Find the moments of inertia , , and of a homogeneous disk with
density , center the origin, and radius . 

SOLUTION The boundary of is the circle and in polar coordinates is
described by , . Let’s compute first:

Instead of computing and directly, we use the facts that and 
(from the symmetry of the problem). Thus

In Example 4 notice that the mass of the disk is
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so the moment of inertia of the disk about the origin (like a wheel about its axle) can
be written as

Thus, if we increase the mass or the radius of the disk, we thereby increase the mo-
ment of inertia. In general, the moment of inertia plays much the same role in rota-
tional motion that mass plays in linear motion. The moment of inertia of a wheel is
what makes it difficult to start or stop the rotation of the wheel, just as the mass of a
car is what makes it difficult to start or stop the motion of the car.

Probability

In Section 6.7 we considered the probability density function of a continuous ran-
dom variable X. This means that for all x, , and the proba-
bility that X lies between a and b is found by integrating f from a to b:

Now we consider a pair of continuous random variables X and Y, such as the life-
times of two components of a machine or the height and weight of an adult female
chosen at random. The joint density function of X and Y is a function f of two vari-
ables such that the probability that lies in a region D is

In particular, if the region is a rectangle, the probability that X lies between a and b
and Y lies between c and d is

(See Figure 7.)

The probability that X lies between a and b and Y lies between c and d is the volume that lies
above the rectangle D=[a, b]x[c, d] and below the graph of the joint density function.
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Because probabilities aren’t negative and are measured on a scale from 0 to 1, the
joint density function has the following properties:

As in Exercise 32 in Section 12.4, the double integral over is an improper integral
defined as the limit of double integrals over expanding circles or squares and we can
write

EXAMPLE 5 If the joint density function for X and Y is given by

find the value of the constant C. Then find .

SOLUTION We find the value of C by ensuring that the double integral of f is equal 
to 1. Because outside the rectangle , we have

Therefore, and so .
Now we can compute the probability that X is at most 7 and Y is at least 2:

Suppose X is a random variable with probability density function and Y is a
random variable with density function . Then X and Y are called independent
random variables if their joint density function is the product of their individual den-
sity functions:

In Section 6.7 we modeled waiting times by using exponential density functions 

where is the mean waiting time. In the next example we consider a situation with
two independent waiting times.

�
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��1e�t��

if t 	 0

if t � 0

f �x, y� � f1�x� f2�y�

f2�y�
f1�x�
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EXAMPLE 6 The manager of a movie theater determines that the average time movie-
goers wait in line to buy a ticket for this week’s film is 10 minutes and the average
time they wait to buy popcorn is 5 minutes. Assuming that the waiting times are
independent, find the probability that a moviegoer waits a total of less than 20 min-
utes before taking his or her seat.

SOLUTION Assuming that both the waiting time X for the ticket purchase and the wait-
ing time Y in the refreshment line are modeled by exponential probability density
functions, we can write the individual density functions as

Since X and Y are independent, the joint density function is the product:

We are asked for the probability that :

where D is the triangular region shown in Figure 8. Thus

This means that about 75% of the moviegoers wait less than 20 minutes before
taking their seats.

Expected Values

Recall from Section 6.7 that if X is a random variable with probability density func-
tion , then its mean is

Now if X and Y are random variables with joint density function f, we define the 
X-mean and Y-mean, also called the expected values of X and Y, to be

�2 � yy
�2

 yf �x, y� dA�1 � yy
�2

 x f �x, y� dA9

� � y
�

��
 x f �x� dx

f

 � 1
10 y

20

0
 �e�x�10 � e�4ex�10 � dx � 1 � e�4 � 2e�2 � 0.7476

 � 1
10 y

20

0
 e�x�10�1 � e �x�20��5 � dx

 � 1
50 y

20

0
 [e�x�10��5�e�y�5]y�0

y�20�x
dx

 P�X � Y 	 20� � yy
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 f �x, y� dA � y
20

0
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0
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50 e�x�10e�y�5 dy dx

P�X � Y 	 20� � P��X, Y� � D�

X � Y 	 20

f �x, y� � f1�x� f2�y� � � 1
50 e�x�10e�y�5

0

if x � 0, y � 0

otherwise

f2�y� � �0
1
5 e�y�5

if y 	 0
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f1�x� � �0

1
10 e�x�10
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Notice how closely the expressions for and in (9) resemble the moments and
of a lamina with density function in Equations 3 and 4. In fact, we can think of

probability as being like continuously distributed mass. We calculate probability the
way we calculate mass—by integrating a density function. And because the total
“probability mass” is 1, the expressions for and in (5) show that we can think of
the expected values of X and Y, and , as the coordinates of the “center of mass”
of the probability distribution.

In the next example we deal with normal distributions. As in Section 6.7, a single
random variable is normally distributed if its probability density function is of the
form

where is the mean and is the standard deviation.

EXAMPLE 7 A factory produces (cylindrically shaped) roller bearings that are sold as
having diameter 4.0 cm and length 6.0 cm. In fact, the diameters X are normally
distributed with mean 4.0 cm and standard deviation 0.01 cm while the lengths Y are
normally distributed with mean 6.0 cm and standard deviation 0.01 cm. Assuming
that X and Y are independent, write the joint density function and graph it. Find the
probability that a bearing randomly chosen from the production line has either
length or diameter that differs from the mean by more than 0.02 cm.

SOLUTION We are given that X and Y are normally distributed with ,
and . So the individual density functions for X and Y are

Since X and Y are independent, the joint density function is the product:

A graph of this function is shown in Figure 9.
Let’s first calculate the probability that both X and Y differ from their means by

less than 0.02 cm. Using a calculator or computer to estimate the integral, we have

Then the probability that either X or Y differs from its mean by more than 0.02 cm is
approximately
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FIGURE 9
Graph of the bivariate normal joint
density function in Example 7
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17–18 � Use a computer algebra system to find the mass, cen-
ter of mass, and moments of inertia of the lamina that occupies
the region and has the given density function.

17. ;

18. is enclosed by the cardioid ;

� � � � � � � � � � � � �

19. The joint density function for a pair of random variables 
and is

(a) Find the value of the constant .
(b) Find .
(c) Find .

20. (a) Verify that

is a joint density function.
(b) If and are random variables whose joint density

function is the function in part (a), find

(i) (ii)
(c) Find the expected values of and .

21. Suppose and are random variables with joint density 
function

(a) Verify that is indeed a joint density function.
(b) Find the following probabilities.

(i) (ii)
(c) Find the expected values of and .

22. (a) A lamp has two bulbs of a type with an average lifetime
of 1000 hours. Assuming that we can model the proba-
bility of failure of these bulbs by an exponential density
function with mean , find the probability that
both of the lamp’s bulbs fail within 1000 hours.

(b) Another lamp has just one bulb of the same type as in
part (a). If one bulb burns out and is replaced by a bulb 
of the same type, find the probability that the two bulbs
fail within a total of 1000 hours.

23. Suppose that and are independent random variables,
where is normally distributed with mean 45 and standard
deviation 0.5 and is normally distributed with mean 20
and standard deviation 0.1.
(a) Find .
(b) Find .P�4�X � 45�2 � 100�Y � 20�2 � 2�

P�40 � X � 50, 20 � Y � 25�

Y
X

YXCAS

� � 1000

YX
P�X � 2, Y � 4�P�Y � 1�

f

f �x, y� � �0.1e��0.5x�0.2y�

0

if x � 0, y � 0

otherwise

YX

YX
P(X �

1
2 , Y �

1
2 )P(X �

1
2 )

f
YX

f �x, y� � �4xy

0

if 0 � x � 1, 0 � y � 1

otherwise

P�X � Y � 1�
P�X � 1, Y � 1�

C

f �x, y� � �Cx�1 � y�
0

if 0 � x � 1, 0 � y � 2

otherwise

Y
X

��x, y� � sx 2 � y 2

r � 1 � cos �D

��x, y� � xyD � ��x, y� 	 0 � y � sin x, 0 � x � � 


D

CAS1. Electric charge is distributed over the rectangle ,
so that the charge density at is

(measured in coulombs per square
meter). Find the total charge on the rectangle.

2. Electric charge is distributed over the disk 
so that the charge density at is

(measured in coulombs per
square meter). Find the total charge on the disk.

3–8 � Find the mass and center of mass of the lamina that 
occupies the region and has the given density function .

3. ;

4. ;

5. is the triangular region with vertices , , ;

6. is bounded by the parabola and the -axis;

7. is bounded by the parabola and the 
line ;

8. ;
� � � � � � � � � � � � �

9. A lamina occupies the part of the disk in the
first quadrant. Find its center of mass if the density at any
point is proportional to its distance from the -axis.

10. Find the center of mass of the lamina in Exercise 9 if the 
density at any point is proportional to the square of its dis-
tance from the origin.

11. Find the center of mass of a lamina in the shape of an
isosceles right triangle with equal sides of length if the
density at any point is proportional to the square of the dis-
tance from the vertex opposite the hypotenuse.

12. A lamina occupies the region inside the circle 
but outside the circle . Find the center of mass
if the density at any point is inversely proportional to its
distance from the origin.

13. Find the moments of inertia , , for the lamina of 
Exercise 3.

14. Find the moments of inertia , , for the lamina of 
Exercise 10.

15. Find the moments of inertia , , for the lamina of 
Exercise 7.

16. Consider a square fan blade with sides of length 2 and the
lower left corner placed at the origin. If the density of the
blade is , is it more difficult to rotate 
the blade about the -axis or the -axis?yx

��x, y� � 1 � 0.1x

I0IyIx

I0IyIx

I0IyIx

x 2 � y 2 � 1
x 2 � y 2 � 2y

a

x

x 2 � y 2 � 1

��x, y� � xD � ��x, y� 	 0 � y � cos x, 0 � x � ��2


��x, y� � 3y � x � 2
x � y 2D

��x, y� � y
xy � 9 � x 2D

��x, y� � x � y
�0, 3��2, 1��0, 0�D

��x, y� � cxyD � ��x, y� 	 0 � x � a, 0 � y � b


��x, y� � xy 2D � ��x, y� 	 0 � x � 2, �1 � y � 1


�D

��x, y� � x � y � x 2 � y 2
�x, y�x 2 � y 2 � 4

��x, y� � 2xy � y 2
�x, y�0 � y � 2

1 � x � 3
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tance between them. Consider a circular city of radius 10 mi
in which the population is uniformly distributed. For an
uninfected individual at a fixed point , assume that
the probability function is given by

where denotes the distance between and .
(a) Suppose the exposure of a person to the disease is the

sum of the probabilities of catching the disease from all
members of the population. Assume that the infected
people are uniformly distributed throughout the city,
with infected individuals per square mile. Find a 
double integral that represents the exposure of a person
residing at .

(b) Evaluate the integral for the case in which is the cen-
ter of the city and for the case in which is located on
the edge of the city. Where would you prefer to live?

A
A

A

k

APd�P, A�

f �P� � 1
20 �20 � d�P, A��

A�x0, y0 �

24. Xavier and Yolanda both have classes that end at noon and
they agree to meet every day after class. They arrive at the
coffee shop independently. Xavier’s arrival time is and
Yolanda’s arrival time is , where and are measured in
minutes after noon. The individual density functions are

(Xavier arrives sometime after noon and is more likely to
arrive promptly than late. Yolanda always arrives by 
12:10 P.M. and is more likely to arrive late than promptly.)
After Yolanda arrives, she’ll wait for up to half an hour for
Xavier, but he won’t wait for her. Find the probability that
they meet.

25. When studying the spread of an epidemic, we assume that
the probability that an infected individual will spread the
disease to an uninfected individual is a function of the dis-

f2�y� � � 1
50 y

0

if 0 � y � 10

otherwise
f1�x� � �e�x

0

if x � 0

if x 	 0

YXY
X

Surface Area � � � � � � � � � � � � � � � � �

In this section we apply double integrals to the problem of computing the area of a
surface. We start by finding a formula for the area of a parametric surface and then, as
a special case, we deduce a formula for the surface area of the graph of a function of
two variables.

We recall from Section 10.5 that a parametric surface is defined by a vector-
valued function of two parameters

or, equivalently, by parametric equations

where varies throughout a region in the -plane.
We will find the area of by dividing into patches and approximating the area of

each patch by the area of a piece of a tangent plane. So first let’s recall from Sec-
tion 11.4 how to find tangent planes to parametric surfaces.

Let be a point on with position vector . If we keep constant by put-
ting , then becomes a vector function of the single parameter and
defines a grid curve lying on . (See Figure 1.) The tangent vector to at is
obtained by taking the partial derivative of with respect to :

Similarly, if we keep constant by putting , we get a grid curve given by
that lies on , and its tangent vector at is

ru �
�x

�u
 �u0, v0� i �

�y

�u
 �u0, v0� j �

�z

�u
 �u0, v0� k3

P0Sr�u, v0 �
C2v � v0v

rv �
�x

�v
 �u0, v0� i �

�y

�v
 �u0, v0� j �

�z

�v
 �u0, v0� k2

vr
P0C1SC1

vr�u0, v�u � u0

ur�u0, v0 �SP0

SS
uvD�u, v�

x � x�u, v�    y � y�u, v�    z � z�u, v�

r�u, v� � x�u, v� i � y�u, v� j � z�u, v� k1

S
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If the normal vector is not , then the surface is called smooth. (It has no
“corners”). In this case the tangent plane to at exists and can be found using the
normal vector.

Now we define the surface area of a general parametric surface given by Equation 1.
For simplicity we start by considering a surface whose parameter domain is a rect-
angle, and we divide it into subrectangles . Let’s choose to be the lower left
corner of . (See Figure 2.) The part of the surface that corresponds to is called
a patch and has the point with position vector as one of its corners. Let

be the tangent vectors at as given by Equations 3 and 2.

Figure 3(a) shows how the two edges of the patch that meet at can be approxi-
mated by vectors. These vectors, in turn, can be approximated by the vectors 
and because partial derivatives can be approximated by difference quotients. So
we approximate by the parallelogram determined by the vectors and .
This parallelogram is shown in Figure 3(b) and lies in the tangent plane to at The
area of this parallelogram is

and so an approximation to the area of is

Our intuition tells us that this approximation gets better as we increase the number of
subrectangles, and we recognize the double sum as a Riemann sum for the double
integral . This motivates the following definition.

Definition If a smooth parametric surface is given by the equation

and is covered just once as ranges throughout the parameter domain ,
then the surface area of is

where rv �
�x

�v
 i �

�y

�v
 j �

�z

�v
 kru �
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�y
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 j �

�z

�u
 k

A�S � � yy
D
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xxD 	 ru � rv 	 du dv
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FIGURE 2
The image of the subrectangle Rij

is the patch Sij.
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EXAMPLE 1 Find the surface area of a sphere of radius .

SOLUTION In Example 4 in Section 10.5 we found the parametric representation

where the parameter domain is

We first compute the cross product of the tangent vectors:

Thus

since for . Therefore, by Definition 4, the area of the sphere is

Surface Area of a Graph

For the special case of a surface with equation , where lies in and
has continuous partial derivatives, we take and as parameters. The parametric

equations are

so

and

rx � ry � 	 i

1

0

j

0

1
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�f

�y
	 � �
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yxf
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 � sa 4 sin4� � a 4 sin2� cos2� � a 2
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� a 2 sin2� cos � i � a 2 sin2� sin � j � a 2 sin � cos � k
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i
�x
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j
�y
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�y
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k
�z
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�z

��
	 � 	 i

�a cos � cos �

�a sin � sin �
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Thus, the surface area formula in Definition 4 becomes

EXAMPLE 2 Find the area of the part of the paraboloid that lies under the
plane .

SOLUTION The plane intersects the paraboloid in the circle , . There-
fore, the given surface lies above the disk with center the origin and radius 3. (See
Figure 4.) Using Formula 6, we have

Converting to polar coordinates, we obtain

A common type of surface is a surface of revolution obtained by rotating the
curve , , about the -axis, where and is continuous. In
Exercise 23 you are asked to use a parametric representation of and Definition 4 to
prove the following formula for the area of a surface of revolution:

A � 2� y
b

a
 f �x�s1 � � f ��x��2 dx7

S
f �f �x� � 0xa � x � by � f �x�

S

 � 2� ( 1
8 ) 2

3 �1 � 4r 2 �3�2 ]0
3

�
�

6
 (37s37 � 1)

 A � y
2�

0
 y

3

0
 s1 � 4r 2 r dr d� � y
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0
 d� y

3

0
 rs1 � 4r 2 dr

 � yy
D

 s1 � 4�x 2 � y 2 � dA

 A � yy
D

 �1 � � �z

�x�2

� � �z

�y�2

 dA � yy
D

 s1 � �2x� 2 � �2y� 2 dA

D
z � 9x 2 � y 2 � 9
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z � x 2 � y 2
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D
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 dA6
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� Notice the similarity between the 
surface area formula in Equation 6 
and the arc length formula

from Section 6.3.

L � y
b

a
 �1 � �dy

dx�2

 dx

FIGURE 4
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z

y3

D

9

6. The part of the surface that lies above the tri-
angle with vertices , , and 

7. The surface with parametric equations , ,
,

8. The helicoid (or spiral ramp) with vector equation
, ,

9. The part of the surface that lies between the
planes , , , and 

10. The part of the paraboloid that lies inside the
cylinder 

11. The part of the surface that lies within the cylinder
x 2 � y 2 � 1

z � xy

y 2 � z2 � 9
x � y 2 � z2

z � 1z � 0x � 1x � 0
y � 4x � z2

0 � v � �0 � u � 1r�u, v� � u cos v i � u sin v j � v k

u 2 � v2 � 1z � u � v
y � u � vx � uv

�0, 1��1, 1��0, 0�
z � x � y 21–12 � Find the area of the surface.

1. The part of the plane that lies above the 
rectangle 

2. The part of the plane that lies inside the
cylinder 

3. The part of the plane that lies in the 
first octant

4. The part of the plane with vector equation
that is given by

,

5. The part of the hyperbolic paraboloid that lies
between the cylinders and x 2 � y 2 � 4x 2 � y 2 � 1

z � y 2 � x 2

0 � v � 10 � u � 1
r�u, v� � �1 � v, u � 2v, 3 � 5u � v�

3x � 2y � z � 6

x 2 � y 2 � 9
2x � 5y � z � 10

�0, 5� � �1, 4�
z � 2 � 3x � 4y
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; (b) Use the parametric equations in part (a) to graph the
hyperboloid for the case , , .

(c) Set up, but do not evaluate, a double integral for the sur-
face area of the part of the hyperboloid in part (b) that
lies between the planes and .

21. Find the area of the part of the sphere 
that lies inside the paraboloid .

22. The figure shows the surface created when the cylinder
intersects the cylinder . Find the 

area of this surface.

23. Use Definition 4 and the parametric equations for a surface
of revolution (see Equations 10.5.3) to derive Formula 7.

24–25 � Use Formula 7 to find the area of the surface obtained
by rotating the given curve about the -axis.

24. , 25. ,
� � � � � � � � � � � � �

26. The figure shows the torus obtained by rotating about the 
-axis the circle in the -plane with center and

radius . Parametric equations for the torus are

where and are the angles shown in the figure. Find the
surface area of the torus.

z

å
¨

0

x

y

(x, y, z)

(b, 0, 0)

��

z � a sin �

y � b sin � � a cos � sin �

x � b cos � � a cos � cos �

a 	 b
�b, 0, 0�xzz

4 � x � 9y � sx0 � x � 2y � x 3

x

z

y
x

x 2 � z 2 � 1y 2 � z 2 � 1

z � x 2 � y 2
x 2 � y 2 � z2 � 4z

z � 3z � �3

c � 3b � 2a � 1

12. The surface , ,
� � � � � � � � � � � � �

13. (a) Use the Midpoint Rule for double integrals (see Sec-
tion 12.1) with four squares to estimate the surface area 
of the portion of the paraboloid that lies
above the square .

(b) Use a computer algebra system to approximate the sur-
face area in part (a) to four decimal places. Compare
with the answer to part (a).

14. (a) Use the Midpoint Rule for double integrals with
to estimate the area of the surface

, , .
(b) Use a computer algebra system to approximate the sur-

face area in part (a) to four decimal places. Compare
with the answer to part (a).

15. Find the area of the surface with vector equation
, ,

. State your answer correct to four decimal
places.

16. Find, to four decimal places, the area of the part of the 
surface that lies above the square

. Illustrate by graphing this part of the
surface.

17. Find the exact area of the surface ,
, .

18. (a) Set up, but do not evaluate, a double integral for the area
of the surface with parametric equations ,

, , , .
(b) Eliminate the parameters to show that the surface is an

elliptic paraboloid and set up another double integral for
the surface area.

; (c) Use the parametric equations in part (a) with and
to graph the surface.

(d) For the case , , use a computer algebra 
system to find the surface area correct to four decimal
places.

19. (a) Show that the parametric equations ,
, , , ,

represent an ellipsoid.

; (b) Use the parametric equations in part (a) to graph the
ellipsoid for the case , , .

(c) Set up, but do not evaluate, a double integral for the sur-
face area of the ellipsoid in part (b).

20. (a) Show that the parametric equations ,
, , represent a

hyperboloid of one sheet.
z � c sinh uy � b cosh u sin v

x � a cosh u cos v

c � 3b � 2a � 1

0 � v � 2�0 � u � �z � c cos uy � b sin u sin v
x � a sin u cos v

b � 3a � 2CAS

b � 3
a � 2

0 � v � 2�0 � u � 2z � u 2y � bu sin v
x � au cos v

0 � y � 11 � x � 4
z � 1 � 2x � 3y � 4y 2CAS

	 x 	 � 	 y 	 � 1
z � �1 � x 2 ���1 � y 2 �

CAS

0 � v � 2�
0 � u � �r�u, v� � �cos3u cos3v, sin3u cos3v, sin3v�

CAS

CAS

0 � y � 20 � x � 2z � xy � x 2 � y 2
m � n � 2

CAS

�0, 1� � �0, 1�
z � x 2 � y 2

0 � y � 10 � x � 1z � 2
3 �x 3�2 � y 3�2 �
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Triple Integrals � � � � � � � � � � � � � � � �

Just as we defined single integrals for functions of one variable and double integrals
for functions of two variables, so we can define triple integrals for functions of three
variables. Let’s first deal with the simplest case where is defined on a rectangular box:

The first step is to divide B into sub-boxes. We do this by dividing the interval 
into l subintervals of equal width , dividing into m subintervals of
width , and dividing into n subintervals of width . The planes through the
endpoints of these subintervals parallel to the coordinate planes divide the box into

sub-boxes

which are shown in Figure 1. Each sub-box has volume .
Then we form the triple Riemann sum

where the sample point is in . By analogy with the definition of a
double integral (12.1.5), we define the triple integral as the limit of the triple Riemann
sums in (2).

Definition The triple integral of over the box is

if this limit exists.

Again, the triple integral always exists if is continuous. We can choose the sample
point to be any point in the sub-box, but if we choose it to be the point we
get a simpler-looking expression for the triple integral:

Just as for double integrals, the practical method for evaluating triple integrals is to
express them as iterated integrals as follows.

Fubini’s Theorem for Triple Integrals If is continuous on the rectangular box
, then
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The iterated integral on the right side of Fubini’s Theorem means that we integrate
first with respect to (keeping and fixed), then we integrate with respect to (keep-
ing fixed), and finally we integrate with respect to . There are five other possible
orders in which we can integrate, all of which give the same value. For instance, if we
integrate with respect to , then , and then , we have

EXAMPLE 1 Evaluate the triple integral , where is the rectangular box
given by

SOLUTION We could use any of the six possible orders of integration. If we choose to
integrate with respect to , then , and then , we obtain

Now we define the triple integral over a general bounded region E in three-
dimensional space (a solid) by much the same procedure that we used for double 
integrals (12.3.2). We enclose in a box of the type given by Equation 1. Then we
define a function so that it agrees with on but is 0 for points in that are out-
side . By definition,

This integral exists if is continuous and the boundary of is “reasonably smooth.”
The triple integral has essentially the same properties as the double integral (Proper-
ties 6–9 in Section 12.3).

We restrict our attention to continuous functions and to certain simple types of
regions. A solid region is said to be of type 1 if it lies between the graphs of two
continuous functions of and , that is,

where is the projection of onto the -plane as shown in Figure 2. Notice that the
upper boundary of the solid is the surface with equation , while the
lower boundary is the surface .

By the same sort of argument that led to (12.3.3), it can be shown that if is a 
type 1 region given by Equation 5, then
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The meaning of the inner integral on the right side of Equation 6 is that and are
held fixed, and therefore and are regarded as constants, while 
is integrated with respect to .

In particular, if the projection of onto the -plane is a type I plane region (as
in Figure 3), then

and Equation 6 becomes

If, on the other hand, is a type II plane region (as in Figure 4), then

and Equation 6 becomes

EXAMPLE 2 Evaluate , where is the solid tetrahedron bounded by the four
planes , , , and .

SOLUTION When we set up a triple integral it’s wise to draw two diagrams: one of 
the solid region (see Figure 5) and one of its projection on the -plane (see 
Figure 6). The lower boundary of the tetrahedron is the plane and the upper 
boundary is the plane (or ), so we use 
and in Formula 7. Notice that the planes and

intersect in the line (or ) in the -plane. So the projec-
tion of is the triangular region shown in Figure 6, and we have

This description of as a type 1 region enables us to evaluate the integral as 
follows:
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A solid region is of type 2 if it is of the form

where, this time, is the projection of onto the -plane (see Figure 7). The back
surface is , the front surface is , and we have

Finally, a type 3 region is of the form

where is the projection of onto the -plane, is the left surface, and
is the right surface (see Figure 8). For this type of region we have

In each of Equations 10 and 11 there may be two possible expressions for the inte-
gral depending on whether is a type I or type II plane region (and corresponding to
Equations 7 and 8).

EXAMPLE 3 Evaluate , where is the region bounded by the parab-
oloid and the plane .

SOLUTION The solid is shown in Figure 9. If we regard it as a type 1 region, then we
need to consider its projection onto the -plane, which is the parabolic region in
Figure 10. (The trace of in the plane is the parabola .)

From we obtain , so the lower boundary surface of 
is and the upper surface is . Therefore, the description
of as a type 1 region is

and so we obtain
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Although this expression is correct, it is extremely difficult to evaluate. So let’s
instead consider as a type 3 region. As such, its projection onto the -plane is
the disk shown in Figure 11.

Then the left boundary of is the paraboloid and the right boundary
is the plane , so taking and in Equation 11, we
have

Although this integral could be written as

it’s easier to convert to polar coordinates in the -plane: , .
This gives

Applications of Triple Integrals

Recall that if , then the single integral represents the area under the
curve from to , and if , then the double integral 
represents the volume under the surface and above . The corresponding
interpretation of a triple integral , where , is not very
useful because it would be the “hypervolume” of a four-dimensional object and, of
course, that is very difficult to visualize. (Remember that is just the domain of the
function ; the graph of lies in four-dimensional space.) Nonetheless, the triple inte-
gral can be interpreted in different ways in different physical situa-
tions, depending on the physical interpretations of , , and .

Let’s begin with the special case where for all points in . Then the
triple integral does represent the volume of :

For example, you can see this in the case of a type 1 region by putting 
in Formula 6:
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and from Section 12.3 we know this represents the volume that lies between the sur-
faces and .

EXAMPLE 4 Use a triple integral to find the volume of the tetrahedron bounded by
the planes , , , and .

SOLUTION The tetrahedron and its projection on the -plane are shown in 
Figures 12 and 13. The lower boundary of is the plane and the upper 
boundary is the plane , that is, . Therefore, we have

by the same calculation as in Example 4 in Section 12.3.

(Notice that it is not necessary to use triple integrals to compute volumes. They
simply give an alternative method for setting up the calculation.)

All the applications of double integrals in Section 12.5 can be immediately ex-
tended to triple integrals. For example, if the density function of a solid object that
occupies the region is , in units of mass per unit volume, at any given point

, then its mass is

and its moments about the three coordinate planes are
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The center of mass is located at the point , where

If the density is constant, the center of mass of the solid is called the centroid of .
The moments of inertia about the three coordinate axes are

As in Section 12.5, the total electric charge on a solid object occupying a region
and having charge density is

If we have three continuous random variables X, Y, and Z, their joint density func-
tion is a function of three variables such that the probability that lies in E is

In particular,

The joint density function satisfies

EXAMPLE 5 Find the center of mass of a solid of constant density that is bounded by
the parabolic cylinder and the planes , , and .

SOLUTION The solid and its projection onto the -plane are shown in Figure 14.
The lower and upper surfaces of are the planes and , so we describe 
as a type 1 region:

FIGURE 14
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Then, if the density is , the mass is

Because of the symmetry of and about the -plane, we can immediately say
that and, therefore, . The other moments are

Therefore, the center of mass is
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1
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3–6 � Evaluate the iterated integral.

3. 4.

5. 6.

� � � � � � � � � � � � �

y
1

0
 y

z

0
 y

y

0
 ze�y2

 dx dy dzy
3

0
 y

1

0
 y

s1�z 2

0
 ze y dx dz dy

y
1

0
 y

2x

x
 y

y

0
 2xyz dz dy dxy

1

0
 y

z

0
 y

x�z

0
 6xz dy dx dz

1. Evaluate the integral in Example 1, integrating first with
respect to , then , and then .

2. Evaluate the integral , where

using three different orders of integration.

E � ��x, y, z� 	 �1 � x � 1, 0 � y � 2, 0 � z � 1


xxxE �xz � y 3� dV

yxz
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21–22 � Use the Midpoint Rule for triple integrals (Exer-
cise 20) to estimate the value of the integral. Divide into 
eight sub-boxes of equal size.

21. , where

22. , where 

� � � � � � � � � � � � �

23–24 � Sketch the solid whose volume is given by the iterated
integral.

23.

24.

� � � � � � � � � � � � �

25–28 � Express the integral as an iterated
integral in six different ways, where is the solid bounded by
the given surfaces.

25. , ,

26. , , ,

27. , ,

28.
� � � � � � � � � � � � �

29. The figure shows the region of integration for the integral

Rewrite this integral as an equivalent iterated integral in the
five other orders.

0

z

1

x

1 y

z=1-y

y=œ„x

y
1

0
 y

1

sx
 y

1�y

0
 f �x, y, z� dz dy dx

9x 2 � 4y 2 � z2 � 1

x 2 � 1 � yz � yz � 0

z � y � 2xy � 2x � 0z � 0

y � 6y � 0x 2 � z2 � 4

E
xxxE f �x, y, z� dV

y
2

0
 y

2�y

0
 y

4�y 2

0
 dx dz dy

y
1

0
 y

1�x

0
 y

2�2z

0
 dy dz dx

B � ��x, y, z� 	 0 � x � 4, 0 � y � 2, 0 � z � 1

xxx

B
 sin�xy 2z 3� dV 

B � ��x, y, z� 	 0 � x � 4, 0 � y � 8, 0 � z � 4


xxxB 
1

ln�1 � x � y � z�
 dV

B
7–14 � Evaluate the triple integral.

7. , where

8. , where

9. , where lies under the plane 
and above the region in the -plane bounded by the curves

, , and 

10. , where is the solid tetrahedron with vertices
, , , and 

11. , where is bounded by the planes , ,
, , and 

12. , where is bounded by the parabolic
cylinder and the planes , , and 

13. , where is bounded by the paraboloid
and the plane 

14. , where is bounded by the cylinder 
and the planes , , and in the first octant

� � � � � � � � � � � � �

15–18 � Use a triple integral to find the volume of the given
solid.

15. The tetrahedron enclosed by the coordinate planes and the
plane 

16. The solid bounded by the elliptic cylinder and
the planes and 

17. The solid bounded by the cylinder and the planes
and 

18. The solid enclosed by the paraboloids and

� � � � � � � � � � � � �

19. (a) Express the volume of the wedge in the first octant that
is cut from the cylinder by the planes

and as a triple integral.
(b) Use either the Table of Integrals (on the back Reference

Pages) or a computer algebra system to find the exact
value of the triple integral in part (a).

20. (a) In the Midpoint Rule for triple integrals we use a
triple Riemann sum to approximate a triple integral 
over a box , where is evaluated at the center

of the box . Use the Midpoint Rule to 
estimate , where is the cube defined
by , , . Divide into
eight cubes of equal size.

(b) Use a computer algebra system to approximate the inte-
gral in part (a) correct to two decimal places. Compare
with the answer to part (a).

CAS

B0 � z � 10 � y � 10 � x � 1
BxxxB e�x 2�y 2�z2 dV

Bijk�xi, yj, zk �
f �x, y, z�B

CAS

x � 1y � x
y 2 � z2 � 1

z � 18 � x 2 � y 2
z � x 2 � y 2

x � z � 1z � 0
x � y 2

y � z � 2y � 0
4x 2 � z2 � 4

2x � y � z � 4

z � 0y � 3xx � 0
y 2 � z2 � 9ExxxE z dV

x � 4x � 4y 2 � 4z2
ExxxE x dV

z � 0x � yx � zy � x 2
ExxxE �x � 2y� dV

x � z � 1y � z � 1z � 0
y � 0x � 0ExxxE z dV

�0, 1, 1��1, 1, 0��0, 1, 0��0, 0, 0�
ExxxE xz dV

x � 1y � 0y � sx
xy

z � 1 � x � yExxxE 6xy dV

E � ��x, y, z� 	 0 � x � 1, 0 � y � x, x � z � 2x

xxxE yz cos�x5 � dV

E � {�x, y, z� 	 0 � y � 2, 0 � x � s4 � y 2, 0 � z � y}
xxxE 2x dV
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computer algebra system to find the exact values of the 
following quantities for .
(a) The mass
(b) The center of mass
(c) The moment of inertia about the -axis

40. If is the solid of Exercise 14 with density function
, find the following quantities, correct 

to three decimal places.
(a) The mass
(b) The center of mass
(c) The moment of inertia about the -axis

41. Find the moments of inertia for a cube of constant density 
and side length if one vertex is located at the origin and
three edges lie along the coordinate axes.

42. Find the moments of inertia for a rectangular brick with
dimensions , , and , mass , and constant density if the
center of the brick is situated at the origin and the edges are
parallel to the coordinate axes.

43. The joint density function for random variables , , and 
is if ,
and otherwise.
(a) Find the value of the constant .
(b) Find .
(c) Find .

44. Suppose , , and are random variables with joint density
function if , , ,
and otherwise.
(a) Find the value of the constant .
(b) Find .
(c) Find .

45–46 � The average value of a function over a solid
region is defined to be 

where is the volume of . For instance, if is a density
function, then is the average density of .

45. Find the average value of the function over
the cube with side length that lies in the first octant with
one vertex at the origin and edges parallel to the coordinate
axes.

46. Find the average value of the function
over the tetrahedron with vertices

, , , and .
� � � � � � � � � � � � �

47. Find the region for which the triple integral 

is a maximum.

yyy
E

�1 � x 2 � 2y 2 � 3z 2� dV

E

�0, 0, 1��0, 1, 0��1, 0, 0��0, 0, 0�
f �x, y, z� � x � y � z

L
f �x, y, z� � xyz

E�ave

�EV�E �

fave �
1

V�E�
 yyy

E

 f �x, y, z� dV

E
f �x, y, z�

P�X � 1, Y � 1, Z � 1�
P�X � 1, Y � 1�

C
f �x, y, z� � 0

z � 0y � 0x � 0f �x, y, z� � Ce��0.5x�0.2y�0.1z�
ZYX

P�X � Y � Z � 1�
P�X � 1, Y � 1, Z � 1�

C
f �x, y, z� � 0

0 � x � 2, 0 � y � 2, 0 � z � 2f �x, y, z� � Cxyz
ZYX

Mcba

L
k

z

� �x, y, z� � x 2 � y 2
ECAS

z

E
30. The figure shows the region of integration for the integral

Rewrite this integral as an equivalent iterated integral in the
five other orders.

31–32 � Write five other iterated integrals that are equal to the
given iterated integral.

31.

32.

� � � � � � � � � � � � �

33–36 � Find the mass and center of mass of the given solid 
with the given density function .

33. is the solid of Exercise 9;

34. is bounded by the parabolic cylinder and the
planes , , and ;

35. is the cube given by , , ;

36. is the tetrahedron bounded by the planes , ,
, ;

� � � � � � � � � � � � �

37–38 � Set up, but do not evaluate, integral expressions for 
(a) the mass, (b) the center of mass, and (c) the moment of iner-
tia about the -axis.

37. The solid of Exercise 13;

38. The hemisphere , ; 

� � � � � � � � � � � � �

39. Let be the solid in the first octant bounded by the cylinder
and the planes , , and with

the density function . Use a � �x, y, z� � 1 � x � y � z
z � 0x � 0y � zx 2 � y 2 � 1

ECAS

� �x, y, z� � sx 2 � y 2 � z 2

z � 0x 2 � y 2 � z2 � 1

� �x, y, z� � x 2 � y 2 � z2

z

� �x, y, z� � yx � y � z � 1z � 0
y � 0x � 0E

� �x, y, z� � x 2 � y 2 � z2
0 � z � a0 � y � a0 � x � aE

� �x, y, z� � 4z � 0x � 0x � z � 1
z � 1 � y 2E

� �x, y, z� � 2E

�
E

y
1

0
 y

x 2

0
 y

y

0
 f �x, y, z� dz dy dx

y
1

0
 y

1

y
 y

y

0
 f �x, y, z� dz dx dy

y1

x
1

z

1

z=1-≈

y=1-x

0

y
1

0
 y

1�x 2

0
 y

1�x

0
 f �x, y, z� dy dz dx
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Triple Integrals in Cylindrical and Spherical Coordinates � � � �

We saw in Section 12.4 that some double integrals are easier to evaluate using polar
coordinates. In this section we see that some triple integrals are easier to evaluate
using cylindrical or spherical coordinates.

Cylindrical Coordinates

Recall from Section 9.7 that the cylindrical coordinates of a point are , where
, , and are shown in Figure 1. Suppose that is a type 1 region whose projection

on the -plane is conveniently described in polar coordinates (see Figure 2). In par-
ticular, suppose that is continuous and

where is given in polar coordinates by

FIGURE 2

0

z

x

y
D

r=h¡(¨)

r=h™(¨)

z=u™(x, y)

z=u¡(x, y)

D � ��r, �� 	 � � � � , h1��� � r � h2���


D

E � ��x, y, z� 	 �x, y� � D, u1�x, y� � z � u2�x, y�


f
xyD

Ez�r
�r, �, z�P

12.8
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Volumes of Hyperspheres

In this project we find formulas for the volume enclosed by a hypersphere in -dimensional
space.

1. Use a double integral and the trigonometric substitution , together with 
Formula 64 in the Table of Integrals, to find the area of a circle with radius .

2. Use a triple integral and trigonometric substitution to find the volume of a sphere with 
radius .

3. Use a quadruple integral to find the hypervolume enclosed by the hypersphere
in . (Use only trigonometric substitution and the reduction 

formulas for or .)

4. Use an -tuple integral to find the volume enclosed by a hypersphere of radius in 
-dimensional space . [Hint: The formulas are different for even and odd.]nn�nn

rn

x cosnx dxx sinnx dx
�4x 2 � y 2 � z 2 � w 2 � r 2

r

r
y � r sin �

n

Discovery
Project

FIGURE 1

z

0

x

y

P(r, ̈ , z)

r

z
¨



We know from Equation 12.7.6 that

But we also know how to evaluate double integrals in polar coordinates. In fact, com-
bining Equation 1 with Equation 12.4.3, we obtain

Formula 2 is the formula for triple integration in cylindrical coordinates. It says
that we convert a triple integral from rectangular to cylindrical coordinates by writing

, , leaving as it is, using the appropriate limits of integration
for , , and , and replacing by . (Figure 3 shows how to remember this.)
It is worthwhile to use this formula when is a solid region easily described in cylin-
drical coordinates, and especially when the function involves the expression

.

EXAMPLE 1 A solid lies within the cylinder , below the plane ,
and above the paraboloid . (See Figure 4.) The density at any point
is proportional to its distance from the axis of the cylinder. Find the mass of .

SOLUTION In cylindrical coordinates the cylinder is and the paraboloid is
, so we can write

Since the density at is proportional to the distance from the -axis, the den-
sity function is

where is the proportionality constant. Therefore, from Formula 12.7.13, the mass
of is

EXAMPLE 2 Evaluate .

SOLUTION This iterated integral is a triple integral over the solid region 

E � {�x, y, z� 	 �2 � x � 2, �s4 � x 2 � y � s4 � x 2, sx 2 � y 2 � z � 2}

y
2

�2
 y

s4�x2

�s4�x2
 y

2

sx2�y2
 �x 2 � y 2 � dz dy dx

 � 2�Kr 3 �
r 5

5 �0

1

�
12�K

5

 � y
2�

0
 y

1

0
 Kr 2 �4 � �1 � r 2 �� dr d� � K y

2�

0
 d� y

1

0
 �3r 2 � r 4 � dr

 m � yyy
E

 Ksx 2 � y 2 dV � y
2�

0
 y

1

0
 y

4

1�r2
 �Kr� r dz dr d�

E
K

f �x, y, z� � Ksx 2 � y 2 � Kr

z�x, y, z�

E � ��r, �, z� 	 0 � � � 2�, 0 � r � 1, 1 � r 2 � z � 4


z � 1 � r 2
r � 1

E
z � 1 � x 2 � y 2

z � 4x 2 � y 2 � 1E

x 2 � y2
f �x, y, z�

E
r dz dr d�dV�rz

zy � r sin �x � r cos �

yyy
E

 f �x, y, z� dV � y


�
 y

h2���

h1���
 y

u2�r cos �, r sin ��

u1�r cos �, r sin ��
 f �r cos �, r sin �, z� r dz dr d�2

yyy
E

 f �x, y, z� dV � yy
D

 y
u2�x, y�

u1�x, y�
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z

dz

dr
r d¨
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0

(1, 0, 0)

(0, 0, 1)

(0, 0, 4)

z=4

x
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z=1-r@

FIGURE 3
Volume element in cylindrical
coordinates: dV=r dz dr d¨

FIGURE 4



and the projection of onto the -plane is the disk . The lower sur-
face of is the cone and its upper surface is the plane . (See
Figure 5.) This region has a much simpler description in cylindrical coordinates:

Therefore, we have

Spherical Coordinates

In Section 9.7 we defined the spherical coordinates of a point (see Figure 6)
and we demonstrated the following relationships between rectangular coordinates and
spherical coordinates:

In this coordinate system the counterpart of a rectangular box is a spherical wedge

where , , and . Although we defined triple integrals by
dividing solids into small boxes, it can be shown that dividing a solid into small spher-
ical wedges always gives the same result. So we divide into smaller spherical wedges

by means of equally spaced spheres , half-planes , and half-cones
. Figure 7 shows that is approximately a rectangular box with dimensions

, (arc of a circle with radius angle ), and (arc of a circle
with radius angle ). So an approximation to the volume of is given by

FIGURE 7
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FIGURE 5

z=œ„„„„„≈+¥

z

x 2 y2

z=2

2

z

0

x

y

P(∏, ̈ , ̇ )
∏

˙

¨

FIGURE 6
Spherical coordinates of P



Thus, an approximation to a typical triple Riemann sum is

But this sum is a Riemann sum for the function

Consequently, the following formula for triple integration in spherical coordinates
is plausible.

where is a spherical wedge given by

Formula 4 says that we convert a triple integral from rectangular coordinates to
spherical coordinates by writing

using the appropriate limits of integration, and replacing by .
This is illustrated in Figure 8.

This formula can be extended to include more general spherical regions such as

In this case the formula is the same as in (4) except that the limits of integration for 
are and .

Usually, spherical coordinates are used in triple integrals when surfaces such as
cones and spheres form the boundary of the region of integration.

EXAMPLE 3 Evaluate where is the unit ball:

B � ��x, y, z� 	 x 2 � y 2 � z2 � 1


BxxxB e �x2�y2�z2�3�2
 dV,
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E � ���, �, �� 	 � � � � , c � � � d, t1��, �� � � � t2��, ��


FIGURE 8
Volume element in spherical

coordinates: dV=∏@ sin ˙ d∏ d¨ d˙
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SOLUTION Since the boundary of is a sphere, we use spherical coordinates:

In addition, spherical coordinates are appropriate because

Thus, (4) gives

NOTE � It would have been extremely awkward to evaluate the integral in Example 3
without spherical coordinates. In rectangular coordinates the iterated integral would
have been

EXAMPLE 4 Use spherical coordinates to find the volume of the solid that lies above
the cone and below the sphere . (See Figure 9.)

SOLUTION Notice that the sphere passes through the origin and has center . We
write the equation of the sphere in spherical coordinates as

The equation of the cone can be written as

This gives , or . Therefore, the description of the solid in
spherical coordinates is

E � ���, �, �� 	 0 � � � 2�, 0 � � � ��4, 0 � � � cos �


E� � ��4sin � � cos �
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FIGURE 10

� Figure 10 gives another look (this 
time drawn by Maple) at the solid of
Example 4.



6.

� � � � � � � � � � � � �

7–14 � Use cylindrical coordinates.

7. Evaluate , where is the region that lies
inside the cylinder and between the planes

and .

8. Evaluate , where is the solid in the first
octant that lies beneath the paraboloid .

9. Evaluate , where is the solid that lies between 
the cylinders and , above the 

-plane, and below the plane .z � x � 2xy
x 2 � y 2 � 4x 2 � y 2 � 1

ExxxE y dV

z � 1 � x 2 � y 2
ExxxE �x 3 � xy 2 � dV

z � 4z � �5
x 2 � y 2 � 16

ExxxE sx 2 � y 2 dV

z

x y2
1

1–4 � Sketch the solid whose volume is given by the integral
and evaluate the integral.

1. 2.

3.

4.

� � � � � � � � � � � � �

5–6 � Set up the triple integral of an arbitrary continuous func-
tion in cylindrical or spherical coordinates over the
solid shown.

5. z

x
y

3

2

f �x, y, z�

y
2�

0
 y

�

��2
 y

2

1
 �2 sin � d� d� d�

y
��6

0
 y

��2

0
 y

3

0
 �2 sin � d� d� d�

y
��2

0
 y

2

0
 y

9�r 2

0
 r dz dr d�y

4

0
 y

2�

0
 y

4

r
 r dz d� dr
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Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �12.8

Figure 11 shows how E is swept out if we integrate first with respect to , then ,
and then . The volume of E is

FIGURE 11
¨ varies from 0 to 2π.∏ varies from 0 to cos ˙ while

˙ and ¨ are constant.
˙ varies from 0 to π/4 while
¨ is constant.
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0
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 � y
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 V�E� � yyy
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10. Evaluate , where is bounded by the planes
, , and the cylinder in the half-

space .

11. Evaluate , where is the solid that lies within 
the cylinder , above the plane , and below
the cone .

12. (a) Find the volume of the solid that the cylinder
cuts out of the sphere of radius centered at

the origin.

; (b) Illustrate the solid of part (a) by graphing the sphere and
the cylinder on the same screen.

13. Find the mass and center of mass of the solid bounded by
the paraboloid and the plane 
if has constant density .

14. (a) Find the volume of the region bounded by the parabo-
loids and .

(b) Find the centroid of the region in part (a).
� � � � � � � � � � � � �

15–24 � Use spherical coordinates.

15. Evaluate , where is the unit ball
.

16. Evaluate , where is the hemispherical
region that lies above the -plane and below the sphere

17. Evaluate , where lies between the spheres
and in the first octant.

18. Evaluate , where is the solid that lies
between the spheres and

in the first octant.

19. Evaluate , where is bounded below
by the cone and above by the sphere .

20. Find the volume of the solid that lies within the sphere
, above the -plane, and below the cone

.

21. (a) Find the volume of the solid that lies above the cone
and below the sphere .

(b) Find the centroid of the solid in part (a).

22. Let be a solid hemisphere of radius whose density at
any point is proportional to its distance from the center of
the base.
(a) Find the mass of .
(b) Find the center of mass of .
(c) Find the moment of inertia of about its axis.

23. (a) Find the centroid of a solid homogeneous hemisphere of
radius .

(b) Find the moment of inertia of the solid in part (a) about
a diameter of its base.

a

H
H

H

aH

� � 4 cos �� � ��3

z � sx 2 � y 2

xyx 2 � y 2 � z 2 � 4

� � 2� � ��6
ExxxE sx 2 � y 2 � z 2 dV

x 2 � y 2 � z2 � 4
x 2 � y 2 � z2 � 1

ExxxE xe �x2�y2�z2�2 dV

x 2 � y 2 � z 2 � 4x 2 � y 2 � z 2 � 1
ExxxE z dV

x 2 � y 2 � z2 � 1.
xy

HxxxH �x 2 � y 2 � dV

x 2 � y 2 � z2 � 1
BxxxB �x 2 � y 2 � z2 � dV

E
z � 36 � 3x 2 � 3y 2z � x 2 � y 2

E

KS
z � a �a 
 0�z � 4x 2 � 4y 2

S

ar � a cos �

z2 � 4x 2 � 4y 2
z � 0x 2 � y 2 � 1

Exxx
E
 x 2 dV

y � 0
x 2 � y 2 � 1z � yz � 0

Exxx
E
 xz dV 24. Find the mass and center of mass of a solid hemisphere of

radius if the density at any point is proportional to its 
distance from the base.

� � � � � � � � � � � � �

25–28 � Use cylindrical or spherical coordinates, whichever
seems more appropriate.

25. Find the volume and centroid of the solid that lies 
above the cone and below the sphere

.

26. Find the volume of the smaller wedge cut from a sphere of
radius by two planes that intersect along a diameter at an
angle of .

27. Evaluate , where lies above the paraboloid 
and below the plane . Use either the

Table of Integrals (on the back Reference Pages) or a 
computer algebra system to evaluate the integral.

28. (a) Find the volume enclosed by the torus .

; (b) Use a computer to draw the torus.
� � � � � � � � � � � � �

29. Evaluate the integral by changing to cylindrical coordinates:

30. Evaluate the integral by changing to spherical coordinates:

31. In the Laboratory Project on page 699 we investigated the 
family of surfaces that have been 
used as models for tumors. The “bumpy sphere” with

and is shown. Use a computer algebra system
to find its volume.

32. Show that

(The improper triple integral is defined as the limit of a
triple integral over a solid sphere as the radius of the sphere
increases indefinitely.)

y
�

�� y
�

�� y
�

��
 sx 2 � y 2 � z2 e��x2�y2�z2� dx dy dz � 2�

n � 5m � 6

� � 1 �
1
5 sin m� sin n�

CAS

y
3

0
 y

s9�y 2

0
 y

s18�x 2�y 2

sx 2�y 2
 �x 2 � y 2 � z2 � dz dx dy

y
1

�1
 y

s1�x 2

�s1�x 2

 y
2�x 2�y 2

x 2�y 2
 �x 2 � y 2 �3�2 dz dy dx

� � sin �

z � 2yz � x 2 � y 2

ExxxE z dVCAS

��6
a

x 2 � y 2 � z2 � 1
z � sx 2 � y 2

E

a
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much work was done in forming Mount Fuji if the 
land was initially at sea level?

P

33. When studying the formation of mountain ranges, geolo-
gists estimate the amount of work required to lift a moun-
tain from sea level. Consider a mountain that is essentially
in the shape of a right circular cone. Suppose that the
weight density of the material in the vicinity of a point 
is and the height is .
(a) Find a definite integral that represents the total work

done in forming the mountain.
(b) Assume that Mount Fuji in Japan is in the shape of 

a right circular cone with radius 62,000 ft, height
12,400 ft, and density a constant 200 lb�ft . How 3

h�P�t�P�
P

Roller Derby

Suppose that a solid ball (a marble), a hollow ball (a squash ball), a solid cylinder (a steel
bar), and a hollow cylinder (a lead pipe) roll down a slope. Which of these objects reaches
the bottom first? (Make a guess before proceeding.)

To answer this question we consider a ball or cylinder with mass , radius , and moment
of inertia (about the axis of rotation). If the vertical drop is , then the potential energy at
the top is . Suppose the object reaches the bottom with velocity and angular velocity

, so . The kinetic energy at the bottom consists of two parts: from translation
(moving down the slope) and from rotation. If we assume that energy loss from rolling
friction is negligible, then conservation of energy gives

1. Show that

2. If is the vertical distance traveled at time then the same reasoning as used in
Problem 1 shows that at any time . Use this result to show that 
satisfies the differential equation

where is the angle of inclination of the plane.

3. By solving the differential equation in Problem 2, show that the total travel time is

This shows that the object with the smallest value of wins the race.

4. Show that for a solid cylinder and for a hollow cylinder.

5. Calculate for a partly hollow ball with inner radius and outer radius . Express your
answer in terms of . What happens as and as ?

6. Show that for a solid ball and for a hollow ball. Thus, the objects finish in
the following order: solid ball, solid cylinder, hollow ball, hollow cylinder.

I* � 2
3I* � 2

5

a l ra l 0b � a�r
raI*

I* � 1I* � 1
2

I*

T � �2h�1 � I*�
t sin2�

�

dy

dt
� � 2t

1 � I*
 �sin ��sy

ytv2 � 2ty��1 � I*�
t,y�t�

where I* �
I

mr 2v2 �
2th

1 � I*

mth � 1
2 mv2 �

1
2 I�2

1
2 I�2

1
2 mv2v � �r�

vmth
hI

rm

Applied
Project

å

h



Change of Variables in Multiple Integrals � � � � � � � � �

In one-dimensional calculus we often use a change of variable (a substitution) to sim-
plify an integral. By reversing the roles of and , we can write the Substitution Rule
(5.5.5) as

where and , . Another way of writing Formula 1 is as 
follows:

y
b

a
 f �x� dx � y

d

c
 f �x�u�� 

dx

du
 du2

b � t�d �a � t�c�x � t�u�

y
b

a
 f �x� dx � y

d

c
 f �t�u��t��u� du1

ux

12.9
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The Intersection of Three Cylinders

The figure shows the solid enclosed by three circular cylinders with the same diameter that
intersect at right angles. In this project we compute its volume and determine how its shape
changes if the cylinders have different diameters.

1. Sketch carefully the solid enclosed by the three cylinders , ,
and . Indicate the positions of the coordinate axes and label the faces with
the equations of the corresponding cylinders.

2. Find the volume of the solid in Problem 1.

3. Use a computer algebra system to draw the edges of the solid.

4. What happens to the solid in Problem 1 if the radius of the first cylinder is different
from 1? Illustrate with a hand-drawn sketch or a computer graph.

5. If the first cylinder is , where , set up, but do not evaluate, a double
integral for the volume of the solid. What if ?a 
 1

a 	 1x 2 � y 2 � a 2

CAS

y 2 � z 2 � 1
x 2 � z 2 � 1x 2 � y 2 � 1

Discovery
Project



A change of variables can also be useful in double integrals. We have already seen 
one example of this: conversion to polar coordinates. The new variables and are
related to the old variables and by the equations

and the change of variables formula (12.4.2) can be written as

where is the region in the -plane that corresponds to the region in the -plane.
More generally, we consider a change of variables that is given by a transforma-

tion from the -plane to the -plane:

where and are related to and by the equations

or, as we sometimes write,

We usually assume that is a C transformation, which means that and have con-
tinuous first-order partial derivatives.

A transformation is really just a function whose domain and range are both sub-
sets of . If , then the point is called the image of the point

. If no two points have the same image, is called one-to-one. Figure 1 shows
the effect of a transformation on a region in the -plane. transforms into a
region in the -plane called the image of S, consisting of the images of all points
in .

If is a one-to-one transformation, then it has an inverse transformation
from the -plane to the -plane and it may be possible to solve Equations 3 for 
and in terms of and :

EXAMPLE 1 A transformation is defined by the equations

Find the image of the square , .0 � v � 1
S � ��u, v� 	 0 � u � 1

y � 2uvx � u 2 � v2

v � H�x, y�u � G�x, y�

yxv
uuvxy

T�1T

0

√

0

y

u x

(u¡, √¡)
(x¡, y¡)

S R
T –!

T

FIGURE 1

S
xyR

STuvST
T�u1, v1�
�x1, y1�T�u1, v1� � �x1, y1�� 2

T

ht
1T

y � y�u, v�x � x�u, v�

y � h�u, v�x � t�u, v�3

vuyx

T�u, v� � �x, y�

xyuvT

xyRr�S

yy
R

 f �x, y� dA � yy
S

 f �r cos �, r sin �� r dr d�

y � r sin �x � r cos �

yx
�r
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SOLUTION The transformation maps the boundary of into the boundary of the image.
So we begin by finding the images of the sides of . The first side, , is given by

. (See Figure 2.) From the given equations we have ,
, and so . Thus, is mapped into the line segment from to
in the -plane. The second side, is and, putting 

in the given equations, we get

Eliminating , we obtain

which is part of a parabola. Similarly, is given by , whose
image is the parabolic arc

Finally, is given by whose image is , , that is,
. (Notice that as we move around the square in the counterclockwise 

direction, we also move around the parabolic region in the counterclockwise direc-
tion.) The image of is the region (shown in Figure 2) bounded by the -axis and
the parabolas given by Equations 4 and 5.

Now let’s see how a change of variables affects a double integral. We start with a
small rectangle in the -plane whose lower left corner is the point and
whose dimensions are and . (See Figure 3.)

The image of is a region in the -plane, one of whose boundary points is
. The vector

is the position vector of the image of the point . The equation of the lower side
of is , whose image curve is given by the vector function . The tangent
vector at to this image curve is

ru � tu�u0, v0 � i � hu�u0, v0 � j �
�x

�u
 i �

�y

�u
 j

�x0, y0 �
r�u, v0�v � v0S

�u, v�

r�u, v� � t�u, v� i � h�u, v� j

�x0, y0 � � T�u0, v0 �
xyRS

FIGURE 3

T

0

y

x

R(x¸, y¸)

r (u, √ ¸)

r (u¸, √)

0

√

u

Îu

Î√

√=√¸

u=u¸

S

(u¸, √ ¸)

�v�u
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4
� 15

�0 � u � 1�v � 1S3

0 � x � 1x � 1 �
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4
4

v

y � 2vx � 1 � v2

u � 1�0 � v � 1�u � 1S2,xy�1, 0�
�0, 0�S10 � x � 1y � 0
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S1S
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Similarly, the tangent vector at to the image curve of the left side of (namely,
) is

We can approximate the image region by a parallelogram determined by the
secant vectors

shown in Figure 4. But

and so

Similarly

This means that we can approximate R by a parallelogram determined by the vec-
tors and . (See Figure 5.) Therefore, we can approximate the area of by
the area of this parallelogram, which, from Section 9.4, is

Computing the cross product, we obtain

i j k

The determinant that arises in this calculation is called the Jacobian of the transforma-
tion and is given a special notation.

Definition The Jacobian of the transformation given by and
is

With this notation we can use Equation 6 to give an approximation to the area 
of :

where the Jacobian is evaluated at .�u0, v0 �

�A � � ��x, y�
��u, v� � �u �v8

R
�A

��x, y�
��u, v�

� 	 �x

�u

�y

�u

�x

�v

�y

�v 	 �
�x

�u
 
�y

�v
�

�x

�v
 
�y

�u

y � h�u, v�
x � t�u, v�T7

	 �x

�u

�y

�u

�x

�v

�y

�v 	 k� 	 �x

�u

�x

�v

�y

�u

�y

�v 	 k �	 �x

�u

�x

�v

�y

�u

�y

�v

0

0 	ru � rv �

	 ��u ru � � ��v rv � 	 � 	 ru � rv 	 �u �v6

R�v rv�u ru

 r�u0, v0 � �v� � r�u0, v0 � � �v rv

 r�u0 � �u, v0 � � r�u0, v0 � � �u ru

ru � lim 
�u l 0

 
r�u0 � �u, v0 � � r�u0, v0 �

�u

b � r�u0, v0 � �v� � r�u0, v0 �a � r�u0 � �u, v0 � � r�u0, v0 �

R � T�S �

rv � tv�u0, v0 � i � hv�u0, v0 �j �
�x

�v
 i �

�y

�v
 j

u � u0

S�x0, y0 �
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� The Jacobian is named after the 
German mathematician Carl Gustav
Jacob Jacobi (1804–1851). Although
the French mathematician Cauchy 
first used these special determinants
involving partial derivatives, Jacobi 
developed them into a method for 
evaluating multiple integrals.

r (u¸, √ ¸) Îu ru

Î√ r√

FIGURE 4

FIGURE 5
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r (u¸+Îu, √¸)

R

a

b

r (u¸, √¸+Î√)



Next we divide a region in the -plane into rectangles and call their images
in the -plane . (See Figure 6.) Applying the approximation (8) to each we
approximate the double integral of over as follows:

where the Jacobian is evaluated at . Notice that this double sum is a Riemann
sum for the integral

The foregoing argument suggests that the following theorem is true. (A full proof
is given in books on advanced calculus.)

Change of Variables in a Double Integral Suppose that is a one-to-one 
transformation whose Jacobian is nonzero and that maps a region in the 

-plane onto a region in the -plane. Suppose that is continuous on 
and that and are type I or type II plane regions. Then

Theorem 9 says that we change from an integral in and to an integral in and
by expressing and in terms of and and writing

Notice the similarity between Theorem 9 and the one-dimensional formula in Equa-
tion 2. Instead of the derivative , we have the absolute value of the Jacobian, that
is, .

As a first illustration of Theorem 9, we show that the formula for integration in
polar coordinates is just a special case. Here the transformation from the -plane
to the -plane is given by

y � h�r, �� � r sin �x � t�r, �� � r cos �

xy
r�T

	 ��x, y����u, v� 	
dx�du

dA � � ��x, y�
��u, v� �  du dv

vuyxv
uyx

yy
R

 f �x, y� dA � yy
S

 f �x�u, v�, y�u, v�� � ��x, y�
��u, v� �  du dv

SR
RfxyRuv

S
C1T9

FIGURE 6
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and the geometry of the transformation is shown in Figure 7. maps an ordinary rect-
angle in the -plane to a polar rectangle in the -plane. The Jacobian of is

Thus, Theorem 9 gives

which is the same as Formula 12.4.2.

EXAMPLE 2 Use the change of variables , to evaluate the inte-
gral , where is the region bounded by the -axis and the parabolas

and .

SOLUTION The region is pictured in Figure 2. In Example 1 we discovered that
, where is the square . Indeed, the reason for making the

change of variables to evaluate the integral is that is a much simpler region than .
First we need to compute the Jacobian:

Therefore, by Theorem 9,

NOTE � Example 2 was not a very difficult problem to solve because we were given
a suitable change of variables. If we are not supplied with a transformation, then the
first step is to think of an appropriate change of variables. If is difficult to inte-
grate, then the form of may suggest a transformation. If the region of integra-
tion is awkward, then the transformation should be chosen so that the corresponding
region in the -plane has a convenient description.

EXAMPLE 3 Evaluate the integral , where is the trapezoidal region
with vertices , , , and .�0, �1��0, �2��2, 0��1, 0�

RxxR e �x�y���x�y� dA

uvS
R

f �x, y�
f �x, y�

 � y
1

0
 �2v � 4v3 � dv � [v2 � v4 ]0

1
� 2

 � 8 y
1

0
y

1

0
 �u3v � uv3 � du dv � 8 y

1

0
 [ 1

4u4v �
1
2 u2v3]u�1

u�0
     dv

 yy
R

 y dA � yy
S

 2uv � ��x, y�
��u, v� �  dA � y

1

0
y

1

0
 �2uv�4�u2 � v 2 � du dv

��x, y�
��u, v�

� 	 �x

�u

�y

�u

�x

�v

�y

�v 	 � � 2u

2v

�2v

2u � � 4u 2 � 4v 2 
 0

RS
�0, 1� � �0, 1�ST�S � � R

R

y 2 � 4 � 4xy 2 � 4 � 4x
xRxx

R
 y dA

y � 2uvx � u 2 � v2

 � y


�
 y

b

a
 f �r cos �, r sin �� r dr d�

 yy
R

 f �x, y� dx dy � yy
S

 f �r cos �, r sin �� � ��x, y�
��r, �� �  dr d�

��x, y�
��r, ��

� 	�x
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FIGURE 7
The polar coordinate transformation
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SOLUTION Since it isn’t easy to integrate , we make a change of variables
suggested by the form of this function:

These equations define a transformation from the -plane to the -plane. 
Theorem 9 talks about a transformation from the -plane to the -plane. It is
obtained by solving Equations 10 for and :

The Jacobian of is

To find the region in the -plane corresponding to , we note that the sides of 
lie on the lines

and, from either Equations 10 or Equations 11, the image lines in the -plane are

Thus, the region is the trapezoidal region with vertices , , , and
shown in Figure 8. Since

Theorem 9 gives

Triple Integrals

There is a similar change of variables formula for triple integrals. Let be a transfor-
mation that maps a region in -space onto a region in -space by means of
the equations

z � k�u, v, w�y � h�u, v, w�x � t�u, v, w�

xyzRuvwS
T

 � 1
2 y

2

1
 �e � e�1 �v dv � 3

4 �e � e�1 �

 � y
2

1
 y

v

�v
 eu�v( 1

2 ) du dv � 1
2 y

2

1
 [veu�v ]u��v

u�v
  dv

 yy
R

 e �x�y���x�y� dA � yy
S

 eu�v � ��x, y�
��u, v� �  du dv

S � ��u, v� 	 1 � v � 2, �v � u � v


��1, 1�
��2, 2��2, 2��1, 1�S

v � 1u � �vv � 2u � v

uv

x � y � 1x � 0x � y � 2y � 0

RRuvS

��x, y�
��u, v�

� 	 �x

�u

�y

�u

�x

�v

�y

�v 	 � � 1
2
1
2

�
1
2

�
1
2

� � �
1
2

T

y � 1
2 �u � v�x � 1

2 �u � v�11

yx
xyuvT

uvxyT�1

v � x � yu � x � y10

e �x�y���x�y�
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The Jacobian of is the following determinant:

Under hypotheses similar to those in Theorem 9, we have the following formula for
triple integrals:

EXAMPLE 4 Use Formula 13 to derive the formula for triple integration in spherical
coordinates.

SOLUTION Here the change of variables is given by

We compute the Jacobian as follows:

Since , we have . Therefore

and Formula 13 gives

which is equivalent to Formula 12.8.4.

yyy
R

 f �x, y, z� dV � yyy
S

 f �� sin � cos �, � sin � sin �, � cos �� �2 sin � d� d� d�

� ��x, y, z�
���, �, �� � � 	 ��2 sin � 	 � �2 sin �

sin � � 00 � � � �

 � ��2 sin � cos2� � �2 sin � sin2� � ��2 sin �

� � sin � �� sin2� cos2� � � sin2� sin2��

 � cos � ���2 sin � cos � sin2� � �2 sin � cos � cos2��

 � cos � � �� sin � sin �

� � sin � cos �

� cos � cos �

� cos � sin � � � � sin � � sin � cos �

sin � sin �

�� sin � sin ��

� sin � cos  � �
 
��x, y, z�
���, �, ��

� 	 sin � cos �

sin � sin �

cos �

�� sin � sin �

�� sin � cos �

0

� cos � cos �

� cos � sin �

�� sin � 	
z � � cos �y � � sin � sin �x � � sin � cos �

� yyy
S

 f �x�u, v, w�, y�u, v, w�, z�u, v, w�� � ��x, y, z�
��u, v, w�

 �  du dv dw

yyy
R

 f �x, y, z� dV13

��x, y, z�
��u, v, w�

� 	 �x

�u

�y

�u

�z

�u

�x

�v

�y

�v

�z

�v

�x

�w

�y

�w

�z

�w

	12

3 � 3T

908 � CHAPTER 12 MULTIPLE INTEGRALS



SECTION 12.9 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS � 909

; 16. , where is the region bounded by the curves
, , , ; , .

Illustrate by using a graphing calculator or computer to
draw .

� � � � � � � � � � � � �

17. (a) Evaluate , where is the solid enclosed by the 
ellipsoid . Use the transfor-
mation , , .

(b) Earth is not a perfect sphere; rotation has resulted in
flattening at the poles. So the shape can be approxi-
mated by an ellipsoid with km and

km. Use part (a) to estimate the volume of
Earth.

18. Evaluate , where is the solid of Exercise 17(a).

19–23 � Evaluate the integral by making an appropriate change
of variables.

19. , where is the region bounded by the lines
, , , and 

20. , where is the parallelogram bounded 

by the lines , , , and

21. , where is the trapezoidal region 

with vertices , , , and 

22. , where is the region in the first
quadrant bounded by the ellipse 

23. , where is given by the inequality

� � � � � � � � � � � � �

24. Let be continuous on and let be the triangular
region with vertices , , and . Show that

yy
R

 f �x � y� dA � y
1

0
 uf �u� du

�0, 1��1, 0��0, 0�
R�0, 1�f

	 x 	 � 	 y 	 � 1
RxxR e x�y dA

9x 2 � 4y 2 � 1
RxxR sin�9x 2 � 4y 2 � dA

�0, 1��0, 2��2, 0��1, 0�

Ryy
R

 cos� y � x

y � x� dA

x � 2y � 2
x � 2y � 0y � x � 1y � x

Ryy
R

 
x � 2y

cos�x � y�
 dA

3x � y � �23x � y � 12x � y � �32x � y � 1
RxxR xy dA

ExxxE x 2 y dV

c � 6356
a � b � 6378

z � cwy � bvx � au
x 2�a 2 � y 2�b 2 � z2�c 2 � 1

ExxxE dV

R

v � xy 2u � xyxy 2 � 2xy 2 � 1xy � 2xy � 1
RxxR y 2 dA1–6 � Find the Jacobian of the transformation.

1. ,

2. ,

3. ,

4. ,

5. , ,

6. , ,

� � � � � � � � � � � � �

7–10 � Find the image of the set under the given 
transformation.

7. ;

8. is the square bounded by the lines , , ,
; ,

9. is the triangular region with vertices , , ;
,

10. is the disk given by ; ,
� � � � � � � � � � � � �

11–16 � Use the given transformation to evaluate the integral.

11. , where is the region bounded by the 
lines , , , and ;

,

12. , where is the square with vertices ,
, , and ; ,

13. , where is the region bounded by the ellipse 
; ,

14. , where is the region bounded 
by the ellipse ;

,

15. , where is the region in the first quadrant
bounded by the lines and and the hyperbolas

, ; , y � vx � u�vxy � 3xy � 1
y � 3xy � x

RxxR  xy dA

y � s2u � s2�3vx � s2u � s2�3v
x 2 � xy � y 2 � 2

RxxR �x 2 � xy � y 2 � dA

y � 3vx � 2u9x 2 � 4y 2 � 36
RxxR x 2 dA

y � 3u � 2vx � 2u � 3v�3, �2��5, 1��2, 3�
�0, 0�RxxR �x � y� dA

y � 1
3 �v � 2u�x � 1

3 �u � v�
y � 3 � 2xy � �2xy � x � 2y � x

RxxR �3x � 4y� dA

y � bvx � auu 2 � v2 � 1S

y � vx � u2
�0, 1��1, 1��0, 0�S

y � u�1 � v 2 �x � vv � 1
v � 0u � 1u � 0S

x � 2u � 3v, y � u � v
S � ��u, v� 	 0 � u � 3, 0 � v � 2


S

z � e u�v�wy � e u�vx � e u�v

z � uwy � vwx � uv

y � � cos x � � sin 

y �
v

u � v
x �

u

u � v

y � u 2 � v2x � u 2 � v2

y � 3u � 2vx � u � 4v

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �12.9



6. Write an expression for the area of a surface for each of
the following cases.
(a) is a parametric surface given by a vector function

, .
(b) has the equation .
(c) is the surface of revolution obtained by rotating the

curve , , about the -axis.

7. (a) Write the definition of the triple integral of over a 
rectangular box .

(b) How do you evaluate ?

(c) How do you define if is a bounded
solid region that is not a box?

(d) What is a type 1 solid region? How do you evaluate
if is such a region?

(e) What is a type 2 solid region? How do you evaluate
if is such a region?

(f) What is a type 3 solid region? How do you evaluate
if is such a region?

8. Suppose a solid object occupies the region and has den-
sity function . Write expressions for each of the
following.
(a) The mass
(b) The moments about the coordinate planes
(c) The coordinates of the center of mass
(d) The moments of inertia about the axes

9. (a) How do you change from rectangular coordinates to
cylindrical coordinates in a triple integral?

(b) How do you change from rectangular coordinates to 
spherical coordinates in a triple integral?

(c) In what situations would you change to cylindrical or
spherical coordinates?

10. (a) If a transformation is given by 
, what is the Jacobian of ?

(b) How do you change variables in a double integral?
(c) How do you change variables in a triple integral?

Ty � h�u, v�
x � t�u, v�,T

��x, y, z�
E

ExxxE  f �x, y, z� dV

ExxxE  f �x, y, z� dV

ExxxE  f �x, y, z� dV

Exxx
E
  f �x, y, z� dV

xxxB  f �x, y, z� dV
B

f

xa � x � by � f �x�
S

z � f �x, y�, �x, y� � DS
�u, v� � Dr�u, v�

S

S1. Suppose is a continuous function defined on a rectangle
.

(a) Write an expression for a double Riemann sum of . 
If , what does the sum represent?

(b) Write the definition of as a limit.
(c) What is the geometric interpretation of if

? What if takes on both positive and nega-
tive values?

(d) How do you evaluate ?
(e) What does the Midpoint Rule for double integrals say?
(f) Write an expression for the average value of .

2. (a) How do you define if is a bounded
region that is not a rectangle?

(b) What is a type I region? How do you evaluate
if is a type I region?

