


“master” — 2012/7/28 — 0:02 — page i — #1
i

i

i

i

i

i

i

i

Counterexamples

in

Calculus



“master” — 2012/7/28 — 0:02 — page ii — #2
i

i

i

i

i

i

i

i

Originally published by Maths Press, New Zealand in 2004. ISBN: 0-476-01215-5.

c 2010 by the Mathematical Association of America, Inc.

Library of Congress Catalog Card Number 2009940147

Print ISBN 978-0-88385-765-6

Electronic ISBN 978-1-61444-109-0

Printed in the United States of America

Current Printing (last digit):

10 9 8 7 6 5 4 3 2 1



“master” — 2012/7/28 — 0:02 — page iii — #3
i

i

i

i

i

i

i

i

Counterexamples

in

Calculus

Sergiy Klymchuk

Auckland University of Technology

®

Published and Distributed by

The Mathematical Association of America



“master” — 2012/7/28 — 0:02 — page iv — #4
i

i

i

i

i

i

i

i

Council on Publications

Paul Zorn, Chair

Classroom Resource Materials Editorial Board

Gerald M. Bryce, Editor

William C. Bauldry

Diane L. Herrmann

Loren D. Pitt

Wayne Roberts

Susan G. Staples

Philip D. Straffin

Holly S. Zullo



“master” — 2012/7/28 — 0:02 — page v — #5
i

i

i

i

i

i

i

i

CLASSROOM RESOURCE MATERIALS

Classroom Resource Materials is intended to provide supplementary class-

room material for students—laboratory exercises, projects, historical in-

formation, textbooks with unusual approaches for presenting mathematical

ideas, career information, etc.

101 Careers in Mathematics, 2nd edition edited by Andrew Sterrett

Archimedes: What Did He Do Besides Cry Eureka?, Sherman Stein

The Calculus Collection: A Resource for AP and Beyond,edited by Caren L. Diefend-

erfer and Roger B. Nelsen

Calculus Mysteries and Thrillers, R. Grant Woods

Conjecture and Proof, Miklós Laczkovich

Counterexamples in Calculus, Sergiy Klymchuk

Creative Mathematics, H. S. Wall

Environmental Mathematics in the Classroom, edited by B. A. Fusaro and P. C.

Kenschaft

Exploratory Examples for Real Analysis, Joanne E. Snow and Kirk E. Weller

Geometry From Africa: Mathematical and Educational Explorations, Paulus Gerdes

Historical Modules for the Teaching and Learning of Mathematics (CD), edited by

Victor Katz and Karen Dee Michalowicz

Identification Numbers and Check Digit Schemes, Joseph Kirtland

Interdisciplinary Lively Application Projects, edited by Chris Arney

Inverse Problems: Activities for Undergraduates, Charles W. Groetsch

Laboratory Experiences in Group Theory, Ellen Maycock Parker

Learn from the Masters, Frank Swetz, John Fauvel, Otto Bekken, Bengt Johansson,

and Victor Katz

Math Made Visual: Creating Images for Understanding Mathematics, Claudi Alsina

and Roger B. Nelsen

Ordinary Differential Equations: A Brief Eclectic Tour, David A. Sánchez

Oval Track and Other Permutation Puzzles, John O. Kiltinen

A Primer of Abstract Mathematics, Robert B. Ash

Proofs Without Words, Roger B. Nelsen

Proofs Without Words II, Roger B. Nelsen

She Does Math!, edited by Marla Parker

Solve This: Math Activities for Students and Clubs, James S. Tanton

Student Manual for Mathematics for Business Decisions Part 1: Probability and

Simulation, David Williamson, Marilou Mendel, Julie Tarr, and Deborah Yoklic

Student Manual for Mathematics for Business Decisions Part 2: Calculus and Op-

timization, David Williamson, Marilou Mendel, Julie Tarr, and Deborah Yoklic



“master” — 2012/7/28 — 0:02 — page vi — #6
i

i

i

i

i

i

i

i

Teaching Statistics Using Baseball, Jim Albert

Visual Group Theory, Nathan C. Carter

Writing Projects for Mathematics Courses: Crushed Clowns, Cars, and Coffee to

Go, Annalisa Crannell, Gavin LaRose, Thomas Ratliff, Elyn Rykken

MAA Service Center

P.O. Box 91112

Washington, DC 20090-1112

1-800-331-1MAA FAX: 1-301-206-9789



“master” — 2012/7/28 — 0:02 — page vii — #7
i

i

i

i

i

i

i

i

Foreword

This book offers to students and teachers who know that there is more to

learning calculus than solving problems mechanically, a welcome and re-

freshing antidote to rote learning. It is consistent with views I have put for-

ward with A. Watson in Mathematics as a Constructive Activity: The Role of

Learner-Generated Examples (Mahwah: Erlbaum, 2005). Mathematics is a

constructive activity, and a central aspect of learning mathematics is enrich-

ing the space of examples that come to mind when one encounters a tech-

nical term. The care and precision needed for using and doing mathematics

require access to a wide range of “familiar” and “pathological” examples.

Students who use mathematics in other disciplines often have a cavalier

attitude toward conditions and constraints. Desperate to complete a task,

they pay scant regard to conditions that are necessary for applying a theo-

rem or technique. Teachers can instill in these students a more mathematical

approach to problem solving by training them to search for counterexam-

ples.

Counterexamples in Calculus provides all students a foundation on

which to build an upward spiral of understanding of the calculus, and an

appreciation for the mathematics behind it.

Professor John Mason

Centre for Mathematics Education

The Open University

United Kingdom

vii



“master” — 2012/7/28 — 0:02 — page viii — #8
i

i

i

i

i

i

i

i



“master” — 2012/7/28 — 0:02 — page ix — #9
i

i

i

i

i

i

i

i

Contents

Foreword vii

Introduction 1

Counterexamples in Calculus 7

I Statements 11

1 Functions 13

2 Limits 15

3 Continuity 17

4 Differential Calculus 19

5 Integral Calculus 23

II Suggested Solutions 27

1 Functions 29

2 Limits 39

3 Continuity 45

4 Differential Calculus 57

5 Integral Calculus 85

References 99

About the Author 101

ix



“master” — 2012/7/28 — 0:02 — page x — #10
i

i

i

i

i

i

i

i



“master” — 2012/7/28 — 0:02 — page 1 — #11
i

i

i

i

i

i

i

i

Introduction

Counterexamples in Calculus is a resource for single-variable calculus

courses. The book challenges students to provide counterexamples to care-

fully constructed incorrect mathematical statements. Some of the incorrect

statements are converses of well-known theorems. Others come from alter-

ing or omitting conditions in theorems, or from applying incorrect defini-

tions. I have grouped the incorrect statements into five sections: Functions,

Limits, Continuity, Differential Calculus and Integral Calculus. And I have

arranged the statements in each section in order of increasing difficulty, em-

phasizing early in each section some standard misconceptions. The more

challenging statements often seem correct to students, who may be hard

pressed to understand their subtleties and to find appropriate counterexam-

ples. While the book shows counterexamples to each incorrect statement, I

encourage students to construct their own and to compare what they have

found to the counterexamples suggested by their peers as well as those

shown in the book.

A book with a similar mission is Counterexamples in Analysis (Gel-

baum & Olmsted, 1964), a well-known resource for advanced calculus and

analysis courses. In contrast, Counterexamples in Calculus focuses mainly

on the mathematics covered in introductory calculus courses. The two books

feature different statements and examples and have little overlap. The coun-

terexamples shown here generally appear with their graphs, because the

book aims to serve as a learning resource for students as well as a teaching

and professional development resource for instructors.

Dealing with counterexamples for the first time can be challenging for

students. When they hear they can disprove a wrong statement by provid-

1
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2 Counterexamples in Calculus

ing one counterexample, many students think they can “prove” a correct

statement by showing an example. Even if they know they cannot prove a

theorem by providing only examples, it is hard for some students to accept

the fact that a single counterexample disproves a statement. Some students

believe that a particular counterexample is just an exception to the rule at

hand, and that no other ‘pathological’ cases exist. Selden & Selden (1998)

have articulated these ideas:

Students quite often fail to see a single counterexample as disproving

a conjecture. This can happen when a counterexample is perceived as

‘the only one that exists’, rather than being seen as generic.

With experience, though, students understand the role of counterexam-

ples and become interested in creating them. Using counterexamples to dis-

prove wrong statements can generate many questions for discussion. What

changes will make the statement at hand correct? How can you change a

counterexample and have it remain one? Can you think of other statements

that your counterexample refutes? Can you find another type of function al-

together that will be a counterexample or construct a general class of coun-

terexamples to the statement at hand?

In developing counterexamples, students are forced to pay attention to

every detail in a statement—the word order, the symbols used, the shape of

brackets defining intervals, whether the statement applies to a point or to an

interval, and so on. Consider the following theorem from first-year calculus.

If a function f .x/ is differentiable on .a; b/ and its derivative is posi-

tive for all x in .a; b/, then the function is increasing on .a; b/.

The following two statements look quite similar to this theorem, but

both are incorrect:

If a function f .x/ is differentiable on .a; b/ and its derivative is posi-

tive at a point x D c in .a; b/, then there is a neighborhood of the point

x D c where the function is increasing;

If a function f .x/ is differentiable on its domain and its derivative

is positive for all x from its domain, then the function is increasing

everywhere on its domain.

Students who find counterexamples to the last two statements must grap-

ple with their subtle differences.

