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PREFACE

This collection of problems and exercises in mathematical anal-

ysis covers the maximum requirements of general courses in

higher mathematics for higher technical schools. It contains over

3,000 problems sequentially arranged in Chapters I to X covering
all branches of higher mathematics (with the exception of ana-

lytical geometry) given in college courses. Particular attention is

given to the most important sections of the course that require
established skills (the finding of limits, differentiation techniques,
the graphing of functions, integration techniques, the applications
of definite integrals, series, the solution of differential equations).

Since some institutes have extended courses of mathematics,
the authors have included problems on field theory, the Fourier

method, and approximate calculaiions. Experience shows that

the number of problems given in this book not only fully satisfies

the requireiren s of the student, as far as practical mas!ering of

the various sections of the course goes, but also enables the in-

structor to supply a varied choice of problems in each section

and to select problems for tests and examinations.
Each chap.er begins with a brief theoretical introduction that

covers the basic definitions and formulas of that section of the

course. Here the most important typical problems are worked out
in full. We believe that this will greatly simplify the work of

the student. Answers are given to all computational problems;
one asterisk indicates that hints to the solution are given in

the answers, two asterisks, that the solution is given. The

problems are frequently illustrated by drawings.
This collection of problems is the result of many years of

teaching higher mathematics in the technical schools of the Soviet

Union. It includes, in addition to original problems and exam-

ples, a large number of commonly used problems.





Chapter I

INTRODUCTION TO ANALYSIS

Sec. 1. Functions

1. Real nurrbers. Rational and irrational numbers are collectively known
as real numbers The absolute value of a real number a is understood to be
the nonnegative number \a\ defined by the conditions' \a\=a if a^O, and

|aj
= a if a < 0. The following inequality holds for all real numbers a

ana b:

2. Definition of a function. If to every value*) of a variable x, which

belongs to son.e collection (set) E, there corresponds one and only one finite

value of the quantity /, then y is said to be a function (single-valued) of x
or a dependent tariable defined on the set E. x is the a rgument or indepen-
dent variable The fact that y is a Junction of x is expressed in brief form

by the notation y~l(x) or y = F (A), and the 1'ke

If to every value of x belonging to some set E there corresponds one or

several values of the variable /y, then y is called a multiple- valued function
of x defined on E. From now on we shall use the word "function" only in

the meaning of a single-valued function, if not otherwise stated
3 The domain of definition of a function. The collection of values of x for

which the given function is defined is called the domain of definition (or the

domain) of this function. In the simplest cases, the domain of a function is

either a closed interval [a.b\, which is the set of real numbers x that satisfy
the inequalities a^^^b, or an open intenal (a.b), which :s the set of real

numbers that satisfy the inequalities a < x < b. Also possible is a more com-

plex structure of the domain of definition of a function (see, for instance, Prob-
lem 21)

Example 1. Determine the domain of definition of the function

1

Solution. The function is defined if

x2-l>0,

that is, if |x|> 1. Thus, the domain of the function is a set of two inter-

vals: oo<x< 1 and 1 < x < -\- oo

4. Inverse functions. If the equation t/
= /(x) may be solved uniquely for

the variable x, that is, if there is a function x g(y) such that y^*

*) Hencetorth all values will be considered as real, if not otherwise

stated.
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then the function x = g(y), or, in standard notation, y=g(x), is the inverse

of y = f(x). Obviously, g[f(x)]s&x, that is, the function f (x) is the inverse

of g(x) (and vice ve^sa).
In He fereia! case, the equation y f(x) defines a multiple-valued in-

verse function x= f~
}

(y) such that y ==[[(-* (y)\ for all y that are values of

the function f (x)

Lxanple 2. Determine the inverse of the function

y=l-2-*. (1)

Solution. Solving equation (1) for x, we have

2-*=l y

and

log(l-y)*
log 2

j ' w

Obviously, the domain of
Definition

of the function (2) is oo </<!.
5. Corrposite and irrplicit functicns. A function y of x defined by a se-

ries of equalities y = /(), where u = 9 (x), etc., is called a comoosite function,
or a function of a function.

A function defined by an equation not solved for the dependent variable
is called an implicit (unction. For example, the equation x*+i/*=l defines

y as an implicit function of x.

6. The graph of a function. A set of points (x, y) in an ;o/-plane, whose
coordinates are connected by the equation y f(x), is called the graph of

the given function.

1**. Prove that if a and b are real numbers then

\\a\-\b\\<\a-b\<\a\ + \b\.

2. Prove the following equalities:

a) |ab|Ha|.|b|; c)

b) |a|
2 = a 2

; d)

3. Solve the inequalities:

a) |x 1|<3; c)
*

b) |x+l|>2; d) |jt-

4. Find /(-1),/(0),/(1), /(2), /(3), /(4), if /(*) = *'- 6*' -f
4- llx 6.

5. Find /(O), /(-4). /(-^/(T) 7^. if/

6. / (x) -arc cos (log x). Find /!, /(I), /(10).

7. The function f(x) is linear. Find this function, if/( 1) = 2
and /(2) = 3.

*) Log x is the logarithm of the number x to the base 10.
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8. Find the rational integral function f(x) of degree two, if

= and /(3) = 5.

9. Given that f(4) = 2, /(5) = 6. Approximate the value of

/(4, 3) if we consider the function / (x) on the interval

linear (linear interpolation of a function).
10. Write the function

0, if

as a single formula using the absolute-value sign.
Determine the domains oi definition of the following functions:

11. a) y = x+\; 16. y= x

-

17. /
= lo

13. a),= ?E2L
b) (/

= *VV-2. 19. t/=

14**. =1/2 + * **. -

21. Determine the domain of definition of the function

y = |/sin 2x.

22. f(jc)
= 2A:

4
SA;' 5x8 + 6A: 10. Find

(-*)l and ^(^) =

23. A function f (x) defined in a symmetric region /

is called euen if f( x) = f(x) and orfd if /( x)
= f(x).

Determine which of the following functions are even and which
are odd:

e)

24. Prove that any function f(x) defined in the interval

/<;*</ may be represented in the form of the sum of an

even function and an odd function.
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25. Prove that the product of two even functions or of two odd
functions is an even function, and that the product of an even

function by an odd function is an odd function.

26. A function f (x) is called periodic if there exists a positive
numter T (the period of the function) such that f(x+ T)^f(x)
for all valves of x within the dcmain of definition of f(x).

Determine uhich of the following functions are periodic, and
for the periodic functions find their least period T:

a) / (x) = 10 sin 3 *, d) / (x) = sin
1

*;

b) / (*) = a sin \K + b cos tar; e) / (x)
= sin (J/*).

c)

27. Express the length of the segment y = MN and the area S
of the figure AMN as a function of x=AM (Fig 1). Construct

the graphs of these functions.

28. The linear density (that is,

mass per unit length) of a rod AB = l

(Fig. 2) on the segments AC l^
CD = 1

2
and DB = l\ (/ t + l

t + /
3
=-

1)

AfsM" \ I f
is equal to

</,, q z
and q^ respec-

M
B

B

Fig. 1 Fig. 2

tively. Express the mass m of a variable segment AM = x of this

rod as a function of x. Construct the graph of this function.

29. Find cp|\M*)| and
i|? jtp(x)J, if v(x) = x? and q(x) = 2*.

30. Find H/Um, if

31. Find /U+l), if f(x l)
= x\

32. Let f(n) be the sum of n terms of an arithmetic progression.
Show that

33. Show that if

f(x) =

and the numbers jc
lf

x
t , x

t
form an arithmetic progression, then

the numbers J (x l) 9 f (xt) and / (xj likewise form such a pro-

gression.
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34. Prove that if f(x) is an exponential function, that is,

/ (x)
= a

x
(a >0), and the numbers xv *,, x

t
form an arithmetic

progression, then the numbers /(*,), f (*2) and /(jcj form a geo-
metric progression.

35. Let

Show that

36. Let <p (*)
= !(*+ a-*) and

t|) (AT)
=1 (a* a-*).

Show that

fp (*+</) = <pW <p (y) + * (*) ^> (y)
and

ty (x + y) <p

37. Find /(-I), /(O), /(I) if

arc sin x for 1 ^ r ^ 0,

arc tan x for < # c + oo.

38. Determine the roots (zeros) of the rrgion of positivity and
of the region of negativity of the function y if:

a) r/=l -f-x; d) y = x* 3x;

b) y = 2 + x *
2

; ^ ff _ ioo
2jc

c) 0=1 -

39. Find the inverse of the function y if:

In what regions will these inverse functions be defined?
40. Find the inverse of the function

/ x, if

y
\ x*, if

41. Write the given functions as a series of equalities each
member of which contains a simple elementary function (poweri
exponential, trigonometric, and the like):

a) i/
= (2*-5r; c) y

b) y = 2COS *
; d) y = arc sin (3-*

3

).
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42. Write as a single equation the composite functions repre-
sented as a series of equalities:

a) y = u*> w = sin#;

b) #= arctan, u = Yv, y = log#;

w, if t/<0,

, ifu>0;
*_!.

43. Write, explicitly, functions of y defined by the equations:

a) x
2

arc cos y = n;

b) 10* +10' =10;

c) * + \y\
= 2y.

Find the domains of definition of the given implicit functions.

Sec, 2. Graphs of Elementary Functions

Graphs of functions #= /(*) are mainly constructed by marking a suffi-

ciently dense net of points Ai /(*,-, //), where
*/,
= / (*,-) (/

= 0, 1, 2, ...) and

by connecting the points with a line that takes account of intermediate points.
Calculations are best done by a slide rule.

Fig. 3

Graphs of the basic elementary functions (see Ap pendix VI) are readily
learned through their construction. Proceeding from the graph of

y= f(x), (T)

we get the graphs of the following functions by means of simple geometric
constructions:

1) 0i = M*) js
th* mirror image of the graph T about the *-axis;

2) 0i=/( *) is the mirror image of the graph F about the #-axis;



Sec. 2] Graphs of Elementary functions 17

3) #i = /(*) is the F graph displaced along th? x-axis by an amount a;

4) 1/4
= & + /(*) is the F graph displaced along Uve (/-axis by an amount

(Fg. 3).

Example. Construct the graph of the function

Solution. The desired line is a sine curve y= sinx displaced along the *-axis

to the right by an amount -j (Fig. 4)

Y

Fig. 4

Construct the graphs of the following linear functions

(straight lines):

44. y = kx, if fc = 0, 1, 2, 1/2, -1, -2.
45. i/

= x+ 6, if 6 = 0, 1, 2, 1, 2.

46. 0=1. 5* +2.
Construct the graphs of rational integral functions of degree

two (parabolas).
47. y=--ax

3

, if a=l, 2, 1/2, 1, 2, 0.

48.
//
= *'-{- c, if c=0, 1, 2, 1.

49. ,/=(*-*)', if *.
=

f 1, 2, -1.
50. y = y, 4 (x-l)\ if </

= 0, 1, 2, -1.
51*. y = ax* + bx + c, if: 1) a=l, b = 2, c= 3; 2) a= 2,

6 = 6, c = 0.

52. t/
= 2 f x x*. Find the points ol intersection of this pa-

rabola with the Ac-axis.

Construct the graphs of the following rational integral func-

tions of degree above two:

53*. y = x* (cubic parabola).
54. </

= 2 +(*-!)'.
55. t/

= x' 3x-\-2.
56. y = x\
57. y = 2x'-x*.