(c) What is a type II region? How do you evaluate
if is a type II region?

(d) What properties do double integrals have?

3. How do you change from rectangular coordinates to polar
coordinates in a double integral? Why would you want to 
do it?

4. If a lamina occupies a plane region and has density func-
tion , write expressions for each of the following in
terms of double integrals.
(a) The mass
(b) The moments about the axes
(c) The center of mass
(d) The moments of inertia about the axes and the origin

5. Let be a joint density function of a pair of continuous ran-
dom variables and .
(a) Write a double integral for the probability that lies

between and and lies between and .
(b) What properties does possess?
(c) What are the expected values of and ?YX

f
dcYba

X
YX

f

��x, y�
D

DxxD f �x, y� dA

DxxD f �x, y� dA

Dxx
D
 f �x, y� dA

f

xx
R
 f �x, y� dA

ff �x, y� � 0
xx

R
 f �x, y� dA

xx
R
 f �x, y� dA

f �x, y� � 0
f

R � �a, b� � �c, d �
f

12 Review
C O N C E P T  C H E C K
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4.

5. The integral

represents the volume enclosed by the cone 
and the plane .

6. The integral represents the moment of 
inertia about the -axis of a solid with constant density .kEz

xxxE kr 3 dz dr d�

z � 2
z � sx 2 � y 2

y
2�

0
 y

2

0
 y

2

r
 dz dr d�

y
4

1
 y

1

0
 (x 2 � sy ) sin�x 2 y 2 � dx dy � 9Determine whether the statement is true or false. If it is true, explain why.

If it is false, explain why or give an example that disproves the statement.

1.

2.

3. If is the disk given by , then

yy
D

 s4 � x 2 � y 2 dA �
16�

3

x 2 � y 2 � 4D

y
1

�1
 y

1

0
 e x2�y2

sin y dx dy � 0

y
2

�1
 y

6

0
 x 2 sin�x � y� dx dy � y

6

0
 y

2

�1
 x 2 sin�x � y� dy dx

T R U E – FA L S E  Q U I Z

9–10 � Write as an iterated integral, where is
the region shown and f is an arbitrary continuous function on .

9. 10.

� � � � � � � � � � � � �

11. Describe the region whose area is given by the integral 

12. Describe the solid whose volume is given by the integral 

and evaluate the integral.

13–14 � Calculate the iterated integral by first reversing the
order of integration.

13. 14.

� � � � � � � � � � � � �

15–28 � Calculate the value of the multiple integral.

15. , where 

,

16. , where
, x 2 � 1 � y � x � 1
D � ��x, y� 	 �1 � x � 1

xxD x 3 dA

2 � y � 4
R � ��x, y� 	 0 � x � 1

yy
R

 
1

�x � y�2  dA

y
1

0
 y

1

y 2
 y sin�x 2 � dx dyy

1

0
 y

1

x
 e x�y dy dx

y
2�

0
 y

��6

0
 y

3

1
 �2 sin � d� d� d�

y
�

0
 y

1�sin
 
�

1
 r dr d�

0

4

y

x

R

4_40 42_2_4

y

x

R

2

4

R
RxxR f �x, y� dA1. A contour map is shown for a function on the square

. Use a Riemann sum with nine terms to
estimate the value of . Take the sample points
to be the upper right corners of the squares.

2. Use the Midpoint Rule to estimate the integral in 
Exercise 1.

3–8 � Calculate the iterated integral.

3. 4.

5. 6.

7. 8.

� � � � � � � � � � � � �

y
1

0
 y

1

sy
 y

y

0
 xy dz dx dyy

�

0
 y

1

0
 y

s1�y 2

0
 y sin x dz dy dx

y
1

0
y

ex

x
 3xy 2 dy dxy

1

0
 y

x

0
 cos�x 2 � dy dx

y
1

0
 y

1

0
 ye xy dx dyy

2

1
 y

2

0
 �y � 2xe y � dx dy

y

0 x

1

1

1 2 3

2

3

2

3

4
5

8
9

10

6
7

xxR f �x, y� dA
R � �0, 3� � �0, 3�

f

E X E R C I S E S



36. A lamina occupies the part of the disk that
lies in the first quadrant.
(a) Find the centroid of the lamina.
(b) Find the center of mass of the lamina if the density

function is .

37. (a) Find the centroid of a right circular cone with height 
and base radius . (Place the cone so that its base is in
the -plane with center the origin and its axis along the
positive -axis.)

(b) Find the moment of inertia of the cone about its axis
(the -axis).

38. (a) Set up, but don’t evaluate, an integral for the surface
area of the parametric surface given by the vector 
function , ,

.
(b) Use a computer algebra system to approximate the sur-

face area correct to four significant digits.

39. Find the area of the part of the surface that lies
above the triangle with vertices (0, 0), (1, 0), and (0, 2).

40. Graph the surface , , ,
and find its surface area correct to four decimal places.

41. Use polar coordinates to evaluate

42. Use spherical coordinates to evaluate

; 43. If is the region bounded by the curves and
, find the approximate value of the integral .

(Use a graphing device to estimate the points of intersection 
of the curves.)

44. Find the center of mass of the solid tetrahedron with
vertices , , , and density
function .

45. The joint density function for random variables and is

(a) Find the value of the constant .
(b) Find .
(c) Find .

46. A lamp has three bulbs, each of a type with average lifetime
800 hours. If we model the probability of failure of the
bulbs by an exponential density function with mean 800,
find the probability that all three bulbs fail within a total of
1000 hours.

P�X � Y � 1�
P�X � 2, Y � 1�

C

f �x, y� � �C�x � y�
0

if 0 � x � 3, 0 � y � 2

otherwise

YX

��x, y, z� � x 2 � y 2 � z2
�0, 0, 3��0, 2, 0��1, 0, 0��0, 0, 0�

CAS

xxD y 2 dAy � e x
y � 1 � x 2D

y
1

0
 y

s1�x 2

0
 y

s1�x 2�y 2

0
 �x 2 � y 2 � z2 �2 dz dy dx

y
s2

0
 y

s4�y 2

y
 

1

1 � x 2 � y 2  dx dy

�� � y � ��3 � x � 3z � x sin yCAS

z � x 2 � y

CAS

�3 � v � 3
0 � u � 3r�u, v� � v2 i � uv j � u2 k

z

z
xy

a
h

��x, y� � xy 2

x 2 � y 2 � a 217. , where is bounded by and 

18. , where is bounded by , ,

19. , where is the region in the first
quadrant bounded by , ,

20. , where is the region in the first quadrant that lies
above the hyperbola and the line and below
the line 

21. , where is the region in the first quad-
rant bounded by the lines and and the circle

22. , where is the closed disk with radius 1
and center 

23. , where
, ,

24. , where is the tetrahedron bounded by the planes
, , , and 

25. , where is bounded by the paraboloid
and the plane 

26. , where is bounded by the planes , ,
and the cylinder in the first octant

27. , where lies above the plane , below the
plane , and inside the cylinder 

28. , where is the solid hemisphere
with center the origin, radius 1, that lies above the -plane

� � � � � � � � � � � � �

29–34 � Find the volume of the given solid.

29. Under the paraboloid and above the rectangle

30. Under the surface and above the triangle in the 
-plane with vertices , , and 

31. The solid tetrahedron with vertices , ,
, and 

32. Bounded by the cylinder and the planes 
and 

33. One of the wedges cut from the cylinder by
the planes and 

34. Above the paraboloid and below the half-cone

� � � � � � � � � � � � �

35. Consider a lamina that occupies the region bounded by
the parabola and the coordinate axes in the first
quadrant with density function .
(a) Find the mass of the lamina.
(b) Find the center of mass.
(c) Find the moments of inertia about the - and -axes.yx

��x, y� � y
x � 1 � y 2

D

z � sx 2 � y 2

z � x 2 � y 2

z � mxz � 0
x 2 � 9y 2 � a 2

y � z � 3
z � 0x 2 � y 2 � 4

�2, 2, 0��0, 2, 0�
�0, 0, 1��0, 0, 0�

�4, 0��2, 1��1, 0�xy
z � x 2 y

R � �0, 2� � �1, 4�
z � x 2 � 4y 2

xy
HxxxH z3

sx 2 � y 2 � z 2 dV

x 2 � y 2 � 4z � y
z � 0ExxxE yz dV

y 2 � z2 � 1x � y � 2
z � 0y � 0ExxxE z dV

x � 0x � 1 � y 2 � z2
ExxxE y 2z2 dV

2x � y � z � 2z � 0y � 0x � 0
TxxxT y dV

0 � z � x
0 � y � 2xE � ��x, y, z� 	 0 � x � 2
xxx

E
 x 2z dV

�0, 1�
Dxx

D
 sx 2 � y 2 dA

x 2 � y 2 � 9
y � s3xy � 0

Dxx
D
 �x 2 � y 2 �3�2 dA

y � 2
y � xxy � 1

Dxx
D
 y dA

x � 0y � 0x � 1 � y 2
Dxx

D
 �xy � 2x � 3y� dA

x � 1y � x 2y � 0Dxx
D
 xe y dA

y � xy 2 � x 3Dxx
D
 xy dA
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51. Use the change of variables formula and an appropriate
transformation to evaluate , where is the square
with vertices , , , and .

52. (a) Evaluate , where is an integer and 

is the region bounded by the circles with center the ori-
gin and radii and , .

(b) For what values of does the integral in part (a) have a
limit as ?

(c) Find , where is the region 

bounded by the spheres with center the origin and radii
and , .

(d) For what values of does the integral in part (c) have a
limit as ?r l 0�

n
0 	 r 	 RRr

Eyyy
E

 
1

�x 2 � y 2 � z2 �n�2  dV

r l 0�

n
0 	 r 	 RRr

Dnyy
D

 
1

�x 2 � y 2 �n�2  dA

�1, �1��2, 0��1, 1��0, 0�
RxxR xy dA

47. Rewrite the integral

as an iterated integral in the order .

48. Give five other iterated integrals that are equal to

49. Use the transformation , to evaluate
, where is the square with vertices

, , , and .

50. Use the transformation , , to 
find the volume of the region bounded by the surface

and the coordinate planes.sx � sy � sz � 1

z � w2y � v2x � u 2

�1, 3��2, 2��1, 1��0, 2�
RxxR �x � y���x � y� dA

v � x � yu � x � y

y
2

0
 y

y 3

0
 y

y 2

0
 f �x, y, z� dz dx dy

dx dy dz

y
1

�1
 y

1

x 2
 y

1�y

0
 f �x, y, z� dz dy dx



1. If denotes the greatest integer in , evaluate the integral

where .

2. Evaluate the integral

where max means the larger of the numbers and .

3. Find the average value of the function on the interval .

4. If , , and are constant vectors, is the position vector , and is given
by the inequalities , , , show that

5. The double integral is an improper integral and could be defined

as the limit of double integrals over the rectangle as . But if we
expand the integrand as a geometric series, we can express the integral as the sum of an
infinite series. Show that

6. Leonhard Euler was able to find the exact sum of the series in Problem 5. In 1736 he
proved that

In this problem we ask you to prove this fact by evaluating the double integral in Prob-
lem 5. Start by making the change of variables

This gives a rotation about the origin through the angle . You will need to sketch the
corresponding region in the -plane.

[Hint: If, in evaluating the integral, you encounter either of the expressions
or , you might like to use the identity

and the corresponding identity for .]

7. (a) Show that

(Nobody has ever been able to find the exact value of the sum of this series.)

y
1

0
 y

1

0
 y

1

0
 

1

1 � xyz
 dx dy dz � �

�

n�1
 

1

n 3

sin �cos � � sin����2� � ��
�cos ����1 � sin ���1 � sin ���cos �

uv
��4

y �
u � v

s2
x �

u � v

s2

�
�

n�1
 

1

n 2 �
� 2

6

y
1

0
 y

1

0
 

1

1 � xy
 dx dy � �

�

n�1
 

1

n 2

t l 1��0, t� � �0, t�

y
1

0
 y

1

0
 

1

1 � xy
 dx dy

yyy
E

 �a � r��b � r��c � r� dV �
����2

8	 a � �b � c� 	
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(b) Show that

Use this equation to evaluate the triple integral correct to two decimal places.

8. Show that

by first expressing the integral as an iterated integral.

9. If is continuous, show that

10. (a) A lamina has constant density and takes the shape of a disk with center the origin
and radius . Use Newton’s Law of Gravitation (see page 728) to show that the
magnitude of the force of attraction that the lamina exerts on a body with mass 
located at the point on the positive -axis is

[Hint: Divide the disk as in Figure 4 in Section 12.4 and first compute the vertical
component of the force exerted by the polar subrectangle .]

(b) Show that the magnitude of the force of attraction of a lamina with density that
occupies an entire plane on an object with mass located at a distance from the
plane is

Notice that this expression does not depend on .d

F � 2�Gm�

dm
�

Rij

F � 2�Gm�d�1

d
�

1

sR 2 � d 2�
z�0, 0, d �

m
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 y

y

0
 y

z

0
 f �t� dt dz dy � 1

2 y
x
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 �x � t�2 f �t� dt
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y
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arctan �x � arctan x

x
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2
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y
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0
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1

0
 y

1

0
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1 � xyz
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�
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��1�n�1
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Vector Fields � � � � � � � � � � � � � � � � � �

The vectors in Figure 1 are air velocity vectors that indicate the wind speed and direc-
tion at points 10 m above the surface elevation in the San Francisco Bay area. We see
at a glance from the largest arrows in part (a) that the greatest wind speeds at that time
occurred as the winds entered the bay across the Golden Gate Bridge. Part (b) shows
the very different wind pattern at a later date. Associated with every point in the air
we can imagine a wind velocity vector. This is an example of a velocity vector field.

(a) 5:00 P.M., August 6, 1997

FIGURE 1   Velocity vector fields showing San Francisco Bay wind patterns

(b) 2:00 P.M., March 7, 2000

13.1

917

In this chapter we study the calculus of vector fields.
(These are functions that assign vectors to points in
space.) In particular we define line integrals (which
can be used to find the work done by a force field in
moving an object along a curve). Then we define sur-
face integrals (which can be used to find the rate of

fluid flow across a surface). The connections between
these new types of integrals and the single, double,
and triple integrals that we have already met are 
given by the higher-dimensional versions of the 
Fundamental Theorem of Calculus: Green’s Theorem, 
Stokes’ Theorem, and the Divergence Theorem.



Other examples of velocity vector fields are illustrated in Figure 2: ocean currents
and flow past an airfoil.

Another type of vector field, called a force field, associates a force vector with each
point in a region. An example is the gravitational force field that we will look at in
Example 4.

In general, a vector field is a function whose domain is a set of points in (or )
and whose range is a set of vectors in (or ).

Definition Let be a set in (a plane region). A vector field on is a
function that assigns to each point in a two-dimensional vector

.

The best way to picture a vector field is to draw the arrow representing the vector
starting at the point . Of course, it’s impossible to do this for all points

, but we can gain a reasonable impression of by doing it for a few representa-
tive points in as in Figure 3. Since is a two-dimensional vector, we can write
it in terms of its component functions and as follows:

or, for short,

Notice that and are scalar functions of two variables and are sometimes called
scalar fields to distinguish them from vector fields.

Definition Let be a subset of . A vector field on is a function 
that assigns to each point in a three-dimensional vector .

A vector field on is pictured in Figure 4. We can express it in terms of its com-
ponent functions , , and as

F�x, y, z� � P�x, y, z� i � Q�x, y, z� j � R�x, y, z� k

RQP
� 3F

F�x, y, z�E�x, y, z�
F� 3� 3E2

QP

F � P i � Q j

F�x, y� � P�x, y� i � Q�x, y� j � �P�x, y�, Q�x, y��

QP
F�x, y�D

F�x, y�
�x, y�F�x, y�

F�x, y�
D�x, y�F

� 2� 2D1

V3V2

� 3� 2
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FIGURE 3
Vector field on R@

x0

y

(x, y)

F(x, y)

FIGURE 4
Vector field on R#

y

0

z

x

(x, y, z)

F (x, y, z)

Nova Scotia

(a) Ocean currents off the coast of Nova Scotia (b) Airflow past an inclined airfoil

FIGURE 2 Velocity vector fields



As with the vector functions in Section 10.1, we can define continuity of vector fields 
and show that is continuous if and only if its component functions , , and are 
continuous.

We sometimes identify a point with its position vector and
write instead of . Then becomes a function that assigns a vector 
to a vector .

EXAMPLE 1 A vector field on is defined by

Describe by sketching some of the vectors as in Figure 3.

SOLUTION Since , we draw the vector starting at the point 
in Figure 5. Since , we draw the vector with starting point

. Continuing in this way, we draw a number of representative vectors to repre-
sent the vector field in Figure 5.

It appears that each arrow is tangent to a circle with center the origin. To confirm 
this, we take the dot product of the position vector with the vector

:

This shows that is perpendicular to the position vector and is therefore
tangent to a circle with center the origin and radius . Notice also
that

so the magnitude of the vector is equal to the radius of the circle.

Some computer algebra systems are capable of plotting vector fields in two or three
dimensions. They give a better impression of the vector field than is possible by hand
because the computer can plot a large number of representative vectors. Figure 6
shows a computer plot of the vector field in Example 1; Figures 7 and 8 show two
other vector fields. Notice that the computer scales the lengths of the vectors so they
are not too long and yet are proportional to their true lengths.

5

_5

_5 5

6

_6

_6 6

5

_5

_5 5

FIGURE 6
F(x, y)=k_y, xl

FIGURE 7
F(x, y)=ky, sin xl

FIGURE 8
F(x, y)=k ln(1+¥), ln(1+≈)l

F�x, y�

� F�x, y� � � s��y�2 � x 2 � sx 2 � y 2 � � x �

� x � � sx 2 � y 2

�x, y�F�x, y�

 � �xy � yx � 0

 x � F�x� � �x i � y j� � ��y i � x j�

F�x� � F�x, y�
x � x i � y j

�0, 1�
��1, 0 �F�0, 1� � �i

�1, 0�j � �0, 1 �F�1, 0� � j

F�x, y�F

F�x, y� � �y i � x j

� 2

x
F�x�FF�x, y, z�F�x�

x � �x, y, z��x, y, z�

RQPF

SECTION 13.1 VECTOR FIELDS � 919

FIGURE 5
F(x, y)=_y i+x j

x0

y

F (1, 0)

F(0, 3)
(0, 3)



EXAMPLE 2 Sketch the vector field on given by .

SOLUTION The sketch is shown in Figure 9. Notice that all vectors are vertical and
point upward above the -plane or downward below it. The magnitude increases
with the distance from the -plane.

We were able to draw the vector field in Example 2 by hand because of its partic-
ularly simple formula. Most three-dimensional vector fields, however, are virtually
impossible to sketch by hand and so we need to resort to a computer algebra system.
Examples are shown in Figures 10, 11, and 12. Notice that the vector fields in Figures
10 and 11 have similar formulas, but all the vectors in Figure 11 point in the general
direction of the negative y-axis because their y-components are all �2. If the vector
field in Figure 12 represents a velocity field, then a particle would be swept upward
and would spiral around the -axis in the clockwise direction as viewed from above.

EXAMPLE 3 Imagine a fluid flowing steadily along a pipe and let be the
velocity vector at a point . Then assigns a vector to each point in a
certain domain (the interior of the pipe) and so is a vector field on called a
velocity field. A possible velocity field is illustrated in Figure 13. The speed at any
given point is indicated by the length of the arrow.

Velocity fields also occur in other areas of physics. For instance, the vector field in
Example 1 could be used as the velocity field describing the counterclockwise rota-
tion of a wheel. We have seen other examples of velocity fields in Figures 1 and 2.

EXAMPLE 4 Newton’s Law of Gravitation states that the magnitude of the gravita-
tional force between two objects with masses and is

where is the distance between the objects and is the gravitational constant. (This 
is an example of an inverse square law.) Let’s assume that the object with mass 
is located at the origin in . (For instance, could be the mass of Earth and the
origin would be at its center.) Let the position vector of the object with mass be

. Then , so . The gravitational force exerted on this r 2 � � x �2r � � x �x � �x, y, z�
m

M� 3
M

Gr

� F � �
mMG

r 2

Mm

� 3VE
�x, y, z�V�x, y, z�

V�x, y, z�

z

1

0

_1

y 10_1
x1

0
_1

FIGURE 10
F(x, y, z)=y i+z j+x k

z
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0

-1

y 10-1
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0
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FIGURE 11
F(x, y, z)=y i-2 j+x k

z
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y 1
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FIGURE 12
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FIGURE 9
F(x, y, z)=zk
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FIGURE 13
Velocity field in fluid flow
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second object acts toward the origin, and the unit vector in this direction is

Therefore, the gravitational force acting on the object at is

[Physicists often use the notation instead of for the position vector, so you may
see Formula 3 written in the form .] The function given by Equa-
tion 3 is an example of a vector field, called the gravitational field, because it asso-
ciates a vector [the force ] with every point in space.

Formula 3 is a compact way of writing the gravitational field, but we can also
write it in terms of its component functions by using the facts that

and :

The gravitational field is pictured in Figure 14.

EXAMPLE 5 Suppose an electric charge is located at the origin. According to
Coulomb’s Law, the electric force exerted by this charge on a charge located 
at a point with position vector is

where is a constant (that depends on the units used). For like charges, we have
and the force is repulsive; for unlike charges, we have and the force

is attractive. Notice the similarity between Formulas 3 and 4. Both vector fields are
examples of force fields.

Instead of considering the electric force , physicists often consider the force per
unit charge:

Then is a vector field on called the electric field of .

Gradient Fields

If is a scalar function of two variables, recall from Section 11.6 that its gradient 
(or grad ) is defined by

Therefore, is really a vector field on and is called a gradient vector field.
Likewise, if is a scalar function of three variables, its gradient is a vector field on 
given by

∇ f �x, y, z� � fx�x, y, z� i � fy�x, y, z� j � fz�x, y, z� k

� 3f
� 2∇ f

∇ f �x, y� � fx�x, y� i � fy�x, y� j

f
∇ ff

Q� 3E

E�x� �
1

q
 F�x� �

�Q

� x �3  x

F

qQ � 0qQ � 0
�

F�x� �
�qQ

� x �3  x4

x � �x, y, z ��x, y, z�
qF�x�

Q

F

F�x, y, z� �
�mMGx

�x 2 � y 2 � z2 �3�2  i �
�mMGy

�x 2 � y 2 � z2 �3�2  j �
�mMGz

�x 2 � y 2 � z2 �3�2  k

� x � � sx 2 � y 2 � z 2x � x i � y j � z k

xF�x�

F � ��mMG�r 3 �r
xr

F�x� � �
mMG

� x �3  x3

x � �x, y, z�

�
x

� x �
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FIGURE 14
Gravitational force field
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EXAMPLE 6 Find the gradient vector field of . Plot the gradient
vector field together with a contour map of f. How are they related?

SOLUTION The gradient vector field is given by

Figure 15 shows a contour map of with the gradient vector field. Notice that the
gradient vectors are perpendicular to the level curves, as we would expect from
Section 11.6. Notice also that the gradient vectors are long where the level curves
are close to each other and short where they are farther apart. That’s because the
length of the gradient vector is the value of the directional derivative of and close
level curves indicate a steep graph.

A vector field is called a conservative vector field if it is the gradient of some
scalar function, that is, if there exists a function such that . In this situation

is called a potential function for .
Not all vector fields are conservative, but such fields do arise frequently in physics.

For example, the gravitational field F in Example 4 is conservative because if we
define

then

In Sections 13.3 and 13.5 we will learn how to tell whether or not a given vector field
is conservative.

 � F�x, y, z�

 �
�mMGx

�x 2 � y 2 � z2 �3�2  i �
�mMGy

�x 2 � y 2 � z2 �3�2  j �
�mMGz

�x 2 � y 2 � z2 �3�2  k

 ∇ f �x, y, z� �
�f

�x
 i �

�f

�y
 j �

�f

�z
 k

f �x, y, z� �
mMG

sx 2 � y 2 � z 2

Ff
F � ∇ ff

F

f

f

∇ f �x, y� �
�f

�x
 i �

�f

�y
 j � 2xy i � �x 2 � 3y 2 � j

f �x, y� � x 2y � y 3
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FIGURE 15

9. 10.
� � � � � � � � � � � � �

11–14 � Match the vector fields with the plots labeled I–IV.
Give reasons for your choices.

11.

12.

13.

14. F�x, y� � � ln�1 � x 2 � y 2 �, x�

F�x, y� � �sin x, sin y�

F�x, y� � �2x � 3y, 2x � 3y�

F�x, y� � � y, x�

F

F�x, y, z� � j � iF�x, y, z� � y j1–10 � Sketch the vector field by drawing a diagram like 
Figure 5 or Figure 9.

1. 2.

3. 4.

5. 6.

7.

8. F�x, y, z� � z j

F�x, y, z� � j

F�x, y� �
y i � x j
sx 2 � y 2

F�x, y� �
y i � x j
sx 2 � y 2

F�x, y� � x i � y jF�x, y� � x i � y j

F�x, y� � i � x jF�x, y� � 1
2�i � j�

F

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �13.1



use it to plot

Explain the appearance by finding the set of points 
such that .

20. Let , where and . Use
a CAS to plot this vector field in various domains until you
can see what is happening. Describe the appearance of the
plot and explain it by finding the points where .

21–24 � Find the gradient vector field of .

21. 22.

23. 24.
� � � � � � � � � � � � �

25–26 � Find the gradient vector field of and sketch it.

25. 26.
� � � � � � � � � � � � �

27–28 � Plot the gradient vector field of together with a con-
tour map of . Explain how they are related to each other.

27. 28.
� � � � � � � � � � � � �

29–32 � Match the functions with the plots of their gradient
vector fields (labeled I–IV). Give reasons for your choices.

29. 30.

31. 32.

� � � � � � � � � � � � �

4

_4

_4 4

4

_4

_4 4

4

_4

_4 4

4

_4

_4 4

I II

III IV

f �x, y� � sx 2 � y 2f �x, y� � x 2 � y 2

f �x, y� � x 2 � y 2f �x, y� � xy

f

f �x, y� � sin�x � y�f �x, y� � sin x � sin y

f
fCAS

f �x, y� � 1
4�x � y�2f �x, y� � xy � 2x

f∇ f

f �x, y, z� � x cos�y�z�f �x, y, z� � sx 2 � y 2 � z 2

f �x, y� � x �e��xf �x, y� � ln�x � 2y�

f

F�x� � 0

r � � x �x � �x, y�F�x� � �r 2 � 2r�xCAS

F�x, y� � 0
�x, y�

F�x, y� � �y 2 � 2xy� i � �3xy � 6x 2 � j

� � � � � � � � � � � � �

15–18 � Match the vector fields on with the plots labeled
I–IV. Give reasons for your choices.

15.

16.

17.

18.

� � � � � � � � � � � � �

19. If you have a CAS that plots vector fields (the command is
fieldplot in Maple and PlotVectorField in Mathematica),

CAS
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0
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I II

III IV

F�x, y, z� � x i � y j � z k

F�x, y, z� � x i � y j � 3 k

F�x, y, z� � i � 2 j � z k

F�x, y, z� � i � 2 j � 3 k

�3F
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Line Integrals � � � � � � � � � � � � � � � � �

In this section we define an integral that is similar to a single integral except that
instead of integrating over an interval , we integrate over a curve . Such inte-
grals are called line integrals, although “curve integrals” would be better terminology.
They were invented in the early 19th century to solve problems involving fluid flow,
forces, electricity, and magnetism.

We start with a plane curve given by the parametric equations

or, equivalently, by the vector equation , and we assume that 
is a smooth curve. [This means that is continuous and . See Section 10.2.]
If we divide the parameter interval into n subintervals of equal width
and we let and , then the corresponding points divide 
into subarcs with lengths (See Figure 1.) We choose any point

in the th subarc. (This corresponds to a point in .) Now if is
any function of two variables whose domain includes the curve , we evaluate at
the point , multiply by the length of the subarc, and form the sum

which is similar to a Riemann sum. Then we take the limit of these sums and make
the following definition by analogy with a single integral.

Definition If is defined on a smooth curve given by Equations 1, then
the line integral of f along C is

if this limit exists.

In Section 6.3 we found that the length of is

L � y
b

a

 ��dx

dt 	2

� �dy

dt 	2

 dt

C

y
C
 f �x, y� ds � lim 

n l 	
 


n

i�1
 f �xi*, yi*� 
si

Cf2



n

i�1
 f �xi*, yi*� 
si


si�xi*, yi*�
fC
f�ti�1, ti�ti*iPi*�xi*, yi*�


s1, 
s2, . . . , 
sn.n
CPi�xi, yi �yi � y�ti�xi � x�ti�

�ti�1, ti ��a, b�
r��t� � 0r�

Cr�t� � x�t� i � y�t� j

a � t � by � y�t�x � x�t�1

C

C�a, b�

13.2

solve the differential equations to find an equation of
the flow line that passes through the point (1, 1).

34. (a) Sketch the vector field and then
sketch some flow lines. What shape do these flow lines
appear to have?

(b) If parametric equations of the flow lines are 
, what differential equations do these functions 

satisfy? Deduce that .
(c) If a particle starts at the origin in the velocity field

given by F, find an equation of the path it follows.

dy�dx � x
y � y�t�

x � x�t�,

F�x, y� � i � x j

33. The flow lines (or streamlines) of a vector field are the
paths followed by a particle whose velocity field is the
given vector field. Thus, the vectors in a vector field are
tangent to the flow lines.
(a) Use a sketch of the vector field to

draw some flow lines. From your sketches, can you
guess the equations of the flow lines?

(b) If parametric equations of a flow line are
, explain why these functions satisfy the differ-

ential equations and . Then dy�dt � �ydx�dt � x
y � y�t�

x � x�t�,

F�x, y� � x i � y j
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A similar type of argument can be used to show that if is a continuous function, then
the limit in Definition 2 always exists and the following formula can be used to eval-
uate the line integral:

The value of the line integral does not depend on the parametrization of the curve, pro-
vided that the curve is traversed exactly once as t increases from a to b.

If is the length of C between and , then

So the way to remember Formula 3 is to express everything in terms of the parameter
Use the parametric equations to express and in terms of and write ds as

In the special case where is the line segment that joins to , using as
the parameter, we can write the parametric equations of as follows: , ,

. Formula 3 then becomes

and so the line integral reduces to an ordinary single integral in this case.
Just as for an ordinary single integral, we can interpret the line integral of a posi-

tive function as an area. In fact, if , represents the area of one
side of the “fence” or “curtain” in Figure 2, whose base is and whose height above
the point is .

EXAMPLE 1 Evaluate , where is the upper half of the unit circle
.

SOLUTION In order to use Formula 3 we first need parametric equations to represent C.
Recall that the unit circle can be parametrized by means of the equations

and the upper half of the circle is described by the parameter interval 
(See Figure 3.) Therefore, Formula 3 gives

 � 2 �
2
3

 � y


0
 �2 � cos2t sin t� dt � 2t �

cos3t

3 �
0



 � y


0
 �2 � cos2t sin t�ssin2t � cos2t dt

 y
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 �2 � x 2y� ds � y
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� The arc length function is 
discussed in Section 10.3.
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Suppose now that is a piecewise-smooth curve; that is, is a union of a finite
number of smooth curves where, as illustrated in Figure 4, the initial
point of is the terminal point of Then we define the integral of along as
the sum of the integrals of along each of the smooth pieces of :

EXAMPLE 2 Evaluate , where consists of the arc of the parabola 
from to followed by the vertical line segment from to .

SOLUTION The curve is shown in Figure 5. is the graph of a function of , so we
can choose as the parameter and the equations for become

Therefore

On we choose as the parameter, so the equations of are

and

Thus

Any physical interpretation of a line integral depends on the physical
interpretation of the function . Suppose that represents the linear density at a
point of a thin wire shaped like a curve . Then the mass of the part of the wire
from to in Figure 1 is approximately and so the total mass of the
wire is approximately . By taking more and more points on the curve,
we obtain the mass of the wire as the limiting value of these approximations:

[For example, if represents the density of a semicircular wire, then
the integral in Example 1 would represent the mass of the wire.] The center of mass
of the wire with density function is located at the point , where

Other physical interpretations of line integrals will be discussed later in this chapter. 
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EXAMPLE 3 A wire takes the shape of the semicircle , , and is
thicker near its base than near the top. Find the center of mass of the wire if the
linear density at any point is proportional to its distance from the line .

SOLUTION As in Example 1 we use the parametrization , ,
, and find that . The linear density is

where is a constant, and so the mass of the wire is

From Equations 4 we have

By symmetry we see that , so the center of mass is

See Figure 6.

Two other line integrals are obtained by replacing by either or
in Definition 2. They are called the line integrals of along with

respect to x and y:

When we want to distinguish the original line integral from those in
Equations 5 and 6, we call it the line integral with respect to arc length.

The following formulas say that line integrals with respect to and can also be 
evaluated by expressing everything in terms of : , , ,

.
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It frequently happens that line integrals with respect to and occur together.
When this happens, it’s customary to abbreviate by writing

When we are setting up a line integral, sometimes the most difficult thing is to
think of a parametric representation for a curve whose geometric description is given.
In particular, we often need to parametrize a line segment, so it’s useful to remember
that a vector representation of the line segment that starts at and ends at is given
by

(See Equation 9.5.1 with .)

EXAMPLE 4 Evaluate , where (a) is the line segment from
to and (b) is the arc of the parabola from
to . (See Figure 7.)

SOLUTION
(a) A parametric representation for the line segment is

(Use Equation 8 with and .) Then , ,
and Formula 7 gives

(b) Since the parabola is given as a function of , let’s take as the parameter and
write as

Then and by Formula 7 we have

Notice that we got different answers in parts (a) and (b) of Example 4 even though
the two curves had the same endpoints. Thus, in general, the value of a line integral
depends not just on the endpoints of the curve but also on the path. (But see Sec-
tion 13.3 for conditions under which the integral is independent of the path.)
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Notice also that the answers in Example 4 depend on the direction, or orientation,
of the curve. If denotes the line segment from to , you can verify,
using the parametrization

that

In general, a given parametrization , , , determines an
orientation of a curve , with the positive direction corresponding to increasing values
of the parameter (See Figure 8, where the initial point corresponds to the param-
eter value and the terminal point corresponds to .)

If denotes the curve consisting of the same points as but with the opposite
orientation (from initial point to terminal point in Figure 8), then we have

But if we integrate with respect to arc length, the value of the line integral does not
change when we reverse the orientation of the curve:

This is because is always positive, whereas and change sign when we re-
verse the orientation of .

Line Integrals in Space

We now suppose that is a smooth space curve given by the parametric equations

or by a vector equation . If is a function of three vari-
ables that is continuous on some region containing , then we define the line integral
of along (with respect to arc length) in a manner similar to that for plane curves:

We evaluate it using a formula similar to Formula 3:

Observe that the integrals in both Formulas 3 and 9 can be written in the more com-
pact vector notation
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For the special case , we get

where is the length of the curve (see Formula 10.3.3).
Line integrals along with respect to , , and can also be defined. For example,

Therefore, as with line integrals in the plane, we evaluate integrals of the form

by expressing everything , , , , , in terms of the parameter 

EXAMPLE 5 Evaluate , where is the circular helix given by the equa-
tions , , , . (See Figure 9.)

SOLUTION Formula 9 gives

EXAMPLE 6 Evaluate , where consists of the line segment 
from to followed by the vertical line segment from to

.

SOLUTION The curve is shown in Figure 10. Using Equation 8, we write as

or, in parametric form, as

Thus
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Likewise, can be written in the form

or

Then , so

Adding the values of these integrals, we obtain

Line Integrals of Vector Fields

Recall from Section 6.5 that the work done by a variable force in moving a 
particle from to along the -axis is . Then in Section 9.3 we found
that the work done by a constant force in moving an object from a point to another
point in space is , where 

l
is the displacement vector.

Now suppose that is a continuous force field on , such as
the gravitational field of Example 4 in Section 13.1 or the electric force field of
Example 5 in Section 13.1. (A force field on could be regarded as a special case
where and and depend only on and .) We wish to compute the work
done by this force in moving a particle along a smooth curve .

We divide into subarcs with lengths by dividing the parameter inter-
val into subintervals of equal width. (See Figure 1 for the two-dimensional case
or Figure 11 for the three-dimensional case.) Choose a point on the th
subarc corresponding to the parameter value . If is small, then as the particle
moves from to along the curve, it proceeds approximately in the direction of

, the unit tangent vector at . Thus, the work done by the force in moving the
particle from to is approximately

and the total work done in moving the particle along is approximately

where is the unit tangent vector at the point on . Intuitively, we see
that these approximations ought to become better as becomes larger. Therefore, we
define the work done by the force field as the limit of the Riemann sums in (11),
namely,

Equation 12 says that work is the line integral with respect to arc length of the tangen-
tial component of the force.
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If the curve is given by the vector equation , then
, so using Equation 9 we can rewrite Equation 12 in the form

This integral is often abbreviated as and occurs in other areas of physics as
well. Therefore, we make the following definition for the line integral of any contin-
uous vector field.

Definition Let be a continuous vector field defined on a smooth curve 
given by a vector function , . Then the line integral of along
C is

When using Definition 13, remember that is just an abbreviation for
, so we evaluate simply by putting , , and

in the expression for . Notice also that we can formally write
.

EXAMPLE 7 Find the work done by the force field in moving a
particle along the quarter-circle , .

SOLUTION Since and , we have

and

Therefore, the work done is

NOTE � Even though and integrals with respect to arc length
are unchanged when orientation is reversed, it is still true that

since the unit tangent vector is replaced by its negative when is replaced by �C.CT
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EXAMPLE 8 Evaluate , where and is the
twisted cubic given by

SOLUTION We have

Thus

Finally, we note the connection between line integrals of vector fields and line inte-
grals of scalar fields. Suppose the vector field on is given in component form by
the equation . We use Definition 13 to compute its line integral
along :

But this last integral is precisely the line integral in (10). Therefore, we have

For example, the integral in Example 6 could be expressed
as where
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4. ,
is the arc of the curve from to 

5. , consists of line segments from
to and from to �3, 2��2, 0��2, 0��0, 0�

Cx
C
 xy dx � �x � y� dy

�1, 1��1, �1�x � y 4C
x

C
 sin x dx1–12 � Evaluate the line integral, where is the given curve.

1. ,

2. ,

3. , is the right half of the circle x 2 � y 2 � 16Cx
C
 xy 4 ds

C: x � t 4, y � t 3, 1
2 � t � 1x

C
 �y�x� ds

C: x � t 2, y � t, 0 � t � 2x
C
 y ds
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15–18 � Evaluate the line integral , where is given
by the vector function .

15. ,
,

16. ,
,

17. ,
,

18. ,
,

� � � � � � � � � � � � �

19–20 � Use a graph of the vector field F and the curve C to
guess whether the line integral of F over C is positive, negative,
or zero. Then evaluate the line integral.

19. ,
is the arc of the circle traversed counter-

clockwise from (2, 0) to 

20. ,

is the parabola from to (1, 2)
� � � � � � � � � � � � �

21. (a) Evaluate the line integral , where
and is given by 

, .

; (b) Illustrate part (a) by using a graphing calculator or com-
puter to graph and the vectors from the vector field
corresponding to , , and 1 (as in Figure 13).

22. (a) Evaluate the line integral , where
and is given by

, .

; (b) Illustrate part (a) by using a computer to graph and
the vectors from the vector field corresponding to

and (as in Figure 13).

23. Find the exact value of , where is the part of the
astroid , in the first quadrant.

24. (a) Find the work done by the force field
on a particle that moves once

around the circle oriented in the
counterclockwise direction.

(b) Use a computer algebra system to graph the force field
and circle on the same screen. Use the graph to explain
your answer to part (a).

25. A thin wire is bent into the shape of a semicircle
, . If the linear density is a constant ,

find the mass and center of mass of the wire.

26. Find the mass and center of mass of a thin wire in the shape 
of a quarter-circle , , , if the den-
sity function is .��x, y� � x � y
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F�x, y, z� � sin x i � cos y j � xz k

0 � t � 2r�t� � t i � t 2 j � t 3 k
F�x, y, z� � yz i � xz j � xy k

0 � t � 1r�t� � t 2 i � t 3 j
F�x, y� � x 2y 3 i � ysx j

r�t�
Cx

C
 F � dr6. ,

consists of the shortest arc of the circle from
to and the line segment from to 

7. ,
,

8. , is the line segment from (0, 6, �1) to (4, 1, 5)

9. , is the line segment from (0, 0, 0) to (1, 2, 3)

10. , : , , ,

11. ,
consists of line segments from to , from

to , and from to 

12. ,
consists of line segments from to , from

to , and from to 
� � � � � � � � � � � � �

13. Let be the vector field shown in the figure.
(a) If is the vertical line segment from to

, determine whether is positive, nega-
tive, or zero.

(b) If is the counterclockwise-oriented circle with radius
3 and center the origin, determine whether is
positive, negative, or zero.

14. The figure shows a vector field and two curves and .
Are the line integrals of over and positive, negative,
or zero? Explain.
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xC2
 F � dr

C2

xC1
 F � dr��3, 3�

��3, �3�C1

F

�1, 3, 0��1, 3, �1��1, 3, �1��2, 0, 0�
�2, 0, 0��0, 0, 0�C

x
C
 yz dx � xz dy � xy dz

�1, 2, 4��1, 2, 3��1, 2, 3��0, 1, 1�
�0, 1, 1��0, 0, 0�C

x
C
 z2 dx � z dy � 2y dz

0 � t � 1z � t 2y � tx � stCx
C
 yz dy � xy dz

Cx
C
 xe yz ds

Cx
C
 x 2z ds

0 � t � �2C: x � 4 sin t, y � 4 cos t, z � 3t
x

C
 xy 3 ds

�4, 3��0, 1��0, 1��1, 0�
x 2 � y 2 � 1C

x
C
 xsy dx � 2ysx dy



revolutions, how much work is done by the man against
gravity in climbing to the top?

36. Suppose there is a hole in the can of paint in Exercise 35
and 9 lb of paint leak steadily out of the can during the
man’s ascent. How much work is done?

37. An object moves along the curve shown in the figure
from (1, 2) to (9, 8). The lengths of the vectors in the force
field are measured in newtons by the scales on the axes.
Estimate the work done by on the object.

38. Experiments show that a steady current in a long wire pro-
duces a magnetic field that is tangent to any circle that
lies in the plane perpendicular to the wire and whose cen-
ter is the axis of the wire (as in the figure). Ampère’s Law
relates the electric current to its magnetic effects and states
that

where is the net current that passes through any surface
bounded by a closed curve and is a constant called the
permeability of free space. By taking to be a circle with
radius , show that the magnitude of the magnetic
field at a distance from the center of the wire is

B

I

B �
�0 I

2r

r
B � � B �r

C
�0C

I

y
C
 B � dr � �0 I

B
I

0 1

1

y
(meters)

x
(meters)

C

C

F
F

C

27. (a) Write the formulas similar to Equations 4 for the center
of mass of a thin wire with density function

in the shape of a space curve .
(b) Find the center of mass of a wire in the shape of the

helix , , , , if the
density is a constant .

28. Find the mass and center of mass of a wire in the shape of
the helix , , , , if the
density at any point is equal to the square of the distance
from the origin.

29. If a wire with linear density lies along a plane curve
its moments of inertia about the - and -axes are

defined as

Find the moments of inertia for the wire in Example 3.

30. If a wire with linear density lies along a space
curve , its moments of inertia about the -, -, and -axes
are defined as

Find the moments of inertia for the wire in Exercise 27.

31. Find the work done by the force field
in moving an object along an arch

of the cycloid ,
.

32. Find the work done by the force field
on a particle that moves along the

parabola from to .

33. Find the work done by the force field
on a particle that moves

along the curve , .

34. The force exerted by an electric charge at the origin on a
charged particle at a point with position vector

is where is a constant. (See
Example 5 in Section 13.1.) Find the work done as the par-
ticle moves along a straight line from to .

35. A 160-lb man carries a 25-lb can of paint up a helical stair-
case that encircles a silo with a radius of 20 ft. If the silo 
is 90 ft high and the man makes exactly three complete 

�2, 1, 5��2, 0, 0�

KF�r� � Kr�� r �3r � �x, y, z �
�x, y, z�

0 � t � 1r�t� � t 2 i � t 3 j � t 4 k
F�x, y, z� � xz i � yx j � zy k

�2, 4���1, 1�y � x 2
F�x, y� � x sin y i � y j

0 � t � 2
r�t� � �t � sin t� i � �1 � cos t� j

F�x, y� � x i � �y � 2� j

 Iz � y
C
 �x 2 � y 2 ���x, y, z� ds

 Iy � y
C
 �x 2 � z2 ���x, y, z� ds

 Ix � y
C
 �y 2 � z2 ���x, y, z� ds

zyxC
��x, y, z�

Iy � y
C
 x 2��x, y� dsIx � y

C
 y 2��x, y� ds

yxC,
��x, y�

0 � t � 2z � sin ty � cos tx � t

k
0 � t � 2z � 3ty � 2 cos tx � 2 sin t

C��x, y, z�
�x, y, z �
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The Fundamental Theorem for Line Integrals � � � � � � � �

Recall from Section 5.4 that Part 2 of the Fundamental Theorem of Calculus can be
written as

where is continuous on . We also called Equation 1 the Total Change Theorem:
The integral of a rate of change is the total change.

If we think of the gradient vector of a function of two or three variables as a
sort of derivative of , then the following theorem can be regarded as a version of the
Fundamental Theorem for line integrals.

Theorem Let be a smooth curve given by the vector function ,
. Let be a differentiable function of two or three variables whose

gradient vector is continuous on . Then

NOTE � Theorem 2 says that we can evaluate the line integral of a conservative vec-
tor field (the gradient vector field of the potential function ) simply by knowing the
value of at the endpoints of . In fact, Theorem 2 says that the line integral of 
is the total change in f. If is a function of two variables and is a plane curve with
initial point and terminal point , as in Figure 1, then Theorem 2
becomes

If is a function of three variables and is a space curve joining the point 
to the point , then we have

Let’s prove Theorem 2 for this case.

FIGURE 1

y
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C

y
C
 ∇ f � dr � f �x2, y2, z2 � � f �x1, y1, z1 �

B�x2, y2, z2 �
A�x1, y1, z1 �Cf

y
C
 ∇ f � dr � f �x2, y2 � � f �x1, y1 �

B�x2, y2 �A�x1, y1 �
Cf

∇ fCf
f

y
C
 ∇ f � dr � f �r�b�� � f �r�a��

C∇ f
fa � t � b

r�t�C2

f
f∇ f

�a, b�F�

y
b

a
 F��x� dx � F�b� � F�a�1

13.3
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Proof of Theorem 2 Using Definition 13.2.13, we have

(by the Chain Rule)

The last step follows from the Fundamental Theorem of Calculus (Equation 1).

Although we have proved Theorem 2 for smooth curves, it is also true for piecewise-
smooth curves. This can be seen by subdividing into a finite number of smooth
curves and adding the resulting integrals.

EXAMPLE 1 Find the work done by the gravitational field

in moving a particle with mass from the point to the point 
along a piecewise-smooth curve . (See Example 4 in Section 13.1.)

SOLUTION From Section 13.1 we know that is a conservative vector field and, in
fact, , where

Therefore, by Theorem 2, the work done is

Independence of Path

Suppose and are two piecewise-smooth curves (which are called paths) that
have the same initial point and terminal point . We know from Example 4 in Sec-
tion 13.2 that, in general, . But one implication of Theorem 2 is
that

whenever is continuous. In other words, the line integral of a conservative vector
field depends only on the initial point and terminal point of a curve.

In general, if is a continuous vector field with domain , we say that the line
integral is independent of path if for any two pathsxC1

 F � dr � xC2
 F � drxC F � dr

DF

∇ f

y
C1

 ∇ f � dr � y
C2

 ∇ f � dr

xC1
 F � dr � xC2

 F � dr
BA

C2C1

 �
mMG

s22 � 22
�

mMG

s32 � 42 � 122
� mMG� 1

2s2
�

1

13	
 � f �2, 2, 0� � f �3, 4, 12�

 W � y
C
 F � dr � y

C
 ∇ f � dr

f �x, y, z� �
mMG

sx 2 � y 2 � z 2

F � ∇ f
F

C
�2, 2, 0��3, 4, 12�m

F�x� � �
mMG

� x �3  x

C

 � f �r�b�� � f �r�a��

 � y
b

a
 

d

dt
 f �r�t�� dt

 � y
b

a
 � �f

�x
 
dx

dt
�

�f

�y
 
dy

dt
�

�f

�z
 
dz

dt	 dt

 y
C
 ∇ f � dr � y

b

a
 ∇ f �r�t�� � r��t� dt
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and in that have the same initial and terminal points. With this terminology
we can say that line integrals of conservative vector fields are independent of path.

A curve is called closed if its terminal point coincides with its initial point, that is,
. (See Figure 2.) If is independent of path in and is any

closed path in , we can choose any two points and on and regard as being
composed of the path from to followed by the path from to . (See Fig-
ure 3.) Then

since and have the same initial and terminal points.
Conversely, if it is true that whenever is a closed path in , then

we demonstrate independence of path as follows. Take any two paths and from
to in and define to be the curve consisting of followed by . Then

and so . Thus, we have proved the following theorem.

Theorem is independent of path in if and only if 
for every closed path in .

Since we know that the line integral of any conservative vector field is inde-
pendent of path, it follows that for any closed path. The physical inter-
pretation is that the work done by a conservative force field (such as the gravitational
or electric field in Section 13.1) as it moves an object around a closed path is 0.

The following theorem says that the only vector fields that are independent of path
are conservative. It is stated and proved for plane curves, but there is a similar version
for space curves. We assume that is open, which means that for every point in 
there is a disk with center that lies entirely in . (So doesn’t contain any of its
boundary points.) In addition, we assume that is connected. This means that any
two points in can be joined by a path that lies in .

Theorem Suppose is a vector field that is continuous on an open con-
nected region . If is independent of path in , then is a conserva-
tive vector field on ; that is, there exists a function such that .

Proof Let be a fixed point in . We construct the desired potential function
by defining

for any point in . Since is independent of path, it does not matter 
which path from to is used to evaluate . Since is open, there
exists a disk contained in with center . Choose any point in the disk
with and let consist of any path from to followed by the
horizontal line segment from to . (See Figure 4.) Then

f �x, y� � y
C1

 F � dr � y
C2

 F � dr � y
�x1, y�

�a, b�
 F � dr � y

C2

 F � dr

�x, y��x1, y�C2

�x1, y��a, b�C1Cx1 � x
�x1, y��x, y�D

Df �x, y��x, y��a, b�C
xC F � drD�x, y�
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�a, b�
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f
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∇ f � FfD
FDx

C
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DDP
DPD
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DC
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�C2

 F � dr � y
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�C2C1CDBA
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Notice that the first of these integrals does not depend on , so

If we write , then

On , is constant, so . Using as the parameter, where , we
have

by Part 1 of the Fundamental Theorem of Calculus (see Section 5.4). A similar argu-
ment, using a vertical line segment (see Figure 5), shows that

Thus

which says that is conservative.

The question remains: How is it possible to determine whether or not a vector field 
is conservative? Suppose it is known that is conservative, where 

and have continuous first-order partial derivatives. Then there is a function such 
that , that is,

Therefore, by Clairaut’s Theorem,

Theorem If is a conservative vector field,
where and have continuous first-order partial derivatives on a domain ,
then throughout we have

The converse of Theorem 5 is true only for a special type of region. To explain this,
we first need the concept of a simple curve, which is a curve that doesn’t intersect
itself anywhere between its endpoints. [See Figure 6; for a simple closed
curve, but when .]

In Theorem 4 we needed an open connected region. For the next theorem we need
a stronger condition. A simply-connected region in the plane is a connected region 

a � t1 � t2 � br�t1 � � r�t2 �
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DQP
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such that every simple closed curve in encloses only points that are in . Notice
from Figure 7 that, intuitively speaking, a simply-connected region contains no hole
and can’t consist of two separate pieces.

In terms of simply-connected regions we can now state a partial converse to Theo-
rem 5 that gives a convenient method for verifying that a vector field on is con-
servative. The proof will be sketched in the next section as a consequence of Green’s
Theorem.

Theorem Let be a vector field on an open simply-connected
region . Suppose that and have continuous first-order derivatives and

Then is conservative.

EXAMPLE 2 Determine whether or not the vector field

is conservative.

SOLUTION Let and . Then

Since , is not conservative by Theorem 5.

EXAMPLE 3 Determine whether or not the vector field

is conservative.

SOLUTION Let and . Then

Also, the domain of is the entire plane , which is open and simply-
connected. Therefore, we can apply Theorem 6 and conclude that is conservative.

In Example 3, Theorem 6 told us that is conservative, but it did not tell us how
to find the (potential) function such that . The proof of Theorem 4 gives us
a clue as to how to find . We use “partial integration” as in the following example.

EXAMPLE 4
(a) If , find a function such that .
(b) Evaluate the line integral , where is the curve given by

, .0 � t � r�t� � e t sin t i � e t cos t j
Cx

C
 F � dr
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f
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F
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FIGURE 7
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SOLUTION
(a) From Example 3 we know that is conservative and so there exists a function 
with , that is,

Integrating (7) with respect to , we obtain

Notice that the constant of integration is a constant with respect to , that is, a func-
tion of , which we have called . Next we differentiate both sides of (9) with
respect to :

Comparing (8) and (10), we see that

Integrating with respect to , we have

where is a constant. Putting this in (9), we have

as the desired potential function.

(b) To use Theorem 2 all we have to know are the initial and terminal points of ,
namely, and . In the expression for in part (a),
any value of the constant will do, so let’s choose . Then we have

This method is much shorter than the straightforward method for evaluating line
integrals that we learned in Section 13.2.

A criterion for determining whether or not a vector field on is conservative is
given in Section 13.5. Meanwhile, the next example shows that the technique for find-
ing the potential function is much the same as for vector fields on .

EXAMPLE 5 If , find a function such that
.

SOLUTION If there is such a function , then

 fz�x, y, z� � 3ye 3z13

 fy�x, y, z� � 2xy � e 3z12

 fx�x, y, z� � y 211

f

∇ f � F
fF�x, y, z� � y 2 i � �2xy � e 3z� j � 3ye 3z k

� 2

� 3F

 � e 3 � ��1� � e 3 � 1

 y
C
 F � dr � y

C
 ∇ f � dr � f �0, �e � � f �0, 1�

K � 0K
f �x, y�r�� � �0, �e �r�0� � �0, 1�

C

f �x, y� � 3x � x 2y � y 3 � K

K

t�y� � �y 3 � K

y

t��y� � �3y 2

fy�x, y� � x 2 � t��y�10

y
t�y�y

x

f �x, y� � 3x � x 2y � t�y�9

x

 fy�x, y� � x 2 � 3y 28

 fx�x, y� � 3 � 2xy7

∇ f � F
fF
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Integrating (11) with respect to , we get

where is a constant with respect to . Then differentiating (14) with respect to
, we have

and comparison with (12) gives

Thus, and we rewrite (14) as

Finally, differentiating with respect to and comparing with (13), we obtain
and, therefore, , a constant. The desired function is

It is easily verified that .

Conservation of Energy

Let’s apply the ideas of this chapter to a continuous force field that moves an object
along a path given by , , where is the initial point and

is the terminal point of . According to Newton’s Second Law of Motion
(see Section 10.4), the force at a point on is related to the acceleration

by the equation

So the work done by the force on the object is

(Theorem 10.2.3, Formula 4)

(Fundamental Theorem of Calculus)
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Therefore

where is the velocity.
The quantity , that is, half the mass times the square of the speed, is

called the kinetic energy of the object. Therefore, we can rewrite Equation 15 as

which says that the work done by the force field along is equal to the change in
kinetic energy at the endpoints of .

Now let’s further assume that is a conservative force field; that is, we can write
. In physics, the potential energy of an object at the point is defined

as , so we have . Then by Theorem 2 we have

Comparing this equation with Equation 16, we see that

which says that if an object moves from one point to another point under the influ-
ence of a conservative force field, then the sum of its potential energy and its kinetic
energy remains constant. This is called the Law of Conservation of Energy and it is
the reason the vector field is called conservative.

BA
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3–10 � Determine whether or not is a conservative vector
field. If it is, find a function such that .

3.

4.

5.

6.

7.

8.

9. F�x, y� � �ye x � sin y� i � �e x � x cos y� j

F�x, y� � �1 � 2xy � ln x� i � x 2 j

F�x, y� � �2x cos y � y cos x� i � ��x 2 sin y � sin x� j

F�x, y� � e y i � xe y j

F�x, y� � xe y i � ye x j

F�x, y� � �x 3 � 4xy� i � �4xy � y 3 � j

F�x, y� � �6x � 5y� i � �5x � 4y� j

F � � ff
F

1

3

8

6

5

2

4

7

9

x
y

0

1

2

0 1 2
1. The figure shows a curve and a contour map of a function

whose gradient is continuous. Find .

2. A table of values of a function with continuous gradient is
given. Find , where has parametric equations

.x � t 2 � 1, y � t 3 � t, 0 � t � 1
CxC � f � dr

f

y

x0

10

20
30

40
50

60

C

xC � f � drf
C

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �13.3



22. ; ,
� � � � � � � � � � � � �

23. Is the vector field shown in the figure conservative?
Explain.

24–25 � From a plot of guess whether it is conservative.
Then determine whether your guess is correct.

24.

25.

� � � � � � � � � � � � �

26. Let , where . Find curves 
and that are not closed and satisfy the equation.

(a) (b)

27. Show that if the vector field is con-
servative and , , have continuous first-order partial
derivatives, then

28. Use Exercise 27 to show that the line integral
is not independent of path.

29–32 � Determine whether or not the given set is (a) open,
(b) connected, and (c) simply-connected.

29. 30.

31.

32.
� � � � � � � � � � � � �

33. Let .

(a) Show that .
(b) Show that is not independent of path. 

[Hint: Compute and , where and
are the upper and lower halves of the circle

from to .] Does this
contradict Theorem 6?

��1, 0��1, 0�x 2 � y 2 � 1
C2

C1xC2
 F � drxC1

 F � dr
xC F � dr
�P��y � �Q��x

F�x, y� �
�y i � x j

x 2 � y 2

��x, y� � x 2 � y 2 � 1 or 4 � x 2 � y 2 � 9�

��x, y� � 1 � x 2 � y 2 � 4�

��x, y� � x � 0���x, y� � x � 0, y � 0�

xC y dx � x dy � xyz dz

�Q

�z
�

�R

�y

�P

�z
�

�R

�x

�P

�y
�

�Q

�x

RQP
F � P i � Q j � R k

y
C2

 F � dr � 1y
C1

 F � dr � 0

C2

C1f �x, y� � sin�x � 2y�F � � f

F�x, y� �
�x � 2y� i � �x � 2� j

s1 � x 2 � y 2

F�x, y� � �2xy � sin y� i � �x 2 � x cos y� j

FCAS

x

y

Q�4, �2�P�1, 1�F�x, y� � �y 2�x 2 � i � �2y�x� j10.
� � � � � � � � � � � � �

11. The figure shows the vector field and
three curves that start at (1, 2) and end at (3, 2).
(a) Explain why has the same value for all three

curves.
(b) What is this common value?

12–18 � (a) Find a function such that and (b) use
part (a) to evaluate along the given curve .

12. ,
is the upper semicircle that starts at (0, 1) and ends 

at (2, 1)

13. ,
: ,

14. ,
: ,

15. ,
is the line segment from to 

16. ,
: , , ,

17. ,
: ,

18. ,
: ,

� � � � � � � � � � � � �

19–20 � Show that the line integral is independent of path and
evaluate the integral.

19. ,
is any path from to 

20. ,
is any path from to 

� � � � � � � � � � � � �

21–22 � Find the work done by the force field in moving an
object from to .

21. ; , Q�2, 1�P�0, 0�F�x, y� � x 2 y 3 i � x 3y 2 j

QP
F

�3, 2��1, 1�C
x

C
 �2y 2 � 12x 3y 3 � dx � �4xy � 9x 4y 2 � dy

�5, 1���1, 0�C
x

C
 2x sin y dx � �x 2 cos y � 3y 2 � dy

0 � t � 1r�t� � t i � t 2 j � t 3 kC
F�x, y, z� � ey i � xe y j � �z � 1�ez k

0 � t � r�t� � t 2 i � sin t j � t kC
F�x, y, z� � y 2 cos z i � 2xy cos z j � xy 2 sin z k

0 � t � 1z � 2t � 1y � t � 1x � t2C
F�x, y, z� � �2xz � y2� i � 2xy j � �x 2 � 3z2� k

�4, 6, 3��1, 0, �2�C
F�x, y, z� � yz i � xz j � �xy � 2z� k

0 � t � 1r�t� � te t i � �1 � t� jC
F�x, y� � e 2y i � �1 � 2xe 2y � j

0 � t � 1r�t� � st i � �1 � t 3 � jC
F�x, y� � x 3y 4 i � x 4y 3 j

C
F�x, y� � y i � �x � 2y� j

CxC F � dr
F � ∇ ff

y

x0 3

3

2

1

21

x
C
 F � dr

F�x, y� � �2xy, x 2 �

F�x, y� � �ye xy � 4x 3y� i � �xe xy � x 4 � j

944 � CHAPTER 13 VECTOR CALCULUS



(at a maximum distance of km from the
Sun) to perihelion (at a minimum distance of

km). (Use the values kg,
kg, and 

(c) Another example of an inverse square field is the elec-
tric field discussed in Example 5 in 
Section 13.1. Suppose that an electron with a charge of

C is located at the origin. A positive unit
charge is positioned a distance m from the elec-
tron and moves to a position half that distance from 
the electron. Use part (a) to find the work done by the
electric field. (Use the value .)� � 8.985 � 1010

10�12
�1.6 � 10�19

E � �qQr�� r �3

N�m2�kg2.�G � 6.67 � 10�11M � 1.99 � 1030
m � 5.97 � 10241.47 � 108

1.52 � 10834. (a) Suppose that is an inverse square force field, that is,

for some constant , where . Find
the work done by in moving an object from a point 
along a path to a point in terms of the distances 
and from these points to the origin.

(b) An example of an inverse square field is the gravita-
tional field discussed in Example 4
in Section 13.1. Use part (a) to find the work done by
the gravitational field when Earth moves from aphelion 

F � ��mMG �r�� r �3

d2

d1P2

P1F
r � x i � y j � z kc

F�r� �
cr

� r �3

F

Green’s Theorem gives the relationship between a line integral around a simple closed
curve and a double integral over the plane region bounded by . (See Figure 1.
We assume that consists of all points inside as well as all points on .) In stating
Green’s Theorem we use the convention that the positive orientation of a simple
closed curve refers to a single counterclockwise traversal of . Thus, if is given
by the vector function , , then the region is always on the left as the
point traverses . (See Figure 2.)

Green’s Theorem Let be a positively oriented, piecewise-smooth, simple
closed curve in the plane and let be the region bounded by . If and 
have continuous partial derivatives on an open region that contains , then

NOTE � The notation

g
C

is sometimes used to indicate that the line integral is calculated using the positive ori-
entation of the closed curve . Another notation for the positively oriented boundary C

P dx � Q dyor�y
C
 P dx � Q dy

y
C
 P dx � Q dy � yy

D

 ��Q

�x
�

�P

�y 	 dA

D
QPCD

C

FIGURE 2 (a) Positive orientation (b) Negative orientation

y

x0

D

C

y

x0

D

C

Cr�t�
Da � t � br�t�

CCC

CCD
CDC
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curve of is , so the equation in Green’s Theorem can be written as

Green’s Theorem should be regarded as the counterpart of the Fundamental Theorem
of Calculus for double integrals. Compare Equation 1 with the statement of the Funda-
mental Theorem of Calculus, Part 2, in the following equation:

In both cases there is an integral involving derivatives ( , , and ) on the
left side of the equation. And in both cases the right side involves the values of the
original functions ( , , and ) only on the boundary of the domain. (In the one-
dimensional case, the domain is an interval whose boundary consists of just two
points, and .)

Green’s Theorem is not easy to prove in the generality stated in Theorem 1, but we
can give a proof for the special case where the region is both of type I and of type II
(see Section 12.3). Let’s call such regions simple regions.

Proof of Green’s Theorem for the Case in Which Is a Simple Region Notice that Green’s
Theorem will be proved if we can show that

and

We prove Equation 2 by expressing as a type I region:

where and are continuous functions. This enables us to compute the double
integral on the right side of Equation 2 as follows:

where the last step follows from the Fundamental Theorem of Calculus.
Now we compute the left side of Equation 2 by breaking up as the union of the

four curves , , , and shown in Figure 3. On we take as the parameter
and write the parametric equations as , , . Thus

Observe that goes from right to left but goes from left to right, so we can
write the parametric equations of as , , . Therefore

y
C3

 P�x, y� dx � �y
�C3

 P�x, y� dx � �y
b

a
 P�x, t2�x�� dx

a � x � by � t2�x�x � x�C3

�C3C3

y
C1

 P�x, y� dx � y
b

a
 P�x, t1�x�� dx

a � x � by � t1�x�x � x
xC1C4C3C2C1

C

� y
b

a
 �P�x, t2�x�� � P�x, t1�x��� dx yy

D

 
�P

�y
 dA � y

b

a
 y

t2�x�

t1�x�
 
�P

�y
 �x, y� dy dx4

t2t1

D � ��x, y� � a � x � b, t1�x� � y � t2�x��

D

y
C
 Q dy � yy

D

 
�Q

�x
 dA3

y
C
 P dx � �yy

D

 
�P

�y
 dA2

D

ba
�a, b�

PQF

�P��y�Q��xF�

y
b

a
 F��x� dx � F�b� � F�a�

yy
D

 ��Q

�x
�

�P

�y 	 dA � y
�D

 P dx � Q dy1

�DD
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� Green’s Theorem is named after the
self- taught English scientist George 
Green (1793–1841). He worked full-
time in his father’s bakery from the 
age of nine and taught himself mathe-
matics from library books. In 1828 he
published privately An Essay on the
Application of Mathematical Analysis to
the Theories of Electricity and Magne-
tism, but only 100 copies were printed
and most of those went to his friends.
This pamphlet contained a theorem 
that is equivalent to what we know as
Green’s Theorem, but it didn’t become
widely known at that time. Finally, at
age 40, Green entered Cambridge Uni-
versity as an undergraduate but died 
four years after graduation. In 1846
William Thomson (Lord Kelvin) located 
a copy of Green’s essay, realized its 
significance, and had it reprinted. 
Green was the first person to try to 
formulate a mathematical theory of 
electricity and magnetism. His work 
was the basis for the subsequent electro-
magnetic theories of Thomson, Stokes,
Rayleigh, and Maxwell.
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On or (either of which might reduce to just a single point), is constant, so
and

Hence

Comparing this expression with the one in Equation 4, we see that

Equation 3 can be proved in much the same way by expressing as a type II region
(see Exercise 28). Then, by adding Equations 2 and 3, we obtain Green’s Theorem.

EXAMPLE 1 Evaluate , where is the triangular curve consisting of
the line segments from to , from to , and from to .

SOLUTION Although the given line integral could be evaluated as usual by the methods
of Section 13.2, that would involve setting up three separate integrals along the three
sides of the triangle, so let’s use Green’s Theorem instead. Notice that the region 
enclosed by is simple and has positive orientation (see Figure 4). If we let

and , then we have

EXAMPLE 2 Evaluate , where is the circle
oriented counterclockwise.

SOLUTION The region bounded by is the disk , so let’s change to
polar coordinates after applying Green’s Theorem:

 � 4 y
2

0
 d�  y

3

0
 r dr � 36

 � y
2

0
 y

3

0
 �7 � 3� r dr d�

 � yy
D

  �

�x
 (7x � sy 4 � 1) �

�

�y
 �3y � e sin x�� dA

�y
C
 �3y � e sin x � dx � (7x � sy 4 � 1) dy

x 2 � y 2 � 9CD

x 2 � y 2 � 9
C�x

C
 �3y � e sin x� dx � (7x � sy 4 � 1) dy

 � �
1
6 �1 � x�3 ]0

1
� 1

6

 � y
1

0
 [ 1

2 y 2 ]y�0
y�1�x

 dx � 1
2 y

1

0
 �1 � x�2 dx

 y
C
 x 4 dx � xy dy � yy

D

 ��Q

�x
�

�P

�y 	 dA � y
1

0
 y

1�x

0
 �y � 0� dy dx

Q�x, y� � xyP�x, y� � x 4
CC

D

�0, 0��0, 1��0, 1��1, 0��1, 0��0, 0�
CxC x 4 dx � xy dy

D

y
C
 P�x, y� dx � �yy

D

 
�P

�y
 dA

 � y
b

a
 P�x, t1�x�� dx � y

b

a
 P�x, t2�x�� dx

 y
C
 P�x, y� dx � y

C1

 P�x, y� dx � y
C2

 P�x, y� dx � y
C3

 P�x, y� dx � y
C4

 P�x, y� dx

y
C2

 P�x, y� dx � 0 � y
C4

 P�x, y� dx

dx � 0
xC4C2
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� Instead of using polar coordinates,
we could simply use the fact that 
is a disk of radius 3 and write

yy

D

 4 dA � 4 � �3�2 � 36

D

FIGURE 4
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In Examples 1 and 2 we found that the double integral was easier to evaluate than
the line integral. (Try setting up the line integral in Example 2 and you’ll soon be con-
vinced!) But sometimes it’s easier to evaluate the line integral, and Green’s Theorem
is used in the reverse direction. For instance, if it is known that 
on the curve , then Green’s Theorem gives

no matter what values and assume in the region .
Another application of the reverse direction of Green’s Theorem is in computing

areas. Since the area of is , we wish to choose and so that

There are several possibilities:

Then Green’s Theorem gives the following formulas for the area of :

EXAMPLE 3 Find the area enclosed by the ellipse .

SOLUTION The ellipse has parametric equations and , where
. Using the third formula in Equation 5, we have

Although we have proved Green’s Theorem only for the case where is simple,
we can now extend it to the case where is a finite union of simple regions. For
example, if is the region shown in Figure 5, then we can write , where

and are both simple. The boundary of is and the boundary of is
so, applying Green’s Theorem to and separately, we get

 y
C2���C3�

 P dx � Q dy � yy
D2

 ��Q

�x
�

�P

�y 	 dA

 y
C1�C3

 P dx � Q dy � yy
D1

 ��Q

�x
�

�P

�y 	 dA

D2D1C2 � ��C3�
D2C1 � C3D1D2D1

D � D1 � D2D
D

D

 �
ab

2
 y

2

0
 dt � ab

 � 1
2 y

2

0
�a cos t��b cos t� dt � �b sin t���a sin t� dt

 A � 1
2 y

C
 x dy � y dx

0 � t � 2
y � b sin tx � a cos t

x 2

a 2 �
y 2

b 2 � 1

A � �y
C
 x dy � ��y

C
 y dx � 1

2 �y
C
 x dy � y dx5

D

 Q�x, y� � 1
2 x Q�x, y� � 0 Q�x, y� � x

 P�x, y� � �
1
2 y P�x, y� � �y P�x, y� � 0

�Q

�x
�

�P

�y
� 1

QPxxD 1 dAD

DQP

yy
D

 ��Q

�x
�

�P

�y 	 dA � y
C
 P dx � Q dy � 0

C
P�x, y� � Q�x, y� � 0
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If we add these two equations, the line integrals along and cancel, so we get

which is Green’s Theorem for , since its boundary is .
The same sort of argument allows us to establish Green’s Theorem for any finite

union of simple regions (see Figure 6).

EXAMPLE 4 Evaluate , where is the boundary of the semiannular
region in the upper half-plane between the circles and .

SOLUTION Notice that although is not simple, the -axis divides it into two simple
regions (see Figure 7). In polar coordinates we can write

Therefore, Green’s Theorem gives

Green’s Theorem can be extended to apply to regions with holes, that is, regions
that are not simply-connected. Observe that the boundary of the region in Fig-
ure 8 consists of two simple closed curves and . We assume that these boundary
curves are oriented so that the region is always on the left as the curve is tra-
versed. Thus, the positive direction is counterclockwise for the outer curve but
clockwise for the inner curve . If we divide into two regions and by means
of the lines shown in Figure 9 and then apply Green’s Theorem to each of and 
we get

Since the line integrals along the common boundary lines are in opposite directions,
they cancel and we get

which is Green’s Theorem for the region .

EXAMPLE 5 If , show that for every
simple closed path that encloses the origin.

SOLUTION Since is an arbitrary closed path that encloses the origin, it’s difficult to
compute the given integral directly. So let’s consider a counterclockwise-oriented circle 

C

xC F � dr � 2F�x, y� � ��y i � x j���x 2 � y 2 �

D

yy
D

 ��Q

�x
�

�P

�y 	 dA � y
C1

 P dx � Q dy � y
C2

 P dx � Q dy � y
C
 P dx � Q dy

 � y
�D�

 P dx � Q dy � y
�D�

 P dx � Q dy

 yy
D

 ��Q

�x
�

�P

�y 	 dA � yy
D�

 ��Q

�x
�

�P

�y 	 dA � yy
D�

 ��Q

�x
�

�P

�y 	 dA

D�,D�
D�D�DC2

C1

CD
C2C1

DC

 � y


0
 sin � d�  y

2

1
 r 2 dr � [�cos �]0

 [ 1
3 r 3 ]1

2
�

14

3

 � yy
D

 y dA � y


0
 y

2

1
 �r sin �� r dr d�

 y
C
 y 2 dx � 3xy dy � yy

D

  �

�x
 �3xy� �

�

�y
 �y 2 �� dA

D � ��r, �� � 1 � r � 2, 0 � � � �

yD

x 2 � y 2 � 4x 2 � y 2 � 1D
C�xC y 2 dx � 3xy dy

C � C1 � C2D � D1 � D2

y
C1�C2

 P dx � Q dy � yy
D

 ��Q

�x
�

�P

�y 	 dA

�C3C3
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with center the origin and radius , where is chosen to be small enough that 
lies inside . (See Figure 10.) Let be the region bounded by and . Then its
positively oriented boundary is and so the general version of Green’s
Theorem gives

Therefore

that is,

We now easily compute this last integral using the parametrization given by
, . Thus

We end this section by using Green’s Theorem to discuss a result that was stated in
the preceding section.