A case study from my experience using counterexamples shows how

they can foster discussion and understanding. Consider Statement 3.14 from

the Continuity chapter.
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Introduction 3

Statement If a function y D f .x/ is defined on Œa; b� and continuous

on .a; b/, then for any N between f .a/ and f .b/ there is some point c 2
.a; b/ such that f .c/ D N .

The only difference a student sees between this statement and the In-

termediate Value Theorem is in the shape of the brackets of the interval

where the function is continuous: the function is continuous on an open in-

terval .a; b/, instead of a closed interval Œa; b�. When students are asked to

disprove the statement they usually come up with something like this:

To generate discussion and create other counterexamples one can sug-

gest that:

In the above graph the statement’s conclusion is not true for any value

of N between f .a/ and f .b/. Modify the graph in such a way that the

statement’s conclusion is true for:

a) exactly one value of N between f .a/ and f .b/;

b) infinitely many but not all values of N between f .a/ and f .b/.

One can then expect students to sketch graphs like these:
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4 Counterexamples in Calculus

If students are challenged to give as a counterexample a graph that

doesn’t have “white circles”, they may come up with something like this:

I mention here a few of the other ways I have used counterexamples in

teaching. On different occasions, I have given students mixtures of correct

and incorrect statements, asked students to create their own wrong state-

ments and associated counterexamples, made deliberate errors in my lec-

ture and moved on with the hope that students would detect them, asked

students to spot errors in their textbook, given students extra credit for pro-

viding counterexamples to challenging statements I posed in class, and in-

cluded on assignments and tests questions that require students to construct

counterexamples.
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Introduction 5

Teaching experience has shown that using counterexamples fosters dis-

covery and makes learning more active. In an international study involving

more than 600 students from 10 universities in different countries (Gru-

enwald & Klymchuk, 2003) 92% of the participating students found the

use of counterexamples to be very effective. The students reported that it

helped them to understand concepts better, prevent mistakes, develop logi-

cal and critical thinking, and made learning mathematics more challenging,

interesting and creative. Another study (Klymchuk, 2005) showed that the

use of counterexamples in teaching improved students’ performance on test

questions that required conceptual understanding. It is my belief that work-

ing with counterexamples reduces misconceptions that can arise in calculus

courses which often avoid special cases and expose students only to ‘nice’

functions and ‘good’ simple examples, misconceptions explained by Tall’s

generic extension principle: “If an individual works in a restricted context

in which all the examples considered have a certain property, then, in the

absence of counterexamples, the mind assumes the known properties to be

implicit in other contexts.” (Tall, 1991).

Some calculus students may profit from a general introduction to coun-

terexamples, so I have provided some at the beginning of the book. It may

be helpful to photocopy these pages for these students before turning them

loose on the incorrect statements.

Finally, I would like to express my sincere gratitude and appreciation to

the editors and reviewers of the book for their constructive comments and

suggestions:

Susan Staples (Texas Christian University) and Jerry Bryce (Hampden-

Sydney College) who did the final edit.

Members of the CRM Board who reviewed this book:

Wayne Roberts (Macalester College), Loren Pitt (University of

Virginia), Diane Herrmann (University of Chicago), Bill Bauldry

(Appalachian State University), Holly Zullo (Carroll College), Phil

Straffin (Beloit College).

However, for any inaccuracies, I as the author accept full responsibility.
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Counterexamples in

Calculus

This book is about counterexamples. Deciding on an assertion’s validity is

important in the information age. A counterexample can quickly and easily

show that a given statement is false. One counterexample is all you need

to disprove a statement! Counterexamples thus offer powerful and effective

tools for mathematicians, scientists, and researchers. They can indicate that

a hypothesis is wrong or a research proposal, misguided. Before attempting

a proof for an assertion, looking for counterexamples may save an investi-

gator lots of time and effort.

The search for counterexamples has been important in the history of

mathematics. I mention three famous instances. For a long time mathemati-

cians tried to find a formula that would generate only prime numbers. Num-

bers of the form 22n C 1, where n is a natural number were once believed to

all be prime, until Euler found a counterexample. He showed that for n D 5

that number is composite:

225 C 1 D 641 � 6700417:

Primes of this form are called Fermat primes and play an important role

in determining which regular n-gons are constructible. (See, for example,

Aaboe (1975) p. 84 ff.).

Another conjecture about prime numbers is still awaiting proof or dis-

proof. The Goldbach-Euler conjecture, posed by Christian Goldbach in a

1742 letter to Euler, looks deceptively simple: every even integer greater

than 2 is the sum of two prime numbers. For example, 12 D 5 C 7, 20 D
3C17, and so on. Powerful computers have been used to search for possible

counterexamples and have found none among 4; 6; : : : ; 4 � 1014 (see Rich-

7
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8 Counterexamples in Calculus

stein, 2000). In 2000 the book publishing company Faber & Faber offered

a $1 million prize to anyone who could prove or disprove this conjecture

within two years. The prize has so far gone unclaimed.

In the nineteenth century the great German mathematician Karl Weier-

strass constructed his famous counterexamples to this statement: If a func-

tion is continuous on .a; b/, then it is differentiable at some points on .a; b/.

Functions of this type are introduced in a later chapter. Weierstrass first

showed his counterexamples in lectures in 1861 and later published them in

a paper in 1872, but Bernhard Bolzano had found one in about 1830.) (See

Boyer, 1991, p. 604 ff.)

In this book I ask you to disprove a host of incorrect statements by find-

ing counterexamples. How should you search for appropriate counterexam-

ples? In many cases a simple sketch of a graph is enough. For example,

you might sketch a smooth graph with a vertical tangent to disprove the

statement “If a function is continuous on the interval .a; b/ and its graph

is a smooth curve (no sharp corners) on that interval, then the function is

differentiable at any point on .a; b/.”

If your arsenal is big enough, you can provide a formula and a graph.

y D 3
p

x

6420-2-4-6

2

0

-2
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Counterexamples in Calculus 9

You will learn that in creating counterexamples it is useful to have

at your disposal a large assortment of graphs and functions with interest-

ing properties. Understanding the anomalies and distinguishing features of

these functions will provide you with a natural starting point for developing

your own counterexamples. In your searches you should consider graphs of

basic trigonometric functions and their inverses, graphs of piecewise func-

tions like step functions, and graphs with sharp corners (like that of the

absolute value function jxj) or cusps (
3
p

x2 is a handy example). The quest

for counterexamples will introduce you quite naturally to more exotic func-

tions, like oscillations with and without damping factors (such as sin 1
x

,

x sin 1
x

, and x2j cos �
x

j), and to even more exotic functions like Dirichlet

and Weierstrass functions, which are notable in the history of mathematics.

So get ready to create counterexamples! Have fun disproving the state-

ments!
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Statements
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1
Functions

1.1 The tangent to a curve at a point is the line that touches the curve at

that point, but does not cross it there. (page 29)

1.2 The tangent line to a curve at a point cannot touch the curve at in-

finitely many other points. (page 30)

1.3 A quadratic function of x is one in which the highest power of x is

two. (page 30)

1.4 If both functions f .x/ and g.x/ are continuous and monotone on R,

then their sum f .x/ C g.x/ is also monotone on R. (page 30)

1.5 If both functions f .x/ and g.x/ are not monotone on R, then their

sum f .x/ C g.x/ is not monotone on R. (page 31)

1.6 If a function f .x/ is continuous and decreasing for all positive x and

f .1/ is positive, then the function has exactly one root. (page 33)

1.7 If a function f .x/ has an inverse function f �1.y/ on .a; b/, then the

function f .x/ is either increasing or decreasing on .a; b/. (page 33)

1.8 A function f .x/ is bounded on R if for each x 2 R there is M > 0

such that jf .x/j � M . (page 33)

13
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14 Statements

1.9 If g.a/ D 0, then the function

F.x/ D f .x/

g.x/

has a vertical asymptote at the point x D a. (page 34)

1.10 If g.a/ D 0, then the rational function

R.x/ D f .x/

g.x/

(both f .x/ and g.x/ are polynomials) has a vertical asymptote at the

point x D a. (page 34)

1.11 If a function f .x/ is unbounded and nonnegative for all real x, then

it cannot have roots xn such that xn ! 1 as n ! 1. (page 35)

1.12 A function f .x/ defined on Œa; b� such that its graph does not contain

any pieces of a horizontal straight line cannot take its extreme value

infinitely many times on Œa; b�. (page 35)

1.13 If a function f .x/ is continuous and increasing at the point x D a,

then there is a neighborhood .x �ı; x Cı/, ı > 0 where the function

is also increasing. (page 36)

1.14 If a function is not monotone, then it does not have an inverse func-

tion. (page 37)

1.15 If a function is not monotone on .a; b/, then its square cannot be

monotone on .a; b/. (page 37)
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2
Limits

2.1 If f .x/ < g.x/ for all x > 0 and both

lim
x!1

f .x/ and lim
x!1

g.x/

exist, then

lim
x!1

f .x/ < lim
x!1

g.x/: (page 39)

2.2 The following definitions of a non-vertical asymptote are equivalent:

a) The straight line y D mx C c is called a non-vertical asymptote

to a curve f .x/, as x tends to infinity, if

lim
x!1

�

f .x/ � .mx C c/
�

D 0:

b) A straight line is called a non-vertical asymptote to a curve, as x

tends to infinity, if the curve gets closer and closer (as close as

we like) to the straight line as x tends to infinity without touch-

ing or crossing it. (page 40)

2.3 The tangent line to a curve at a certain point that touches the curve

at infinitely many other points cannot be a non-vertical asymptote to

this curve. (page 40)