Construct the graphs of the following linear fractional func-

tions (hyperbolas):

68*. 0=4.
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59. -.

61*. y=

62*- *-
Construct the graphs of the fractional rational functions:

63. </
= *+ -

65*. -.
66. y=.
67*. i/

=
r,^rj (WtYc/i of Agnesl).

2x
68. */

=
xt .

t
(Newton's serpentine).

69. y=*-h^.
70. y = ^

2

H (trident of Newton).

Construct the graphs of the irrational functions:

71*. */=]/*:
72. y=t/x._
73*. y=-*/x

2

(Niele's parabola).

74. y=x\fx (semicubical parabola).

75*. y=j/25 x
2

(ellipse).

76. f/= V x
2

l (hyperbola).

77. y- >=,.^
J^l-A

2 __
78*. y = + x y ^^ (cissoid of Diodes).

79. r/
== x 1/25 x

2
.

Construct the graphs of the trigonometric functions:

80*. y = sinx. 83*. */=-cotjc.
81*. y = cosx. 84*. y = sec x.

82*. /=-tanx. 85*. y = cosec x.

86. {/-/4sinx f if /4 = 1, 10, 1/2, 2.

87*. y^smnx, if n=l, 2, 3, 1/2.
/ \ * rv Jl 3ll ft

88. y= sin(x cp), if 9 = 0,
-J-, -j-

n ~T*
89*. y = 5sin(2x 3).
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Construct the graphs of the exponential and logarithmic func-
tions:

101. /
= ax

, if a = 2,
l

f (?(e
= 2, 718 ...)*).

102*. y = \oga x, if a =10, 2, 1, *.

103*. y = sinhx, where sinhx=l/2(e
x

e
-x

).

104*. f/
= coshx, where coshx =

105*. f/
= tanhx, where

106. 0=10*.
107*. y=-e~*

2

(probability curve).

108. ^ = 2"" *3
. 113. y =

109. //-logx
2

. 114. (/=--

110. y-=log
2

A:. 115. {/
=

111. //=-log(logx). 116. t/
= log"(cosx).

112. /y==rV-- 117 - ^ = 2-^ sin*.
log X

Construct the graphs of the inverse trigonometric functions?

118*. y--=arc sin*. 122. #= arcsin~.
x

119*. j/
= arccosx. 123. # = arc cos--.

120*. #= arc tan*. 124. ^ = A: + arc cot x.
121*, (/= arc cot x.

Construct the graphs of the functions:

125. y=\x\.

126. y= ^(x + \x\).

127. a) y= x\x\\ b) y = log^^l x
\-

128. a) t/= sinA:+
|
sin jt|; b) f/= sin x

| sinx|.
3 x

2 when |jc|< 1.

129. ^-< _l. whcn

*) About the number * see p. 22 for more details.
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130. a) #=[*], b) y = x[x], where [x] is the integral part

of the number x, that is, the greatest in.eger less than or equal
to x.

Construct the graphs of the following functions in the polar
coordinate system (r, cp) (r^O):

131. r = l.

132*. f = 7r (spiral of Archimedes).

133*. /- = <*> (logarithmic spiral).

134*. r = (hyperbolic spiral).

135. r = 2cosip (circle).

136. ' = -^- (straight line).

137. /- =
sec*y (parabola).

138*. r=10sin3(p (three-leafed rose)
139*. r = a(l fcoscp) (a>0) (cardioid).
143*. r

I = a
2

cos2(p (a>0) (lemniscate).
Cjnstruct the graphs of the functions represented parametri-

cally:
141*. x = t\ y = t* (semicubical parabola).
142*. *=10 cos/, y=sin/ (ellipse).
143*. *=10cos 3

/, y= 10 sin
1

/ (astroid).
144*. jc = a(cos/-f / sin/), t/

= a(sm / /cos/) (involute of a

circle).

145*. ^= ^3, J/
=

rTT' ^0//wm ^ Descartes).

146 '^' /==

147. xasfc'-t^-
1

, y = 2
t 2- t

(branch of a hyperbola).
143. jc = 2cos f

f
f # = 2 sin

2
/ (segment of a straight line).

149. *-/- /
2

, y=t
2

t\

150. x^a
t
(2 cos/ cos2/), */

= a(2sin/ sin 2/) (cardioid).
Cjnstruct 'the graphs of the following functions defined implic-

itly:

151*.x2 + */

2 = 25 (circle).
152. xy--= 12 (hyperbola).
153*.

i/

2 = 2jc (parabola).

154. ^1 + ^! =
155. j/*

= jc'(10
t 2

156*. xT + y
T =;aT (astroid).

157*. x

158. *' =
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159*. |/V + y
2 =e

a"
*

(logarithmic spiral).
160*. x* + y

8

3x// = (folium of Descartes).
161. Derive the conversion formula Irom the Celsius scale (Q

to the Fahrenheit scale (F) if it is known that 0C corresponds
to 32F and 100C corresponds to 212F.

Construct the graph of the function obtained.

162. Inscribed in a triangle (base 6^=10, altitude h = 6) is a

rectangle (Fig. 5). Express the area of the rectangle y as a func-

tion of the base x.

Fig. 5 Fig 6

Construct the graph of this function and find its greatest
value.

163. Given a triangle ACB with BC = a, AC = b and a variable

angle $ ACB = x (Fig. 6).

Express # = area A ABC as a function of x. Plot the graph
of this function and find its greatest value.

164. Give a graphic solution of the equations:

a) 2x' 5x+ 2 = 0; d) I0'
x = x\

b) x* + x 1=0; e) x=l 4 5sin;c;

c) logJt = 0.1jc; f) cot x^x (0<jc<jt).

165. Solve tjie systems of equations graphically:

a) xy=10, x f y = 7\

b) xr/-6,

c) x
2

d) *
2 +

e) #=sinx, j/
= cos# (0< x< 2jt).
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Sec. 3. Lfmits

1. The limit of a sequence. The number a is the limit of a sequence

*! xlt .... X0, .... or

lim xn a,

n > oo

if for any e>0 there is a number N = N (e) such that

\xn a
| < e when n> N.

Example 1. Show that

Urn 5L + 1.2. (1)
n -* rt-r 1

Solution. Form the difference

2* +1 1

Evaluating the absolute value of this difference, we have:

1-2 < e, (2)

if

n>-\ = N (e).

Thus, for every positive number there will be a number Af= 1 such

that for n > N we will have inequality (2) Consequently, the number 2 is

the limit of the sequence xn (2n-\- l)/(n-fl), hence, formula (1) is true.

2. The limit of a function. We say that a function / (x) -*- A as x -+ a

(A and a are numbers), or

lim f(x) = A,
x -a

if for every 8 > we have 6 = 6 () > such that

\f(x)A |
<e for < |x a|<6.

Similarly',
lim f(jO = 4,

* -> 00

if \f(X)A\<* for |x|> /V(e).

The following conventional notation is also used:

lim /(x) = oo,
*-*a

which means that
| f (x) \ > E for <

|
x a

\
< 6 (E), where E is an arbitrary

positive number
3. One-sided limits. If x < a and x -* a, then we write conventionally

x -- a 0; similarly, ii x > a and x -+ a, then we write * -^ a-f-0. The numbers

f(a 0)= lim f(x) and /(a + 0)= lim / (x)
* - a ~ o *-*a + o

*re called, respectively, the limit on the left of the function f (x} at the point a
and the //mi/ on the right of the function / (x) at the point a (if these
numbers exist).
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For the existence of the limit of a function / (x) as jc-^o, it is necessary
and sufficient to have the following equality:

/(a O)-/

If the limits lim /, (x) and lim f2 (x) exist, then the following theorems.
x ->a x -> a

I old:

1) lim [/, (*) + /, (*)] = lim /, (x) + lim f, (x);
x -+ a x -+ a x -* a

2) lim [f, (x) f2 (jc)J
= lim f, (x). lim ft (x);

x-*a x -* a x -* a

3) lim [f, W/^ (JK)J
= lim /, (x)l lim ^ (x) (lim f, (x) ^ 0).

x - o * -# a jc -* a Jt -^ a

The following two limits are frequently used:

lim ILi=i
AP ->-0 ^

and

x
lim

[ 1-J--L )
= lim (l + a)

a =*= 2 71828 . . .

Example 2. Find the limits on the right and left of the function

/ (x) = arc tan-

as x ->-0.

Solution. We have

arc tan )=
x J 2

and

lim
fa

x .+ +o \

f(-0)= lim faictanlW-4-
x->. - o \ A: / 2

Obviously, the function / (x) in this case has no limit as x--0.

166. Prove that as n *oo the limit of the sequence

is equal to zero. For which values of n will we have the inequal-
ity

(e is an arbitrary positive number)?
Calcula e numerically for a) e = 0.1; b) e = 0.01; c) 8 = 0.001

167. Prove that the limit of the sequence



24_Introduction to Analysis_[CH. 1

as rt >oo is unity. For which values of n>N will we have
the inequality

K-l|<e
(e is an arbitrary positive number)?

Find N for a) e = 0.1; b) e = 0.01; c) e = 0.001.

168. Prove that

liin x*=:4.
X -> 2

How should one choose, for a given positive number e, some

positive number 6 so that the inequality

|*
2-4|<8

should follow from

Compute 6 for a) e = 0.1; b) 8 = 0.01; c) e = 0.001.

169. Give the exact meaning of the following notations:

a) Hoi log*= oo; b) lim 2*= +00; c) liai/(x) = oo.
* -> +0 X + + 00 X -> 00

170. Find the limits of the sequences:

a) I _ 1 _ * (- 1 )""
1

*} i, 2*3' 4
. ...

b) 1 1 1 _2n_
V)

1 3 ' 5
' ' ' ' ' 2/i~l ' ' ' '

c) 1/2; 1/2 1/2", 1/21/21/2", . . . ;

d) 0.2, 0.23, 0.233, 0.2333, . . .

Find the limits:

171. Hm a+4+ l,+ ...
n *\* * "*

172. lirn
C + D ( + )(>. + 3)

fl -oo n

173 Hm'
l) 2n+11

2 J'

178*. lim
n -* CD
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179. Hm (Vn + 1 \f~n).
n -+ <

-o/% i /

180. lim

When seeking the limit of a ratio of two integral polynomials in * as

x -+ oo, it is useful first to divide both terms of the ratio by xn , where n is

the highest decree of these polynomials.
A similar procedure is also possible in many cases for fractions contain-

ing irrational terms.

Example 1.

lim J2^-3)(3t-f^)(4A'-6) _

lim
.

*
=. lim J = 1.

Example 2.

181. lim ^rrr. *86. lim ^~~^=J.
r -. or

* ~' 1 * + <x> V X* -\- \

182. lim ^^. 187. lim
00 * -1

__ .

1- 1/ jc

183. lim .,
.

J" . 188. lim3* + 7

O ^2 Y L ^
184. lim 4-

h

->* 10-j- A:

3 8v +5* 189. lirn

185. lim -r-r~c
- * ^ 5 190. lim

Vx+ Vx
If P(A-) and Q (x) are integral polynomials and P (u) + or Q (a)

then the limit of the rational fraction

lim

is obtained directly.
But if P(a) = Q(a)=0, then it is advisable to camel the binomial * a

P (x)
out of the fraction Q once or several times.