Sketch of Proof of Theorem 13.3.6 We’re assuming that is a vector field
on an open simply-connected region , that and have continuous first-order
partial derivatives, and that

If is any simple closed path in and is the region that encloses, then Green’s
Theorem gives

A curve that is not simple crosses itself at one or more points and can be broken up
into a number of simple curves. We have shown that the line integrals of around
these simple curves are all 0 and, adding these integrals, we see that 
for any closed curve . Therefore, is independent of path in by Theo-
rem 13.3.3. It follows that is a conservative vector field.F

Dx
C
 F � drC

x
C
 F � dr � 0

F

�y
C
 F � dr � �y

C
 P dx � Q dy � yy

R

 ��Q

�x
�

�P

�y 	 dA � yy
R

 0 dA � 0

CRDC

 throughout D
�P

�y
�

�Q

�x

QPD
F � P i � Q j

 � y
2

0
 dt � 2

 � y
2

0
 
��a sin t���a sin t� � �a cos t��a cos t�

a 2 cos2t � a 2 sin2t
 dt

 y
C
 F � dr � y

C�
 F � dr � y

2

0
 F�r�t�� � r��t� dt

0 � t � 2r�t� � a cos t i � a sin t j

 y
C
 F � dr � y

C�
 F � dr

 y
C
 P dx � Q dy � y

C�
 P dx � Q dy

 � 0

 � yy
D

  y 2 � x 2

�x 2 � y 2 �2 �
y 2 � x 2

�x 2 � y 2 �2� dA

 y
C
 P dx � Q dy � y

�C�
 P dx � Q dy � yy

D

 ��Q

�x
�

�P

�y 	 dA

C � ��C��
C�CDC

C�aaC�
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16. , where ,
is the ellipse 

� � � � � � � � � � � � �

17. Use Green’s Theorem to find the work done by the force
in moving a particle from the 

origin along the -axis to , then along the line segment 
to , and then back to the origin along the -axis.

18. A particle starts at the point , moves along the -axis
to , and then along the semicircle to the
starting point. Use Green’s Theorem to find the work done
on this particle by the force field .

19–20 � Find the area of the given region using one of the 
formulas in Equations 5.

19. The region bounded by the hypocycloid with vector
equation ,

20. The region bounded by the curve with vector equation
,

� � � � � � � � � � � � �

21. (a) If is the line segment connecting the point to
the point , show that

(b) If the vertices of a polygon, in counterclockwise order,
are , , show that the area of
the polygon is

(c) Find the area of the pentagon with vertices , ,
, , and .

22. Let be a region bounded by a simple closed path in the 
-plane. Use Green’s Theorem to prove that the coordi-

nates of the centroid of are

where is the area of .

23. Use Exercise 22 to find the centroid of the triangle with 
vertices , , and .

24. Use Exercise 22 to find the centroid of a semicircular region
of radius .

25. A plane lamina with constant density occupies a
region in the -plane bounded by a simple closed path .
Show that its moments of inertia about the axes are

Iy �
�

3
 �y

C
 x 3 dyIx � �

�

3
 �y

C
 y 3 dx

Cxy
��x, y� � �

a

�0, 1��1, 0��0, 0�

DA

y � �
1

2A
 �y

C
 y 2 dxx �

1

2A
 �y

C
 x 2 dy

D�x, y �
xy

CD

��1, 1��0, 2��1, 3�
�2, 1��0, 0�

 A � � �xn�1 yn � xn yn�1 � � �xn y1 � x1 yn ��

 A � 1
2 ��x1 y2 � x2 y1 � � �x2 y3 � x3 y2 � � � � �

�xn, yn ��x2, y2 �, . . . , �x1, y1 �

y
C
 x dy � y dx � x1 y2 � x2 y1

�x2, y2�
�x1, y1�C

0 � t � 2r�t� � cos t i � sin3t j

0 � t � 2r�t� � cos3t i � sin3t j

F�x, y� � �x, x 3 � 3xy 2 �

y � s4 � x 2�2, 0�
x��2, 0�

y�0, 1�
�1, 0�x

F�x, y� � x�x � y� i � xy 2 j

4x 2 � y 2 � 1C
F�x, y� � y 6 i � xy 5 jx

C
 F � dr1–4 � Evaluate the line integral by two methods: (a) directly

and (b) using Green’s Theorem.

1. ,
is the rectangle with vertices (0, 0), (2, 0), (2, 3), and (0, 3)

2. ,
is the circle with center the origin and radius 1

3. ,
is the triangle with vertices (0, 0), (1, 0), and (1, 2)

4. , consists of the arc of the
parabola from to and the line segments
from to and from to 

� � � � � � � � � � � � �

5–6 � Verify Green’s Theorem by using a computer algebra
system to evaluate both the line integral and the double integral.

5. , ,
is the circle 

6. , ,
consists of the arc of the parabola from (0, 0) to 

(1, 1) followed by the line segment from (1, 1) to (0, 0)
� � � � � � � � � � � � �

7–16 � Use Green’s Theorem to evaluate the line integral along
the given positively oriented curve.

7. ,
is the square with sides , , , and 

8. ,
is the triangle with vertices (0, 0), (1, 3), and (0, 3)

9. ,
is the boundary of the region enclosed by the parabolas

and 

10. ,
is the boundary of the region enclosed by the parabola

and the line 

11. , is the circle 

12. , is the ellipse 

13. ,
consists of the line segment from to and the

top half of the circle 

14. ,
is the boundary of the region between the circles

and 

15. , where ,
consists of the circle from to 

and the line segments from to and from
to �2, 0��0, 0�

�0, 0�(s2, s2)
(s2, s2)�2, 0�x 2 � y 2 � 4C

F�x, y� � �y 2 � x 2 y� i � xy 2 jxC F � dr

x 2 � y 2 � 9x 2 � y 2 � 1
C
xC �x 3 � y 3 � dx � �x 3 � y 3 � dy

x 2 � y 2 � 4
�2, 0���2, 0�C

xC xy dx � 2x 2 dy

x 2 � xy � y 2 � 1CxC sin y dx � x cos y dy

x 2 � y 2 � 4CxC y 3 dx � x 3 dy

y � 4y � x 2
C
xC �y 2 � tan�1x� dx � �3x � sin y� dy

x � y 2y � x 2
C
xC (y � esx ) dx � �2x � cos y 2 � dy

C
xC x 2y 2 dx � 4xy 3 dy

y � 1y � 0x � 1x � 0C
xC e y dx � 2xe y dy

y � x 2C
Q�x, y� � x 2 sin yP�x, y� � y 2 sin x

x 2 � y 2 � 1C
Q�x, y� � �x 7y 6P�x, y� � x 4y 5

CAS

�0, 0��0, 4��0, 4��2, 4�
�2, 4��0, 0�y � x 2

C�xC �x 2 � y 2 � dx � 2xy dy

C
�xC xy dx � x 2y 3 dy

C
�xC y dx � x dy

C
�xC xy 2 dx � x 3 dy
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where :

Here is the region in the -plane that corresponds to the
region in the -plane under the transformation given by

, .
[Hint: Note that the left side is and apply the first

part of Equation 5. Convert the line integral over to a
line integral over and apply Green’s Theorem in the 

-plane.]uv
�S

�R
A�R�

y � h�u, v�x � t�u, v�
uvS

xyR

yy
R

 dx dy � yy
S

 � ��x, y�
��u, v� �  du dv

f �x, y� � 126. Use Exercise 25 to find the moment of inertia of a circular
disk of radius with constant density about a diameter.
(Compare with Example 4 in Section 12.5.)

27. If is the vector field of Example 5, show that
for every simple closed path that does not

pass through or enclose the origin.

28. Complete the proof of the special case of Green’s Theorem
by proving Equation 3.

29. Use Green’s Theorem to prove the change of variables for-
mula for a double integral (Formula 12.9.9) for the case 

xC F � dr � 0
F

�a

Curl and Divergence � � � � � � � � � � � � � � �

In this section we define two operations that can be performed on vector fields and that
play a basic role in the applications of vector calculus to fluid flow and electricity and
magnetism. Each operation resembles differentiation, but one produces a vector field
whereas the other produces a scalar field.

Curl

If is a vector field on and the partial derivatives of , , and
all exist, then the curl of is the vector field on defined by

As an aid to our memory, let’s rewrite Equation 1 using operator notation. We intro-
duce the vector differential operator (“del”) as

It has meaning when it operates on a scalar function to produce the gradient of :

If we think of as a vector with components , , and , we can also con-
sider the formal cross product of with the vector field as follows:

 � curl F

 � ��R

�y
�

�Q

�z 	 i � ��P

�z
�

�R

�x 	 j � ��Q

�x
�

�P

�y 	 k

 ∇ � F � � i
�

�x

P

j
�

�y

Q

k
�

�z

R �
F∇

���z���y���x∇

∇ f � i 
�f

�x
� j 

�f

�y
� k 

�f

�z
�

�f

�x
 i �

�f

�y
 j �

�f

�z
 k

f

∇ � i 
�

�x
� j 

�

�y
� k 

�

�z
 

∇

curl F � ��R

�y
�

�Q

�z 	 i � ��P

�z
�

�R

�x 	 j � ��Q

�x
�

�P

�y 	 k1

� 3FR
QP� 3F � P i � Q j � R k
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Thus, the easiest way to remember Definition 1 is by means of the symbolic expression

EXAMPLE 1 If , find .

SOLUTION Using Equation 2, we have

Recall that the gradient of a function of three variables is a vector field on and
so we can compute its curl. The following theorem says that the curl of a gradient vec-
tor field is .

Theorem If is a function of three variables that has continuous second-
order partial derivatives, then

Proof We have

by Clairaut’s Theorem.

Since a conservative vector field is one for which , Theorem 3 can be re-
phrased as follows:

If is conservative, then .

This gives us a way of verifying that a vector field is not conservative.

curl F � 0F

F � ∇ f

 � 0 i � 0 j � 0 k � 0

 � � �2 f

�y �z
�

�2 f

�z �y	 i � � �2 f

�z �x
�

�2 f

�x �z	 j � � �2 f

�x �y
�

�2 f

�y �x	 k

 curl�∇ f � � ∇ � �∇ f � � �
i
�

�x

�f

�x

j
�

�y

�f

�y

k
�

�z

�f

�z
�

curl�∇ f � � 0

f3

0

� 3f

 � �y�2 � x� i � x j � yz k

 � ��2y � xy� i � �0 � x� j � �yz � 0� k

�  �

�x
 �xyz� �

�

�y
 �xz�� k

 �  �

�y
 ��y 2 � �

�

�z
 �xyz�� i �  �

�x
 ��y 2 � �

�

�z
 �xz�� j

 curl F � ∇ � F � � i
�

�x

xz

j
�

�y

xyz

k
�

�z

�y 2 �
curl FF�x, y, z� � xz i � xyz j � y 2 k

curl F � ∇ � F2
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� Most computer algebra systems have
commands that compute the curl and
divergence of vector fields. If you have
access to a CAS, use these commands
to check the answers to the examples
and exercises in this section.

� Notice the similarity to what we know
from Section 9.4: for every
three-dimensional vector .a

a � a � 0

� Compare this with Exercise 27 in 
Section 13.3.



EXAMPLE 2 Show that the vector field is not 
conservative.

SOLUTION In Example 1 we showed that

This shows that and so, by Theorem 3, is not conservative.

The converse of Theorem 3 is not true in general, but the following theorem says
the converse is true if is defined everywhere. (More generally it is true if the domain
is simply-connected, that is, “has no hole.”) Theorem 4 is the three-dimensional ver-
sion of Theorem 13.3.6. Its proof requires Stokes’ Theorem and is sketched at the end
of Section 13.7.

Theorem If is a vector field defined on all of whose component func-
tions have continuous partial derivatives and , then is a conserva-
tive vector field.

EXAMPLE 3
(a) Show that is a conservative vector field.
(b) Find a function such that .

SOLUTION
(a) We compute the curl of :

Since and the domain of is , is a conservative vector field by 
Theorem 4.

(b) The technique for finding was given in Section 13.3. We have

Integrating (5) with respect to , we obtain

Differentiating (8) with respect to , we get , so com-
parison with (6) gives . Thus, and

fz�x, y, z� � 3xy 2z2 � h��z�

t�y, z� � h�z�ty�y, z� � 0
fy�x, y, z� � 2xyz3 � ty�y, z�y

f �x, y, z� � xy 2z3 � t�y, z�8

x

 fz�x, y, z� � 3xy 2z27

 fy�x, y, z� � 2xyz36

 fx�x, y, z� � y 2z35

f

F� 3Fcurl F � 0

 � 0

 � �6xyz2 � 6xyz2 � i � �3y 2z2 � 3y 2z2 � j � �2yz3 � 2yz3 � k

 curl F � � � F � � i
�

�x

y 2z 3

j
�

�y

2xyz 3

k
�

�z

3xy 2z 2 �
F

F � � ff
F�x, y, z� � y 2z3 i � 2xyz3 j � 3xy 2z2 k

Fcurl F � 0
� 3F4

F

Fcurl F � 0

curl F � �y�2 � x� i � x j � yz k

F�x, y, z� � xz i � xyz j � y 2 k
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Then (7) gives . Therefore

The reason for the name curl is that the curl vector is associated with rotations. One
connection is explained in Exercise 33. Another occurs when represents the veloc-
ity field in fluid flow (see Example 3 in Section 13.1). Particles near (x, y, ) in the
fluid tend to rotate about the axis that points in the direction of and the
length of this curl vector is a measure of how quickly the particles move around the
axis (see Figure 1). If at a point , then the fluid is free from rotations at

and is called irrotational at . In other words, there is no whirlpool or eddy at P.
If , then a tiny paddle wheel moves with the fluid but doesn’t rotate about
its axis. If , the paddle wheel rotates about its axis. We give a more detailed
explanation in Section 13.7 as a consequence of Stokes’ Theorem.

Divergence

If is a vector field on and , , and exist,
then the divergence of is the function of three variables defined by

Observe that is a vector field but is a scalar field. In terms of the gradient
operator , the divergence of can be written sym-
bolically as the dot product of and :

EXAMPLE 4 If , find .

SOLUTION By the definition of divergence (Equation 9 or 10) we have

If is a vector field on , then is also a vector field on . As such, we can
compute its divergence. The next theorem shows that the result is 0.

Theorem If is a vector field on and , , and 
have continuous second-order partial derivatives, then

div curl F � 0

RQP� 3F � P i � Q j � R k11

� 3curl F� 3F

 � z � xz

 div F � � � F �
�

�x
 �xz� �

�

�y
 �xyz� �

�

�z
 ��y 2 �

div FF�x, y, z� � xz i � xyz j � y 2 k

div F � � � F10

F�
F� � ����x� i � ����y� j � ����z� k

div Fcurl F

div F �
�P

�x
�

�Q

�y
�

�R

�z
9

F
�R��z�Q��y�P��x� 3F � P i � Q j � R k

curl F � 0
curl F � 0

PFP
Pcurl F � 0

curl F�x, y, z�
z

F

f �x, y, z� � xy 2z3 � K

h��z� � 0
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Proof Using the definitions of divergence and curl, we have

because the terms cancel in pairs by Clairaut’s Theorem.

EXAMPLE 5 Show that the vector field can’t be 
written as the curl of another vector field, that is, .

SOLUTION In Example 4 we showed that

and therefore . If it were true that , then Theorem 11 would
give

which contradicts . Therefore, is not the curl of another vector field.

Again, the reason for the name divergence can be understood in the context of fluid
flow. If is the velocity of a fluid (or gas), then represents the 
net rate of change (with respect to time) of the mass of fluid (or gas) flowing from 
the point per unit volume. In other words, measures the tendency
of the fluid to diverge from the point . If , then is said to be 
incompressible.

Another differential operator occurs when we compute the divergence of a gradi-
ent vector field . If is a function of three variables, we have

and this expression occurs so often that we abbreviate it as . The operator

is called the Laplace operator because of its relation to Laplace’s equation

We can also apply the Laplace operator to a vector field

in terms of its components:

� 2F � � 2P i � � 2Q j � � 2R k

F � P i � Q j � R k

� 2

� 2 f �
�2 f

�x 2 �
�2 f

�y 2 �
�2 f

�z2 � 0

� 2 � � � �

� 2 f

div�� f � � � � �� f � �
�2 f

�x 2 �
�2 f

�y 2 �
�2 f

�z2

f� f

Fdiv F � 0�x, y, z�
div F�x, y, z��x, y, z�

div F�x, y, z�F�x, y, z�

Fdiv F � 0

div F � div curl G � 0

F � curl Gdiv F � 0

div F � z � xz

F � curl G
F�x, y, z� � xz i � xyz j � y 2 k

 � 0

 �
�2R

�x �y
�

�2Q

�x �z
�

�2P

�y �z
�

�2R

�y �x
�

�2Q

�z �x
�

�2P

�z �y

 �
�

�x
 ��R

�y
�

�Q

�z 	 �
�

�y
 ��P

�z
�

�R

�x 	 �
�

�z
 ��Q

�x
�

�P

�y 	
 div curl F � � � �� � F�
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� Note the analogy with the scalar
triple product: .a � �a � b� � 0

� The reason for this interpretation of
will be explained at the end of

Section 13.8 as a consequence of the
Divergence Theorem.

div F



Vector Forms of Green’s Theorem

The curl and divergence operators allow us to rewrite Green’s Theorem in versions
that will be useful in our later work. We suppose that the plane region , its boundary
curve , and the functions and satisfy the hypotheses of Green’s Theorem. Then
we consider the vector field . Its line integral is

and, regarding as a vector field on with third component , we have

Therefore

and we can now rewrite the equation in Green’s Theorem in the vector form

Equation 12 expresses the line integral of the tangential component of along 
as the double integral of the vertical component of over the region enclosed
by . We now derive a similar formula involving the normal component of .

If is given by the vector equation

then the unit tangent vector (see Section 10.2) is

You can verify that the outward unit normal vector to is given by

(See Figure 2.) Then, from Equation 13.2.3, we have

 � y
C
 P dy � Q dx � yy

D

 ��P

�x
�

�Q

�y 	 dA

 � y
b

a
 P�x�t�, y�t�� y��t� dt � Q�x�t�, y�t�� x��t� dt

 � y
b

a
 P�x�t�, y�t�� y��t�

� r��t� � �
Q�x�t�, y�t�� x��t�

� r��t� � � � r��t� � dt

 �y
C
 F � n ds � y

b

a
 �F � n��t� � r��t� � dt

n�t� �
 y��t�

� r��t� �  i �
x��t�

� r��t� �  j

C

T�t� �
x��t�

� r��t� �  i �
 y��t�

� r��t� �  j

a � t � br�t� � x�t� i � y�t� j

C
FC

Dcurl F
CF

�y
C
 F � dr � yy

D

 �curl F� � k dA12

�curl F� � k � ��Q

�x
�

�P

�y 	k � k �
�Q

�x
�

�P

�y

curl F � � i
�

�x

P�x, y�

j
�

�y

Q�x, y�

k
�

�z

0 � � ��Q

�x
�

�P

�y 	 k

0�3F

�y
C
 F � dr � �y

C
 P dx � Q dy

F � P i � Q j
QPC

D
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by Green’s Theorem. But the integrand in this double integral is just the divergence
of . So we have a second vector form of Green’s Theorem.

This version says that the line integral of the normal component of along is equal
to the double integral of the divergence of over the region enclosed by .CDF

CF

�y
C
 F � n ds � yy

D

 div F�x, y� dA13

F
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9.

� � � � � � � � � � � � �

10. Let be a scalar field and a vector field. State whether 
each expression is meaningful. If not, explain why. If so,
state whether it is a scalar field or a vector field.
(a) (b)
(c) (d)
(e) (f)
(g) (h)
(i) ( j)
(k) (l)

11–16 � Determine whether or not the vector field is conserva-
tive. If it is conservative, find a function such that .

11.

12.

13.

14.

15.

16.
� � � � � � � � � � � � �

17. Is there a vector field on such that
? Explain.

18. Is there a vector field on such that
? Explain.

19. Show that any vector field of the form

where , , are differentiable functions, is irrotational.htf

F�x, y, z� � f �x� i � t�y� j � h�z� k

curl G � yz i � xyz j � xy k
� 3G

curl G � xy 2 i � yz2 j � zx 2 k
� 3G

F�x, y, z� � yze xz i � e xz j � xye xz k

F�x, y, z� � e x i � e z j � e y k

F�x, y, z� � xy 2z 3 i � 2x 2yz 3 j � 3x 2y 2z 2 k

F�x, y, z� � 2xy i � �x 2 � 2yz� j � y 2 k

F�x, y, z� � x i � y j � z k

F�x, y, z� � yz i � xz j � xy k

F � ∇ ff

div�curl�grad f ���grad f � � �div F�
div�div F�curl�curl F�
grad�div f �div�grad f �
grad�div F�grad F
curl�grad f �div F
grad fcurl f

Ff

y

x0

1–6 � Find (a) the curl and (b) the divergence of the vector
field.

1.

2.

3.

4.

5.

6.

� � � � � � � � � � � � �

7–9 � The vector field F is shown in the xy-plane and looks the
same in all other horizontal planes. (In other words, F is inde-
pendent of and its -component is 0.)
(a) Is div F positive, negative, or zero? Explain.
(b) Determine whether curl . If not, in which direction

does curl F point?

7.

8. y

x0

y

x0

F � 0

zz

x

x 2 � y 2 � z 2  i �
y

x 2 � y 2 � z 2  j �
z

x 2 � y 2 � z 2  kF�x, y, z� �

F�x, y, z� � e x sin y i � e x cos y j � z k

F�x, y, z� � xe y j � ye z k

F�x, y, z� � xyz i � x 2y k

F�x, y, z� � �x � 2z� i � �x � y � z� j � �x � 2y� k

F�x, y, z� � xy i � yz j � zx k
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where and satisfy the hypotheses of Green’s Theorem 
and the appropriate partial derivatives of and exist and
are continuous.

33. This exercise demonstrates a connection between the curl 
vector and rotations. Let be a rigid body rotating about
the -axis. The rotation can be described by the vector

, where is the angular speed of , that is, the tan-
gential speed of any point in divided by the distance 
from the axis of rotation. Let be the position
vector of .
(a) By considering the angle in the figure, show that the

velocity field of is given by .
(b) Show that .
(c) Show that .

34. Maxwell’s equations relating the electric field and mag-
netic field as they vary with time in a region containing
no charge and no current can be stated as follows:

where is the speed of light. Use these equations to prove
the following:

(a)

(b)

(c) [Hint: Use Exercise 27.]

(d) � 2H �
1

c 2  
�2H
�t 2

� 2E �
1

c 2  
�2E
�t 2

� � �� � H� � �
1

c 2  
�2H
�t 2

� � �� � E� � �
1

c 2  
�2E
�t 2

c

 curl H �
1

c
 
�E
�t

 curl E � �
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CD20. Show that any vector field of the form

is incompressible.

21–27 � Prove the identity, assuming that the appropriate 
partial derivatives exist and are continuous. If is a scalar field
and , are vector fields, then , , and are
defined by

21. div

22. curl

23. div

24. curl

25. div

26. div

27.
� � � � � � � � � � � � �

28–30 � Let and .

28. Verify each identity.
(a) (b)
(c)

29. Verify each identity.
(a) (b)
(c) (d)

30. If , find div . Is there a value of for which 
div ?

� � � � � � � � � � � � �

31. Use Green’s Theorem in the form of Equation 13 to prove
Green’s first identity:

where and satisfy the hypotheses of Green’s Theorem 
and the appropriate partial derivatives of and exist and
are continuous. (The quantity occurs in the
line integral. This is the directional derivative in the direc-
tion of the normal vector and is called the normal deriva-
tive of .)

32. Use Green’s first identity (Exercise 31) to prove Green’s 
second identity:
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Surface Integrals � � � � � � � � � � � � � � � �

The relationship between surface integrals and surface area is much the same as the
relationship between line integrals and arc length. Suppose is a function of three
variables whose domain includes a surface . We will define the surface integral of 
over in such a way that, in the case where , the value of the surface
integral is equal to the surface area of . We start with parametric surfaces and then
deal with the special case where is the graph of a function of two variables.

Parametric Surfaces

Suppose that a surface has a vector equation

We first assume that the parameter domain is a rectangle and we divide it into sub-
rectangles with dimensions and . Then the surface is divided into corre-
sponding patches as in Figure 1. We evaluate at a point in each patch, multiply
by the area of the patch, and form the Riemann sum

Then we take the limit as the number of patches increases and define the surface inte-
gral of f over the surface S as

Notice the analogy with the definition of a line integral (13.2.2) and also the analogy
with the definition of a double integral (12.1.5).

To evaluate the surface integral in Equation 1 we approximate the patch area 
by the area of an approximating parallelogram in the tangent plane. In our discussion
of surface area in Section 12.6 we made the approximation

where

are the tangent vectors at a corner of . If the components are continuous and and
are nonzero and nonparallel in the interior of D, it can be shown from Definition 1,

even when D is not a rectangle, that
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throughout . The value of the surface
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This should be compared with the formula for a line integral:

Observe also that

Formula 2 allows us to compute a surface integral by converting it into a double
integral over the parameter domain . When using this formula, remember that

is evaluated by writing , , and in the for-
mula for .

EXAMPLE 1 Compute the surface integral , where is the unit sphere
.

SOLUTION As in Example 4 in Section 10.5, we use the parametric representation

that is,

As in Example 1 in Section 12.6, we can compute that

Therefore, by Formula 2,

Surface integrals have applications similar to those for the integrals we have previ-
ously considered. For example, if a thin sheet (say, of aluminum foil) has the shape of
a surface and the density (mass per unit area) at the point is , then
the total mass of the sheet is

and the center of mass is , where

Moments of inertia can also be defined as before (see Exercise 35).
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Instead, we could use Formulas 64 and
67 in the Table of Integrals.
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Graphs

Any surface with equation can be regarded as a parametric surface with
parametric equations

and so we have

Thus

and

Therefore, in this case, Formula 2 becomes

Similar formulas apply when it is more convenient to project onto the -plane
or -plane. For instance, if is a surface with equation and is its pro-
jection on the -plane, then

EXAMPLE 2 Evaluate , where is the surface , ,
. (See Figure 2.)

SOLUTION Since

Formula 4 gives
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If is a piecewise-smooth surface, that is, a finite union of smooth surfaces ,
that intersect only along their boundaries, then the surface integral of over

is defined by

EXAMPLE 3 Evaluate , where is the surface whose sides are given by the
cylinder , whose bottom is the disk in the plane ,
and whose top is the part of the plane that lies above .

SOLUTION The surface is shown in Figure 3. (We have changed the usual position 
of the axes to get a better look at .) For we use and as parameters (see
Example 5 in Section 10.5) and write its parametric equations as

where

Therefore

and

Thus, the surface integral over is

Since lies in the plane , we have

The top surface lies above the unit disk and is part of the plane . So,z � 1 � xDS3
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taking in Formula 4 and converting to polar coordinates, we have

Therefore

Oriented Surfaces

In order to define surface integrals of vector fields, we need to rule out nonorientable
surfaces such as the Möbius strip shown in Figure 4. [It is named after the German
geometer August Möbius (1790–1868).] You can construct one for yourself by taking
a long rectangular strip of paper, giving it a half-twist, and taping the short edges
together as in Figure 5. If an ant were to crawl along the Möbius strip starting at a
point , it would end up on the “other side” of the strip (that is, with its upper side
pointing in the opposite direction). Then, if the ant continued to crawl in the same
direction, it would end up back at the same point without ever having crossed 
an edge. (If you have constructed a Möbius strip, try drawing a pencil line down the
middle.) Therefore, a Möbius strip really has only one side.

From now on we consider only orientable (two-sided) surfaces. We start with a sur-
face that has a tangent plane at every point on (except at any boundary
point). There are two unit normal vectors and at . (See Figure 6.) 
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If it is possible to choose a unit normal vector at every such point so that
varies continuously over , then is called an oriented surface and the given choice

of provides with an orientation. There are two possible orientations for any ori-
entable surface (see Figure 7).

For a surface given as the graph of , we use Equation 3 to associate
with the surface a natural orientation given by the unit normal vector

Since the -component is positive, this gives the upward orientation of the surface.
If is a smooth orientable surface given in parametric form by a vector function 

, then it is automatically supplied with the orientation of the unit normal vector

and the opposite orientation is given by . For instance, in Example 4 in Sec-
tion 10.5 we found the parametric representation

for the sphere . Then in Example 1 in Section 12.6 we found that

and

So the orientation induced by is defined by the unit normal vector

Observe that points in the same direction as the position vector, that is, outward
from the sphere (see Figure 8). The opposite (inward) orientation would have been
obtained (see Figure 9) if we had reversed the order of the parameters because

.
For a closed surface, that is, a surface that is the boundary of a solid region , the 

convention is that the positive orientation is the one for which the normal vectors
point outward from , and inward-pointing normals give the negative orientation (see
Figures 8 and 9).
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Surface Integrals of Vector Fields

Suppose that is an oriented surface with unit normal vector , and imagine a fluid
with density and velocity field flowing through . (Think of as an
imaginary surface that doesn’t impede the fluid flow, like a fishing net across a
stream.) Then the rate of flow (mass per unit time) per unit area is . If we divide 
into small patches , as in Figure 10 (compare with Figure 1), then is nearly pla-
nar and so we can approximate the mass of fluid crossing in the direction of the
normal per unit time by the quantity

where , , and are evaluated at some point on . (Recall that the component of the
vector in the direction of the unit vector is .) By summing these quantities
and taking the limit we get, according to Definition 1, the surface integral of the func-
tion over :

and this is interpreted physically as the rate of flow through .
If we write , then is also a vector field on and the integral in Equation 7

becomes

A surface integral of this form occurs frequently in physics, even when is not ,
and is called the surface integral (or flux integral ) of over .

Definition If is a continuous vector field defined on an oriented surface 
with unit normal vector , then the surface integral of over S is

This integral is also called the flux of across .

In words, Definition 8 says that the surface integral of a vector field over is equal
to the surface integral of its normal component over (as previously defined).

If is given by a vector function , then is given by Equation 6, and from
Definition 8 and Equation 2 we have

where is the parameter domain. Thus, we haveD
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EXAMPLE 4 Find the flux of the vector field across the
unit sphere .

SOLUTION Using the parametric representation

we have

and, from Example 1 in Section 12.6,

Therefore

and, by Formula 9, the flux is

by the same calculation as in Example 1.

If, for instance, the vector field in Example 4 is a velocity field describing the flow
of a fluid with density 1, then the answer, , represents the rate of flow through the
unit sphere in units of mass per unit time.

In the case of a surface given by a graph , we can think of and as
parameters and use Equation 3 to write

Thus, Formula 9 becomes
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This formula assumes the upward orientation of ; for a downward orientation we
multiply by . Similar formulas can be worked out if is given by or

. (See Exercises 31 and 32.)

EXAMPLE 5 Evaluate , where and is the
boundary of the solid region enclosed by the paraboloid and the
plane .

SOLUTION consists of a parabolic top surface and a circular bottom surface . (See
Figure 12.) Since is a closed surface, we use the convention of positive (outward)
orientation. This means that is oriented upward and we can use Equation 10 with

being the projection of on the -plane, namely, the disk . Since

on and

we have

The disk is oriented downward, so its unit normal vector is and we have

since on . Finally, we compute, by definition, as the sum of the
surface integrals of over the pieces and :

Although we motivated the surface integral of a vector field using the example of
fluid flow, this concept also arises in other physical situations. For instance, if is an
electric field (see Example 5 in Section 13.1), then the surface integral
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is called the electric flux of through the surface . One of the important laws of
electrostatics is Gauss’s Law, which says that the net charge enclosed by a closed sur-
face is

where is a constant (called the permittivity of free space) that depends on the units
used. (In the SI system, C � .) Therefore, if the vector field

in Example 4 represents an electric field, we can conclude that the charge enclosed
by is .

Another application of surface integrals occurs in the study of heat flow. Suppose
the temperature at a point in a body is . Then the heat flow is defined
as the vector field

where is an experimentally determined constant called the conductivity of the sub-
stance. The rate of heat flow across the surface in the body is then given by the sur-
face integral

EXAMPLE 6 The temperature in a metal ball is proportional to the square of the
distance from the center of the ball. Find the rate of heat flow across a sphere of 
radius with center at the center of the ball.

SOLUTION Taking the center of the ball to be at the origin, we have

where is the proportionality constant. Then the heat flow is

where is the conductivity of the metal. Instead of using the usual parametrization
of the sphere as in Example 4, we observe that the outward unit normal to the
sphere at the point is

and so

But on we have , so . Therefore, the rate of
heat flow across is

 � �2aKCA�S� � �2aKC�4a 2 � � �8KCa 3

 yy
S

 F � dS � yy
S

 F � n dS � �2aKC yy
S

 dS

S
F � n � �2aKCx 2 � y 2 � z2 � a 2S

 F � n � �
2KC

a
 �x 2 � y 2 � z2 �

 n �
1

a
 �x i � y j � z k�

�x, y, z�x 2 � y 2 � z2 � a 2

K

F�x, y, z� � �K ∇u � �KC�2x i � 2y j � 2z k�

C
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a
S

u
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S

 F � dS � �K yy
S
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S
K
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13. ,
is the part of the plane that lies inside the 

cylinder 

14. ,
is the boundary of the region enclosed by the cylinder

and the planes and 

15. ,
is the hemisphere ,

16. ,
is the part of the sphere that lies above

the cone 

17. ,
is the part of the cylinder between the planes

and 

18. ,
consists of the cylinder in Exercise 17 together with its

top and bottom disks
� � � � � � � � � � � � �

19–27 � Evaluate the surface integral for the given
vector field and the oriented surface . In other words, find
the flux of across . For closed surfaces, use the positive 
(outward) orientation.

19. , is the part of the 
paraboloid that lies above the square

, and has upward orientation

20. ,
is the helicoid of Exercise 6 with upward orientation

21. ,
is the part of the plane in the first octant

and has downward orientation

22. ,
is the part of the cone beneath the plane

with downward orientation

23. ,
is the sphere 

24. , is the hemisphere
with upward orientation

25. ,
consists of the paraboloid , , and

the disk ,

26. ,
is the surface of Exercise 14

27. ,
is the cube with vertices 

� � � � � � � � � � � � �

��1, �1, �1�S
F�x, y, z� � x i � 2y j � 3z k

S
F�x, y, z� � x i � y j � 5 k

y � 1x 2 � z2 � 1
0 � y � 1y � x 2 � z2S

F�x, y, z� � y j � z k

z � s16 � x 2 � y 2

SF�x, y, z� � �y i � x j � 3z k

x 2 � y 2 � z2 � 9S
F�x, y, z� � x i � y j � z k

z � 1
z � sx 2 � y 2S

F�x, y, z� � x i � y j � z4 k

x � y � z � 1S
F�x, y, z� � xze y i � xze y j � z k

S
F�x, y, z� � y i � x j � z2 k

0 � y � 10 � x � 1,
z � 4 � x 2 � y 2

SF�x, y, z� � xy i � yz j � zx k

SF
SF
xxS F � dS

S
xxS �x 2 � y 2 � z2 � dS

z � 2z � 0
x 2 � y 2 � 9S

xx
S
 �x 2 y � z2 � dS

z � sx 2 � y 2

x 2 � y 2 � z2 � 1S
xx

S
 xyz dS

z � 0x 2 � y 2 � z2 � 4S
xx

S
 �x 2z � y 2z� dS

x � y � 2y � 0x 2 � z2 � 1
S
xx

S
 xy dS

x 2 � y 2 � 1
z � y � 3S

xx
S
 yz dS1. Let be the cube with vertices . Approximate

by using a Riemann sum as in Def-
inition 1, taking the patches to be the squares that are the
faces of the cube and the points to be the centers of the
squares.

2. A surface consists of the cylinder ,
, together with its top and bottom disks.

Suppose you know that is a continuous function with
, and .

Estimate the value of by using a Riemann
sum, taking the patches to be four quarter-cylinders and
the top and bottom disks.

3. Let be the hemisphere , and 
suppose is a continuous function with 

, and . 
By dividing into four patches, estimate the value of

.

4. Suppose that , where is a 
function of one variable such that . Evaluate

, where is the sphere .

5–18 � Evaluate the surface integral.

5. ,
is the surface with parametric equations ,

, ,

6. ,
is the helicoid with vector equation

, ,

7. ,
is the part of the plane that lies above

the rectangle 

8. ,
is the triangular region with vertices (1, 0, 0), (0, 2, 0),

and (0, 0, 2)

9. ,
is the part of the plane that lies in the 

first octant

10. ,
is the surface , ,

11. ,
is the surface , ,

12. ,
is the part of the paraboloid that lies in

front of the plane x � 0
x � 4 � y 2 � z2S

xxS �y 2 � z2 � dS

0 � z � 20 � x � 2y � x 2 � 4zS
xxS x dS

0 � y � 10 � x � 1z � 2
3 �x 3�2 � y 3�2 �S

xxS y dS

x � y � z � 1S
xxS yz dS

S
xxS xy dS

�0, 3� � �0, 2�
z � 1 � 2x � 3yS

xxS x
2yz dS

0 � v � 
0 � u � 1r�u, v� � u cos v i � u sin v j � v k

S
xxS s1 � x 2 � y 2 dS

u 2 � v2 � 1z � u � vy � u � v
x � uvS

xxS yz dS

x 2 � y 2 � z2 � 4SxxS f �x, y, z� dS
t�2� � �5

tf �x, y, z� � t(sx 2 � y 2 � z 2 )

xxH f �x, y, z� dS
H

f ��3, �4, 5� � 12f �3, �4, 5� � 8, f ��3, 4, 5� � 9
f �3, 4, 5� � 7,f

x 2 � y 2 � z2 � 50, z � 0H

Sij

xxS f �x, y, z� dS
f �0, 0, �1� � 4f �0, �1, 0� � 3f ��1, 0, 0� � 2,

f
�1 � z � 1

x 2 � y 2 � 1S

Pij*
Sij

xxS sx 2 � 2y 2 � 3z 2 dS
��1, �1, �1�S
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(b) Find the moment of inertia about the -axis of the 
funnel in Exercise 34.

36. The conical surface , , has constant
density . Find (a) the center of mass and (b) the moment of
inertia about the -axis.

37. A fluid with density 1200 flows with velocity
. Find the rate of flow upward through the

paraboloid , .

38. A fluid has density 1500 and velocity field
. Find the rate of flow outward

through the sphere .

39. Use Gauss’s Law to find the charge contained in the solid
hemisphere , , if the electric field is

.

40. Use Gauss’s Law to find the charge enclosed by the cube 
with vertices if the electric field is

.

41. The temperature at the point in a substance with
conductivity is . Find the
rate of heat flow inward across the cylindrical surface

, .

42. The temperature at a point in a ball with conductivity is
inversely proportional to the distance from the center of the
ball. Find the rate of heat flow across a sphere of radius 
with center at the center of the ball.

aS

K

0 � x � 4y 2 � z2 � 6

u�x, y, z� � 2y 2 � 2z2K � 6.5
�x, y, z�

E�x, y, z� � x i � y j � z k
��1, �1, �1�

E�x, y, z� � x i � y j � 2z k
z � 0x 2 � y 2 � z2 � a 2

x 2 � y 2 � z2 � 25
v � �y i � x j � 2z k

x 2 � y 2 � 36z � 9 �
1
4 �x 2 � y 2 �

v � y i � j � z k

z
k

0 � z � az2 � x 2 � y 2

z28. Let be the surface , , .
(a) Evaluate correct to four decimal places.
(b) Find the exact value of .

29. Find the value of correct to four decimal
places, where is the part of the paraboloid

that lies above the -plane.

30. Find the flux of 
across the part of the cylinder that lies above 
the -plane and between the planes and 
with upward orientation. Illustrate by using a computer
algebra system to draw the cylinder and the vector field on
the same screen.

31. Find a formula for similar to Formula 10 for the
case where is given by and is the unit
normal that points toward the left.

32. Find a formula for similar to Formula 10 for the
case where is given by and is the unit nor-
mal that points forward (that is, toward the viewer when the
axes are drawn in the usual way).

33. Find the center of mass of the hemisphere
, , if it has constant density.

34. Find the mass of a thin funnel in the shape of a cone
, , if its density function is

.

35. (a) Give an integral expression for the moment of inertia 
about the -axis of a thin sheet in the shape of a surface

if the density function is .�S
z

Iz

��x, y, z� � 10 � z
1 � z � 4z � sx 2 � y 2

z � 0x 2 � y 2 � z2 � a 2

nx � k�y, z�S
xxS F � dS

ny � h�x, z�S
xxS F � dS

x � 2x � �2xy
4y 2 � z2 � 4

F�x, y, z� � sin�xyz� i � x 2 y j � z2e x�5 kCAS

xyz � 3 � 2x 2 � y 2
S

xxS x
2 y 2z2 dSCAS

xxS x
2 yz dS

xxS xyz dS
0 � y � 10 � x � 1z � xySCAS

Stokes’ Theorem � � � � � � � � � � � � � � � �

Stokes’ Theorem can be regarded as a higher-dimensional version of Green’s Theo-
rem. Whereas Green’s Theorem relates a double integral over a plane region to a
line integral around its plane boundary curve, Stokes’ Theorem relates a surface inte-
gral over a surface to a line integral around the boundary curve of (which is a space
curve). Figure 1 shows an oriented surface with unit normal vector . The orientation
of induces the positive orientation of the boundary curve C shown in the figure.
This means that if you walk in the positive direction around with your head point-
ing in the direction of , then the surface will always be on your left.

Stokes’ Theorem Let be an oriented piecewise-smooth surface that is bounded
by a simple, closed, piecewise-smooth boundary curve with positive orienta-
tion. Let be a vector field whose components have continuous partial deriva-
tives on an open region in that contains . Then

y
C
 F � dr � yy

S

 curl F � dS

S� 3
F

C
S

n
C

S
n

SS

D
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Since

Stokes’ Theorem says that the line integral around the boundary curve of of the tan-
gential component of is equal to the surface integral of the normal component of the
curl of .

The positively oriented boundary curve of the oriented surface is often written as 
, so Stokes’ Theorem can be expressed as

There is an analogy among Stokes’ Theorem, Green’s Theorem, and the Fundamental
Theorem of Calculus. As before, there is an integral involving derivatives on the left
side of Equation 1 (recall that is a sort of derivative of ) and the right side
involves the values of only on the boundary of .

In fact, in the special case where the surface is flat and lies in the -plane with
upward orientation, the unit normal is , the surface integral becomes a double inte-
gral, and Stokes’ Theorem becomes

This is precisely the vector form of Green’s Theorem given in Equation 13.5.12. Thus,
we see that Green’s Theorem is really a special case of Stokes’ Theorem.

Although Stokes’ Theorem is too difficult for us to prove in its full generality, we
can give a proof when is a graph and , , and are well behaved.

Proof of a Special Case of Stokes’ Theorem We assume that the equation of is
, where has continuous second-order partial derivatives and

is a simple plane region whose boundary curve corresponds to . If the orien-
tation of is upward, then the positive orientation of corresponds to the positive
orientation of . (See Figure 2.) We are given that , where the
partial derivatives of , , and are continuous.

Since is a graph of a function, we can apply Formula 13.6.10 with replaced
by . The result is

where the partial derivatives of , , and are evaluated at . If

a � t � by � y�t�x � x�t�

�x, y, t�x, y��RQP

� yy
D

 ���R
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�y
� ��Q
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�y 	� dA 

yy
S

 curl F � dS2

curl F
FS

RQP
F � P i � Q j � R kC1

CS
CC1D

t�x, y� � Dz � t�x, y�,
S

CSFS

y
C
 F � dr � yy

S

 curl F � dS � yy
S

 �curl F� � k dA

k
xyS

SF
Fcurl F

yy
S

 curl F � dS � y
�S

 F � dr1

�S
S

F
F

S

yy
S

 curl F � dS � yy
S

 curl F � n dSandy
C
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C
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� Stokes’ Theorem is named after the
Irish mathematical physicist Sir George
Stokes (1819–1903). Stokes was a pro-
fessor at Cambridge University (in fact 
he held the same position as Newton,
Lucasian Professor of Mathematics) and
was especially noted for his studies of
fluid flow and light. What we call
Stokes’ Theorem was actually discovered
by the Scottish physicist Sir William
Thomson (1824–1907, known as Lord
Kelvin). Stokes learned of this theorem 
in a letter from Thomson in 1850 and
asked students to prove it on an exami-
nation at Cambridge University in 1854.
We don’t know if any of those students
was able to do so.



is a parametric representation of , then a parametric representation of is

This allows us, with the aid of the Chain Rule, to evaluate the line integral as follows:

where we have used Green’s Theorem in the last step. Then, using the Chain Rule
again and remembering that , , and are functions of , , and and that is
itself a function of and , we get

Four of the terms in this double integral cancel and the remaining six terms can be
arranged to coincide with the right side of Equation 2. Therefore

EXAMPLE 1 Evaluate , where and is the
curve of intersection of the plane and the cylinder . (Orient

to be counterclockwise when viewed from above.)

SOLUTION The curve (an ellipse) is shown in Figure 3. Although could be
evaluated directly, it’s easier to use Stokes’ Theorem. We first compute

Although there are many surfaces with boundary C, the most convenient choice is
the elliptical region S in the plane that is bounded by . If we orient 
upward, then has the induced positive orientation. The projection of on the SDC

SCy � z � 2
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-plane is the disk and so using Equation 13.6.10 with
, we have

EXAMPLE 2 Use Stokes’ Theorem to compute the integral , where
and is the part of the sphere that

lies inside the cylinder and above the -plane. (See Figure 4.)

SOLUTION To find the boundary curve we solve the equations and
. Subtracting, we get and so (since ). Thus, is

the circle given by the equations , . A vector equation of is

so

Also, we have

Therefore, by Stokes’ Theorem,

Note that in Example 2 we computed a surface integral simply by knowing the val-
ues of on the boundary curve . This means that if we have another oriented surface
with the same boundary curve , then we get exactly the same value for the surface
integral!

In general, if and are oriented surfaces with the same oriented boundary curve
and both satisfy the hypotheses of Stokes’ Theorem, then

This fact is useful when it is difficult to integrate over one surface but easy to integrate
over the other.

yy
S1

 curl F � dS � y
C
 F � dr � yy

S2

 curl F � dS3

C
S2S1

C
CF

 � s3 y
2

0
 cos 2t dt � 0

 � y
2

0
 (�s3 sin2t � s3 cos2t) dt

 yy
S

 curl F � dS � y
C
 F � dr � y

2

0
 F�r�t�� � r��t� dt

F�r�t�� � s3 sin t i � s3 cos t j � cos t sin t k

 r��t� � �sin t i � cos t j

0 � t � 2 r�t� � cos t i � sin t j � s3 k

Cz � s3x 2 � y 2 � 1
Cz � 0z � s3z2 � 3x 2 � y 2 � 1

x 2 � y 2 � z2 � 4C

xyx 2 � y 2 � 1
x 2 � y 2 � z2 � 4SF�x, y, z� � yz i � xz j � xy k

xxS curl F � dS

 � 1
2 �2� � 0 � 

 � y
2

0

  r 2

2
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r 3

3
 sin ��

0
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 d� � y
2

0
 ( 1

2 �
2
3 sin �) d�

 � y
2

0
 y

1

0
 �1 � 2r sin �� r dr d�

 y
C
 F � dr � yy

S
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D
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974 � CHAPTER 13 VECTOR CALCULUS

FIGURE 4

0

y

z

x

S

≈+¥+z@=4

C

≈+¥=1



We now use Stokes’ Theorem to throw some light on the meaning of the curl vec-
tor. Suppose that is an oriented closed curve and represents the velocity field in
fluid flow. Consider the line integral

and recall that is the component of in the direction of the unit tangent vector
. This means that the closer the direction of is to the direction of , the larger the

value of . Thus, is a measure of the tendency of the fluid to move around
and is called the circulation of around . (See Figure 5.)

Now let be a point in the fluid and let be a small disk with radius 
and center Then ( for all points on because is
continuous. Thus, by Stokes’ Theorem, we get the following approximation to the cir-
culation around the boundary circle :

This approximation becomes better as and we have

Equation 4 gives the relationship between the curl and the circulation. It shows that
is a measure of the rotating effect of the fluid about the axis n. The curling

effect is greatest about the axis parallel to .
Finally, we mention that Stokes’ Theorem can be used to prove Theorem 13.5.4

(which states that if on all of , then is conservative). From our 
previous work (Theorems 13.3.3 and 13.3.4), we know that is conservative if

for every closed path . Given , suppose we can find an orientable sur-
face whose boundary is . (This can be done, but the proof requires advanced tech-
niques.) Then Stokes’ Theorem gives

A curve that is not simple can be broken into a number of simple curves, and the 
integrals around these simple curves are all 0. Adding these integrals, we obtain

for any closed curve .CxC F � dr � 0

y
C
 F � dr � yy

S

 curl F � dS � yy
S

 0 � dS � 0

CS
CC0xC F � dr �

F
F� 3curl F � 0

curl v
curl v � n
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� Imagine a tiny paddle wheel placed
in the fluid at a point , as in Figure 6;
the paddle wheel rotates fastest when its
axis is parallel to .curl v
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9. ,
is the curve of intersection of the plane and

the cylinder 

10. ,
is the boundary of the part of the paraboloid

in the first octant
� � � � � � � � � � � � �

11. (a) Use Stokes’ Theorem to evaluate , where

and is the curve of intersection of the plane
and the cylinder oriented

counterclockwise as viewed from above.

; (b) Graph both the plane and the cylinder with domains 
chosen so that you can see the curve and the surface 
that you used in part (a).

; (c) Find parametric equations for and use them to graph .

12. (a) Use Stokes’ Theorem to evaluate , where
and is the curve of

intersection of the hyperbolic paraboloid 
and the cylinder oriented counterclockwise
as viewed from above.

; (b) Graph both the hyperbolic paraboloid and the cylinder
with domains chosen so that you can see the curve 
and the surface that you used in part (a).

; (c) Find parametric equations for and use them to 
graph .

13–15 � Verify that Stokes’ Theorem is true for the given vector
field and surface .

13. ,
is the part of the paraboloid that lies below

the plane oriented upward

14. ,
is the part of the plane that lies in the

first octant, oriented upward

15. ,
is the hemisphere , , oriented in

the direction of the positive -axis

� � � � � � � � � � � � �

16. Let

Let be the curve in Exercise 12 and consider all possible
smooth surfaces whose boundary curve is . Find the val-
ues of , , and for which is independent of the
choice of .S

xxS F � dScba
CS

C

F�x, y, z� � �ax 3 � 3xz2, x 2 y � by 3, cz3 �

y
y � 0x 2 � y 2 � z 2 � 1S

F�x, y, z� � y i � z j � x k

2x � y � z � 2S
F�x, y, z� � x i � y j � xyz k

z � 1,
z � x 2 � y 2S

F�x, y, z� � y 2 i � x j � z 2 k

SF

C
C

C

x 2 � y 2 � 1
z � y 2 � x 2

CF�x, y, z� � x 2 y i �
1
3 x 3 j � xy k

xC F � dr

CC

C

x 2 � y 2 � 9x � y � z � 1
C

F�x, y, z� � x 2z i � xy 2 j � z2 k

xC F � dr

z � 1 � x 2 � y 2
C
F�x, y, z� � x i � y j � �x 2 � y 2 � k

x 2 � y 2 � 4
z � x � 4C

F�x, y, z� � 2z i � 4x j � 5y k1. A hemisphere and a portion of a paraboloid are shown.
Suppose is a vector field on whose components have
continuous partial derivatives. Explain why

2–6 � Use Stokes’ Theorem to evaluate .

2. ,
S is the part of the paraboloid that lies
above the plane , oriented upward

3. ,
S is the hemisphere , ,
oriented upward

4. ,
is the part of the hemisphere that lies

inside the cylinder , oriented in the direction of 
the positive -axis

5. ,
consists of the top and the four sides (but not the bottom) 

of the cube with vertices , oriented outward
[Hint: Use Equation 3.]

6. ,
consists of the four sides of the pyramid with vertices

, , , , and that lie to 
the right of the -plane, oriented in the direction of the
positive -axis [Hint: Use Equation 3.]

� � � � � � � � � � � � �

7–10 � Use Stokes’ Theorem to evaluate . In each case
is oriented counterclockwise as viewed from above.

7. ,
is the triangle with vertices (1, 0, 0), (0, 1, 0),

and (0, 0, 1)

8. ,
is the boundary of the part of the plane 

in the first octant
2x � y � 2z � 2C

F�x, y, z� � e�x i � e x j � e z k

C
F�x, y, z� � �x � y 2 � i � �y � z2 � j � �z � x 2 � k

C
x

C
 F � dr

y
xz

�0, 1, 0��1, 0, 1��0, 0, 1��1, 0, 0��0, 0, 0�
S
F�x, y, z� � xy i � e z j � xy 2 k

��1, �1, �1�
S
F�x, y, z� � xyz i � xy j � x 2 yz k

x
y 2 � z2 � 4

x � s9 � y 2 � z 2S
F�x, y, z� � �x � tan�1yz� i � y 2z j � z k

z � 0x 2 � y 2 � z2 � 4
F�x, y, z� � x 2e yz i � y 2e xz j � z2e xy k

z � 5
z � 9 � x 2 � y 2

F�x, y, z� � yz i � xz j � xy k

xxS curl F � dS

H

4

z

x y22

P

4

z

x y22

yy
H

 curl F � dS � yy
P

 curl F � dS

�3F
PH
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Three Men and Two Theorems

Although two of the most important theorems in vector calculus are named after George
Green and George Stokes, a third man, William Thomson (also known as Lord Kelvin),
played a large role in the formulation, dissemination, and application of both of these
results. All three men were interested in how the two theorems could help to explain and
predict physical phenomena in electricity and magnetism and fluid flow. The basic facts of
the story are given in the margin notes on pages 946 and 972.

Write a report on the historical origins of Green’s Theorem and Stokes’ Theorem. Explain
the similarities and relationship between the theorems. Discuss the roles that Green, Thom-
son, and Stokes played in discovering these theorems and making them widely known.
Show how both theorems arose from the investigation of electricity and magnetism and
were later used to study a variety of physical problems.

The dictionary edited by Gillispie [2] is a good source for both biographical and scientific
information. The book by Hutchinson [5] gives an account of Stokes’ life and the book by
Thompson [8] is a biography of Lord Kelvin. The articles by Grattan-Guinness [3] and 
Gray [4] and the book by Cannell [1] give background on the extraordinary life and works
of Green. Additional historical and mathematical information is found in the books by
Katz [6] and Kline [7].

1. D. M. Cannell, George Green, Mathematician and Physicist 1793–1841: The Back-
ground to his Life and Work (London: Athlone Press, 1993).

2. C. C. Gillispie, ed., Dictionary of Scientific Biography (New York: Scribner’s, 1974).
See the article on Green by P. J. Wallis in Volume XV and the articles on Thomson by
Jed Buchwald and on Stokes by E. M. Parkinson in Volume XIII.

3. I. Grattan-Guinness, “Why did George Green write his essay of 1828 on electricity and
magnetism?” Amer. Math. Monthly, Vol. 102 (1995), pp. 387–396.

4. J. Gray, “There was a jolly miller.” The New Scientist, Vol. 139 (1993), pp. 24–27.

5. G. E. Hutchinson, The Enchanted Voyage (New Haven: Yale University Press, 1962).

6. Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins,
1993), pp. 678–680.

7. Morris Kline, Mathematical Thought from Ancient to Modern Times (New York: Oxford 
University Press, 1972), pp. 683–685.

8. Sylvanus P. Thompson, The Life of Lord Kelvin (New York: Chelsea, 1976).

Writing
Project

� The photograph shows a stained-
glass window at Cambridge University
in honor of George Green.

19. If is a sphere and satisfies the hypotheses of Stokes’
Theorem, show that .

20. Suppose and satisfy the hypotheses of Stokes’ Theorem
and , have continuous second-order partial derivatives.
Use Exercises 22 and 24 in Section 13.5 to show the 
following.
(a)

(b)

(c) xC � f �t � t� f � � dr � 0

xC � f � f � � dr � 0

xC � f �t� � dr � xxS �� f � �t� � dS

tf
CS

xxS curl F � dS � 0
FS17. Calculate the work done by the force field

when a particle moves under its influence around the edge
of the part of the sphere that lies in the
first octant, in a counterclockwise direction as viewed from
above.

18. Evaluate ,
where is the curve ,

. [Hint: Observe that lies on the surface
.]z � 2xy

C0 � t � 2
r�t� � �sin t, cos t, sin 2t�C

xC �y � sin x� dx � �z2 � cos y� dy � x 3 dz

x 2 � y 2 � z2 � 4

F�x, y, z� � �x x � z2 � i � �y y � x 2 � j � �z z � y 2 � k



The Divergence Theorem � � � � � � � � � � � � �

In Section 13.5 we rewrote Green’s Theorem in a vector version as

where is the positively oriented boundary curve of the plane region . If we were
seeking to extend this theorem to vector fields on , we might make the guess that

where is the boundary surface of the solid region . It turns out that Equation 1 is
true, under appropriate hypotheses, and is called the Divergence Theorem. Notice its
similarity to Green’s Theorem and Stokes’ Theorem in that it relates the integral of a
derivative of a function ( in this case) over a region to the integral of the original
function over the boundary of the region.

At this stage you may wish to review the various types of regions over which we
were able to evaluate triple integrals in Section 12.7. We state and prove the Diver-
gence Theorem for regions that are simultaneously of types 1, 2, and 3 and we call
such regions simple solid regions. (For instance, regions bounded by ellipsoids or
rectangular boxes are simple solid regions.) The boundary of is a closed surface, and
we use the convention, introduced in Section 13.6, that the positive orientation is out-
ward; that is, the unit normal vector is directed outward from .

The Divergence Theorem Let be a simple solid region and let S be the boundary
surface of E, given with positive (outward) orientation. Let be a vector field
whose component functions have continuous partial derivatives on an open
region that contains . Then

Thus, the Divergence Theorem states that, under the given conditions, the flux of
across the boundary surface of is equal to the triple integral of the divergence of
over .

Proof Let . Then

so yyy
E

 div F dV � yyy
E

 
�P

�x
 dV � yyy

E

 
�Q

�y
 dV � yyy

E

 
�R

�z
 dV

div F �
�P

�x
�

�Q

�y
�

�R

�z

F � P i � Q j � R k

EF
EF

yy
S

 F � dS � yyy
E

 div F dV

E

F
E

En

E

E

F
div F

ES

yy
S

 F � n dS � yyy
E

 div F�x, y, z� dV1

� 3
DC

y
C
 F � n ds � yy

D

 div F�x, y� dA

13.8
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� The Divergence Theorem is sometimes
called Gauss’s Theorem after the great
German mathematician Karl Friedrich
Gauss (1777–1855), who discovered
this theorem during his investigation 
of electrostatics. In Eastern Europe the
Divergence Theorem is known as 
Ostrogradsky’s Theorem after the Russian
mathematician Mikhail Ostrogradsky
(1801–1862), who published this result
in 1826.



If is the unit outward normal of , then the surface integral on the left side of the
Divergence Theorem is

Therefore, to prove the Divergence Theorem, it suffices to prove the following three
equations:

To prove Equation 4 we use the fact that is a type 1 region:

where is the projection of onto the -plane. By Equation 12.7.6, we have

and, therefore, by the Fundamental Theorem of Calculus,

The boundary surface consists of three pieces: the bottom surface , the top
surface , and possibly a vertical surface , which lies above the boundary curve of
D. (See Figure 1. It might happen that doesn’t appear, as in the case of a sphere.)
Notice that on we have , because k is vertical and n is horizontal, and so

Thus, regardless of whether there is a vertical surface, we can write

The equation of is , , and the outward normal points
upward, so from Equation 13.6.10 (with replaced by ) we have

yy
S2

 R k � n dS � yy
D

 R�x, y, u2�x, y�� dA

R kF
n�x, y� � Dz � u2�x, y�S2

yy
S

 R k � n dS � yy
S1

 R k � n dS � yy
S2

 R k � n dS6

yy
S3

 R k � n dS � yy
S3

 0 dS � 0

k � n � 0S3

S3

S3S2

S1S

yyy
E

 
�R

�z
 dV � yy

D

 �R�x, y, u2�x, y�� � R�x, y, u1�x, y��� dA5

yyy
E

 
�R

�z
 dV � yy

D

 y
u2�x, y�

u1�x, y�
 
�R

�z
 �x, y, z� dz� dA

xyED

E � ��x, y, z� � �x, y� � D, u1�x, y� � z � u2�x, y��

E

 yy
S

 R k � n dS � yyy
E

 
�R

�z
 dV4

 yy
S

 Q j � n dS � yyy
E

 
�Q

�y
 dV3

 yy
S

 P i � n dS � yyy
E

 
�P

�x
 dV2

 � yy
S

 P i � n dS � yy
S

 Q j � n dS � yy
S

 R k � n dS

 yy
S

 F � dS � yy
S

 F � n dS � yy
S

 �P i � Q j � R k� � n dS

Sn
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FIGURE 1

0

y

z

x D

E
S£

S™ {z=u™(x, y)}

S¡ (z=u¡(x, y))



On we have , but here the outward normal points downward, so we 
multiply by :

Therefore, Equation 6 gives

Comparison with Equation 5 shows that

Equations 2 and 3 are proved in a similar manner using the expressions for as a
type 2 or type 3 region, respectively.

EXAMPLE 1 Find the flux of the vector field over the unit
sphere .

SOLUTION First we compute the divergence of :

The unit sphere is the boundary of the unit ball given by .
Thus, the Divergence Theorem gives the flux as

EXAMPLE 2 Evaluate , where

and is the surface of the region bounded by the parabolic cylinder 
and the planes , , and . (See Figure 2.)

0

y

z

(0, 0, 1)

(1, 0, 0) (0, 2, 0)
x

y=2-z

z=1-≈FIGURE 2

y � z � 2y � 0z � 0
z � 1 � x 2ES

F�x, y, z� � xy i � (y 2 � exz2) 

j � sin�xy� k

yy
S

 F � dS

 � V�B� � 4
3  �1�3 �

4

3

 yy
S

 F � dS � yyy
B

div F dV � yyy
B

 1 dV

x 2 � y 2 � z2 � 1BS

div F �
�

�x
 �z� �

�

�y
 �y� �

�

�z
 �x� � 1

F

x 2 � y 2 � z2 � 1
F�x, y, z� � z i � y j � x k

E

yy
S

 R k � n dS � yyy
E

 
�R

�z
 dV

yy
S

 R k � n dS � yy
D

 �R�x, y, u2�x, y�� � R�x, y, u1�x, y��� dA

yy
S1

 R k � n dS � �yy
D

 R�x, y, u1�x, y�� dA

�1
nz � u1�x, y�S1
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� Notice that the method of proof of the
Divergence Theorem is very similar to
that of Green’s Theorem.

� The solution in Example 1 should 
be compared with the solution in 
Example 4 in Section 13.6.



SOLUTION It would be extremely difficult to evaluate the given surface integral
directly. (We would have to evaluate four surface integrals corresponding to the four
pieces of .) Furthermore, the divergence of is much less complicated than 
itself:

Therefore, we use the Divergence Theorem to transform the given surface integral
into a triple integral. The easiest way to evaluate the triple integral is to express as
a type 3 region:

Then we have

Although we have proved the Divergence Theorem only for simple solid regions,
it can be proved for regions that are finite unions of simple solid regions. (The proce-
dure is similar to the one we used in Section 13.4 to extend Green’s Theorem.)

For example, let’s consider the region that lies between the closed surfaces and
, where lies inside . Let and be outward normals of and . Then the

boundary surface of is and its normal is given by on and
on . (See Figure 3.) Applying the Divergence Theorem to , we get

Let’s apply this to the electric field (see Example 5 in Section 13.1):

E�x� �
�Q

� x �3  x

 � �yy
S1

 F � dS � yy
S2

 F � dS

 � yy
S1

  F � ��n1� dS � yy
S2

 F � n2  dS

 yyy
E

 div F dV � yy
S

 F � dS � yy
S

 F � n dS7

SS2n � n2

S1n � �n1nS � S1 � S2E
S2S1n2n1S2S1S2

S1E

 � �y
1

0
 �x 6 � 3x 4 � 3x 2 � 7� dx �

184

35

 � �
1
2 y

1

�1
 ��x 2 � 1�3 � 8� dx

 �
3

2
 y

1

�1

 �
�2 � z�3

3 �
0

1�x2

dx

 � 3 y
1

�1
 y

1�x2

0
 
�2 � z�2

2
 dz dx

 � 3 y
1

�1
 y

1�x2

0
 y

2�z

0
 y dy dz dx

 yy
S

 F � dS � yyy
E

 div F dV � yyy
E

 3y dV

E � ��x, y, z� � �1 � x � 1, 0 � z � 1 � x 2, 0 � y � 2 � z�

E

 � y � 2y � 3y

 div F �
�

�x
 �xy� �

�

�y
 (y 2 � exz2) �

�

�z
 �sin xy�

FFS
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where is a small sphere with radius and center the origin. You can verify that
(see Exercise 19). Therefore, Equation 7 gives

The point of this calculation is that we can compute the surface integral over 
because is a sphere. The normal vector at is . Therefore

since the equation of is . Thus, we have

This shows that the electric flux of is through any closed surface that con-
tains the origin. [This is a special case of Gauss’s Law (Equation 13.6.11) for a single
charge. The relationship between and is .]

Another application of the Divergence Theorem occurs in fluid flow. Let 
be the velocity field of a fluid with constant density . Then is the rate of flow
per unit area. If is a point in the fluid and is a ball with center and
very small radius , then for all points in since is con-
tinuous. We approximate the flux over the boundary sphere as follows:

This approximation becomes better as and suggests that

Equation 8 says that is the net rate of outward flux per unit volume at .
(This is the reason for the name divergence.) If , the net flow is outward
near and is called a source. If , the net flow is inward near and 
is called a sink.

PPdiv F�P� � 0PP
div F�P� � 0

P0div F�P0 �

div F�P0 � � lim 
a l 0

 
1

V�Ba �
 yy

Sa

 F � dS8

a l 0

 � div F�P0 �V�Ba �

 � yyy
Ba

 div F�P0 � dV

 yy
Sa

 F � dS � yyy
Ba

 div F dV

Sa

div FBadiv F�P� � div F�P0 �a
P0BaP0�x0, y0, z0 �

F � �v�
v�x, y, z�

� � 1��4�0 ��0�

S24�QE

 �
�Q

a 2  4a 2 � 4�Q

 �
�Q

a 2  yy
S1

 dS �
�Q

a 2  A�S1�

 yy
S2

 E � dS � yy
S1

 E � n dS

� x � � aS1

 �
�Q

� x �2 �
�Q

a 2

 E � n �
�Q

� x �3  x � � x

� x � 	 �
�Q

� x �4  x � x

x�� x �xS1

S1

 � yy
S1

 E � dS � yy
S1

 E � n dS

 yy
S2

 E � dS � yy
S1

 E � dS � yyy
E

 div E dV

div E � 0
aS1
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For the vector field in Figure 4, it appears that the vectors that end near are
shorter than the vectors that start near Thus, the net flow is outward near so

and is a source. Near on the other hand, the incoming arrows 
are longer than the outgoing arrows. Here the net flow is inward, so 
and is a sink. We can use the formula for F to confirm this impression. Since

, we have , which is positive when . So the
points above the line are sources and those below are sinks.

FIGURE 4
The vector field F=≈ i+¥ j

P¡

P™

y

x

y � �x
y � �xdiv F � 2x � 2yF � x 2 i � y 2 j

P2

div F�P2 � � 0
P2,P1div F�P1� � 0

P1,P1.
P1
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3–6 � Verify that the Divergence Theorem is true for the vector
field on the region .

3. ,
is the cube bounded by the planes , , ,

, , and 

4. ,
is the solid bounded by the paraboloid and

the plane 

5. ,
is the solid cylinder ,

6. ,
is the unit ball 

� � � � � � � � � � � � �

7–15 � Use the Divergence Theorem to calculate the surface
integral ; that is, calculate the flux of across .

7. ,
is the surface of the box bounded by the planes ,

, , , , and 

8. ,
is the surface of the box with vertices 

9. ,
is the surface of the solid bounded by the cylinder

and the planes and x � 2x � �1y 2 � z2 � 1
S
F�x, y, z� � 3xy 2 i � xe z j � z3 k

��1, �2, �3�S
F�x, y, z� � x 2z3 i � 2xyz3 j � xz4 k

z � 2z � 0y � 1y � 0x � 1
x � 0S

F�x, y, z� � ex sin y i � ex cos y j � yz2 k

SFxxS F � dS

x 2 � y 2 � z2 � 1E
F�x, y, z� � x i � y j � z k

0 � z � 1x 2 � y 2 � 1E
F�x, y, z� � xy i � yz j � zx k

z � 1
z � x 2 � y 2E

F�x, y, z� � xz i � yz j � 3z2 k

z � 1z � 0y � 1
y � 0x � 1x � 0E

F�x, y, z� � 3x i � xy j � 2xz k

EF
1. A vector field is shown. Use the interpretation of

divergence derived in this section to determine whether
is positive or negative at and at 

2. (a) Are the points and sources or sinks for the vector
field shown in the figure? Give an explanation based
solely on the picture.

(b) Given that , use the definition of diver-
gence to verify your answer to part (a).

2

_2

_2 2

P¡

P™

F�x, y� � �x, y 2�

F
P2P1

2

_2

_2 2

P¡

P™

P2.P1div F

F
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and components of the vector fields have continuous second-
order partial derivatives.

21. , where is a constant vector

22. , where 

23.

24.

25.

26.

� � � � � � � � � � � � �

27. Suppose and satisfy the conditions of the Divergence
Theorem and is a scalar function with continuous partial
derivatives. Prove that

These surface and triple integrals of vector functions are
vectors defined by integrating each component function.
[Hint: Start by applying the Divergence Theorem to ,
where is an arbitrary constant vector.]

28. A solid occupies a region with surface and is immersed
in a liquid with constant density . We set up a coordinate
system so that the -plane coincides with the surface of the
liquid and positive values of are measured downward into
the liquid. Then the pressure at depth is , where 
is the acceleration due to gravity (see Section 6.5). The total
buoyant force on the solid due to the pressure distribution is
given by the surface integral

where is the outer unit normal. Use the result of Exer-
cise 27 to show that , where is the weight of
the liquid displaced by the solid. (Note that is directed
upward because is directed downward.) The result is
Archimedes’ principle: The buoyant force on an object
equals the weight of the displaced liquid.

z
F

WF � �Wk
n

F � �yy
S

 pn dS

tp � �tzz
z

xy
�

SE

c
F � fc

yy
S

 f n dS � yyy
E

 � f dV

f
ES

yy
S

 � f �t � t� f � � n dS � yyy
E

 � f � 2
t � t� 2f � dV

yy
S

 � f �t� � n dS � yyy
E

 � f � 2
t � � f � �t� dV

yy
S

 Dn f dS � yyy
E

 � 2f dV

yy
S

 curl F � dS � 0

F�x, y, z� � x i � y j � z kV�E � � 1
3 yy

S

 F � dS

ayy
S

 a � n dS � 0

10. ,
is the surface of the solid bounded by the hyperboloid

and the planes and 

11. ,
is the ellipsoid 

12. ,
is the surface of the solid bounded by the paraboloid

and the -plane

13. ,
is the sphere 

14. ,
is the surface of the solid bounded by the hemispheres

, and the plane 

15. ,
is the surface of the solid that lies above the -plane 

and below the surface ,

� � � � � � � � � � � � �

16. Use a computer algebra system to plot the vector field

in the cube cut from the first octant by the planes ,
, and . Then compute the flux across the 

surface of the cube.

17. Use the Divergence Theorem to evaluate , where

and is the top half of the sphere .
[Hint: Note that is not a closed surface. First compute 
integrals over and , where is the disk ,
oriented downward, and .]

18. Let . 
Find the flux of across the part of the paraboloid

that lies above the plane and is 
oriented upward.

19. Verify that for the electric field

20. Use the Divergence Theorem to evaluate

where is the sphere .