2.4 The following definitions of a vertical asymptote are equivalent:

15
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16 Statements

a) The straight line x D a is called a vertical asymptote for a func-

tion f .x/ if

lim
x!aC

f .x/ D ˙1 or lim
x!a�

f .x/ D ˙1:

b) The straight line x D a is called a vertical asymptote for the

function f .x/ if there are infinitely many values of f .x/ that

can be made arbitrarily large or arbitrarily small as x gets closer

to a from either side of a. (page 41)

2.5 If limx!a f .x/ exists and limx!a g.x/ does not exist because of

oscillation of g.x/ near x D a, then limx!a

�

f .x/ g.x/
�

does not

exist. (page 42)

2.6 If a function f .x/ is not bounded in any neighborhood of the point

x D a, then either

lim
x!aC

ˇ

ˇf .x/
ˇ

ˇ D 1 or lim
x!a�

ˇ

ˇf .x/
ˇ

ˇ D 1: (page 42)

2.7 If a function f .x/ is continuous for all real x and limn!1 f .n/ D A

for natural numbers n, then limx!1 f .x/ D A. (page 43)
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3
Continuity

3.1 If the absolute value of the function f .x/ is continuous on .a; b/,

then the function is also continuous on .a; b/. (page 45)

3.2 If both functions f .x/ and g.x/ are discontinuous at x D a, then

f .x/ C g.x/ is also discontinuous at x D a. (page 46)

3.3 If both functions f .x/ and g.x/ are discontinuous at x D a, then

f .x/ g.x/ is also discontinuous at x D a. (page 47)

3.4 A function always has a local maximum between any two local min-

ima. (page 48)

3.5 For a continuous function there is always a strict local maximum

between any two local minima. (page 49)

3.6 If a function is defined in a certain neighborhood of point x D a in-

cluding the point itself and is increasing for all x < a and decreasing

for all x > a, then there is a local maximum at x D a. (page 50)

3.7 If a function is defined on Œa; b� and continuous on .a; b/, then it

takes its extreme values on Œa; b�. (page 50)

3.8 Every continuous and bounded function on .�1; 1/ takes on its

extreme values. (page 51)

17
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18 Statements

3.9 If a function f .x/ is continuous on Œa; b�, the tangent line exists at

all points on its graph and f .a/ D f .b/, then there is a point c in

.a; b/ such that the tangent line at the point
�

c; f .c/
�

is horizontal.

(page 51)

3.10 If on the closed interval Œa; b� a function is:

a) bounded;

b) takes its maximum and minimum values;

c) takes all its values between the maximum and minimum values;

then this function is continuous on Œa; b�. (page 52)

3.11 If on the closed interval Œa; b� a function is:

a) bounded;

b) takes its maximum and minimum values;

c) takes all its values between the maximum and minimum values;

then this function is continuous at one or more points or subintervals

on Œa; b�. (page 52)

3.12 If a function is continuous on Œa; b�, then it cannot take its absolute

maximum or minimum value infinitely many times. (page 53)

3.13 If a function f .x/ is defined on Œa; b� and f .a/ � f .b/ < 0, then

there is some point c 2 .a; b/ such that f .c/ D 0. (page 53)

3.14 If a function f .x/ is defined on Œa; b� and continuous on .a; b/, then

for any N 2
�

f .a/; f .b/
�

there is some point c 2 .a; b/ such that

f .c/ D N . (page 54)

3.15 If a function is discontinuous at every point in its domain, then the

square and the absolute value of this function cannot be continuous.

(page 55)

3.16 A function cannot be continuous at only one point in its domain and

discontinuous everywhere else. (page 55)

3.17 A sequence of continuous functions on Œa; b� always converges to a

continuous function on Œa; b�. (page 56)
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4
Differential Calculus

4.1 If both functions f .x/ and g.x/ are differentiable and f .x/ > g.x/

on the interval .a; b/, then f 0.x/ > g0.x/ on .a; b/. (page 57)

4.2 If a nonlinear function is differentiable and monotone on .0; 1/, then

its derivative is also monotone on .0; 1/. (page 57)

4.3 If a function is continuous at a point, then it is differentiable at that

point. (page 58)

4.4 If a function is continuous on R and the tangent line exists at any

point on its graph, then the function is differentiable at any point on

R. (page 59)

4.5 If a function is continuous on the interval .a; b/ and its graph is a

smooth curve (no sharp corners) on that interval, then the function is

differentiable at any point on .a; b/. (page 59)

4.6 If the derivative of a function is zero at a point, then the function is

neither increasing nor decreasing at this point. (page 60)

4.7 If a function is differentiable and decreasing on .a; b/, then its deriva-

tive is negative on .a; b/. (page 60)

19
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4.8 If a function is continuous and decreasing on .a; b/, then its deriva-

tive is nonpositive on .a; b/. (page 61)

4.9 If a function has a positive derivative at every point in its domain,

then the function is increasing everywhere in its domain. (page 61)

4.10 If a function f .x/ is defined on Œa; b� and has a local maximum at

the point c 2 .a; b/, then in a sufficiently small neighborhood of the

point x D c, the function is increasing for all x < c and decreasing

for all x > c. (page 62)

4.11 If a function f .x/ is differentiable for all real x and f .0/ D f 0.0/ D
0, then f .x/ D 0 for all real x. (page 62)

4.12 If a function f .x/ is differentiable on the interval .a; b/ and takes

both positive and negative values on it, then its absolute value
ˇ

ˇf .x/
ˇ

ˇ

is not differentiable at the point(s) where f .x/ D 0, e.g.,
ˇ

ˇf .x/
ˇ

ˇ D jxj or
ˇ

ˇf .x/
ˇ

ˇ D j sin xj: (page 63)

4.13 If both functions f .x/ and g.x/ are differentiable on the interval

.a; b/ and intersect somewhere on .a; b/, then the function

max
˚

f .x/; g.x/
	

is not differentiable at the point(s) where f .x/ D g.x/. (page 64)

4.14 If a function is twice-differentiable at a local maximum (minimum)

point, then its second derivative is negative (positive) at that point.

(page 64)

4.15 If both functions f .x/ and g.x/ are not differentiable at x D a, then

f .x/ C g.x/ is also not differentiable at x D a. (page 65)

4.16 If a function f .x/ is differentiable and a function g.x/ is not dif-

ferentiable at x D a, then f .x/ g.x/ is not differentiable at x D a.

(page 66)

4.17 If both functions f .x/ and g.x/ are not differentiable at x D a, then

f .x/ g.x/ is also not differentiable at x D a. (page 67)

4.18 If a function g.x/ is differentiable at x D a and a function f .x/ is

not differentiable at g.a/, then the function F.x/ D f
�

g.x/
�

is not

differentiable at x D a. (page 68)
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4. Differential Calculus 21

4.19 If a function g.x/ is not differentiable at x D a and a function f .x/

is differentiable at g.a/, then the function F.x/ D f
�

g.x/
�

is not

differentiable at x D a. (page 69)

4.20 If a function g.x/ is not differentiable at x D a and a function f .x/

is not differentiable at g.a/, then the function F.x/ D f
�

g.x/
�

is

not differentiable at x D a. (page 70)

4.21 If a function f .x/ is defined on Œa; b�, differentiable on .a; b/ and

f .a/ D f .b/, then there exists a point c 2 .a; b/ such that f 0.c/ D
0. (page 71)

4.22 If a function is twice-differentiable in a certain neighborhood of the

point x D a and its second derivative is zero at that point, then the

point
�

a; f .a/
�

is a point of inflection for the graph of the function.

(page 72)

4.23 If a function f .x/ is differentiable at the point x D a and the point
�

a; f .a/
�

is a point of inflection on the function’s graph, then the

second derivative is zero at that point. (page 72)

4.24 If both functions f .x/ and g.x/ are differentiable on R, then to eval-

uate the limit limx!1
f .x/
g.x/

in the indeterminate form of type
�

1

1

�

we can use the following rule:

lim
x!1

f .x/

g.x/
D lim

x!1

f 0.x/

g0.x/
: (page 73)

4.25 If a function f .x/ is differentiable on .a; b/ and limx!aC f 0.x/ D
1, then limx!aC f .x/ D 1. (page 74)

4.26 If a function f(x) is differentiable on .0; 1/ and limx!1 f .x/ exists,

then limx!1 f 0.x/ also exists. (page 75)

4.27 If a function f .x/ is differentiable and bounded on .0; 1/ and

limx!1 f 0.x/ exists, then limx!1 f .x/ also exists. (page 76)

4.28 If a function f .x/ is differentiable at the point x D a, then its deriva-

tive is continuous at x D a. (page 77)

4.29 If the derivative of a function f .x/ is positive at the point x D a,

then there exists a neighborhood about x D a where the function is

increasing. (page 78)
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4.30 If a function f .x/ is continuous on .a; b/ and has a local maximum at

the point c 2 .a; b/, then in a sufficiently small neighborhood of the

point x D c the function is increasing for all x < c and decreasing

for all x > c. (page 79)

4.31 If a function f .x/ is differentiable at the point x D a, then there is a

certain neighborhood of the point x D a where the derivative of the

function f .x/ is bounded. (page 80)

4.32 If a function f(x) in every neighborhood of the point x = a has points

where f 0.x/ does not exist, then f 0.a/ does not exist. (page 81)

4.33 A function cannot be differentiable only at one point in its domain

and nondifferentiable everywhere else in its domain. (page 82)

4.34 If a function is continuous on (a,b), then it is differentiable at some

points on (a,b). (page 82)
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Integral Calculus

5.1 If the function F.x/ is an antiderivative of a function f .x/, then

Z b

a

f .x/ dx D F.b/ � F.a/: (page 85)