Example 3.

lim /'T4 ^ lim !*""!!) f
xf

?? Hm ^^4.
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101. lim ^{. 198. Um
* ^

192. lim *-. 196. lim
* _. |

* ^ *-+> fl

The expressions containing irrational terms are in many cases rational-
ized by introducing a new variable.

Example 4. Find

lim

Solution. Putting
!+*= */',

we have

lim E=1 Mm^ = lim "
2

3/ ,

,,. ,'~
t/x ~ ]

x

200. lim T
*~

.

199. lim -4^-. 201. lim
X - 1

* l

Another way of finding the limit of an irrational expression is to trans-

fer the irrational term from the numerator to the denominator, or vice versa,
from the denominator to the numerator.

Example 5.

lim = = lim _^
x -+a(X a)(Vx + V a)

lim
! !

*-> a ^ jc -f V a 2\f~i

203. lim
Q-. 206. lim -=f.-49 __

204. li.n j-^= . 207. lim
*-* / x 2 *-+<

205. lim ^L""
1

. 208. lim
*-+' / * 1 ^-*o
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209. lim
_ K

210. lim

211. Hm(]/xfa |

Jf--fCO

The formula

212. lim [/*(* + a) xj.
X-

213 '

^i

214. li.

-6* 4 6-*).

215.

llm -i
X - X

r frequently used when solving the following examples. It is taken for

granted that lim sin *= sin a and lim cos*= cos a.

Example 6.

216. a) lim;

217.

lira !!! lim

b)li.n^.
X -> CO

,. sill 3x

sin 5*

sin 2*
'

sin JTX

218. lim
X -0

219. lim = .

M ^ l
sin BJIJC

220. lim ( n sin-).
n-*cc \ n I

221. lim

222. lim

223. lim

224. lim

225. lim

226. lim
crs^

227. a) lim xsinl;

b) lim x sin .

X-* 00
*

228. lim (1 x) tan -~- .

Jt-M ^

229. lim cot 2x cot f-^ x).
* -+0 \ * /

230. lim
*- Jt

231. lim

ji *

1-2

232. lim
cosmx-cosn\V* *

233. lim
JC
-

tan A: sui

arc sin ^

236. lim

I tan*
' sin six

'
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nx

m.ta .=T. 24 -

!!?.

n
*""r

'"""
f -* 1 I p Jt

When taking limits of the form

lim l<p(Jt)]*
U) -=C (3)

X * fl

one should bear in mind that:

1) if there are final limits

lim cp (x) A and lim
\|? (x) = B,

then C=4";
2) if lim (p(x) = /l ^ 1 and lim ty(x)^= oo, then the problem of finding

the limit of (3) is solved in straightforward fashion;

3) if lini(pU)=l and lim
\|) (x) = co, then we put q>(x)= 1 +a(x),

where a (x) -* as x -+ a and, lien^e,

1 Hm a (x) ^ (x) Hm [(p (x) - ij ty (x)

x - a

where e = 2.718 ... is Napier's number.

Example 7. Find

lim

Solution. Here,

lim (5111=2 and lim
Jf-^O \ X

hence,

lim
x-*o

Example 8. Find

Solution. We have

lim
1 r-^(

2 J^ 2

x

end

Hm *2=
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Therefore,

lim /
j =0.

Example 9. Find

lim f
x ~~

\
t

Solution. We have

lim ^11= lim i =

X-+ 06 X -4- 1 (- CO . ,
1

+T
Transforming, as indicated above, we have

In this case it is easier to find the limit without resorting to the general
procedure:

Generally, it is useful to remember that

lim

250. li

244. lim(*
"" 2*"M

].
251. lirn(l + sinjc) *.

X-K>\ X 3x4-2/ -.o

/^i i 2 \*a
J_

245>
Jill (2?+T ) 252**. a) lim (cos x)

*
;

/ 1 \
X~*

246. Hmfl -) . .

... V /
b) H

247
Iim(l

f I)*.
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When solving the problems that follow, it is useful to know that if the

limit lim/(x) exists and is positive, then

lim [In /(*)]
= In [Hm f (x)].

x-+a X-+Q

Example tO. Prove that

Solution. We have

lim
ln

X-*0 X X-+Q

Formula (*) is frequently used in the solution of problems.

253. lim [In (2*+!)
*-

254. li .

- X

255. limfjlnl/J-i^). 260*. llmn(^/a \) (a>0).
,_*<> \

" lX/ n^ V)

pCLX ptX
256. lim *[ln(jt+l) Inx]. 261. lim-- .

*
<-*--- 00

257. lim. 262. li -- .

-^o sin *

258*. Hm=. 263. a) lim

259*. ital! (a >0). b) lim
x*

(see Problems 103 and 104).

Find the* following limits that occur on one side:

264. a) lira *_^ .

fa Hm i

b)Jirn* p===.
*" +

1+ '
T

265. a/lLutanh*; 267 - a ) lim

*-*-* *--

b) limtanh*, b) Hm
*->+ *-*+

where tanh^ =^^~. 268. a) lim

266. a) lira V ;
b) |im
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269. a) lim-^4i; 270. a) Hm-^-;' x~ *

Construct the graphs of the following functions:

271**. y = \im (cos
2

"*).
n->oo

272*. y=lim
*

n (x^O).
n-*c *

i
x

273. y = \im J/V-t-a
2

.

a->o

274. t/
= li;n|

275. t/
= li

-*<

276. Transform the following mixed periodic fraction into

a common fraction:

a = 0.13555...

Regard it as the limit of the corresponding finite fraction.

277. What will happen to the roots of the quadratic equation

if the coefficient a approaches zero while the coefficients b and c

are constant, and fc^=0?

278. Find the limit of the interior angle of a regular n-gon
as n > oo.

279. Find the limit of the perimeters of regular n-gons inscribed

in a circle of radius R and circumscribed about it as n - oo.

20. Find the limit of the sum of the lengths of the ordinates

of the curve

y = e~*cos nx,

drawn at the points x= 0, 1, 2, ..., n, as n *oo.

281. Find the limit of the sum of the areas of the squares
constructed on the ordinates of the curve

as on bases, where x=^l, 2, 3, ..., n, provided that n *oo.

282. Find the limit of the perimeter of a broken line M^.. .Mn
inscribed in a logarithmic spiral
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(as n oo), if the vertices of this broken line have, respectively,
the polar angles

<P,
== 0, <PJ

= y , . . . , q>rt
=y

283. A segment AB = a (Fig. 7) is divided into n equal parts,

each pnrt serving as the base of an isoscelos triangle with base

angles u ^45. Show that the limit of the perimeter of the bro-

ken line thus formed dilTers from the

length of AB despite the fact that in

the limit the broken line "geometrically
merges with the segment AB".

Fig. 7 Fig 8

284. The point C, divides a segment AB---1 in half; the

point C
2
divides a segment AC

l
in half; the point C, divides a

segment C,C l
in half; the point C

4
divides C

2
C

3
in half, and so

on. Determine the limiting position of the point Cn when /i--oo.

285. The side a of a right triangle is divided into n equal

parts, on each of which is constructed an inscribed rectangle

(Fig. 8). Determine the limit of the area of the step-like figure

thus formed if n *ou.

286. Find the constants k and b from the equation

= 0. (1)

What is the geometric meaning of (1)?

287*. A certain chemical process proceeds in such fashion

that the increase in quantity of a substance during each interval

of time r out of the infinite sequence of intervals (tr, (i -f l)t)

(/~0, 1, 2, ...) is proportional to the quantity of the substance

available at the commencement of each interval and to the length

of the interval. Assuming that the quantity of substance at the

initial time is Q ,
determine the quantity of substance Q (

t

n} after

the elapse of time t if the increase takes place each nth part of

the time interval *=
Find Q^lhi
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Sec. 4. Infinitely Small and Large Quantities

1. Infinitely small quantities (infinitesimals). If

lim a (x)
= 0,

x->a

i.e., if |a(x)|<e when <
|
K a

\
< fi(e), then the function a (x) is an

infinitesimal as x a. In similar fashion we define the infinitesimal a (x)

as x * oo.

The sum and product of a limited number of infinitesimals as x +a are
also infinitesimals as x-+a.

If a(x) and p (x) are infinitesimals as x *a and

lim SlJfUc,
x-+a P (x)

where C is some number different from zero, then the functions a(x) and p(x)
are called infinitesimals of the same order; but if C = 0, then we say that the
function a (x) is an infinitesimal of Higher order than p (x). The function
u (x) is called an infinitesimal of order n compared with the function p (x) if

lim Q(x) -C" '

where < J C| < -f oo.

If

then the functions a (x) and p (A*) are called equivalent functions as x *a:

For example, for x > we have

sinx~x; tanx~ x; ln(l-fx)~x
and so forth.

The sum of two infinitesimals of different orders is equivalent to the
term whose order is lower.

The limit of a ratio of two infinitesimals remains unchanged if the terms
of the ratio are replaced by equivalent quantities. By virtue of this theorem,
when taking the limit of a fraction

lim !>
,aPW

where a (x) >.0 and p (x)
> as x *a t we can subtract from (or add to)

the numerator or denominator infinitesimals of higher orders chosen so that

the resultant quantities should be equivalent to the original quantities.

Example 1.

,. j/?T2? ,.

-a/7'
lim i- = lim

*-*o 2x 2

2. Infinitely large quantities (infinites). If for an arbitrarily large num-
ber Af there exists a 6(N) such that when < |

x a
| < 6(N) we have the

inequality

lfMI>tf.

then the function f(x) is called an infinite as x >a.

2-1900
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The definition of an infinite f (x) as x > co is analogous. As in the case

of infinitesimals, we introduce the concept of infinites of different orders.

288. Prove that the function

is an infinitesimal as x *oo. For what values of x is the ine-

quality

l/WI<e

fulfilled if e is an arbitrary number?
Calculate for: a) e = 0.1; b) e-0.01; c) e-0.001.
289. Prove that the function

is an infinitesimal for x >1. For what values of x is the ine-

quality
!/(*)!<

fulfilled if e is an arbitrary positive number? Calculate numeri-

cally for: a) e-0.1; b) e = 0.01; c) e = 0.001.

290. Prove that the function

~

x 2

is an infinite for x *2. In what neighbourhoods of |x 2|<8 is

the inequality

lf(x)\>N

fulfilled if N is an arbitrary positive number?
Find 5 if a) #=10; b) #=100;

J2^ c) #=1000.
o 291. Determine the order of smallness

of: a) the surface of a sphere, b) the volume
of a sphere if the radius of the sphere r

is an infinitesimal of order one. What
will the orders be of the radius of the

sphere and the volume of the sphere with

respect to its surface?

292. Let the central angle a of a cir-

cular sector ABO (Fig. 9) with radius R
tend to zero. Determine the orders of

the infinitesimals relative to the infinitesimal a: a) of the
chord AB\ b) of the line CD; c) of the area of A/4BD.
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293. For x *0 determine the orders of smallness relative to

x of the functions:

*\
^* d) 1 cos *'*

*)
\ +x e) tan A: sin A:.

b)

c) $/*'-

294. Prove that the length of an infinitesimal arc of a circle

of constant radius is equivalent to the length of its chord.
295. Can we say that an infinitesimally small segment and

an infinitesimally small semicircle constructed on this segment
as a diameter are equivalent?