21–26 � Prove each identity, assuming that and satisfy the
conditions of the Divergence Theorem and the scalar functions 

ES

x 2 � y 2 � z2 � 1S

yy
S

 �2x � 2y � z2 � dS

E�x� �
�Q

� x �3  x

div E � 0

z � 1x 2 � y 2 � z � 2
F

F�x, y, z� � z tan�1�y 2 � i � z3 ln�x 2 � 1� j � z k

S2 � S � S1

x 2 � y 2 � 1S1S2S1

S
x 2 � y 2 � z2 � 1S

F�x, y, z� � z2x i � ( 1
3 y

3 � tan z) j � �x 2z � y 2 � k

xxS F � dS

z � �2y � �2
x � �2

F�x, y, z� � sin x cos2 y i � sin3y cos4z j � sin5z cos6x k
CAS

�1 � y � 1
�1 � x � 1,z � 2 � x 4 � y 4

xyS
F�x, y, z� � e y tan z i � ys3 � x 2 j � x sin y kCAS

z � 0z � s1 � x 2 � y 2z � s4 � x 2 � y 2

S
F�x, y, z� � �x 3 � y sin z� i � �y 3 � z sin x� j � 3z k

x 2 � y 2 � z2 � 1S
F�x, y, z� � x 3 i � y 3 j � z3 k

xyz � 4 � x 2 � y 2
S
F�x, y, z� � x 3 i � 2xz2 j � 3y 2z k

x 2�a2 � y 2�b2 � z2�c2 � 1S
F�x, y, z� � xy sin z i � cos�xz� j � y cos z k

z � 2z � �2x 2 � y 2 � z2 � 1
S
F�x, y, z� � x 3y i � x 2y 2 j � x 2yz k
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Summary � � � � � � � � � � � � � � � � � �

The main results of this chapter are all higher-dimensional versions of the Funda-
mental Theorem of Calculus. To help you remember them, we collect them together
here (without hypotheses) so that you can see more easily their essential similarity.
Notice that in each case we have an integral of a “derivative” over a region on the left
side, and the right side involves the values of the original function only on the bound-
ary of the region.

Fundamental Theorem of Calculus

Fundamental Theorem for Line Integrals

Green’s Theorem

Stokes’ Theorem

Divergence Theorem E

S

n

nyyy
E

 div F dV � yy
S

 F � dS

C

S

n

yy
S

 curl F � dS � y
C
 F � dr

C

Dyy
D

 ��Q

�x
�

�P

�y 	 dA � y
C
 P dx � Q dy

r(a)

r(b)

C
y

C
 ∇ f � dr � f �r�b�� � f �r�a��

a by
b

a
 F��x� dx � F�b� � F�a�

13.9

SECTION 13.9 SUMMARY � 985
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9. Suppose is a vector field on .
(a) Define curl .
(b) Define div .
(c) If is a velocity field in fluid flow, what are the physi-

cal interpretations of curl and div ?

10. If , how do you test to determine whether 
is conservative? What if is a vector field on ?

11. (a) Write the definition of the surface integral of a scalar
function over a surface .

(b) How do you evaluate such an integral if is a para-
metric surface given by a vector function ?

(c) What if is given by an equation ?
(d) If a thin sheet has the shape of a surface , and the den-

sity at is , write expressions for the
mass and center of mass of the sheet.

12. (a) What is an oriented surface? Give an example of a 
nonorientable surface.

(b) Define the surface integral (or flux) of a vector field 
over an oriented surface with unit normal vector .

(c) How do you evaluate such an integral if is a para-
metric surface given by a vector function ?

(d) What if is given by an equation ?

13. State Stokes’ Theorem.

14. State the Divergence Theorem.

15. In what ways are the Fundamental Theorem for Line 
Integrals, Green’s Theorem, Stokes’ Theorem, and the
Divergence Theorem similar to each other?

z � t�x, y�S
r�u, v�

S
nS

F

��x, y, z��x, y, z�
S

z � t�x, y�S
r�u, v�

S
Sf

�3F
FF � P i � Q j

FF
F

F
F

�3F

5. If and in an open region , then 
is conservative.

6.

7. If is a sphere and is a constant vector field, then
.

8. There is a vector field such that

curl F � x i � y j � z k

F

xxS F � dS � 0
FS

x
�C f �x, y� ds � �xC f �x, y� ds

FDPy � QxF � P i � Q j

1. What is a vector field? Give three examples that have physi-
cal meaning.

2. (a) What is a conservative vector field?
(b) What is a potential function?

3. (a) Write the definition of the line integral of a scalar func-
tion along a smooth curve with respect to arc
length.

(b) How do you evaluate such a line integral?
(c) Write expressions for the mass and center of mass of a

thin wire shaped like a curve if the wire has linear
density function .

(d) Write the definitions of the line integrals along of a
scalar function with respect to , , and .

(e) How do you evaluate these line integrals?

4. (a) Define the line integral of a vector field along a
smooth curve given by a vector function .

(b) If is a force field, what does this line integral
represent?

(c) If , what is the connection between the
line integral of and the line integrals of the component
functions , , and ?

5. State the Fundamental Theorem for Line Integrals.

6. (a) What does it mean to say that is independent 
of path?

(b) If you know that is independent of path, what
can you say about ?

7. State Green’s Theorem.

8. Write expressions for the area enclosed by a curve in
terms of line integrals around .C

C

F
xC F � dr

xC F � dr

RQP
F

F � �P, Q, R�

F
r�t�C

F

zyxf
C

��x, y�
C

Cf

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. If is a vector field, then div is a vector field.

2. If is a vector field, then curl is a vector field.

3. If has continuous partial derivatives of all orders on ,
then .

4. If has continuous partial derivatives on and is any 
circle, then .xC ∇ f � dr � 0

C� 3f

∇ f � � 0div�curl
� 3f

FF

FF

T R U E – FA L S E  Q U I Z
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E X E R C I S E S

12.
� � � � � � � � � � � � �

13–14 � Show that is conservative and use this fact to evalu-
ate along the given curve.

13. ,
: ,

14. ,
is the line segment from to 

� � � � � � � � � � � � �

15. Verify that Green’s Theorem is true for the line integral
, where consists of the parabola 

from to and the line segment from
to .

16. Use Green’s Theorem to evaluate

where is the triangle with vertices , ,
and 

17. Use Green’s Theorem to evaluate 
where is the circle with counterclockwise 
orientation.

18. Find curl and div if

19. Show that there is no vector field such that

20. Show that, under conditions to be stated on the vector fields
and ,

21. If is any piecewise-smooth simple closed plane curve and
and are differentiable functions, show that

22. If and are twice differentiable functions, show that

23. If is a harmonic function, that is, , show that the
line integral is independent of path in any
simple region .

24. (a) Sketch the curve with parametric equations

0 � t � 2z � sin ty � sin tx � cos t

C

D
x fy dx � fx dy

� 2 f � 0f

� 2� ft� � f � 2
t � t� 2f � 2� f � �t

tf

y
C
 f �x� dx � t�y� dy � 0

tf
C

curl�F � G� � F div G � G div F � �G � � �F � �F � � �G

GF

curl G � 2x i � 3yz j � xz2 k

G

F�x, y, z� � e�x sin y i � e�y sin z j � e�z sin x k

FF

x 2 � y 2 � 4C
xC x 2 y dx � xy 2 dy

�1, 3�.
�1, 0��0, 0�C

y
C
 s1 � x 3 dx � 2xy dy

��1, 1��1, 1�
�1, 1���1, 1�y � x 2

CxC xy 2 dx � x 2 y dy

�4, 0, 3��0, 2, 0�C
F�x, y, z� � e y i � �xe y � e z� j � ye z k

0 � t � 1r�t� � �t � sin t� i � �2t � cos t� jC
F�x, y� � �4x 3y 2 � 2xy 3� i � �2x 4y � 3x 2y 2 � 4y 3� j

xC F � dr
F

F�x, y, z� � sin y i � x cos y j � sin z k1. A vector field , a curve , and a point are shown.
(a) Is positive, negative, or zero? Explain.
(b) Is positive, negative, or zero? Explain.

2–9 � Evaluate the line integral.

2. ,
is the arc of the parabola from (0, 0) to (1, 1)

3. ,
: , , ,

4. ,
is the sine curve ,

5. ,
is the circle with counterclockwise 

orientation

6. ,
is given by ,

7. ,
consists of the line segments from to and

from to 

8. , where and is given by
,

9. , where and 
is given by ,

� � � � � � � � � � � � �

10. Find the work done by the force field

in moving a particle from the point to the point
along

(a) A straight line
(b) The helix , ,

11–12 � Show that is a conservative vector field. Then find a
function such that .

11. F�x, y� � �1 � xy�e xy i � �e y � x 2e xy� j

F � ∇ ff
F

z � 3 sin ty � tx � 3 cos t

�0, �2, 3�
�3, 0, 0�

F�x, y, z� � z i � x j � y k

0 � t � 1r�t� � 2t i � t 2 j � t 4 kC
F�x, y, z� � �x � y� i � z j � x 2 y kxC F � dr

0 � t � 1r�t� � t 2 i � t 3 j
CF�x, y� � x 2 y i � e y jxC F � dr

�3, 1, 4��1, 1, 2�
�1, 1, 2��0, 0, 0�C

xC y dx � z dy � x dz

0 � t � 1r�t� � t i � t 2 j � t 3 kC
xC x sin y dx � xyz dz

x 2 � y 2 � 1C
xC x 3y dx � x dy

0 � x � �2y � sin xC
xC xy dx � y dy

0 � t � �2z � 2 cos ty � tx � 2 sin tC
xC x 3z ds

y � x 2C
xC x ds

y

x

P

C

div F�P�
xC F � dr

PCF



988 � CHAPTER 13 VECTOR CALCULUS

Evaluate , where is the curve with initial point
and terminal point shown in the figure.

36. Let

Evaluate , where is shown in the figure.

37. Find , where and 
is the outwardly oriented surface shown in the figure 

(the boundary surface of a cube with a unit corner cube
removed).

38. If the components of have continuous second partial
derivatives and is the boundary surface of a simple solid
region, show that .xxS curl F � dS � 0

S
F

y

z

x

(0, 2, 2)

(2, 0, 2)

(2, 2, 0)

1

1

S

1

S
F�x, y, z� � x i � y j � z kxxS F � n dS

0 x

y

C

C�xC F � dr

F�x, y� �
�2x 3 � 2xy 2 � 2y� i � �2y 3 � 2x 2 y � 2x� j

x 2 � y 2

0

z

x

y

(0, 0, 2)

(0, 3, 0)

(1, 1, 0)

(3, 0, 0)

�0, 3, 0��0, 0, 2�
Cx

C
 F � dr(b) Find .

25–28 � Evaluate the surface integral.

25. , where is the part of the paraboloid 
that lies under the plane 

26. , where is the part of the plane
that lies inside the cylinder 

27. , where and is
the sphere with outward orientation

28. , where and is the
part of the paraboloid below the plane 
with upward orientation

� � � � � � � � � � � � �

29. Verify that Stokes’ Theorem is true for the vector field

where is the part of the paraboloid that
lies above the -plane, and has upward orientation.

30. Use Stokes’ Theorem to evaluate , where
, is the part of the

sphere that lies above the plane ,
and is oriented upward.

31. Use Stokes’ Theorem to evaluate , where
and is the triangle with

vertices , , and , oriented counter-
clockwise as viewed from above.

32. Use the Divergence Theorem to calculate the surface
integral , where 
and is the surface of the solid bounded by the cylinder

and the planes and .

33. Verify that the Divergence Theorem is true for the vector 
field

where is the unit ball .

34. Compute the outward flux of

through the ellipsoid .

35. Let

F�x, y, z� � �3x 2 yz � 3y� i � �x 3z � 3x� j � �x 3y � 2z� k

4x 2 � 9y 2 � 6z2 � 36

F�x, y, z� �
x i � y j � z k

�x 2 � y 2 � z2 �3�2

x 2 � y 2 � z2 � 1E

F�x, y, z� � x i � y j � z k

z � 2z � 0x 2 � y 2 � 1
S

F�x, y, z� � x 3 i � y 3 j � z3 kxxS F � dS

�0, 0, 1��0, 1, 0��1, 0, 0�
CF�x, y, z� � xy i � yz j � zx k

xC F � dr

S
z � 1x 2 � y 2 � z2 � 5

SF�x, y, z� � x 2 yz i � yz2 j � z3e xy k
xxS curl F � dS

Sxy
z � 1 � x 2 � y 2S

F�x, y, z� � x 2 i � y 2 j � z2 k

z � 1z � x 2 � y 2
SF�x, y, z� � x 2 i � xy j � z kxx

S
 F � dS

x 2 � y 2 � z2 � 4
SF�x, y, z� � xz i � 2y j � 3x kxx

S
 F � dS

x 2 � y 2 � 4z � 4 � x � y
Sxx

S
 �x 2z � y 2z� dS

z � 4
z � x 2 � y 2Sxx

S
 z dS

x
C
 2xe 2y dx � �2x 2e 2y � 2y cot z� dy � y 2 csc2z dz



1. Let be a smooth parametric surface and let be a point such that each line that starts
at intersects at most once. The solid angle subtended by at is the set of
lines starting at and passing through . Let be the intersection of with the
surface of the sphere with center and radius . Then the measure of the solid angle (in
steradians) is defined to be

Apply the Divergence Theorem to the part of between and to show that

where is the radius vector from to any point on , , and the unit normal
vector is directed away from .

This shows that the definition of the measure of a solid angle is independent of the
radius of the sphere. Thus, the measure of the solid angle is equal to the area sub-
tended on a unit sphere. (Note the analogy with the definition of radian measure.) The
total solid angle subtended by a sphere at its center is thus steradians.

2. Find the simple closed curve for which the value of the line integral

is a maximum.

3. Let be a simple closed piecewise-smooth space curve that lies in a plane with unit
normal vector and has positive orientation with respect to . Show that
the plane area enclosed by is

1
2 y

C
 �bz � cy� dx � �cx � az� dy � �ay � bx� dz 

C
nn � �a, b, c�

C

y
C
 �y 3 � y� dx � 2x 3 dy 

C

P

S

S(a)

a

4

a

Pn
r � � r �SPr

� ��S � � � yy
S

 
r � n

r 3   dS

SS�a���S �

� ��S � � �
area of S�a�

a 2

aP
��S �S�a�SP

PS��S �SP
PS
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4. The figure depicts the sequence of events in each cylinder of a four-cylinder internal
combustion engine. Each piston moves up and down and is connected by a pivoted arm
to a rotating crankshaft. Let and be the pressure and volume within a cylinder
at time , where gives the time required for a complete cycle. The graph
shows how and vary through one cycle of a four-stroke engine.

During the intake stroke (from � to �) a mixture of air and gasoline at atmospheric
pressure is drawn into a cylinder through the intake valve as the piston moves down-
ward. Then the piston rapidly compresses the mix with the valves closed in the 
compression stroke (from � to �) during which the pressure rises and the volume
decreases. At � the sparkplug ignites the fuel, raising the temperature and pressure at
almost constant volume to �. Then, with valves closed, the rapid expansion forces the
piston downward during the power stroke (from � to 	). The exhaust valve opens,
temperature and pressure drop, and mechanical energy stored in a rotating flywheel
pushes the piston upward, forcing the waste products out of the exhaust valve in the
exhaust stroke. The exhaust valve closes and the intake valve opens. We’re now back at
� and the cycle starts again.
(a) Show that the work done on the piston during one cycle of a four-stroke engine is

, where is the curve in the -plane shown in the figure.
[Hint: Let be the distance from the piston to the top of the cylinder and note

that the force on the piston is , where is the area of the top of the
piston. Then , where is given by . An
alternative approach is to work directly with Riemann sums.]

(b) Use Formula 13.4.5 to show that the work is the difference of the areas enclosed by
the two loops of .C

r�t� � x�t� i, a � t � bC1W � x
C 1

 F � dr
AF � AP�t� i

x�t�
PVCW � xC P dV

P

V0
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Notation Set description Picture Notation Set description Picture

�x � a � x � b��a, b�

�x � a � x � b��a, b�

�x � a � x � b��a, b�

�x � a � x � b��a, b�

Intervals, Inequalities, and Absolute Values � � � � � � � �

Certain sets of real numbers, called intervals, occur frequently in calculus and corre-
spond geometrically to line segments. For example, if , the open interval from

to consists of all numbers between and and is denoted by the symbol .
Using set-builder notation, we can write

Notice that the endpoints of the interval—namely, and —are excluded. This is
indicated by the round brackets and by the open dots in Figure 1. The closed inter-
val from to is the set

Here the endpoints of the interval are included. This is indicated by the square brack-
ets and by the solid dots in Figure 2. It is also possible to include only one endpoint
in an interval, as shown in Table 1.

We also need to consider infinite intervals such as

This does not mean that (“infinity”) is a number. The notation stands for the
set of all numbers that are greater than , so the symbol simply indicates that the
interval extends indefinitely far in the positive direction.

Table of Intervals

Inequalities

When working with inequalities, note the following rules.

Rules for Inequalities

1. If , then .

2. If and , then .

3. If and , then .

4. If and , then .

5. If , then .1�a � 1�b0 � a � b

ac � bcc � 0a � b

ac � bcc � 0a � b

a � c � b � dc � da � b

a � c � b � ca � b

1

�a
�a, ���

�a, �� � �x � x � a�

� �

�a, b� � �x � a � x � b�

ba
� �

ba

�a, b� � �x � a � x � b�

�a, b�baba
a � b

A

A2 � APPENDIX A INTERVALS, INEQUALITIES, AND ABSOLUTE VALUES

� Table 1 lists the nine possible types
of intervals. When these intervals are
discussed, it is always assumed that

.a � b

a b

FIGURE 1
Open interval (a, b)

a b

FIGURE 2
Closed interval [a, b]

(set of all 
real numbers)
����, ��

�x � x � b����, b�

�x � x � b����, b�

�x � x � a��a, ��

�x � x � a��a, ��a b

a b

a b

a b

a

a

b

b



Rule 1 says that we can add any number to both sides of an inequality, and Rule 2
says that two inequalities can be added. However, we have to be careful with multi-
plication. Rule 3 says that we can multiply both sides of an inequality by a positive 

| number, but Rule 4 says that if we multiply both sides of an inequality by a negative
number, then we reverse the direction of the inequality. For example, if we take the
inequality and multiply by , we get , but if we multiply by , we get

. Finally, Rule 5 says that if we take reciprocals, then we reverse the direc-
tion of an inequality (provided the numbers are positive).

EXAMPLE 1 Solve the inequality .

SOLUTION The given inequality is satisfied by some values of but not by others. To
solve an inequality means to determine the set of numbers for which the inequality
is true. This is called the solution set. 

First we subtract 1 from each side of the inequality (using Rule 1 with ):

Then we subtract from both sides (Rule 1 with ):

Now we divide both sides by (Rule 4 with ):

These steps can all be reversed, so the solution set consists of all numbers greater
than . In other words, the solution of the inequality is the interval .

EXAMPLE 2 Solve the inequality .

SOLUTION First we factor the left side:

We know that the corresponding equation has the solutions 2
and 3. The numbers 2 and 3 divide the real line into three intervals:

On each of these intervals we determine the signs of the factors. For instance,

Then we record these signs in the following chart:

x � 2 � 0 ? x � 2 ? x � ���, 2�

�3, ���2, 3����, 2�

�x � 2��x � 3� � 0

�x � 2��x � 3� � 0

x 2 � 5x � 6 � 0

(� 2
3, �)�

2
3

x � �
4
6 � �

2
3

c � �
1
6�6

�6x � 4

c � �7x7x

x � 7x � 4

c � �1

x
x

1 � x � 7x � 5

�6 � �10
�26 � 1023 � 5

APPENDIX A INTERVALS, INEQUALITIES, AND ABSOLUTE VALUES � A3

Interval

� � �

� � �

� � � x � 3
 2 � x � 3

 x � 2

�x � 2��x � 3�x � 3x � 2

FIGURE 3

x0

y

y=≈-5x+6

1 2 3 4

� A visual method for solving Example 2
is to use a graphing device to graph 
the parabola (as in 
Figure 3) and observe that the curve lies
on or below the -axis when .2 � x � 3x

y � x 2 � 5x � 6



Another method for obtaining the information in the chart is to use test values.
For instance, if we use the test value for the interval , then substitu-
tion in gives

The polynomial doesn’t change sign inside any of the three intervals,
so we conclude that it is positive on .

Then we read from the chart that is negative when .
Thus, the solution of the inequality is

Notice that we have included the endpoints 2 and 3 because we are looking for 
values of such that the product is either negative or zero. The solution is illustrated
in Figure 4.

EXAMPLE 3 Solve .

SOLUTION First we take all nonzero terms to one side of the inequality sign and factor
the resulting expression:

As in Example 2 we solve the corresponding equation and use
the solutions , , and to divide the real line into four intervals

, , , and . On each interval the product keeps a constant
sign as shown in the following chart.

Then we read from the chart that the solution set is

The solution is illustrated in Figure 5.

Absolute Value

The absolute value of a number , denoted by , is the distance from to on the
real number line. Distances are always positive or , so we have

For example,

� 3 � � � � � � 3� s2 � 1 � � s2 � 1

� 0 � � 0� �3 � � 3� 3 � � 3

for every number a� a � � 0

0
0a� a �a

�x � �4 � x � 0 or x � 1� � ��4, 0� � �1, ��

�1, ���0, 1���4, 0����, �4�
x � 1x � 0x � �4

x�x � 1��x � 4� � 0

x�x � 1��x � 4� � 0 orx 3 � 3x 2 � 4x � 0

x 3 � 3x 2 � 4x

x

�x � 2 � x � 3� � �2, 3�

�x � 2��x � 3� � 0
2 � x � 3�x � 2��x � 3�

���, 2�
x 2 � 5x � 6

12 � 5�1� � 6 � 2

x 2 � 5x � 6
���, 2�x � 1

A4 � APPENDIX A INTERVALS, INEQUALITIES, AND ABSOLUTE VALUES

Interval x

� � � �

� � � �

� � � �

� � � � x � 1
 0 � x � 1

 �4 � x � 0
 x � �4

x �x � 1��x � 4�x � 4x � 1

0 x2 3

+ - +
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In general, we have

EXAMPLE 4 Express without using the absolute value symbol.

SOLUTION

Recall that the symbol means “the positive square root of.” Thus,
| means and . Therefore, the equation is not always true. It is true 

only when . If , then , so we have . In view of (2), we
then have the equation

which is true for all values of .
Hints for the proofs of the following properties are given in the exercises.

Properties of Absolute Values Suppose and are any real numbers and is an
integer. Then

1. 2. 3.

For solving equations or inequalities involving absolute values, it’s often very help-
ful to use the following statements.

Suppose . Then

4. if and only if

5. if and only if

6. if and only if or

For instance, the inequality says that the distance from to the origin is
less than , and you can see from Figure 6 that this is true if and only if lies between
and .a

�axa
x� x � � a

x � �ax � a� x � � a

�a � x � a� x � � a

x � 	a� x � � a

a � 0

� an � � � a �n�b � 0�	 a

b 	 � � a �
� b �� ab � � � a � � b �

nba

a

sa 2 � � a �3

sa 2 � �a�a � 0a � 0a � 0
sa 2 � as � 0s 2 � r

sr � ss1

 � 
3x � 2

2 � 3x

if x �
2
3

if x �
2
3

 � 3x � 2 � � 
3x � 2

��3x � 2�
if 3x � 2 � 0

if 3x � 2 � 0

� 3x � 2 �

 � a � � �a if a � 0

 � a � � a  if a � 02
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If and are any real numbers, then the distance between and is the abso-
lute value of the difference, namely, , which is also equal to . (See
Figure 7.)

EXAMPLE 5 Solve .

SOLUTION By Property 4 of absolute values, is equivalent to

So or . Thus, or .

EXAMPLE 6 Solve .

SOLUTION 1 By Property 5  of absolute values, is equivalent to

Therefore, adding 5 to each side, we have

and the solution set is the open interval .

SOLUTION 2 Geometrically, the solution set consists of all numbers whose distance
from 5 is less than 2. From Figure 8 we see that this is the interval .

EXAMPLE 7 Solve .

SOLUTION By Properties 4 and 6 of absolute values, is equivalent to

In the first case , which gives . In the second case , which
gives . So the solution set is

{x � x � �2 or x �
2
3 } � ���, �2� � [ 2

3, �)

x � �2
3x � �6x �

2
33x � 2

3x � 2 � �4or3x � 2 � 4

� 3x � 2 � � 4

� 3x � 2 � � 4

�3, 7�
x

�3, 7�

3 � x � 7

�2 � x � 5 � 2

� x � 5 � � 2

� x � 5 � � 2

x � 1x � 42x � 22x � 8

2x � 5 � �3or2x � 5 � 3

� 2x � 5 � � 3

� 2x � 5 � � 3

� b � a �� a � b �
baba

1–10 � Rewrite the expression without using the absolute value
symbol.

1. 2.

3. 4.

5. if 6. if 

7. 8.

9. 10.
� � � � � � � � � � � � �

11–26 � Solve the inequality in terms of intervals and illustrate
the solution set on the real number line.

11. 12.

13. 14. 1 � 5x � 5 � 3x1 � x � 2

4 � 3x � 62x � 7 � 3

� 1 � 2x 2 �� x 2 � 1 �
� 2x � 1 �� x � 1 �

x � 2� x � 2 �x � 2� x � 2 �
�� �2 � � � �3 ��� s5 � 5 �
� � � 2 �� 5 � 23 �
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15. 16.

17. 18.

19. 20.

21.

22.

23. 24.

25. 26.

� � � � � � � � � � � � �

27. The relationship between the Celsius and Fahrenheit tem-
perature scales is given by , where is the
temperature in degrees Celsius and is the temperature in F

CC � 5
9 �F � 32�

�3 �
1

x
� 1

1

x
� 4

x 3 � 3x � 4x 2x 3 � x

�x � 1��x � 2��x � 3� � 0

x 3 � x 2 � 0

x 2 � 5x 2 � 3

x 2 � 2x � 8�x � 1��x � 2� � 0

1 � 3x � 4 � 160 � 1 � x � 1

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �A

| a-b |

ab

| a-b |

ba

FIGURE 7
Length of a line segment=| a-b |

3 5 7

22
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31–32 � Solve the equation for .

31. 32.
� � � � � � � � � � � � �

33– 40 � Solve the inequality.

33. 34.

35. 36.

37. 38.

39. 40.
� � � � � � � � � � � � �

41. Solve the inequality for , assuming that ,
, and are positive constants.

42. Solve the inequality for , assuming that , ,
and are negative constants.

43. Prove that . [Hint: Use Equation 3.]

44. Show that if , then .a 2 � b 20 � a � b

� ab � � � a � � b �
c

baxax � b � c

cb
axa�bx � c� � bc

� 5x � 2 � � 6� 2x � 3 � � 0.4

� x � 1 � � 3� x � 5 � � 2

� x � 6 � � 0.1� x � 4 � � 1

� x � � 3� x � � 3

� 3x � 5 � � 1� x � 3 � � � 2x � 1 �
xdegrees Fahrenheit. What interval on the Celsius scale cor-

responds to the temperature range ?

28. Use the relationship between and given in Exercise 27
to find the interval on the Fahrenheit scale corresponding to
the temperature range .

29. As dry air moves upward, it expands and in so doing cools
at a rate of about C for each 100-m rise, up to about
12 km.
(a) If the ground temperature is C, write a formula for

the temperature at height .
(b) What range of temperature can be expected if a plane

takes off and reaches a maximum height of 5 km?

30. If a ball is thrown upward from the top of a building 128 ft
high with an initial velocity of 16 ft�s, then the height 
above the ground seconds later will be

During what time interval will the ball be at least 32 ft
above the ground?

h � 128 � 16t � 16t 2

t
h

h
20 


1 


20 � C � 30

FC

50 � F � 95

Coordinate Geometry � � � � � � � � � � � � � � �

The points in a plane can be identified with ordered pairs of real numbers. We start by
drawing two perpendicular coordinate lines that intersect at the origin on each line.
Usually one line is horizontal with positive direction to the right and is called the 
-axis; the other line is vertical with positive direction upward and is called the -axis.

Any point in the plane can be located by a unique ordered pair of numbers as fol-
lows. Draw lines through perpendicular to the - and -axes. These lines intersect
the axes in points with coordinates and as shown in Figure 1. Then the point is
assigned the ordered pair . The first number is called the x-coordinate of ;
the second number is called the y-coordinate of . We say that is the point with
coordinates , and we denote the point by the symbol . Several points are
labeled with their coordinates in Figure 2.

0 x1 2 3 4 5_1_2_3

1

2

3

4

_2

_3

_1

y

_4

(5, 0)

(1, 3)
(_2, 2)

(_3, _2)

(2, _4)

FIGURE 2

x1 2 3 4 5_1_2_3

a

O

2

4

_2

_1

b

y

1

3

P(a, b)

III

IVIII
_3

FIGURE 1
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P�a, b��a, b�
PPb

Pa�a, b�
Pba

yxP
P

yx

O

B

APPENDIX B COORDINATE GEOMETRY � A7



By reversing the preceding process we can start with an ordered pair and
arrive at the corresponding point . Often we identify the point with the ordered pair

and refer to “the point .” [Although the notation used for an open interval
is the same as the notation used for a point , you will be able to tell from

the context which meaning is intended.]
This coordinate system is called the rectangular coordinate system or the Car-

tesian coordinate system in honor of the French mathematician René Descartes
(1596–1650), even though another Frenchman, Pierre Fermat (1601–1665), invented
the principles of analytic geometry at about the same time as Descartes. The plane
supplied with this coordinate system is called the coordinate plane or the Cartesian
plane and is denoted by .

The - and -axes are called the coordinate axes and divide the Cartesian plane
into four quadrants, which are labeled I, II, III, and IV in Figure 1. Notice that the first
quadrant consists of those points whose - and -coordinates are both positive.

EXAMPLE 1 Describe and sketch the regions given by the following sets.

(a) (b) (c )

SOLUTION
(a) The points whose -coordinates are 0 or positive lie on the -axis or to the right
of it as indicated by the shaded region in Figure 3(a).

(b) The set of all points with -coordinate 1 is a horizontal line one unit above the
[see Figure 3(b)].

(c) Recall from Appendix A that

The given region consists of those points in the plane whose -coordinates lie
between and . Thus, the region consists of all points that lie between (but not
on) the horizontal lines and . [These lines are shown as dashed lines
in Figure 3(c) to indicate that the points on these lines don’t lie in the set.]

Recall from Appendix A that the distance between points and on a number line
is . Thus, the distance between points and on
a horizontal line must be and the distance between and 
on a vertical line must be . (See Figure 4.)

To find the distance between any two points and , we
note that triangle in Figure 4 is a right triangle, and so by the PythagoreanP1P2P3

P2�x2, y2 �P1�x1, y1�� P1P2 �
� y2 � y1 �

P3�x2, y1�P2�x2, y2 �� x2 � x1 �
P3�x2, y1�P1�x1, y1�� a � b � � � b � a �

ba

y � �1y � 1
1�1

y

�1 � y � 1if and only if� y � � 1

x-axis
y

FIGURE 3
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y
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y
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y=_1
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yx
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yx

yx
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Theorem we have

Distance Formula The distance between the points and is

For instance, the distance between and is

Circles

An equation of a curve is an equation satisfied by the coordinates of the points on the
curve and by no other points. Let’s use the distance formula to find the equation of a
circle with radius and center . By definition, the circle is the set of all points

whose distance from the center is . (See Figure 5.) Thus, is on the
circle if and only if . From the distance formula, we have

or equivalently, squaring both sides, we get

This is the desired equation.

Equation of a Circle An equation of the circle with center and radius is 

In particular, if the center is the origin , the equation is

For instance, an equation of the circle with radius 3 and center is

EXAMPLE 2 Sketch the graph of the equation by first
showing that it represents a circle and then finding its center and radius.

SOLUTION We first group the -terms and -terms as follows:

Then we complete the square within each grouping, adding the appropriate 

�x 2 � 2x� � (y 2 � 6y� � �7

yx

x 2 � y 2 � 2x � 6y � 7 � 0

�x � 2�2 � (y � 5�2 � 9

�2, �5�

x 2 � y 2 � r 2

�0, 0�

�x � h�2 � (y � k�2 � r 2

r�h, k�

�x � h�2 � (y � k�2 � r 2

s�x � h�2 � � y � k�2 � r

� PC � � r
PrC�h, k�P�x, y�

�h, k�r

s�5 � 1� 2 � �3 � ��2�� 2 � s42 � 52 � s41

�5, 3��1, �2�

� P1P2 � � s�x2 � x1�2 � �y2 � y1�2

P2�x2, y2 �P1�x1, y1�

 � s�x2 � x1�2 � �y2 � y1�2

 � P1P2 � � s� P1P3 �2 � � P2P3 �2 � s� x2 � x1 �2 � � y2 � y1 �2
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constants (the squares of half the coefficients of and ) to both sides of the 
equation:

or

Comparing this equation with the standard equation of a circle, we see that 
and , so the given equation represents a circle with center and

radius . It is sketched in Figure 6.

Lines

To find the equation of a line we use its slope, which is a measure of the steepness
of the line.

Definition The slope of a nonvertical line that passes through the points
and is

The slope of a vertical line is not defined.

Thus, the slope of a line is the ratio of the change in , , to the change in ,
(see Figure 7). The slope is therefore the rate of change of y with respect to x. The fact
that the line is straight means that the rate of change is constant.

Figure 8 shows several lines labeled with their slopes. Notice that lines with posi-
tive slope slant upward to the right, whereas lines with negative slope slant downward
to the right. Notice also that the steepest lines are the ones for which the absolute value
of the slope is largest, and a horizontal line has slope 0.

Now let’s find an equation of the line that passes through a given point 
and has slope . A point with lies on this line if and only if the slope
of the line through and is equal to ; that is,

This equation can be rewritten in the form

and we observe that this equation is also satisfied when and . Therefore,
it is an equation of the given line.

Point-Slope Form of the Equation of a Line   An equation of the line passing through
the point and having slope is

y � y1 � m�x � x1�

mP1�x1, y1�

y � y1x � x1

y � y1 � m�x � x1�

y � y1

x � x1
� m

mPP1

x � x1P�x, y�m
P1�x1, y1�

�xx�yy

m �
�y

�x
�

y2 � y1

x2 � x1

P2�x2, y2 �P1�x1, y1�

L

s3
��1, 3�r � s3k � 3,

h � �1,

�x � 1�2 � (y � 3�2 � 3

�x 2 � 2x � 1� � (y 2 � 6y � 9� � �7 � 1 � 9

yx

A10 � APPENDIX B COORDINATE GEOMETRY

x0

y

1

(_1, 3)

FIGURE 6
≈+¥+2x-6y+7=0

FIGURE 7

P™(x™, y™)

P¡(x¡, y¡)

L

Îy=fi-›
=rise

Îx=¤-⁄
=run

x0

y

x0

y

m=1

m=0

m=_1
m=_2

m=_5

m=2
m=5

m= 1
2

m=_ 1
2

FIGURE 8



EXAMPLE 3 Find an equation of the line through the points and .

SOLUTION The slope of the line is

Using the point-slope form with and , we obtain

which simplifies to

Suppose a nonvertical line has slope and -intercept . (See Figure 9.) This means
it intersects the -axis at the point , so the point-slope form of the equation of the
line, with and , becomes

This simplifies as follows.

Slope-Intercept Form of the Equation of a Line An equation of the line with slope 
and -intercept is

In particular, if a line is horizontal, its slope is , so its equation is ,
where is the -intercept (see Figure 10). A vertical line does not have a slope, but
we can write its equation as , where is the -intercept, because the -coordi-
nate of every point on the line is .

EXAMPLE 4 Graph the inequality .

SOLUTION We are asked to sketch the graph of the set and we
begin by solving the inequality for :

Compare this inequality with the equation , which represents a line
with slope and -intercept . We see that the given graph consists of points
whose -coordinates are larger than those on the line . Thus, the graph
is the region that lies above the line, as illustrated in Figure 11.

Parallel and Perpendicular Lines

Slopes can be used to show that lines are parallel or perpendicular. The following facts
are proved, for instance, in Precalculus: Mathematics for Calculus, Third Edition by
Stewart, Redlin, and Watson (Brooks�Cole Publishing Co., Pacific Grove, CA, 1998).

y � �
1
2 x �

5
2y

5
2y�

1
2

y � �
1
2 x �

5
2

 y � �
1
2 x �

5
2

 2y � �x � 5

 x � 2y � 5

y
��x, y� � x � 2y � 5�

x � 2y � 5

a
xxax � a

yb
y � bm � 0

y � mx � b

by
m

y � b � m�x � 0�

y1 � bx1 � 0
�0, b�y

bym

3x � 2y � 1

y � 2 � �
3
2 �x � 1�

y1 � 2x1 � �1

m �
�4 � 2

3 � ��1�
� �

3

2

�3, �4���1, 2�
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Parallel and Perpendicular Lines

1. Two nonvertical lines are parallel if and only if they have the same slope.

2. Two lines with slopes and are perpendicular if and only if
; that is, their slopes are negative reciprocals:

EXAMPLE 5 Find an equation of the line through the point that is parallel to the
line .

SOLUTION The given line can be written in the form

which is in slope-intercept form with . Parallel lines have the same slope, so
the required line has slope and its equation in point-slope form is

We can write this equation as .

EXAMPLE 6 Show that the lines and are perpendicular.

SOLUTION The equations can be written as

from which we see that the slopes are

Since , the lines are perpendicular.

Conic Sections

Here we review the geometric definitions of parabolas, ellipses, and hyperbolas and
their standard equations. They are called conic sections, or conics, because they result
from intersecting a cone with a plane as shown in Figure 12.

FIGURE 12
Conics

ellipse parabola hyperbola
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1
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Parabolas

A parabola is the set of points in a plane that are equidistant from a fixed point 
(called the focus) and a fixed line (called the directrix). This definition is illustrated
by Figure 13. Notice that the point halfway between the focus and the directrix lies on
the parabola; it is called the vertex. The line through the focus perpendicular to the
directrix is called the axis of the parabola.

In the 16th century Galileo showed that the path of a projectile that is shot into the 
air at an angle to the ground is a parabola. Since then, parabolic shapes have been used 
in designing automobile headlights, reflecting telescopes, and suspension bridges. 
(See Problem 16 on page 263 for the reflection property of parabolas that makes them
so useful.)

We obtain a particularly simple equation for a parabola if we place its vertex at the
origin and its directrix parallel to the -axis as in Figure 14. If the focus is the point

, then the directrix has the equation and the parabola has the equation

(See Exercise 47.)

If we write , then the equation of the parabola becomes 

Figure 15 shows the graphs of several parabolas with equations of the form 
for various values of the number . We see that the parabola opens upward if

and downward if (as in Figure 16). The graph is symmetric with respect
to the -axis because its equation is unchanged when is replaced by . This corre-
sponds to the fact that the function is an even function.

If we interchange and in the equation , the result is , which also
represents a parabola. (Interchanging and amounts to reflecting about the diagonal yx

x � ay 2y � ax 2yx

FIGURE 16
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line .) The parabola opens to the right if and to the left if 
(See Figure 17.) This time the parabola is symmetric with respect to the -axis
because the equation is unchanged when is replaced by .

EXAMPLE 7 Sketch the region bounded by the parabola and the
line .

SOLUTION First we find the points of intersection by solving the two equations. Substi-
tuting into the equation , we get , which
gives

so or . Thus, the points of intersection are and , and we
draw the line passing through these points.

To sketch the parabola we start with the parabola in 
Figure 17(b) and shift one unit to the right. We also make sure it passes through 
the points and . The region bounded by and

means the finite region whose boundaries are these curves. It is
sketched in Figure 18. 

Ellipses

An ellipse is the set of points in a plane the sum of whose distances from two fixed
points and is a constant (see Figure 19). These two fixed points are called the
foci (plural of focus). One of Kepler’s laws is that the orbits of the planets in the solar
system are ellipses with the Sun at one focus.

In order to obtain the simplest equation for an ellipse, we place the foci on the 
-axis at the points and as in Figure 20, so that the origin is halfway

between the foci. If we let the sum of the distances from a point on the ellipse to the
foci be , then we can write an equation of the ellipse as2a

�c, 0���c, 0�x
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where . (See Exercise 49 and Figure 21.) Notice that the -intercepts are
, the -intercepts are , the foci are , and the ellipse is symmetric with

respect to both axes. If the foci of an ellipse are located on the axis at , then
we can find its equation by interchanging and in (1).

EXAMPLE 8 Sketch the graph of and locate the foci.

SOLUTION Divide both sides of the equation by 144:

The equation is now in the standard form for an ellipse, so we have ,
, , and . The -intercepts are and the -intercepts are .

Also, , so and the foci are . The graph is
sketched in Figure 22.

Like parabolas, ellipses have an interesting reflection property that has practical
consequences. If a source of light or sound is placed at one focus of a surface with
elliptical cross-sections, then all the light or sound is reflected off the surface to the
other focus (see Exercise 55). This principle is used in lithotripsy, a treatment for kid-
ney stones. A reflector with elliptical cross-section is placed in such a way that the 
kidney stone is at one focus. High-intensity sound waves generated at the other focus
are reflected to the stone and destroy it without damaging surrounding tissue. The
patient is spared the trauma of surgery and recovers within a few days.

Hyperbolas

A hyperbola is the set of all points in a plane the difference of whose distances from
two fixed points and (the foci) is a constant. This definition is illustrated in
Figure 23.

Notice that the definition of a hyperbola is similar to that of an ellipse; the only
change is that the sum of distances has become a difference of distances. It is left as
Exercise 51 to show that when the foci are on the -axis at and the difference
of distances is , then the equation of the hyperbola is

where . Notice that the -intercepts are again , But if we put 
in Equation 2 we get , which is impossible, so there is no -intercept. The
hyperbola is symmetric with respect to both axes.

To analyze the hyperbola further, we look at Equation 2 and obtain

x 2

a 2 � 1 �
y 2

b 2 � 1

yy � �b 2
x � 0	axc 2 � a 2 � b 2

x 2

a 2 �
y 2

b 2 � 12

� PF1 � � � PF2 � � 	2a
�	c, 0�x

F2F1

(	s7, 0)c � s7c 2 � a 2 � b 2 � 7
	3y	4xb � 3a � 4b 2 � 9

a 2 � 16

x 2

16
�

 y 2

9
� 1

9x 2 � 16y 2 � 144

yx
�0, 	c�y-

�	c, 0�	by	a
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This shows that , so . Therefore, we have or .
This means that the hyperbola consists of two parts, called its branches.

When we draw a hyperbola it is useful to first draw its asymptotes, which are the
lines and shown in Figure 24. Both branches of the hyper-
bola approach the asymptotes; that is, they come arbitrarily close to the asymptotes.
If the foci of a hyperbola are on the -axis, we find its equation by reversing the roles
of and .

EXAMPLE 9 Find the foci and asymptotes of the hyperbola and
sketch its graph.

SOLUTION If we divide both sides of the equation by 144, it becomes

which is of the form given in (2) with and . Since ,
the foci are . The asymptotes are the lines and . The graph
is shown in Figure 25.
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9≈-16¥=144

0 x

y

(5, 0)(_5, 0)

(4, 0)(_4, 0)

y=_   x3
4

y=   x3
4

y � �
3
4 xy � 3

4 x�	5, 0�
c 2 � 16 � 9 � 25b � 3a � 4

x 2

16
�

y 2

9
� 1

9x 2 � 16y 2 � 144

yx
y

y � ��b�a�xy � �b�a�x

x � �ax � a� x � � sx 2 � ax 2 � a 2

A16 � APPENDIX B COORDINATE GEOMETRY

11–24 � Find an equation of the line that satisfies the given 
conditions.

11. Through , slope 

12. Through , slope 

13. Through and 

14. Through and 

15. Slope , -intercept 

16. Slope , -intercept 

17. -intercept , -intercept 

18. -intercept , -intercept 

19. Through , parallel to the -axis

20. Through , parallel to the -axis

21. Through , parallel to the line x � 2y � 6�1, �6�

y�4, 5�

x�4, 5�

6y�8x

�3y1x

4y2
5

�2y3

�4, 3���1, �2�

�1, 6��2, 1�

�
7
2��3, �5�

6�2, �3�

1–2 � Find the distance between the points.

1. , 2. ,
� � � � � � � � � � � � �

3–4 � Find the slope of the line through and .

3. , 4. ,
� � � � � � � � � � � � �

5. Show that the points , , , and are
the vertices of a square.

6. (a) Show that the points , , and 
are collinear (lie on the same line) by showing that

.
(b) Use slopes to show that , , and are collinear.

7–10 � Sketch the graph of the equation.

7. 8.

9. 10.
� � � � � � � � � � � � �

� y � � 1xy � 0

y � �2x � 3

CBA
� AB � � � BC � � � AC �

C�5, 15�B�3, 11�A��1, 3�

��5, 3��1, 0��4, 6���2, 9�

Q�6, 0�P��1, �4�Q��1, �6�P��3, 3�

QP

�5, 7��1, �3��4, 5��1, 1�

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �B
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45. Find an equation of the perpendicular bisector of the line
segment joining the points and .

46. (a) Show that if the - and -intercepts of a line are nonzero
numbers and , then the equation of the line can be
put in the form

This equation is called the two-intercept form of an
equation of a line.

(b) Use part (a) to find an equation of the line whose 
-intercept is 6 and whose -intercept is .

47. Suppose that is any point on the parabola with focus
and directrix . (See Figure 14.) Use the defi-

nition of a parabola to show that .

48. Find the focus and directrix of the parabola . Illus-
trate with a diagram.

49. Suppose an ellipse has foci and the sum of the dis-
tances from any point on the ellipse to the foci is .
Show that the coordinates of satisfy Equation 1.

50. Find the foci of the ellipse and sketch its
graph.

51. Use the definition of a hyperbola to derive Equation 2 for a
hyperbola with foci .

52. (a) Find the  foci and asymptotes of the hyperbola
and sketch its graph.

(b) Sketch the graph of .

53–54 � Sketch the region bounded by the curves.

53. and 

54. and 

� � � � � � � � � � � � �

55. Let be a point on the ellipse 
with foci and and let and be the angles between
the lines , and the ellipse as in the figure. Prove that

. This explains how whispering galleries and litho-
tripsy work. Sound coming from one focus is reflected and
passes through the other focus. [Hint: Use the formula in
Problem 15 on page 263 to show that .]
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x 2�a 2 � y 2�b 2 � 1P1�x1, y1�

x � 2y � 2y � 4 � x 2
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y 2 � x 2 � 1
x 2 � y 2 � 1

�	c, 0�

x 2 � 4y 2 � 4

P
2aP�x, y�

�	c, 0�

y � x 2

x 2 � 4py
y � �p�0, p�

P�x, y�

�8yx

x

a
�

y

b
� 1

ba
yx

B�7, �2�A�1, 4�
22. -intercept , parallel to the line 

23. Through , perpendicular to the line

24. Through , perpendicular to the line 
� � � � � � � � � � � � �

25–28 � Find the slope and -intercept of the line and draw 
its graph.

25. 26.

27. 28.
� � � � � � � � � � � � �

29–36 � Sketch the region in the -plane.

29.

30.

31.

32.

33.

34.

35.

36.
� � � � � � � � � � � � �

37–38 � Find an equation of a circle that satisfies the given
conditions.

37. Center , radius 5

38. Center , passes through 
� � � � � � � � � � � � �

39–40 � Show that the equation represents a circle and find the
center and radius.

39.

40.
� � � � � � � � � � � � �

41. Show that the lines and are not
parallel and find their point of intersection.

42. Show that the lines and
are perpendicular and find their point

of intersection.

43. Show that the midpoint of the line segment from 
to is

44. Find the midpoint of the line segment joining the points
and .�7, 15��1, 3�

� x1 � x2

2
, 

 y1 � y2

2 �
P2�x2, y2 �

P1�x1, y1�
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x 2 � y 2 � 4x � 10y � 13 � 0

��4, �6���1, 5�

�3, �1�
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xy

4x � 5y � 103x � 4y � 12
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2x � 5y � 8 � 0
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Trigonometry � � � � � � � � � � � � � � � � �

Here we review the aspects of trigonometry that are used in calculus: radian measure,
trigonometric functions, trigonometric identities, and inverse trigonometric functions.

Angles

Angles can be measured in degrees or in radians (abbreviated as rad). The angle given
by a complete revolution contains , which is the same as rad. Therefore

and

EXAMPLE 1
(a) Find the radian measure of . (b) Express rad in degrees.

SOLUTION
(a) From Equation 1 or 2 we see that to convert from degrees to radians we multi-
ply by . Therefore

(b) To convert from radians to degrees we multiply by . Thus

In calculus we use radians to measure angles except when otherwise indicated. The
following table gives the correspondence between degree and radian measures of
some common angles.

Figure 1 shows a sector of a circle with central angle and radius subtending an
arc with length . Since the length of the arc is proportional to the size of the angle,
and since the entire circle has circumference and central angle , we have

Solving this equation for and for , we obtain

a � r�� �
a

r
3

a�

�

2�
�

a

2�r

2�2�r
a

r�

5�

4
 rad �

5�

4 �180

�
� � 225


180��

60
 � 60� �

180� �
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3
 rad

��180

5��460


1
 �
�

180
 rad  0.017 rad1 rad � �180

�
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 57.3
2

� rad � 180
1

2�360
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Remember that Equations 3 are valid only when is measured in radians.
In particular, putting in Equation 3, we see that an angle of 1 rad is the angle

subtended at the center of a circle by an arc equal in length to the radius of the circle
(see Figure 2).

EXAMPLE 2
(a) If the radius of a circle is 5 cm, what angle is subtended by an arc of 6 cm?
(b) If a circle has radius 3 cm, what is the length of an arc subtended by a central
angle of rad?

SOLUTION
(a) Using Equation 3 with and , we see that the angle is

(b) With cm and rad, the arc length is

The standard position of an angle occurs when we place its vertex at the origin of
a coordinate system and its initial side on the positive -axis as in Figure 3.

A positive angle is obtained by rotating the initial side counterclockwise until it
coincides with the terminal side. Likewise, negative angles are obtained by clockwise
rotation as in Figure 4. Figure 5 shows several examples of angles in standard posi-
tion. Notice that different angles can have the same terminal side. For instance, the
angles , , and have the same initial and terminal sides because

and rad represents a complete revolution.
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The Trigonometric Functions

For an acute angle the six trigonometric functions are defined as ratios of lengths of
sides of a right triangle as follows (see Figure 6).

This definition does not apply to obtuse or negative angles, so for a general angle
in standard position we let be any point on the terminal side of and we let
be the distance as in Figure 7. Then we define

Since division by 0 is not defined, and are undefined when and
and are undefined when . Notice that the definitions in (4) and (5)

are consistent when is an acute angle.
If is a number, the convention is that means the sine of the angle whose

radian measure is . For example, the expression implies that we are dealing
with an angle of 3 rad. When finding a calculator approximation to this number we
must remember to set our calculator in radian mode, and then we obtain

If we want to know the sine of the angle we would write and, with our cal-
culator in degree mode, we find that

The exact trigonometric ratios for certain angles can be read from the triangles in
Figure 8. For instance,
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The signs of the trigonometric functions for angles in each of the four quadrants
can be remembered by means of the rule “All Students Take Calculus” shown in
Figure 9.

EXAMPLE 3 Find the exact trigonometric ratios for .

SOLUTION From Figure 10 we see that a point on the terminal line for is
. Therefore, taking

in the definitions of the trigonometric ratios, we have

The following table gives some values of and found by the method of
Example 3.

EXAMPLE 4 If and , find the other five trigonometric func-
tions of .

SOLUTION Since , we can label the hypotenuse as having length 5 and the 
adjacent side as having length 2 in Figure 11. If the opposite side has length , then 
the Pythagorean Theorem gives and so , or . We can 
now use the diagram to write the other five trigonometric functions:

EXAMPLE 5 Use a calculator to approximate the value of in Figure 12.

SOLUTION From the diagram we see that

Therefore x �
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Trigonometric Identities

A trigonometric identity is a relationship among the trigonometric functions. The
most elementary are the following, which are immediate consequences of the defini-
tions of the trigonometric functions.

For the next identity we refer back to Figure 7. The distance formula (or, equiva-
lently, the Pythagorean Theorem) tells us that . Therefore

We have therefore proved one of the most useful of all trigonometric identities:

If we now divide both sides of Equation 7 by and use Equations 6, we get

Similarly, if we divide both sides of Equation 7 by , we get

The identities

show that is an odd function and is an even function. They are easily proved
by drawing a diagram showing and in standard position (see Exercise 19).

Since the angles and have the same terminal side, we have

These identities show that the sine and cosine functions are periodic with period .
The remaining trigonometric identities are all consequences of two basic identities

called the addition formulas:

 cos�x � y� � cos x cos y � sin x sin y12b

 sin�x � y� � sin x cos y � cos x sin y12a
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The proofs of these addition formulas are outlined in Exercises 51, 52, and 53.
By substituting for in Equations 12a and 12b and using Equations 10a and

10b, we obtain the following subtraction formulas:

Then, by dividing the formulas in Equations 12 or Equations 13, we obtain the cor-
responding formulas for :

If we put in the addition formulas (12), we get the double-angle formulas:

Then, by using the identity , we obtain the following alternate
forms of the double-angle formulas for :

If we now solve these equations for and , we get the following half-angle
formulas, which are useful in integral calculus:

There are many other trigonometric identities, but those we have stated are the ones
used most often in calculus. If you forget any of them, remember that they can all be
deduced from Equations 12a and 12b.

EXAMPLE 6 Find all values of in the interval such that .

SOLUTION Using the double-angle formula (15a), we rewrite the given equation as

sin x �1 � 2 cos x� � 0orsin x � 2 sin x cos x

sin x � sin 2x�0, 2��x

 sin2x �
1 � cos 2x

2
17b

 cos2x �
1 � cos 2x

2
17a

sin2xcos2x

 cos 2x � 1 � 2 sin2x16b

 cos 2x � 2 cos2x � 116a

cos 2x
sin2x � cos2x � 1

 cos 2x � cos2x � sin2x15b

 sin 2x � 2 sin x cos x15a

y � x

 tan�x � y� �
tan x � tan y

1 � tan x tan y
14b

 tan�x � y� �
tan x � tan y

1 � tan x tan y
14a

tan�x 	 y�

 cos�x � y� � cos x cos y � sin x sin y13b

 sin�x � y� � sin x cos y � cos x sin y13a

y�y
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Therefore, there are two possibilities:

The given equation has five solutions: , , , , and .

Graphs of the Trigonometric Functions

The graph of the function , shown in Figure 13(a), is obtained by plotting
points for and then using the periodic nature of the function (from Equa-
tion 11) to complete the graph. Notice that the zeros of the sine function occur at the
integer multiples of , that is,

Because of the identity

(which can be verified using Equation 12a), the graph of cosine is obtained by shift-
ing the graph of sine by an amount to the left [see Figure 13(b)]. Note that for
both the sine and cosine functions the domain is and the range is the closed
interval . Thus, for all values of , we have

The graphs of the remaining four trigonometric functions are shown in Figure 14
and their domains are indicated there. Notice that tangent and cotangent have range

, whereas cosecant and secant have range . All four func-
tions are periodic: tangent and cotangent have period , whereas cosecant and secant
have period .2�

�
���, �1� � �1, �����, ��

FIGURE 13

y

1

_1
x

π_π

2π

3π

0
_
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2

π
2

3π
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5π
2

(b) ©=cos x

y

1

_1
0 xπ_π 2π 3π

_
π
2

π
2

3π
2

5π
2

(a) ƒ=sin x

�1 � cos x � 1�1 � sin x � 1

x��1, 1�
���, ��

��2

cos x � sin�x �
�

2 �

whenever x � n�, n an integersin x � 0

�

0 � x � 2�
f �x� � sin x

2�5��3���30

 x �  or  x �
�

3
, 

5�

3

 x � 0, �, 2� or  cos x � 1
2

 sin x � 0  or 1 � 2 cos x � 0
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Inverse Trigonometric Functions

When we try to find the inverse trigonometric functions, we have a slight difficulty:
Because the trigonometric functions are not one-to-one, they don’t have inverse func-
tions. The difficulty is overcome by restricting the domains of these functions so that
they become one-to-one.

You can see from Figure 15 that the sine function is not one-to-one (use
the Horizontal Line Test). But the function (see 
Figure 16), is one-to-one. The inverse function of this restricted sine function exists
and is denoted by or . It is called the inverse sine function or the arcsine
function.

Since the definition of an inverse function says that

f �y� � x&?f �1�x� � y

y

0_π π xπ
2

y=sin x

FIGURE 15

0

y

x

_ π
2

π
2

FIGURE 16

arcsinsin�1
f

f �x� � sin x, ���2 � x � ��2
y � sin x

� Inverse functions are reviewed in 
Section 1.6.

FIGURE 14
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1
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0
xπ

y=sin x

_
π
2

π
2
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2

y

0 xπ_π _
π
2

π
2

3π
2

y

1

_1

0
xπ

_π

_
π
2

π
2

3π
2

(a) y=tan x (b) y=cot x

(c) y=csc x (d) y=sec x
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we have

| Thus, if , is the number between and whose sine is .

EXAMPLE 7 Evaluate (a) and (b) .

SOLUTION
(a) We have

because and lies between and .

(b) Let . Then we can draw a right triangle with angle as in Figure 17
and deduce from the Pythagorean Theorem that the third side has length

. This enables us to read from the triangle that

The cancellation equations for inverse functions [see (1.6.4)] become, in this case,

The inverse sine function, , has domain and range , and its
graph, shown in Figure 18, is obtained from that of the restricted sine function (Fig-
ure 16) by reflection about the line .

The tangent function can be made one-to-one by restricting it to the interval
. Thus, the inverse tangent function is defined as the inverse of the func-

tion . (See Figure 19.) It is denoted by or arctan.tan�1f �x� � tan x, ���2 � x � ��2
����2, ��2�

y

0 xπ
2

π
2_0

y

x1_1

π
2

_ π
2

FIGURE 19  y=tan x, _   <x<π
2

π
2FIGURE 18  y=sin–! x

y � x

����2, ��2���1, 1�sin�1

for �1 � x � 1 sin�sin�1x� � x

for �
�

2
� x �

�

2
 sin�1�sin x� � x

tan(arcsin 13 ) � tan � �
1

2s2

s9 � 1 � 2s2

�� � arcsin 13

��2���2��6sin���6� � 1
2

sin�1(1
2) �

�

6

tan(arcsin 13 )sin�1(1
2)

x��2���2sin�1x�1 � x � 1sin�1x �
1

sin x

�
�

2
� y �

�

2
andsin y � x&?sin�1x � y
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EXAMPLE 8 Simplify the expression .

SOLUTION 1 Let . Then and . We want to find
but, since is known, it is easier to find first:

Thus

SOLUTION 2 Instead of using trigonometric identities as in Solution 1, it is perhaps
easier to use a diagram. If , then , and we can read from Fig-
ure 20 (which illustrates the case ) that

The inverse tangent function, , has domain and its range is
. Its graph is shown in Figure 21. We know that the lines are

vertical asymptotes of the graph of . Since the graph of is obtained by reflect-
ing the graph of the restricted tangent function about the line , it follows that the
lines and are horizontal asymptotes of the graph of .

Of the six inverse trigonometric functions, arcsin and arctan are the ones that are
most useful for the purposes of calculus. The inverse cosine function is investigated in
Exercise 46. The remaining inverse trigonometric functions don’t arise as frequently.

tan�1y � ���2y � ��2
y � x

tan�1tan
x � 	��2����2, ��2�

�tan�1 � arctan

cos�tan�1x� � cos y �
1

s1 � x 2

y � 0
tan y � xy � tan�1x

cos�tan�1x� � cos y �
1

sec y
�

1

s1 � x 2

�since sec y � 0 for ���2 � y � ��2� sec y � s1 � x 2

 sec2y � 1 � tan2y � 1 � x 2

sec ytan ycos y
���2 � y � ��2tan y � xy � tan�1x

cos�tan�1x�

�
�

2
� y �

�

2
andtan y � x&?tan�1x � y
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5. Find the length of a circular arc subtended by an angle of 
rad if the radius of the circle is 36 cm.

6. If a circle has radius 10 cm, find the length of the arc sub-
tended by a central angle of .

7. A circle has radius m. What angle is subtended at the
center of the circle by an arc 1 m long?

8. Find the radius of a circular sector with angle and arc
length 6 cm.

3��4

1.5

72


��12
1–2 � Convert from degrees to radians.

1. (a) (b)

2. (a) (b)
� � � � � � � � � � � � �

3–4 � Convert from radians to degrees.

3. (a) (b)

4. (a) (b)

� � � � � � � � � � � � �

8�

3
�

7�

2

�
3�

8
4�

36
�315


9
210


Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �C

œ„„„„„1+≈

1

y

x

FIGURE 20

FIGURE 21
y=tan–! x=arctan x

π
2

_ π
2

y

0

x



27–28 � If and , where and lie between 
and , evaluate the expression.

27. 28.
� � � � � � � � � � � � �

29–32 � Find all values of in the interval that satisfy
the equation.

29. 30.

31. 32.
� � � � � � � � � � � � �

33–36 � Find all values of in the interval that satisfy
the inequality.

33. 34.

35. 36.
� � � � � � � � � � � � �

37–40 � Graph the function by starting with the graphs in Fig-
ures 13 and 14 and applying the transformations of Section 1.3
where appropriate.

37. 38.

39. 40.

� � � � � � � � � � � � �

41–44 � Find the exact value of each expression.

41. (a) (b)

42. (a) (b)

43. (a) (b)

44. (a) (b)
� � � � � � � � � � � � �

45. Prove that .

46. The inverse cosine function, , is defined as 
the inverse of the restricted cosine function ,

.
(a) What are the domain and range of the inverse cosine

function?
(b) Sketch the graph of arccos.

47. Find the domain and range of the function 

; 48. (a) Graph the function and explain the
appearance of the graph.

(b) Graph the function . How do you
explain the appearance of this graph?

t�x� � sin�1�sin x�

f �x� � sin�sin�1x�

t�x� � sin�1�3x � 1�

0 � x � �
f �x� � cos x

cos�1 � arccos

cos�sin�1x� � s1 � x2

sin(2 sin�1(3
5))sec�arctan 2�

arcsin�sin 
5�

4 �sin�sin�1�0.7��

arcsin 1tan�1
s3

arctan��1�sin�1�0.5�

y � � sin x �y �
1

3
 tan�x �

�

2 �
y � tan 2xy � cos�x �

�

3 �

sin x � cos x�1 � tan x � 1

2 cos x � 1 � 0sin x �
1
2

�0, 2��x

� tan x � � 1sin 2x � cos x

2 sin2x � 12 cos x � 1 � 0

�0, 2��x

cos 2ysin�x � y�

��20
yxsec y � 5

4sin x � 1
3

9–10 � Draw, in standard position, the angle whose measure is
given.

9. (a) (b) rad

10. (a) rad (b) rad

� � � � � � � � � � � � �

11–12 � Find the exact trigonometric ratios for the angle whose
radian measure is given.

11. 12.

� � � � � � � � � � � � �

13–14 � Find the remaining trigonometric ratios.

13. ,

14. ,

� � � � � � � � � � � � �

15–18 � Find, correct to five decimal places, the length of the
side labeled .

15. 16.

17. 18.

� � � � � � � � � � � � �

19–20 � Prove each equation.

19. (a) Equation 10a (b) Equation 10b

20. (a) Equation 14a (b) Equation 14b
� � � � � � � � � � � � �

21–26 � Prove the identity.

21. 22.

23. 24.

25. 26.

� � � � � � � � � � � � �

cos 3� � 4 cos3� � 3 cos �tan 2� �
2 tan �

1 � tan2�

�sin x � cos x�2 � 1 � sin 2xsin � cot � � cos �

sin�� � x� � sin xsin��

2
� x� � cos x

22 cm
x

3π
8

8 cm

x

2π
5

25 cm

x

40°
10 cm

x

35°

x

0 �  �
�

2
tan  � 2

0 � � �
�

2
sin � �

3

5

4�

3

3�

4

�3
7�

3

�
3�

4
315
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51. Use the figure to prove the subtraction formula 

[Hint: Compute in two ways (using the Law of Cosines
from Exercise 49 and also using the distance formula) and
compare the two expressions.]

52. Use the formula in Exercise 51 to prove the addition
formula for cosine (12b).

53. Use the addition formula for cosine and the identities 

to prove the subtraction formula for the sine function.

54. (a) Show that the area of a triangle with sides of lengths 
and and with included angle is

(b) Find the area of triangle , correct to five decimal
places, if

cm cm �ABC � 107
� BC � � 3� AB � � 10

ABC

A � 1
2 ab sin �

�b
a

sin��

2
� �� � cos �

cos��

2
� �� � sin �

0

y

B(cos ∫, sin ∫)

∫

1

A(cos å, sin å)

1

å

c

x

c2

cos� � �� � cos  cos � � sin  sin �

49. Prove the Law of Cosines: If a triangle has sides with
lengths , , and , and is the angle between the sides 
with lengths and , then

[Hint: Introduce a coordinate system so that is in standard
position as in the figure. Express and in terms of and
then use the distance formula to compute .]

50. In order to find the distance across a small inlet, a
point is located as in the figure and the following meas-
urements were recorded:

m m

Use the Law of Cosines from Exercise 49 to find the
required distance.

A

C

B

� BC � � 910� AC � � 820�C � 103


C
� AB �

0

y
P(x, y)

¨

cb

(a, 0) x

c
�yx

�

c2 � a2 � b2 � 2ab cos �

ba
�cba
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Precise Definitions of Limits � � � � � � � � � � � � �

The definitions of limits that have been given in this book are appropriate for intuitive
understanding of the basic concepts of calculus. For the purposes of deeper under-
standing and rigorous proofs, however, the precise definitions of this appendix are
necessary. In particular, the definition of a limit given here is used in Appendix E to
prove that the limit of a sum is the sum of the limits. 

When we say that has a limit as approaches , we mean, according to the
intuitive definition in Section 2.2, that we can make arbitrarily close to by 
taking close enough to (but not equal to ). A more precise definition is based on aax

Lf �x�
axLf �x�

D



the idea of specifying just how small we need to make the distance in order
to make the distance less than some given number. The following example
illustrates the idea.

EXAMPLE 1 Use a graph to find a number such that

whenever

SOLUTION A graph of is shown in Figure 1; we are interested in the
region near the point . Notice that we can rewrite the inequality

as

So we need to determine the values of for which the curve lies
between the horizontal lines and . Therefore, we graph the curves

, , and near the point in Figure 2. Then 
we use the cursor to estimate that the -coordinate of the point of intersection 
of the line and the curve is about . Similarly,

intersects the line when . So, rounding to be
safe, we can say that

This interval is not symmetric about . The distance from to
the left endpoint is and the distance to the right endpoint is 0.12.
We can choose to be the smaller of these numbers, that is, . Then we can
rewrite our inequalities in terms of distances as follows:

This just says that by keeping within 0.08 of 1, we are able to keep within 0.2 
of 2.

Although we chose , any smaller positive value of would also have
worked.

Using the same graphical procedure as in Example 1, but replacing the number 0.2
by smaller numbers, we find that

In each case we have found a number such that the values of the function�

� x � 1 � � 0.004whenever� �x 3 � 5x � 6� � 2 � � 0.01

� x � 1 � � 0.024whenever� �x 3 � 5x � 6� � 2 � � 0.05

� x � 1 � � 0.046whenever� �x 3 � 5x � 6� � 2 � � 0.1

�� � 0.08

f �x�x

� x � 1 � � 0.08whenever� �x 3 � 5x � 6� � 2 � � 0.2

� � 0.08�
1 � 0.92 � 0.08

x � 1x � 1�0.92, 1.12�

0.92 � x � 1.12whenever1.8 � x 3 � 5x � 6 � 2.2

x  1.124y � 1.8y � x 3 � 5x � 6
0.911y � x 3 � 5x � 6y � 2.2

x
�1, 2�y � 2.2y � 1.8y � x 3 � 5x � 6

y � 2.2y � 1.8
y � x 3 � 5x � 6x

 1.8 � x 3 � 5x � 6 � 2.2

 � �x 3 � 5x � 6� � 2 � � 0.2

�1, 2�
f �x� � x 3 � 5x � 6

� x � 1 � � �� �x 3 � 5x � 6� � 2 � � 0.2

�

� f �x� � L �
� x � a �
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� It is traditional to use the Greek 
letter (delta) in this situation.�

FIGURE 1

FIGURE 2
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y=˛-5x+6
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y=1.8
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lie in successively smaller intervals centered at 2 if the distance
from to 1 is less than . It turns out that it is always possible to find such a number

, no matter how small the interval is. In other words, for any positive number , no
matter how small, there exists a positive number such that

This indicates that

and suggests a more precise way of defining the limit of a general function.

Definition Let be a function defined on some open interval that contains
the number , except possibly at itself. Then we say that the limit of as

approaches is , and we write

if for every number there is a corresponding number such that

Definition 1 is illustrated in Figures 3–5. If a number  is given, then we draw
the horizontal lines and and the graph of . (See Figure 3.) If

, then we can find a number such that if we restrict to lie in
the interval and take , then the curve lies between the 
lines and . (See Figure 4.) You can see that if such a has been
found, then any smaller will also work.

It’s important to realize that the process illustrated in Figures 3 and 4 must work
for every positive number no matter how small it is chosen. Figure 5 shows that if a
smaller is chosen, then a smaller may be required.��

�

FIGURE 3 FIGURE 4 FIGURE 5

a0 x

y

y=L+∑

y=L-∑

a-∂ a+∂

L+∑

L-∑

0 x

y

a

y=L+∑

y=L-∑

a-∂ a+∂

∑
∑L

when x is in here
(x≠ a)

ƒ
is in
here

a0 x

y
y=ƒ

y=L+∑

y=L-∑

∑
∑L

�
�y � L � �y � L � �

y � f �x�x � a�a � �, a � ��
x� � 0limx l a f �x� � L

fy � L � �y � L � �
� � 0

0 � � x � a � � �whenever� f �x� � L � � �

� � 0� � 0

lim
x l a

 f �x� � L

Lax
f �x�aa

f1

lim
x l 1

 �x 3 � 5x � 6� � 2

� x � 1 � � �whenever� �x 3 � 5x � 6� � 2 � � �

�
��

�x
f �x� � x 3 � 5x � 6
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� The condition is just
another way of saying that .x � a

0 � � x � a �



EXAMPLE 2 Use the definition to prove that .

SOLUTION Let be a given positive number. According to Definition 1 with and
, we need to find a number such that 

that is,

But, since the square root function is an increasing function, we know that

So if we choose , then (see Figure 6). This shows that
.

In proving limit statements it may be helpful to think of the definition of limit as a
challenge. First it challenges you with a number . Then you must be able to produce
a suitable . You have to be able to do this for every , not just a particular .

Imagine a contest between two people, A and B, and imagine yourself to be B. Per-
son A stipulates that the fixed number should be approximated by the values of 
to within a degree of accuracy (say, 0.01). Person B then responds by finding a num-
ber such that whenever . Then A may become
more exacting and challenge B with a smaller value of (say, 0.0001). Again B has
to respond by finding a corresponding . Usually the smaller the value of , the
smaller the corresponding value of must be. If B always wins, no matter how small
A makes , then 

EXAMPLE 3 Prove that .

SOLUTION
1. Preliminary analysis of the problem (guessing a value for ). Let be a

given positive number. We want to find a number such that

But . Therefore, we want

that is, whenever

This suggests that we should choose .
2. Proof (showing that this works). Given , choose . If

, then

Thus

0 � � x � 3 � � �whenever� �4x � 5� � 7 � � �

� �4x � 5� � 7 � � � 4x � 12 � � 4� x � 3 � � 4� � 4��

4� � �

0 � � x � 3 � � �
� � ��4� � 0�

� � ��4

0 � � x � 3 � � �� x � 3 � �
�

4

0 � � x � 3 � � �whenever4� x � 3 � � �

� �4x � 5� � 7 � � � 4x � 12 � � � 4�x � 3� � � 4� x � 3 �

0 � � x � 3 � � �whenever� �4x � 5� � 7 � � �

�
��

lim
x l3

 �4x � 5� � 7

lim x l a f �x� � L.�
�

��
�

0 � � x � a � � �� f �x� � L � � ��
�

f �x�L

�� � 0�
�

limx l 0 x 2 � 0
x 2 � � &? � x � � �� � s�

x 2 � �  &?  sx 2 � s�  &?  � x � � s�

0 � � x � � �wheneverx 2 � �

0 � � x � 0 � � �whenever� x 2 � 0 � � �

�L � 0
a � 0�

lim
x l

  0
 x 2 � 0�, �
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Therefore, by the definition of a limit,

This example is illustrated by Figure 7.

Note that in the solution of Example 2 there were two stages—guessing and prov-
ing. We made a preliminary analysis that enabled us to guess a value for . But then
in the second stage we had to go back and prove in a careful, logical fashion that we
had made a correct guess. This procedure is typical of much of mathematics. Some-
times it is necessary to first make an intelligent guess about the answer to a problem
and then prove that the guess is correct.

It’s not always easy to prove that limit statements are true using the definition.
For a more complicated function such as , a proof
would require a great deal of ingenuity. Fortunately, this is not necessary because the
Limit Laws stated in Section 2.3 can be proved using Definition 1, and then the lim-
its of complicated functions can be found rigorously from the Limit Laws without
resorting to the definition directly.

Limits at Infinity

Infinite limits and limits at infinity can also be defined in a precise way. The follow-
ing is a precise version of Definition 4 in Section 2.5.