5.2 If a function f .x/ is continuous on Œa; b�, then the area enclosed by

the graph of y D f .x/, y D 0, x D a and x D b numerically equals

Z b

a

f .x/ dx: (page 85)

5.3 If
Z b

a

f .x/ dx � 0;

then f .x/ � 0 for all x 2 Œa; b�. (page 86)

5.4 If f .x/ is a continuous function and k is any constant, then:

Z

kf .x/ dx D k

Z

f .x/ dx: (page 86)

5.5 A plane figure of an infinite area rotated about an axis always pro-

duces a solid of revolution of infinite volume. (page 87)
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24 Statements

5.6 If a function f .x/ is defined for every x 2 Œa; b� and

Z b

a

ˇ

ˇf .x/
ˇ

ˇ dx

exists, then
Z b

a

f .x/ dx

exists. (page 88)

5.7 If neither of the integrals

Z b

a

f .x/ dx and

Z b

a

g.x/ dx

exist, then the integral

Z b

a

�

f .x/ C g.x/
�

dx

does not exist. (page 89)

5.8 If limx!1 f .x/ D 0, then

Z

1

a

f .x/ dx

converges. (page 89)

5.9 If the integral
Z

1

a

f .x/ dx

diverges, then the function f .x/ is not bounded. (page 90)

5.10 If a function f .x/ is continuous and nonnegative for all real x and
P

1

nD1 f .n/ is finite, then

Z

1

1

f .x/ dx

converges. (page 90)

5.11 If both integrals

Z

1

a

f .x/ dx and

Z

1

a

g.x/ dx
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5. Integral Calculus 25

diverge, then the integral

Z

1

a

�

f .x/ C g.x/
�

dx

also diverges. (page 91)

5.12 If a function f .x/ is continuous and

Z

1

a

f .x/ dx

converges, then limx!1 f .x/ D 0. (page 92)

5.13 If a function f .x/ is continuous and nonnegative and

Z

1

a

f .x/ dx

converges, then limx!1 f .x/ D 0. (page 93)

5.14 If a function f .x/ is positive and unbounded for all real x, then the

integral
Z

1

a

f .x/ dx

diverges. (page 94)

5.15 If a function f .x/ is continuous and unbounded for all real x, then

the integral
Z

1

a

f .x/ dx

diverges. (page 95)

5.16 If a function f .x/ is continuous on Œ1; 1/ and

Z

1

1

f .x/ dx

converges, then
Z

1

1

ˇ

ˇf .x/
ˇ

ˇ dx

also converges. (page 95)
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26 Statements

5.17 If the integral
Z

1

a

f .x/ dx

converges and a function g.x/ is bounded, then the integral

Z

1

a

f .x/g.x/ dx

converges. (page 96)
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1
Functions

1.1 The tangent to a curve at a point is the line that touches the curve at

that point, but does not cross it there.

Counterexample

a) The x-axis is the tangent line to the curve y D x3, but it crosses the

curve at the origin.

6420-2-4-6

2

0

-2

y = x3

b) The three straight lines just touch and do not cross the curve below at

the point, but none of them is the tangent line to the curve at that point.

29
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30 Suggested Solutions

1.2 The tangent line to a curve at a point cannot touch the curve at in-

finitely many other points.

Counterexample The tangent line to the graph of the function y D
sin x touches the curve at x D �

2
and infinitely many other points.

y x= sin

6420-2-4-6

2

0

-2

1.3 A quadratic function of x is one in which the highest power of x is

two.

Counterexample In both functions

y D x2 C
p

x and y D x2 C x � 1

x

the highest power of x is two, but neither is quadratic.

1.4 If both functions f .x/ and g.x/ are continuous and monotone on R,

then their sum f .x/ C g.x/ is also monotone on R.

Counterexample

f .x/ D x C sin x;

g.x/ D �x:

Both functions f .x/ and g.x/ are monotone on R, but their sum f .x/ C
g.x/ D sin x is not monotone on R.
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1. Functions 31

302010-10-20-30 0

10

5

0

-5

-10

-15

y x x= + sin

3020100-10-20-30

15

10

5

0

-5

-10

-15

y x= –

y x= sin

6420-2-4-6

2

0

-2

1.5 If both functions f .x/ and g.x/ are not monotone on R, then their

sum f .x/ C g.x/ is not monotone on R.

Counterexample Both functions f .x/ D x C x2 and g.x/ D x � x2

are not monotone on R, but their sum f .x/ C g.x/ D 2x is monotone on

R.
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f x x x( ) = + 2

-0.5

0.5

0
0

-1

1-1

g x x x( ) = – 2

-0.5

0.5

0
0

-1

1-1

f x g x x( ) + ( ) = 2

10-1

0.5

0

-0.5
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1. Functions 33

1.6 If a function f .x/ is continuous and decreasing for all positive x and

f .1/ is positive, then the function has exactly one root.

Counterexample The function y D 1
x

is continuous and decreasing

for all positive x and y.1/ D 1 > 0, but it has no roots.

6420-2-4-6

4

2

0

-2

-4

1.7 If a function f .x/ has an inverse function f �1.y/ on .a; b/, then the

function f .x/ is either increasing or decreasing on .a; b/.

Counterexample The function below is a one-to-one function and has

an inverse function on .a; b/, but it is neither increasing nor decreasing on

.a; b/.

1.8 A function f .x/ is bounded on R if for each x 2 R there is M > 0

such that jf .x/j � M .
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Counterexample For the function y D x2, for any value of x from

R, there is a number M > 0 (M D x2 C ", where " � 0) such that

jf .x/j � M .

Comment The order of words in this statement is very important. The

correct definition of a function bounded on R differs only by the order of

words: A function f .x/ is bounded on R if there is M > 0 such that for

any x 2 R, jf .x/j � M .

1.9 If g.a/ D 0, then the function F.x/ D f .x/
g.x/

has a vertical asymptote

at the point x D a.

Counterexample The function

y D
sin x

x

does not have a vertical asymptote at the point x D 0.

6420-2-4-6

2

0

-2

1.10 If g.a/ D 0, then the rational function R.x/ D f .x/
g.x/

(both f .x/

and g.x/ are polynomials) has a vertical asymptote at the point x D a.

Counterexample The rational function

y D x2 � 1

x � 1

does not have a vertical asymptote at the point x D 1.
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1. Functions 35

1.11 If a function f .x/ is unbounded and nonnegative for all real x, then

it cannot have roots xn such that xn ! 1 as n ! 1.

Counterexample The function y D jx sin xj has infinitely many roots

xn such that xn ! 1 as n ! 1.

0

5

0
5040302010

15

10

-5

-10

1.12 A function f .x/ defined on Œa; b� such that its graph does not con-

tain any pieces of a horizontal straight line cannot take its extreme value

infinitely many times on Œa; b�.

Counterexample The function

y D
(

sin 1
x

; if x ¤ 0

0; if x D 0

takes its absolute maximum value (D 1) and its absolute minimum value

(D �1) infinitely many times on any closed interval containing zero.
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1

0
0

-0.5

0.20.1-0.1-0.2

-1

-1.5

0.5

1.13 If a function f .x/ is continuous and increasing at the point x D a,

then there is a neighborhood .x � ı; x C ı/, ı > 0 where the function is

also increasing.

Counterexample The function

f .x/ D
(

x C x2 sin 2
x

; if x ¤ 0

0; if x D 0

is increasing at the point x D 0, but it is not increasing in any neighborhood

.�ı; ı/, where ı > 0.

0.50-0.5

0.4

0.2

0

-0.2

-0.4

Comment The definition of a function increasing at a point is: A func-

tion f .x/ is said to be increasing at the point x D a if in a certain neigh-

borhood .a � ı; a C ı/, ı > 0 the following is true:

if x < a then f .x/ < f .a/ and if x > a then f .x/ > f .a/.
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1. Functions 37

1.14 If a function is not monotone, then it does not have an inverse func-

tion.

Counterexample The function

y D
(

x; if x is rational

�x; if x is irrational

is not monotone, but it has the inverse function

x D
(

y; if y is rational

�y; if y is irrational.

It is impossible to draw the graph of such a function, but a rough sketch

gives an idea of its behavior:

1.15 If a function is not monotone on .a; b/, then its square cannot be

monotone on .a; b/.

Counterexample The function

f .x/ D
(

x; if x is rational

�x; if x is irrational

defined on .0; 1/ is not monotone, but its square f 2.x/ D x2 is monotone

on .0; 1/.

It is impossible to draw the graph of the function f .x/, but the sketch

below gives an idea of its behavior.
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Comment The functions in counterexamples 1.14 and 1.15 may seem arti-

ficial and without practical use at first. Nevertheless, the Dirichlet function

f .x/ D
(

1; if x is rational

0; if x is irrational
;

which is very similar to the functions in counterexamples 1.14 and 1.15,

can be represented analytically as a limit of cosine functions that have many

practical applications:

f .x/ D lim
k!1

lim
n!1

�

cos.kŠ�x/
�2n

:

The Dirichlet like functions are not continuous at any point of their domain.

They are called nowhere continuous functions or everywhere discontinuous

functions. Later in the book you will see more functions like this one used

as counterexamples. A good introduction to the Dirichlet function is given

in Dunham (2005) on p.197.
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2
Limits

2.1 If f .x/ < g.x/ for all x > 0 and both lim
x!1

f .x/ and lim
x!1

g.x/

exist, then lim
x!1

f .x/ < lim
x!1

g.x/.