Using the theorem of the ratio of two infinitesimals, find

296. lim
si" 3*' s

!"
5*

. 298. lim^ .

arc sin _^= 299. lim

297. lim
, f 1-* ~

x ^o ln(l--*)

300. Prove that when x *0 the quantities
~ and Y\ +xl

are equivalent. Using this result, demonstrate that when \x\ is

small we have the approximate equality

VT+T1 + . (1)

Applying formula (1), approximate the following:

a) 1/L06; b) 1/0^7; c) /lO; d) /T20

and compare the values obtained with tabular data.

301. Prove that when x we have the following approxi-
mate equalities accurate to terms of order x 2

:

b)

c) (1 +x)
n&\ + nx (n is a positive integer);

d) log(l+x) = Afx,
where Af = log e = 0.43429...

Using these formulas, approximate:

*> 02 ; 2> 0^7 ; 3>
I<55

; 4) ^16; 5) 1.04'; 6) 0.93*; 7) log 1.1.

Compare the values obtained with tabular data.
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302. Show that for X+OQ the rational integral function

P (x)
= a.x

n + a,x
n ~ l + . . . -f an (

is an infinitely large quantity equivalent to the term of highest

degree a xn .

303. Let x*oo. Taking x to bean infinite of the first order,

determine the order of growth of the functions:

a) *>- 100* -1,000;
c)

b) 7+2-

Sec. 5. Continuity of Functions

1. Definition of continuity. A function / (x) is continuous when x=
(or "at the point g"), if: 1) this function is defined at the point g, that is,

there exists a number / (g); 2) there exists a finite limit lim f (x); 3) this lim-

x-4
it is equal to the value of the function at the point g, i.e.,

llmf (*)
= /(). (1)

*-*fc

Putting

where Ag ^0, condition (1) may be rewritten as

lim A/(g) = lim l/(g+ Ag)-f (g)]
= 0. (2)

or the function / (x) is continuous at the point g if (and only if) at this point
to an infinitesimal increment in the argument there corresponds an infinitesi-

mal increment in the function.
If a function is continuous at every point of some region (interval, etc.),

then it is said to be continuous in this region.

Example 1. Prove that the function

y= sin x

fs continuous for every value of the argument x.

Solution. We have

sin

Ay= sin <*+ A*)-sin x= 2 sin cos x+ = _ . cos fx+ ^
Since

si T
lim T = 1 and

2

it follows that for any x we have

lim A(/= (

Hence, the function sin* is continuous when oo<x< +
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2. Points of discontinuity of a function. We say that a function /(x)has
a discontinuity 'at x=* (or at the point X

Q) within the domain of definition
of the function or on the boundary of this domain if there is a break in the
continuity of the function at this point.

Example 2. The function f(x)= (Fig. 10 a) is discontinuous

when x=l. This function is not defined at the point x 1, and no matter

1 2

1-2

how we choose the number /(I), the redefined function / (x) will not be con-

tinuous for *=1.
If the function f (x) has finite limits:

Hm /(*) = f(* -0) and Urn /(*)= /(

and not all three numbers f(x ), /(* ) f (x + Q) are equal, thenxQ is called

a discontinuity of the first kind. In particular, if

then * is called a removable discontinuity.
For continuity of a function f(x) at a point JCQ , it is necessary and suf-

ficient that



38 In t reduction to Analysis [Ch. I

Example 3. The function
/(jc)=j-y

has a discontinuity of the first kind

at *= 0. Indeed, here,

/ ( + 0)= lim 5!!L ==+ i

and

/(_0)= lim
jc-*-o x

Example 4. The iunction y= E(x), where E(x) denotes the integral part
of the number x [i.e., E (x) is an integer that satisfies the equality x= E(x) + q.
where 0<<7<1], is discontinuous (Fig. 106) at every integral point: x= 0,

1, i2, ..., and all the discontinuities are of the first kind.
Indeed, if n is an integer, then (/i 0)-=/il and (/i + 0)= /i. At all

other points this function is, obviously, continuous.
Discontinuities of a function that are not of the first kind are called

discontinuities of the second kind.

Infinite discontinuities also belong to discontinuities of the second kind.
These ane points * such that at least one of the one-sided limits, /(*<> 0) or

/(*o+ 0) is equal to oo (see Example 2).

Example 5. The function #= cos (Fig. lOc) at the point x=0 has a

discontinuity of the second kind, since both one-sided limits are nonexistent
here:

lim cos 5L and lim cosi .

X-+-0 X Jt-> + X

3. Properties of continuous functions. When testing functions for conti-

nuity, bear in mind the following theorems:

1) the sum and product of a limited number of functions continuous in

some region is a function that is continuous in this region;

2) the quotient of two functions continuous in some region is a continuous
function for all values of the argument of this region that do not make the

divisor zero;

3) if a function f (x) is continuous in an interval (a, b), and a set of its

values is contained in the interval (A, B), and a function cp (x) is continuous
in (A t B), then the composite function cp[/(*)J is continuous in (a, b).

A function f (x) continuous in an interval [a, b] has the following proper-
ties:

1) f (x) is boanded on [a, 6J, i.e., there is some number M such that

|/(*)|<M when a<*<6;
2) / (x) has a minimum and a maximum value on [a, b]\

3) / (x) takes on all intermediate values between the two given values;

ithat is, if f(a) = A and /(P) = fl (a<a<p<6), then no matter what the

number C between A and B, there will be at least one value JC= Y (<Y<P)
such that f(y)=*C.

In particular, if f(a)/(p)<0, then the equation

has at least one real root in the interval (a, p).

304. Show that the function y = x 2
is continuous for any value

of the argument x.
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305. Prove that the rational integral tunction

is continuous for any value of x.

306. Prove that the rational fractional function

is continuous for all values of x except those that make the de-

nominator zero.

307*. Prove that the function y= Yx is continuous for x&zQ.
308. Prove that if the function f (x) is continuous and non-

negative in the interval (a, 6), then the function

is likewise continuous in this interval.

309*. Prove that the function y cos x is continuous for any x.

310. For what values of x are the functions a) tan* and

b) cotjc continuous?
311*. Show that the function # = |#| is continuous. Plot the

graph of this function.

312. Prove that the absolute value of a continuous function

is a continuous function.

313. A function is defined by the formulas

How should one choose the value of the function A=f(2) so

that the thus redefined function f(x) is continuous for #= 2?

Plot the graph of the function y = f(x).
314. The right side of the equation

f(x) = lx sin

is meaningless for x = 0. How should one choose the value /(O)
so that f(x) is continuous for jc = 0?

315. The function

f(*) = arctan--^

is meaningless for x=--2. Is it possible to define the value of /(2)

in such a way that the redefined function should be continuous
for jc = 2?
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316. The function f(x) is not defined for x= 0. Define /(O)

so that fix) is continuous for x = 0, if:

/] I y\__1
a) f(x) = l ^

y

;-
(n is a positive integer);

b) /(*) =

c) /(*) =

d) /(

x

1 cos*
.

A*

ln(\+x) 111(1

f) /(*) = * cot*.

Investigate the following functions for continuity:

317. y= -. 324. </
= l

318. y= -. 325. y= arc tan .

3,9. yssi
= 326. </

= (!+ A:) arc tan
,

320. ^=.

b) y = xs\n-. 329. y =

322. */
= -/

323. y=\n(cosx).

330. y=J
**

. '"T P'ot the graph of this function.
\ 2#+l for x>3.

331. Prove that the Dirichlet function %(x) t which is zero for

irrational x and unity for rational x, is discontinuous for every
value of x.

Investigate the following functions for continuity and construct

their graphs:

332. y= \in\

333. y= lim (x arc tan nx).
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334. a) y = sgnx, b) y= x sgnx, c) i/
= sgn(sinjt), where the

function sgn x is defined by the formulas:

I + 1, if *>0,
sgn x =

{
0, if x= 0,

[ -1, if *<0.

335. a) y= xE(x), b) y = xE(x), where E (x) is the integral

part of the number x.

336. Give an example to show that the sum of two discontin-

uous functions may be a continuous function.

337*. Let a be a regular positive fraction tending to zero

(0<a<l). Can we put the limit of a into the equality

= (l a) + l,

which is true for all values of a?

338. Show that the equation

has a real root in the interval (1,2). Approximate this root.

339. Prove that any polynomial P (x) of odd power has at

least one real root.

340. Prove that the equation

has an infinite number of real roots.



Chapter II

DIFFERENTIATION OF FUNCTIONS

Sec. 1. Calculating Derivatives Directly

1. Increment of the argument and increment of the function. If x and x
l

are values of the argument x, and y= f(x) and t/1
=

/(jc1) are corresponding
values of the function y= f(x), then

^x~x
l

x

is called the increment of the argument x in the interval (x, xj, and

A0=0i y

or

/
= f (x,) -f (x) = f (x + A*) -

r

<n

Fig. 11

is called the increment of the function y in the same interval (jc, *,) (Fig. 11,
where &x=MA and by AN). The ratio

5s the slope of the secant MN of the graph of the function y=*f(x) (Fig. 11)
and is called the mean rate of change of the function y over the interval
(x, *-f Ax).

Example t. For the function
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calculate Ax and A#, corresponding to a change in the argument:

a) fromx=l to x=l.l;
b) from x=3 to x= 2.

Solution. We have

a) Ax=l. 1 1=0.1,
Ai/= (l.l

2 5-1.1 + 6) (I
2

5- 1+6) = 0.29;

b) Ax= 2 3 = 1,

At/= (2* 5-2-1-6) (3* 5-3 -f- 6)--=0.

Example 2. In the case of the hyperbola y= , find the slope of the

secant passing through the points M ( 3,
--

)
and N

{ 10, -r^ )
.

V '

1 1

J
7

Solution. Here, Ax=10 3= 7 and Ay=^ 4= 5*- Hence,
1U o 5U

, AJ/ 1
Ax~~ 30'

2. The derivative. The derivative
y'=j-

of a function y-=f(x) with re-

spect to the argument x is the limit of the ratio -r^ when Ax approaches zero;

that is.

y>= lim >.
AJC -> o A*

The magnitude of the derivative yields the slope of the tangent MT to the

graph of the function y= f(x) at the point x (Fig. 11):

y' tan q>.

Finding the derivative /' is usually called differentiation of the function. The
derivative y'=f' (x) is the rate of change of the function at the point x.

Example 3. Find the derivative of the function

y= x*.

Solution. From formula (1) we have

Ay= (*+ A*)* xi 2*Ax+ (Ax)
1

and

Hence,

5*. One-sided derivatives. The expressions

/'_(*)= lim f (*+**)-/(*)
AJ:-*--O Ax

and

/(x)= lim

'= lim L^ lim
Ax AJC->O

Ax
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are called, respectively, the left-hand or right-hand derivative of the function

f(x) at the point x. For /' (x) to exist, it is necessary and sufficient that

/'.(*)= /+(*).

Example 4 Find /'_ (0) and /'+ (0) of the function

Solution. By the definition we have

/'_ (0)
= lim L

f^ (0)
= lim
A*--t-o Ax

4. Infinite derivative. If at some point we have

Uoo,lim /(*+**)-/(*)_.

then we say that the continuous function / (x) has an infinite derivative at x.
In this case, the tangent to the graph of the function y= f(x) is perpendicu-
lar to the x-axis.