Definition Let be a function defined on some interval . Then

means that for every there is a corresponding number such that

In words, this says that the values of can be made arbitrarily close to 
(within a distance , where is any positive number) by taking sufficiently large
(larger than , where depends on ). Graphically it says that by choosing large
enough (larger than some number ) we can make the graph of lie between the
given horizontal lines and as in Figure 8. This must be true no
matter how small we choose . If a smaller value of is chosen, then a larger value of

may be required.

0

y

xN

L

when x is in here

ƒ is
in here

y=L-∑

y=L+∑

∑
∑

y=ƒ

FIGURE 8
lim ƒ=L
x    `

N
��

y � L � �y � L � �
fN

x�NN
x��

Lf �x�

x � Nwhenever� f �x� � L � � �

N� � 0

lim
x l �

 f �x� � L

�a, ��f2

f �x� � �6x 2 � 8x � 9���2x 2 � 1�
�, �

�

lim
x l3

 �4x � 5� � 7 
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FIGURE 7

y

0 x

7+∑

7

7-∑

3-∂ 3+∂

3
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In Example 5 in Section 2.5 we calculated that 

In the next example we use a graphing device to relate this statement to Definition 2
with and 

EXAMPLE 4 Use a graph to find a number such that 

SOLUTION We rewrite the given inequality as

We need to determine the values of for which the given curve lies between the
horizontal lines and . So we graph the curve and these lines in Fig-
ure 9. Then we use the cursor to estimate that the curve crosses the line 
when . To the right of this number the curve stays between the lines 
and . Rounding to be safe, we can say that

In other words, for we can choose (or any larger number) in 
Definition 2. 

EXAMPLE 5 Use Definition 2 to prove that .

SOLUTION Let be a given positive number. According to Definition 2, we want to
find such that

In computing the limit we may assume , in which case

Therefore, we want 

that is,

So if we choose , then . This proves the desired limit. 1�x � � &? x � NN � 1��

x � Nwheneverx �
1

�

x � Nwhenever
1

x
� �

	 1

x
� 0 	 � 	 1

x 	 �
1

x

x � 0

x � Nwhenever	 1

x
� 0 	 � �

N
�

lim
x l �

 
1

x
� 0

N � 7� � 0.1

x � 7whenever	 3x 2 � x � 2

5x 2 � 4x � 1
� 0.6 	 � 0.1

y � 0.7
y � 0.5x  6.7

y � 0.5
y � 0.7y � 0.5

x

0.5 �
3x 2 � x � 2

5x 2 � 4x � 1
� 0.7

x � Nwhenever	 3x 2 � x � 2

5x 2 � 4x � 1
� 0.6 	 � 0.1

N

� � 0.1.L � 3
5

lim
x l �

 
3x 2 � x � 2

5x 2 � 4x � 1
�

3

5
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FIGURE 9

1

0 15

y=0.7
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y= 3≈-x-2
5≈+4x+1



Figure 10 illustrates the proof by showing some values of and the corresponding
values of .

Infinite limits can also be formulated precisely. See Exercise 16.

Sequences

In Section 8.1 we used the notation 

to mean that the terms of the sequence approach as becomes large. Notice that
the following precise definition of the limit of a sequence is very similar to the defi-
nition of a limit of a function at infinity (Definition 2).

Definition A sequence has the limit and we write

if for every there is a corresponding integer such that

Definition 3 is illustrated by Figure 11, in which the terms , , , . . . are 
plotted on a number line. No matter how small an interval is chosen,
there exists an such that all terms of the sequence from onward must lie in that
interval.

Another illustration of Definition 3 is given in Figure 12. The points on the graph
of must lie between the horizontal lines and if . This
picture must be valid no matter how small is chosen, but usually a smaller requires
a larger .N

��
n � Ny � L � �y � L � ��an �

FIGURE 11 0 L-∑ L L+∑

a¡ a£ a¢a™ a∞aß a¶aˆ a˜aN+1 aN+2

aN�1N
�L � �, L � ��

a3a2a1

n � Nwhenever� an � L � � �

N� � 0

an l L as n l �orlim
n l �

 an � L

L�an �3

nL�an �

lim
n l �

 an � L

x

y

0 N=5

∑=0.2
x

y

0 N=1

∑=1

x

y

0 N=10

∑=0.1

FIGURE 10

N
�
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Comparison of Definitions 2 and 3 shows that the only difference between
and is that is required to be an integer. The follow-

ing definition shows how to make precise the idea that becomes infinite as 
becomes infinite.

Definition If means that for every positive number there is
an integer such that

EXAMPLE 6 Prove that .

SOLUTION Let be any positive number. (Think of it as being very large.) Then

So if we take , then Definition 4 shows that .

Functions of Two Variables

Here is a precise version of Definition 1 in Section 11.2:

Definition Let be a function of two variables whose domain includes
points arbitrarily close to . Then we say that the limit of as 
approaches is and we write

if for every number there is a corresponding number such that

Because is the distance between the numbers and , and
is the distance between the point and the point ,

Definition 5 says that the distance between and can be made arbitrarily small
by making the distance from to sufficiently small (but not 0). An illustra-
tion of Definition 5 is given in Figure 13 where the surface is the graph of . If 
is given, we can find such that if is restricted to lie in the disk with
center and radius , and if , then the corresponding part of lies
between the horizontal planes and .z � L � �z � L � �

S�x, y� � �a, b���a, b�
D��x, y)� � 0

� � 0fS
�a, b)�x, y)

Lf �x, y)
�a, b)�x, y)s�x � a�2 � �y � b�2

Lf �x, y)� f (x, y) � L �

� f (x, y) � L � � � whenever �x, y� � D and 0 � s�x � a� 2 � �y � b� 2 � �

� � 0� � 0

lim
�x, y� l �a, b�

 f �x, y� � L

L�a, b)
�x, y)f �x, y)�a, b�

Df5

limn l � sn � �N � M 2

sn � M  &?  n � M 2

M

lim
n l �

 sn � �

an � M    whenever    n � N

N
Mlimn l � an � �4

n�an �
nlimx l � f �x� � Llimn l � an � L

FIGURE 12 20 n

y

1 3 4

L

y=L+∑

N

y=L-∑

FIGURE 13

x
y

z

0

L+∑
L

L-∑

(a, b)
D∂

S
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EXAMPLE 7 Prove that .

SOLUTION Let . We want to find such that

that is,

But since , so and therefore

Thus, if we choose and let , then

Hence, by Definition 5,

lim
�x, y� l �0, 0�

 
3x 2y

x 2 � y 2 � 0

	 3x 2y

x 2 � y 2 � 0 	 � 3sx 2 � y 2 � 3� � 3��

3� � �

0 � sx 2 � y 2 � �� � ��3

3x 2� y �
x 2 � y 2 � 3 � y � � 3sy 2 � 3sx 2 � y 2

x 2��x 2 � y 2 � � 1y 2 � 0x 2 � x 2 � y 2

0 � sx 2 � y 2 � �whenever
3x 2� y �
x 2 � y 2 � �

0 � sx 2 � y 2 � �whenever	 3x 2y

x 2 � y 2 � 0 	 � �

� � 0� � 0

lim
�x, y� l �0, 0�

 
3x 2y

x 2 � y 2 � 0

2. Use the given graph of to find a number such
that

x

y

? 1 ?0

1.5

1

0.5

y=≈

� x2 � 1 � �
1
2 whenever � x � 1 � � �

�f �x� � x21. Use the given graph of to find a number such
that

whenever

x

y

20

1

0.5

0.7

0.3

10
3

10
7

y=∆

� x � 2 � � �	 1

x
� 0.5 	 � 0.2

�f �x� � 1�x

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �D
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(b) If the temperature is allowed to vary from by up
to , what range of wattage is allowed for the input
power?

(c) In terms of the definition of , what
is ? What is ? What is ? What is ? What value
of is given? What is the corresponding value of ?

; 13. Use a graph to find a number such that

; 14. For the limit 

illustrate Definition 2 by finding values of that corre-
spond to and .

15. (a) Determine how large we have to take so that

(b) Use Definition 2 to prove that

16. (a) For what values of is it true that 

(b) The precise definition of states that for
every positive number (no matter how large) there is
a corresponding positive number such that 
whenever . Use this definition to prove
that .

; 17. (a) Use a graph to guess the value of the limit

(b) Use a graph of the sequence in part (a) to find the 
smallest values of that correspond to and

in Definition 3.

18. Use Definition 3 to prove that when .

19. Use Definition 3 to prove that if ,
then .

20. Use Definition 4 to prove that .

21. Use Definition 5 to prove that .lim
�x, y� l �0, 0�

 
xy

sx2 � y2
 � 0

lim
n l �

 n3 � �

lim
n l �

an � 0
lim
n l �

 � an � � 0

�r � � 1lim
n l �

 rn � 0

� � 0.001
� � 0.1N

lim
n l �

 
n5

n!

limx l 0 �1�x2� � �
0 � � x � a � � �

f �x� � M�
M

limx l a f �x� � �

1

x 2 � 1,000,000

x

lim
x l �

 
1

x2 � 0

1

x2 � 0.0001

x

� � 0.1� � 0.5
N

lim
x l �

 
s4x2 � 1

x � 1
� 2

x � Nwhenever	 6x2 � 5x � 3

2x2 � 1
� 3 	 � 0.2

N

��
Laf �x�x

limx l a f �x� � L�, �

	1 
C
200 
C

; 3. Use a graph to find a number such that

; 4. Use a graph to find a number such that

; 5. For the limit

illustrate Definition 1 by finding values of that correspond
to and .

; 6. For the limit

illustrate Definition 1 by finding values of that correspond
to and 

7. Use Definition 1 to prove that 

8. (a) How would you formulate an definition of the one-
sided limit ?

(b) Use your definition in part (a) to prove that
.

9–10 � Prove the statement using the definition of limit and
illustrate with a diagram like Figure 7.

9. 10.

� � � � � � � � � � � � �

11. A machinist is required to manufacture a circular metal disk
with area . 
(a) What radius produces such a disk?
(b) If the machinist is allowed an error tolerance of 

in the area of the disk, how close to the ideal radius in
part (a) must the machinist control the radius?

(c) In terms of the definition of , what
is ? What is ? What is ? What is ? What value
of is given? What is the corresponding value of ?

; 12. A crystal growth furnace is used in research to determine
how best to manufacture crystals used in electronic compo-
nents for the space shuttle. For proper growth of the crystal,
the temperature must be controlled accurately by adjusting
the input power. Suppose the relationship is given by 

where is the temperature in degrees Celsius and is the
power input in watts.
(a) How much power is needed to maintain the temperature

at ?200 
C

wT

T�w� � 0.1w 2 � 2.155w � 20

��
Laf �x�x

limx l a f �x� � L�, �

	5 cm2

1000 cm2

lim
x l 4

 �5 � 2x� � �3lim
x l 2

 �3x � 2� � 4

�, �

limx l 0� sx � 0

limx l a� f �x� � L
�, �

limx l 0 x3 � 0.

� � 0.1.� � 0.5
�

lim
x l 0

 
ex

� 1

x
� 1

� � 0.1� � 1
�

lim
x l 1

 �4 � x � 3x3� � 2

	 x �
�

6 	 � �whenever| sin x �
1
2 | � 0.1

�

� s4x � 1 � 3 � � 0.5 whenever � x � 2 � � �

�



A Few Proofs � � � � � � � � � � � � � � � � �

In this appendix we present proofs of some theorems that were stated in the main body
of the text. We start by proving the Triangle Inequality, which is an important prop-
erty of absolute value.

The Triangle Inequality If and are any real numbers, then

Observe that if the numbers and are both positive or both negative, then the two
sides in the Triangle Inequality are actually equal. But if and have opposite signs,
the left side involves a subtraction and the right side does not. This makes the Triangle
Inequality seem reasonable, but we can prove it as follows.

Notice that

is always true because equals either or . The corresponding statement for
is

Adding these inequalities, we get

If we now apply Properties 4 and 5 of absolute value from Appendix A (with re-
placed by and by ), we obtain

which is what we wanted to show.

Next we use the Triangle Inequality to prove the Sum Law for limits.

Sum Law If and both exist, then

Proof Let be given. According to Definition 1 in Appendix D, we must find
such that

Using the Triangle Inequality we can write

� � f �x� � L � � � t�x� � M �
 � f �x� � t�x� � �L � M� � � � � f �x� � L� � �t�x� � M� �1

0 � � x � a � � �whenever� f �x� � t�x� � �L � M� � � �

� � 0
� � 0

lim
x l a

 � f �x� � t�x�� � L � M

limx  l a t�x� � Mlimx l a f �x� � L

� a � b � � � a � � � b �
� a � � � b �aa � b

x

�(� a � � � b �) � a � b � � a � � � b �

�� b � � b � � b �
b

�� a �� a �a

�� a � � a � � a �

ba
ba

� a � b � � � a � � � b �
ba

E
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� When combined, Properties 4 and 5
of absolute value (see Appendix A) say
that

� x � � a  &?  �a � x � a

� The Sum Law was first stated in 
Section 2.3.
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We will make less than by making each of the terms
and less than . 

Since and , there exists a number such that

Similarly, since , there exists a number such that

Let . Notice that

and so

Therefore, by (1),

To summarize,

Thus, by the definition of a limit,

Fermat’s Theorem If has a local maximum or minimum at , and if exists,
then .

Proof Suppose, for the sake of definiteness, that has a local maximum at . Then,
if is sufficiently close to . This implies that if is sufficiently close 

to 0, with being positive or negative, then

and therefore

We can divide both sides of an inequality by a positive number. Thus, if and 
is sufficiently small, we have

 f �c � h� � f �c�
h

� 0

hh � 0

f �c � h� � f �c� � 02

f �c� � f �c � h�

h
hcxf �c� � f �x�

cf

f ��c� � 0
f ��c�cf

lim
x l a

 � f �x� � t�x�� � L � M 

0 � � x � a � � �whenever� f �x� � t�x� � �L � M� � � �

 �
�

2
�

�

2
� �

 � f �x� � t�x� � �L � M� � � � f �x� � L � � � t�x� � M �

� t�x� � M � �
�

2
and� f �x� � L � �

�

2

0 � � x � a � � � 2and0 � � x � a � � �1then0 � � x � a � � �if

� � min ��1, � 2 �

0 � � x � a � � � 2whenever� t�x� � M � �
�

2

� 2 � 0lim x l a t�x� � M

0 � � x � a � � �1whenever� f �x� � L � �
�

2

�1 � 0lim x l a f �x� � L� 0��2
��2� t�x� � M �� f �x� � L �

�� f �x� � t�x� � �L � M� �

� Fermat’s Theorem was discussed in
Section 4.2.
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Taking the right-hand limit of both sides of this inequality (using Theorem 2.3.2),
we get

But since exists, we have

and so we have shown that .
If , then the direction of the inequality (2) is reversed when we divide by :

So, taking the left-hand limit, we have

We have shown that and also that . Since both of these inequali-
ties must be true, the only possibility is that .

We have proved Fermat’s Theorem for the case of a local maximum. The case of
a local minimum can be proved in a similar manner.

Clairaut’s Theorem Suppose is defined on a disk that contains the 
point If the functions and are both continuous on , then

.

Proof For small values of , , consider the difference

Notice that if we let , then

By the Mean Value Theorem, there is a number between and such that

Applying the Mean Value Theorem again, this time to we get a number 
between and such that

Combining these equations, we obtain

��h� � h 2fxy�c, d �

fx�c, b � h� � fx�c, b� � fxy�c, d �h

b � hb
dfx ,

t�a � h� � t�a� � t��c�h � h � fx�c, b � h� � fx�c, b��

a � hac

��h� � t�a � h� � t�a�

t�x� � f �x, b � h� � f �x, b�

��h� � � f �a � h, b � h� � f �a � h, b�� � � f �a, b � h� � f �a, b��

h � 0h

fxy�a, b� � fyx�a, b�
Dfyxfxy�a, b�.

Df

f ��c� � 0
f ��c� � 0f ��c� � 0

f ��c� � lim
h l 0

 
 f �c � h� � f �c�

h
� lim

h l
 

0�
 
 f �c � h� � f �c�

h
� 0

h � 0
 f �c � h� � f �c�

h
� 0

hh � 0
f ��c� � 0

f ��c� � lim
h l 0

 
 f �c � h� � f �c�

h
� lim

h l
 

0�
 
 f �c � h� � f �c�

h

f ��c�

lim
h l

 

0�
 
 f �c � h� � f �c�

h
� lim

h l
 

0� 
0 � 0

� Clairaut’s Theorem was discussed in
Section 11.3.
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If , then , so the continuity of at gives

Similarly, by writing

and using the Mean Value Theorem twice and the continuity of at , we
obtain

It follows that .

Theorem If the partial derivatives and exist near and are continuous
at , then is differentiable at .

Proof Let

According to Definition 11.4.7, to prove that is differentiable at we have to
show that we can write in the form

where and as .
Referring to Figure 1, we write

Observe that the function of a single variable

is defined on the interval and . If we apply the
Mean Value Theorem to , we get

t�a � �x� � t�a� � t��u� �x

t

t��x� � fx�x, b � �y��a, a � �x�

t�x� � f �x, b � �y�

FIGURE 1
x

y

0

R
(a, √)

(a, b+Îy)

(a+Îx, b+Îy)

(u, b+Îy)

(a, b)

�z � � f �a � �x, b � �y� � f �a, b � �y�� � � f �a, b � �y� � f �a, b��3

��x, �y� l �0, 0��2 l 0�1

�z � fx�a, b� �x � fy�a, b� �y � �1 �x � �2 �y

�z
�a, b�f

�z � f �a � �x, b � �y� � f �a, b�

�a, b�f�a, b�
�a, b�fyfx

fxy�a, b� � fyx�a, b�

lim 
h l 0

 
��h�
h 2 � fyx�a, b�

�a, b�fyx

��h� � � f �a � h, b � h� � f �a, b � h�� � � f �a � h, b� � f �a, b��

lim 
h l 0

 
��h�
h 2 � lim 

�c, d� l �a, b�
 fxy�c, d � � fxy�a, b�

�a, b�fxy�c, d � l �a, b�h l 0

� This was stated as Theorem 8 in 
Section 11.4.



where is some number between and . In terms of , this equation
becomes

This gives us an expression for the first part of the right side of Equation 3. For the 
second part we let . Then is a function of a single variable defined
on the interval and . A second application of the Mean
Value Theorem then gives

where is some number between and . In terms of , this becomes

We now substitute these expressions into Equation 3 and obtain

where

Since and as and since 
and are continuous at , we see that and as .

Therefore, f is differentiable at .

Second Derivatives Test Suppose the second partial derivatives of are continu-
ous on a disk with center , and suppose that and 
[that is, is a critical point of ]. Let

(a) If and , then is a local minimum.

(b) If and , then is a local maximum.

(c) If , then is not a local maximum or minimum.

Proof of part (a) We compute the second-order directional derivative of in the
direction of . The first-order derivative is given by Theorem 11.6.3:

Du f � fxh � fyk

u � �h, k�
f

f �a, b�D � 0

f �a, b�fxx�a, b� � 0D � 0

f �a, b�fxx�a, b� � 0D � 0

D � D�a, b� � fxx�a, b� fyy�a, b� � � fxy�a, b��2

f�a, b�
fy�a, b� � 0fx�a, b� � 0�a, b�

f

�a, b�
��x, �y� l �0, 0��2 l 0�1 l 0�a, b�fy

fx��x, �y� l �0, 0��a, v� l �a, b��u, b � �y� l �a, b�

 �2 � fy�a, v� � fy�a, b�

 �1 � fx�u, b � �y� � fx�a, b�

 � fx�a, b� �x � fy�a, b� �y � �1 �x � �2 �y

 � � � fy�a, v� � fy�a, b�� �y

 � fx�a, b��x � � fx�u, b � �y� � fx�a, b�� �x � fy�a, b� �y

 �z � fx�u, b � �y� �x � fy�a, v� �y

f �a, b � �y� � f �a, b� � fy�a, v� �y

fb � �ybv

h�b � �y� � h�b� � h��v� �y

h��y� � fy�a, y��b, b � �y�
hh�y� � f �a, y�

f �a � �x, b � �y� � f �a, b � �y� � fx�u, b � �y� �x

fa � �xau
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� The Second Derivatives Test was 
discussed in Section 11.7. Parts (b) and
(c) have similar proofs.
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Applying this theorem a second time, we have

(by Clairaut’s Theorem)

If we complete the square in this expression, we obtain

We are given that and . But and are
continuous functions, so there is a disk with center and radius such
that and whenever is in . Therefore, by looking at
Equation 4, we see that whenever is in . This means that if 

is the curve obtained by intersecting the graph of with the vertical plane 
through in the direction of , then is concave upward on an inter-
val of length . This is true in the direction of every vector , so if we restrict 

to lie in , the graph of lies above its horizontal tangent plane at . Thus,
whenever is in . This shows that is a local minimum.

Sigma Notation � � � � � � � � � � � � � � � �

A convenient way of writing sums uses the Greek letter (capital sigma, correspond-
ing to our letter S) and is called sigma notation.

Definition If are real numbers and and are integers
such that then

With function notation, Definition 1 can be written as

Thus, the symbol indicates a summation in which the letter (called the index of
summation) takes on consecutive integer values beginning with m and ending with n,
that is, . Other letters can also be used as the index of summation.m, m � 1, . . . , n

i�n
i�m

�
n

i�m
 f �i� � f �m� � f �m � 1� � f �m � 2� � � � � � f �n � 1� � f �n�

�
n

i�m
 ai � am � am�1 � am�2 � � � � � an�1 � an

m � n, 
nmam, am�1, . . . , an1

�

F

f �a, b�B�x, y�f �x, y� � f �a, b�
PfB�x, y�

u2�
CuP�a, b, f �a, b��

fC
B�x, y�Du

2 f �x, y� � 0
B�x, y�D�x, y� � 0fxx�x, y� � 0

� � 0�a, b�B
D � fxx fyy � f xy

2fxxD�a, b� � 0fxx�a, b� � 0

D2
u f � fxx�h �

 fxy

fxx
 k�2

�
k 2

fxx
 � fxx fyy � f 2

xy�4

 � fxxh2 � 2 fxyhk � fyyk 2

 � � fxxh � fyxk�h � � fxyh � fyyk�k

 D2
u f � Du�Du f � �

�

�x
 �Du f �h �

�

�y
 �Du f �k

This tells us to
end with i=n.

This tells us
to add.

This tells us to
start with i=m.

µ ai

n

i�m
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EXAMPLE 1

(a)

(b)

(c)

(d)

(e)

(f)

EXAMPLE 2 Write the sum in sigma notation.

SOLUTION There is no unique way of writing a sum in sigma notation. We could write

or

or

The following theorem gives three simple rules for working with sigma notation.

Theorem If is any constant (that is, it does not depend on ), then

(a) (b)

(c)

Proof To see why these rules are true, all we have to do is write both sides in
expanded form. Rule (a) is just the distributive property of real numbers:

Rule (b) follows from the associative and commutative properties:

Rule (c) is proved similarly.

� �am � am�1 � � � � � an � � �bm � bm�1 � � � � � bn �

 �am � bm � � �am�1 � bm�1� � � � � � �an � bn �

cam � cam�1 � � � � � can � c�am � am�1 � � � � � an �

�
n

i�m
 �ai � bi� � �

n

i�m
 ai � �

n

i�m
 bi

�
n

i�m
 �ai � bi� � �

n

i�m
 ai � �

n

i�m
 bi�

n

i�m
 cai � c �

n

i�m
 ai

ic2

 23 � 33 � � � � � n 3 � �
n�2

k�0
 �k � 2�3

 23 � 33 � � � � � n 3 � �
n�1

j�1
 � j � 1�3

 23 � 33 � � � � � n 3 � �
n

i�2
 i 3

23 � 33 � � � � � n 3

�
4

i�1
 2 � 2 � 2 � 2 � 2 � 8

�
3

i�1
 

i � 1

i 2 � 3
�

1 � 1

12 � 3
�

2 � 1

22 � 3
�

3 � 1

32 � 3
� 0 �

1

7
�

1

6
�

13

42

�
n

k�1
 
1

k
� 1 �

1

2
�

1

3
� � � � �

1

n

�
5

j�0
 2j � 20 � 21 � 22 � 23 � 24 � 25 � 63

�
n

i�3
 i � 3 � 4 � 5 � � � � � �n � 1� � n

�
4

i�1
 i 2 � 12 � 22 � 32 � 42 � 30
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EXAMPLE 3 Find 

SOLUTION

EXAMPLE 4 Prove the formula for the sum of the first positive integers:

SOLUTION This formula can be proved by mathematical induction (see page 89) or by
the following method used by the German mathematician Karl Friedrich Gauss
(1777–1855) when he was ten years old.

Write the sum twice, once in the usual order and once in reverse order:

Adding all columns vertically, we get

On the right side there are terms, each of which is , so

EXAMPLE 5 Prove the formula for the sum of the squares of the first positive 
integers:

SOLUTION 1 Let be the desired sum. We start with the telescoping sum (or collapsing
sum):

On the other hand, using Theorem 2 and Examples 3 and 4, we have

Thus, we have

n 3 � 3n 2 � 3n � 3S �
3
2 n 2 �

5
2 n

 � 3S � 3 
n�n � 1�

2
� n � 3S �

3
2 n 2 �

5
2 n

 �
n

i�1
 ��1 � i �3 � i 3 � � �

n

i�1
 �3i 2 � 3i � 1� � 3 �

n

i�1
 i 2 � 3 �

n

i�1
 i � �

n

i�1
 1

 � �n � 1�3 � 13 � n 3 � 3n 2 � 3n

 �
n

i�1
 ��1 � i�3 � i 3 � � �23 � 13 � � �33 � 23 � � �43 � 33 � � � � � � ��n � 1�3 � n 3 �

S

�
n

i�1
 i 2 � 12 � 22 � 32 � � � � � n 2 �

n�n � 1��2n � 1�
6

n

S �
n�n � 1�

2
or2S � n�n � 1�

n � 1n

2S � �n � 1� � �n � 1� � �n � 1� � � � � � �n � 1� � �n � 1�

 S � n �  �n � 1� �  �n � 2� � � � � �  2  �  1

 S � 1 �  2  �  3  � � � � �  �n � 1� �  n

S

�
n

i�1
 i � 1 � 2 � 3 � � � � � n �

n�n � 1�
2

n

�
n

i�1
 1 � 1 � 1 � � � � � 1 � n

�
n

i�1
 1.

Most terms cancel in pairs.

n terms
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Solving this equation for , we obtain

or

SOLUTION 2 Let be the given formula.

1. is true because

2. Assume that is true; that is,

Then

So is true.

By the Principle of Mathematical Induction, is true for all .

We list the results of Examples 3, 4, and 5 together with a similar result for cubes
(see Exercises 37–40) as Theorem 3. These formulas are needed for finding areas and
evaluating integrals in Chapter 5.

Theorem Let be a constant and a positive integer. Then

(a) (b)

(c) (d)

(e) �
n

i�1
 i 3 � �n�n � 1�

2 �2

�
n

i�1
 i 2 �

n�n � 1��2n � 1�
6�

n

i�1
 i �

n�n � 1�
2

�
n

i�1
 c � nc�

n

i�1
 1 � n

nc3

nSn

Sk�1

 �
�k � 1���k � 1� � 1��2�k � 1� � 1�

6

 �
�k � 1��k � 2��2k � 3�

6

 � �k � 1� 
2k 2 � 7k � 6

6

 � �k � 1� 
k�2k � 1� � 6�k � 1�

6

 �
k�k � 1��2k � 1�

6
� �k � 1�2

 12 � 22 � 32 � � � � � �k � 1�2 � �12 � 22 � 32 � � � � � k 2 � � �k � 1�2

12 � 22 � 32 � � � � � k 2 �
k�k � 1��2k � 1�

6

Sk

12 �
1�1 � 1��2 � 1 � 1�

6
S1

Sn

 S �
2n 3 � 3n 2 � n

6
�

n�n � 1��2n � 1�
6

 3S � n 3 �
3
2 n 2 �

1
2 n

S

� See pages 89 and 92 for a more 
thorough discussion of mathematical
induction.

� Principle of 
Mathematical Induction
Let be a statement involving the positive
integer . Suppose that
1. is true.
2. If is true, then is true.
Then is true for all positive integers .nSn

Sk�1Sk

S1

n
Sn
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7. 8.

9. 10.

� � � � � � � � � � � � �

11–20 � Write the sum in sigma notation.

11. 1 � 2 � 3 � 4 � � � � � 10

�
n

i�1
 f �xi � �xi�

n�1

j�0
 ��1� j

�
n�3

j�n
 j 2�

n

i�1
 i 101–10 � Write the sum in expanded form.

1. 2.

3. 4.

5. 6. �
8

k�5
 xk�

4

k�0
 
2k � 1

2k � 1

�
6

i�4
 i 3�

6

i�4
 3i

�
6

i�1
 

1

i � 1�
5

i�1
 si

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �F

EXAMPLE 6 Evaluate .

SOLUTION Using Theorems 2 and 3, we have

EXAMPLE 7 Find .

SOLUTION

 � 1
2 � 1 � 1 � 2 � 3 � 4

 � lim 
n l �

 �1

2
� 1�1 �

1

n��2 �
1

n� � 3�
 � lim 

n l �
 �1

2
�

n

n
� �n � 1

n ��2n � 1

n � � 3�
 � lim 

n l �
 � 3

n 3  
n�n � 1��2n � 1�

6
�

3

n
� n�

 � lim 
n l �

 � 3

n 3  �
n

i�1
 i 2 �

3

n
 �

n

i�1
 1�

 lim 
n l �

 �
n

i�1
 
3

n
 �� i

n�
2

� 1� � lim 
n l �

 �
n

i�1
 � 3

n 3  i 2 �
3

n�

lim 
n l �

 �
n

i�1
 
3

n
 �� i

n�
2

� 1�
 �

n�n � 1��2n 2 � 2n � 3�
2

 �
n�n � 1��2n�n � 1� � 3�

2

 � 4�n�n � 1�
2 �2

� 3 
n�n � 1�

2

 �
n

i�1
 i�4i 2 � 3� � �

n

i�1
 �4i 3 � 3i� � 4 �

n

i�1
 i 3 � 3 �

n

i�1
 i

�
n

i�1
 i�4i 2 � 3�

� The type of calculation in Example 7
arises in Chapter 5 when we compute
areas.



is also the sum of the areas of the n “gnomons” , , . . . ,
shown in the figure. Show that the area of is and

conclude that formula (e) is true.

41. Evaluate each telescoping sum.

(a) (b)

(c) (d)

42. Prove the generalized triangle inequality

43–46 � Find each limit.

43. 44.

45.

46.

� � � � � � � � � � � � �

47. Prove the formula for the sum of a finite geometric series
with first term and common ratio :

48. Evaluate .

49. Evaluate .

50. Evaluate .�
m

i�1
 ��

n

j�1
 �i � j ��

�
n

i�1
 �2i � 2 i �

�
n

i�1
 

3

2 i�1

�
n

i�1
 ar i�1 � a � ar � ar 2 � � � � � ar n�1 �

a�r n � 1�
r � 1

r � 1a

lim 
n l �

 �
n

i�1
 
3

n
 ��1 �

3i

n �
3

� 2�1 �
3i

n ��
lim 
n l �

 �
n

i�1
 
2

n
 ��2i

n �
3

� 5�2i

n ��
lim 
n l �

 �
n

i�1
 
1

n
 �� i

n�
3

� 1�lim 
n l �

 �
n

i�1
 
1

n
 � i

n�
2

	 �n
i�1

 ai 	 � �
n

i�1
 � ai �

�
n

i�1
 �ai � ai�1��

99

i�3
 �1

i
�

1

i � 1�
�
100

i�1
 �5 i � 5 i�1 ��

n

i�1
 �i 4 � �i � 1�4 �

1 2 3 4 5 . . . n BA
1
2
3

4

5

n

D

...

C

Gn

G™
G£

G¢

G∞

    .  ..

i 3GiGn

G2G112.

13.

14.

15.

16.

17.

18.

19.

20.
� � � � � � � � � � � � �

21–35 � Find the value of the sum.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35.

� � � � � � � � � � � � �

36. Find the number such that .

37. Prove formula (b) of Theorem 3.

38. Prove formula (e) of Theorem 3 using mathematical 
induction.

39. Prove formula (e) of Theorem 3 using a method similar to
that of Example 5, Solution 1 [start with .

40. Prove formula (e) of Theorem 3 using the following method
published by Abu Bekr Mohammed ibn Alhusain Alkarchi
in about A.D. 1010. The figure shows a square in
which sides and have been divided into segments of
lengths , , , . . . , Thus, the side of the square has
length so the area is . But the area �n�n � 1��2�2n�n � 1��2

n.321
ADAB

ABCD

�1 � i �4 � i 4 �

�
n

i�1
 i � 78n

�
n

i�1
 �i 3 � i � 2�

�
n

i�1
 i�i � 1��i � 2��

n

i�1
 �i � 1��i � 2�

�
n

i�1
 �3 � 2i �2�

n

i�1
 �i 2 � 3i � 4�

�
n

i�1
 �2 � 5i ��

n

i�1
 2i

�
4

i��2
 23�i�

4

i�0
 �2 i � i 2 �

�
100

i�1
 4�

20

n�1
 ��1�n

�
8

k�0
 cos k��

6

j�1
 3 j�1

�
6

i�3
 i�i � 2��

8

i�4
 �3i � 2�

1 � x � x 2 � x 3 � � � � � ��1�nx n

x � x 2 � x 3 � � � � � x n

1
1 �

1
4 �

1
9 �

1
16 �

1
25 �

1
36

1 � 2 � 4 � 8 � 16 � 32

1 � 3 � 5 � 7 � � � � � �2n � 1�

2 � 4 � 6 � 8 � � � � � 2n

3
7 �

4
8 �

5
9 �

6
10 � � � � �

23
27

1
2 �

2
3 �

3
4 �

4
5 � � � � �

19
20

s3 � s4 � s5 � s6 � s7
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Integration of Rational Functions by Partial Fractions � � � � �

In this appendix we show how to integrate any rational function (a ratio of polynomi-
als) by expressing it as a sum of simpler fractions, called partial fractions, that we
already know how to integrate. To illustrate the method, observe that by taking the
fractions and to a common denominator we obtain

If we now reverse the procedure, we see how to integrate the function on the right side
of this equation:

To see how the method of partial fractions works in general, let’s consider a
rational function

where and are polynomials. It’s possible to express as a sum of simpler frac-
tions provided that the degree of is less than the degree of . Such a rational func-
tion is called proper. Recall that if

where , then the degree of is and we write .
If is improper, that is, , then we must take the preliminary step

of dividing into (by long division) until a remainder is obtained such that
. The division statement is

where and are also polynomials.
As the following example illustrates, sometimes this preliminary step is all that is

required.

EXAMPLE 1 Find .

SOLUTION Since the degree of the numerator is greater than the degree of the denomi-
nator, we first perform the long division. This enables us to write

 �
x 3

3
�

x 2

2
� 2x �  2 ln � x � 1 � � C

 y 
x 3 � x

x � 1
 dx � y �x 2 � x � 2 �

2

x � 1� dx

y 
x 3 � x

x � 1
 dx

RS

f �x� �
P�x�
Q�x�

� S�x� �
R�x�
Q�x�

1

deg�R� � deg�Q�
R�x�PQ

deg�P� � deg�Q�f
deg�P� � nnPan � 0

P�x� � anxn � an�1xn�1 � � � � � a1x � a0

QP
fQP

f �x� �
P�x�
Q�x�

 � 2 ln � x � 1 � � ln � x � 2 � � C

 y 
x � 5

x 2 � x � 2
 dx � y � 2

x � 1
�

1

x � 2� dx

2

x � 1
�

1

x � 2
�

2�x � 2� � �x � 1�
�x � 1��x � 2�

�
x � 5

x 2 � x � 2

1��x � 2�2��x � 1�

G

2
 2x � 2
 2x

x 2 � x
x 2 � x

x 3 � x 2 
x 3 � x 2 �  x
 x 2 �  x  �  2

) x � 1
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The next step is to factor the denominator as far as possible. It can be shown
that any polynomial can be factored as a product of linear factors (of the form 
and irreducible quadratic factors (of the form , where ).
For instance, if , we could factor it as

The third step is to express the proper rational function (from Equation 1)
as a sum of partial fractions of the form

A theorem in algebra guarantees that it is always possible to do this. We explain the
details for the four cases that occur.

CASE I � The denominator is a product of distinct linear factors.
This means that we can write

where no factor is repeated. In this case the partial fraction theorem states that there
exist constants such that

These constants can be determined as in the following example.

EXAMPLE 2 Evaluate .

SOLUTION Since the degree of the numerator is less than the degree of the denomina-
tor, we don’t need to divide. We factor the denominator as

Since the denominator has three distinct linear factors, the partial fraction decompo-
sition of the integrand (2) has the form

To determine the values of , , and , we multiply both sides of this equation by
the product of the denominators, , obtaining

Expanding the right side of Equation 4 and writing it in the standard form for
polynomials, we get

x 2 � 2x � 1 � �2A � B � 2C �x 2 � �3A � 2B � C �x � 2A5

x 2 � 2x � 1 � A�2x � 1��x � 2� � Bx�x � 2� � Cx�2x � 1�4

x�2x � 1��x � 2�
CBA

x 2 � 2x � 1

x�2x � 1��x � 2�
�

A

x
�

B

2x � 1
�

C

x � 2
3

2x 3 � 3x 2 � 2x � x�2x 2 � 3x � 2� � x�2x � 1��x � 2�

y 
x 2 � 2x � 1

2x 3 � 3x 2 � 2x
 dx

R�x�
Q�x�

�
A1

a1x � b1
�

A2

a2x � b2
� � � � �

Ak

akx � bk
2

A1, A2, . . . , Ak

Q�x� � �a1x � b1 ��a2x � b2 � � � � �akx � bk�

Q�x�

Ax � B

�ax 2 � bx � c� jor
A

�ax � b�i

R�x��Q�x�

Q�x� � �x 2 � 4��x 2 � 4� � �x � 2��x � 2��x 2 � 4�

Q�x� � x 4 � 16
b 2 � 4ac � 0ax 2 � bx � c

ax � b�Q
Q�x�

� Another method for finding , , 
and is given in the note after this
example.

C
BA
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The polynomials in Equation 5 are identical, so their coefficients must be equal. The
coefficient of on the right side, , must equal the coefficient of on
the left side—namely, 1. Likewise, the coefficients of are equal and the constant
terms are equal. This gives the following system of equations for , , and :

Solving, we get , , and , and so

In integrating the middle term we have made the mental substitution ,
which gives and .

NOTE � We can use an alternative method to find the coefficients , , and in
Example 2. Equation 4 is an identity; it is true for every value of . Let’s choose val-
ues of that simplify the equation. If we put in Equation 4, then the second and
third terms on the right side vanish and the equation then becomes , or

. Likewise, gives and gives , so and
. (You may object that Equation 3 is not valid for , , or , so why

should Equation 4 be valid for those values? In fact, Equation 4 is true for all values
of , even , , and . See Exercise 35 for the reason.)

EXAMPLE 3 Find , where .

SOLUTION The method of partial fractions gives

and therefore

Using the method of the preceding note, we put in this equation and get
, so . If we put , we get , so .

Thus

 �
1

2a
 [ln � x � a � � ln � x � a �] � C

 y 
dx

x 2 � a 2 �
1

2a
 y � 1

x � a
�

1

x � a� dx

B � �1��2a�B��2a� � 1x � �aA � 1��2a�A�2a� � 1
x � a

A�x � a� � B�x � a� � 1

1

x 2 � a 2 �
1

�x � a��x � a�
�

A

x � a
�

B

x � a

a � 0y 
dx

x 2 � a 2

�21
2x � 0x

�21
2x � 0C � �

1
10

B � 1
510C � �1x � �25B�4 � 1

4x � 1
2A � 1

2

�2A � �1
x � 0x

x
CBA

dx � du�2du � 2 dx
u � 2x � 1

 � 1
2 ln � x � �

1
10 ln � 2x � 1 � �

1
10 ln � x � 2 � � K

 y 
x 2 � 2x � 1

2x 3 � 3x 2 � 2x
 dx � y �1

2
 
1

x
�

1

5
 

1

2x � 1
�

1

10
 

1

x � 2� dx

C � �
1
10B � 1

5A � 1
2

 �2A �  2B �  2C � �1

 3A �  2B �  C � 2

 2A �  B �  2C � 1

CBA
x

x 22A � B � 2Cx 2

� Figure 1 shows the graphs of the 
integrand in Example 2 and its indefinite
integral (with ). Which is which?K � 0

FIGURE 1

_3

_2

2

3
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Since , we can write the integral as

CASE II � is a product of linear factors, some of which are repeated.
Suppose the first linear factor is repeated times; that is,
occurs in the factorization of . Then instead of the single term in
Equation 2, we would use

By way of illustration, we could write

but we prefer to work out in detail a simpler example.

EXAMPLE 4 Find .

SOLUTION The first step is to divide. The result of long division is

The second step is to factor the denominator . Since
, we know that is a factor and we obtain

Since the linear factor occurs twice, the partial fraction decomposition is

Multiplying by the least common denominator, , we get

Now we equate coefficients:

 �A �  B �  C � 0

 A �  B �  2C � 4

 A �  B �  C � 0

 � �A � C �x 2 � �B � 2C �x � ��A � B � C �

 4x � A�x � 1��x � 1� � B�x � 1� � C�x � 1�27

�x � 1�2�x � 1�

4x

�x � 1�2�x � 1�
�

A

x � 1
�

B

�x � 1�2 �
C

x � 1

x � 1

 � �x � 1�2�x � 1�

 x 3 � x 2 � x � 1 � �x � 1��x 2 � 1� � �x � 1��x � 1��x � 1�

x � 1Q�1� � 0
Q�x� � x 3 � x 2 � x � 1

x 4 � 2x 2 � 4x � 1

x 3 � x 2 � x � 1
� x � 1 �

4x

x 3 � x 2 � x � 1

y 
x 4 � 2x 2 � 4x � 1

x 3 � x 2 � x � 1
 dx

x 3 � x � 1

x 2�x � 1�3 �
A

x
�

B

x 2 �
C

x � 1
�

D

�x � 1�2 �
E

�x � 1�3

A1

a1x � b1
�

A2

�a1x � b1�2 � � � � �
Ar

�a1x � b1�r6

A1��a1x � b1�Q�x�
�a1x � b1�rr�a1x � b1�

Q�x�

y 
dx

x 2 � a 2 �
1

2a
 ln 	 x � a

x � a 	 � C

ln x � ln y � ln�x�y�

� Another method for finding the 
coefficients:
Put in (7): .
Put : .
Put : .A � B � C � 1x � 0

C � �1x � �1
B � 2x � 1
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Solving, we obtain , , and , so

CASE III � contains irreducible quadratic factors, none of which is repeated.
If has the factor , where , then, in addition to the par-
tial fractions in Equations 2 and 6, the expression for will have a term of
the form

where and are constants to be determined. For instance, the function given by
has a partial fraction decomposition of the form

The term given in (8) can be integrated by completing the square and using the 
formula

EXAMPLE 5 Evaluate .

SOLUTION Since can’t be factored further, we write

Multiplying by , we have

Equating coefficients, we obtain

Thus , , and and so

y 
2x 2 � x � 4

x 3 � 4x
 dx � y �1

x
�

x � 1

x 2 � 4� dx

C � �1B � 1A � 1

4A � 4C � �1A � B � 2

 � �A � B�x 2 � Cx � 4A

 2x 2 � x � 4 � A�x 2 � 4� � �Bx � C �x

x�x 2 � 4�

2x 2 � x � 4

x�x 2 � 4�
�

A

x
�

Bx � C

x 2 � 4

x 3 � 4x � x�x 2 � 4�

y 
2x 2 � x � 4

x 3 � 4x
 dx

y 
dx

x 2 � a 2 �
1

a
 tan�1� x

a� � C9

x

�x � 2��x 2 � 1��x 2 � 4�
�

A

x � 2
�

Bx � C

x 2 � 1
�

Dx � E

x 2 � 4

f �x� � x���x � 2��x 2 � 1��x 2 � 4��
BA

Ax � B

ax 2 � bx � c
8

R�x��Q�x�
b 2 � 4ac � 0ax 2 � bx � cQ�x�

Q�x�

 �
x 2

2
� x �

2

x � 1
� ln 	 x � 1

x � 1 	 � K

 �
x 2

2
� x � ln � x � 1 � �

2

x � 1
� ln � x � 1 � � K

 y 
x 4 � 2x 2 � 4x � 1

x 3 � x 2 � x � 1
 dx � y �x � 1 �

1

x � 1
�

2

�x � 1�2 �
1

x � 1� dx

C � �1B � 2A � 1
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In order to integrate the second term we split it into two parts:

We make the substitution in the first of these integrals so that
. We evaluate the second integral by means of Formula 9 with :

EXAMPLE 6 Evaluate .

SOLUTION Since the degree of the numerator is not less than the degree of the denomi-
nator, we first divide and obtain

Notice that the quadratic is irreducible because its discriminant is
. This means it can’t be factored, so we don’t need to use the 

partial fraction technique.
To integrate the given function we complete the square in the denominator:

This suggests that we make the substitution . Then, and
, so

NOTE � Example 6 illustrates the general procedure for integrating a partial fraction
of the form

where b 2 � 4ac � 0
Ax � B

ax 2 � bx � c

 � x �
1
8 ln�4x 2 � 4x � 3� �

1

4s2
 tan�1�2x � 1

s2 � � C

 � x �
1
8 ln�u 2 � 2� �

1

4
�

1

s2
 tan�1� u

s2� � C

 � x �
1
4 y 

u

u 2 � 2
 du �

1
4 y 

1

u 2 � 2
 du

 � x �
1
2 y 

1
2 �u � 1� � 1

u 2 � 2
 du � x �

1
4 y 

u � 1

u 2 � 2
 du

 y 
4x 2 � 3x � 2

4x 2 � 4x � 3
 dx � y �1 �

x � 1

4x 2 � 4x � 3� dx

x � �u � 1��2
du � 2 dxu � 2x � 1

4x 2 � 4x � 3 � �2x � 1�2 � 2

b 2 � 4ac � �32 � 0
4x 2 � 4x � 3

4x 2 � 3x � 2

4x 2 � 4x � 3
� 1 �

x � 1

4x 2 � 4x � 3

y 
4x 2 � 3x � 2

4x 2 � 4x � 3
 dx

 � ln � x � �
1
2 ln�x 2 � 4� �

1
2 tan�1�x�2� � K

 y 
2x 2 � x � 4

x�x 2 � 4�
 dx � y 

1

x
 dx � y 

x

x 2 � 4
 dx � y 

1

x 2 � 4
 dx

a � 2du � 2x dx
u � x 2 � 4

y 
x � 1

x 2 � 4
 dx � y 

x

x 2 � 4
 dx � y 

1

x 2 � 4
 dx
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We complete the square in the denominator and then make a substitution that brings
the integral into the form

Then the first integral is a logarithm and the second is expressed in terms of .

CASE IV � contains a repeated irreducible quadratic factor.
If has the factor , where , then instead of the 
single partial fraction (8), the sum

occurs in the partial fraction decomposition of . Each of the terms in (10)
can be integrated by first completing the square.

EXAMPLE 7 Write out the form of the partial fraction decomposition of the function

SOLUTION

EXAMPLE 8 Evaluate .

SOLUTION The form of the partial fraction decomposition is

Multiplying by , we have

If we equate coefficients, we get the system

which has the solution , , , , and . E � 0D � 1C � �1B � �1A � 1

A � 1C � E � �12A � B � D � 2C � �1A � B � 0

 � �A � B�x 4 � Cx 3 � �2A � B � D�x 2 � �C � E�x � A

 � A�x 4 � 2x 2 � 1� � B�x 4 � x 2 � � C�x 3 � x� � Dx 2 � Ex

 �x 3 � 2x 2 � x � 1 � A�x 2 � 1�2 � �Bx � C �x�x 2 � 1� � �Dx � E�x

x�x 2 � 1�2

1 � x � 2x 2 � x 3

x�x 2 � 1�2 �
A

x
�

Bx � C

x 2 � 1
�

Dx � E

�x 2 � 1�2

y 
1 � x � 2x 2 � x 3

x�x 2 � 1�2  dx

� 
A

x
�

B

x � 1
�

Cx � D

x 2 � x � 1
�

Ex � F

x 2 � 1
�

Gx � H

�x 2 � 1�2 �
Ix � J

�x 2 � 1�3

x 3 � x 2 � 1

x�x � 1��x 2 � x � 1��x 2 � 1�3

x 3 � x 2 � 1

x�x � 1��x 2 � x � 1��x 2 � 1�3

R�x��Q�x�

A1x � B1

ax 2 � bx � c
�

A2x � B2

�ax 2 � bx � c�2 � � � � �
Arx � Br

�ax 2 � bx � c�r10

b 2 � 4ac � 0�ax 2 � bx � c�rQ�x�
Q�x�

tan�1

y 
Cu � D

u 2 � a 2  du � C y 
u

u 2 � a 2  du � D y 
1

u 2 � a 2  du 

� It would be extremely tedious to work
out by hand the numerical values of the
coefficients in Example 7. Most com-
puter algebra systems, however, can
find the numerical values very quickly.
For instance, the Maple command

or the Mathematica command

gives the following values:

I � �
1
2 , J � 1

2

E � 15
8 , F � �

1
8 , G � H � 3

4 ,

 A � �1,  B � 1
8 , C � D � �1,

Apart[f]

convert�f, parfrac, x�



APPENDIX G INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS � A57

Thus

 � ln � x � �
1
2 ln�x 2 � 1� � tan�1x �

1

2�x 2 � 1�
� K

 � y 
dx

x
� y 

x

x 2 � 1
 dx � y 

dx

x 2 � 1
� y 

x dx

�x 2 � 1�2

 y 
1 � x � 2x 2 � x 3

x�x 2 � 1�2  dx � y �1

x
�

x � 1

x 2 � 1
�

x

�x 2 � 1�2� dx

27. 28.

� � � � � � � � � � � � �

; 29. Use a graph of 

to decide whether is positive or negative. Use the
graph to give a rough estimate of the value of the integral
and then use partial fractions to find the exact value.

; 30. Graph both and an antiderivative on the
same screen.

31. One method of slowing the growth of an insect population
without using pesticides is to introduce into the population a
number of sterile males that mate with fertile females but
produce no offspring. If represents the number of female
insects in a population, the number of sterile males intro-
duced each generation, and the population’s natural
growth rate, then the female population is related to time 
by

Suppose an insect population with 10,000 females grows at
a rate of and 900 sterile males are added. Evaluate
the integral to give an equation relating the female popula-
tion to time. (Note that the resulting equation can’t be
solved explicitly for .)

32. The region under the curve

from to is rotated about the -axis. Find the
volume of the resulting solid.

33. (a) Use a computer algebra system to find the partial frac-
tion decomposition of the function

f �x� �
4x 3 � 27x 2 � 5x � 32

30x 5 � 13x 4 � 50x 3 � 286x 2 � 299x � 70

CAS

xx � 1x � 0

y �
1

x 2 � 3x � 2

P

r � 0.10

t � y 
P � S

P��r � 1�P � S�
 dP

t
r

S
P

y � 1��x 3 � 2x 2�

x
2

0  f �x� dx

f �x� �
1

x 2 � 2x � 3

y 
x 4 � 1

x �x 2 � 1�2  dxy 
2t 3 � t 2 � 3t � 1

�t 2 � 1��t 2 � 2�
 dt

1–10 � Write out the form of the partial fraction decomposition 
of the function (as in Example 7). Do not determine the numeri-
cal values of the coefficients.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

� � � � � � � � � � � � �

11–28 � Evaluate the integral.

11. 12.

13. 14.

15.

16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26. y 
x 4

x 4 � 1
 dxy 

1

x 3 � 1
 dx

y
2

1
 

x 2 � 3

x 3 � 2x
 dxy 

3x 2 � 4x � 5

�x � 1��x 2 � 1�
 dx

y
1

0
 

x � 1

x 2 � 2x � 2
 dxy

1

0
 

x

x 2 � x � 1
 dx

y 
x 2

�x � 3��x � 2�2  dxy 
1

�x � 5�2�x � 1�
 dx

y
3

2
 

1

x 3 � x 2 � 2x
 dxy

2

1
 

4y 2 � 7y � 12

y�y � 2��y � 3�
 dy

y
2

0
 
x 3 � x 2 � 12x � 1

x 2 � x � 12
 dx

y
1

0
 

2x � 3

�x � 1�2  dx

y 
1

�t � 4��t � 1�
 dty

4

2
 

4x � 1

�x � 1��x � 2�
 dx

y 
x

x � 5
 dxy 

x 2 � 2

x � 2
 dx

1

x 6 � x 3

x 3 � x 2 � 1

x 4 � x 3 � 2x 2

x 4 � x 2 � 1

�x 2 � 1��x 2 � 4�2

x 2 � 2

x�x 2 � 2�

x 3 � 4x 2 � 2

�x 2 � 1��x 2 � 2�
x 2 � 1

x 2 � 1

x 4 � x 3 � x 2 � x � 1

x 3 � x

1

x 4 � x 3

z 2 � 4z

�3z � 5�3�z � 2�
5

2x 2 � 3x � 2

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �G



35. Suppose that , and are polynomials and

for all except when . Prove that for 
all . [Hint: Use continuity.]

36. If is a quadratic function such that and

is a rational function, find the value of .f ��0�

y 
 f �x�

x 2�x � 1�3  dx

f �0� � 1f

x
F�x� � G�x�Q�x� � 0x

F�x�
Q�x�

�
G�x�
Q�x�

QF, G(b) Use part (a) to find (by hand) and compare
with the result of using the CAS to integrate directly.
Comment on any discrepancy.

34. (a) Find the partial fraction decomposition of the function

(b) Use part (a) to find and graph and its indefi-
nite integral on the same screen.

(c) Use the graph of to discover the main features of the
graph of .x f �x� dx

f

fx f �x� dx

f �x� �
12x 5 � 7x 3 � 13x 2 � 8

100x 6 � 80x 5 � 116x 4 � 80x 3 � 41x 2 � 20x � 4

CAS

f
x f �x� dx

Polar Coordinates � � � � � � � � � � � � � � � �

Polar coordinates offer an alternative way of locating points in a plane. They are use-
ful because, for certain types of regions and curves, polar coordinates provide very
simple descriptions and equations. The principal applications of this idea occur in multi-
variable calculus: the evaluation of double integrals and the derivation of Kepler’s
laws of planetary motion.

Curves in Polar Coordinates � � � � � � � � � � � � � �

A coordinate system represents a point in the plane by an ordered pair of numbers
called coordinates. Usually we use Cartesian coordinates, which are directed distances
from two perpendicular axes. Here we describe a coordinate system introduced 
by Newton, called the polar coordinate system, which is more convenient for many
purposes.

We choose a point in the plane that is called the pole (or origin) and is labeled .
Then we draw a ray (half-line) starting at called the polar axis. This axis is usually
drawn horizontally to the right and corresponds to the positive -axis in Cartesian
coordinates.

If is any other point in the plane, let be the distance from to and let be
the angle (usually measured in radians) between the polar axis and the line as in
Figure 1. Then the point is represented by the ordered pair and , are called
polar coordinates of . We use the convention that an angle is positive if measured
in the counterclockwise direction from the polar axis and negative in the clockwise
direction. If , then and we agree that represents the pole for any
value of .

We extend the meaning of polar coordinates to the case in which is nega-
tive by agreeing that, as in Figure 2, the points and lie on the same line
through and at the same distance from , but on opposite sides of . If ,
the point lies in the same quadrant as ; if , it lies in the quadrant on the
opposite side of the pole. Notice that represents the same point as .

EXAMPLE 1 Plot the points whose polar coordinates are given.
(a) (b) (c) (d) ��3, 3��4��2, �2��3��2, 3���1, 5��4�

�r, � � ����r, ��
r � 0��r, ��

r � 0OO� r �O
�r, ����r, ��

r�r, ��
�

�0, ��r � 0P � O

P
�r�r, ��P

OP
�POrP

x
O

O

H.1

H

A58 � APPENDIX G INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS

(_r, ¨)

O

¨

(r, ¨ )

¨+π

FIGURE 2

x
O

¨

r

polar axis

P(r, ̈ )

FIGURE 1
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SOLUTION The points are plotted in Figure 3. In part (d) the point is
located three units from the pole in the fourth quadrant because the angle is in
the second quadrant and is negative.

In the Cartesian coordinate system every point has only one representation, but in
the polar coordinate system each point has many representations. For instance, the
point in Example 1(a) could be written as or or

. (See Figure 4.)

In fact, since a complete counterclockwise rotation is given by an angle 2 , the
point represented by polar coordinates is also represented by

where is any integer.
The connection between polar and Cartesian coordinates can be seen from Figure 5,

in which the pole corresponds to the origin and the polar axis coincides with the pos-
itive -axis. If the point has Cartesian coordinates and polar coordinates 
then, from the figure, we have

and so

Although Equations 1 were deduced from Figure 5, which illustrates the case
where and , these equations are valid for all values of and (See
the general definition of and in Appendix C.)

Equations 1 allow us to find the Cartesian coordinates of a point when the polar
coordinates are known. To find and when and are known, we use the equations

which can be deduced from Equations 1 or simply read from Figure 5.

tan � �
y

x
r 2 � x 2 � y 22

yx�r

cos �sin �
�.r0 � � � ��2r � 0

y � r sin �x � r cos �1

sin � �
y

r
cos � �

x

r

�r, ��,�x, y�Px

n

��r, � � �2n � 1���and�r, � � 2n��

�r, ��
�

O

13π
4

”1,        ’13π
4

O

_ 3π
4

”1, _      ’3π
4

O

”1,       ’5π
4

5π
4

O

”_1,     ’π
4

π
4

��1, ��4�
�1, 13��4��1, �3��4��1, 5��4�

O

”_3,       ’3π
4

3π
4

O

”2, _      ’2π
3

2π
3

_
(2, 3π) O

3π

”1,       ’5π
4

5π
4

O

FIGURE 3

r � �3
3��4

��3, 3��4�

O

y

x

¨

x

y
r

P (r, ̈ )=P(x, y)

FIGURE 5

FIGURE 4
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EXAMPLE 2 Convert the point from polar to Cartesian coordinates.

SOLUTION Since and , Equations 1 give

Therefore, the point is in Cartesian coordinates.

EXAMPLE 3 Represent the point with Cartesian coordinates in terms of polar
coordinates.

SOLUTION If we choose to be positive, then Equations 2 give

Since the point lies in the fourth quadrant, we can choose or
. Thus, one possible answer is ; another is .

NOTE � Equations 2 do not uniquely determine when and are given because,
as increases through the interval , each value of occurs twice.
Therefore, in converting from Cartesian to polar coordinates, it’s not good enough just
to find and that satisfy Equations 2. As in Example 3, we must choose so that the
point lies in the correct quadrant.

The graph of a polar equation , or more generally , consists
of all points that have at least one polar representation whose coordinates sat-
isfy the equation.

EXAMPLE 4 What curve is represented by the polar equation ?

SOLUTION The curve consists of all points with . Since represents the
distance from the point to the pole, the curve represents the circle with center

and radius . In general, the equation represents a circle with center and
radius . (See Figure 6.)

EXAMPLE 5 Sketch the polar curve .

SOLUTION This curve consists of all points such that the polar angle is 1 radian.
It is the straight line that passes through and makes an angle of 1 radian with the O

��r, ��

� � 1

FIGURE 6

x

r=
1
2

r=1

r=2

r=4

� a �
Or � a2O

r � 2
rr � 2�r, ��

r � 2

�r, ��P
F�r, �� � 0r � f ���

�r, ��
��r

tan �0 � � � 2��
yx�

�s2, 7��4�(s2, ���4)� � 7��4
� � ���4�1, �1�

 tan � �
y

x
� �1

 r � sx 2 � y 2 � s12 � ��1�2 � s2

r

�1, �1�

(1, s3)

 y � r sin � � 2 sin  
�

3
� 2 �

s3

2
� s3

  x � r cos � � 2 cos 
�

3
� 2 �

1

2
� 1

� � ��3r � 2

�2, ��3�
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polar axis (see Figure 7). Notice that the points on the line with are in
the first quadrant, whereas those with are in the third quadrant.

EXAMPLE 6
(a) Sketch the curve with polar equation .
(b) Find a Cartesian equation for this curve.

SOLUTION
(a) In Figure 8 we find the values of for some convenient values of and plot the
corresponding points . Then we join these points to sketch the curve, which
appears to be a circle. We have used only values of between 0 and , since if we
let increase beyond , we obtain the same points again.

(b) To convert the given equation into a Cartesian equation we use Equations 1 and
2. From we have , so the equation becomes

, which gives

or

Completing the square, we obtain

which is an equation of a circle with center and radius 1.

EXAMPLE 7 Sketch the curve .

SOLUTION Instead of plotting points as in Example 6, we first sketch the graph of
in Cartesian coordinates in Figure 10 (on page A62) by shifting the r � 1 � sin �

r � 1 � sin �

O

y

x2

¨

r

P

Q

FIGURE 9

�1, 0�

�x � 1�2 � y 2 � 1

x 2 � y 2 � 2x � 02x � r 2 � x 2 � y 2

r � 2x�r
r � 2 cos �cos � � x�rx � r cos �

FIGURE 8
Table of values and

graph of  r=2 cos ¨
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r � 0
r � 0�r, 1�

0 2

1
0

�1

�2�
�s35��6
�s23��4

2��3
��2
��3

s2��4
s3��6

r � 2 cos ��

� Figure 9 shows a geometrical illustra-
tion that the circle in Example 6 has the
equation . The angle is
a right angle (Why?) and so .r�2 � cos �

OPQr � 2 cos �

O
x

1

(_1, 1)

(_2, 1)

(1, 1)

(2, 1)

(3, 1)

¨=1

FIGURE 7



A62 � APPENDIX H POLAR COORDINATES

sine curve up one unit. This enables us to read at a glance the values of that corre-
spond to increasing values of . For instance, we see that as increases from 0 to ,

(the distance from ) increases from 1 to 2, so we sketch the corresponding part
of the polar curve in Figure 11(a). As increases from to , Figure 10 shows
that decreases from 2 to 1, so we sketch the next part of the curve as in Figure 11(b).
As increases from to , decreases from 1 to 0 as shown in part (c). Finally,
as increases from to , increases from 0 to 1 as shown in part (d). If we
let increase beyond or decrease beyond 0, we would simply retrace our path.
Putting together the parts of the curve from Figure 11(a)–(d), we sketch the com-
plete curve in part (e). It is called a cardioid because it’s shaped like a heart.

EXAMPLE 8 Sketch the curve .

SOLUTION As in Example 7, we first sketch , , in Cartesian
coordinates in Figure 12. As increases from 0 to , Figure 12 shows that 
decreases from 1 to 0 and so we draw the corresponding portion of the polar curve
in Figure 13 (indicated by !). As increases from to , goes from 0 to .
This means that the distance from increases from 0 to 1, but instead of being in
the first quadrant this portion of the polar curve (indicated by @) lies on the opposite
side of the pole in the third quadrant. The remainder of the curve is drawn in a simi-
lar fashion, with the arrows and numbers indicating the order in which the portions
are traced out. The resulting curve has four loops and is called a four-leaved rose.

When we sketch polar curves it is sometimes helpful to take advantage of symme-
try. The following three rules are explained by Figure 14.

(a) If a polar equation is unchanged when is replaced by , the curve is sym-
metric about the polar axis.

���

¨=0
¨=π

�

¨=
3π
4

¨=π
2

¨=π
4

FIGURE 12
r=cos 2¨ in Cartesian coordinates

FIGURE 13
Four-leaved rose r=cos 2¨
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FIGURE 11
Stages in sketching the
cardioid r=1+sin ¨
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Module H helps you see how
polar curves are traced out 

by showing animations similar to Fig-
ures 10–13. Tangents to these polar
curves can also be visualized as in 
Figure 15.
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(b) If the equation is unchanged when is replaced by , the curve is symmetric
about the pole. (This means that the curve remains unchanged if we rotate it
through 180° about the origin.)

(c) If the equation is unchanged when is replaced by , the curve is sym-
metric about the vertical line .

The curves sketched in Examples 6 and 8 are symmetric about the polar axis, since
. The curves in Examples 7 and 8 are symmetric about 

because and . The four-leaved rose is also
symmetric about the pole. These symmetry properties could have been used in sketch-
ing the curves. For instance, in Example 6 we need only have plotted points for

and then reflected about the polar axis to obtain the complete circle.

Tangents to Polar Curves

To find a tangent line to a polar curve we regard as a parameter and write
its parametric equations as

Then, using the method for finding slopes of parametric curves (Equation 3.5.7) and
the Product Rule, we have

We locate horizontal tangents by finding the points where (provided that
). Likewise, we locate vertical tangents at the points where 

(provided that ).
Notice that if we are looking for tangent lines at the pole, then and Equation 3

simplifies to

For instance, in Example 8 we found that when or .
This means that the lines and (or and ) are tangent
lines to at the origin.r � cos 2�

y � �xy � x� � 3��4� � ��4
3��4� � ��4r � cos 2� � 0

dr

d�
� 0if

dy

dx
� tan �

r � 0
dy�d� � 0

dx�d� � 0dx�d� � 0
dy�d� � 0

dy

dx
�

dy

d�

dx

d�

�

dr

d�
 sin � � r cos �

dr

d�
 cos � � r sin �

3

y � r sin � � f ��� sin �x � r cos � � f ��� cos �

�r � f ���

0 � � � ��2

cos 2�� � �� � cos 2�sin�� � �� � sin �
� � ��2cos���� � cos �
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EXAMPLE 9
(a) For the cardioid of Example 7, find the slope of the tangent line
when .
(b) Find the points on the cardioid where the tangent line is horizontal or vertical.

SOLUTION Using Equation 3 with , we have

(a) The slope of the tangent at the point where is

(b) Observe that

Therefore, there are horizontal tangents at the points , ,
and vertical tangents at and . When , both and

are 0, so we must be careful. Using l’Hospital’s Rule, we have

By symmetry,

Thus, there is a vertical tangent line at the pole (see Figure 15).
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NOTE � Instead of having to remember Equation 3, we could employ the method
used to derive it. For instance, in Example 9 we could have written

Then we have

which is equivalent to our previous expression.

Graphing Polar Curves with Graphing Devices

Although it’s useful to be able to sketch simple polar curves by hand, we need to use
a graphing calculator or computer when we are faced with a curve as complicated as
the one shown in Figure 16.

Some graphing devices have commands that enable us to graph polar curves
directly. With other machines we need to convert to parametric equations first. In this
case we take the polar equation and write its parametric equations as

Some machines require that the parameter be called rather than .

EXAMPLE 10 Graph the curve .

SOLUTION Let’s assume that our graphing device doesn’t have a built-in polar graphing
command. In this case we need to work with the corresponding parametric equa-
tions, which are

In any case we need to determine the domain for . So we ask ourselves: How many
complete rotations are required until the curve starts to repeat itself? If the answer is 
, then

and so we require that be an even multiple of . This will first occur when
. Therefore, we will graph the entire curve if we specify that .

Switching from to , we have the equations

and Figure 17 shows the resulting curve. Notice that this rose has 16 loops.

EXAMPLE 11 Investigate the family of polar curves given by . How
does the shape change as changes? (These curves are called limaçons, after a
French word for snail, because of the shape of the curves for certain values of .)

SOLUTION Figure 18 shows computer-drawn graphs for various values of . For 
there is a loop that decreases in size as decreases. When the loop disappears c � 1c

c � 1c

c
c

r � 1 � c sin �

0 � t � 10�y � sin�8t�5� sin tx � sin�8t�5� cos t
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5
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�

y � r sin � � sin�8��5� sin �x � r cos � � sin�8��5� cos �
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c=2.5

FIGURE 18
Members of the family of
limaçons r=1+c sin ¨

c=0 c=_0.2 c=_0.5 c=_0.8 c=_1

c=_2

c=1.7 c=1 c=0.7 c=0.5 c=0.2

9. ,

10. ,

,

12. ,
� � � � � � � � � � � � �

13–16 � Find a Cartesian equation for the curve described by
the given polar equation.

13. 14.

16.
� � � � � � � � � � � � �

17–20 � Find a polar equation for the curve represented by the
given Cartesian equation.

17. 18.

19.
� � � � � � � � � � � � �

21–22 � For each of the described curves, decide if the curve
would be more easily given by a polar equation or a Cartesian
equation. Then write an equation for the curve.

21. (a) A line through the origin that makes an angle of 
with the positive -axis

(b) A vertical line through the point �3, 3�
x

��6

x 2 � 4y20.x 2 � y 2 � 25

y � 2x � 1y � 5

r � 1��1 � 2 sin ��r 2 � sin 2�15.

r cos � � 1r � 3 sin �

��4 � � � 3��4�1 � r � 1

5��3 � � � 7��32 � r � 311.

���4 � � � ��41 � r � 3

��2 � � � �0 � r � 21–2 � Plot the point whose polar coordinates are given. Then
find two other pairs of polar coordinates of this point, one with

and one with .

1. (a) (b) (c)

2. (a) (b) (c)
� � � � � � � � � � � � �

3–4 � Plot the point whose polar coordinates are given. Then
find the Cartesian coordinates of the point.

3. (a) (b) (c)

4. (a) (b) (c)
� � � � � � � � � � � � �

5–6 � The Cartesian coordinates of a point are given.
(i) Find polar coordinates of the point, where and

.
(ii) Find polar coordinates of the point, where and

.

5. (a) (b)

6. (a) (b)
� � � � � � � � � � � � �

7–12 � Sketch the region in the plane consisting of points
whose polar coordinates satisfy the given conditions.

7. 8. 0 � � � ��4r � 1

��2, 3�(�1, �s3)
(2s3, �2)�1, 1�

0 � � � 2�
r � 0�r, ��

0 � � � 2�
r � 0�r, ��

��2, �5��6��4, 3���2, 2��3�

��1, ��3�(2s2, 3��4)�3, ��2�

��1, ���2��2, ���7��3, 0�

�3, 2���2, ��4��1, ��2�

r � 0r � 0

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �H.1

and the curve becomes the cardioid that we sketched in Example 7. For between 
1 and the cardioid’s cusp is smoothed out and becomes a “dimple.” When 
decreases from to 0, the limaçon is shaped like an oval. This oval becomes 
more circular as , and when the curve is just the circle .

The remaining parts of Figure 18 show that as becomes negative, the shapes
change in reverse order. In fact, these curves are reflections about the horizontal 
axis of the corresponding curves with positive .c

c

r � 1c � 0c l 0

1
2

c1
2

c

� In Exercise 39 you are asked to
prove analytically what we have dis-
covered from the graphs in Figure 18.
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41–44 � Find the slope of the tangent line to the given polar
curve at the point specified by the value of .

41. ,

42. ,

43. , 44. ,
� � � � � � � � � � � � �

45–48 � Find the points on the given curve where the tangent
line is horizontal or vertical.

46.

47. 48.
� � � � � � � � � � � � �

Show that the polar equation , where
, represents a circle, and find its center and radius.

50. Show that the curves and intersect
at right angles.

; 51–54 � Use a graphing device to graph the polar curve.
Choose the parameter interval to make sure that you produce
the entire curve.

51. (nephroid of Freeth)r � 1 � 2 sin���2�

r � a cos �r � a sin �

ab � 0
r � a sin � � b cos �49.

r 2 � sin 2�r � 1 � cos �

r � e �r � 3 cos �45.

� � er � ln �� � ��6r � 1 � cos �

� � ��4r � cos � � sin �

� � ��3r � 3 cos �

�

I II

III IV

V VI

22. (a) A circle with radius 5 and center 
(b) A circle centered at the origin with radius 4

� � � � � � � � � � � � �

23–34 � Sketch the curve with the given polar equation.

23. 24.

25. 26.

, 28.

30.

32.

33. 34.
� � � � � � � � � � � � �

35–36 � The figure shows the graph of as a function of in
Cartesian coordinates. Use it to sketch the corresponding polar
curve.

36.

� � � � � � � � � � � � �

37. Show that the polar curve (called a
conchoid) has the line as a vertical asymptote by
showing that . Use this fact to help sketch 
the conchoid.

38. Show that the curve (called a cissoid of 
Diocles) has the line as a vertical asymptote. Show
also that the curve lies entirely within the vertical strip

. Use these facts to help sketch the cissoid.

(a) In Example 11 the graphs suggest that the limaçon
has an inner loop when . 

Prove that this is true, and find the values of that 
correspond to the inner loop.

(b) From Figure 18 it appears that the limaçon loses its
dimple when . Prove this.

40. Match the polar equations with the graphs labeled I–VI.
Give reasons for your choices. (Don’t use a graphing
device.)
(a) (b)
(c) (d)
(e) (f) r � 1�s�r � 1 � 4 cos 5�

r � � sin �r � sec�3��
r � sin���4�r � sin���2�

c � 1
2

�
� c � � 1r � 1 � c sin �

39.

0 � x � 1

x � 1
r � sin � tan �

lim r l	� x � 2
x � 2

r � 4 � 2 sec �

¨

r

0 π 2π

2

_2

¨

r

0 π 2π

1

2
35.

�r

r � 2 cos �3��2�r 2 � 4 cos 2�

r � sin 5�r � 2 cos 4�31.

r � 2 � cos �r � 1 � 2 cos �29.

r � s�� � 0r � �27.

r � 1 � 3 cos �r � sin �

� � 3��4r � 5

�2, 3�
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where and are positive real numbers. These curves are
called the ovals of Cassini even though they are oval
shaped only for certain values of and . (Cassini thought
that these curves might represent planetary orbits better 
than Kepler’s ellipses.) Investigate the variety of shapes 
that these curves may have. In particular, how are and 
related to each other when the curve splits into two parts?