Counterexample For the functions

f .x/ D � 1

x
and g.x/ D 1

x
;

f .x/ < g.x/ for all x > 0, but

lim
x!1

f .x/ D lim
x!1

g.x/ D 0:

121086420-2
0

2

-2

39
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2.2 The following definitions of a non-vertical asymptote are equivalent:

a) The straight line y D mx C c is called a non-vertical asymptote to a

curve f .x/ as x tends to infinity if lim
x!1

�

f .x/ � .mx C c/
�

D 0.

b) A straight line is called a non-vertical asymptote to a curve as x tends

to infinity if the curve gets closer and closer to the straight line (as

close as we like) as x tends to infinity, but does not touch or cross it.

Counterexample As x tends to infinity the function y D sin x

x
gets

closer to the x-axis from above and below and lim
x!1

�

sin x

x
� 0

�

D 0. Ac-

cording to the first definition the x-axis is the non-vertical asymptote of the

function y D
sin x

x
, but its graph crosses the x-axis infinitely many times,

so the definitions a) and b) are not equivalent.

Comment The correct definition is a). A function’s graph can touch or

cross a non-vertical asymptote.

6040200

0.5

0

-0.5

-1

2.3 The tangent line to a curve at a certain point that touches the curve

at infinitely many other points cannot be a non-vertical asymptote to this

curve.

Counterexample The tangent line y D 0 to the curve y D sin2 x

x
at

x D � touches the curve at infinitely many other points and is a non-vertical

asymptote to this curve.
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6420-2-4-6

2

0

-2

2.4 The following definitions of a vertical asymptote are equivalent:

a) The straight line x D a is called a vertical asymptote for a function

y D f .x/ if lim
x!aC

f .x/ D ˙1 or lim
x!a�

f .x/ D ˙1.

b) The straight line x D a is called a vertical asymptote for the function

f .x/ if there are infinitely many values of f .x/ that can be made ar-

bitrarily large or arbitrarily small as x gets closer to a from either side

of a.

Counterexample There are infinitely many values of the function

y D 1

x
sin

1

x

that can be made arbitrarily large or small as x gets closer to 0, but the

straight line x D 0 is not a vertical asymptote of this function.

2

-4-6 6420-2
0

-2

Comment The correct definition is a).



“master” — 2012/7/28 — 0:02 — page 42 — #52
i

i

i

i

i

i

i

i

42 Suggested Solutions

2.5 If lim
x!a

f .x/ exists and lim
x!a

g.x/ does not exist because of oscillation

of g.x/ near x D a, then lim
x!a

�

f .x/ g.x/
�

does not exist.

Counterexample For the function f .x/ D x the limit lim
x!0

x D 0 and

for the function g.x/ D sin 1
x

the limit lim
x!0

sin 1
x

does not exist because of

oscillation of g.x/ near x D 0, but

lim
x!0

�

f .x/ g.x/
�

D lim
x!0

�

x sin
1

x

�

D 0:

0.40.2-0.2

1

-1

0.40.20-0.2

0.1

-0.1

-0.2

2.6 If a function f .x/ is not bounded in any neighborhood of the point

x D a, then either

lim
x!aC

ˇ

ˇf .x/
ˇ

ˇ D 1 or lim
x!a�

ˇ

ˇf .x/
ˇ

ˇ D 1:
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Counterexample The function

f .x/ D 1

x
cos

1

x

is not bounded in any neighborhood of the point x D 0, but neither

lim
x!0C

ˇ

ˇ

ˇ

ˇ

1

x
cos

1

x

ˇ

ˇ

ˇ

ˇ

nor lim
x!0�

ˇ

ˇ

ˇ

ˇ

1

x
cos

1

x

ˇ

ˇ

ˇ

ˇ

exist.

642-2-4-6 0

2

0

-2

-4

2.7 If a function f .x/ is continuous for all real x and lim
n!1

f .n/ D A

for natural numbers n, then lim
x!1

f .x/ D A.

Counterexample For the continuous function y D cos.2�x/ the limit

lim
n!1

cos.2�n/ equals 1 because cos.2�n/ D 1 for any natural n, but

lim
x!1

cos.2�x/ does not exist.

6420-2-4-6

2

0

-2
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Comment Statement 2.7 is the converse of the true statement:

lim
x!1

f .x/ D A ) lim
n!1

f .n/ D A:
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3
Continuity

3.1 If the absolute value of the function f .x/ is continuous on .a; b/,

then the function is also continuous on .a; b/.

Counterexample The absolute value of the function

y.x/ D
(

�1; if x � 0

1; if x > 0

is
ˇ

ˇy.x/
ˇ

ˇ D 1 for all real x and it is continuous, but the function y.x/ is

discontinuous.

45
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3.2 If both functions f .x/ and g.x/ are discontinuous at x D a, then

f .x/ C g.x/ is also discontinuous at x D a.

Counterexample

f .x/ D � 1

x � a
; if x ¤ a

g.x/ D x C
1

x � a
; if x ¤ a

f .x/ D g.x/ D a

2
; if x D a

Both functions f .x/ and g.x/ are discontinuous at x D a, but the function

f .x/ C g.x/ D
(

x; if x ¤ a

a; if x D a

is continuous at x D a. For example, if a D 2:

6420-2-4-6

4

2

0

-2

-4

6-2-4-6

4

-2

-4

420

2
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6-2-4-6

4
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-4

420

2

0

3.3 If both functions f .x/ and g.x/ are discontinuous at x D a, then

f .x/ g.x/ is also discontinuous at x D a.

Counterexample Both functions

f .x/ D
(

sin x
x

; if x ¤ 0

2; if x D 0
and g.x/ D

(

sin x
x

; if x ¤ 0

1
2
; if x D 0

are discontinuous at the point x D 0, but their product

f .x/ g.x/ D

˚
sin2 x

x2
; if x ¤ 0

1; if x D 0

is continuous at the point x D 0.

6420-2-4-6
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6420-2-4-6
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-1

-1.5

-2

3.4 A function always has a local maximum between any two local min-

ima.

Counterexample The functions

y D
x4 C 0:1

x2

and

y D sec2 x

have no maximum between two local minima:
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3

2.5

2

1.5

1

0.5

0
2-2 0

6-6

4

3

2

1

0

-1

6-6 420-2-4

3.5 For a continuous function there is always a strict local maximum

between any two local minima.

Counterexample The continuous function below does not have a strict

local maximum between its two local minima.
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Comment A function y D f .x/ has a strict local maximum at the

point x D a if f .a/ > f .x/ for all x within a certain neighbourhood

.a � ı; a C ı/, ı > 0 of the point x D a.

3.6 If a function is defined in a certain neighborhood of point x D a

(including the point a itself ) and is increasing for all x < a and decreasing

for all x > a, then there is a local maximum at x D a.

Counterexample The function

y D
(

1
.x�3/2

; if x ¤ 3

1; if x D 3

is defined for all real x, increasing for all x < 3 and decreasing for all

x > 3, but it has no local maximum at the point x D 3.

6666

-6

1050-5-10

4

2

0

-2

-4

3.7 If a function is defined on Œa; b� and continuous on .a; b/, then it

takes its extreme values on Œa; b�.

Counterexample The function

y D
(

tan x; if x 2
�

� �
2

; �
2

�

0; if x D ˙ �
2

is defined on
�

� �
2

; �
2

�

and continuous on
�

� �
2

; �
2

�

, but it has no extreme

values on
�

� �
2

; �
2

�

.
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3. Continuity 51

6420-2-4-6
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0
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3.8 Every continuous and bounded function on .�1; 1/ takes on its

extreme values.

Counterexample The function f .x/ D tan�1.x/ is continuous and

bounded on .�1; 1/, but takes no extreme values.

6420-2-4-6

2

0
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3.9 If a function f .x/ is continuous on Œa; b�, the tangent line exists at

all points on its graph and f .a/ D f .b/, then there is a point c in .a; b/

such that the tangent line at the point
�

c; f .c/
�

is horizontal.

Counterexample The function f .x/ below is continuous on Œa; b�,

the tangent line exists at all points on the graph, and f .a/ D f .b/, but

there is no point c in .a; b/ such that the tangent line at the point
�

c; f .c/
�

is horizontal.
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3.10 If on the closed interval Œa; b� a function is:

a) bounded;

b) takes its maximum and minimum values;

c) takes all its values between the maximum and minimum values;

then this function is continuous on Œa; b�.

Counterexample The function below satisfies the three conditions

above, but it is not continuous on Œa; b�.

3.11 If on the closed interval Œa; b� a function is:

a) bounded;

b) takes its maximum and minimum values;

c) takes all its values between the maximum and minimum values;

then this function is continuous at some points or subintervals on Œa; b�.
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3. Continuity 53

Counterexample The function below satisfies all three conditions

above, but it is discontinuous at every point on Œ�1; 1�. It is impossible to

draw the graph of the function f .x/, but the sketch below gives an idea of

its behavior.

3.12 If a function is continuous on Œa; b�, then it cannot take its absolute

maximum or minimum value infinitely many times.

Counterexample The function below takes its absolute maximum

value (D 3) and its absolute minimum value (D 1) an infinite number of

times on the interval Œ1; 4�.

3.13 If a function f .x/ is defined on Œa; b� and f .a/ � f .b/ < 0, then

there is some point c 2 .a; b/ such that f .c/ D 0.
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Counterexample The function

f .x/ D
(

1
x

; if x ¤ 0

1; if x D 0

is defined on Œ�1; 1� and f .�1/ � f .1/ D .�1/ � .1/ D �1 < 0, but there

is no point c on Œ�1; 1� such that f .c/ D 0.