Example 5. Find /' (0) of the function

V=V*
Solution. We have

/'0)=llm *~ = ]im -=-=<-
Ax

341. Find the increment of the function y = x2
that corresponds

to a change in argument:

a) from x= 1 to x
t
= 2;

b) from x = 1 to x
l
= 1 . 1 ;

c) from A: = 1 to
A:,
= 1 + h.

342. Find A// of the function y=-i/xil:

a) * = 0, AA:- 0.001;

b) ^=8, ^= 9;

c) ^ = a, AA: = /Z.

343. Why can we, for the function y = 2;c+ 3, determine the
increment Ay if all we know is the corresponding increment
Ax = 5, while for the function y = x2

this cannot be done?

344. Find the increment by and the ratio ^ for the func-
tions:

A*

a ) y =
(Jg 2)

f f01"*^ 1 andAjc = 0.4;

b) y=l/"x forx-0 and AJC = 0.0001;
c) y = \ogx for x -100,000 and A*- 90,000.
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345. Find Ay and - which correspond to a change in argu-

ment fromx to x-(- Ax for the functions:

a) y-ax + 6; d) y = /x;
b) y-x'; e) y = 2*\

346. Find the slope of the secant to the parabola

y == ~x x
t

if the abscissas of the points of intersection are equal:

a) x,-l, x
a -2;

c) x^l,' x
2

2

=l+fc.

To what limit does the slope of the secant tend in the latter case
if /i->0?

347. What is the mean rate of change of the function y = x*

in the interval l^x^4?
348. The law of motion of a point is s = 2/

2 + 3/ + 5, where
the distance s is given in centimetres and the time t is in seconds.

What is the average velocity of the point over the interval of

time from t~\ to ^ = 5?

349. Find the mean rise of the curve y = 2* in the interval

350. Find the mean rise of the curve j/
= /(x) in the interval

[x, x+Ax].
351. What is to be understood by the rise of the curve y = f(x)

at a given point x?

352. Define: a) the mean rate of rotation; b) the instantaneous

rate of rotation.

353. A hot body placed in a medium of lower temperature
cools off. What is to be understood by: a) the mean rate of

cooling; b) the rate of cooling at a given instant?

354. What is to be understood by the rate of reaction of a sub-

stance in a chemical reaction?

355. Let M = /(X) be the mass of a non-homogeneous rod over

the interval [0, x]. What is to be understood by: a) the mean
linear density of the rod on the interval [x, x+Ax]; b) the linear

density of the rod at a point x?

356. Find the ratio of the function */
= at the point

x = 2, if: a) Ax-1; b) Ax = 0.1; c) Ax -0.01. What is the deriv-

ative y' when x^2?



46_ Differentiation of Functions_[C/t. 2

357**. Find the derivative of the function y = ianx.

358. Find {/'= lirn ^ of the functions:

a) t/
= xf

; c) y =

359. Calculate f'(8), if

360. Find /'(0), /'(I), /'(2), if /(*)= *(*- 1)
1

(x-2)V
361. At what points does the derivative of the function

/(#)= #* coincide numerically with the value of the function itself,

that is, /(*)= /'(*)?
362. The law of motion of a point is s= 5/*, where the dis-

tance s is in metres and the time t is in seconds. Find the speed
at * = 3.

363. Find the slope of the tangent to the curve y= Q.lx*

drawn at a point with abscissa x= 2.

364. Find the slope of the tangent to the curve y=sinjt at

the point (ji, 0).

365. Find the value of the derivative of the function f (*) = -i
i \ / x

at the point x= X
Q (x + 0).

366*. What are the slopes of the tangents to the curves y=~
and y = x* at the point of their intersection? Find the angle be-

tween these tangents.
367**. Show that the following functions do not have finite

derivatives at the indicated points:

a) y=^?_ at x

b) y=l/xl at x

c) y = |cosx| at *= jt, fc = 0, 1, 2,

Sec. 2. Tabular Differentiation

1. Basic rules for finding a derivative. If c is a constant and w = o>(jc)
v ty(x) are functions that have derivatives, then

'

1) (c)'
= 0; 5)

2) (*)'=,; 6)

3) ( )'-' t;'; 7)- ==
(v * 0).

4) (cu)'=cu
r

;
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2. Table of derivatives of basic functions

I. (x
n
)'
= nxn

- 1
.

III. (sinx)' = cos*.

IV. (cosx)' = sin*.

V1T (arrdn*)':= ( |
*

|
< 1).

VIII. (arccos*)'= ZL. <|*|<1).

IX. (arc i*.

jo'^y-pj.

X.

XI.

XII.

XIII.

XIV.

XV.

XVI.

XVII.
cosh1 x

"

XVIII. (cothx)' = .""" .

XIX. (arcsinhjt)' = -^J==r.
V\+x*

1

XXI. (arc tanh x)' ; (|jc|<l).

XXII.

3. Rule for differentiating a composite function. If y f(u) and u
that is, /==/ [<p (A-)], where the functions y and u have derivatives, then

y
or in other notations

^/=
dx~~ du dx'

This rule extends to a series of any finite number of differentiate functions.
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Example 1. Find the derivative of the function

Solution. Putting #= a5
, where w = (*

2
2jc+ 3), by formula (1) we will

have

y'= (u*)'u (*
2-2x + 3);

= 5u4
(2x-2) = 10 (x-1) (jt

2-

Example 2. Find the derivative of the function

y= sin
8
4*.

Solution. Putting

(/
= *; u = sinu; u= 4jc,

we find

>-4= 12sin2
4xcos4jt.

Find the derivatives of the following functions (the rule for

differentiating a composite function is not used in problems
368-408).

A. Algebraic Functions

s 5

QO ,. V5 A V8
|
O v O Q7 11 Q v 3 O v 2 I v~'ouo. y A ~~ TEA ~]~ AA *j. Of i/. t^ JA ~~~ ^A. ~f~ A .

Q5Q <>
^ v I v^ A V4 Q7IS4T f v*

*
/" +f*oOy. i/

==:
'": ;r-Jt-pJT U.OA . o/O . y= X y X .

370. y--=ax* -f- &A: + C.

372 (,-a(-H-W". 379. il-

373. if . 380. =
.

V^a2+ 62 2jc 1 JC

374. y==+nn 2. 381. = i

B. Inverse Circular and Trigonometric Functions

382. (/
= 5 sin ^+ 3 cos x. 386. y=arctan^-h arc cot x.

383. t/
= tanx cotx. 387.

f/
=

388- -

S85.j/-2/sin(-(''-2)cos(. 389. _('+"')' '"'-'.
^
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C. Exponential and Logarithmic Functions

390. y^K*-e*. 396. y= e*arc sin x.

391. y = (x-l)e*. 397. y^~.

392. r/
= 5- 398 - y= *

.

\j

393. (/== J. 399. */
=7

394. / (x) = e* cos jc. 400. y= \nx\ogx In a loga jc.

395. #=:(A;
2

2

D. Hyperbolic and Inverse Hyperbolic Functions

401. t/
= Jtsinhjt. 405. (/

= arctanx arctanh

402. y=-V- . 406. t/
= arcy cosh x J

403. // = tanhA: *. 407. (/
= -

404 t/
= ^iiL 408. //

= -

^ Inx ^
i x-

E. Composite Functions

In problems 409 to 466, use the rule for differentiating a composite func-
tion with one intermediate argument.

Find the derivatives of the following functions:

40Q** a H -i_^v ^r2
\*"v u . y \ i i~ \jAt ~~~- *jAi j

Solution. Denote 1 + 3jt 5jc*= w; then t/
= w j<)

. We have:

^ = 30wM ; u'^
= 3 10*;

i^
- 30a 29

-(3 \0x) =30 (1 + 3jc

/ I L. \ 1

410. i/=|

411.

412.

410 ,._
-1 > '

10> f/
"~56(2* 1)' 24(2^1)' 40(2x I)''

414. t/=J/T^J?".

415. y=^/
416. w=(a''.
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417. t/
= (3 2 sin*)

5
.

Solution. y'
= 5 (32 sin Jt)

4
-(3 2 sin x)' = 5 (3 2 sin x)* ( 2 cos x)=

- 10 cos x (3 2 sin x)
4

.

418. j/=tanjc
-

t

419. r/=J/coU /coU. 423. j/
= 0-^-3--y y 3 cos3 * CGSJC

420. y= 2x + 5 cos' *. 424. y = |/
3sin*--2cos*

421*. x= cosec
2
^+sec

f
/. 425. y=

422. f(x) =
6(1 _3cosx)

f

426. {/= 1/1 + arc sin x.

427. y = J/arc tan * (arc sin x)
9
.

428 - y

429. t/

430. y=/2ex

431. y= sin 3* + cos
-|-
+ tart

Solution , f^ = cos 3^3*)' -sin 4 f4V + ,

]

/-5 \ 5 / cos2 Y x

^
1

sin
x^

5
Sm

5 "^2

432. t/=sin(x
f

433. /(x) = cos(ct;

434. /(0=sin/si
,._ l+cos2*

"

436. /(x)= acot~

437. t/
= ~

438. y= arc sin 2x.

Solution, y'
=

439. y= arcsin^. 441. y = arc tan.

440. /(x) = arccosJ/7. 442. y =
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443. t/
= 5e~*. 447. y= arc cose*.

AAA > 448 - 0=1444. t/
= .

5X 449. j/
= logsinjc.

445. j/
= x2

10'*. 450. y= ln(l *').

446. f(t)
= ts'm2t

. 451. y= \n* * In(lnjc).

452. y== \n(e* + 5 sin x 4 arc sinx).

453. t/
= arctan (lnA:) + ln(arctan^).

454. y= /In x+l + In (1/7+1).

F. Miscellaneous Functions

455**. y=sin'5jccos*y.

15 10

3)'

458. j/=

460.
az ^-i-jc 2

461. y = :

x*

3

462. f/
=

|-

463. y=4-

4

465. t/
= x4

(a

__J
"2 (Jt-i-2)

1 '

468. |/
=

|

469.

470. z =
471. /(0=(2/-
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473. y = ln(]/l+e*-l)-ln(/l
474. # = ^ cos'x (3 cos

2
* 5).

... (tan
2 * l)(tan

4 x-HOtan 2
*-fl)

475 -
=- -

476. y=-ian*5x. 485. # = arc sin

477. y = ^ sin (x
2

). 486. y = arc sin
*

.

478. j/=sin
2

(O- 487. y=^
cos *

.

479. */
= 3sinA:cos

2

A;+sin'x. 488. y= 4~- afc sin fx I/ -)
V ^ \ * a /

480. w= -o- tan
5 * ianx + x. 489. y = K^2

x* + a arc sin .

O CL

481. y= ^f +cotx. 490. t/=jt/a ^-T8 +a2
arc sin-.

482. y=/a sin
2
jc+ p cos

2
x. 491. y=arcsin(l

483. y = arc sinjc
2 + arccosA;

a
.

484. y = -^ (arc sin*)
2
arc cos jt.

492. ==jc-I

493. y= ln(arcsin5x).
494. y = arc sin (Inx).

495.

5tan-i

496. </
= - arc tan-

497. t/
= 36

2
arc tan }

~
(36 + 2*) Vbxx*.