61. Let be any point (except the origin) on the curve .
If is the angle between the tangent line at and the radial
line , show that

[Hint: Observe that in the figure.]

62. (a) Use Exercise 61 to show that the angle between the tan-
gent line and the radial line is at every point
on the curve .

; (b) Illustrate part (a) by graphing the curve and the tangent
lines at the points where and .

(c) Prove that any polar curve with the property
that the angle between the radial line and the tangent
line is a constant must be of the form , where 
and are constants.k

Cr � Ce k�

�
r � f ���

��2� � 0

r � e �

� � ��4

O

P

ÿ

¨
˙

r=f(¨ )

� � � � �

tan � �
r

dr�d�

OP
P�

r � f ���P

ca

ca

ca52. (hippopede)

53. (butterfly curve)

54.
� � � � � � � � � � � � �

; 55. How are the graphs of and
related to the graph of ?

In general, how is the graph of related to the
graph of ?

; 56. Use a graph to estimate the -coordinate of the highest
points on the curve . Then use calculus to find the
exact value.

; 57. (a) Investigate the family of curves defined by the polar
equations , where is a positive integer. How
is the number of loops related to ?

(b) What happens if the equation in part (a) is replaced by
?

; 58. A family of curves is given by the equations
, where is a real number and is a posi-

tive integer. How does the graph change as increases?
How does it change as changes? Illustrate by graphing
enough members of the family to support your conclusions.

; 59. A family of curves has polar equations

Investigate how the graph changes as the number changes.
In particular, you should identify the transitional values of 
for which the basic shape of the curve changes.

; 60. The astronomer Giovanni Cassini (1625–1712) studied the
family of curves with polar equations

r 4 � 2c 2r 2 cos 2� � c 4 � a 4 � 0 

a
a

r �
1 � a cos �

1 � a cos �

c
n

ncr � 1 � c sin n�

r � � sin n� �

n
nr � sin n�

r � sin 2�
y

r � f ���
r � f �� � �

r � 1 � sin �r � 1 � sin�� � ��3�
r � 1 � sin�� � ��6�

r � sin2�4�� � cos�4��

r � e sin � � 2 cos�4��

r � s1 � 0.8 sin 2�

Areas and Lengths in Polar Coordinates � � � � � � � � � � �

In this section we develop the formula for the area of a region whose boundary is
given by a polar equation. We need to use the formula for the area of a sector of a 
circle

where, as in Figure 1, is the radius and is the radian measure of the central angle.
Formula 1 follows from the fact that the area of a sector is proportional to its central
angle: .

Let be the region, illustrated in Figure 2, bounded by the polar curve 
and by the rays and , where is a positive continuous function and where

. We divide the interval into subintervals with endpoints ,�0�a, b�0 � b � a � 2�
f� � b� � a

r � f ����
A � ���2���r 2 � 1

2 r 2�

�r

A � 1
2 r 2�1

H.2

¨

r

FIGURE 1



, , . . . , and equal width . The rays then divide into smaller
regions with central angle . If we choose in the th subinterval

, then the area of the th region is approximated by the area of the sector
of a circle with central angle and radius . (See Figure 3.)

Thus, from Formula 1 we have

and so an approximation to the total area of is

It appears from Figure 3 that the approximation in (2) improves as . But the
sums in (2) are Riemann sums for the function , so

It therefore appears plausible (and can in fact be proved) that the formula for the area
of the polar region is

Formula 3 is often written as

with the understanding that . Note the similarity between Formulas 1 and 4.
When we apply Formula 3 or 4 it is helpful to think of the area as being swept out

by a rotating ray through that starts with angle and ends with angle .

EXAMPLE 1 Find the area enclosed by one loop of the four-leaved rose .

SOLUTION The curve was sketched in Example 8 in Section H.1. Notice
from Figure 4 that the region enclosed by the right loop is swept out by a ray that
rotates from to . Therefore, Formula 4 gives

We could evaluate the integral using Formula 64 in the Table of Integrals. Or, as in
Section 5.7, we could use the identity to write

� 1
2 [� �

1
4 sin 4�]0

��4
�

�

8
A � y

��4

0
 12 �1 � cos 4�� d�

cos2x � 1
2�1 � cos 2x)

A � y
��4

���4
 12 r 2 d� � 1

2 y
��4

���4
 cos2 2� d� � y

��4

0
 cos2 2� d�

� � ��4� � ���4

r � cos 2�

r � cos 2�

baO

r � f ���

A � y
b

a
 12 r 2 d�4

A � y
b

a
 12 � f ����2 d�3

�A

lim
n l �

 �
n

i�1
 12 � f �� i*��2 �� � y

b

a
 12 � f ����2 d�

t��� � 1
2 � f ����2

n l �

A  �
n

i�1
 12 � f �� i*��2 ��2

�A

�Ai  1
2 � f �� i*��2 ��

f �� i*���
i�Ai�� i�1, � i�

i� i*�� � � i � � i�1

n�� � � i���n�2�1

SECTION H.2 AREAS AND LENGTHS IN POLAR COORDINATES � A69

FIGURE 2

O

¨=b

b
¨=a

r=f(¨)

a

�

O

¨=b

¨=a

¨=¨i-1

¨=¨i

Î¨

f(¨i
*)

FIGURE 3

r=cos 2¨ ¨=
π
4

¨=_
π
4

FIGURE 4



A70 � APPENDIX H POLAR COORDINATES

EXAMPLE 2 Find the area of the region that lies inside the circle and out-
side the cardioid .

SOLUTION The cardioid (see Example 7 in Section H.1) and the circle are sketched in
Figure 5 and the desired region is shaded. The values of and in Formula 4 are
determined by finding the points of intersection of the two curves. They intersect
when , which gives , so , . The desired
area can be found by subtracting the area inside the cardioid between and

from the area inside the circle from to . Thus

Since the region is symmetric about the vertical axis , we can write

[because ]

Example 2 illustrates the procedure for finding the area of the region bounded by
two polar curves. In general, let be a region, as illustrated in Figure 6, that is
bounded by curves with polar equations , , , and , where

and . The area of is found by subtracting the
area inside from the area inside , so using Formula 3 we have

| CAUTION � The fact that a single point has many representations in polar coordinates
sometimes makes it difficult to find all the points of intersection of two polar curves.
For instance, it is obvious from Figure 5 that the circle and the cardioid have three
points of intersection; however, in Example 2 we solved the equations and

and found only two such points, and . The origin is
also a point of intersection, but we can’t find it by solving the equations of the curves
because the origin has no single representation in polar coordinates that satisfies both
equations. Notice that, when represented as or , the origin satisfies

and so it lies on the circle; when represented as , it satisfies
and so it lies on the cardioid. Think of two points moving along the

curves as the parameter value increases from 0 to . On one curve the origin is
reached at and ; on the other curve it is reached at . The points
don’t collide at the origin because they reach the origin at different times, but the
curves intersect there nonetheless.

Thus, to find all points of intersection of two polar curves, it is recommended that
you draw the graphs of both curves. It is especially convenient to use a graphing cal-
culator or computer to help with this task.
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EXAMPLE 3 Find all points of intersection of the curves and .

SOLUTION If we solve the equations and , we get and,
therefore, � , , , . Thus, the values of between 0 and 
that satisfy both equations are , , , . We have found four
points of intersection: , , and .

However, you can see from Figure 7 that the curves have four other points of
intersection—namely, , , , and . These can be
found using symmetry or by noticing that another equation of the circle is 
and then solving the equations and .

Arc Length

To find the length of a polar curve , , we regard as a parameter
and write the parametric equations of the curve as

Using the Product Rule and differentiating with respect to , we obtain

so, using , we have

Assuming that is continuous, we can use Formula 6.3.1 to write the arc length as

Therefore, the length of a curve with polar equation , , is

EXAMPLE 4 Find the length of the cardioid .

SOLUTION The cardioid is shown in Figure 8. (We sketched it in Example 7 in
Section H.1.) Its full length is given by the parameter interval , so 0 � � � 2�
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Formula 5 gives 

We could evaluate this integral by multiplying and dividing the integrand by
, or we could use a computer algebra system. In any event, we find that 

the length of the cardioid is L � 8.
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15–18 � Find the area of the region enclosed by one loop of 
the curve.

15. 16.

17. (inner loop)

18. (inner loop)
� � � � � � � � � � � � �

19–22 � Find the area of the region that lies inside the first
curve and outside the second curve.

19. ,

20. ,

21. ,

22. ,
� � � � � � � � � � � � �

23–26 � Find the area of the region that lies inside both curves.

23. , 24. ,

25. , 26. ,
� � � � � � � � � � � � �

27. Find the area inside the larger loop and outside the smaller
loop of the limaçon .

; 28. Graph the hippopede and the circle
and find the exact area of the region that lies

inside both curves.

29–32 � Find all points of intersection of the given curves.

29. ,

30. ,

31. ,

32. ,
� � � � � � � � � � � � �

; 33. The points of intersection of the cardioid and
the spiral loop , , can’t be found
exactly. Use a graphing device to find the approximate 
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1–4 � Find the area of the region that is bounded by the given
curve and lies in the specified sector.

1. , 2. ,

3. ,

4. ,
� � � � � � � � � � � � �

5–8 � Find the area of the shaded region.

5. 6.

7. 8.

� � � � � � � � � � � � �

9–12 � Sketch the curve and find the area that it encloses.

9. 10.

11. 12.
� � � � � � � � � � � � �

; 13. Graph the curve and find the area that it
encloses.

; 14. The curve with polar equation is called a
bifolium. Graph it and find the area that it encloses.
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Conic Sections in Polar Coordinates

In this project we give a unified treatment of all three types of conic sections in terms of a
focus and directrix. We will see that if we place the focus at the origin, then a conic section
has a simple polar equation. In Chapter 10 we use the polar equation of an ellipse to derive
Kepler’s laws of planetary motion.

Let be a fixed point (called the focus) and be a fixed line (called the directrix) in a
plane. Let be a fixed positive number (called the eccentricity). Let be the set of all
points in the plane such that 

(that is, the ratio of the distance from to the distance from is the constant ). Notice that
if the eccentricity is , then and so the given condition simply becomes
the definition of a parabola as given in Appendix B.

1. If we place the focus at the origin and the directrix parallel to the -axis and units to
the right, then the directrix has equation and is perpendicular to the polar axis. If
the point has polar coordinates , use Figure 1 to show that 

2. By converting the polar equation in Problem 1 to rectangular coordinates, show that the
curve is an ellipse if . (See Appendix B for a discussion of ellipses.)

3. Show that is a hyperbola if .

4. Show that the polar equation

represents an ellipse if , a parabola if , or a hyperbola if .

5. For each of the following conics, find the eccentricity and directrix. Then identify and
sketch the conic.

(a) (b) (c)

6. Graph the conics with , 0.6, 0.8, and 1.0 on a common
screen. How does the value of affect the shape of the curve?

7. (a) Show that the polar equation of an ellipse with directrix can be written in the
form 
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37. , 38. ,
� � � � � � � � � � � � �

39–40 � Use a calculator or computer to find the length of the
loop correct to four decimal places.

39. One loop of the four-leaved rose 

40. The loop of the conchoid 
� � � � � � � � � � � � �

r � 4 � 2 sec �

r � cos 2�

0 � � � 2�r � �0 � � � 2�r � � 2values of at which they intersect. Then use these values to
estimate the area that lies inside both curves.

; 34. Use a graph to estimate the values of for which the curves
and intersect. Then estimate the

area that lies inside both curves.

35–38 � Find the length of the polar curve.

35. , 36. , 0 � � � 2�r � e 2�0 � � � 3��4r � 5 cos �
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(b) Find an approximate polar equation for the elliptical orbit of the planet Earth
around the Sun (at one focus) given that the eccentricity is about 0.017 and the
length of the major axis is about .

8. (a) The planets move around the Sun in elliptical orbits with the Sun at one focus. The
positions of a planet that are closest to and farthest from the Sun are called its peri-
helion and aphelion, respectively. (See Figure 2.) Use Problem 7(a) to show that the
perihelion distance from a planet to the Sun is and the aphelion distance 
is . 

(b) Use the data of Problem 7(b) to find the distances from Earth to the Sun at perihe-
lion and at aphelion.

9. (a) The planet Mercury travels in an elliptical orbit with eccentricity 0.206. Its mini-
mum distance from the Sun is . Use the results of Problem 8(a) to find
its maximum distance from the Sun.

(b) Find the distance traveled by the planet Mercury during one complete orbit around
the Sun. (Use your calculator or computer algebra system to evaluate the definite
integral.)

4.6 � 107 km

perihelionaphelion
Sun
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¨
r

FIGURE 2
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Complex Numbers � � � � � � � � � � � � � � � �

A complex number can be represented by an expression of the form , where 
and are real numbers and is a symbol with the property that . The com-
plex number can also be represented by the ordered pair and plotted as
a point in a plane (called the Argand plane) as in Figure 1. Thus, the complex number

is identified with the point .
The real part of the complex number is the real number and the imagi-

nary part is the real number . Thus, the real part of is and the imaginary
part is . Two complex numbers and are equal if and ,
that is, their real parts are equal and their imaginary parts are equal. In the Argand
plane the -axis is called the real axis and the -axis is called the imaginary axis.

The sum and difference of two complex numbers are defined by adding or sub-
tracting their real parts and their imaginary parts:

For instance,
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The product of complex numbers is defined so that the usual commutative and dis-
tributive laws hold:

Since , this becomes

EXAMPLE 1

Division of complex numbers is much like rationalizing the denominator of a
rational expression. For the complex number , we define its complex con-
jugate to be . To find the quotient of two complex numbers we multiply
numerator and denominator by the complex conjugate of the denominator.

EXAMPLE 2 Express the number in the form .

SOLUTION We multiply numerator and denominator by the complex conjugate of
, namely , and we take advantage of the result of Example 1:

The geometric interpretation of the complex conjugate is shown in Figure 2: is
the reflection of in the real axis. We list some of the properties of the complex con-
jugate in the following box. The proofs follow from the definition and are requested
in Exercise 18.

Properties of Conjugates

The modulus, or absolute value, of a complex number is its dis-
tance from the origin. From Figure 3 we see that if , then

Notice that
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This explains why the division procedure in Example 2 works in general:

Since , we can think of as a square root of . But notice that we also
have and so is also a square root of . We say that is the prin-
cipal square root of and write . In general, if is any positive number,
we write

With this convention the usual derivation and formula for the roots of the quadratic
equation are valid even when :

EXAMPLE 3 Find the roots of the equation .

SOLUTION Using the quadratic formula, we have

We observe that the solutions of the equation in Example 3 are complex conjugates
of each other. In general, the solutions of any quadratic equation 
with real coefficients , , and are always complex conjugates. (If is real, , so

is its own conjugate.)
We have seen that if we allow complex numbers as solutions, then every quadratic

equation has a solution. More generally, it is true that every polynomial equation

of degree at least one has a solution among the complex numbers. This fact is known
as the Fundamental Theorem of Algebra and was proved by Gauss.

Polar Form

We know that any complex number can be considered as a point and
that any such point can be represented by polar coordinates with . In fact,

as in Figure 4. Therefore, we have

Thus, we can write any complex number in the form
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The angle is called the argument of and we write . Note that is
not unique; any two arguments of differ by an integer multiple of .

EXAMPLE 4 Write the following numbers in polar form.
(a) (b)

SOLUTION
(a) We have and , so we can take .
Therefore, the polar form is

(b) Here we have and . Since lies in the 
fourth quadrant, we take and

The numbers and are shown in Figure 5.

The polar form of complex numbers gives insight into multiplication and division.
Let

be two complex numbers written in polar form. Then

Therefore, using the addition formulas for cosine and sine, we have

This formula says that to multiply two complex numbers we multiply the moduli and
add the arguments. (See Figure 6.)

A similar argument using the subtraction formulas for sine and cosine shows that
to divide two complex numbers we divide the moduli and subtract the arguments.

In particular, taking and , (and therefore and ), we have
the following, which is illustrated in Figure 7.
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z � s2 �cos 
�

4
� i sin 

�

4 �
� � ��4tan � � 1r � � z � � s12 � 12 � s2

w � s3 � iz � 1 � i

2�z
arg�z�� � arg�z�z�
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Re
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0

œ„3-i

2

1+i

œ„2

π
4
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π
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EXAMPLE 5 Find the product of the complex numbers and in polar
form.

SOLUTION From Example 4 we have

and

So, by Equation 1,

This is illustrated in Figure 8.

Repeated use of Formula 1 shows how to compute powers of a complex number. If

then

and

In general, we obtain the following result, which is named after the French mathema-
tician Abraham De Moivre (1667–1754).

De Moivre’s Theorem If and is a positive integer,
then

This says that to take the nth power of a complex number we take the nth power of
the modulus and multiply the argument by n.

EXAMPLE 6 Find .

SOLUTION Since , it follows from Example 4(a) that has the
polar form

So by De Moivre’s Theorem,

 �
25

210  �cos 
5�

2
� i sin 

5�

2 � �
1

32
 i

�1

2
�

1

2
 i�10

� �s2

2 �10�cos 
10�

4
� i sin 

10�

4 �

1

2
�

1

2
 i �

s2

2
 �cos 

�

4
� i sin 

�

4 �
1
2 �

1
2 i1

2 �
1
2 i � 1

2 �1 � i�

( 1
2 �

1
2 i)10

z n � �r�cos � � i sin ���n � rn�cos n� � i sin n��

nz � r�cos � � i sin ��2

 z 3 � zz 2 � r 3�cos 3� � i sin 3��

 z 2 � r 2�cos 2� � i sin 2��

 z � r�cos � � i sin ��

 � 2s2 �cos 
�

12
� i sin 

�

12�
 �1 � i�(s3 � i) � 2s2 �cos��

4
�

�

6 � � i sin ��

4
�

�

6 ��

 s3 � i � 2�cos��
�

6 � � i sin��
�

6 ��
 1 � i � s2 �cos 

�

4
� i sin 

�

4 �

s3 � i1 � i
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0 Re

Im

2

z=1+i

w=œ„3-i

zw

π
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De Moivre’s Theorem can also be used to find the th roots of complex numbers.
An th root of the complex number is a complex number such that

Writing these two numbers in trigonometric form as

and using De Moivre’s Theorem, we get

The equality of these two complex numbers shows that

and

From the fact that sine and cosine have period it follows that

Thus

Since this expression gives a different value of for , 1, 2, . . . , , we have
the following.

Roots of a Complex Number Let and let be a positive
integer. Then has the distinct th roots

where , 1, 2, . . . , .

Notice that each of the th roots of has modulus . Thus, all the th
roots of lie on the circle of radius in the complex plane. Also, since the argument
of each successive th root exceeds the argument of the previous root by , we see
that the th roots of are equally spaced on this circle.

EXAMPLE 7 Find the six sixth roots of and graph these roots in the complex
plane.

SOLUTION In trigonometric form, . Applying Equation 3 with
, we get

wk � 81�6�cos 
� � 2k�

6
� i sin 

� � 2k�

6 �
n � 6

z � 8�cos� � i sin ��

z � �8

zn
2��nn

r 1�nz
n� wk � � r 1�nzn

n � 1k � 0

wk � r 1�n�cos� � � 2k�

n � � i sin� � � 2k�

n ��
nnz

nz � r�cos � � i sin ��3

n � 1k � 0w

w � r 1�n�cos� � � 2k�

n � � i sin� � � 2k�

n ��
� �

� � 2k�

n
orn� � � � 2k�

2�

sin n� � sin �andcos n� � cos �

s � r 1�norsn � r

sn�cos n� � i sin n�� � r�cos � � i sin ��

z � r�cos � � i sin ��andw � s�cos � � i sin ��

wn � z

wzn
n



A80 � APPENDIX I COMPLEX NUMBERS

We get the six sixth roots of by taking in this formula:

All these points lie on the circle of radius as shown in Figure 9.

Complex Exponentials

We also need to give a meaning to the expression when is a complex
number. The theory of infinite series as developed in Chapter 8 can be extended to 
the case where the terms are complex numbers. Using the Taylor series for (Equa-
tion 8.7.11) as our guide, we define

and it turns out that this complex exponential function has the same properties as the
real exponential function. In particular, it is true that

If we put , where is a real number, in Equation 4, and use the facts that

. . .

we get

Here we have used the Taylor series for and (Equations 8.7.16 and 8.7.15). sin ycos y

 � cos y � i sin y

 � �1 �
 y 2

2!
�

 y 4

4!
�

 y 6

6!
� � � �� � i�y �

 y 3

3!
�

 y 5

5!
� � � ��

 � 1 � iy �
 y 2

2!
� i 

 y 3

3!
�

 y 4

4!
� i 

 y 5

5!
� � � �

 e iy � 1 � iy �
�iy�2

2!
�

�iy�3

3!
�

�iy�4

4!
�

�iy�5

5!
� � � �

i 5 � i,i 4 � 1,i 3 � i 2i � �i,i 2 � �1,

yz � iy

e z1�z2 � e z1e z25

e z � �
�

n�0
 
zn

n!
� 1 � z �

z2

2!
�

z3

3!
� � � �4

ex

z � x � iye z

s2

 w5 � 81�6�cos 
11�

6
� i sin 

11�

6 � � s2 �s3

2
�

1

2
 i�

 w4 � 81�6�cos 
3�

2
� i sin 

3�

2 � � �s2 i

 w3 � 81�6�cos 
7�

6
� i sin 

7�

6 � � s2 ��
s3

2
�

1

2
 i�

 w2 � 81�6�cos 
5�

6
� i sin 

5�

6 � � s2 ��
s3

2
�

1

2
 i�

 w1 � 81�6�cos 
�

2
� i sin 

�

2 � � s2 i

 w0 � 81�6�cos 
�

6
� i sin 

�

6 � � s2 �s3

2
�

1

2
 i�

k � 0, 1, 2, 3, 4, 5�8

FIGURE 9
The six sixth roots of z=_8

Re

Im

0

w¡

w¢

w∞

w¸w™

w£

_œ„2 2œ„

2i_œ„

œ„2i



APPENDIX I COMPLEX NUMBERS � A81

The result is a famous formula called Euler’s formula:

Combining Euler’s formula with Equation 5, we get

EXAMPLE 8 Evaluate: (a) (b)

SOLUTION
(a) From Euler’s formula (6) we have

(b) Using Equation 7 we get

Finally, we note that Euler’s formula provides us with an easier method of proving
De Moivre’s Theorem:

�r�cos � � i sin ���n � �re i� �n � rne in� � rn�cos n� � i sin n��

e�1�i��2 � e�1�cos 
�

2
� i sin 

�

2 � �
1

e
 �0 � i�1�� �

i

e

e i� � cos � � i sin � � �1 � i�0� � �1

e�1�i��2e i�

ex�iy � exe iy � ex�cos y � i sin y�7

e iy � cos y � i sin y6

18. Prove the following properties of complex numbers.
(a) (b)
(c) , where is a positive integer

[Hint: Write , .]

19–24 � Find all solutions of the equation.

19. 20.

21. 22.

23. 24.
� � � � � � � � � � � � �

25–28 � Write the number in polar form with argument
between and .

25. 26.

27. 28.
� � � � � � � � � � � � �

29–32 � Find polar forms for , , and by first putting 
and into polar form.

29. ,

30. , w � 8iz � 4s3 � 4i

w � 1 � s3 iz � s3 � i

w
z1�zz�wzw

8i3 � 4i

1 � s3 i�3 � 3i

2�0

z2 �
1
2 z �

1
4 � 0z2 � z � 2 � 0

x 2 � 4x � 5 � 0x 2 � 8x � 17 � 0

x 4 � 14x 2 � 9 � 0

w � c � diz � a � bi
nz n � z n

zw � z wz � w � z � w
1–14 � Evaluate the expression and write your answer in the 
form .

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.
� � � � � � � � � � � � �

15–17 � Find the complex conjugate and the modulus of the 
given number.

15. 16.

17.
� � � � � � � � � � � � �

�4i

s3 � i3 � 4i

s�3s�12s�25

i 100i 3

3

4 � 3i

1

1 � i

5 � i

3 � 4i

2 � 3i

1 � 5i

2i( 1
2 � i)12 � 7i

�4 � 7i ��1 � 3i ��3 � i ��4 � i �

�1 � i � � �2 � 3i ��3 � 2i � � �7 � 3i �

a � bi

Exercises � � � � � � � � � � � � � � � � � � � � � � � � � �I
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48. Use Euler’s formula to prove the following formulas for
and :

49. If is a complex-valued function of a
real variable and the real and imaginary parts and

are differentiable functions of , then the derivative 
of is defined to be . Use this 
together with Equation 7 to prove that if , then

when is a complex number.

50. (a) If is a complex-valued function of a real variable, its
indefinite integral is an antiderivative of . 
Evaluate

(b) By considering the real and imaginary parts of the inte-
gral in part (a), evaluate the real integrals

and

Compare with the method used in Example 4 in Sec-
tion 5.6.

y e x sin x dxy e x cos x dx

y e �1�i �x dx

ux u�x� dx
u

r � a � biF��x� � re rx
F�x� � e rx

u��x� � f ��x� � it��x�u
xt�x�

f �x�x
u�x� � f �x� � it�x�

sin x �
eix � e�ix

2i
cos x �

eix � e�ix

2

sin xcos x
31. ,

32. ,
� � � � � � � � � � � � �

33–36 � Find the indicated power using De Moivre’s Theorem.

33. 34.

35. 36.
� � � � � � � � � � � � �

37–40 � Find the indicated roots. Sketch the roots in the com-
plex plane.

37. The eighth roots of 1 38. The fifth roots of 32

39. The cube roots of 40. The cube roots of 
� � � � � � � � � � � � �

41–46 � Write the number in the form .

41. 42.

43. 44.

45. 46.
� � � � � � � � � � � � �

47. Use De Moivre’s Theorem with to express and
in terms of and .sin �cos �sin 3�

cos 3�n � 3

e 1�2ie 2�i�

e �i�e i3��4

e 2� ie i��2

a � bi

1 � ii

�1 � i �8(2s3 � 2i )5

(1 � s3 i )5�1 � i �20

w � �3 � 3iz � 4(s3 � i )
w � �1 � iz � 2s3 � 2i
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33.

35.

37.
39.

41.

43.
45. 47.
49.
51. (a)

(b) $400, $1900
(c) 

53. (a) (b)
55. Even 57. Neither 59. Odd

Exercises 1.2 � page 35
1. (a) Root (b) Algebraic (c) Polynomial (degree 9)
(d) Rational (e) Trigonometric (f ) Logarithmic
3. (a) h (b) f (c) t

y

0 x1

�1

0 1 x

y

��5, �3���5, 3�

T (in dollars)

0 I (in dollars)10,000 20,000

1000

2500

30,000

R(%)

0 I (in dollars)10,000 20,000

10

15

V�x� � 4x 3 � 64x 2 � 240x, 0 � x � 6
S�x� � x 2 � �8�x�, x � 0A�x� � s3x 2�4, x � 0

A�L� � 10L � L2, 0 � L � 10

f �x� � 
x � 1

6 � 1.5x

if �1 � x � 2

if 2 � x � 4

f �x� � 1 � s�x

f �x� � �
7
6 x �

4
3 , �2 � x � 4

x

y

1

�1 0

���, ��

0 x

1

y���, ��CHAPTER 1

Exercises 1.1 � page 22
1. (a) �2 (b) 2.8 (c) �3, 1 (d) �2.5, 0.3
(e) (f )
3.
5. Yes, 7. No
9. Diet, exercise, or illness
11.

13.

15.

17. (a) 

(b) 540, 1450
19. 12, 16, , , ,

, , ,
,

21. , ,
23.
25. 27.
29. 31.

x

2

y

0

4

t
�1

y

0

2

���, 0� � �0, �����, ��
���, 0� � �5, ���0, ��

{x � x � 1
3} � (��, 13) � ( 1

3 , �)
1 � 2x � hx � h � x 2 � 2xh � h2��h2 � 3h � 2�

3a2 � 6ah � 3h2 � a � h � 29a4 � 6a3 � 13a2 � 4a � 4
3a4 � a2 � 212a2 � 2a � 26a2 � 2a � 4

3a2 � 5a � 43a2 � a � 23a2 � a � 2

N

0 t1991 1993 1995

2500

500

1000

2000

1997

1500

Height
of grass

tWed. Wed. Wed. Wed. Wed.

T

tmidnight noon

T

0 t

��3, 2�, ��2, 2�
��85, 115�, ��325, 485�, ��210, 200�

��1, 3���3, 3�, ��2, 3�



(b) (c) 20.00 ft (d) No

19. ;
1913 million

Exercises 1.3 � page 46
1. (a) (b) (c)
(d) (e) (f )
(g) (h)
3. (a) 3 (b) 1 (c) 4 (d) 5 (e) 2
5. (a) (b)

(c) (d)

7.

9. 11.

13.

15.

17.

x

y

1
3

2π
3

7π
6

13π
6

π
6

1
3

y=   sin ”x-    ’π
6

3 x
0

y

y=
1

x-3

_π x

1

�1

y

y=Ł(x/2)

0 π 2π_3π 3π_2π

x

y

0 π
2

y=g 2x
y

x0

y � �
1
x

y � �s�x 2 � 5x � 4 � 1

y

0 x

y

0 x

y

0 x

y

0 x

y � 1
3 f �x�y � 3f �x�

y � f ��x�y � �f �x�y � f �x � 3�
y � f �x � 3�y � f �x� � 3y � f �x� � 3

y � 0.00123543x 3 � 6.72226x 2 � 12,165x � 7,318,429

20 (ft)

10
2000 (year)1896

y � 0.08912x � 158.245. (a) ,
where b is the y-intercept

(b) ,
where m is the slope.
See graph at right.
(c)

7. (a) (b) , change in for
every change; 32,
Fahrenheit temperature
corresponding to 

9. (a) (b) , change in for every chirp per
minute change (c)
11. (a) (b) 196 ft
13. (a) Cosine (b) Linear
15. (a) Linear model is 

appropriate.

(b)

(c) [See graph in (b).]
(d) About 11.5 per 100 population (e) About 6% (f ) No
17. (a)

Linear model is
appropriate.

20 (ft)

10
2000 (year)1896

y � �0.00009979x � 13.951

15

0 61,000

(b)

(c)

y � �0.000105x � 14.521

15

0 61,000

P � 0.434d � 15
76 
F


F1
6T � 1

6 N �
307
6

0 
C


C

F9

5F

C

(100, 212)

F=   C+329
5

(_40, _40)

32

y � 2x � 3

y

x

m=_1

m=1

m=0

y-1=m(x-2)

(2, 1)

y � mx � 1 � 2m

y

x

b=3 b=0
b=_1

y=2x+b

y � 2x � b
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47. , ,
49. (a) 4 (b) 3 (c) 0
(d) Does not exist; is not in the domain of .
(e) 4 (f )
51. (a) (b) ; the area of the
circle as a function of time
53. (a) (b) 

(c) 

55. (a) (b) 57. Yes
59. (a) , (b)
(d)

Exercises 1.4 � page 55
1. (c) 3.

5. 7.

9. 1.5

_1.5

_0.1 0.1

250

�50

�20 20

4

�1

�4 4

150

_50

30_10

x

y

a¤0 ‹ x¢

f

gh
y=x

⁄

y=Ï

PQ

R
S

�t�a�, f �t�a���Q�t�a�, t�a��P�a, t�a��
t�x� � x 2 � x � 1f (x� � x 2 � 6

V�t� � 240H�t � 5�

V

t

240

0 5

V�t� � 120H�t�

V

t

120

0

H

t

1

0

�A � r��t� � 3600�t 2r�t� � 60t
�2

tf �6� � 6

f �x� � x 4
t�x� � sec xh�x� � sx19. 21.

23.

25.

27. (a) The portion of the graph of to the right of the 
-axis is reflected about the -axis.

(b) (c)

29.

31. ,
,

,
,

33.

35. ,
,

,

,
37. ,

,
,

,

39.
41. 43. ,
45. , , f �x� � 1 � xt�x� � 3xh�x� � x 2

f �t� � stt�t� � cos tt�x� � x 2 � 1, f �x� � x 10

� f � t � h��x� � sx 2 � 6x � 10

{x � x � �2, �5
3}�t � t��x� � �2x � 3���3x � 5�

{x � x � 0�� f � f ��x� � �x 4 � 3x 2 � 1���x�x 2 � 1��
{x � x � �1, 0��t � f ��x� � �x 2 � x � 1���x � 1�2

�x � x � �2, �1�
�2x 2 � 6x � 5����x � 2��x � 1��� f � t��x� �

�0, 1��t � t��x� � 1 � s1 � sx

���, ��� f � f ��x� � sin�sin x�
�x � x � �2n�, � � 2n��, n an integer��t � f ��x� � 1 � ssin x

�0, ��� f � t��x� � sin(1 � sx )

x

y
f+g

f
g

{x � x � 	1�s3}� f�t��x� � �x 3 � 2x 2 ���3x 2 � 1�
���, ��� ft��x� � 3x 5 � 6x 4 � x 3 � 2x 2

���, ��� f � t��x� � x 3 � x 2 � 1
���, ��� f � t��x� � x 3 � 5x 2 � 1

x

y

0

f

g

f+g

y

x0

y=œ„„|x|

x

y
y=j |x|

yy
y � f �x�

L�t� � 12 � 2 sin� 2�

365
 �t � 80��

y

x0

y=| sin x |

π

1

3

x
1

y

0

(_1, 2) y=2-œ„x+1

0 x

y

y=1+2x-≈

(1, 2)

APPENDIX J ANSWERS TO ODD-NUMBERED EXERCISES � A85



3. All approach 0 as
, all pass through

, and all are increas-
ing. The larger the base,
the faster the rate of
increase.

5. The functions with base
greater than 1 are increas-
ing and those with base
less than 1 are decreasing.
The latter are reflections 
of the former about the 
y-axis.

7. 9.

11.

13. (a) (b) (c)
(d) (e)
15. 21. At 
23. (a) 3200 (b) (c) 10,159
(d)

25. , where and
; 5494 million; 7409 million

Exercises 1.6 � page 73
1. (a) See Definition 1.
(b) It must pass the Horizontal Line Test.
3. No 5. Yes 7. No 9. Yes 11. No
13. No 15. No 17. 2 19. 0
21. ; the Fahrenheit temperature as a function of
the Celsius temperature; 
23. 25.
27. y � e x � 3

f �1�x� � s
3 ln xf �1�x� � �

1
3 x

2 �
10
3 , x � 0

��273.15, ��
F � 9

5 C � 32

b  1.01774077
a  3.303902537 � 10�12y � ab t

t  26.9 h

60,000

0 40

100 � 2 t�3
x  35.8f �x� � 3 � 2x

y � �e�xy � e�x
y � �e xy � e x�2y � e x � 2

x

2

y
y � 3

0

x
_1

y

0

y=_2–®

x

_2

y

0

y=4®-3

y=_3

5

_2 2

y=3®y=10®

0

y=”   ’®1
3

y=”    ’®1
10

�0, 1�
x l ��

y=20® y=5® y=´

y=2®

5

_1 2
0

11.

13. 15.

17. 9.05 19. 0, 0.88 21. 23.
25. (a) (b)

(c)

(d) Graphs of even roots are similar to , graphs of odd roots
are similar to . As n increases, the graph of becomes
steeper near 0 and flatter for .
27.

If , the graph has three humps: two minimum points and a
maximum point. These humps get flatter as c increases until at

two of the humps disappear and there is only one mini-
mum point. This single hump then moves to the right and
approaches the origin as c increases.
29. The hump gets larger and moves to the right.
31. If , the loop is to the right of the origin; if , the
loop is to the left. The closer c is to 0, the larger the loop.

Exercises 1.5 � page 63
1. (a) (b) (c)
(d) See Figures 4(c), 4(b), and 4(a), respectively.

�0, ���f �x� � a x, a � 0

c � 0c � 0

c � 0

c � 0

6

_6

_2.5 2.5

2 0_2 _44

x � 1
y � s

n xs
3 x

sx

2

_1

_1 3

$œ„x
œ„x Œ„x

%œ„x

2

_2

_3 3
x %œ„x

Œ„x

3

_1

_1 4
œ̂„x

$œ„xœ„x

�0.85 � x � 0.85t

4

0
_5 5

1

_1

_1 1

1.5

_1.5

_250 250
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Exercises 1.7 � page 81
1. 3.

5. (a) 7. (a)

(b) (b)
9. (a) 11. (a)
(b) (b)

13. (a) (b)

15. Moves counterclockwise along the circle from
to 

17. Moves once clockwise around the ellipse
, starting and ending at (0, 3)

19. It is contained in the rectangle described by 
and .
21. 23. (b) 

,

25. 3

�3

�3 3

0 � t � 1y � 7 � 8t
x � �2 � 5t,

x

y

t=0

t= 1
2

1

1

2 � y � 3
1 � x � 4

�x 2�4� � �y 2�9� � 1

�1, 0���1, 0�
x 2 � y 2 � 1

x

y

0 (1, 0)

(0, 1)

x � y � 1, 0 � x � 1

x

y

0

x

(0, 1)
y

(0, _1)

0

y � 1�x, x � 0x 2 � y 2 � 1, x � 0
y � 1 � x 2, x � 0y � 1

2 x � 3

0 x

(0, 1)

yy

x

_3

6

x

y

t=0  (0, 0)

t=	π  {0, π@}

5

5

x

y

t=0
(1, 0)

t=5
{1+œ„5, 5}

29. 31.

33. (a) It’s defined as the inverse of the exponential function
with base a, that is, .
(b) (c) (d) See Figure 11.
35. (a) 6 (b)
37. (a) 2 (b) 2 39.
41. (a) 2.321928 (b) 2.025563
43.

All graphs approach as , all pass through , and
all are increasing. The larger the base, the slower the rate of
increase.
45. About 1,084,588 mi
47. (a) (b)

49. (a) (b)
51. (a) (b)
53. (a) (b)
55.

passes the Horizontal Line Test

,
where ; two of the expressions
are complex.
57. (a) ; the time elapsed when
there are n bacteria (b) After about 26.9 h
59. (a) (b) (c)
(d) (e) (f ) (g)
(h) y � e x � 3

y � �e xy � e�xy � e xy � ln��x�
y � �ln xy � ln�x � 3�y � ln x � 3

f �1�n� � �3�ln 2� ln�n�100�

D � 3s3s27x 4 � 40x 2 � 16
�(s3 4�6)(s3 D � 27x 2 � 20 � s

3 D � 27x 2 � 20 � s
3 2 )

f �1�x� �

5

_1

4_2

x � 1�ex � ln 10

1
2 (1 � s1 � 4e )5 � log2 3 or 5 � �ln 3��ln 2

�ln 5se

1 x

y

0
_5 _4 x

y

0

�1, 0�x l 0���

3

�5

4

y=log1.5 x

0

y=ln x
y=log10 x

y=log50 x

ln 8
�2
��0, ��

loga x � y &? a y � x

y

x1

1
f

f –!

4

_2

_2 4

f

f – !

f �1�x� � s2��1 � x�
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(e) Reflect the graph about the x-axis.
(f ) Reflect the graph about the line (assuming f is 
one-to-one).
11. 13.

15. 17. (a) Neither
(b) Odd
(c) Even
(d) Neither

19. ,
,

,
,

21. ; about 77.6 years
23. 1 25. (a) 9 (b) 2
27. (a) (b)
(c) ; the time elapsed when there are m grams 
of (d) About 26.6 days
29.

For , is defined everywhere. As c increases, the dip at
becomes deeper. For , the graph has asymptotes 

at .
31. (a) (b)

33. 7

_1

_1 7

f

f – !

y � slnxy

x1

(e, 1)

x � 	sc
c � 0x � 0

fc � 0

_13

_3

_5 5

421
0

_4_2

100 Pd
t�m� � �4 log2 m

m�t� � 2�t�41
16 g

y � 0.2493x � 423.4818
���, ���t � t��x� � �x 2 � 9�2 � 9

�1, ��� f � f ��x� � ln ln x
�0, ���t � f ��x� � �ln x�2 � 9

���, �3� � �3, ��� f � t��x� � ln�x 2 � 9�

y

x0

y=
1

x+2
1
2

x=_2

x

y

0

y=(1+´)/2
1 y=

1
2

y

x0

y=_sin 2x

π

y � x
27. (a)
(b)
(c)
29. (a)
(b) (c) As b increases, the ellipse 

stretches vertically.

33. , ellipse
35.

37. For , there is a cusp; for , there is a loop whose
size increases as c increases.

39. As n increases, the number of oscillations increases; a and b
determine the width and height.

Chapter 1 Review � page 85

True-False Quiz
1. False 3. False 5. True 7. False 9. True
11. False

Exercises

1. (a) 2.7 (b) 2.3, 5.6 (c) (d)
(e) (f ) No; fails the Horizontal Line Test.
(g) Odd; its graph is symmetric about the origin.
3. (a) (b) 150 ft

5. 7.
9. (a) Shift the graph 8 units upward.
(b) Shift the graph 8 units to the left.
(c) Stretch the graph vertically by a factor of 2, then shift it 
1 unit upward.
(d) Shift the graph 2 units to the right and 2 units downward.

�, �0, 2�[�2s3�3, 2s3�3], �0, 2�

d

0 t

50

2 4

100

150

3 51

f��4, 4�
��4, 4���6, 6�

3

0 1.5

_3

_1

0
0 1.5

1

_1

1
1
2

c � 0c � 0

y

O x

2a

x � a cos �, y � b sin �; �x 2�a 2 � � �y 2�b 2 � � 1

8

_8

_8 8
b=1

b=2
b=4

b=8

x � a sin t, y � b cos t, 0 � t � 2�
x � 2 cos t, y � 1 � 2 sin t, ��2 � t � 3��2
x � 2 cos t, y � 1 � 2 sin t, 0 � t � 6�

x � 2 cos t, y � 1 � 2 sin t, 0 � t � 2�
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11. 0.806452, 0.641026, 0.510204, 0.409836, 0.369004,
0.336689, 0.165563, 0.193798, 0.229358, 0.274725, 0.302115,
0.330022; 
13. 0.718282, 0.367879, 0.594885, 0.426123, 0.517092,
0.483742, 0.508439, 0.491770, 0.501671, 0.498337; 
15. (a) 4
17. (a) 2.71828
(b) 

19. (a) 0.998000, 0.638259, 0.358484, 0.158680, 0.038851,
0.008928, 0.001465; 0
(b) 0.000572, �0.000614, �0.000907, �0.000978,
�0.000993, �0.001000; �0.001
21. Within 0.182; within 0.095

Exercises 2.3 � page 117
1. (a) 5 (b) 9 (c) 2 (d) (e) (f ) 0
(g) Does not exist (h)

3. 75 5. �3 7. 9. 5 11. Does not exist

13. 15. 12 17. 19.
21. (a), (b) 25. 1 29. 0

31. Does not exist
33. (a) (i) 0 (ii) 0 (iii) 1 (iv) 1 (v) 0
(vi) Does not exist
(b)

35. (a) (i) (ii) Does not exist (iii)
(b) (i) (ii) (c) is not an integer.
43. 15; 

Exercises 2.4 � page 128

1.
3. (a) (removable), ( jump), 2 ( jump), 4 (infinite)
(b) , neither; , left; 2, right; 4, right

5. 7. (a) 

(b) Discontinuous at , 2, 3, 4t � 1

y

0 x2

1

Cost
(in dollars)

0 Time
(in hours)

1

1

�2�4
�2�4

lim x l 4 f �x� � f �4�

�1
ann � 1

�3�2

1 x

y

1

_1 0

2
3

�
1

16
1
6

6
5

1
8

�
6

11

�
3
8�

1
3

6

4_4

_2

1
2

1
3

Principles of Problem Solving � page 93

1. , where a is the length of the altitude and 
h is the length of the hypotenuse
3.
5. 7.

9. 11. 5
13.
15.
19.

CHAPTER 2

Exercises 2.1 � page 99
1. (a) �44.4, �38.8, �27.8, �22.2,
(b) �33.3 (c)
3. (a) (i) 0.333333 (ii) 0.263158 (iii) 0.251256
(iv) 0.250125 (v) 0.2 (vi) 0.238095 (vii) 0.248756
(viii) 0.249875 (b) (c)
5. (a) (i) (ii) (iii)
(iv) (b)
7. (a) (i) (ii) (iii) (iv)
(b)
(c) (d)

9. (a) 0, 1.7321, �1.0847, �2.7433, 4.3301, �2.8173, 0,
�2.1651, �2.6061, �5, 3.4202; no (c) �31.4

Exercises 2.2 � page 108
1. Yes 3. (a) 2 (b) 3 (c) Does not exist
(d) 4 (e) Does not exist
5. (a) (b) (c) Does not exist (d) 2 (e) 0
(f ) Does not exist (g) 1 (h) 3
7. (a) 1 (b) 0 (c) Does not exist
9. y

0 x1

�2�1

21 t

1

s

2

tangent

s=t#
6

1.5

2 31 t

1

s

2

3

4
(i) (ii)

(iii)

(iv)

s=t#
6

1.5

1
2 ft�s

331
600 ft�s19

24 ft�s7
6 ft�s13

6  ft�s
�24 ft�s�24.16 ft�s

�24.8 ft�s�25.6 ft�s�32 ft�s
y � 1

4 x �
1
4

1
4

�33 13

�16.6

fn�x� � x 2 n�1
40 mi�h
x � [�1, 1 � s3) � (1 � s3, 3]

y

x10

1

x

y

1

1 x

y

�
7
3 , 9

a � 4sh 2 � 16�h
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Exercises 2.6 � page 148

1. (a) (b)

3. Slopes at 
5. (a) (i) �4 (ii) �4 (b)
(c) 

7. 9.
11. (a) (b)
(c)

13. (a) 0 (b) C (c) Speeding up, slowing down, neither
(d) The car did not move.
15. 17.
19. Greater (in magnitude)

21. (a) (i) (ii) (iii)
(b)
23. (a) (i) (ii)
(iii)
(b) (c)
25. (a) (i) (ii) (b)

Exercises 2.7 � page 155
1. The line from to 
3.
5. 7. 7; 

9. (a) �2; (b)

(1, _3)

8

3_1

_6

y � �2x � 1

y � 7x � 12

1 x

y

1

t��0�, 0, t��4�, t��2�, t���2�
�2 � h, f �2 � h���2, f �2��

$20�unit$20.05�unit$20.25�unit
427.5 thousand�year470.5 thousand�year

301 thousand�year
640 thousand�year794 thousand�year

�1.9 
C�h
�1.3 
C�h�1.25 
C�h�1.2 
C�h

Temperature
(in °F)

0 Time
(in hours)

1

38

2

72

�12a 2 � 6� m�s, 18 m�s, 54 m�s, 114 m�s�24 ft�s

8

3_1

_4

y � �x � 1, y � 8x � 153a 2 � 4
y � 1

2 x �
1
2y � �x � 5

5

2_4

_2

(_3, 3)

y=≈+2x

y � �4x � 9
D, E, C, A, B

lim 
x l3

 
 f �x� � f �3�

x � 3

 f �x� � f �3�
x � 3

9. 6
13. is not defined 15.

17. 19. 21.
23.

25. 27. 1
29. 0, right; 1, left

31. 39. (b) 41. (b) 70.347 45. Yes

Exercises 2.5 � page 139
1. (a) As approaches 2, becomes large. (b) As 
approaches 1 from the right, becomes large negative.
(c) As becomes large, approaches 5. (d) As  
becomes large negative, approaches 3.
3. (a) (b) (c) (d) 1 (e) 2
(f )
5. 7.

9. 0 11.
13. 15. 17. 19. 21. 2
23. 25. Does not exist 27. 29.
31. ; , 33. (a), (b)
35. (a) IV (b) III (c) II (d) VI (e) I (f ) V

37. 39. (a) 0 (b)

41. 4 43. (b) It approaches the concentration of the brine
being pumped into the tank.
45. (b) (c) Yes, x � 10 ln 10x � 23.03

	�
2 � x

x 2�x � 3�

�
1
2x � 1x � �2y � 2

���
1
6

1
2�����

x  �1.62, x  0.62, x � 1; y � 1

x

y

0

x=2

x

y

0

1

1

x � �1, x � 2; y � 1, y � 2
����

f �x�
xf �x�x

f �x�
xf �x�x

�0.44, 0.45�1
3

y

x0

(1, e)

(1, 1)
(0, 1)

(0, 2)

7
3

3

4_4

_1

x � 0
���, �1� � �1, ����x � x � �3, �2�

y

x0 4

_4(_3, _5)

(_3, _7)

x

y

0

x=2

lim
x l

 

�3
 f �x� � f ��3�f �2�
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15.

17. (a) 0, 1, 2, 4 (b) �1, �2, �4 (c)
19.
21.
23.
25. , ,

27. (a)
29. (a) The rate at which the unemployment rate is changing,
in percent unemployed per year
(b)

31. 4 (discontinuity); 8 (corner); �1, 11 (vertical tangents)
33.

Differentiable at �1; not differentiable at 0

35.
37.
39.

,

41. 43. (a)

, ,
, f �4��x� � 0f ��x� � �6

f ��x� � 4 � 6xf ��x� � 4x � 3x 2

1
3 a�2�3

3

6�4

�7

f

fª

f·

fªªª

f ��x� � �2
f ��x� � 4 � 2x

6

10�6

�10

ffª

f ·

a � acceleration, b � velocity, c � position
a � f, b � f �, c � f �

2

_1

_2 1

f ��x� � 1 � 2�x 2
���, �1� � ��1, ��

���, �1� � ��1, ��G��t� � 4��t � 1�2

t��x� � 1�s1 � 2x, [� 1
2 , �), (� 1

2 , �)
f ��x� � 3x 2 � 3, �, �
f ��x� � �7, �, �

f ��x� � 2x

f ��x� � e xy

x1

1

0

f, f ª

11. (a) 3.296 (b) 3.3
13. 15.
17. 19.
21.
23. 25.
27. (a) The rate at which the cost is changing per ounce of gold
produced; dollars per ounce
(b) When the 800th ounce of gold is produced, the cost of 
production is 
(c) Decrease in the short term; increase in the long term
29. (a) The rate at which the fuel consumption is changing
with respect to speed; 
(b) The fuel consumption is decreasing by 
as the car’s speed reaches .
31. The rate at which the temperature is changing with respect
to time when ; 
33. The rate at which the cash per capita in circulation is
changing in dollars per year; $39.90�year
35. Does not exist

Exercises 2.8 � page 167
1. (a) 1.5 (b) 1 (c) 0 (d) �4 (e) 0 (f ) 1 (g) 1.5

3. (a) II (b) IV (c) I (d) III
5. 7.

9. 11.

13. 1963 to 1971

0.05

19901980197019601950

_0.03
t

y=Mª(t)0.1

y

x0

y

f ª

x0

y

ƒ�

x

y

0

fªfª

x

y

0

x0

y

fª

1
C�ht � 6

20 mi�h
0.05 �gal�h���mi�h�

�gal�h���mi�h�

$17�oz.

�2 m�sf �x� � cos x, a � �
f �x� � 2x, a � 5

f �x� � x 10, a � 1�1��2�a � 2�3�2�
5��a � 3�2�2 � 8a
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t t

1989 0.30 1994
1990 0.75 1995
1991 0.95 1996
1992 0.05 1997
1993 1998 �0.40�0.70

�0.45
�0.35
�0.35
�0.65

U��t�U��t�



7. (a) The rate starts small, grows rapidly, levels off, then
decreases and becomes negative.
(b) ; the rate of change of population
density starts to decrease in 1932 and starts to increase in 1937.
9. ; CD
11. (a) Inc. on (0, 2), (4, 6), ;
dec. on (2, 4), (6, 8)
(b) Loc. max. at ;
loc. min. at 
(c) CU on (3, 6), ; 
CD on (0, 3)
(d) 3
(e) See graph at right.
13. 15.

17. 19.

21. (a) Inc. on ; dec. on 
(b) Min. at 
23. (a) Inc. on , ; dec. on 
(b) CU on ; CD on 
(c) IP at 
25. b
27. 29.

Chapter 2 Review � page 181
True-False Quiz
1. False 3. True 5. False 7. True
9. True 11. False 13. True 15. False
17. False

Exercises

1. (a) (i) 3 (ii) 0 (iii) Does not exist (iv) 2 (v)
(vi) (vii) 4 (viii) �1 (b) ,
(c) , (d) �3, 0, 2, 4
3. 1 5. 7. 3 9. 11. 0 13. 0
15. 17. 19. 1x � 0, y � 0s3

�
3
2

x � 2x � 0
y � �1y � 4��

�

0 2 x

0.5

4

F

y

x

y

0 2

F

�0, 0�
���, 0��0, ��

(�s
1
3 , s

1
3)(s1

3 , �)(��, �s
1
3)

x � 0
���, 0��0, ��

x

y

0

y � 1

4_4

(_2, _1) (2, _1)
x0

y

(1, 0)

(_1, 4)

y

0 x2

y

0 x

�6, ��
x � 4, 8

x � 2, 6

x

y

0 2 4 6 8

�8, ��
K�3� � K�2�

�1932, 2.5� and �1937, 4.3�
45.

or

49.

Exercises 2.9 � page 173
1. (a) 1.0986 (b) 1.0549, 1.1099
(c)

Less; the tangent line
lies below the curve.

3. (a) (b) (c) 0.83333, 0.96667, 0.99667,
1.00333, 1.03333, 1.16667, 1.33333; overestimates; those for
0.99 and 1.01

(d)

The tangent lines lie
above the curve.

5. (a) 2 (b) 0.8, 0.9, 0.98, 1.02, 1.1, 1.2; underestimates

(c)

7. ; underestimate 9. $1555; underestimate
11. 22.6%, 24.2%; too high; tangent lines lie above the curve
13. (a) 4.8, 5.2 (b) Too large

Exercises 2.10 � page 178
1. (a) Inc. on ; dec. on 
(b) Loc. max. at , loc. min. at 
(c)

3. Inc. on ; dec. on 
5. If is the size of the deficit as a function of time, then at
the time of the speech , but .D ��t� � 0D��t� � 0

D�t�
���, 2� and �5, ���2, 5�

y

0 x

1

5

f

x � 1x � 5
�0, 1� and �5, 6��1, 5�

148 
F

2

20

(1, 1)

2

20

(1, 1)

1
3 x �

2
3

1
3

2

1�1
0

(0, 1)

63


f ��x� �
x � 6

� x � 6 �
x

y

0 6

1

_1

f ª
f ��x� � 
�1

1

if x � 6

if x � 6
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43.

45. (a) About 35 ft�s (b) About 
(c) The point at which the car’s velocity is maximized

Focus on Problem Solving � page 186
1. 3. �4 5. 1 7.
9. (b) Yes (c) Yes; no 11.
13. (a) 0 (b) 1 (c) 15.

CHAPTER 3

Exercises 3.1 � page 196
1. (a) See Definition of the Number e (page 195).
(b) 0.99, 1.03; 
3. 5.
7.
9.
11.
13. 15.
17.
19.
21.
23. 25. 27.
29. (a) 0.264 (b)
31. 33.

35. (a) (c)

37.
39.
41. (a) (b)
(c)
43. 45. �1, 0�, (� 1

3 , 32
27 )(ln 3

2 , �)
a�1� � 6 m�s2

12 m�s2v�t� � 3t 2 � 3, a�t� � 6t
f ��x� � 2 �

15
4 x�1�4, f ��x� � 15

16 x
�5�4

f ��x� � 4x 3 � 9x 2 � 16, f ��x� � 12x 2 � 18x

100

�40

�3 5

50

�10

�3 5

4x 3 � 9x 2 � 12x � 7

(1, 2)

3

3

_2

_2

(2, 4)

10

10

_10

_10

y � 3
2 x �

1
2y � 4

22�5�5  0.263902
1 � x�2�345x 14 � 15x 24x � 4x 3

z� � �10A�y11 � Be y
v� � 2t � 3�(4ts

4 t 3)
y� � 3

2 sx � (2�sx ) � 3�(2xsx )
y� � 0F��x� � 12,288x 2

V��r� � 4�r 2
G��x� � 1�(2sx ) � 2e x
y� � �

2
5 x

�7�5
f ��x� � 36x 3 � 6xf ��x� � 5

2.7 � e � 2.8

3
4f ��x� � x 2 � 1

(	s3�2, 14 )
a � 1

2 	
1
2 s52

3

�8, 180�

y

0
x1

�2

9 12

x � 6
21. (a) (i) 3 (ii) 0 (iii) Does not exist (iv) 0 (v) 0
(vi) 0 (b) At 0 and 3 (c) 

25. (a) (i) (ii) (iii)
(iv) (b)
27.
29. (a) (b)
(c)

31. (a) The rate at which the cost changes with respect to the
interest rate; dollars�(percent per year)
(b) As the interest rate increases past 10%, the cost is increas-
ing at a rate of $1200�(percent per year).
(c) Always positive
33.

35. (a)

(b)
(c)

37. �4 (discontinuity), �1 (corner), 2 (discontinuity),
5 (vertical tangent)
39. (a) 1 (b) (c) 0.8, 0.9, 0.99, 1.01, 1.1, 1.2
(d) Underestimates; those for 
41. (a) Inc. on ; dec. on 
(b) Max. at 0; min. at 
(c) CU on ; CD on 
(d)

x

y

0

1

��1, 1����, �1� and �1, ��
�2 and 2

���, �2� and �0, 2���2, 0� and �2, ��
e�0.01 and e0.01

x � 1

6

1_3

_6

f

f ª

(��, 35 ], (��, 35 )
f ��x� � �

5
2 �3 � 5x��1�2

x

y

0

fª

1.5

1.50

1

1

y  �0.736x � 1.104�0.736
f ��5�, 0, f ��5�, f ��2�, 1, f ��3�

2.5 m�s2.525 m�s
2.625 m�s2.75 m�s3 m�s

x0

y

3

3
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(i) Speeding up when ; slowing down when

3. (a)
(b) ; the velocity has an absolute minimum.
5. (a) ; the rate at which the area is increasing with
respect to side length as x reaches 15 mm
(b)
7. (a) (i) (ii) (iii)
(b) (c)
9. (a) (b) (c)
The rate increases as the radius increases.
11. (a) (b) (c)
At the right end; at the left end
13. (a) 4.75 A (b) 5 A; 
15. (a) (b) At the beginning
17. (a) ; 
(b) , where ,

, , and 
(c)
(d) (smaller); (smaller)
(e)
19. (a) (c) It approaches .
(d) It approaches 0. (e) The reaction virtually stops.
21. (a) ; ; 0
(b) 0; ; 
(c) At the center; at the edge
23. (a)
(b) , the rate at which the cost is changing as the 
100th pair of jeans is being produced; the cost of the 101st pair
(c) $11.07
25. (a) ; the average productivity increases
as new workers are added.
27.
29. (a) 0 and 0 (b)
(c) ; it is possible for the species to coexist.

Exercises 3.4 � page 223

1. 3.
5.
7.
9.
11. 17.
19. (a) (b)

21. (a)
23. ; 
25. , n an integer 27. ���3, 5��3��2n � 1�� 	 ��3

2 cos � � � sin �� cos � � sin �
2 � csc2x

(π, _π)

1

_5

_1 5

y � �x
y � 2x � 1 � ��2sec � �sec2� � tan2��

�sin x � cos x � x sin x � x cos x���1 � sin 2x�
�x sec2x � tan x��x 2

�csc � cot � � e � �cot � � csc2��
3t 2 cos t � t 3 sin t1 � 3 cos x

�0, 0�, �500, 50�
C � 0

�0.2436 K�min

�xp��x� � p�x���x 2

$11�pair
C��x� � 3 � 0.02x � 0.0006x 2

�185.2 �cm�s��cm�92.6 �cm�s��cm
0.694 cm�s0.926 cm�s

a moles�La 2k��akt � 1�2

81.3 million�year
75.1 million�year14.5 million�year

P��t� � 3at 2 � 2bt � c
d � �7,318,429c � 12,165b � �6.72226

a � 0.00123543P�t� � at3 � bt 2 � ct � d
78.5 million�year16 million�year

dV�dP � �C�P 2

t � 2
3 s

18 kg�m12 kg�m6 kg�m

24� ft2�ft16� ft2�ft8� ft2�ft
�A  2�r �r4�

4.1�4.5�5�
�A  2x �x

30 mm2�mm
t � 1.5 s

t � 4 s
0 � t � 2 or 4 � t � 6

2 � t � 4 or t � 649. 51.

55.
57. (a) ; infinitely many

(b)

(c)
59. 61. 63. 1000

Exercises 3.2 � page 204

1. 3.
5. 7.
9.
11. 13.
15. 17.
19.
21. (a) (b)

23. (a) 25.
27. (a) �16 (b) (c) 20 29. 7
31. (a) 0 (b) 33. $7.322 billion per year
35. 37. Two,
39. (c)
41.

Exercises 3.3 � page 215
1. (a) (b) (c)
(d) (e)
(f) (g)

(h)

s

40

80

�25

√

a

6t � 24; �6 m�s2

t � 2,
s � 32t � 0,

s � 0

t � 6,
s � 0

t � 8,
s � 32

s0

96 m0 � t � 2, t � 6
t � 2, 6�9 m�s3t 2 � 24t � 36

f (n)�x� � �x 2 � 2nx � n�n � 1��e x
�x 2 � 8x � 12�e x, �x 2 � 10x � 20�e x;

�x 2 � 2x�e x, �x 2 � 4x � 2�e x, �x 2 � 6x � 6�e x,
3e 3x

(�2 	 s3, (1 � s3)�2)��3, ��
�

2
3

�
20
9

xe x, �x � 1�e xe x �x � 3��x 4

(_1, 0.5)

1.5

�0.5

�4 4

y � 1
2 x � 1

y � 2x
f ��x� � 2cx��x 2 � c�2y� � 2v � 1�sv

y� � �r 2 � 2�e ry� � 2t�1 � t���3t 2 � 2t � 1�2
H��x� � 1 � x�2 � 2x�3 � 6x�4

h��x� � �3��x � 1�2y� � �x � 2�e x�x 3

f ��x� � x �x � 2�e xy� � 5x 4 � 3x 2 � 2x

y � 3
16 x 3 �

9
4 x � 3a � �

1
2 , b � 2

F�x� �  x
n�1��n � 1� � C, C any real number

F�x� � 1
4 x

4 � C, 1
5 x

5 � C, C any real number

F�x� � 1
3 x

3 � C, C any real number
P�x� � x 2 � x � 3

0 x

y
y=1-≈

(2, _3)

y

0 x

y=≈

{a, a@}

(0, _4)

y � 1
4 x �

7
2�	2, 4�
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69. (b) The factored form
71. (b)

Exercises 3.6 � page 243
1. (a)
(b) ,
3.
5.
7.
9. 11.
13. 15. 17.

19. (a) (b)

21. (a)
Eight; 
(b) ,

(c)

23.
25. (a)

(b)

27.

29.

31. 33.
35.
39.

41. 43.

x

y

x

y

A

B

200

300
400

600
800

f ��x� � e x � x 2��1 � x 2 � � 2x arctan x
y� � sec2��s1 � tan2�H��x� � 1 � 2x arctan x

y� � 1��1 � x� � (tan�1
sx )�sx

y� � 2x�s1 � x 4

�
3x 2y4 � 3x6

y7

y� � �x 3�y 3
(	5s3�4, 	5�4)

1 � s3�3
y � 1

3 x � 2
y � �x � 1

x  0.42, 1.58
4

5_2

_3

5

2_2

_2

(1, 2)

y � 9
2 x �

5
2

y � �
9
13 x �

40
13y � xy � �

5
4 x � 4

y� � 1 � e x�1 � x��sin�x � y�y� � tan x tan y
y� � (4xysxy � y)�(x � 2x 2

sxy )
y� � �3 � 2xy � y 2 ���x 2 � 2xy�
y� � �x �3x � 2y���x 2 � 8y�

y� � ��4�x 2 � � 3y � �4�x� � 2 � 3x
y� � ��y � 2 � 6x��x

�n cosn�1x sin��n � 1�x�
29. (a) ,
(b) ; to the left; speeding up
31. 33. 35. ,
37. 4 39. 41. 1

Exercises 3.5 � page 233
1. 3. 5.
7.
9. 11.
13. 15.
17.
19.
21.
23. 25.
27.
29.
31.
33. (a) (b)

35. (a) 37. 28 39. (a) 30 (b) 36
41. (a) (b) Does not exist (c) �2 43. �17.4
45. (a) (b)
47. (a) (b)
49. , n an integer
53. 55.
57. (a) (b) 0.16
59.

61. is the rate of change of velocity with respect to time;
is the rate of change of velocity with respect to 

displacement
63. (a) (b)
65.
67. (a) ,
(b) Horizontal at ; vertical at 
(c) 3

�3

�1 5

�0, 0��1, 	2�
y � �s3x � 3s3y � s3x � 3s3

y � �1���x � �
�670.63 �Ay  100.012437e�10.005531t

dv�ds
dv�dt

15

�7

0 2

2

�1

0 2

v�t� � 2e�1.5t�2� cos 2�t � 1.5 sin 2�t�
dB�dt � �7��54� cos�2�t�5.4�

v�t� � �5��2� cos�10�t� cm�s�250 cos 2x
����2� � 2n�, 3�, ��3��2� � 2n�, �1�

G��x� � e f �x� f ��x�F��x� � e x f ��e x�
G��x� � h�(sx ���2sx )�0, ��

3
4

�1�(x 2
s1 � x 2 )

3

_1.5

_3 3

(0, 1)

y � 1
2 x � 1

y � �x � �
y� � cos(tan ssin x )(sec2

ssin x )[1�(2ssin x )]�cos x�
y� � �2 cos � cot�sin �� csc2�sin ��

y� � 2sin �x�� ln 2� cos �xy� � �r 2 � 1��3�2
F��y� � 39�y � 6�2��y � 7�4

y� � �cos x � x sin x�e x cos x

G��x� � 6�3x � 2�9�5x 2 � x � 1�11�85x 2 � 51x � 9�
y� � e�x 2

�1 � 2x 2 �y� � �me�mx
y� � �3x 2 sin�a 3 � x 3 �t��t� � �12t 3��t 4 � 1�4

F��x� � �2 � 3x 2���4�1 � 2x � x3�3�4�
e sx�(2sx )�20x�1 � x 2�94 cos 4x

1
2

B � �
1

10A � �
3
10�cos x5 ft�rad

4s3, �4, �4s3
a�t� � �8 sin tv�t� � 8 cos t
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25. 27.
29.
31. 33.
35. (a)
(b)

(c)

37.

The sizes of the oscillations of and are linked.
39. (a) 2 (b) 44
41.
43.
45.
47.
49.
51. 53.
55. ,

57.
59. (a)
(b) ; the approximate cost of producing the 
101st unit
(c)
(d) About 95.24; at this value of the marginal cost is 
minimized.

61. (a) ,
(b)
63. 65.

Focus on Problem Solving � page 262
1.
3. (a)

(b)
5. (a)
(b)
(c)
9.
11.
15. (b) (i) (or ) (ii) (or )
17. R approaches the midpoint of the radius AO.
19. 21. s29�58�1, �2�, ��1, 0�

117
63
127
53

f �n��x� � n!��1 � x�n�1

xT � �3, ��, yT � �2, ��, xN � (0, 53 ), yN � (�5
2 , 0)

�480� sin � (1 � cos ��s8 � cos2� ) cm�s
40(cos � � s8 � cos2� ) cm

4�s3�s11  6.56 rad�s
�1�(8s3 � x s2 � s3 � x s1 � s2 � s3 � x )

��1, 2�
(0, 54 )

1
4�cos ��������3 � �s3�2

�0.23 � x � 0.40
s
3 1.03  1.01L�x� � 1 � x, s3 1 � 3x  1 � x

x
C�101� � C�100� � 0.10107

$0.10�unit
C��x� � 2 � 0.04x � 0.00021x 2

4 kg�m
a�t� � Ae�ct ��c 2 � �2 � cos��t � �� � 2c� sin��t � ���

v�t� � �Ae�ct �� sin��t � �� � c cos��t � ���
( 	2�s6, �1�s6)��3, 0�

h��x� � � f ��x��t�x��2 � t��x�� f �x��2 ��� f �x� � t�x��2

f ��x� � t��x��t�x�
f ��x� � t��e x �e x
f ��x� � 2t�x�t��x�
f ��x� � 2xt�x� � x 2

t��x�

f �f

f

40

�50

_6π 6π

fª

esin x�x cos x � 1�

(4, 4)

10

_10

_10 10
(1, 2)

ƒ

y � 7
4 x �

1
4 , y � �x � 8

�10 � 3x��(2s5 � x )
2x �ln 2�n�120

cos(tan s1 � x 3 )(sec2
s1 � x 3 )[3x 2�(2s1 � x 3 )]

�6x csc2�3x 2 � 5�5 sec 5x47. 49. 51. (b)
53. (a) 0 (b)

Exercises 3.7 � page 250
1. The differentiation formula is simplest.
3. 5.

7. 9.
11.
13.
15. 17.
19. ; 

21. ;

23. 25. (a) (b)

27.

29.

31. 33.
35.
37.
39.

Exercises 3.8 � page 256
1. 3.

5. ;
,

7. 9.
15. (b)
17. (a) (b) ; 
19. (a) , 0.01, 1% (b) , ,
21.

Chapter 3 Review � page 258
True-False Quiz
1. True 3. True 5. False 7. False 9. True
11. True

Exercises
1. 3.
5. 7.
9. 11.
13.
15.
17. 19.
21. 23. 4x��1 � 16x 2� � tan�1�4x�cot x � sin x cos x

2���1 � 2x� ln 5��1 � c 2 �e cx sin x
2 sec 2� �tan 2� � 1���1 � tan 2��2
�1 � y 4 � 2xy���4xy 3 � x 2 � 3�

e�1�x�1�x � 1��t 2 � 1���1 � t 2�2
2 cos 2� esin 2�2�2x 2 � 1��sx 2 � 1

1� (2sx ) � 4�(3 s3 x7 )6x�x 4 � 3x 2 � 5�2�2x 2 � 3�

5
8 �  2 m3

0.6%0.00636 cm2270 cm3
0.01010.01dy � 1

10 e
x�10 dx

�0.344 � x � 0.344
�0.045 � x � 0.055�0.69 � x � 1.09

s0.99  0.995
s0.9  0.95

3

3_3

_1

(0, 1)

(1, 0)

y=œ„„„„1-x

y=1-   x1
2

s1 � x  1 �
1
2 x

L�x� � �x �
�
2L�x� � 3x � 2

f �n��x� � ��1�n�1�n � 1�!��x � 1�n
y� � 2x��x 2 � y 2 � 2y�
y� � �ln x�x�1�ln x � ln ln x�

y� � x sin x��sin x��x � ln x cos x�y� � x x�1 � ln x�

y� �
sin2x tan4x

�x 2 � 1�2  �2 cot x �
4 sec2x

tan x
�

4x

x 2 � 1�
y� � �2x � 1�5�x 4 � 3�6� 10

2x � 1
�

24x 3

x 4 � 3�
�0, ���0, 1�e�y � 4x � 8

�1, 1 � e� � �1 � e, ��

f ��x� �
2x � 1 � �x � 1� ln�x � 1�

�x � 1��1 � ln�x � 1�� 2

e x�ln x � �2�x� � �1�x 2��e x��1�x� � ln x�
y� � �x��1 � x�y� � �3x � 2���x �x � 1��

y� � �1 � x � x ln x���x �1 � x�2�
F��t� � 6��2t � 1� � 12��3t � 1�

f ��x� � �2 � ln x��(2sx )f ��x� � 1�[5x s5 �ln x�4]
f ��x� � 3���3x � 1� ln 2�f ���� � �tan �

�
1
2

3
2��1, �1�, �1, 1�(	s3, 0)
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(c) 

13. (a) (b)

15. Abs. max. 17. None
19. Abs. and loc. max. ,
abs. and loc. min. 
21. Abs. max. 23. 25.
27. 29. 31. (n an integer)
33. 35. ,
37. , 39. ,
41. , 43.
45. �1.3, 0.2, 1.1 47. (a) 9.71, �7.71 (b)
49. (a) 0.32, 0 (b) 51.
53. Cheapest, ; most expensive,
55. (a) (b) (c) 

Exercises 4.3 � page 288

Abbreviations: inc., increasing; dec., decreasing; CD, concave
downward; CU, concave upward; HA, horizontal asymptote;
VA, vertical asymptote; IP, inflection point

1. 0.8, 3.2, 4.4, 6.1
3. (a) I /D Test (b) Concavity Test
(c) Find points at which the concavity changes.
5.
7. (a) Inc. on , ; dec. on 
(b) Loc. max. ; loc. min. 
(c) CU on ; CD on ; IP 
9. (a) Inc. on , ; 
dec. on ,
(b) Loc. max. ;
loc. min. ,
(c) CU on , ; CD on ; IP , �2�, 2����, ����, 2���2�, 3���0, ��

f �7��3� � 7��3 � s3f ���3� � ��3 � s3
f �5��3� � 5��3 � s3

�5��3, 7��3��0, ��3�
�7��3, 3�����3, 5��3�

�0, 1����, 0��0, ��
f �2� � �15f ��2� � 17

��2, 2��2, �����, �2�
x � 1, 7

√

0 r

kr#̧4
27

r¸2
3 r¸

v � 4
27 kr 0

3r � 2
3 r0

t  5.1309t � 10
3.9665 
C3s3�16, 0

1 	 32s6�9
f �1� � 1�e, f �0� � 0f �0� � 1f ���4� � s2

f �1� � 3f �2� � 5f �	1� � 2f �3� � 66
f �2� � �7f �0� � 51�e

n��40, 8
7, 4	1

0, (�1 	 s5 )�2�
2
5f �0� � 1

f �3��2� � f ����2� � �1
f ���2� � f ��3��2� � 1

f �1� � 5

y

0 x

y

0 x2

_1

y

0 x1

_1

2

1

2

3

CHAPTER 4

Exercises 4.1 � page 269
1. 3. 70
5. (a) The rate of decrease of the surface area is .
(b) The rate of decrease of the diameter when the diameter is
10 cm
(c) (d)

(e)

7. (a) The plane’s altitude is 1 mi and its speed is .
(b) The rate at which the distance from the plane to the station
is increasing when the plane is 2 mi from the station
(c) (d) (e)

9. 11.
13. 15.
17. 19.