6420-2-4-6

4

2

0

-2

-4

3.14 If a function f .x/ is defined on Œa; b� and continuous on .a; b/,

then for any N 2
�

f .a/; f .b/
�

there is some point c 2 .a; b/ such that

f .c/ D N .

Counterexample The function below is defined on Œa; b� and contin-

uous on .a; b/, but for any N 2
�

f .a/; f .b/
�

there is no point c 2 .a; b/

such that f .c/ D N .
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3. Continuity 55

3.15 If a function is discontinuous at every point in its domain, then the

square and the absolute value of this function cannot be continuous.

Counterexample The function

f .x/ D
(

1; if x is rational

�1; if x is irrational

is discontinuous at every point in its domain, but both the square and the

absolute value

f 2.x/ D
ˇ

ˇf .x/
ˇ

ˇ D 1

are continuous. It is impossible to draw the graph of the function y D f .x/,

but the sketch below gives an idea of its behavior.

3.16 A function cannot be continuous at only one point in its domain and

discontinuous everywhere else.

Counterexample The function

g.x/ D
(

x; if x is rational

�x; if x is irrational

is continuous at the point x D 0 and discontinuous at all other points on R.

It is impossible to draw the graph of the function y D g.x/, but the sketch

below gives an idea of its behavior.
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3.17 A sequence of continuous functions on Œa; b� always converges to a

continuous function on Œa; b�.

Counterexample The sequence of continuous functions

fn.x/ D xn; n 2 N

on Œ0; 1� converges to a discontinuous function when n ! 1:

lim
n!1

fn.x/ D
(

0; if x 2 Œ0; 1/

1; if x D 1:
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4
Differential Calculus

4.1 If both functions f .x/ and g.x/ are differentiable and f .x/ > g.x/

on the interval .a; b/, then f 0.x/ > g0.x/ on .a; b/.

Counterexample Both functions f .x/ and g.x/ below are differen-

tiable and f .x/ > g.x/ on the interval .a; b/, but f 0.x/ < g0.x/ on .a; b/.

4.2 If a nonlinear function is differentiable and monotone on .0; 1/, then

its derivative is also monotone on .0; 1/.

Counterexample The nonlinear function y D x C sin x is differen-

tiable and monotone on .0; 1/, but its derivative y0 D 1 C cos x is not

monotone on .0; 1/.

57
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4.3 If a function is continuous at a point, then it is differentiable at that

point.

Counterexample The function y D jxj is continuous at the point

x D 0, but it is not differentiable at that point.

6420-2-4-6
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0
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4. Differential Calculus 59

4.4 If a function is continuous on R and the tangent line exists at every

point on its graph, then the function is differentiable at every point on R.

Counterexample The function y D 3
p

x2 is continuous on R and the

tangent line exists at any point on its graph, but the function is not differen-

tiable at the point x D 0.

6420-2-4-6

2

0

-2

4.5 If a function is continuous on the interval .a; b/ and its graph is a

smooth curve (no sharp corners) on that interval, then the function is differ-

entiable at every point on .a; b/.

Counterexample

a) The function y D 3
p

x is continuous on R and its graph is a smooth

curve (no sharp corners), but it is not differentiable at the point x D 0.

20-2

1.5

1

0.5

0

-0.5

-1

-1.5

b) The function below is continuous on R and its graph is a smooth curve

(no sharp corners), but it is nondifferentiable at infinitely many points

on R.
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4.6 If the derivative of a function is zero at a point, then the function is

neither increasing nor decreasing at this point.

Counterexample The derivative of the function y D x3 is zero at the

point x D 0, but the function is increasing at this point.

6420-2-4-6

2

0

-2

4.7 If a function is differentiable and decreasing on .a; b/, then its deriva-

tive is negative on .a; b/.

Counterexample The function y D �x3 is differentiable and de-

creasing on R, but its derivative is zero at the point x D 0.
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4. Differential Calculus 61

6420-2-4-6

2

0

-2

4.8 If a function is continuous and decreasing on .a; b/, then its deriva-

tive is nonpositive on .a; b/.

Counterexample The function below is continuous and decreasing

on R, but its derivative does not exist at the point x D a.

4.9 If a function has a positive derivative at every point in its domain,

then the function is increasing everywhere in its domain.

Counterexample The derivative of the function y D � 1
x

(x ¤ 0) is

y0 D 1

x2
;

which is positive for all x ¤ 0.

According to the definition, a function is increasing in its domain if for

any x1; x2 from its domain with x1 < x2 it follows that f .x1/ < f .x2/. If

we take x1 D �1 and x2 D 1 (x1 < x2) it follows that f .x1/ > f .x2/.
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151050-5-10-15
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4.10 If a function f .x/ is defined on Œa; b� and has a local maximum at

the point c 2 .a; b/, then in a sufficiently small neighborhood of the point

x D c, the function is increasing for all x < c and decreasing for all x > c.

Counterexample The function below is defined on Œa; b� and has a

maximum at the point c 2 .a; b/, but it is neither increasing for all x < c

nor decreasing for all x > c.

Comment The definition of a local maximum requires neither differ-

entiability nor continuity of a function at the point of interest: A function

y D f .x/ has a local maximum at the point x D c if f .c/ > f .x/ for all

x within a certain neighborhood .c � ı; c C ı/, ı > 0 of the point x D c.

4.11 If a function f .x/ is differentiable for all real x and f .0/ D f 0.0/ D
0, then f .x/ D 0 for all real x.
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4. Differential Calculus 63

Counterexample Both the function y D x2 and its derivative y0 D
2x equal zero at the point x D 0, but the function is not zero for all real x.

6420-2-4
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2
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4.12 If a function f .x/ is differentiable on the interval .a; b/ and takes

both positive and negative values on .a; b/, then its absolute value jf .x/j
is not differentiable at the point(s) where f .x/ D 0, e.g., jf .x/j D jxj or

jf .x/j D j sin xj.

Counterexample The functiony D x3 is differentiable on R and

takes both positive and negative values, but its absolute value jyj D jx3j
is differentiable at the point x D 0 where the function equals zero.

6420-2-4-6

2

0

-2

Comment The statement is true if its conclusion is: “. . . then its abso-

lute value jf .x/j is not differentiable at the points where f .x/ D 0 and

f 0.x/ ¤ 0.”
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4.13 If both functions f .x/ and g.x/ are differentiable on the interval

.a; b/ and intersect somewhere on .a; b/, then the function max
˚

f .x/; g.x/
	

is not differentiable at the point(s) where f .x/ D g.x/.

Counterexample The function maxfx3; x4g on .�1; 1/ is differen-

tiable at the point x D 0 where the functions y D x3 and y D x4 intersect.

10-1

1

0.5

0

-0.5

Comment The statement is true if its conclusion is: “. . . then the func-

tion max
˚

f .x/; g.x/
	

is not differentiable at the point(s) where f .x/ D
g.x/ and f 0.x/ ¤ g0.x/.”

4.14 If a function is twice-differentiable at a local maximum (minimum)

point, then its second derivative is negative (positive) at that point.

Counterexample The function y D �x4 is twice-differentiable at its

maximum point x D 0, but the second derivative is zero at this point.

6420-2-4-6
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4. Differential Calculus 65

The function y D x4 is twice-differentiable at its minimum point x D
0, but the second derivative is zero at that point:

420-2-4

2

0

-2

4.15 If both functions f .x/ and g.x/ are not differentiable at x D a,

then f .x/ C g.x/ is also not differentiable at x D a.

Counterexample Both functions f .x/ D jxj and g.x/ D �jxj C 1

are not differentiable at x D 0, but f .x/Cg.x/ D 1 is differentiable at any

x including x D 0.

6420-2-4-6
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Comment More generally, let

f .x/ D A.x/ and g.x/ D B.x/ � A.x/;

where A.x/ is not differentiable and B.x/ is differentiable at x D a. Both

f .x/ and g.x/ are not differentiable, but f .x/ C g.x/ D B.x/ is differen-

tiable at x D a.

4.16 If a function f .x/ is differentiable and a function g.x/ is not dif-

ferentiable at x D a, then f .x/ g.x/ is not differentiable at x D a.

Counterexample The function f .x/ D x is differentiable at x D 0

and the function g.x/ D jxj is not differentiable at x D 0, but the function

f .x/ g.x/ D xjxj is differentiable at the point x D 0 (the derivative equals

zero).
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6420-2-4-6
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4.17 If both functions f .x/ and g.x/ are not differentiable at x D a,

then f .x/ g.x/ is also not differentiable at x D a.

Counterexample Both functions f .x/ D jxj and g.x/ D �jxj are

not differentiable at the point x D 0, but the function f .x/ g.x/ D �jxj2 D
�x2 is differentiable at x D 0.
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4.18 If a function g.x/ is differentiable at x D a and a function f .x/

is not differentiable at g.a/, then the function F.x/ D f
�

g.x/
�

is not

differentiable at x D a.
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4. Differential Calculus 69

Counterexample The function g.x/ D x2 is differentiable at x D 0,

and the function f .x/ D jxj is not differentiable at g.0/ D 0, but the

function

F.x/ D f .g.x// D jx2j D x2

is differentiable at x D 0.

6420-2-4-6
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4.19 If a function g.x/ is not differentiable at x D a and a function

f .x/ is differentiable at g(a), then the function F.x/ D f
�

g.x/
�

is not

differentiable at x D a.

Counterexample The function g.x/ D jxj is not differentiable at

x D 0, the function f .x/ D x2 is differentiable at g.0/ D 0, but the

function

F.x/ D f
�

g.x/
�

D jxj2 D x2

is differentiable at x D 0.
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4.20 If a function g.x/ is not differentiable at x D a and a function

f .x/ is not differentiable at g.a/, then the function F.x/ D f
�

g.x/
�

is not

differentiable at x D a.