498. t/
= 1/2 arc cot =x.

499. /
=

500. i/
=

501. F(
502. F
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504. y= ~e-x
(3sm3x cos 3*). 507

505. y = x"a-*". 508. y= l

506. /
= I/cos *aK< r

*. 509. /
= l

510. y = x 2 1/7+2 In (!+/*)
511. j/

= ln(a+ *+/2ax+ *'). 514*. ^
1

5I2^=!^' 515. y ln z
^_ i

y x 3
513. y = . _,_

516.

517. y =

518. y=lnln(3
519. y = 5

520. t/
= l^

522. /
=
x-sin(lnx ^-)

.

1 COS X

524. /(*) =

525. y = \l
526. i/

= 2arc sln * + (! arc cos 3x)
1
.

sin ux . 8

527. u^?^^- ' ' sm m
3 cos' bx

'

tan^+2-:
528. ;/

= -Uln =

n

529. y = arc tan In x.

530. y^lnarc sinx+ In
2

jc-| arc sin In x.

531. f/
= arctanln .
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633. t/=
1Vsin*

534. y= 1 In Ji-+
1 In

J^|+
1 arc tan x.

535. /(*) = 1 In (1 + *)- In (*'-*+ 1) + arc tan

536. f(*) =

537. y= s'mh*2x. 542. y=r. arc cosh In*.

538. y = e
a* cosh px. 543. = arc tanh (tan x).

539. y= ianh*2x. 544. #= arc coth (sec*).

540. y = Insinh2jc. 545. y = arc tanhy^ .

541. t/
= arcsinh~. 546. t/

=
-2-(

A:a~

547. r/= -^+--
548. Find y', if:

a) y=\x\\
b) = *|*|.

Construct the graphs of the functions y and y'.

549. Find #' if

550. Find f (x) if

1 x for x<0,

551. Calculate /' (0) if

/(*) = -*
cos 3*.

Solution, f (x) = e~x (3 sin 3x) e~* cos 3jc;

/' (0)= e (3 sin 0) e cos = 1 .

*

552. f(x)-ln(l+x) + arcsin. Find /'(I).

553. y-tan
1

^. Find
(-gj^.

554. Find /'+ (0) and /1(0) of the functions:

b) / (x) = arc sin^^2 ; e) f(x) = x sin
-^

Y

l+eT
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555. Find / (0) -f xf (0) of the function f(x)=e-*.
556. Find /(3) + (x 3)/' (3) of the function f(x) = Y\ + x.

557. Given the functions f(x) = tar\x and (p(*) = ln(l x)>

find
n0)

tind
q/(or

558. Given the functions /(x)=l x and cp(jc)
= l sin^ r

find 2^nna
ff (1)

.

559. Prove that the derivative of an even function is an odd
function, and the derivative of an odd function is an even func-

tion.

560. Prove that the derivative of a periodic function is also

a periodic function.

561. Show that the function y = xe~* satisfies the equation

xy' = d-x)y-

562. Show that the function y = xe~? satisfies the e <luati n

xy' = (\-x*)y.

563. Show that the function y=
1

, x , lrlx
satisfies the equa-

tion xy' = y(y\i\x 1).

G. Logarithmic Derivative

A logarithmic derivative of a function y = f(x) is the derivative of the

logarithm of this function; that is,

~y fM
Finding the derivative is sometimes simplified by first taking logs of the func-

tion.

Example. Find the derivative of the exponential function

where u = y(x) and v= ty(x).
Solution. Taking logarithms we get

In y v In u.

Differentiate both sides of this equation with respect to x:

(In y)'
= v' In u + v (In a)',

or

1 1

y
~~

u

whence
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or

564. Find y' , if

2
Solution. In y= ^- In x + In (1 x) In (1 + x2

) + 3 In sin x +2 In cos x;
u

1 , 21, (1) 2x
,

1 2smx
y' = _- --ui i _- i-4-3- cosx-- ,

y 3 x 1 x 1-j-x
2 sin x cosx

/ 2 1 2x \
whence y' = y

^ -^ -~pj 2+ 3cotx--2 tan
xj

.

565. Find y\ if y = (smx)
x

.

Solution. In y x In sinx; -/'= In sin x + x cot x;

/'
= (sin x)

x
(In sin x+ x cot x).

,Ln the following problems find y' after first taking logs of the

function y = f(x):

Sec. 3. The Derivatives of Functions Not Represented Explicitly

1. The derivative of an inverse function. I! a function y=f(x) has a

derivative y'x ^ 0, then the derivative of the inverse function x=/- 1

(t/) is

*~7
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or

= _
dy dy'

Tx

Example 1. Find the derivative x
y , if

Solution. We have yx =1+1=^1 ; hence, x = -7-.
x x *>

x-\- 1

2. The derivatives of functions represented parametrically. If a function
\s related to an argument x by means of a parameter t t

then

t *-

I
=

*t
or, in other notation,

*JL

t^dx'
dt

Example 2. Find ^, if
dx

x a cos t,

y= a sin /

Solution. We find = a sin/ and -r- = acosf. Whence
dt d\

_ _
>

dx a sin /

3. The derivative of an implicit function. If the relationship between x
and y is given in implicit form,

F(x,y) = Q, (I)

then to find the derivative y'x y' in the simplest cases it is sufficient: 1) to

calculate the derivative, with respect to x, of the left side of equation (1),

taking y as a function of x\ 2) to equate this derivative to zero, that is, to put

~F(A:,f/) = 0, (2)

and 3) to solve the resulting equation for /'.

Example 3. Find the derivative yx if

0. (3)

Solution. Forming the derivative of the left side of (3) and equating it

ito zero, we get
3*'+ 3yV -3a (y + xy') = 0,
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whence

,_*
2

ay
y
~~axy*'

581. Find the derivative xy if

a) f/
=

c) y= 0.

.dyIn the following problems, find the derivative #'=^ * the

functions y represented parametrically:

582.

583.

584.

585.

586.

587.

589.

590.

591.

592.

(
x = acos*f,

\ y = b sin* t.

x = acos* t,

y=b sin
8
1.

cos3
/

T^nr
sin

8
/

V
?=coslr

x = arc cos

y arc sin

593.

( __ *~ ^

'

{ y~=e:

= a( In tan
-2-
+ cos ^ sin

^) >

= a(sin t + cosO.

588.
t / cos/).

595. Calculate ~ when ^ = 4- if

:= a(t sin /),

f
= a(l cos/).

///i /t cn y

Solution. -r-~
a sin sin/

a(l cosO 1 cos/
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and

fdy\ =
S1"T

I x = tlnt,
596. Find ^ when / = ! if< in/

** i y =
/̂

'

~. i dv i , ji -r f x = e cosf,
597. Find ^ when f = 4- if < <

. /dx 4
\ f/

= ^ sm^.

698. Prove that a function # represented parametrically by the

equations

satisfies the equation

599. When x = 2 the following equation is true:

jc
2 = 2x.

Does it follow from this that

(x*)'
= (2x)

f

when x = 2? _
600. Let y = Va* x*. Is it possible to perform term-by-term

differentiation of

x * + y*^0'?

In the examples that follow it is required to find the deriva-

tive y'
= :r of the implicit functions y.

601. 2x 5//+10 = 0. 609. a cos
2

602. 5+? =1 -
6I0 ' tan//

603. x8

-t-y
s
--=a

8
. 611. xy-

604. x'-

605. l/^+ K^ = /"a. 613. ^ =

606. l/S + /~* = '/a*. 614.

607. /'=

608. y 0.3 sin y = *. 616. arctan
^-
=

-^
l
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617. 1/x
2 + y

2 = care tan . 618. x* =

619. Find y' at the point A! (1,1), if

Solution. Differentiating, we get 2y' =y* + 3xy*y'. Putting x= l and

#=1, we obtain 2*/' = l+3f/', whence 0'
= 1.

620. Find the derivatives y' of specified functions y at the

indicated points:

a)

b) ye
y = e

x+l

c) #
2 =

y) for x =
for *=

for x=

and y=l;
and */=!;

and r/=l.

Sec. 4. Geometrical and Mechanical Applications of the Derivative

1. Equations of the tangent and the normal. From the geometric signifi-
cance of a derivative it follows that the equation of the tangent to a curve

y = f(x) or F(x,y)=Q at a point M (* , t/ ) will be

where y'Q
is the value of the derivative y' at the point M (XQ , yQ). The straight

line passing through the point of tangency perpendicularly to the tangent is

called the normal to the curve. For the

normal we have the equation

Y\

2. The angle between curves. The

angle between the curves

dand

10{Z

at their common point M (* , yQ) (Fig. 12)

is the angle co between the tangents
M QA and M B to these curves at the

point M .

Using a familiar formula of analytic geometry, we get

3. Segments associated with the tangent and the normal in a rectangular
coordinate system. The tangent and the normal determine the following four
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segments (Fig. 13):

t = TM is the so-called segment of the tangent,
S

t
= TK is the subtangent,

n NM is the segment of the normal,

Sn = KN is the subnormal.

St /f Sn N X

Fig. 13

Since KM = \y \
and tan y = y'Q ,

it follows that

j/o

4. Segments associated with the tangent and the normal in a polar sys-
tern of coordinates. If a curve is giv-
en in polar coordinates by the equa-
tion r= /(q>), then the angle u.

formed by the tangent MT and the

radius vector r OM (Fig. 14), is . \Af
defined by the following formula:

The tangent MT and the normal MN
at the point M together with the radi-

us vector of the point of tangency
and with the perpendicular to the

radius vector drawn through the pole
determine the following four seg-

ments (see Fig. 14):

Fig. 14

t = MT is the segment of the polar tangent,

n = MN is the segment of the polar normal,

S
t
= OT is the polar subtangent,

Sn= ON is the polar subnormal.
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These segments are expressed by the following formulas:

621. What angles cp are formed with the x-axis by the tangents
to the curve y = x x

2
at points with abscissas:

a) x = 0; b) x=l/2; c) x=l?
Solution. We have y'^\ 2x. Whence

a) tan cp
= l, <p

= 45; b) tan 9 = 0, q>=0;
c) tan q>

= 1, q>
= 135 (Fig. 15).

622. At what angles do the sine

and y= s'm2x inter-

2
N sect the axis of abscissas at the

origin?
Fig. 15 623. At what angle does the tan-

gent curve y = ianx intersect the

axis of abscissas at the origin?
624. At what angle does the curve y = e*'

tx
intersect the

straight line x= 2?

625. Find the points at which the tangents to the curve

y =z 3*
4

-f. 4x* 12x* + 20 are parallel to the jc-axis.

626. At what point is the tangent to the parabola

parallel to the straight line 5x+ y 3 = 0?

627. Find the equation of the parabola y~x*-}-bx-\-c that is

tangent to the straight line x= y at the point (1,1).

628. Determine the slope of the tangent to the curve x*+y*
xy7 = Q at the point (1,2).
629. At what point of the curve y

2 = 2x* is the tangent per-

pendicular to the straight line 4x3y + 2 = 0?

630. Write the equation of the tangent and the normal to the

parabola ,/-

y = K x

at the point with abscissa x = 4.

Solution. We have y
f

7=; whence the slope of the tangent is

1
2 V x

k = [y']x= i
= -T- Since the point of tangency has coordinates *= 4, y= 2, It

follows that the equation of the tangent is #2 = 1/4 (* 4) or x 4#+ 4= 0.