21. 23. 25.
27. 29. (a) (b)
31. 33.

Exercises 4.2 � page 276

Abbreviations: max., maximum; min., minimum; loc., local;
abs., absolute

1. Absolute minimum: smallest function value on the entire
domain of the function; local minimum at c: smallest function
value when x is near c
3. Abs. max. at b, loc. max. at b and e, abs. min. at d,
loc. min. at d and s
5. Abs. max. ; abs. min. ; loc. max. 
and ; loc. min. and 
7. 9.

11. (a) (b) y

0 x1

_1

2

1

3

y

0 x1

_1

2

1

3

y

0 x1

1

2

2

3

3

y

0 x1

1

2

2

3

3

f �5� � 2f �2� � 1f �6� � 3
f �4� � 4f �7� � 0f �4� � 4

7s15�4  6.78 m�s1650�s31  296 km�h
0.096 rad�s360 ft�s107

810  0.132 ��s
80 cm3�min0.3 m2�s6��5��  0.38 ft�min

10
3  cm�min10�s133  0.87 ft�s

720
13  55.4 km�h�1.6 cm�min

837�s8674  8.99 ft�s65 mi�h

250s3 mi�hy 2 � x 2 � 1

y

x

1

500 mi�h

1��20�� cm�min
S � �x 2

rx

1 cm2�min
dV�dt � 3x 2 dx�dt
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27. (a) HA 
(b) Inc. on ; 
dec. on 
(c) Loc. min. ;

loc. max. 

(d) CU on , ;

CD on , ;

IP (0, 0),
(e) See graph at right.

29. (a) HA , VA 
(b) Inc. on ,
(c) None
(d) CU on , ; 
CD on ; IP 
(e) See graph at right.

31. (b) CD on ; 
CU on ; 
IP at 

33. (a) Loc. and abs. max. , no min.
(b)

35. CD on ; CU on 

37.

39. When 
41.
45. 17

Exercises 4.4 � page 297
1. Inc. on , ; dec. on , ;
loc. max. , loc. min. ,

; CU on , ; CD on ; 
IP ,

3. Inc. on ; dec. on ; min. ;
CU on ; CD on , ;
IP ,

3

6_3

_2

�4.2, 0���1.2, 0�
�4.2, �����, �1.2���1.2, 4.2�

f �1.5�  �1.9���, 1.5��1.5, ��

9

1.4_1.7

_2

�0.5, 6.5���0.5, 2.1�
��0.5, 0.5��0.5, �����, �0.5�f �0.7�  6.3

f ��1.1�  �1.1f �0.3�  6.6
�0.3, 0.7����, �1.1��0.7, ����1.1, 0.3�

f �x� � 1
9 �2x 3 � 3x 2 � 12x � 7�

t  7.17

y

xLL/20

�0.1, �����, 0.1�
(3 � s17)�4

f �1� � s2

��2.11, 386�, �0.25, 1.3�, �1.86, �87�
��2.11, 0.25�, �1.86, ��

���, �2.11�, �0.25, 1.86�

(� 1
2 , 1�e 2)(� 1

2 , �)
(�1, � 1

2 )���, �1�

��1, �����, �1�

x

y

0
x=_1

y=1

x � �1y � 1

(	3s3, 	s3�12)
(0, 3s3)(��, �3s3)

(3s3, �)(�3s3, 0)
f �3� � 1

6

f ��3� � �
1
6

���, �3�, �3, ��
��3, 3�

y

x

”3,    ’ 
1
6

”_3, _   ’ 
1
6

y � 011. (a) Inc. on ; dec. on 
(b) Loc. min. 
(c) CU on ; CD on ; IP 

13. (a) Inc. on ; dec. on 
(b) Loc. max. 
(c) CU on ; CD on ; IP 

15. Loc. max. 

17. (a) Inc. on ;
dec. on 
(b) Loc. max. ;
loc. min. 
(c) CU on ; CD on ;
IP 
(d) See graph at right.

19. (a) Inc. on , ;
dec. on 
(b) Loc. max. ;
loc. min. 
(c) CD on , ;
CU on , ;
IP ,
(d) See graph at right.

21. (a) Inc. on ; dec. on 
(b) Loc. max. 
(c) CD on 
(d) See graph at right.

23. (a) Inc. on ; dec. on 
(b) Loc. max. 
(c) CD on ; 
CU on , ;
IP 
(d) See graph at right.

25. (a) VA ; HA 
(b) Inc. on (0, 1), ; dec. on ,
(c) Loc. min. 
(d) CU on ; CD on ,
(e)

x

y

0

(0, 1)

y=_1

�1, �����, �1���1, 1�
f �0� � 1

��1, 0����, �1��1, ��
y � �1x � 	1

(	2��3, �1
4)

�2��3, �����, �2��3�
��2��3, 2��3�

x

y

_π

2

_2

πIP IP

f �0� � 2
�0, �����, 0�

���, 5�
f �10�3� � 10s15�9

y

x

”    ,          ’10
3

10œ„„
9

15( 10
3 , 5)(��, 10

3 )

(	1�s2, 3 �
7
8 s2)�0, 3�

(1�s2, �)(�1�s2, 0)
(0, 1�s2)(��, �1�s2)

h�1� � 1
h��1� � 5

��1, 1�

(1, 1)
x

(_1, 5)
y

0

�1, �����, �1�

( 1
2, � 13

2 )
(��, 12 )( 1

2 , �)
f �2� � �20

f ��1� � 7
��1, 2�

y

0 x

(_1, 7)

(2, _20)

”   , _    ’1
2

13
2

���, �1�, �2, ��

f ( 3
4 ) � 5

4

(e 8�3, 83 e�4�3 )�0, e 8�3 ��e 8�3, ��
f �e 2 � � 2�e

�e 2, ���0, e 2 �
��2, �2e�2 ����, �2���2, ��

f ��1� � �1�e
���, �1���1, ��
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13. Loc. max. , ,
; min. 

15.

CU on , , , , ;
CD on , ; 
IP , , , ,

17. Inc. on , , ;
dec. on , , ;
loc. max. , , ;
loc. min. ;
CU on , , , ;
CD on , , ; IP , ,

, , ,

19. Max. ,
, ;

min. ,
,

;
IP ,

, ,
,

1

0.9997
0.55 0.73

1.2

_1.2

_2π 2π

�2.28, 0.34��1.75, 0.77�
�1.17, 0.72��0.66, 0.99998�

�0.61, 0.99998�
f �2.73�  �0.51
f �1.46�  0.49

f �0.64�  0.99996
f �1.96�  1f �0.68�  1

1.2

�1.2

0 π

f

f �0.59�  1

0.75

0 3π

f

�8.6, 0.065��7.0, 0.061��5.4, 0.11��3.8, 0.10�
�2.1, 0.31��0.6, 0.25��7.0, 8.6��3.8, 5.4��0.6, 2.1�

�8.6, 3���5.4, 7.0��2.1, 3.8��0, 0.6�
f ��� � f �2�� � 0

f �7.8�  0.13f �4.6�  0.21f �1.3�  0.6
�7.8, 3���4.6, 2���1.3, ��

�2�, 7.8���, 4.6��0, 1.3�
��0.1, 0.0000066�

��0.5, 0.00001���1, 0���5.0, �0.005���35.3, �0.015�
��0.5, �0.1���5.0, �1����, �35.3�

�4, ���2, 4���0.1, 2���1, �0.5���35.3, �5.0�

f ��x� � 2 
�x � 1��x 6 � 36x 5 � 6x 4 � 628x 3 � 684x 2 � 672x � 64�

�x � 2�4�x � 4�6

f ��x� � �
x �x � 1�2�x 3 � 18x 2 � 44x � 16�

�x � 2�3�x � 4�5

0.03

82.5
0

500

2�1

�1500

0.02

�3.5�8

�0.04

y

x

1

f �3� � 0f �5.2�  0.0145
f �0.82�  �281.5f ��5.6�  0.0185. Inc. on , , ;

dec. on , ; loc. max. ;
CU on , , ;
CD on , ; IP 

7. Inc. on , , ; 
dec. on , ; loc. max. ,

; loc. min. , ; 
CU on , , , ; 
CD on , , , ; 
IP , , , , ,

,

9. Inc. on , ; dec. on ; loc. max. ;
loc. min. ; CU on ; CD on ;
IP 

11. Loc. max. ;

loc. min. ;

IP ��0.15, 1.15�, ��1.09, 0.82�1.8

0
_2 1.2

f (1�s3) � e�2 s3�9  0.7

f (�1�s3) � e 2 s3�9  1.5

_9.7

0.5
_10.5

_0.3

40

2_1.5

_40

( 1
8, � 321

32 )
(��, 1

8 )( 1
8 , �)f ( 1

4 ) � �
161
16  �10.1

f �0� � �10(0, 14 )( 1
4, �)���, 0�

25

_25

_7 7

�6.8, 24.4��4.0, �12.0�
�1.5, 2.3��0, 0���1.5, �2.3���4.0, 12.0���6.8, �24.4�

�6.8, 7��1.5, 4.0���1.5, 0���6.8, �4.0�
�4.0, 6.8��0, 1.5���4.0, �1.5���7, �6.8�
f �5.1�  �24.1f ��2.3�  �3.9f �2.3�  3.9
f ��5.1�  24.1�2.3, 5.1���5.1, �2.3�

�5.1, 7���2.3, 2.3���7, �5.1�

3

_3

_5 5

��0.506, �0.192��0.24, 2.46���1.7, �0.506�
�2.46, ����0.506, 0.24����, �1.7�

f �1� � �
1
3�2.46, ���1, 2.46�

�0.24, 1���1.7, 0.24����, �1.7�
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31. (a) Positive (b)

Exercises 4.5 � page 305

1. (a) Indeterminate (b) 0 (c) 0
(d) , , or does not exist (e) Indeterminate
3. (a) (b) Indeterminate (c) 5. �2 7. 1
9. 11. 13. 15. 17. 1 19. 1
21. 0 23. 0 25. 0 27. 0 29. 1 31. 1
33. 35. 1 37. 5 39.
41. HA 

43. HA , VA 

45. (a) (b)

(c) Loc. min. ;
CD on ; CU on 

47. (a) (b) ,

(c) Loc. max.

(d) IP at x  0.58, 4.37
f �e� � e 1�e

lim x l � x 1�x � 1
lim x l0� x 1�x � 02

_1

0 8

�e�3�2, ���0, e�3�2�
f (1/se ) � �1��2e�

limx l 0� f �x� � 01

_0.25

_0.25 1.75

�     , �     �1
2e

1
œ„e

y

0 x1 2 3 4 e3/2e

”e,    ’1
e

x � 0y � 0

21 x

y

0

”1,    ’1
e

y � 0

1
4e�2

1
2ln 53��p�q
���

���

12

_12

_6 6

c=4
c=1

c=0.5

c=_1

c=0.1
c=0.2

c=0

c=_4

21.

Vertical tangents at , , ; horizontal tangents
at ,

23. For , there is a cusp; for , there is a loop whose
size increases as increases and the curve intersects itself at

; leftmost point , rightmost point

25. For , the maximum and minimum values are always
, but the extreme points and IPs move closer to the y-axis as

c increases. is a transitional value: when c is replaced by
, the curve is reflected in the x-axis.

27. There is no maximum or minimum, regardless of the value 
of c. For , there is a vertical asymptote at ,

, and .
is a transitional value at which for .

For , , , and there are
two IPs, which move away from the y-axis as .

29. For , there is 
no IP and only one
extreme point, the origin.
For , there is a
maximum point at the
origin, two minimum
points, and two IPs,
which move downward
and away from the origin as .c l ��

c � 0

4

_2.3

_2.1 2.1

_3

_2_114c � 0

c=_0.5

c=_2

c=_1

4

_1

_4 4

c=0.5

c=2c=1

2

_1

_4 4

c l �
lim x l 	� f �x� � 1lim x l 0 f�x� � 0c � 0

x � 0f �x� � 1c � 0
lim x l 	� f �x� � 1lim x l 0 f�x� � �

x � 0c � 0

0.6

�0.6

�5 5

0.2
0.5
1 2

�1

4

�c
c � 0

	
1
2

c � 0

_3 3

1.5

0

1

1
2

1.5

_3 3
0

_1

0

(2cs3c�9, c�3)
(�2cs3c�9, c�3)�0, c�

c
c � 0c � 0

((2s3 � 5)�9, 2s3�9)(�(2s3 � 5)�9, �2s3�9)
��8, 6�(� 3

16 , 3
8)�0, 0�

7.5

�1

�8.5 3
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Exercises 4.7 � page 322
1. (a) represents fixed costs, which are incurred even
when nothing is produced.
(b) The marginal cost is a minimum there.
(c)

3. ; the cost of producing the 1001st unit is
about $17.40
5. (a) $1,340,000; $1340�unit; $2300�unit
(b) 200 (c) $700�unit
7. (a) ,

(b) Between 208 and 209 units (c)
(d) $3.22�unit
9. 333 units 11. 100
13. (a) About 200 yd (b) 192 yd
15. (a) (b) $9.50
17. (a) (b) $175 (c) $100

Exercises 4.8 � page 327
1. 3. 5. 2.1148 7. 3.10723251
9. 1.895494 11. �1.39194691, 1.07739428, 2.71987822
13. 15. 0.15438500, 0.84561500
17. 0.52026899 19. (b) 31.622777
25. (0.904557, 1.855277) 27. 11.28 ft 29. 0.76286%

Exercises 4.9 � page 334
1. 3.
5. ;
7. 9.
11. 13.
15. 17.
19. 21.
23. 25. 10
27. 29.

31. y

x

F

0 2 4 6

1

2

1

2

1 2 3

�2

�1

0

y

x

F
y

0 x1

_1

2

1

2

3

(1, 1)

(2, 2)

(3, 1)

f �x� � �ln x � �ln 2�x � ln 2

1
6 x 3 � 2x � 33 sin x � 5 cos x � 9

1
2 x 2 �

25
126 x 14�5 � Cx � Dx 3 � x 4 � Cx � D

x 5 �
1
3 x 6 � 4x 2 � 5 sin�1x � C

3 sin t � 4 cos t � C2
7 t 7�2 �

4
5 t 5�2 � C

�5��4x 8 � � C2 if x � 0�5��4x 8 � � C1 if x � 0
4x 5�4 � 4x 7�4 � C2x 3 � 4x 2 � 3x � C

�0.44285440

4
5x2  2.3, x3  3

p�x� � 550 � �x�10�
p�x� � 19 � �x�3000�

c�209�  $27.45�unit
C��x� � 5 � 0.08x � 0.0009x 2

c�x� � 3700�x � 5 � 0.04x � 0.0003x 2

$17.40�unit

x

C �

0

C�0�
49.

For , and . 
For , and . 
As increases, the maximum and minimum points and the
IPs get closer to the origin.

55.

Exercises 4.6 � page 312
1. (a) 11, 12 (b) 11.5, 11.5 3. 10, 10
5. 25 m by 25 m
7. (a)

(b)

(c) (d) (e)
(f )
9. 13. 15.
17.
19. Width ; rectangle height 
21. (a) Use all of the wire for the square
(b) m for the square
23.
25. (a) (b)
(c)
27. ft from the stronger source
29. 31. 9.35 m 35.
37. 39. At a distance from A
41. (a) About 5.1 km from B
(b) C is close to B; C is close to D;

, where 
(c) ; no such value (d)
43. (a) , ,

(c) c1  3.85, c2  7.66, h  0.42
T3 � s4h2 � D 2�c1

T2 � �2h sec ���c1 � �D � 2h tan ���c2T1 � D�c1

s41�4  1.61.07
x � � BC �W�L � s25 � x 2�x

5 � 2s5�L � W �2�2
x � 6 in.y � �

5
3 x � 10

10s
3 3�(1 � s

3 3 )
6s[h � s�(2s2)]

cos�1(1�s3)  55

3
2 s 2 csc � �csc � � s3 cot ��

V � 2�R3�(9s3)
40s3�(9 � 4s3)

30��4 � �� ft60��4 � �� ft
�r 2(1 � s5)

L�2, s3 L�4(� 28
17 , 7

17 )4000 cm 3

14,062.5 ft 2
A � 375x �

5
2 x 25x � 2y � 750A � xy

y

x

75

120 9000 ft@

250

50 12,500 ft@

125

100 12,500 ft@

16
9 a

� c �
lim x l�� f �x� � 0lim x l � f �x� � �c � 0

lim x l�� f �x� � ��lim x l � f �x� � 0c � 0

3

3_3

_3

_2
�1

0

1 2
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13. Inc. on , ;

dec. on , ;

loc. max. ,

loc. min. ;

CU on , ;

CD on , ;

IP ,

15. Inc. on , ; dec. on ,
loc. max. ; loc. min. ,

; CU on , ; 
CD on ; IP ,

17.

; 
19. Max. at , min. at , IP at 
21. For , f is periodic with period and has local 
maxima at , n an integer. For , f has no
graph. For , f has vertical asymptotes. For ,
f is continuous on . As C increases, f moves upward and its
oscillations become less pronounced.
23. 25. 27. 0
29. 31. 33. 35.
37. 500, 125 39. 41. from ; at 
43. 45. $11.50 47. �2.063421
49.
51. 53.
55. (b)
(c)

57. No
59. (b) About 8.5 in. by 2 in. (c) in., in.
61. (a)
(b) , where k is the
constant of proportionality

dI�dt � �480k�h � 4����h � 4�2 � 1600�5�2
20s2  28 ft

20s2�320�s3

4

_1

�4

5

F

0.1e x � cos x � 0.9

1
20 x 5 �

1
6 x 3 � x � 12 arctan x � 1

F�x� � e x � 4sx � C
L � C

CD4�s3 cm3s3r 2
13 ft�s400 ft�h1

3�
1
3

�1��2��a � �3, b � 7

�

C � 1�1 � C � 1
C � �12n� � ��2

2�C � �1
x  	0.52x  	0.87x � 0

(	s2�3, e�3�2 )�	0.82, 0.22�

5
0

_5

1

2.5

0.4_0.5
1.5

ff

15

2.1_1

_20

�1.2, �12.1���0.12, 1.98���0.12, 1.24�
�1.24, �����, �0.12�f �1.62�  �19.2
f ��0.23�  1.96f �0� � 2�0, 1.62�;

���, �0.23��1.62, ����0.23, 0�
(�s6, �5s6�36)(s6, 5s6�36)

(0, s6)(��, �s6)
(s6, �)(�s6, 0)

f (�s3) � �2s3�9

f (s3) � 2s3�9

(s3, �)(��, �s3)
ƒ

1.5

_1.5

_5 5

(0, s3)(�s3, 0)33.

35.
37 (a) (b)
(c) (d) About 9.09 s
41. $742.08 43. 225 ft 45.
49. (a) 22.9125 mi (b) 21.675 mi (c) 30 min 33 s
(d) 55.425 mi

Chapter 4 Review � page 336
True-False Quiz
1. False 3. False 5. True 7. False 9. True
11. True 13. False

Exercises

1. Abs. min. ; abs. and loc. max. 
3. Abs. max. ; abs. and loc. min. 
5. (a) None
(b) Dec. on 
(c) None

(d) CU on ; 
CD on ; IP 
(e) See graph at right.

7. (a) None
(b) Inc. on , dec. on 

(c) Loc. max. 

(d) CD on 
(e) See graph at right.

9. (a) None
(b) Inc. on , n an integer;
dec. on 
(c) Loc. max. ; loc. min. 
(d) CU on ;
CD on ; IP 
(e)

11. (a) None
(b) Inc. on ,
dec. on 
(c) Loc. min.

(d) CU on
(e) See graph at right.

���, ��
f ( 1

4 ln 3) � 31�4 � 3�3�4

(��, 1
4 ln 3)

( 1
4 ln 3, �)

1 x

2

y

0

y

x

2

π

_2

_π

2π_2π

(2n� 	 ���3�, � 1
4 )�2n� � ���3�, 2n� � �5��3��

�2n� � ���3�, 2n� � ���3��
f �2n�� � �2f ��2n � 1��� � 2

��2n � 1��, �2n � 2���
�2n�, �2n � 1���

���, 1�
f (3

4) � 5
4

( 3
4 , 1)(��, 34) y

0 x

1

1

�0, 2��0, ��
���, 0�

���, ��
y

x

2

f ��1� � �1f �0� � 0
f �3� � 64f �0� � 10

88
15 ft�s2

�9.8s450�4.9  �93.9 m�s
s450�4.9  9.58 ss�t� � 450 � 4.9t 2

s�t� � 1 � cos t � sin t

0.2

0

y

x0.4 0.8 1.2 1.6

0.4

0.6
F
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(c) 5.75, 5.9375

(d)
7. 1.9835, 1.9982, 1.9993; 2 9. (a) Left: 4.5148, 4.6165,
4.6366; right: 4.8148, 4.7165, 4.6966
11. 34.7 ft, 44.8 ft 13. 155 ft

15.

17. The region under the graph of from 0 to 

19. (a)

(b) (c) 21. , 1

Exercises 5.2 � page 367
1. 0.25

3. �0.856759

5. (a) 4 (b) 6 (c) 10
7. , 9. 6.4643 11. 1.8100
13. 1.81001414, 1.81007263, 1.81008347
15. 2

17. 19. 21. 42 23.

25. 3.75 27. lim 
n l �

 �
n

i�1
 �sin 

5�i

n � 
�

n
�

2

5

4
3y

1

0
 �2x 2 � 5x� dxy

�

0
 x sin x dx

�85�475

�1

0

1

y

x

The Riemann sum represents
the sum of the areas of the 2
rectangles above the x-axis
minus the sum of the areas
of the 3 rectangles below
the x-axis.

2

_2

0

2

y

x

The Riemann sum represents
the sum of the areas of the 2
rectangles above the x-axis
minus the sum of the areas
of the 2 rectangles below
the x-axis.

sin b32
3n 2�n � 1�2�2n 2 � 2n � 1��12

lim 
n l �

 
64

n 6  �
n

i�1
 i 5

��4y � tan x

lim
n l �

 �
n

i�1
 s4 1 � 15i�n � �15�n�

M6

y

x0 1

2

y

x0 1

2

Focus on Problem Solving � page 341
7. 9. 13.

15. (a)

(b)

17. (a) (b) 23.

CHAPTER 5

Exercises 5.1 � page 355
1. (a) 40, 52

(b) 43.2, 49.2

3. (a) , underestimate (b) , overestimate

5. (a) 8, 6.875

(b) 5, 5.375 y

x0 1

2

y

x0 1

2

y

x0 1

2

y

x0 1

2

0.5

1.0

1.5

2 3 4

y

x0 1 5

0.5

1.0

1.5

2 3 4

y

x0 1 5

25
12

77
60

y

x0 5

5

y=ƒ

10

y

x0 5

5

y=ƒ

10

11.204 cm3�min1
2x��x 2 � 1�

b 
db

dt
� c 

dc

dt
� �b 

dc

dt
� c 

db

dt � sec �

sb 2 � c 2 � 2bc cos �

�tan � �1

c
 
dc

dt
�

1

b
 
db

dt �
�m�2, m 2�4�4

3��2, 4�, �2, �4�
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n

5 1.933766
10 1.983524
50 1.999342
100 1.999836

Rn



7. 9.

11. 13.

15. 17.

19. (a) Loc. max. at 1 and 5;
loc. min. at 3 and 7
(b) 9
(c)
(d) See graph at right.

21. (a) , n an integer
(b) , , and ,
n an integer
(c) 0.74
23. 25.
27. (b) Average expenditure over ; minimize average 
expenditure

Exercises 5.5 � page 395
1. 3.
5. 7.
9. 11.
13.
15. 17.
19. 21.
23. 25.
27. 29.
31.

33. 35.

37. 0 39. 41. 0 43. 45.

47. 3 49. 0 51. 2 53. 55.
57. All three areas are equal.
59. 61. 5

Exercises 5.6 � page 401
1. 3.
5.
7.
9.
11.
13. 1

13 e 2��2 sin 3� � 3 cos 3�� � C

1
16 r 4�4 ln r � 1� � C

x �ln x�2 � 2x ln x � 2x � C

1
3 x 2 sin 3x �

2
9 x cos 3x �

2
27 sin 3x � C

�
1
4 x cos 4x �

1
16 sin 4x � C

1
2 xe 2x �

1
4 e 2x � C1

2 x 2 ln x �
1
4 x 2 � C

�5��4����1 � cos�2�t�5�� L

6�s3 �
1
3

16
152�e2 � e�182

9

0.35

_0.35

π0

F

ƒ

1.7

_1.7

1.5_0.75

f

F

1
4 sin4x � C

�1

6�3x 2 � 2x � 1�3 � C

tan�1x �
1
2 ln�1 � x 2 � � C

1
3 sec3x � Cx � e�x � C
�

2
3 �cot x�3�2 � C�

1
5 cos5x � C

2
3 �1 � e x �3�2 � C�

1
3  cos 3� � C

�2��5�t � 1�5 � � C2s1 � x � 2x 2 � C
�

1
3 ln� 5 � 3x � � C

2
3 �x � 1�3�2 � C1

3�ln x�3 � C

1
5 �x 2 � 3�5 � C�1��1 � 2x�2 � C

2
9 �x 3 � 1�3�2 � C1

3 sin 3x � C

�0, t�
f �x� � x 3�2, a � 9f �x� � x

x
1 �2t�t� dt

� 0
(s4n � 1, s4n � 1)(�s4n � 1, �s4n � 3)�0, 1�

� 0�2sn, s4n � 2

( 1
2, 2), �4, 6�, �8, 9� x

8642

1

0

_1

y

_2

s257t��x� �
�2�4x 2 � 1�

4x 2 � 1
�

3�9x 2 � 1�
9x 2 � 1

cos sx

2x
h��x� � �arctan�1�x��x 2

t��y� � y 2 sin yt��x� � s1 � 2x29. (a) 4 (b) 10 (c) �3 (d) 2 31. 10

33. 35. 0 37. 39.

41. �0.8 43. 3 45. 49.

Exercises 5.3 � page 377

1. The increase in the child’s weight (in pounds) between the
ages of 5 and 10
3. Number of gallons of oil leaked in the first 2 hours
5. Increase in revenue when production is increased from 1000
to 5000 units
7. Newton-meters (or joules)
9. 11. 138 13. 15. 17.
19. 21. 23. 25.
27. ln 3 29. 31. 33.
35. 2 37. 0, 1.32; 0.84
39. 3.75

43.

45. 47. 49.
51. (a) (b)
53. (a) (b)
55. 57. 1.4 mi 59. $58,000
61. (b) At most 40%; 63. 3

Exercises 5.4 � page 386
1. One process undoes what the other one does. See the
Fundamental Theorem of Calculus, page 384.
3. (a) 0, 2, 5, 7, 3 (d) 

(b) (0, 3)
(c)

5. t��x� � 1 � x 2

t

y

x

©

y=1+t@

0

x � 3

y

0 x

1

1

g

5
36

46 2
3 kg

416 2
3 mv�t� � 1

2 t 2 � 4t � 5 m�s

41
6  m�

3
2 m

4
3sec x � C2t � t 2 �

1
3 t 3 �

1
4 t 4 � C

12

_6

_1 5

5 3 0
_2

_4
2
5 x 5�2 � C

x

y

0 2

�1

y=˛

1 � ��4��228�ln 2
2s3�329

35(s2 � 1)�218
5  s2 �

12
5

7
8�2 � 1�e16

3
364
3

y
1

0
 x 4 dxe 5 � e 3

y
12

1
 f �x� dx�

38
33 � 9��4
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33.

35. ;
max. at , min. at 1; IP at , 0, and 1.7

37.

Exercises 5.9 � page 425
1. (a)
(b) is an underestimate, and are overestimates.
(c) (d)
3. (a) (underestimate)
(b) (overestimate)

5. (a) 5.932957 (b) 5.869247
7. (a) 0.746211 (b) 0.747131 (c) 0.746825
9. (a) 2.031893 (b) 2.014207 (c) 2.020651
11. (a) 0.451948 (b) 0.451991 (c) 0.451976
13. (a) 1.064275 (b) 1.067416 (c) 1.074915
15. (a)
(b) ,
(c) for , for 
17. (a) , ;

,
(b)
(c) for , for , for 
19. (a) 2.8 (b) 7.954926518 (c) 0.2894
(d) 7.954926521 (e) The actual error is much smaller.
(f ) 10.9 (g) 7.953789422 (h) 0.0593
(i) The actual error is smaller. ( j)
21.

n � 50

Snn � 8Mnn � 107Tnn � 151
� ET � � 0.002266, � ES � � 0.0000016

ES  �0.000001S10  1.718283
ET  �0.001432T10  1.719713

Mnn � 259Tnn � 366
� EM � � 0.006� ET � � 0.013

T10  0.881839, M10  0.882202

T4 � I � M4

M4  0.908907
T4  0.895759

Ln � Tn � I � Mn � RnT2 � 9 � I
M2R2L2

L2 � 6, R2 � 12, M2  9.6

0.04

π
0

F

ƒ

� 1
128 cos3x sin x �

3
256 cos x sin x �

3
256 x

F�x� � �
1

10 sin3x cos7x �
3
80 sin x cos7x �

1
160 cos5x sin x

4

f

F

�4

�1.1

0.6

�1.7�1
F�x� � 1

2 ln�x 2 � x � 1� �
1
2 ln�x 2 � x � 1�

2x�1
s22x � 1

ln 2
�

ln(s2 2x � 1 � 2x �
2 ln 2

� C15. 17. 19.
21. 23.
25. 27.
29.

31.

33. (b)
35. (b) 39.
41.

Exercises 5.7 � page 408
1. 3.
5.

7. 9.

11. 13.

15. (a) (b)

17. 19.

21.

23.

25. 27.

29. 31.

Exercises 5.8 � page 414
1.
3.
5.
7. 9.
11. 13. 15.
17.
19.
21.
25.
27.
29.
31. �ln � cos x � �

1
2 tan2x �

1
4 tan4x � C

1
10 �1 � 2x�5�2 �

1
6 �1 � 2x�3�2 � C

�
1
5 sin2x cos3x �

2
15 cos3x � C

�
1
4 x �5 � x 2 �3�2 �

5
8 xs5 � x 2 �

25
8  sin�1(x�s5) � C

se 2x � 1 � cos�1�e�x � � C

�1 � ex� ln�1 � ex� � ex � C1 

1
5 ln � x 5 � sx 10 � 2 � � C

8
15

1
9 sin3x �3 ln�sin x� � 1� � C9��4

1
2 [x 2 sin�1�x 2 � � s1 � x 4 ] � C� 3 � 6�

(�s9x 2 � 1�x) � 3 ln � 3x � s9x 2 � 1 � � C

�1��2��� sec��x� tan��x� � �1��2��� ln � sec��x� � tan��x� � � C

1
2 x 2 � x � 4 ln�x 2 � 9� �

8
3 tan�1�x�3� � C

2

s3
 tan�1 �2x � 1

s3 � � C2 � ln 25
9

1
2 �1 � ln 2�1

2 x 2 � x � ln � x � 1 � � C

1
2 ln�x 2 � 1� � (1�s2 ) tan�1(x�s2 ) � C

ln � x � 1 � �
1
2 ln�x 2 � 9� �

1
3 tan�1�x�3� � C

1
2 ln 322 ln � x � 5 � � ln � x � 2 � � C

A

x � 1
�

Bx � C

x 2 � x � 1

A

x � 4
�

B

x � 1

��24 � s3�8 �
1
4�

sx 2 � 4

4x
� C

�
s9 � x 2

x
� sin�1 � x

3� � C1
3 sec3 x � sec x � C 

3
8 t �

1
4 sin 2t �

1
32 sin 4t � C

�
11
384

1
5 cos5x �

1
3 cos3x � C

2 � e�t�t 2 � 2t � 2� m
x ��ln x�3 � 3�ln x�2 � 6 ln x � 6� � C2

3 , 8
15

�
1
4 cos x sin3x �

3
8 x �

3
16 sin 2x � C

7

�1

�3.5 1.5

ƒ F

�2x � 1�e x � C

1.2

�1.2

�2 2

ƒ

F

�x sin �x��� � �cos �x��� 2 � C
�

1
2 � ��42(sin sx � sx cos sx ) � C

1
2 �ln 2 � 1�2 ln 4 �

3
2

1
12 (� � 12 � 6s3)�

1
21 � 2�e
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n

4 0.140625 0.390625 0.265625 0.242188
8 0.191406 0.316406 0.253906 0.248047

16 0.219727 0.282227 0.250977 0.249512

MnTnRnLn

n

4 0.109375 �0.140625 �0.015625 0.007813
8 0.058594 �0.066406 �0.003906 0.001953

16 0.030273 �0.032227 �0.000977 0.000488

EMETEREL



53. (a)

(b) The rate at which the fraction increases as t increases
(c) 1; all bulbs burn out eventually
55. 8264.5 years 57. 1000 61.

Chapter 5 Review � page 438
True-False Quiz
1. True 3. True 5. False 7. True 9. True
11. False 13. False 15. False 17. False

Exercises

1. (a) 8 (b) 5.7

3. 5. 3 7.

9. 37 11. 13. 15. 17. 3480
19. 21.
23. 25.

27. 29.

31. 33.
35.
37. 39.
41.
43.

45.

47. (a) 1.090608 (overestimate)
(b) 1.088840 (underestimate)
(c) 1.089429 (unknown)

49. (a) 0.00 , (b) ,
51. (a) 3.8 (b) 1.7867, 0.000646 (c)

53. 55. 57. D

59. 2 61. C 63. (a) m (b) 29.5 m
65. Number of barrels of oil consumed from Jan. 1, 2000,
through Jan. 1, 2003

67. 69. e2x�1 � 2x���1 � e�x�Ce�x 2��4kt��s4�kt

29.16

1
364 � y

3

1
 sx 2 � 3 dx � 4s3

n � 30
n � 1830.003n � 2596

3
8 ln (x �

1
2 � sx 2 � x � 1 ) � C

1
4 �2x � 1�sx 2 � x � 1 �

1
2 [e x

s1 � e 2x � sin�1�e x �] � C

y� � (2e x � e sx )��2x�
F��x� � s1 � x 464

5

2s1 � sin x � C

ln � 1 � sec � � � C162
5

1
2 ln � t � 2

t � 4 � � C�e�x�x 2 � 2x � 2� � C

2x � ln � 3x � 2 � � C�sin�1�t� � C
x sec x � ln � sec x � tan x � � C�1����e � � 1�

1
2 ln 21209

28
9

10

f � c, f �� b, y
x

0
 f �t� dt � a1

2 � ��4

6

2 x

2

0

y=ƒ

y

2 x

2

0

y=ƒ

6

y

C � 1; ln 2

F�t�

1

700 t0
(in hours)

y

y=F(t)

23. (a) 11.5 (b) 12 (c) 25.
27. 29. (a) 23.44 (b)
31. 59.4

Exercises 5.10 � page 436
Abbreviations: C, convergent; D, divergent

1. (a) Infinite interval (b) Infinite discontinuity
(c) Infinite discontinuity (d) Infinite interval
3. ; 0.495, 0.49995, 0.4999995; 0.5
5. 7. 1 9. D 11. D
13. 0 15. D 17.
19. D 21. 1 23. 25. D
27. D 29. D 31.
33. e

35.

37. Infinite area

39. (a)

It appears that the integral is convergent.
(c)

41. C 43. C 45. D 47. 49. 1��1 � p�, p � 1�

1

�0.1

1 10

©=
sin@ x

≈

ƒ=
1
≈

20

0
π
2

y=sec@ x

0.5

_7 7

2
9 y=

2
≈+9

0

2�
3

x

y

0

x � 1
y � ex

1

8
3 ln 2 �

8
9

2s3
e 2�4

1
12

1
2 � 1��2t 2 �

0.341310,177 megawatt-hours
37.73 ft�s11.6
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t

2 0.447453
5 0.577101

10 0.621306
100 0.668479

1,000 0.672957
10,000 0.673407

y
t

1
 ��sin2x��x 2 � dx



9.

11.

13. 15. 0, 0.747; 0.132
17. (a) Solid obtained by rotating the region ,

about the x-axis
(b) Solid obtained by rotating the region ,

about the y-axis
19. 21. 23.
25. 27. 29. 24
31. 2 33. 3

35. (a) (b)

37. (b) 39.

41.

43. 45. 828
47.

Exercises 6.3 � page 471

1. 3.
5. 8

0
�25 2.5

s2 �e � � 1�
x

2
1  s1 � 4t 2 dt3s10

0

y

x

x

1 2 3 4

2-x

x=2

10

y

x

y=x-≈

��2
��15

8 xr
0 sR 2 � y 2

sr 2 � y 2 dy

5
12 �r 3�r 2h

2� 2r 2R8�R xr
0 sr 2 � y 2 dy

10 cm32b 2h�3
�h2�r � �h�3���r 2h�31110 cm3

0 � y � 1
y4 � x � y2

0 � x � ��2
0 � y � cos x

832��21

(1, 1)

x0

y

x=¥

y=≈

_1 x0

y

x=_1

29��30

x0

y

(1, 1)

x

0

y

y=x

y=œ„x

��6Focus on Problem Solving � page 444
1. About 1.85 inches from the center 3. 5. 1

7. 9. Does not exist 11.
13. 15. 0

19. (b)

CHAPTER 6

Exercises 6.1 � page 452
1. 3. 5. 19.5 7. 9. 4

11. 13. 15.
17. �1.02, 1.02; 2.70 19. 0, 0.70; 0.08 21. 118 ft
23. 84 25.
27. 29.
31. 33. 35. 37.
39. 41.

Exercises 6.2 � page 463

1.

3.

5.

7.

x0

y

(4, 2)

x0

y

x=2y

¥=x

64��15

x

y

0x

y

0

(1, 1)

y=≈

x=¥

3��10

x

y

0

(2, 4)

x

y

0

x=0

y=4

x=œ„y

8�

x

y

0x

y

0
x=2x=1

y=
1
x

y=0

��2

0 � m � 1; m � ln m � 1f �t� � 3t 2
42�3	624s3�51

2�e� �2 � 1�
�abrsR 2 � r 2 � �r 2�2 � R 2 arcsin�r�R�

1
2m2

� �
2
3

8
3

32
3

1
6e � �1�e� �

10
3

32
3

y � �sL2 � x 2 � L ln�L � sL2 � x 2

x �
s1 � sin4 x cos x

��1, 2�e�2

��2
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Exercises 6.5 � page 485

1. 3. 5. (a) (b) 10.8 cm
7. 625 ft-lb 9. 650,000 ft-lb 11. 2450 J
13. (a) (b)
17. (a) (b)
19. 21.
23. (a) (b)
(c) (d)
25. 40, 12, 27.
29. 31. 33. (b)

Exercises 6.6 � page 491
1. $14,516,000 3. $43,866,933.33 5. $407.25
7. $4166.67 9. 3727; $37,753
11. 13.
15.

Exercises 6.7 � page 498
1. (a) The probability that a randomly chosen tire will have a
lifetime between 30,000 and 40,000 miles
(b) The probability that a randomly chosen tire will have a 
lifetime of at least 25,000 miles
3. (a) for all x and (b) 5

7. (a) (b)
(c) If you aren’t served within 10 minutes, you get a free 
hamburger.
9. 11.
13. (b) 0; (c)

(d)
(e)

Chapter 6 Review � page 500

Exercises

1. 3. 5. (a) 0.38 (b) 0.87
7. (a) (b) (c)
9. (a) Solid obtained by rotating the region ,

about the -axis
(b) Solid obtained by rotating the region

about the -axis
11. 36 13. 15.
17. 3.2 J 19. (a) (b) 2.1 ft

21. 23. $7166.67 25.
27. (a) for all x and 
(b) (c) 5, yes
29. (a) (b)
(c) 8 ln 2  5.55 min

e�5�4  0.291 � e�3�8  0.31
 0.3455

x
�

��
 f �x� dx � 1f �x� � 0

f �x� 458 lb

8000��3  8378 ft-lb
2(5s5 � 1)125s3�3 m3

x0 � x � 12 � sx � y � 2 � x 2,

x0 � x � ��2
0 � y � s2 cos x

8��15��62��15
9�e �

11
6

3
2 a0

1 � 41e�8  0.986

1x1010

0 4x10–10

a0

0.954544%

1 � e�2�2.5  0.55e�4�2.5  0.20

x
�

��
 f �x� dx � 1f �x� � 0

1
9 L�s

1.19 � 10�4 cm3�s2
3 (16s2 � 8)  $9.75 million

(1
2 , 25)4

3 , 0, (0, 23 )�1��e � 1�, �e � 1��4�
�1.5, 1.2�(1, 10

3 )
3.03 � 105 lb4.88 � 104 lb

5.06 � 104 lb5.63 � 103 lb
3.47 � 104 lb6.5 � 106 N

8.50 � 109 JGm1m2��1�a� � �1�b��
2.0 m1.06 � 106 J

25
24  1.04 J15

4  ft-lb9 ft-lb

7.

9.

11. 0.7314 13. 3.820
15. (a), (b) ,

,

(c) (d) 7.7988

17. 19. 21. 209.1 m
23. 29.36 in.
27. (a)

(b)

Exercises 6.4 � page 475

1. 3.
5. (a) (b) 7. (a) 2 (b)

(c) (c) 

11.
13. (a) (b)
15. 5��4��  0.4 L

220s2  311 V155�s2  110 V
�50 � 28��� 
F  59 
F

7

20

f

y=2

2 x

4

0

y

c

1.322�s38
3

�1 � e�25 ��102��

294

t � �0, 4��15

�15

�15 15

ln(s2 � 1)205
128 �

81
512 ln 3

x
4
0  s1 � �4�3 � x���3�4 � x�2�3 ��2 dx

L4  7.50
L2  6.43
L1 � 43

0 4

21

�1
�1 21

e 3 � 11 � e�8

2

�1

�1 2

(1, 1)

(13s13 � 8)�27
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11. 13.

15.

17. ; 

19. (a) (i) 1.4 (ii) 1.44 (iii) 1.4641
(b) Underestimates

(c) (i) 0.0918 (ii) 0.0518 (iii) 0.0277
It appears that the error is also halved (approximately).
21. 23.
25. (a) (i) 3 (ii) 2.3928 (iii) 2.3701 (iv) 2.3681
(c) (i) �0.6321 (ii) �0.0249 (iii) �0.0022
(iv) �0.0002
It appears that the error is also divided by 10 (approximately).
27. (a), (d) (b) 3

(c) Yes; 
(e) 2.77 C

Q � 3Q

0

2

2 t4

4

6

1.7616�1, �3, �6.5, �12.25

y

0

1.0

0.2 x0.4

1.1

1.2

1.3

1.4

1.5

0.1 0.3

y=´

h=0.1

h=0.2

h=0.4

y

0

_2

_1 t1

2

c=3

c=_3

c=_1

c=1

�2, 0, 2�2 � c � 2

3

0.5
_3 3

y

x3_3

3

_3

y

x3_3

3

_3

Focus on Problem Solving � page 502
1.
3. (a)

(c)
Advantage: the markings on the container are equally spaced.
5.
7. (b) 0.2261 (c) 0.6736 m
(d) (i) (ii)
11. (a)

(b)

13. Height , volume 

15. 19.

CHAPTER 7

Exercises 7.1 � page 511
3. (a) 5. (b) and (c)
7. (a) It must be either 0 or decreasing
(c) (d)
9. (a) (b)
(c)
13. (a) At the beginning; stays positive, but decreases
(c)

Exercises 7.2 � page 519
1. (a) (b)

3. IV 5. III

7. 9. y

x3_3

3

_3

y

0 x_1_2 1 2

_1

_2

1

2

y � �2
y � 0, y � 2,y

x

3

3_3

_3

(i)

(ii)

(iv)

(iii)

  0

 M

P(t)

t

P(0)

P � 0, P � 4200
P � 42000 � P � 4200

y � 1��x � 2�y � 0

	3

2��, 1��ln���2�
( 28

27 s6 � 2)�b 3
s2 b

�P0 �  0tH���r 2 � �  0tHe L�H xr
�r e

x�H � 2sr 2 � x 2 dx

P�z� � P0 � t xz
0  �x� dx

370��3 s  6.5 min1��105��  0.003 in�s

f �x� � s2x��

f �y� � skA���C� y 1�4

V � x
h
0  � � f �y��2 dy

2��3 � s3�2

APPENDIX J ANSWERS TO ODD-NUMBERED EXERCISES � A109



Exercises 7.4 � page 538
1. About 235
3. (a) (b)
(c) (d)
5. (a) 1508 million, 1871 million (b) 2161 million
(c) 3972 million; wars in the first half of century, increased life
expectancy in second half
7. (a) (b)
9. (a) (b) (c)
11.
13. (a) , ; 
(b) (c)
15. (a) (b)
17. (a) (i) $3828.84 (ii) $3840.25 (iii) $3850.08
(iv) $3851.61 (v) $3852.01 (vi) $3852.08
(b) ,
19. (a) (b)
(c) , (d) Declining

Exercises 7.5 � page 548
1. (a) 100; 0.05 (b) Where is close to 0 or 100; on the
line ; ; 
(c)

Solutions approach 100; some increase and some decrease,
some have an inflection point but others don’t; solutions with

and have inflection points at 
(d) , ; other solutions move away from 
and toward 
3. (a) (b)
5. (a) , in billions
(b) 5.49 billion (c) In billions: 7.81, 27.72
(d) In billions: 5.48, 7.61, 22.41
7. (a) (b)
(c) 3:36 P.M.
11. (a) Fish are caught at a rate of 15 per week.
(b) See part (d) (c)
(d)

; ;
P0 � 250: P l 750

P0 � 250: P l 2500 � P0 � 250: P l 0

0 t

P

1208040

1200

800

400

P � 250, P � 750

y � y0��y0 � �1 � y0 �e�kt �dy�dt � ky�1 � y�

PdP�dt � 1
265 P�1 � P�100�

1.55 years3.23 � 107 kg
P � 100

P � 0P � 100P � 0
P � 50P0 � 40P0 � 20

P¸=140

P¸=120

P¸=80

P¸=40

P¸=20

P¸=60

0 t

P

604020

150

100

50

P0 � 1000 � P0 � 100P � 50
P

m � kP0m � kP0

m � kP0P�t� � �m�k� � �P0 � m�k�e kt
A�0� � 3000dA�dt � 0.05A

39.9 kPa64.5 kPa
116 min137 
F

y�t� � 110e kty�0� � 110dy�dt � ky
2500 years

199.3 years 9.92 mg100 � 2�t�30 mg
�2000 ln 0.9  211 sCe�0.0005t

�3 ln 60��ln 16  4.4 h18,631 cells�h
20,159500 � 16 t�3

Exercises 7.3 � page 527
1. or 3.
5. 7.
9. 11.
13. 15.
17. (a)
(b) ,

(c) No

19.

21. (a), (c) (b)

23. 25.

27. ; 3 29. ; M
31. (a)

(b)

33. (a)
(b) ; the concentration approaches regardless of the
value of 
35. (a) (b) 37.
39. (a)

(b) , where
and 

41. (b) (c) 144s6 s  5 min 53 sy�t� � (s6 �
1

144 t)2
A0 � A�0�C � (sM � sA0 )�(sM � sA0 )

A�t� � M ��CesM kt � 1���Ce sM kt � 1��2

dA�dt � ksA �M � A�
t�k15e�0.2  12.3 kg15e�t�100 kg

C0

r�kr�k
C�t� � �C0 � r�k�e�kt � r�k

t �
2

ksa � b�tan�1� b

a � b
� tan�1� b � x

a � b �
x � a � 4�(kt � 2�sa)2

P�t� � M � Me�ktQ�t� � 3 � 3e�4 t

6

6

_6

_6

4

4

_4

_4

y 3 � 3�x � C�x 2 � 2y 2 � C

y � 	s2�x � C�5

5

_5

_5

5

2.5
0

�2.5

cos y � cos x � 1

�s��2 � x � s��2

1

0

y=sin ≈

_œ„„„π/2 œ„„„π/2

y � sin�x 2�
sin�1y � x 2 � C

y � 7e x 4
u � �st 2 � tan t � 25

x � s2�t � 1�e t � 3y � tan�x � 1�
u � Ae 2 t�t 2�2 � 1y � 	s�3�te t � e t � C��2�3 � 1

x 2 � y 2 � Cy � 0y � �1��x � C�
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9. (a) Population stabilizes at 5000.
(b) (i) , : Zero populations
(ii) , : In the absence of wolves, the rabbit
population is always 5000.
(iii) , : Both populations are stable.
(c) The populations stabilize at 1000 rabbits and 64 wolves.

(d)

Chapter 7 Review � page 557

True-False Quiz
1. True 3. False 5. True

Exercises

1. (a)

(b) ; , ,

3. (a)

(b) 0.75676
(c) and ; there is a local maximum or minimum

5.
7. 9.
11. (a) (b) 27,000

(c)

(d)
13. (a) (b)
15. (a)
(b)
17. 15 days 19. k ln h � h � ��R�V �t � C

L�t� � 53 � 43e�0.2 t

L�t� � L� � �L� � L�0��e�kt

100 hC0e�kt

�ln 2��ln 3  0.63 h

27,000 ln 3  29,663 bacteria per hour

1000 � 3 t

y 2 � 2 ln � y � � x 2 � Cy � s�ln x�2 � 4
y 3 � y 2 � cos x � x sin x � C

y � �xy � x

y�0.3�  0.8

0 x

y

1 2_1_2

1

2

3_3

3

y � 4y � 2y � 00 � c � 4

6

10 t

y

2

4

0 t

R

1000

W

40

1500

500

60

20

80
W

R

R � 1000W � 64

R � 5000W � 0
R � 0W � 0(e) , where 

13. (b) 

; ;

(c)

15. (a) (b) Does not exist

Exercises 7.6 � page 555

1. (a) , ; growth is restricted only by 
predators, which feed only on prey.
(b) , ; growth is restricted by carrying
capacity and by predators, which feed only on prey.

3. (a) The rabbit population starts at about 300, increases to
2400, then decreases back to 300. The fox population starts at
100, decreases to about 20, increases to about 315, decreases to
100, and the cycle starts again.

(b)

5.

0 Species 1

Species 2

50

200

100

50

100 150 200 250

t=3

t=0, 5

150

t=1

t=2

t=4

0 t

R

2000

t¡

1000

F

200

t™ t£

1500

500

2500
300

100

R F

y � predatorsx � prey

y � preyx � predators

P�t� � P0e �k�r��sin�rt � �� � sin ��

P�t� �
m�K � P0� � K�P0 � m�e �K�m��k�K �t

K � P0 � �P0 � m�e �K�m��k�K �t

P0 � 200: P l 1000
 P0 � 200: P l 2000 � P0 � 200: P l 0

0 t

P

1008060

1400

800

400

4020

600

200

1200

1000

0 120

1200

k � 1
11 , � 1

9P�t� �
250 � 750ke t�25

1 � ke t�25
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3. ,
, ,
,
,
,

Convergent,

5. , ,
,
,
,
,

Divergent

7. 0.64645, 0.80755,
0.87500, 0.91056,
0.93196, 0.94601,
0.95581, 0.96296,
0.96838, 0.97259
Convergent,

9. (a) C (b) D
11. 3 13. 15 15. D 17. D 19. 21.
23. 25. 27. D 29. 31.
33. 35.
37. 39. for ,

41. (a) (b) 5

43. 45.
47. The series is divergent.
51. is bounded and increasing.
53. (a)
55. (a) (c) 1

Exercises 8.3 � page 591
1. C

3. (a) Nothing (b) C
5. -series; geometric series; ; 
7. C 9. C 11. C 13. C 15. D 17. C
19. D 21. C 23. D 25.
27. (a) 1.54977, (b) 1.64522,
(c)
29. 2.61 31. 0.567975, 37. Yeserror � 0.0003

n � 1000
error � 0.005error � 0.1

p � 1

�1 � b � 1b � �1p

0 x

y

1

. . .
a™

a£ a¢ a∞

2 3 4

y=
1

x1.3

1
2 , 56 , 23

24 , 119
120; ��n � 1�! � 1���n � 1�!

0, 19 , 29 , 13 , 23 , 79 , 89 , 1
�sn �

1��n�n � 1��(s3 � 1)�2

Sn � D�1 � c n ���1 � c�
sum � 1n � 1a1 � 0, an � 2��n�n � 1��1

4

� x � � 1, x��x � 1��3 � x � 3; x��3 � x�

1138
333

2
9

3
2sin 1

17
36

3
4

sum � 1

1

100

ssnd

sand

�9.01610�9.66446
�9.21214�2.41243
�3.28388�2.99287
0.38764�0.77018

2

0 10

_10

ssnd

sand

�0.627631.55741

sum � �2
�2.00000�2.00000
�1.99999�2.00003
�1.99987�2.00064
�1.99680�2.01600

ssnd

1

0 10

_3

sand

�1.92000�2.4000021. (a) Stabilizes at 200,000
(b) (i) , : Zero populations
(ii) , : In the absence of birds, the insect 
population is always 200,000.
(iii) , : Both populations are stable.
(c) The populations stabilize at 25,000 insects and 175 birds.
(d)

Focus on Problem Solving � page 560
1. 5.
7. (b) (c) No
9. (a) 9.8 h (b) ; 
(c) 5.1 h
11.

CHAPTER 8

Exercises 8.1 � page 571

Abbreviation: C, convergent; D, divergent

1. (a) A sequence is an ordered list of numbers. It can also 
be defined as a function whose domain is the set of positive
integers.
(b) The terms approach 8 as becomes large.
(c) The terms become large as becomes large.

3. ; yes;

5. 7. 9. D

11. 5 13. 0 15. 0 17. D

19. 0 21. 0 23. 0 25. 0

27. D 29. 31. 0

33. (a) 1060, 1123.60, 1191.02, 1262.48, 1338.23 (b) D

35. (a) D (b) C 37. (b)

39. Decreasing; yes

41. Not monotonic; yes

43. Convergent by the Monotonic Sequence Theorem;

45. 47. 62

Exercises 8.2 � page 580

1. (a) A sequence is an ordered list of numbers whereas a
series is the sum of a list of numbers.
(b) A series is convergent if the sequence of partial sums is a 
convergent sequence. A series is divergent if it is not 
convergent.

(3 � s5)�2

5 � L � 8

(1 � s5)�2

��4

5n � 3(� 2
3 )n�1

1
2

1
3 , 25 , 37 , 49 , 5

11 , 6
13

nan

nan

x 2 � �y � 6�2 � 25

6283 ft2�h31,900�  100,000 ft2

f �x� � �x 2 � L2 ���4L� � �L�2� ln�x�L�
20 
Cf �x� � 	10e x

0 t

x

35,000

15,000

y

15025,000

5,000

45,000

200

100

250

(insects) (birds)

50

birds

insects

y � 175x � 25,000

y � 0x � 200,000
y � 0x � 0
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13.

15.

17.

19.

21. 23.

25. 0.199989 27. 0.000065 29. 0.09531
31. (b) 0.920 35.

Exercises 8.7 � page 621

1. 3.

5.

7.

9. 11.

13. ,

17.

19.

21.

23. �
�

n�1
 
��1�n�122n�1x 2n

�2n�!
, R � �

�
�

n�0
 ��1�n 

1

n!
 x n�2, R � �

�
�

n�0
 ��1�n 

1

2n � 1
 x 2n�2, R � 1

�
�

n�0
 ��1�n 

� 2n

�2n�!
 x 2n, R � �

R � �

s2

2
 �

�

n�0
 ��1�n� 1

�2n�!
 �x �

�

4 �2n

�
1

�2n � 1�!
 �x �

�

4 �2n�1�
�
�

n�0
 ��1�n�x � 1�n, R � 1�

�

n�0
 
e 3

n!
 �x � 3�n, R � �

7 � 5�x � 2� � �x � 2�2, R � �

�
�

n�0
 ��1�n 

�n � 1��n � 2�
2

 x n, R � 1

�
�

n�0
 ��1�n 

x 2n

�2n�!
, R � �b8 � f �8��5��8!

��1, 1�, ��1, 1�, ��1, 1�

C � �
�

n�0
 ��1�n 

x 2n�1

�2n � 1�2C � �
�

n�0
 
��1�nx 4n�1

4n � 1

3

2

�3

�2

s∞=sß
s¡=s™

f

s£=s¢

s¸

�
�

n�0
 

2x 2n�1

2n � 1
, R � 1

3

6

�1.2

�4
s¢

s∞ s£ s¡

s™

f

s¸

ln 3 � �
�

n�1
 
��1�n�1

n3n  x n, R � 3

�
�

n�3
 
n � 2

2n�1  x n, ��2, 2�

ln 5 � �
�

n�1
 

x n

n5n , R � 5
Exercises 8.4 � page 598
1. (a) A series whose terms are alternately positive and 
negative
(b) and , where 
(c)
3. C 5. C 7. D
9. An underestimate 11. 13. 7
15. 0.8415

17. 0.6065 19. No
21. No 23. Yes 25. Yes 27. Yes 29. D
31. (a) and (d)
35. (a) , (b) ,
0.693109

Exercises 8.5 � page 604

1. A series of the form , where is a variable
and and the ’s are constants
3. 1, 5. 7.
9.
11. 13. 1, (0, 2) 15. 2,
17. 0, 19. (a) Yes (b) No 21.
23. (a)
(b), (c)

25. 27. 2

Exercises 8.6 � page 610

1. 10 3. 5.

7. 9.

11. (a)

(b)

(c)
1

2
 �

�

n�2
 ��1�nn�n � 1�x n, R � 1

1

2
 �

�

n�0
 ��1�n�n � 2��n � 1�x n, R � 1

�
�

n�0
 ��1�n�n � 1�x n, R � 1

� �
�

n�0
 

1

5n�1  x n, ��5, 5��
�

n�0
 
��1�n

4n�1  x 2n, ��2, 2�

�
�

n�0
 x 3n, ��1, 1��

�

n�0
 ��1�nx n, ��1, 1�

��1, 1�, f �x� � �1 � 2x���1 � x 2 �

2

8

_2

_8

s¡

J¡

s¶ s¡¡s£

s∞ s˜

���, ��
k k{ 1

2 }
��4, 0�4, ��4, 4�

1
3 , [� 1

3 , 13 ]
�, ���, ��1, ��1, 1���1, 1�

cna
x��

n�0 cn�x � a�n

n � 11error � 0.00521661
960  0.68854

1.5

_0.5

9

ssnd

sand
_2

p � 0

� Rn � � bn�1

bn � � an �limn l � bn � 00 � bn�1 � bn

APPENDIX J ANSWERS TO ODD-NUMBERED EXERCISES � A113



(b)

11. (a) (b) 2

13. (a)

(b) 99,225

Exercises 8.9 � page 633

1. (a) ,
,

(b)

(c) As increases, is a good approximation to on a
larger and larger interval.

3.

5.

1.1

�1

�1 2

f
T£

1

2
�

s3

2
 �x �

�

6 � �
1

4
 �x �

�

6 �
2

�
s3

12
 �x �

�

6 �
3

2

_5

_1 4

f

T¢

�x � 1� �
1
2 �x � 1�2 �

1
3 �x � 1�3 �

1
4 �x � 1�4

f �x�Tn�x�n

2

2π

_2

_2π

T¢=T∞

T™=T£

T¸=T¡

Tß

f

T6�x� � 1 �
1
2 x 2 �

1
24 x 4 �

1
720 x 6

T4�x� � 1 �
1
2 x 2 �

1
24 x 4 � T5�x�

T0�x� � 1 � T1�x�, T2�x� � 1 �
1
2 x 2 � T3�x�

1 �
x 2

2
� �

�

n�2
 ��1�n�1 

1 � 3 � 5 � � � � � �2n � 3�
2nn!

 x 2n

�
�

n�1
 nx n

x � �
�

n�1
 
1 � 3 � 5 � � � � � �2n � 1�

�2n � 1�2nn!
 x 2n�125.

27.

29. 0.81873

31.

33.

35. 0.310 37. 0.09998750 39. 41.
43. 45. 47.
49. 51.

Exercises 8.8 � page 625

1.

3.

5.

7.

9. (a) 1 � �
�

n�1
 
1 � 3 � 5 � � � � � �2n � 1�

2nn!
 x 2n

1

8
0

_8

f

T¡

T™

T£

1

2
�

1

2
 �

�

n�1
 
��1�n1 � 4 � 7 � � � � � �3n � 2�

24nn!
 x n, R � 8

1
2 x � �

�

n�1
 ��1�n 

1 � 3 � 5 � � � � � �2n � 1�
n!23n�1  x 2n�1, R � 2

�
�

n�0
 ��1�n 

�n � 1��n � 2�
2n�4  x n, R � 2

1 �
x

2
� �

�

n�2
 ��1�n�1 

1 � 3 � 5 � � � � � �2n � 3�
2nn!

 x n, R � 1

e 3 � 11�s2

e�x 4
�x �

1
2 x 2 �

1
3 x 31 �

3
2 x 2 �

25
24 x 4

1
120

1
3

C � x �
x 4

8
� �

�

n�2
 ��1�n�1 

1 � 3 � 5 � � � � � �2n � 3�
2nn!�3n � 1�

 x 3n�1

C � �
�

n�0
 

��1�nx 4n�3

�4n � 3��2n � 1�!

1.5

1.5

_1.5

_1.5

Tˆ=T˜=T¡¸=T¡¡

T¢=T∞=Tß=T¶

T¸=T¡=T™=T£

f

�
�

n�0
 ��1�n 

1

�2n�!
 x 4n, R � �

2

20
�1.2

T¢

T£

f

T¸

T™

T¡

1 �
x

2
� �

�

n�2
 ��1�n�1 

1 � 3 � 5 � � � � � �2n � 3�
2nn!

 x n, R � 1
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x f

0.7071 1 0.6916 0.7074 0.7071

0 1 �0.2337 0.0200 �0.0009

�1 1 �3.9348 0.1239 �1.2114�

�

2

�

4

T6T4 � T5T2 � T3T0 � T1



41.

43.

45.

47. (a)
(b) (c) 0.000006

49. 51.

53. (b) 0 if , if , n an integer

Focus on Problem Solving � page 643

1.
5. (a) (c)
7.

CHAPTER 9

Exercises 9.1 � page 651
1. 3.
5. A vertical plane that
intersects the xy-plane in
the line ,
(see graph at right)

7. , , ; right triangle
9. (a) Yes (b) No
11.
13. 15. (b)
17. (a)
(b)
(c)
19. A plane parallel to the -plane and 4 units to the left of it
21. A half-space consisting of all points in front of the 
plane 
23. All points on or between the horizontal planes 
and 
25. All points outside the sphere with radius 1 and center O
27. All points on or inside a circular cylinder of radius 3 with
axis the y-axis
29. 31. r 2 � x 2 � y 2 � z2 � R2y � 0

z � 6
z � 0

x � 3

xz
�x � 2�2 � �y � 3�2 � �z � 6�2 � 9
�x � 2�2 � �y � 3�2 � �z � 6�2 � 4

�x � 2�2 � �y � 3�2 � �z � 6�2 � 36

5
2, 12 s94, 12 s85( 1

2, 12 , 12 ), s3�2
�x � 3�2 � �y � 8�2 � �z � 1�2 � 30

� CA � � 3s3� BC � � s33� AB � � s6

z � 0y � 2 � x

z

y
2

x

2

0

y=2-x

y=2-x, z=0

Q; R�4, 0, �3�

��1, 1�, �x 3 � 4x 2 � x���1 � x�4
2s3�5sn � 3 � 4n, ln � 1�3n, pn � 4n�3n�1

15!�5! � 10,897,286,400

x � n��1�x� � cot xx � 0

�
�

n�0
 

��2�nn!

�2n � 1�!
 x 2n�1�

1
6

1.5

20

T£

f

1 �
1
2 �x � 1� �

1
8 �x � 1�2 �

1
16 �x � 1�3

C � ln � x � � �
�

n�1
 

x n

n � n!

1

2
� �

�

n�1
 
1 � 5 � 9 � � � � � �4n � 3�

n!26n�1  x n, R � 16

�
�

n�0
 ��1�n 

x 8n�4

�2n � 1�!
, R � �

7.

9.

11. (a) (b)
13. (a) (b) 0.00006

15. (a) (b) 0.058 17. 0.57358 19. 3
21. 23. 21 m, no

Exercises 8.10 � page 639

1. 3.

5.

7.

9.

Chapter 8 Review � page 640

True-False Quiz
1. False 3. False 5. False 7. False 9. True
11. True 13. False 15. True 17. False

Exercises
1. 3. D 5. D 7. 9. C 11. C
13. C 15. C 17. C
19. 8 21. 23. 25. 0.9721
27. 0.18976224, 31. 4,
33. 0.5, [2.5, 3.5)

35.

37. 39. � �
�

n�1
 
x n

n
, R � 1�

�

n�0
 ��1�nx n�2, R � 1

1

2
 �

�

n�0
 ��1�n� 1

�2n�!
 �x �

�

6 �
2n

�
s3

�2n � 1�!
 �x �

�

6 �
2n�1�

��6, 2�� error � � 6.4 � 10�7

4111
3330��4

e 121
2

x � �
�

n�1
 
��1�n 2252 � � � � � �3n � 1�2

�3n � 1�!
 x 3n�1

�
�

n�0
 

x 2n

2nn!
� e x 2�2

c0 �
�

n�0

 ��
3

2�
n

 
1

n!
 x 2n � c1 �

�

n�0

 
��6�nn!

�2n � 1�!
 x 2n�1

c0 �
�

n�0

 
x 3n

3nn!
� c0e x 3�3c0 �

�

n�0

 
x n

n!
� c0e x

�1.037 � x � 1.037
x �

1
3 x 3

1 � x 2

1.5625 � 10�52 �
1
4 �x � 4� �

1
64 �x � 4�2

_π

8

π

_4

f Tˆ Tß T¢

T™

T8�x� � 1 �
1
2 x 2 �

5
24 x 4 �

61
720 x 6 �

277
8064 x 8

5

�1.5

�2.5 1.

f

T£

x � x 2 �
1
3 x 3
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31.
33. A sphere with radius 1, centered at 

Exercises 9.3 � page 666
1. (b), (c), (d) are meaningful 3. 5. �5
7. 32 9.
13.
15.
17. (a) Neither (b) Orthogonal
(c) Orthogonal (d) Parallel
19.
21. 23.
27. or any vector of the form

29. 38 J 31. 33.
35.

Exercises 9.4 � page 674
1. (a) Scalar (b) Meaningless (c) Vector
(d) Meaningless (e) Meaningless (f) Scalar
3. 24; into the page 5.
7. 9.
11.
13.
15. 16 17. (a) (b) 19.
21. 82 23. 21 27. (b)
33. (a) No (b) No (c) Yes

Exercises 9.5 � page 683
1. (a) True (b) False (c) True (d) False (e) False
(f) True (g) False (h) True (i) True (j) False
(k) True
3. ; 

, ,
5. ; 

, ,
7. ;

9. , , ;

13. (a)
(b)
15. Skew 17. Parallel 19.
21. 23.
25. 27.
29. 31. Neither, 60°
33. Perpendicular
35. (a)
(b)
37.
39.
41. and are parallel, and are identical
43.
45. 47. 51. 1�s67s6�1825

3

s22�5
P4P2P3P1

x � 3t, y � 1 � t, z � 2 � 2t
�x�a� � �y�b� � �z�c� � 1
cos�1(�s6�5)  119
 �or 61
�

x � 2 � y���8� � z���7�

��3, �1, �2�
x � 2y � 4z � �133x � 10y � 4z � 190

x � y � z � 22x � y � 3z � 0
�2x � y � 5z � 1

(� 2
7 , 11

7 , 0), (� 4
3 , 0, 11

3 ), �0, 2, �1�
x�2 � �y � 2��3 � �z � 1����7�

�x � 2��2 � 2y � 2 � �z � 3����4�
z � �3 � 4ty � 1 �

1
2 tx � 2 � 2t

x � 3, y � 1 � �z � 1����5�
x � 3, y � 1 � t, z � �1 � 5t

z � 6 � ty � 3tx � 1 � t
r � �i � 6k� � t�i � 3 j � k�

z � 10 � 8ty � 4 � tx � �2 � 3t
r � ��2 i � 4 j � 10k� � t�3 i � j � 8k�

s97�3

417 N7
2�6, 3, 2 �

��2�s6, �1�s6, 1�s6 �, �2�s6, 1�s6, �1�s6 �
2 i � 13 j � 8k

t 4 i � 2t 3 j � t 2 k�i � j � 5k
10.8 sin 80
  10.6 J

cos�1(1�s3)  55


13
5250 cos 20
  235 ft-lb

�s, t, 3s � 2s10 �, s, t � �

�0, 0, �2s10 �
3�s5, � 6

5 , 35 , 0 �11�s13, � 22
13 , 33

13 �
�i � j � k��s3 [or ��i � j � k��s3]

cos�1(�1�(2s7))  101


cos�1( 63
65 )  14


u � v � 1
2 , u � w � �

1
2

90s3

�x0, y0, z0 �
a  �0.50, 0.31, 0.81 �33. (a) (2, 1, 4) (b)

35. , a plane perpendicular to AB

Exercises 9.2 � page 659
1. (a) Scalar (b) Vector (c) Vector (d) Scalar

3. AB
l

� DC
l

, DA
l

� CB
l

, DE
l

� EB
l

, EA
l

� CE
l

5. (a) (b)

(c) (d)

7. 9.

11. 13.

15.
17.

19. 21.
23. ,

25.
27.
29. (a), (b) (d) s � 9

7 , t � 11
7

y

x0

a

b

c

sa

tb

T1  �196 i � 3.92 j, T2  196 i � 3.92 j
s493  22.2 mi�h, N8
W

� F �  13.5 lb, �  76

F � (6s3 � 5s2) i � (6 � 5s2) j  3.32 i � 13.07 j

�2, 2s3 �8
9 i �

1
9 j �

4
9 k

3 i � 2 j � 11k
s6, i � j � 3k, i � 3 j � k, 2 i � 4 j � 2k,
5, �2, 5 � , ��10, 1 � , ��8, 6 � , �12, 17 �

�0, 0, 1�

z

y

x

�1, 0, 1�

�1, 0, 2�

y

x0
k3, _1l

k_2, 4lk1, 3l

�1, 0, 2 ��1, 3 �

z

y

0

A(0, 3, 1)

a
B(2, 3, _1)x

y

x0

B(_3, 4)

A(_1, _1)

a

a � �2, 0, �2 �a � ��2, 5 �

u
w+v+u

w
v

v+w

w
v

u-v

u_vu+v

u

v

14x � 6y � 10z � 9

P

A

C

B

0

z

yx

L™

L¡
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21. elliptic paraboloid

23. (a) A circle of radius 1 centered at the origin
(b) A circular cylinder of radius 1 with axis the -axis
(c) A circular cylinder of radius 1 with axis the -axis
25. (a) , , hyperbola ;

, , hyperbola ;
, , circle

(b) The hyperboloid is rotated so that it has axis the -axis
(c) The hyperboloid is shifted one unit in the negative 
-direction

27.

f appears to have a maximum value of about 15. There are two
local maximum points but no local minimum point.

29.

The function values approach 0 as x, y become large; as 
approaches the origin, f approaches or 0, depending on the
direction of approach.

31.

2
1
0

y
1

0
�1

x
1

0
�1

z

	�
�x, y�

10

5

0

_5

_10

y2 0
_2

x

2

0

_2

z

0

20

0

_20

_40

y 50_5 x5

_5

z

y

y
x 2 � z2 � 1 � k2z � k

�k �	1�x 2 � z2 � 1 � k2y � k
�k �	1�y2 � z2 � 1 � k2x � k

y
z

x y

z

0

(0, 0, 2)

Exercises 9.6 � page 692
1. (a) 25; a 40-knot wind blowing in the open sea for 15 h will
create waves about 25 ft high.
(b) is a function of giving the wave heights produced
by 30-knot winds blowing for hours.
(c) is a function of giving the wave heights produced
by winds of speed blowing for 30 hours.
3. (a) 4 (b) (c)
5.

7.

9. , horizontal plane

11. , plane

13. , parabolic cylinder

15. (a) VI (b) V (c) I (d) IV (e) II (f) III
17. 19.

z

y

x

z

x
y

z � x 2 � 9y2

z

y

0

z � 1 � x 2

z

y

x

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

x � y � z � 1

z

y

0

x

z � 3

y

x0 1_1

y=≈

��x, y� � y � x 2, x � 	1�

y

x0

y=_x

��x, y� � y � �x�
�0, ���2

v
vf �v, 30�

t
tf �30, t�
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Exercises
1. (a)
(b) ,
(c) center , radius 5
3. ; ; out of the page
5. 7. (a) 2 (b) �2 (c) �2 (d) 0
9. 11. (a) (b)
13. 166 N, 114 N 15.
17.
19.
21.
23. Skew 25.
27.