Counterexample The function

g.x/ D 2

3
x � 1

3
jxj

is not differentiable at x D 0 and the function f .x/ D 2x C jxj is not

differentiable at g.0/ D 0, but the function

F.x/ D f
�

g.x/
�

D 2

�

2

3
x � 1

3
jxj

�

C
ˇ

ˇ

ˇ

ˇ

2

3
x � 1

3
jxj

ˇ

ˇ

ˇ

ˇ

D x

is differentiable at x D 0.
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1050-5-10
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4.21 If a function f .x/ is defined on Œa; b�, differentiable on .a; b/ and

f .a/ D f .b/, then there exists a point c 2 .a; b/ such that f 0.c/ D 0.

Counterexample The function below is defined on Œa; b�, differen-

tiable on .a; b/ and f .a/ D f .b/, but there is no such point c 2 .a; b/ that

f 0.c/ D 0.



“master” — 2012/7/28 — 0:02 — page 72 — #82
i

i

i

i

i

i

i

i

72 Suggested Solutions

4.22 If a function is twice-differentiable in a certain neighborhood around

x D a and its second derivative is zero at that point, then the point
�

a; f .a/
�

is a point of inflection for the graph of the function.

Counterexample The function y D x4 is twice-differentiable on R

and its second derivative is zero at the point x D 0, but the point .0; 0/ is

not a point of inflection.

6420-2-4-6
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4.23 If a function f .x/ is differentiable at the point x D a and the point
�

a; f .a/
�

is a point of inflection on the function’s graph, then the second

derivative is zero at that point.

Counterexample The function y D xjxj is differentiable at x D 0

and the point .0; 0/ is a point of inflection, but the second derivative does

not exist at x D 0.
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6420-2-4-6
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4.24 If both functions f .x/ and g.x/ are differentiable on R, then to

evaluate the limit

lim
x!1

f .x/

g.x/

in the indeterminate form of type
�

1

1

�

we can use the following rule:

lim
x!1

f .x/

g.x/
D lim

x!1

f 0.x/

g0.x/
:

Counterexample If we use the above “rule” to find the limit

lim
x!1

6x C sin x

2x C sin x
;

then

lim
x!1

6x C sin x

2x C sin x
D

h1
1

i

D lim
x!1

6 C cos x

2 C cos x

is undefined (see the graph below).

151050

6

4

2

0
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But the limit

lim
x!1

6x C sin x

2x C sin x

exists and equals 3:

lim
x!1

6x C sin x

2x C sin x
D lim

x!1

6 C sin x
x

2 C sin x
x

D 3:

Comment To make the statement correct we need to add “if the limit

lim
x!1

f 0.x/

g0.x/

exists or equals ˙1.” This is the well-known l’Hospital’s Rule for limits.

4.25 If a function f .x/ is differentiable on .a; b/ and limx!aC f 0.x/ D
1, then limx!aC f .x/ D 1.

Counterexample The function y D 3
p

x is differentiable on .0; 1/

and

lim
x!0C

y0.x/ D lim
x!0C

1

3
3
p

x2
D 1;

but

lim
x!0C

y.x/ D lim
x!0C

3
p

x D 0:

6420
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6420
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4.26 If a function f .x/ is differentiable on .0; 1/ and limx!1 f .x/

exists, then limx!1 f 0.x/ also exists.

Counterexample The function

f .x/ D sin.x2/

x

is differentiable on .0; 1/ and

lim
x!1

sin.x2/

x
D 0;

but

lim
x!1

f 0.x/ D lim
x!1

2x2 cos.x2/ � sin.x2/

x2

does not exist.

1210864

2
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0
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14121086420

2

0
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4.27 If a function f .x/ is differentiable and bounded on .0; 1/ and

limx!1 f 0.x/ exists, then limx!1 f .x/ also exists.

Counterexample The function f .x/ D cos.ln x/ is differentiable and

bounded on .0; 1/ and the limit of its derivative exists:

lim
x!1

f 0.x/ D lim
x!1

� sin.ln x/

x
D 0:

However, the limit of the function limx!1 cos.ln x/ does not exist.

121086420

4

2

0
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9007205403601800
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0
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Comment Obviously, the function cos.x/ oscillates between �1 and 1

as x ! 1 and the limit limx!1 cos x does not exist. The log function ln x

tends to infinity as x ! 1 so the function f .x/ D cos.ln x/ also oscillates

between �1 and 1 and the limit limx!1 cos.ln x/ does not exist.

4.28 If a function f .x/ is differentiable at the point x D a, then its

derivative is continuous at x D a.

Counterexample The function

f .x/ D
(

x2 sin 1
x

; if x ¤ 0

0; if x D 0

is differentiable at x D 0, but its derivative

f 0.x/ D
(

2x sin 1
x

� cos 1
x

; if x ¤ 0

0; if x D 0

is discontinuous at x D 0.

0.50-0.5

0.2

0
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0 2-2

1

0

-1

Comment To show that the derivative of f .x/ is 0 at the point 0 we

use the definition of the derivative:

f 0.0/ D lim
h!0

f .0 C h/ � f .0/

h
D lim

h!0

h2 sin.1=h/ � 0

h

D lim
h!0

�

h sin
1

h

�

:

Since �1 � sin 1
h

� 1 then �h � h sin 1
h

� h when h > 0 and h �
h sin 1

h
� �h when h < 0. Applying the Squeeze Theorem we get that

lim
h!0

�

h sin
1

h

�

D 0:

4.29 If the derivative of a function f .x/ is positive at the point x D
a, then there exists a neighborhood about x D a where the function is

increasing.

Counterexample The function

f .x/ D
(

x C 2x2 sin 1
x

; if x ¤ 0

0; if x D 0

has the derivative

f 0.x/ D
(

1 C 4x sin 1
x

� 2 cos 1
x

; if x ¤ 0

1; if x D 0

which is positive at x D 0, but it takes positive and negative values in any

neighborhood of the point x D 0. This means the function f .x/ is not

monotone in any neighborhood of the point x D 0.
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0.40.20-0.2-0.4

0.1

0

-0.1

20-2

4

2

0

4.30 If a function f .x/ is continuous on .a; b/ and has a local maximum

at the point c 2 .a; b/, then in a sufficiently small neighborhood of the point

x D c the function is increasing for all x < c and decreasing for all x > c.

Counterexample The function

f .x/ D
(

2 � x2.2 C sin 1
x

/; if x ¤ 0

2; if x D 0

is continuous on R. Since x2.2 C sin 1
x

/ is positive for all x ¤ 0, then

2 > 2 � x2.2 C sin 1
x

/. Therefore the function y D f .x/ has a local

maximum at the point x D 0. But it is neither increasing for all x < 0

nor decreasing for all x > 0 in any neighborhood of the point x D 0. To

show this we can find the derivative

f 0.x/ D �4x � 2x sin
1

x
C cos

1

x
I x ¤ 0:



“master” — 2012/7/28 — 0:02 — page 80 — #90
i

i

i

i

i

i

i

i

80 Suggested Solutions

The derivative takes both positive and negative values in any interval

.�ı; 0/ [ .0; ı/ and therefore the function is not monotone in any interval

.�ı; 0/ [ .0; ı/, where ı > 0.

0.40.20-0.2-0.4

2

1.9

1.8

0.20-0.2

6

2

0

-2

-4

-6

4.31 If a function f .x/ is differentiable at the point x D a, then there

is a certain neighborhood of the point x D a where the derivative of the

function f .x/ is bounded.

Counterexample The function

f .x/ D
(

x2 sin 1
x2

; if x ¤ 0

0; if x D 0

is differentiable at the point x D 0. Its derivative is

f 0.x/ D
(

2x sin 1
x2

� 2
x

cos 1
x2

; if x ¤ 0

0; if x D 0
:
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The derivative of the function y D f .x/ is unbounded in any neighborhood

of the point x D 0.

642-2-4-6

2

0

-2

4.32 If a function f .x/ in every neighborhood of the point x D a has

points where f 0.x/ does not exist, then f 0.a/ does not exist.

Counterexample The function

f .x/ D
(

x2
ˇ

ˇcos �
x

ˇ

ˇ ; if x ¤ 0

0; if x D 0

in any neighborhood of the point x D 0 has points where f 0.x/ does not

exist, however f 0.0/ D 0.

20-2

2

1

0

-1

-2
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Comment To show that the derivative of f .x/ is 0 at the point 0 we

can use the definition of the derivative and the Squeeze Theorem in a similar

way as we did in the comment to statement 4.28 from this section.

4.33 A function cannot be differentiable only at one point in its domain

and nondifferentiable everywhere else in its domain.

Counterexample The function

y D
(

x2; if x is rational

0; if x is irrational

is defined for all real x and differentiable only at the point x D 0. It is

impossible to draw the graph of the function y.x/, but the sketch below

gives an idea of its behavior.

Comment To find the derivative of y.x/ at the point 0 one can use the

definition of the derivative.

4.34 If a function is continuous on .a; b/, then it is differentiable at some

points on .a; b/.