Since the slope of the normal must be perpendicular,

*, = -4;

whence the equation of the normal: t/2= 4 (x 4) or 4x+ y 18 0.
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631. Write the equations of the tangent and the normal to the

curve y = x' + 2x* 4# 3 at the point (2,5).
632. Find the equations of the tangent and the normal to the

curve

at the point (1,0).

633. Form the equations of the tangent and the normal to the

curves at the indicated points:

a) y = tan2x at the origin;

b) y = arc sin ^^ at the point of intersection with the

A:-axis;

c) y= arc cos 3x at the point of intersection with the y-axis;

d) y = ln* at the point of intersection with the #-axis;

e) y = e }
~ x*

at the points of intersection with the straight
line y= 1.

634. Write the equations of the tangent and the normal at the

point (2,2) to the curve

t*
'

635. Write the equations of the tangent to the curve

at the origin and at the point ^ = j-
636. Write the equations of the tangent and the normal to the

curve x* + y* + 2x 6=0 at the point with ordinate y= 3.

637. Write the equation of the tangent to the curve x* + y*

2xy = Q at the point (1,1).

638. Write the equations of the tangents and the normals to

the curve y = (x l)(jt 2)(x 3) at the points of its intersection

with the #-axis.

639. Write the equations of the tangent and the normal to the

curve y* = 4x4 + 6xy at the point (1,2).

640*. Show that the segment of the tangent to the hyperbola
xy = a* (the segment lies between the coordinate axes) is divided
in two at the point of tangency.

641. Show that in the case of the astroid x2 /8 + y*t*
= a*/J the

segment of the tangent between the coordinate axes has a con-

stant value equal to a.
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642. Show that the normals to the involute of the circle

x= a(cost + t sin/), y= a(sinf t cost)

are tangents to the circle

643. Find the angle at which the parabolas y = (x 2)
2 and

y
_. 4 _|_ 6* x2

i ntersect.

644. At what angle do the parabolas y = x
2 and y = x* inter-

Sect?

645. Show that the curves y = 4x
2+ 2x 8 and y = x* x -\- 10

are tangent to each other at the point (3,34). Will we have the

same thing at (2,4)?
646. Show that the hyperbolas

intersect at a right angle.
647. Given a parabola y*

= 4x. At the point (1,2) evaluate the

lengths of the segments of the subtangent, subnormal, tangent,
and normal.

648. Find the length of the segment of the subtangent of the

curve y 2* at any point of it.

649. Show that in the equilateral hyperbola x2

y
2 = a

2
the

length of the normal at any point is equal to the radius vector

of this point.
650. Show that the length of the segment of the subnormal

in the hyperbola x2

y
2 = a

2
at any point is equal to the abscissa

of this point.
651. Show that the segments of the subtangents of the ellipse

x* y
2

jjr+frl and the circle x
2

-+y
2 = a* at points with the same

abscissas are equal. What procedure of construction of the tan-

gent to the ellipse follows from this?

652. Find the length of the segment ol the tangent, the nor-

mal, the subtangent, and the subnormal of the cycloid

= a(ts'mt),( x = a(t
\ y = a(l

at an arbitrary point t~t .

653. Find the angle between the tangent and the radius vector

of the point of tangency in the case of the logarithmic spiral

654. Find the angle between the tangent and the radius vec-

tor of the point of tangency in the case of the lemniscate
r* = a

1
cos 2q>.
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655. Find the lengths of the segments of the polar subtangent,
subnormal, tangent and normal, and also the angle between the

tangent and the radius vector of the point of tangency in the
case of the spiral of Archimedes

at a point with polar angle <p
= 2jt.

656. Find the lengths of the segments of the polar subtangent,
subnormal, tangent, and normal, and also the angle between the tan-

gent and the radius vector in the hyperbolic spiral r= at an

arbitrary point cp
=

cp ;
r = r

Q
.

657. The law of motion of a point on the *-axis is

and t
2
= (x isFind the velocity of the point at / = 0, ^

in centimetres and / is in seconds).
658. Moving along the #-axis are two points that have the

following laws of motion: x=\00+ 5t and #=l/2/
2

, where t^O.
With what speed are these points receding from each other at

the time of encounter (x is in centimetres and / is in seconds)?
659. The end-points of a segment AB ^5 m are sliding along

the coordinate axes OX and OY (Fig. 16). A is moving at 2 m/sec.

A

Fig. 17

What is the rate of motion of B when A is at a distance OA = 3 m
from the origin?

660*. The law of motion of a material point thrown up at an

angle a to the horizon with initial velocity V
Q (in the vertical

plane OXY in Fig. 17) is given by the formulas (air resistance is

3-1900
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disregarded):

#=i; /cosa, */
= i> /sin a

^-,

where / is the time and g is the acceleration of gravity. Find the

trajectory of motion and the distance covered. Also determine the

speed of motion and its direction.

661. A point is in motion along a hyperbola r/
= so that its

abscissa x increases uniformly at a rate of 1 unit per second.
What is the rate of change of its ordinate when the point passes
through (5,2)?

662. At what point of the parabola y*=\8x does the ordinate
increase at twice the rate of the abscissa?

663. One side of a rectangle, a = 10 cm, is of constant length,
while the other side, b, increases at a constant rate of 4 cm,'sec.

At what rate are the diagonal of the rectangle and its area increas-

ing when 6 = 30 cm?
664. The radius of a sphere is increasing at a uniform rate

of 5 cm/sec. At what rate are the area of the surface of the

sphere and the volume of the sphere increasing when the radius
becomes 50 cm?

665. A point is in motion along the spiral of Archimedes

(a =10 cm) so that the angular velocity of rotation of its radius
vector is constant and equal to 6 per second. Determine the rate

of elongation of the radius vector r when r = 25 cm.
666. A nonhomogeneous rod AB is 12 cm long. The mass of a

part of it, AM, increases with the square of the distance of the

moving point, M from the end A and is 10 gm when AM = 2 cm.
Find the mass of the entire rod AB and the linear density at

any point M. What is the linear density of the rod at A and S?

Sec. 5. Derivatives of Higher Orders

1. Definition of higher derivatives. A derivative of the second order, or
Ihe second derivative, of the function y=f(x) is the derivative of its deriva-
tive; that is,

</"
=

(</')'.

The second derivative may be denoted as

</". or ^. or f"(x).

If *= /(/) is the law of rectilinear motion of a point, then ^ is the accel-

eration of this motion.
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Generally, the ith derivative of a function y f(x) is the derivative of
a derivative of order (n 1). For the nth derivative we use the notation

y
(v

t or ~^, or f
(n)

(x).

Example t. Find the second derivative of the function

y= \n(\ x).

Solution. /.JZL; /

2. Leibniz rule. If the functions u = q>(x) and v=ty(x) have derivatives

up to the nth order inclusive, then to evaluate the nth derivative of a prod-
uct of these functions we can use the Leibniz rule (or formula):

(uv)
<"> = u<"

3. Higher-order derivatives of functions represented parametricaKy. If

( * = q>(0,

I i^
= *(0,

then the derivatives y'x
= -r f/^jc

==
^2 can successively be calculated

by the formulas

x
t

x
t

For a second derivative we have the formula

Example 2. F^nd /

w
, if

Solution. We have

_ & . cos f &
If

-
. . / .

"~~ "~~~ LUl I

(a cos*),
asm* a

and

.

*
(acosO -asln< osln



68 Differentiation of Functions [Ch.

A. Higher-Order Derivatives of Explicit Functions

In the examples that follow, find the second derivative of th<

given function.

667. y= x* + 7x' 5x + 4. 671. //=
668. y = e*

2

. 672.

669. y=sm*x. 673. y= (arc sin x)
2
.

670. y = \n t/\+x2
. 674. */

= acosh .j v u a
V^ I O Y -\

675. Show that the function y= 2
satisfies the differ

ential equation

676. Show that the function y = -^-x

2
e
x

satisfies the differen

tial equation y" 2y'+y = e
x

.

677. Show that the function y=-C l
e"

x + C
2
e'

2x
satisfies th

equation y" 4-3y' -|-2y = for all constants C
l
and C

2
.

678. Show that the function y = e
2x s'm5x satisfies the equa

tion y" 4y
f

+29y = 0.

679. Find y"' ,
if y = x

s

5x
2 + 7x 2.

680. Find /'"(3) f if /(*) - (2^: 3)
5

.

681. Find y
v of the function # = ln(l+x).

682. Find t/
VI of the function y==sin2x.

683. Show that the function y = e~
x cosx satisfies the differ

ential equation y
lv + 4y = Q.

684. Find /(O), f (0), T(0) and /'"(O;
if f(x) = e

x
sinx.

685. The equation of motion of a poin

along the jc-axis is

X-100-H5/ O.OOU 8
.

Find the velocity and the acceleration c

the point for times / = 0, t
l
=\ y an

f
t
=10.
686. A point M is in motion around

circle x
2

+y
2 = a

2 with constant anguls
Fig- 18 velocity CD. Find the law of motion of i1

projection M, on the x-axis if at time / =
the point is at MQ (a, 0) (Fig. 18). Find the velocity and the ac

celeration of motion of M,.
What is the velocity and the acceleration of M

l
at the in

tial time and when it passes through the origin?
What are the maximum values of the absolute velocity and th

absolute acceleration of Ai,?
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687. Find the nth derivative of the function y= (

where n js 3 natural number.
688. Find the nth derivatives of the functions:

a) y^T^x* and b) y^^**'

689. Find the /zth derivative of the functions:

a) j/=sinx; e) y=^j\
b)4,= cos2*; f) J/

=yJ;
c) y= e~

9

*; g) y=sin*jr,

d) |/=ln(l+x); h) y= l

690. Using the Leibniz rule, find y
{n
\ if:

a) y= x.f\ d)y =

691. Find /
(n)

(0), if

b) y= jc
2
.e-*

x
; e) y = x*

c) //
=

(! A:
2

) cos x\~
B. Higher-Order Derivatives of Functions Represented

Parametrically and of Implicit Functions

d^u
In the following problems find ^ .

692. a) K = \nt, b) x = arc tan/, c) *= arc sin/
' J

x =

\0-l

693. _, ,

:asin/;
"'

\ y = a(l -cos/);
:= 0cos'/, iv f

x = a (sin/- /cos/),

f
= a(cos/-f-/ sin/).

696. Find
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d*u I
*= ln(l-f-/

2

),

697. Find 2̂ for /=0, if
{ax
\ y= t .

698. Show that y (as a function of x) defined by the equa-

tions x == sin t, y= ae' ^2 + be~ iV* for any constants a and 6

satisfies the differential equation

In the following examples find y'" = ^.
(
x = sec, f

x= e
-1

,

699. {

'

701. <

\ y = tan/. 1 r/
= /

s
.

{x

= ^"'cos/, ^
y-e-<*tnt.

7 2 ' Find ^ ' if

703. Knowing the function y = f(x), find the derivatives x",

jt'" of the inverse function x= f~*(y).
704. Find /, if x' + y*=*l.

Solution. By the rule for differentiating a composite function we have

2*+ 2i0'=0; whence y' =-j and / =-^^=
-2^;^.