29. 31.

33. Ellipsoid

35. Circular cylinder

37.
39.
41. 43. z � 4r 2r 2 � z2 � 4,  � 2

(1, s3, 2s3), (2, ��3, 2s3)
(s3, 1, 2), (2s2, ��6, ��4)

(0, 1, 0)

(0, 0, 1)

z

x

y

(0, 0, 1)

(0, 1, 0)
”   , 0, 0’1

2

z

yx

yx

z

(0, 0, 4)

(0, 1, 0)

(2, 0, 0)

0

z

y
x

(0, 2, 0)

(0, 0, 6)

(3, 0, 0)

x=¥

y

x0

��x, y� � x � y 2�
22�s26

x � y � z � 4
x � 2y � 5z � 8
x � 1 � 4t, y � �3t, z � 1 � 5t

x � 1 � 2t, y � 2 � t, z � 4 � 3t
s41�2�4, �3, 4 �cos�1( 1

3 )  71

�2, �4

� u � v � � 3s2u � v � 3s2
�4, �1, �3�

x � 0�y � 2�2 � �z � 1�2 � 68
�x � 1�2 � �y � 2�2 � �z � 1�2 � 69

Exercises 9.7 � page 698
1. See pages 694–695.
3. (a) (b)

(0, 3, 1)

5. (a) (b)
7. (a) (b)

(0, 0, 1)

9. (a)
(b)
11. Circular cylinder, radius 3, axis the -axis
13. Half-cone
15. Circular paraboloid
17. Circular cylinder, radius 1, axis parallel to the -axis
19. Sphere, radius 5, center the origin
21. (a) (b)
23. (a) (b)
25. 27.

29. Cylindrical coordinates: , ,

31.
33.

Chapter 9 Review � page 700

True-False Quiz
1. True 3. True 5. True 7. True 9. True
11. False 13. False

0 � � � ��4, 0 �  � cos �
0 � z � 20

0 � � � 2�6 � r � 7

z

y

x

0

z

y

z=2-r@

x

1

0

z=r@

2

  sin � � 2 sin �r � 2 sin �
 � 4r 2 � z2 � 16

z

z
(2s2, ��2, 3��4)

�3, �, ��2�

( 1
2 s2, 1

2 s6, s2)

0

z

y
x

”2,    ,    ’

2

π
4

π
3

π
3

π
4

0

z

y
x

(1, 0, 0)

1

(2, 4��3, 2)(s2, 7��4, 4)
(2, �2s3, 5)

0

z

y
x

”4, _   , 5’

5

4

π
3

π
3_

0

z

y
x

”3,    , 1’
π
2

π
2

13
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Exercises 10.2 � page 716
1. (a)

(b), (d)

(c) ; 

3. (a), (c) (b)

5. (a), (c) 7. (a), (c)

(b) (b)

9.
11.
13. 15.
17. , , ,

19.
21. , ,
23.
25. (a) Not smooth (b) Smooth (c) Not smooth
27. 66° 29. 4 i � 3 j � 5 k

x � 1
4 � � t, y � 1 � t, z � 1 � t

z � 1 � ty � tx � 1 � t
x � 1 � 5t, y � 1 � 4t, z � 1 � 3t

�6t 2, �6t, 2 �
�0, 2, 6t��1�s14, 2�s14, 3�s14 ��1, 2t, 3t 2 �

3
5 j �

4
5 kr��t� � b � 2tc

r��t� � 2tet 2

i � [3��1 � 3t�� k
r��t� � �2t, �1, 1�(2st )�

r��t� � e t i � 2e�2 t jr��t� � i � 2t j

y

x0

(1, 1)
r(0)

rª(0)

y

x0 1

(2, 1)r(1)

rª(1)

r��t� � ��sin t, cos t�y

x0

rª ”   ’
π
4

r ”   ’
π
4

T�4� �
r��4�

� r��4� �r��4� � lim 
h l 0

 
r�4 � h� � r�4�

h

y

x0 1

1

RC

Q

P

r(4.5)

r(4.2)

r(4)

r(4.5)-r(4)
0.5

r(4.2)-r(4)
0.2

T(4)

y

x0 1

1

RC

Q

P

r(4.5)

r(4.2)

r(4)

r(4.5)-r(4)

r(4.2)-r(4)

Focus on Problem Solving � page 703
1.
3. (a)
(b) (c)

CHAPTER 10

Exercises 10.1 � page 710
1. [1, 5] 3. 5. VI 7. IV 9. V
11. 13.

15. 17.

19. 21.

23.

25.

29.

31. x � 2 cos t, y � 2 sin t, z � 4 cos2t

r�t� � t i �
1
2 �t 2 � 1� j �

1
2 �t 2 � 1� k

0
2 2

�2

0

2

�2

0
x

y

z

z

2

1

y
2

1

0

x20
10

0

_1
0

1 1
0

_1

300

200

100

0

z

y x

z

y

x

0

x

z

y y=≈

z

y
x

0

3

y

x0

(1, 0)

z

y

x

(0, 1, 0)

(π, 1, 0)

�1, 0, 0 �

4��3x 2 � y 2 � t 2 � 1, z � t
�x � 1����2c� � �y � c���c 2 � 1� � �z � c���c 2 � 1�

(s3 � 1.5) m
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5.

7.

9.
11.
13. ,

15. (a)
(b)

17.
19. ,
21. (a) (b) (c)
23.
25. ,
27. (a) 16 m (b) upstream

29. 31. 0, 1 33. 35.

Exercises 10.5 � page 740
1. Circular paraboloid with axis the -axis
3. Circular cylinder with axis the x-axis
5.

2

0

_2

2

1

0

2

1.5

1

x
y

z

√ constant

u constant

z

t � 14.5 cm�s2, 9.0 cm�s26t, 6

40

_12

0

12

40

_4

0

20

23.6

79.8
10.2


30 m�s
500 m�s3.2 km22 km

� v�t� � � s25t 2 � 2r�t� � t i � t j �
5
2 t 2 k

t � 4

z

y
x

1.2

1

0.8

1
01.5

1

r�t� � �1 �
1
2 t 2� i � t 2 j � �1 �

1
3 t 3�k

r�t� � t i � t j �
1
2 t 2 kv�t� � i � j � t k

s2 i � e t j � e�t k, e t j � e�t k, e t � e�t

�1, 2t, 3t 2 � , �0, 2, 6t� , s1 � 4t 2 � 9t 4

� v�t� � � s2
a�t� � �sin t i � cos t k

z

y

(0, 0, 1) v(0)

a(0)

x

v�t� � cos t i � j � sin t k

� v�t� � � se 2 t � e�2 t

a�t� � e t i � e�t j
y

x0

(1, 1)

v(0)

a(0)

v�t� � e t i � e�t j31.
33.
35.
41.

Exercises 10.3 � page 723
1. 3. 5. 9.5706
7.

9.
11. (a)

(b)
13. (a)
(b)
15. 17. 19.
21. 23.

25. ; approaches 0
27. (a) P (b)
29.

31. is , is 

33. 35.
37.
39.

41. 49.

Exercises 10.4 � page 733
1. (a) , ,

,
(b) , 2.58
3.

� v�t� � � s4t 2 � 1
a�t� � �2, 0 �

y

x0

(0, 1)

v(1)

a(1)

v�t� � �2t, 1 �
2.4 i � 0.8 j � 0.5k

2.8 i � 0.8 j � 0.4k2.8 i � 1.8 j � 0.3k
2.0 i � 2.4 j � 0.6k1.8 i � 3.8 j � 0.7k

2.07 � 1010 Å  2 m��1, �3, 1�

5

2.5�7.5

�5

(x �
5
2 )2

� y 2 � 81
4 , x 2 � (y �

5
3 )2 � 16

9

y � 6x � �, x � 6y � 6�

� 2
3 , 23 , 13 �, �� 1

3 , 23 , � 2
3 �, �� 2

3 , 13 , 23 �1�(s2et)
y � !�x�by � f �x�a

2.5

1.2�1.2

�0.5

y=x$

y=k(x)

1.3,  0.7
(� 1

2 ln 2, 1�s2)
15sx ��1 � 100x 3�3�26� x ���1 � 9x 4 �3�2

s2�4s2��1 � cos2t�3�22��4t 2 � 1�3�2
2��t 2 � 2�2

� t 2, 2t, 2 ���t 2 � 2�, �2t, 2 � t 2, �2t���t 2 � 2�

2
29

��sin t, 0, �cos t�
�(2�s29) cos t, 5�s29, (�2�s29) sin t�,

r�t�s�� � 3 sin�s�5� i � �4s�5� j � 3 cos�s�5�k
� (1 � s�s2) cos[ln(1 � s�s2)] j

r�t�s�� � (1 � s�s2) sin[ln(1 � s�s2)] i
e � e�120s29

1 � 4t cos t � 11t 2 sin t � 3t 3 cos t

1
3 t 3 i � �t 4 � 1� j �

1
3 t 3 k

e t i � t 2 j � �t ln t � t�k � C

1
2 i �

1
2 j � [�4 � ���(4s2)]k
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3. ,
5. 7. 15.9241 9.
11. (a)

(b)

(c)
13. 15.
17. ,

,
19. (a) About 3.8 ft above the ground, 60.8 ft from the athlete
(b) (c) from the athlete
21. , , ,

,
23. (c)
25. (b) ; no

Focus on Problem Solving � page 745
1. (a) (c)
3. (a) 5. (b)

7. (a) to the right of the table’s edge,
(b) (c) to the right of the table’s edge

CHAPTER 11

Exercises 11.1 � page 756

1. (a) �7; a temperature of with wind blowing at 
feels equivalent to about without wind.
(b) When the temperature is , what wind speed gives a
wind-chill of ? 
(c) With a wind speed of , what temperature gives a
wind-chill of ? 
(d) A function of wind speed that gives wind-chill values when
the temperature is 
(e) A function of temperature that gives wind-chill values when
the wind speed is 
3. Yes
5.

7. (a) (b) (c)
9. 11. Steep; nearly flat
13. z

14

y
x

56, 35
�1, ����x, y, z� � z � x 2 � y 2�e

y

x0

≈+¥=11
9

��x, y� � 1
9 x 2 � y 2 � 1�

50 km�h

�4 
C

4 
C�14 
C
80 km�h

20 km�h�26 
C
�12 
C

�7 
C
60 km�h8 
C

2.13 ft7.6

15 ft�s0.94 ft

�tm�k���m�k��1 � e�kt�m � � t� j
R�t� � �m�k��1 � e�kt�m �v0 �90
, v0

2��2t�
a � ��2rv � �R��sin �t i � cos �t j�

P�x� � 3x5 � 8x4 � 6x3
�2e�t vd � e�t R

��3 � � � 2��30 � � � 2�
z � 2 cos �y � 2 sin � sin �x � 2 sin � cos �

64.2 ft21.4 ft

a�t� � �1�t� i � e�t k� v�t� � � s2 � 2 ln t � �ln t�2 � e�2 t

v�t� � �1 � ln t� i � j � e�t k
x � 2y � 2� � 012�173�2

st 8 � 4t 6 � 2t 4 � 5t 2��t 4 � t 2 � 1�2

�2t, 1 � t 4, �2t 3 � t��st 8 � 4t 6 � 2t 4 � 5t 2

� t 2, t, 1 ��st 4 � t 2 � 1
��21

3 i � �2�� 2� j � �2���k
0 � t � 2�r�t� � 4 cos t i � 4 sin t j � �5 � 4 cos t�k7. 9.

11. IV 13. I 15. II
17.
19.
21. , ,

, ,

23. , , , ,

27. ,
, ,

29. (b)

31. (a) Direction reverses (b) Number of coils doubles

Chapter 10 Review � page 742

True-False Quiz
1. True 3. False 5. False 7. False 9. True

Exercises
1. (a)

(b) ,
r ��t� � �� 2 cos �t j � � 2 sin �t k

r��t� � i � � sin �t j � � cos �t k

z

y

x

(0, 1, 0)

(2, 1, 0)

2

0

�2

�2 �10 2 1 0

z

y x

0 � � � 2�
0 � x � 3z � e�x sin �

20�101
�1

0

1

y

z

x

x � x, y � e�x cos �
�or x � x, y � y, z � 5, x 2 � y 2 � 16�

0 � � � 2�0 � r � 4z � 5y � r sin �x � r cos �
[or x � x, y � y, z � s4 � x 2 � y 2, 2 � x 2 � y 2 � 4]

0 � � � 2�0 � � � ��4z � 2 cos �
y � 2 sin � sin �x � 2 sin � cos �

x � x, z � z, y � s1 � x 2 � z 2

x � 1 � u � v, y � 2 � u � v, z � �3 � u � v

1

0

_1

1
0

_1
1

0

_1

x

y

z

√ constant

u constant
z

1

0

_1

y

1
0

_1

x

1

0

_1

u constant

√ constant
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27.

29.

31. (a) B (b) III 33. (a) F (b) V
35. (a) D (b) IV 37. Family of parallel planes
39. Family of hyperboloids of one or two sheets with axis the 
y-axis
41. (a) Shift the graph of upward 2 units
(b) Stretch the graph of vertically by a factor of 2
(c) Reflect the graph of about the -plane
(d) Reflect the graph of about the -plane and then shift it
upward 2 units
43. If , the graph is a cylindrical surface. For , the
level curves are ellipses. The graph curves upward as we leave
the origin, and the steepness increases as c increases. For ,
the level curves are hyperbolas. The graph curves upward in the
y-direction and downward, approaching the xy-plane, in the x-
direction giving a saddle-shaped appearance near (0, 0, 1).
45. (b)

Exercises 11.2 � page 765
1. Nothing; if is continuous, 3.
5. 2025 7. Does not exist 9. Does not exist
11. 0 13. Does not exist 15. 2 17. Does not exist
19. The graph shows that the function approaches different
numbers along different lines.
21.

23. Along the line 25.
27. 29.
31.
33. 0 35. 0

Exercises 11.3 � page 776
1. (a) The rate of change of temperature as longitude varies,
with latitude and time fixed; the rate of change as only latitude
varies; the rate of change as only time varies.
(b) Positive, negative, positive
3. (a) ; for a temperature of and wind
speed of , the wind-chill index rises by for
each degree the temperature increases.

1.375 
C20 km�h
12 
CfT �12, 20�  1.375

��x, y� � �x, y� � �0, 0��
��x, y, z� � z � x 2 � y 2 ���x, y� � y � 0�

��x, y� � y � x 2 �y � x

� s2x � 3y � 6; ��x, y� � 2x � 3y � 6�
h�x, y� � 4x 2 � 9y 2 � 12xy � 24x � 36y � 36

�
5
2f �3, 1� � 6f

y � 0.75x � 0.01

c � 0

c � 0c � 0

xyf
xyf

f
f

0

_2 0 2 2 0 _2
y x

z

5

0

_5

y
5

0
_5

x

2

0

_2

z

15.

17.

19. 21.

23.

25. y

0 x

y

x

z

z=4

z=3

z=2

z=1

y

0 x

4321

x 2 � 9y 2 � k

y

x0

y

x

0 1 2 3

4

5

x � y 2 � ksx � y � k

y

0 x

2

1

0

_1

_2

y

0 x

k>0

k>0

k<0

k<0

k=0

xy � k

A122 � APPENDIX J ANSWERS TO ODD-NUMBERED EXERCISES



45. (a) (b)
47. , ,
49. , ,
53. 55. 57.
59.
69. 73. No 75.
77.
79. (a)

(b) ,

(c) 0, 0 (e) No, since and are not continuous.

Exercises 11.4 � page 788
1. 3.
5.

7.

9. 11.

13. ; 15.
17.
19.
21.
23. 25. 27.
29. 150 31. 33.
35. 37.

Exercises 11.5 � page 796

1.
3.
5.

7. ,

�z

�t
� e r�s cos � �

t

ss 2 � t 2
 sin ��

�z

�s
� e r�t cos � �

s

ss 2 � t 2
 sin ��

�z��s � 2x � y � xt � 2yt, �z��t � 2x � y � xs � 2ys
e y�z�2t � �x�z� � �2xy�z2 ��
� cos x cos y � �sin x sin y��(2st )

�1 � �x, �2 � �yx � 0
3x � y � 3z � 31

17  0.059 �
16 cm35.4 cm2�z � 0.9225, dz � 0.9

dw � �x 2 � y 2 � z2 ��1�x dx � y dy � z dz�
du � e t sin � dt � e t cos � d�

4T � H � 329; 129 
F

3
7 x �

2
7 y �

6
7 z; 6.99142.846�

2
3 x �

7
3 y �

20
3

1
2 x � y �

1
4 � �

1
22x �

1
4 y � 1

0

2

4
2

0x
4

0
2 y

z

400

200

0

y5 0 _5x
10

0
_10

z

x � 2y � z � 4z � �8x � 2y

fyxfxy

fy�x, y� �
x 5 � 4x 3y 2 � xy 4

�x 2 � y 2 �2fx�x, y� �
x 4y � 4x 2y 3 � y 5

�x 2 � y 2 �2

_0.2

0.2

0

_1

0

1
y

1
0

_1

x

z

�2
x � 1 � t, y � 2, z � 2 � 2tR2�R1

2

12.2, 16.8, 23.25
�sin y48x 3y 3z2�48xy

utt � �e�s sin tust � �e�s cos t � utsuss � e�s sin t
fyy � �18x 2yfxy � �18xy 2 � fyxfxx � 12x 2 � 6y 3

f ��x � y�, f ��x � y�f ��x�, t��y�; for a temperature of and wind speed
of , the wind-chill index decreases by for each

the wind speed increases.
(b) Positive, negative (c) 0
5. (a) Positive (b) Negative
7.
9. ,

11.

13.
15.
17.
19.
21.
23. ,
25.
27. , ,

29. , ,
31. , , ,

33. 35. 37.
39. ,
41.
43. �x � y � z���x � z�, �y � x���x � z�

�y � z���x � y�, �x � z���x � y�
fy�x, y� � 4y � xfx�x, y� � 2x � y

�
1
3

3
5�u��xi � xi�sx1

2 � x2
2 � � � � � xn

2

ft � �x � y���z � t�2
fz � �y � x���z � t�2fy � 1��t � z�fx � 1��z � t�

�u��� � xe�t cos ��u��t � �xe�t sin ��u��x � e�t sin �
�w��z � 3��x � 2y � 3z�

�w��y � 2��x � 2y � 3z��w��x � 1��x � 2y � 3z�
fx � y 2z3, fy � 2xyz3 � 3z, fz � 3xy 2z2 � 3y

�z��y � y�(x 2 � y 2 � xsx 2 � y 2 )�z��x � 1�sx 2 � y 2

fu � v��u 2 � v2 �, fv � �u��u 2 � v2 �
�w�� � cos  cos �, �w��� � �sin  sin �
fx�x, y� � 2y��x � y�2, fy�x, y� � �2x��x � y�2
�z��x � e 3y, �z��y � 3xe 3y
fx�x, y� � 3, fy�x, y� � �8y 3

fy

0

_2
0

2x _2 0 2
y

z

10

0

_2
0

2x _2 0 2
y

_10

z
fx

10

0
_2

0
2x _2 0 2

y

z
f

fx � 2x � 2xy, fy � 2y � x 2

z

y

0

x

(1, 2, 8)

C¡

(1, 2)

2

16

4

z

y

0

x

(1, 2, 8)

C™

(1, 2)

2

16

4

fy�1, 2� � �4 � slope of C2fx�1, 2� � �8 � slope of C1

c � f, b � fx, a � fy

km�h
0.3 
C20 km�h

12 
Cfv�12, 20�  �0.3
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45.
49.
53. If and , then and 
are known, so we solve linear equations for and .

Exercises 11.7 � page 818

1. (a) f has a local minimum at (1, 1).
(b) f has a saddle point at (1, 1).
3. Local minimum at (1, 1), saddle point at (0, 0)
5. Maximum 
7. Minimum , saddle points 
9. Saddle point (1, 2) 11. None
13. Saddle points , n an integer
15. Maximum , minimum ,
saddle points 
17. Maximum ,
minimum 
19. Minima , ,
saddle point (0.312, 0), lowest point 
21. Maxima , ,
saddle points ,
highest points 
23. Maximum , minimum 
25. Maximum , minimum 
27. Maximum , minimum 
29.

31. 33. 35.
37. 39. 41. Cube, edge length 
43. Square base of side 40 cm, height 20 cm

Exercises 11.8 � page 827

1. 3. Maxima , minima

5. Maxima , minima 
7. Maximum , minimum

9. Maximum , minimum 

11. Maximum , minimum 1

13. Maximum ,

minimum 

15. Maximum ,
minimum 
17. Maximum , minimum 

19. Maxima ,

minima f (	1�s2, 	1�(2s2)) � e�1�4

f (	1�s2, �1�(2s2)) � e 1�4

1
2

3
2

f (1, �s2, s2) � 1 � 2s2
f (1, s2, �s2) � 1 � 2s2

f (� 1
2 , � 1

2 , � 1
2 , � 1

2 ) � �2

f ( 1
2, 12 , 12 , 12 ) � 2

s3

�2�s32�s3
f ��1, �3, �5� � �70

f �1, 3, 5� � 70
f �	2, �1� � �4f �	2, 1� � 4

f �0, 	1� � �1
f �	1, 0� � 159, 30

c�124
316�s3

100
3 , 100

3 , 100
3�0, 0, 1�, �0, 0, �1�s3

_3

_2

_1

0

_1 0 1
_2

2
4

x

y

z

(_1, 0, 0) (1, 2, 0)

f ��2, 4� � �9f �2, 4� � 3
f �0, 0� � 4f �	1, 1� � 7

f �0, 3� � �14f �2, 0� � 9
�1.629, 	1.063, 8.105�

��0.259, 0�, �1.526, 0�
f �1.629, 	1.063�  8.105f ��1.267, 0�  1.310
��1.714, 0, �9.200�

f �1.402, 0�  0.242f ��1.714, 0�  �9.200
f �5��3, 5��3� � �3s3�2

f ���3, ��3� � 3s3�2
�	1, 1�

f �0, 2� � �2f �0, 0� � 2
�0, n��

(	s2, �1)f �0, 0� � 4
f (�1, 12 ) � 11

fyfx

c fx � dfyafx � bfyv � �c, d �u � �a, b �
x � �1 � 10t, y � 1 � 16t, z � 2 � 12t
(	s6�3, �2s6�3, 	s6�2)9. 62

11. , ,

13. ,

,

15. 2, 0 17. 0, 0, 4
19. , ,

21.

23. ,

25.

27.
29.
31. (a) (b) (c) 33.
35. (a) ,

41.

Exercises 11.6 � page 808

1. 3. 0.83 5.
7. (a)
(b) (c)
9. (a)
(b) (c)
11. 13. 15. 17.
19. 21.
23. (b) 25. All points on the line 
27. (a)
29. (a) (b) (c) 31.

35. (a) (b)

37. (a) (b)
39. 41.

y

0 x

(2, 1)

±f(2, 1)

x+2y=4

1

_1

0

1

2

1 2x 2

z

y

�4, 8 � , x � 2y � 4
x � 1 � y � �zx � y � z � 1

x � 4

8
�

y � 1

�4
�

z � 1

6
4x � 2y � 3z � 21

327
132s406�38, 6, 12 �32�s3

�40�(3s3)
y � x � 1��12, 92 �

s11, �1, �1, �3 �1, �0, 1 �
2�5���(4s3)4�923�10

20�s3�4, �4, 12�
" f �x, y, z� � � y 2z3, 2xyz3, 3xy 2z2 �

172�13��4, 16 �
" f �x, y� � �5y 2 � 12x 2y, 10xy � 4x 3 �

5
16 s3 �

1
4�0.1 millibar�mi

4rs �2z��x 2 � �4r 2 � 4s 2 ��2z��x �y � 4rs �2z��y 2 � 2 �z��y
�z��� � ���z��x�r sin � � ��z��y�r cos �

�z��r � ��z��x� cos � � ��z��y� sin �
�0.27 L�s0 m�s10 m2�s6 m3�s

 �0.33 m�s per minute
2 
C�s

��e y � ze x ���y � e x �, ��xe y � z���y � e x �

�
2xy � z2

2yz � x 2�
y 2 � 2xz

2yz � x 2

sin�x � y� � e y

sin�x � y� � xe y

�u��t � 2��y � z� � 1�p
�u��r � 0�u��p � 2�z � x���y � z�2 � �t�p 2

�v

�z
�

�v

�p
 
�p

�z
�

�v

�q
 
�q

�z
�

�v

�r
 
�r

�z

�v

�y
�

�v

�p
 
�p

�y
�

�v

�q
 
�q

�y
�

�v

�r
 
�r

�y

�v

�x
�

�v

�p
 
�p

�x
�

�v

�q
 
�q

�x
�

�v

�r
 
�r

�x
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�
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�
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�
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53. Maximum ; saddle points (0, 0), (0, 3), (3, 0)
55. Maximum , minimum 
57. Maximum , minima ,
saddle points 
59. Maximum ,
minimum 
61. Maximum 1, minimum 
63.
65.

Focus on Problem Solving � page 836
1. 3. (a) (b) Yes
9.

CHAPTER 12

Exercises 12.1 � page 847
1. (a) �17.75 (b) �15.75 (c) �8.75 (d) �6.75
3. (a) 288 (b) 144 5. (a) �6 (b) �3.5
7. 9. (a) (b) 15.5 11. 60
13. 3 15. 0.6065, 0.5694, 0.5606, 0.5585, 0.5579, 0.5578

Exercises 12.2 � page 853
1. 3. 10 5.
7. 9. 6 11. 13.
15.
17. 19. 37.5

21.
23.
25. 36

27. 29.

31. Fubini’s Theorem does not apply. The integrand has an infi-
nite discontinuity at the origin.

Exercises 12.3 � page 861
1. 3. 5. 7. 9.
11. 13. 15. 0

17. 19. 21. 23. 25. 0, 1.213, 0.713
27. 13,984,735,616�14,549,535

1
3

1
6

31
8

6
35

147
20�1 � cos 1��2

1
2 ln 2256

21e � 14
9 e 3�2 �

32
45

9
20

5
6

2

0

y
1

0

x1
0

z

21e � 57

4
15 (2s2 � 1)
166
27

z

y
x

0

1

1

4

[(s3 � 1)�2] � ���12�
9 ln 221

2
21
2  ln 2

4
15 (31 � 9s3)9 � 27y, 8x � 24x 2

248U � V � L

s6�2, 3s2�2
x � w�3, base � w�3L2W 2, 14 L2W 2

P(2 � s3), P(3 � s3)�6, P(2s3 � 3)�3
(	3�1�4, 3�1�4

s2, 	31�4 ), (	3�1�4, �3�1�4
s2, 	31�4 )

�1
f (	s2�3, �1�s3) � �2�(3s3)

f (	s2�3, 1�s3) � 2�(3s3)
��1, 	1�, �1, 0�

f �1, 	1� � �3f ��1, 0� � 2
f �2, 4� � �64f �1, 2� � 4

f �1, 1� � 125–35. See Exercises 31–41 in Section 11.7.
37. Nearest , farthest 
39. Maximum , minimum 
41. (a) (b) When 

Chapter 11 Review � page 832

True-False Quiz
1. True 3. False 5. False 7. True 9. False
11. True

Exercises
1. 3.

5. 7.

9.
11. (a) ,
(b) by Equation 11.6.9 
(Definition 11.6.2 gives .)
(c)
13. ,
15. ,
17. , ,
19. , ,
21. , ,

, ,
,

25. (a) (b)

27. (a) (b)

29. (a)
(b)
31.
33.
35. 37.
43. 45. 47.
49. 51. Minimum f ��4, 1� � �115

8 knot�mi
s145�2, �4, 92 �43

5ze x sy �zsy, xz�(2sy ), 2�
�47, 108e t � 2�y�z��3t 2 � 4� � 2t�y 2�z2 �

60x �
24
5 y �

32
5 z � 120; 38.656

(	s2�7, 	1�s14, �3�s14)
x � 3 � 8t, y � 4 � 2t, z � 1 � 4t

4x � y � 2z � 6

x � 2

4
�

y � 1

�4
�

z � 1

�6
2x � 2y � 3z � 3

x � 1

8
�

y � 2

4
� 1 � zz � 8x � 4y � 1

f zz � m�m � 1�x k y lz m�2f yz � lmx k y l�1z m�1 � f zy

f yy � l�l � 1�x k y l�2z mf xz � kmx k�1y lz m�1 � f zx

f xy � klx k�1y l�1z m � f yxf xx � k�k � 1�x k�2 y lz m
f yy � �2xf xy � �2y � f yxf xx � 24x

Tr � per��q � er �Tq � p��q � er �Tp � ln�q � er�
tv � u��1 � v 2�tu � tan�1v

fy � y�s2x � y 2fx � 1�s2x � y 2

�0.25
1.1 
C�m

 0.35 
C�m
�3.0 
C�m3.5 
C�m

2
3

x210

y

2

1

y

0 x

z

0

y1

x

1

1

y

0 x_1 1

��x, y� � �1 � x � 1�

x1 � x2 � � � � � xnc�n
�5.35069.7938

��1, �1, 2�( 1
2, 1

2 , 1
2 )
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Exercises 12.6 � page 881
1. 3. 5.
7. 9.
11. 13. (a) (b)
15. 4.4506
17.
19. (b)

(c) 

21. 25.

Exercises 12.7 � page 890
3. 1 5. 7. 4 9. 11.
13. 15. 17.
19. (a) (b)

21. 60.533 23.

25.

27.

29.

31.

� x1
0  x1

z  xx
z  f �x, y, z� dy dx dz

� x
1
0  xx

0 xx
z  f �x, y, z� dy dz dx� x1

0  xy
0  x1

y  f �x, y, z� dx dz dy

� x
1
0  x1

z  x1
y  f �x, y, z� dx dy dzx

1
0  xx

0 xy
0  f �x, y, z� dz dy dx

�x
1
0  x�1�z�2

0  x1�z
sx

 f �x, y, z� dy dx dz

� x1
0  x1�sx

0  x1�z
sx

 f �x, y, z� dy dz dx

� x
1
0  x1�y

0  xy 2

0  f �x, y, z� dx dz dy� x1
0  x1�z

0  xy 2

0  f �x, y, z� dx dy dz

� x
1
0  xy 2

0  x1�y
0  f �x, y, z� dz dx dyx

1
0  x1

sx
 x1�y

0  f �x, y, z� dz dy dx

� x1
0  xs1�z

�s1�z
 x1�x 2

z
 f �x, y, z� dy dx dz

� x1
�1 x

1�x 2

0  x1�x 2

z
 f �x, y, z� dy dz dx

� x1
0  xy

0  xs1�y
�s1�y

 f �x, y, z� dx dz dy

� x1
0  x1

z
 xs1�y

�s1�y
 f �x, y, z� dx dy dz� x1

0  xs1�y
�s1�y

 xy
0  f �x, y, z� dz dx dy

x
1
�1 x

1�x 2

0  xy
0  f �x, y, z� dz dy dx

� x2
�2 x

s4�z 2

�s4�z 2 x
6

0  f �x, y, z� dy dx dz

� x2
�2 x

s4�x 2

�s4�x 2 x
6

0  f �x, y, z� dy dz dx

� x6
0  x2

�2 x
s4�z 2

�s4�z 2 f �x, y, z� dx dz dy

� x2
�2 x

6
0  xs4�z 2

�s4�z 2 f �x, y, z� dx dy dz

� x6
0  x2

�2 x
s4�x 2

�s4�x 2 f �x, y, z� dz dx dy

x
2

�2 x
6

0  xs4�x 2

�s4�x 2 f �x, y, z� dz dy dx

z

y

x

0
1

2

1

1
4 � �

1
3x

1
0  xx

0 xs1�y 2

0  dz dy dx

8
15

16
316��3

1
12

65
28

1
3 �e 3 � 1�

� (37s37 � 17s17)�64�

x
2�

0  x�

0  s36 sin4u cos2v � 9 sin4u sin2v � 4 cos2u sin2u du dv

2

0

�2

�2 �10 2 1 0

z

y x

45
8 s14 �

15
16 ln[(11s5 � 3s70)�(3s5 � s70)]

1.86161.83�2��3�(2s2 � 1)
(s21�2) �

17
4 [ln(2 � s21) � ln s17]�(2s6 �

8
3 )

���6�(17s17 � 5s5)3s1415s26

29. 31.

33.

35. 37. 39. 41. 1

43. 47. 49.

Exercises 12.4 � page 867

1. 3.
5.
7.

9. 0 11. 13. 0

15. 17. 19.
21. 23. 25.
27. 29. 31.
33. (a) (b)

Exercises 12.5 � page 877
1. 3. 5.

7. 9.
11. if vertex is (0, 0) and sides are along 
positive axes
13. 15.

17. , , ,

,
19. (a) (b) 0.375 (c)
21. (b) (i)
(ii) (c) 2, 5
23. (a) (b)
25. (a) , where D
is the disk with radius 10 mi centered at the center of the city
(b) , on the edge200�k�3  209k, 200(��2 �

8
9 )k  136k

xx
D
 �k�20�[20 � s�x � x0 �2 � �y � y0 �2 ] dA

0.6320.500
1 � e�1.8 � e�0.8 � e�1  0.3481

e�0.2  0.8187

5
48  0.10421

2

I0 � � 4�16 � 9� 2�64Iy � �� 4 � 3� 2 ��16

Ix � 3� 2�64�x, y � � �2�

3
�

1

�
, 

16

9�
�m � � 2�8

189
20 , 1269

28 , 1917
35

4
5 , 83 , 52

15

�2a�5, 2a�5�
( 3

8, 3��16)27
2 , ( 8

5 , 12 )
6, ( 3

4 , 32 )4
3 , (4

3 , 0)64
3  C

s��2s��4

15
161800� ft34��3

���4��e � 1���12�8��3�(64 � 24s3)
�2��3�[1 � (1�s2)]4

3 �a 381��2

���2��1 � e�4 �

33��2y

0 x

4 7

R

x
2�

0  x5
2  f �r cos �, r sin �� r dr d�

x
2

�2 x
2

x  f �x, y� dy dxx
2�

0  x2
0  f �r cos �, r sin �� r dr d�

2��38�0 � xxD sx 3 � y 3 dA � s2

(2s2 � 1)�31
4 sin 81�e 9 � 1��6

y

x0

x=2

y=2x
4

2

(2, 4)

x
1
0  x1

y
 f �x, y� dx dy

y

x0

x=2

y=ln x  or  x=e†

ln 2

1 2

y=0

y

x0

x=1
y=x

y=0

1

1

x
ln 2

0  x2
e y f �x, y� dx dyx

1
0  x1

y
 f �x, y� dx dy
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Exercises
1. 3. 5. 7.
9.
11. The region outside the circle and inside the cardioid

13. 15. 17. 19. 21.
23. 25. 27. 29. 176 31.
33. 35. (a) (b) (c)
37. (a) (b)
39.
41. 43. 0.0512 45. (a) (b) (c)
47. 49. 51. 0

Focus on Problem Solving � page 914
1. 30 3. 7. (b) 0.90

CHAPTER 13

Exercises 13.1 � page 922
1.

3.

5.

7. 9.

11. III 13. II 15. IV 17. III

z

y

0

x

z

y

0

x

y

x0

y

x0

y

1

0

_1

1 x_1_2

_2

1
2 sin 1

�ln 2x
1
0  x1�z

0  xsy
�sy f �x, y, z� dx dy dz

1
45

1
3

1
15���8� ln 5

ln(s2 � s3) � s2�3
�a 4h�10�0, 0, h�4�

Ix � 1
12 , Iy � 1

24 ( 1
3 , 8

15 )1
42ma 3�9

2
3

64
15��9632

3

81��541
30

1
40ln 3

2�e � 1��2
r � 1 � sin �

r � 1
x

�

0  x4
2  f �r cos �, r sin �� r dr d�

2
3

1
2 sin 14e 2 � 4e � 364.0

33. 35.
37. (a)

(b) , where

(c)

39. (a) (b) , where ,
,

(c)
41. 43. (a) (b) (c)
45.
47. The region bounded by the ellipsoid 

Exercises 12.8 � page 898
1. 3.

5. 7.
9. 0 11. 13.
15. 17. 19.
21. (a) (b) (0, 0, 2.1)
23. (a) (b)

25. 27.
29. 31.
33. (a) , where is the cone
(b) ft-lb

Exercises 12.9 � page 909
1. �14 3. 0 5.
7. The parallelogram with vertices (0, 0), (6, 3), (12, 1), (6, �2)
9. The region bounded by the line , the y-axis, and

11. 13. 15. 2 ln 3
17. (a) (b) 19.
21. 23.

Chapter 12 Review � page 911

True-False Quiz
1. True 3. True 5. False

e � e�13
2 sin 1

�
66

1251.083 � 1012 km34
3 �abc

6�11
3

y � sx
y � 1

2uvw

3.1 � 1019
Cxxx

C
 h�P�t�P� dV

136��998��35
5��6�2��3�[1 � (1�s2)], (0, 0, 3�[8(2 � s2)])

4K�a 5�15(0, 0, 3
8 a)

10�
4�(2 � s3)15��164��5

�Ka 2�8, �0, 0, 2a�3�2��5
384�x

��2
0  x3

0  x2
0  f �r cos �, r sin �, z� r dz dr d�

�9��4� (2 � s3)

64��3
x y

z

π
6

3

x 4 y4

z

4

x 2 � 2y 2 � 3z2 � 1
L3�8

1
5760

1
64

1
8Ix � Iy � Iz � 2

3 kL5
�68 � 15���240

z � �45� � 208���15�9� � 44��
y � 2�15� � 64���5�9� � 44��

x � 28��9� � 44��x, y, z �3
32 � �

11
24

x
1
�1 x

s1�y 2

�s1�y 2 x
4

4y 2�4z 2 �x 2 � y 2 ��x 2 � y 2 � z2 � dx dz dy

z � �1�m� x1
�1 x

s1�y 2

�s1�y 2 x
4

4y 2�4z 2 z�x 2 � y 2 � z2 � dx dz dy

y � �1�m� x1
�1 x

s1�y 2

�s1�y 2 x
4

4y 2�4z 2 y�x 2 � y 2 � z2 � dx dz dy

x � �1�m� x1
�1 x

s1�y 2

�s1�y 2 x
4

4y 2�4z 2 x�x 2 � y 2 � z2 � dx dz dy

�x, y, z �
m � x

1
�1 x

s1�y 2

�s1�y 2 x
4

4y 2�4z 2 �x 2 � y 2 � z2 � dx dz dy

a 5, �7a�12, 7a�12, 7a�12�79
30 , ( 358

553 , 33
79 , 571

553 )
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19.

21. (a) (b)

23. 25.
27. (a) ,

,
, where 

(b)
29. ,
31. 33. 35. 37.

Exercises 13.3 � page 943
1. 40 3.
5. Not conservative 7.
9. 11. (b) 16
13. (a) (b) 4

15. (a) (b) 77
17. (a) (b) 0
19. 21. 23. No 25. No
29. (a) Yes (b) Yes (c) Yes
31. (a) Yes (b) Yes (c) No

Exercises 13.4 � page 951
1. 6 3. 7. 9. 11. 13. 0
15. 17. 19.
21. (c) 23.

Exercises 13.5 � page 958
1. (a) (b)
3. (a) (b) 5. (a) 0 (b) 1
7. (a) Negative (b)
9. (a) Zero (b) curl F points in the negative -direction
11. 13.
15. Not conservative 17. No

Exercises 13.6 � page 969
1. 3. 5. 0
7. 9. 11. (33s33 � 17s17)�6s3�24171s14

900�8(1 � s2 � s3)  33.17

f �x, y, z� � x 2y � y 2z � Kf �x, y, z� � xyz � K
z

curl F � 0
yz�x 2 i � 3xy j � xz k

x � y � z�y i � z j � x k

( 1
3, 13 )9

2

3��8�
1

12� �
16
3 [(1�s2) � 1]

�24�1
3e � 12

3

8
325 sin 1 � 1

f �x, y, z� � xy 2 cos z
f �x, y, z� � xyz � z 2

f �x, y� � 1
4 x 4y 4

f �x, y� � ye x � x sin y � K
f �x, y� � x 2 cos y � y sin x � K

f �x, y� � 3x 2 � 5xy � 2y 2 � K

22 J1.67 � 104 ft-lb23
882� 2

Iy � k (���2� �
2
3 )Ix � k(���2� �

4
3 )

2s13 k�, �0, 0, 3��
m � xC  �x, y, z� dsz � �1�m� xC z �x, y, z� ds

y � �1�m� xC y �x, y, z� ds

x � �1�m� xC x �x, y, z� ds

2�k, �4��, 0�945
16,777,216 �

1.6

�0.2

0 1.6

F(r(1))

F(r(0))

F ”r ”        ’’
1

œ„2

11
8 � 1�e

2.5

�2.5

�2.5 2.5

3� �
2
3

19. The line 

21.

23.

25.

27.

29. IV 31. II
33. (a) (b)

Exercises 13.2 � page 934
1. 3. 1638.4 5. 7. 320
9. 11.
13. (a) Positive (b) Negative 15.
17. 6

5 � cos 1 � sin 1
�

59
105

77
6s14 �e 6 � 1��12

17
3(17s17 � 1)�12

y � C�x

y � 1�x, x � 0y

x0

6

6�6

�6

y

2

0

_2

2 x_2_4

_4

4

4

6

_6 6

8

" f �x, y� �  �y � 2� i � x j

�
y

sx 2 � y 2 � z2
 j �

z

sx 2 � y 2 � z2
 k

∇ f �x, y, z� �
x

sx 2 � y 2 � z2
 i

∇ f �x, y� �
1

x � 2y
 i �

2

x � 2y
 j

y � 2x4.5

�4.5

�4.5 4.5
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15. 17.

19. 21.

23. 25.

27. 29. (a)
(b) 31.
33. 35. 37.
39. 41.

Exercises B � page A16
1. 5 3.
7. 9.

11. 13. 15.
17. 19. 21.
23.
25. , 27. ,

29. 31. 33.

35.

37. 39.
41. 45. y � x � 3�1, �2�

�2, �5�, 4�x � 3�2 � �y � 1�2 � 25

0

y

x

y=1-2x

y=1+x

�0, 1�

0

y

x

x � 2

y � 4

0

y

x_2 20

y

x

0 x

y

_3

0 x

y

b � �3m � 3
4b � 0m � �

1
3

y � 5
2 x �

1
2

y � �
1
2 x �

11
2y � 5y � 3x � 3

y � 3x � 2y � �5x � 11y � 6x � 15

0 x

y

xy=0

0 3 x

y

x=3

�
9
2

x � �a � b�c��ab��1.3, 1.7�
���, �7� � ��3, ���3, 5���3, 3�
2, � 4

3�30 
C � T � 20 
C
T � 20 � 10h, 0 � h � 1210 � C � 35

0 1
4

_1 10

���, 0� � ( 1
4, �)��1, 0� � �1, ��

0 1_œ„3 0 œ„3

���, 1�(�s3, s3)

1 20 1

���, 1� � �2, ���0, 1�13. 15. 17. 19.
21. 23. 25. 0 27. 48 29. 3.4895
31. ,
where projection on -plane
33.
35. (a) (b)
37. 39. 41.

Exercises 13.7 � page 975
3. 0 5. 0 7. �1 9.
11. (a) (b)

(c) ,
,

17. 16

Exercises 13.8 � page 982
1. Negative at , positive at 7. 2 9.
11. 0 13. 15.
17.

Chapter 13 Review � page 985

True-False Quiz
1. False 3. True 5. False 7. True

Exercises
1. (a) Negative (b) Positive 3. 5.
7. 9. 5 11. 13. 0
17. 25. 27.
31. 35. 37. 21

APPENDIXES

Exercises A � page A6
1. 18 3. 5.

7. 9.

11. 13.

0_10_2

��1, ����2, ��

x 2 � 1� x � 1 � � 
x � 1

�x � 1

for x � �1

for x � �1

2 � x5 � s5

�4�
1
2

�64��3�(391s17 � 1)�60�8�
f �x, y� � e y � xe xy17

2

��4s5

13��20
341s2�60 �

81
20 arcsin(s3�3)12��5

9��2P2P1

0 � t � 2�
z � 1 � 3�cos t � sin t�

_2

0

2

4

_2 0 2 2
0

_2

z

y x

x � 3 cos t, y � 3 sin t

�2

5

0

�5

z

0
y

2
�2 2

0
x

81��2
�4�

1248�8�a 3�0�3194,400�
4329s2��5Iz � xxS �x 2 � y 2 � �x, y, z� dS

�0, 0, a�2�
xzD �

xxS F � dS � xxD �P��h��x� � Q � R��h��z�� dA
108��

1
6

713
18016�16��s2�4
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9. 11.

13. 15. 17. 19.

21. 80 23. 3276 25. 0 27. 61 29.
31. 33.
35.
41. (a) (b) (c) (d)

43. 45. 14 49.

Exercises G � page A57

1. 3.

5. 7.

9.

11.

13. 15.

17.

19.

21.
23.

25.

27.
29.
31. , where 

33. (a) 

(b)

The CAS omits the absolute value signs and the constant of 
integration.

Exercises H.1 � page A66

1. (a) (b)

�2, 5��4�, ��2, 9��4��1, 5��2�, ��1, 3��2�

π
4

”_2,    ’
π
4

O

”1,    ’
π
2

75,772

260,015s19
 tan�1 

2x � 1

s19
� C

11,049

260,015
 ln�x 2 � x � 5� �

3146

80,155
 ln � 3x � 7 � �

4822

4879
 ln � 5x � 2 � �

334

323
 ln � 2x � 1 � �

1

260,015
 
22,098x � 48,935

x 2 � x � 5

24,110

4879
 

1

5x � 2
�

668

323
 

1

2x � 1
�

9438

80,155
 

1

3x � 7
�

C  10.23t � �ln P �
1
9 ln�0.9P � 900� � C

�
1
2  ln 3  �0.55

1
2 ln�t 2 � 1� �

1
2 ln�t 2 � 2� � (1�s2) tan�1(t�s2) � C

1
3 ln � x � 1 � �

1
6 ln�x 2 � x � 1� �

1

s3
 tan�1 

2x � 1

s3
� C

ln�x � 1�2 � ln sx 2 � 1 � 3 tan�1x � C
ln s3 � (s3��18)

�
1

36
 ln � x � 5 � �

1

6
 

1

x � 5
�

1

36
 ln � x � 1 � � C

27
5  ln 2 �

9
5 ln 3 (or 95 ln 83)

2 ln 2 �
1
2ln 3 � 3 ln 6 � 3 ln 4 � ln 81

8

1
2 x 2 � 2x � 6 ln � x � 2 � � C

A

x
�

B

x 2 �
Cx � D

x 2 � x � 2

A

x
�

Bx � C

x 2 � 2
1 �

A

x � 1
�

B

x � 1

A

x
�

B

x 2 �
C

x 3 �
D

x � 1

A

2x � 1
�

B

x � 2

2n�1 � n 2 � n � 21
3

an � a0
97

3005100 � 1n 4

n�n 3 � 2n 2 � n � 10��4
n�n 2 � 6n � 11��3n�n 2 � 6n � 17��3

n�n � 1�

�
n

i�1
 x i�

5

i�0
 2 i�

n

i�1
 2i�

19

i�1
 

i

i � 1

�
10

i�1
 i1 � 1 � 1 � 1 � � � � � ��1�n�1

53.

Exercises C � page A27
1. (a) (b) 3. (a) (b)
5. 7.
9. (a) (b)

11. , , ,
, ,

13. , , , ,
15. 5.73576 cm 17. 24.62147 cm 27.
29. 31.
33. and 
35.
37.

39.

41. (a) (b) 43. (a) (b)

47. (a) (b)

Exercises D � page A37
1. (or any smaller positive number)
3. 0.6875 (or any smaller positive number)
5. 0.11, 0.012 (or smaller positive numbers)
11. (a) (b) Within approximately 0.0445 cm
(c) Radius; area; ; 1000; 5; 
13. 15. (a) 17 (a) 0 (b) 9, 11

Exercises F � page A48

1. 3.

5. 7. 110 � 210 � 310 � � � � � n10�1 �
1
3 �

3
5 �

5
7 �

7
9

34 � 35 � 36
s1 � s2 � s3 � s4 � s5

x � 100N � 13
 0.0445s1000��

s1000�� cm

4
7

����2, ��2�[� 2
3 , 0]

���40.7���4��6

y

0 x3π
2

2πππ
2

5π
2

3π

y

0 x

11
2

π
3

5π
6

0 � x � ��4, 3��4 � x � 5��4, 7��4 � x � 2�
5��6 � x � 2�0 � x � ��6
��6, ��2, 5��6, 3��2��3, 5��3

(4 � 6s2)�15
cot � � 4

3sec � � 5
4csc � � 5

3tan � � 3
4cos � � 4

5

cot�3��4� � �1sec�3��4� � �s2csc�3��4� � s2
tan�3��4� � �1cos�3��4� � �1�s2sin�3��4� � 1�s2

0
x

y

_
3π
4

0 x

y

315°

2
3 rad � �120���
3� cm

�67.5
720
��207��6

0 x

y

1

5
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27. 29.

31. 33.

35. 37.

39. (a) For , the loop begins at and
ends at ; for , it begins at

and ends at .
41. 43.
45. Horizontal at , ; 
vertical at 
47. Horizontal at , , and the pole;
vertical at (2, 0), ,
49. Center , radius 
51. 53.

55. By counterclockwise rotation through angle , , or 
about the origin
57. (a) A rose with n loops if n is odd and 2n loops if n is even
(b) Number of loops is always 2n
59. For , the curve is an oval, which develops a dim-
ple as . When , the curve splits into two parts, one
of which has a loop.

Exercises H.2 � page A72
1. 3. 5. 7. 41��4� 3�6��12 � s3�8� 2�64

a � 1a l1�

0 � a � 1

��3��6

_3 3

_2.5

3.5

_3.4 1.8

_2.6

2.6

sa 2 � b 2�2�b�2, a�2�
( 1

2, 4��3)( 1
2, 2��3)

( 3
2, 5��3)( 3

2, ��3)
�3, 0�, �0, ��2�

(�3�s2, 3��4)(3�s2, ��4)
�11�s3

� � 2� � sin�1�1�c�� � � � sin�1�1�c�
c � 1� � � � sin�1��1�c�

� � sin�1��1�c�c � �1

(2, 0) (6, 0)

O 1

1

2

¨=π
4¨=π

8

O

(c)

3. (a) (b)

(c)

5. (a) (i) (ii)
(b) (i) (ii)

7. 9.

11.

13. 15.
17. 19.
21. (a) (b)

23. 25.

O

”1,    ’
π
2

O

(5, 0)

x � 3� � ��6
r � 5r sin � � 5

�x 2 � y 2 �2 � 2xyx 2 � (y �
3
2 )2 � ( 3

2 )2

O

r=2
r=3

¨=7π
3

¨=5π
3

O

r=2

O

r � 1

��4, 5��6��4, 11��6�
(�s2, 5��4)(s2, ��4)

(�1
2, �s3�2)π

3

”_1,    ’
π
3

��2, 2��0, 3�

O

”2œ„2,      ’
3π
4

3π
4

O

”3,    ’
π
2

π
2

�3, 2 � 2��, ��3, 2 � ��

2

(3, 2)

O
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Exercises I � page A81
1. 3. 5. 7.
9. 11. 13. 15.
17. 19. 21.

23. 25.

27.

29. ,

31. ,
,

33. 35.
37. 39.

41. i 43. 45.
47. ,
sin 3� � 3 cos2� sin � � sin3�

cos 3� � cos3� � 3 cos � sin2�
�e 2(�1�s2) � (1�s2)i

0

Im

Re

_i

0

Im

Re

i

1

	(s3�2) �
1
2 i, �i	1, 	i, (1�s2)�	1 	 i �

�512s3 � 512i�1024

1
4 �cos���6� � i sin���6��(2s2)�cos�13��12� � i sin�13��12��

4s2 �cos�7��12� � i sin�7��12��

1
2 �cos����6� � i sin����6��

4�cos���2� � i sin���2��, cos����6� � i sin����6�
5[cos(tan�1 (4

3)) � i sin(tan�1 (4
3))]

3s2 �cos�3��4� � i sin�3��4���
1
2 	 (s7�2)i

4 	 i	
3
2 i4i, 4

3 � 4i, 55i�i1
2 �

1
2 i

�
1
2 �

1
2 i12 � 7i13 � i10 � i

9. 4 

11. 13.

15. 17. 19.
21. 23. 25.
27. 29. , and the pole

31. , and the pole
33. Intersection at , 2.25; area 35.
37. 39. 2.4228

3 ��� 2 � 1�3�2 � 1�
15��4 3.46�  0.89

(s3�2, ��3), (s3�2, 2��3)
( 1

2, ��3), ( 1
2 , 5��3)(� � 3s3)�4

���2� � 1�� � 2��8�

�4��3� � 2s3� � (3s3�2)��8

3.1

_3.1

_3.1 3.1

O

9��233��2

O
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REF ERENCE PAGES

ALGEBRA  � � � � � � � � � � � � � �

ARITHMETIC  OPERATIONS

EXPONENTS AND RADICALS

FACTORING SPECIAL  POLYNOMIALS

BINOMIAL THEOREM

where 

QUADRATIC FORMULA

If , then .

INEQUALIT IES  AND ABSOLUTE VALUE

If and , then .

If , then .

If and , then .

If and , then .

If , then

means or

means

means or

GEOMETRY  � � � � � � � � � � � � �

GEOMETRIC FORMULAS

Formulas for area A, circumference C, and volume V:

Triangle Circle Sector of Circle

Sphere Cylinder Cone

DISTANCE AND MIDPOINT FORMULAS

Distance between and :

Midpoint of :

L INES

Slope of line through and :

Point-slope equation of line through with slope m:

Slope-intercept equation of line with slope m and y-intercept b:

CIRCLES

Equation of the circle with center and radius r:

�x � h�2 � �y � k�2 � r 2

�h, k�

y � mx � b

y � y1 � m�x � x1�

P1�x1, y1�

m �
y2 � y1

x2 � x1

P2�x2, y2�P1�x1, y1�

� x1 � x2

2
, 

y1 � y2

2 �P1P2

d � s�x2 � x1�2 � �y2 � y1�2

P2�x2, y2�P1�x1, y1�

h

r

r

h
r

 A � 4�r 2

V � 1
3 �r 2hV � �r 2h V � 4

3 �r 3

r

r

r s

¨
¨

a
h

b

 s � r� �� in radians� C � 2�r � 1
2 ab sin �

 A � 1
2 r 2� A � �r 2 A � 1

2 bh

x � �ax � a� x � � a

�a � x � a� x � � a

x � �ax � a� x � � a

a � 0

ca � cbc � 0a � b

ca � cbc � 0a � b

a � c � b � ca � b

a � cb � ca � b

x �
�b � sb 2 � 4ac

2a
ax 2 � bx � c � 0

�n

k� �
n�n � 1� � � � �n � k � 1�

1 � 2 � 3 � � � � � k

� � � � � �n

k�x n�kyk � � � � � nxyn�1 � yn

�x � y�n � x n � nx n�1y �
n�n � 1�

2
 x n�2y2

�x � y�3 � x 3 � 3x 2y � 3xy2 � y3

�x � y�3 � x 3 � 3x 2y � 3xy2 � y3

�x � y�2 � x 2 � 2xy � y2�x � y�2 � x 2 � 2xy � y2

x 3 � y3 � �x � y��x 2 � xy � y2�

x 3 � y3 � �x � y��x 2 � xy � y2�

x 2 � y2 � �x � y��x � y�

n�x

y
�

s
n x

s
n y

s
n xy � s

n xs
n y

x m�n � s
n x m � (sn x )mx 1�n � s

n x

� x

y�n

�
x n

yn�xy�n � x nyn

x�n �
1

x n�x m�n � x mn

x m

x n � x m�nx mx n � x m�n

a

b

c

d

�
a

b
	

d

c
�

ad

bc

a � c

b
�

a

b
�

c

b

a

b
�

c

d
�

ad � bc

bd
a�b � c� � ab � ac

1



REF ERENCE PAGES

2

ANGLE MEASUREMENT

RIGHT ANGLE TRIGONOMETRY

TRIGONOMETRIC FUNCTIONS

GRAPHS OF THE TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS OF IMPORTANT ANGLES

radians

0 0 1 0

1

1 0 —��290


s31�2s3�2��360


s2�2s2�2��445


s3�3s3�21�2��630


0


tan �cos �sin ��

π 2π x

y y=cot x

x

1

_1

y

π 2π

y=sec xy=csc x

π 2π x

y

1

_1

x

y

π

2π

y=tan x

y=cos x

π 2π x

y

1

_1

y=sin x

x

y

1

_1

π 2π

 cot � �
x

y
 tan � �

y

x

 sec � �
r

x
 cos � �

x

r

(x, y)
r

¨

x

y csc � �
r

y
 sin � �

y

r

 cot � �
adj

opp
 tan � �

opp

adj

 sec � �
hyp

adj
 cos � �

adj

hyp
¨

opp

adj

hyp csc � �
hyp

opp
 sin � �

opp

hyp

�� in radians�

s � r�

1 rad �
180


�
1
 �

�

180
 rad

r

r

¨

s
� radians � 180


TR IGONOMETRY  � � � � � � � � � � � � � � � � � � � � � �

FUNDAMENTAL IDENTIT IES

THE LAW OF S INES

THE LAW OF COSINES

ADDITION AND SUBTRACTION FORMULAS

DOUBLE-ANGLE FORMULAS

HALF-ANGLE FORMULAS

cos2x �
1 � cos 2x

2
sin2x �

1 � cos 2x

2

tan 2x �
2 tan x

1 � tan2x

cos 2x � cos2x � sin2x � 2 cos2x � 1 � 1 � 2 sin2x

sin 2x � 2 sin x cos x

tan�x � y� �
tan x � tan y

1 � tan x tan y

tan�x � y� �
tan x � tan y

1 � tan x tan y

cos�x � y� � cos x cos y � sin x sin y

cos�x � y� � cos x cos y � sin x sin y

sin�x � y� � sin x cos y � cos x sin y

sin�x � y� � sin x cos y � cos x sin y

c 2 � a 2 � b 2 � 2ab cos C

b 2 � a 2 � c 2 � 2ac cos B

a 2 � b 2 � c 2 � 2bc cos A

A

b

c

a

B

C

sin A

a
�

sin B

b
�

sin C

c

tan��

2
� �� � cot �cos��

2
� �� � sin �

sin��

2
� �� � cos �tan���� � �tan �

cos���� � cos �sin���� � �sin �

1 � cot 2� � csc 2�1 � tan2� � sec 2�

sin2� � cos2� � 1cot � �
1

tan �

cot � �
cos �

sin �
tan � �

sin �

cos �

sec � �
1

cos �
csc � �

1

sin �



3

D I F F ERENT IAT ION  RULES  � � � � � � � � � � � � � � � � � � �

GENERAL FORMULAS

1. 2.

3. 4.

5. (Product Rule) 6. (Quotient Rule)

7. (Chain Rule) 8. (Power Rule)

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

9. 10.

11. 12.

TRIGONOMETRIC FUNCTIONS

13. 14. 15.

16. 17. 18.

INVERSE TRIGONOMETRIC FUNCTIONS

18. 20. 21.

22. 23. 24.

HYPERBOLIC  FUNCTIONS

25. 26. 27.

28. 29. 30.

INVERSE HYPERBOLIC  FUNCTIONS

31. 32. 33.

34. 35. 36.
d

dx
 �coth�1x� �

1

1 � x 2

d

dx
 �sech�1x� � �

1

xs1 � x 2

d

dx
 �csch�1x� � �

1

� x �sx 2 � 1

d

dx
 �tanh�1x� �

1

1 � x 2

d

dx
 �cosh�1x� �

1

sx 2 � 1

d

dx
 �sinh�1x� �

1

s1 � x 2

d

dx
 �coth x� � �csch2x

d

dx
 �sech x� � �sech x tanh x

d

dx
 �csch x� � �csch x coth x

d

dx
 �tanh x� � sech2x

d

dx
 �cosh x� � sinh x

d

dx
 �sinh x� � cosh x

d

dx
 �cot�1x� � �

1

1 � x 2

d

dx
 �sec�1x� �

1

xsx 2 � 1

d

dx
 �csc�1x� � �

1

xsx 2 � 1

d

dx
 �tan�1x� �

1

1 � x 2

d

dx
 �cos�1x� � �

1

s1 � x 2

d

dx
 �sin�1x� �

1

s1 � x 2

d

dx
 �cot x� � �csc2x

d

dx
 �sec x� � sec x tan x

d

dx
 �csc x� � �csc x cot x

d

dx
 �tan x� � sec2x

d

dx
 �cos x� � �sin x

d

dx
 �sin x� � cos x

d

dx
 �loga x� �

1

x ln a

d

dx
 ln � x � �

1

x

d

dx
 �a x � � a x ln a

d

dx
 �e x � � e x

d

dx
 �x n � � nx n�1d

dx
 f �t�x�� � f ��t�x��t��x�

d

dx
 �  f �x�

t�x� 	 �
t�x�f ��x� � f �x�t��x�


t�x��2

d

dx
 
 f �x�t�x�� � f �x�t��x� � t�x�f ��x�

d

dx
 
 f �x� � t�x�� � f ��x� � t��x�

d

dx
 
 f �x� � t�x�� � f ��x� � t��x�

d

dx
 
cf �x�� � c f ��x�

d

dx
 �c� � 0
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REF ERENCE PAGES

4

BASIC  FORMS

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

FORMS INVOLVING 

21.

22.

23.

24.

25.

26.

27.

28.

29. y 
du

�a 2 � u 2�3�2 �
u

a 2
sa 2 � u 2

� C

y 
du

u 2
sa 2 � u 2

� �
sa 2 � u 2

a 2u
� C

y 
du

usa 2 � u 2
� �

1

a
 ln � sa 2 � u 2 � a

u � � C

y 
u 2 du

sa 2 � u 2
�

u

2
 sa 2 � u 2 �

a 2

2
 ln(u � sa 2 � u 2 ) � C

y 
du

sa 2 � u 2
� ln(u � sa 2 � u 2 ) � C

y 
sa 2 � u 2

u 2  du � �
sa 2 � u 2

u
� ln(u � sa 2 � u 2 ) � C

y 
sa 2 � u 2

u
 du � sa 2 � u 2 � a ln � a � sa 2 � u 2

u � � C

y u 2 sa 2 � u 2 du �
u

8
 �a 2 � 2u 2� sa 2 � u 2 �

a 4

8
 ln(u � sa 2 � u 2 ) � C

y sa 2 � u 2 du �
u

2
 sa 2 � u 2 �

a 2

2
 ln(u � sa 2 � u 2 ) � C

sa 2 � u 2,  a � 0

y sec u tan u du � sec u � C

y csc2u du � �cot u � C

y sec2u du � tan u � C

y cos u du � sin u � C

y sin u du � �cos u � C

y a u du �
a u

ln a
 � C

y e u du � e u � C

y 
du

u
� ln � u � � C

n � �1y u n du �
u n�1

n � 1
 � C,

y u dv � uv � y v du
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20. y 
du

u 2 � a 2 �
1

2a
 ln � u � a

u � a � � C

y 
du

a 2 � u 2 �
1

2a
 ln � u � a

u � a � � C

y 
du

usu 2 � a 2
�

1

a
 sec�1 

u

a
� C

y 
du

a 2 � u 2 �
1

a
 tan�1 

u

a
� C

y 
du

sa 2 � u 2
� sin�1 

u

a
� C

y csc u du � ln � csc u � cot u � � C

y sec u du � ln � sec u � tan u � � C

y cot u du � ln � sin u � � C

y tan u du � ln � sec u � � C

y csc u cot u du � �csc u � C
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30.

31.

32.

33.

34.

35.

36.

37.

38.

FORMS INVOLVING 

39.

40.

41.

42.

43.

44.

45.

46. y 
du

�u 2 � a 2�3�2 � �
u

a 2
su 2 � a 2

� C

y 
du

u 2
su 2 � a 2

�
su 2 � a 2

a 2u
� C

y 
u 2 du

su 2 � a 2
�

u

2
 su 2 � a 2 �

a 2

2
 ln � u � su 2 � a 2 � � C

y 
du

su 2 � a 2
� ln � u � su 2 � a 2 � � C

y 
su 2 � a 2

u 2  du � �
su 2 � a 2

u
� ln � u � su 2 � a 2 � � C

y 
su 2 � a 2

u
 du � su 2 � a 2 � a cos�1 

a

� u � � C

y u 2
su 2 � a 2 du �

u

8
 �2u 2 � a 2� su 2 � a 2 �

a 4

8
 ln � u � su 2 � a 2 � � C

y su 2 � a 2 du �
u

2
 su 2 � a 2 �

a 2

2
 ln � u � su 2 � a 2 � � C

su 2 � a 2, a � 0

y 
du

�a 2 � u 2�3�2 �
u

a 2
sa 2 � u 2

� C

�
3a 4

8
 sin�1 

u

a
� Cy �a 2 � u 2�3�2 du � �

u

8
 �2u 2 � 5a 2�sa 2 � u 2

y 
du

u 2
sa 2 � u 2

� �
1

a 2u
 sa 2 � u 2 � C

y 
du

usa 2 � u 2
� �

1

a
 ln � a � sa 2 � u 2

u � � C

y 
u 2 du

sa 2 � u 2
� �

u

2
 sa 2 � u 2 �

a 2

2
 sin�1 

u

a
� C

y 
sa 2 � u 2

u 2  du � �
1

u
 sa 2 � u 2 � sin�1 

u

a
� C

y 
sa 2 � u 2

u
 du � sa 2 � u 2 � a ln � a � sa 2 � u 2

u � � C

y u 2
sa 2 � u 2 du �

u

8
 �2u 2 � a 2� sa 2 � u 2 �

a 4

8
 sin�1 

u

a
� C

y sa 2 � u 2 du �
u

2
 sa 2 � u 2 �

a 2

2
 sin�1 

u

a
� C

sa 2 � u 2,  a � 0

TABL E  OF  INT EGRALS
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47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62. y 
du

u n
sa � bu

� �
sa � bu

a�n � 1�u n�1 �
b�2n � 3�
2a�n � 1�

 y 
du

u n�1
sa � bu

y 
u n du

sa � bu
�

2u n
sa � bu

b�2n � 1�
�

2na

b�2n � 1�
 y 

u n�1 du

sa � bu

�
2

b�2n � 3�
 �u n�a � bu�3�2 � na y u n�1 sa � bu du	y u n

sa � bu du

y 
sa � bu

u 2  du � �
sa � bu

u
�

b

2
 y 

du

usa � bu

y 
sa � bu

u
 du � 2sa � bu � a y 

du

usa � bu

 �
2

s�a
 tan�1�a � bu

�a
� C,  if a � 0

 y 
du

usa � bu
�

1

sa
 ln � sa � bu � sa

sa � bu � sa
� � C, if a � 0

y 
u 2 du

sa � bu
�

2

15b 3  �8a 2 � 3b 2u 2 � 4abu�sa � bu � C

y 
u du

sa � bu
�

2

3b 2  �bu � 2a�sa � bu � C

y usa � bu du �
2

15b 2  �3bu � 2a��a � bu�3�2 � C

y 
u 2 du

�a � bu�2 �
1

b 3  �a � bu �
a 2

a � bu
� 2a ln � a � bu �� � C

y 
du

u�a � bu�2 �
1

a�a � bu�
�

1

a 2  ln � a � bu

u � � C

y 
u du

�a � bu�2 �
a

b 2�a � bu�
�

1

b 2  ln � a � bu � � C

y 
du

u 2�a � bu�
� �

1

au
�

b

a 2  ln � a � bu

u � � C

y 
du

u�a � bu�
�

1

a
 ln � u

a � bu � � C

y 
u 2 du

a � bu
�

1

2b 3  [�a � bu�2 � 4a�a � bu� � 2a 2 ln � a � bu �] � C

y 
u du

a � bu
�

1

b 2  (a � bu � a ln � a � bu �) � C

a � bu
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63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

INVERSE TRIGONOMETRIC FORMS

87.

88.

89.

90.

91. y u cos�1u du �
2u 2 � 1

4
 cos�1u �

us1 � u 2

4
� C

y u sin�1u du �
2u 2 � 1

4
 sin�1u �

us1 � u 2

4
� C

y tan�1u du � u tan�1u �
1
2 ln�1 � u 2� � C

y cos�1u du � u cos�1u � s1 � u 2 � C

y sin�1u du � u sin�1u � s1 � u 2 � C

y tannu du �
1

n � 1
 tann�1u � y tann�2u du

y cosnu du �
1

n
 cosn�1u sin u �

n � 1

n
 y cosn�2u du

y sinnu du � �
1

n
 sinn�1u cos u �

n � 1

n
 y sinn�2u du

y csc3u du � �
1
2 csc u cot u �

1
2 ln � csc u � cot u � � C

y sec3u du � 1
2 sec u tan u �

1
2 ln � sec u � tan u � � C

y cot3u du � �
1
2 cot2u � ln � sin u � � C

y tan3u du � 1
2 tan2u � ln � cos u � � C

y cos3u du � 1
3 �2 � cos2u� sin u � C

y sin3u du � �
1
3 �2 � sin2u� cos u � C

y cot2u du � �cot u � u � C

y tan2u du � tan u � u � C

y cos2u du � 1
2 u �

1
4 sin 2u � C

y sin2u du � 1
2 u �

1
4 sin 2u � C 76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

 �
sinn�1u cosm�1u

n � m
�

m � 1

n � m
 y sinnu cosm�2u du

 y sinnu cosmu du � �
sinn�1u cosm�1u

n � m
�

n � 1

n � m
 y sinn�2u cosmu du

y u n cos u du � u n sin u � n y u n�1 sin u du

y u n sin u du � �u n cos u � n y u n�1 cos u du

y u cos u du � cos u � u sin u � C

y u sin u du � sin u � u cos u � C

y sin au cos bu du � �
cos�a � b�u

2�a � b�
�

cos�a � b�u
2�a � b�

� C

y cos au cos bu du �
sin�a � b�u

2�a � b�
�

sin�a � b�u
2�a � b�

� C

y sin au sin bu du �
sin�a � b�u

2�a � b�
�

sin�a � b�u
2�a � b�

� C

y cscnu du �
�1

n � 1
 cot u cscn�2u �

n � 2

n � 1
 y cscn�2u du

y secnu du �
1

n � 1
 tan u secn�2u �

n � 2

n � 1
 y secn�2u du

y cot nu du �
�1

n � 1
 cot n�1u � y cot n�2u du

92.

93.

94.

95. y u n tan�1u du �
1

n � 1
 �u n�1 tan�1u � y 

u n�1 du

1 � u 2 	, n � �1

y u n cos�1u du �
1

n � 1
 �u n�1 cos�1u � y 

u n�1 du

s1 � u 2
	, n � �1

y u n sin�1u du �
1

n � 1
 �u n�1 sin�1u � y 

u n�1 du

s1 � u 2
	, n � �1

y u tan�1u du �
u 2 � 1

2
 tan�1u �

u

2
� C

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ✍TABL E  OF  INT EGRALS
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EXPONENTIAL AND LOGARITHMIC FORMS

96.

97.

98.

99.

HYPERBOLIC  FORMS

103.

104.

105.

106.

107.

FORMS INVOLVING 

113.

114.

115.

116.

117.

118.

119.

120. y 
du

us2au � u 2
� �

s2au � u 2

au
� C

y 
u2 du

s2au � u 2
� �

�u � 3a�
2

 s2au � u 2 �
3a 2

2
 cos�1�a � u

a � � C

y 
u du

s2au � u 2
� �s2au � u 2 � a cos�1�a � u

a � � C

y 
du

s2au � u 2
� cos�1�a � u

a � � C

y 
s2au � u 2

u 2  du � �
2s2au � u 2

u
� cos�1�a � u

a � � C

y 
s2au � u 2

u
 du � s2au � u 2 � a cos�1�a � u

a � � C

y us2au � u 2 du �
2u 2 � au � 3a 2

6
 s2au � u 2 �

a 3

2
 cos�1�a � u

a � � C

y s2au � u 2 du �
u � a

2
 s2au � u 2 �

a 2

2
 cos�1�a � u

a � � C

s2au � u2,  a � 0

y sech u du � tan�1 � sinh u � � C

y coth u du � ln � sinh u � � C

y tanh u du � ln cosh u � C

y cosh u du � sinh u � C

y sinh u du � cosh u � C

y eau cos bu du �
eau

a 2 � b2  �a cos bu � b sin bu� � C

y eau sin bu du �
eau

a 2 � b 2  �a sin bu � b cos bu� � C

y u neau du �
1

a
 u neau �

n

a
 y u n�1eau du

y ueau du �
1

a 2  �au � 1�eau � C

108.

109.

110.

111.

112. y csch u coth u du � �csch u � C

y sech u tanh u du � �sech u � C

y csch2u du � �coth u � C

y sech2u du � tanh u � C

y csch u du � ln � tanh 1
2 u � � C
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100.

101.

102. y 
1

u ln u
 du � ln � ln u � � C

y u n ln u du �
u n�1

�n � 1�2  
�n � 1� ln u � 1� � C

y ln u du � u ln u � u � C