Counterexample The Weierstrass function named after the great Ger-

man mathematician Karl Weierstrass (1815–1897) can be defined as:

f .x/ D
1

X

nD0

�

1

2

�n

cos.3nx/:

It is continuous, but nondifferentiable everywhere on R. If we take the first

seven terms in the sum, we can begin to visualize the function:
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6420-2-4-6

2

0
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Comments The Weierstrass function is the first known fractal. An ex-

ercise to explore the Weierstrass function is given in (Smith & Minton,

2002) on p. 176. More about the Weierstrass function can be found in

(Brabenec, 2004) and (Bressoud, 1995). Another example of a continuous

curve that has a sharp corner at every point is the Koch snowflake named af-

ter the Swedish mathematician Helge von Koch (1870–1924). We start with

an equilateral triangle and build the line segments on each side according

to a simple rule and repeat this process infinitely many times. The resulting

curve is called the Koch curve and it forms the so-called Koch snowflake.

The first four iterations are shown below:
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Integral Calculus

5.1 If the function F.x/ is an antiderivative of a function f .x/, then

Z b

a

f .x/dx D F.b/ � F.a/:

Counterexample The function

F.x/ D ln jxj

is an antiderivative of the function

f .x/ D 1

x
;

but the (improper) integral
Z 1

�1

1

x
dx

does not exist.

Comments To make the statement true we need to add that the function

f .x/ must be continuous on Œa; b�.

5.2 If a function f .x/ is continuous on Œa; b�, then the area enclosed by

the graph of y D f .x/, y D 0, x D a and x D b numerically equals

Z b

a

f .x/ dx:

85
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Counterexample For any continuous function f .x/ that takes only

negative values on Œa; b� the integral

Z b

a

f .x/ dx

is negative, therefore the area enclosed by the graph of f .x/, y D 0, x D a

and x D b is numerically equal to

�
Z b

a

f .x/ dx;

or
ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

:

5.3 If
Z b

a

f .x/ dx � 0;

then f .x/ � 0 for all x 2 Œa; b�.

Counterexample
Z 2

�1

x dx D 3

2
> 0;

but the function y D x takes both positive and negative values on Œ�1; 2�.

5.4 If f .x/ is a continuous function and k is any constant, then:

Z

kf .x/ dx D k

Z

f .x/ dx:
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Counterexample If k D 0, then the left-hand side is:
Z

0f .x/ dx D
Z

0 dx D C;

where C is an arbitrary constant. The right-hand side is:

0

Z

f .x/ dx D 0:

This indicates that C is always equal to zero, but this contradicts the nature

of an arbitrary constant.

Comment The property is valid only for nonzero values of the constant

k.

5.5 A plane figure of infinite area rotated around an axis always produces

a solid of revolution of infinite volume.

Counterexample The figure enclosed by the graph of the function

y D 1

x
;

the x-axis and the straight line x D 1 is rotated about the x-axis.

The area is infinite:
Z

1

1

1

x
dx D lim

b!1

.ln b � ln 1/ D 1

(square units), but the volume is finite:

�

Z

1

1

1

x2
dx D �� lim

b!1

�

1

b
� 1

�

D �

(cubic units).

6420
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5.6 If a function f .x/ is defined for every x 2 Œa; b� and

Z b

a

ˇ

ˇf .x/
ˇ

ˇ dx

exists, then
Z b

a

f .x/ dx

exists.

Counterexample Again we use a Dirichlet function

f .x/ D
(

1; if x is rational

�1; if x is irrational
:

jf .x/j D 1 and therefore

Z b

a

ˇ

ˇf .x/
ˇ

ˇ dx D b � a;

but
Z b

a

f .x/ dx

does not exist. Let us show this using the definition of the definite integral.

Let Œa; b� be any closed interval. We divide the interval into n subinter-

vals and find the limit of the integral sums:

S D lim
max �xi!0

n�1
X

iD0

f .ci/�xi :
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If on each subinterval we choose ci equal to a rational number, then S D
b � a. If instead on each subinterval we choose ci equal to an irrational

number, then S D a � b. So, the limit of the integral sums depends on the

way we choose ci and for this reason the definite integral of f .x/ on Œa; b�

does not exist.

5.7 If neither of the integrals

Z b

a

f .x/ dx and

Z b

a

g.x/ dx

exist, then the integral

Z b

a

.f .x/ C g.x//dx

does not exist.

Counterexample For the functions

f .x/ D
(

1; if x is rational

�1; if x is irrational
and g.x/ D

(

�1; if x is rational

1; if x is irrational

the integrals
Z b

a

f .x/ dx and

Z b

a

g.x/ dx

do not exist (see the previous exercise), but the integral

Z b

a

�

f .x/ C g.x/
�

dx

exists and equals 0.

5.8 If limx!1 f .x/ D 0, then

Z

1

a

f .x/ dx

converges.
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Counterexample The limit

lim
x!1

1

x
D 0;

but the integral
Z

1

1

1

x
dx

diverges.

6420
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5.9 If the integral
Z

1

a

f .x/ dx

diverges, then the function f .x/ is not bounded.

Counterexample The integral of a nonzero constant
Z

1

a

k dx

is divergent, but the function y D k is bounded.

5.10 If a function f .x/ is continuous and nonnegative for all real x and

1
X

nD1

f .n/

is finite, then
Z

1

1

f .x/ dx

converges.
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Counterexample The function

y D jsin � xj

is continuous and nonnegative for all real x and

1
X

nD1

jsin � nj D 0;

but
Z

1

1

jsin � xj dx

diverges.

6420
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5.11 If both integrals
Z

1

a

f .x/ dx and

Z

1

a

g.x/ dx

diverge, then the integral
Z

1

a

�

f .x/ C g.x/
�

dx

also diverges.

Counterexample Both integrals
Z

1

1

1

x
dx and

Z

1

1

1 � x

x2
dx

diverge, but the integral
Z

1

1

�

1

x
C 1 � x

x2

�

dx D
Z

1

1

1

x2
dx

converges.
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5.12 If a function f .x/ is continuous and
Z

1

a

f .x/ dx

converges, then

lim
x!1

f .x/ D 0:

Counterexample It can be shown that the improper integral
Z

1

0

sin x2 dx

converges, but

lim
x!1

sin x2

does not exist.

6420-2-4-6

2

0

-2

Comment The function

F.x/ D
Z x

0

sin t2 dt

is called the Fresnel function or the Fresnel integral, named after the French

physicist Augustin Fresnel (1788–1827). It cannot be evaluated analytically

in terms of a finite number of elementary functions. It can be represented

only as an (infinite) power series. A good introduction to the Fresnel integral

is given in (Stewart, 2001) on pp. 383–384 for illustrating The Fundamental

Theorem of Calculus. It can be shown that the improper integral
Z

1

0

sin x2 dx equals

r

�

8

by the methods of complex analysis, but this is beyond the scope of this

book. The Fresnel integral has applications in optics and in highway design.
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5.13 If a function f .x/ is continuous and nonnegative and

Z

1

a

f .x/ dx

converges, then

lim
x!1

f .x/ D 0:

Counterexample We use the idea of area. Over every natural n � 2

we construct triangles of area 1=n2 so that the total area equals

1
X

nDa

1

n2
;

which is a finite number. The height of each triangle is n and the base is

2=n3. The integral
Z

1

a

f .x/ dx

converges since it is numerically equal to the total area

1
X

nDa

1

n2
:

As one can see from the graph below the function (in bold) is continuous

and nonnegative, but

lim
x!1

f .x/

does not exist.

n + 2

n + 1

n

n + 2n + 1n
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5.14 If a function f .x/ is positive and unbounded for all real x, then the

integral
Z

1

a

f .x/ dx

diverges.

Counterexample We use the idea of area. Over every natural n we

can construct a rectangle with height n and base 1=n3 so the area is 1=n2.

Then the total area equals
1

X

nDa

1

n2
;

which is a finite number. The positive and unbounded function equals n on

the interval of length 1=n3 around points x D n, where n is natural. Since

the integral
Z

1

a

f .x/ dx

numerically equals the total area

1
X

nDa

1

n2

it converges.
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5.15 If a function f .x/ is continuous and unbounded for all real x, then

the integral
Z

1

0

f .x/ dx

diverges.

Counterexample The function

y D x sin x4

is continuous and unbounded for all real x, but the integral

Z

1

0

x sin x4 dx

converges (making the substitution t D x2 yields the Fresnel integral

1

2

Z

1

0

sin t2 dt

which is convergent—see the comments to statement 5.12).

20-2
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5.16 If a function f .x/ is continuous on Œ1; 1/ and

Z

1

1

f .x/ dx

converges, then
Z

1

1

ˇ

ˇf .x/
ˇ

ˇ dx

also converges.
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Counterexample The function

y D sin x

x

is continuous on Œ1; 1/ and

Z

1

1

sin x

x
dx

converges, but
Z

1

1

ˇ

ˇ

ˇ

ˇ

sin x

x

ˇ

ˇ

ˇ

ˇ

dx

diverges.

Comments The integral of the so-called sinc function sin x
x

is called the

sine integral and is denoted by

Si.x/ D
Z x

0

sin t

t
dt:

It cannot be evaluated analytically in terms of a finite number of elementary

functions. One can verify that

Z

1

1

sin x

x
dx �

Z

1

0

sin x

x
dx � �

1
X

nD1

.�1/nC1

n

and therefore the improper integral

Z

1

1

sin x

x
dx

is convergent. It can be shown that it equals �
2

.

5.17 If the integral
Z

1

a

f .x/ dx

converges and a function g.x/ is bounded, then the integral

Z

1

a

f .x/g.x/ dx

converges.
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Counterexample The integral

Z

1

0

sin x

x
dx

converges (see the comments to statement 5.16 above) and the function

g.x/ D sin x is bounded, but the integral

Z

1

0

sin2 x

x
dx

diverges.

Comment Statements 5.10, 5.13 and 5.14 in this chapter were supplied

by Alejandro S. Gonzalez-Martin, University La Laguna, Spain.
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