Substituting the value of #', we finally get:

y + **_ 1

^ ~
if

*
if

In the following examples it is required to determine the

derivative y" of the function y = f(x) represented implicitly.
705. y* =

y |y

706. ^ +f = l.

707. #= *-}- arc tan |/.

708. Having the equation y= x + \ny t find and -j

709. Find / at the point (1,1) if

x2

5xy + *
2x+ 6 = 0.

710. Find y" at (0,1) if

711. a) The function y is defined implicitly by the equation

2 = 0.

Find at the point (1,1).

b) Find
, if x

2

+ i/

2 ==a 8
.
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Sec. 6. Differentials of First and Higher Orders

1. First-order differential. The differential (first-order) of a function
y = f(x) is the principal part of its increment, which part is linear relative
to the increment Ax= dx of the independent variable x. The differential of a

Fig. 19

function is equal to the product of its derivative by the differential of the
independent variable

dy--=y'dx,
whence

, dyuy
dx

'

If MN is an arc of the graph of the function y = f(x) (Fig. 19), MT is the

tangent at M. (x, y) and

PQ = Ax-=dx,

then the increment in the ordinate of the tangent

and the segment AN by.
Example 1. Find the increment and the differential of the function

y = 3x2
x.

Solution. First method:

or

Hence,

Second method:

A// = 3 (x+ Ax)
2

(x+ Ax) 3x2+ x

At/ = (6* 1) Ax+ 3 (Ax)
2

.

dy= (6x 1) Ax= (6x 1) dx.

t/'
= 6x 1; df/= j/'dx= (6x 1) dx.

Example 2. Calculate At/ and dy of the function y= 3x 2 x for x=l
and Ax= 0.01.

Solution. A/= (6x l)-Ax+ 3 (Ax)
2= 5- 0.0 1 + 3- (0.01 )

2= 0.0503

and

<fy
=

(6jt 1) Ax= 5- 0.01 = 0.0500.
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2. Principal properties of differentials.

1) dc= 0, where c= const.

2) d*- Ax, where x is an independent variable.

3) d(cu) = cdu.

4) d(u v) = du dv.

5) d (uv) udv + v du.

7)
3. Applying the differential to approximate calculations. If the increment

A* of the argument x is small in absolute value, then the differential dy of the

function y= f(x) and the increment At/ of the function are approximately
equal:

A# =^ dy,
that is,

whence

Example 3. By how much (approximately) does the side of a square change
if its area increases from 9 m2 to 9.1 m 2

?

Solution. If x is the area of the square and y is its side, then

It is given that # = 9 and A* 0.1.

The increment At/ in the side of the square may be calculated approxi-
mately as follows:

ky^zdy--=y' Ax=
j=z

-0.1 = 0.016m.

4. Higher-order differentials. A second-order differential is the differential

of a first-order differential:

We similarly define the differentials of the third and higher orders.

If y= f(x) and x is an independent variable, then

But if y= /(), where w= cp(x), then

d*y= y"' (du)
9 + 3y" du d*u + y' d'u

and so forth. (Here the primes denote derivatives with respect to M).

712. Find the increment Ay and the differentia! dy of the func-
tion #= 5* -f x2

for x= 2 and A#= 0.001.
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713. Without calculating the derivative, find

d(l-x')

for x=\ and Ax = .

714. The area of a square S with side x is given by S= x*.

Find the increment and the differential of this function and ex-

plain the geometric significance of the latter.

715. Give a geometric interpretation of the increment and
differential of the following functions:

a) the area of a circle, S= nx*\

b) the volume of a cube, v=^x\
716. Show that when Ax *0, the increment in the function

//
= 2

X
, corresponding to an increment Ax in x, is, for any x,

equivalent to the expression 2* In 2 A*.

717. For what value of x is the differential of the function

y = x
2
not equivalent to the increment in this function as Ax >0?

718. Has the function y = \x\ a differential for x = 0?

719. Using the derivative, find the differential of the function

y cos x for x = y and Ax --= ~
.

720. Find the differential of the function

for x = 9 and Ax- 0.01.

721. Calculate the differential of the function

for x-^-J
and Ax^.

In the following problems find the differentials of the given
functions for arbitrary values of the argument and its increment.

722. y^'-m- 727. y = x\nx x.

723. <,=

724. #= arc sin . 729. r = cot q> -f cosec (p.

725. //--=arctan~. 730. s = arc lane*.

726. y = e~
x\

731 Find d// if x* + 2xy y*
= a*.

Solution. Taking advantage of the invariancy of the form of a differential,

we obtain 2x dx+ 2 (y dx + x dy) 2y dy=
Whence
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In the following examples find the differentials of the functions
defined implicitly.

732.

733. =

734.
X

735. Find dy at the point (1,2), if y'y = 6x*.

736. Find the approximate value of sin 31.

Solution. Putting *=
arc30=-jr-

and Ax= arc 1=^, from formula (1)

(see 3) we have sin 31=^ sin 30 +^~ cos 30=0.500+0.017-J~^=0.515.

737. Replacing the increment of the function by the differen-

tial, calculate approximately:

a) cos 61; d) In 0.9;

b) tan 44; e) arc tan 1.05.

c) e*\

738. What will be the approximate increase in the volume of

a sphere if its radius # = 15 cm increases by 2 mm?
739. Derive the approximate formula (for \&x\ that are small

compared to x)

A*

Using it, approximate V 5 , Y\7, /70, /640.
740. Derive the approximate formula

and find approximate values for j!/TO, j/70, jI/200.
741. Approximate the functions:

for *=1.03;

__
for *= 0.2;

c) /(x)- !/"}= for *= 0.1;

d) y= e
l ~ x*

for x =1.05.

742. Approximate tan 453 /

20".
743. Find the approximate value of arc sin 0.54.

744. Approximate \
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745. Using Ohm's law, / = --, show that a small change in

the current, due to a small change in the resistance, may be
found approximately by the formula

A/ A.

746. Show that, in determining the length of the radius, a

relative error of 1/ results in a relative error of approximately
2/ in calculating the area of a circle and the surface of a sphere.

747. Compute d*y, if y = co$5x.

Solut ion. d 2

y= y" (dx
2
)
= 25 cos 5* (dx)

2
.

748. u = x\ find d*u.

749. //
= arccosx, find d*y.

750. {/^sinxlnx, find d*y.

751. e =^, find d'z.

752. z = **-*, find d'z.

753. z =
2=TJ,

flnd d4*'

754. M = 3sin(2jt-f 5), find d"w.

755. //
= e* cosa

sin(;t sin u), find dn
y.

Sec. 7. Mean-Value Theorems

1. Rolle's theorem. If a function f (x) is continuous on the interval

b, has a derivative /' (x) at every interior point of this interval, and

then the argument x has at least one value ,
where a < 5 < b, such that

2. Lagrange's theorem. If a function f (*) is continuous on the interval

and has a derivative at every interior point of this interval, then

where a < 5 < ft.

3. Cauchy's theorem. If the functions f (x) and F (x) are continuous on the

interval a^x^b and for a<x<b have derivatives that do not vanish

simultaneously, and F(b)^F(a) t
then

-f (a) _

756. Show that the function f(x) =xx* on the intervals

l<x<0 and 0<x<l satisfies the Rolle theorem. Find the

appropriate values of g.
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Solution. The function / (x) is continuous and different! able for all values
of x, and /( 1)

= /(0)
= /(1)=0. Hence, the Rolle theorem is applicable on

the intervals Kx<0 and 0<*<_1, To find
_ we form the equation

n*) = l-3*2= 0. Whence fc^-J/l; 2
= J/l ,

where -i< g, <o
and 0<E1 < 1.

757. The function f(x) = \/(x 2)
2

takes on equal values

/(0) = /(4) = j/4 at the end-points of the interval [0.4]. Does
the Rolle theorem hold for this function on [0.4]?

758. Does the Rolle theorem hold for the function

on the interval [0, JT]?

759. Let

Show that the equation

/'(*) =
has three real roots.

760. The equation

obviously has a root x= 0. Show that this equation cannot have
any other real root.

761. Test whether the Lagrange theorem holds for the function

on the interval [2,1] and find the appropriate intermediate
value of .

Solution. The function f(x)=xx* is continuous and difTerentiable for
all values of A:, and /' (x)= 1 3x2

Whence, by the Lagrange formula, we
h3ve /(l)-/(-2y=0-6 = [l-(-2)]/

/

(E), that is, /'(E)2 Hence,
1 3^

2= 2 and g=l; the only suitable value is = 1, for which the

inequality 2 < < 1 holds

762. Test the validity of the Lagrange theorem and find the

appropriate intermediate point for the function f(x) = x4/s on
the interval [ 1,1].

763. Given a segment of the parabola y = x
2

lying between
two points A (1,1) and 3(3,9), find a point the tangent to which
is parallel to the chord AB.

764. Using the Lagrange theorem, prove the formula

sin (x 4- h) sin x = h cos
,

where
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765. a) For the functions /(x) = *
2 +2 and F(x) = x' 1 test

whether the Cauchy theorem holds on the interval [1,2] and
find E;

b) do the same with respect to /(*) = sin* and F(x) = cosx

on the interval To, ~1 .

Sec. 8. Taylor's Formula

If a function f (x) is continuous and has continuous derivatives up to the

(n l)th order inclusive on the interval a<x<6 (or &<*<a), and there

is a finite derivative f
(n}

(x) at each interior point of the interval, then Tay-
lor's formula

fw = f (<o + (*-*) r (o) + -V(a) + -V w + . . .

.

nl

where = a + 0(jc a) and 0<6<1, holds true on the interval.

In particular, when a = we have (Maclaurin's formula)

f W =/ (0) +xf (0) + r (0) + . . . +
(

/
( "-'>

(0) + /<> (I),

where ? = 0jc, 0<9<1.

766. Expand the polynomial /(A:)
= A:

8
2;c

f + 3^+ 5 in posi-
tive integral powers of the binomial x 2.

Solution. n*)=3jt
2

4A-+ 3; /'
7

(jc)
= 6^ 4; /'" (x)=6;

for n^4. Whence

H; f'(2) = 7;r(2) = 8;r(2) =6.

Therefore,

or

Jt
8 2xz + 3x+ 5= 1 1 + 7 (.v 2) + 4 (x 2)

2 + (A- 2)
3
.

767. Expand the function f(x)=e
x

in powers of x + l to the

term containing (x-f-1)
8

.

Solution. l
(n)

(x) = e* for all n, p)( 1)=JL. Hence,

where = 1 +6(*+ 1); 0<G<1.

768. Expand the function /(x) = lnjt in powers of x 1 up to

the term with (x 1)*.
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769. Expand / (x)
= sin x in powers of x up to the term con-

taining x9 and to the term containing x*.

770. Expand f(x) = e* in powers of x up to the term contain-

ing xn
~ l

.

771. Show that sin(a+ /i) differs from

sin a + h cos a

by not more than l/2/i
2

.

772. Determine the origin of the approximate formulas:

a) VT+x&l+x y*
2

, \x\<l,

b) yi+i&l+x~x*, \x\<\

and evaluate their errors.

773. Evaluate the error in the formula

774. Due to its own weight, a heavy suspended thread lies

in a catenary line y = a cosh. Show that for small \x\ the

shape of the thread is approximately expressed by the parabola

775*. Show that for \x\<^a, to within
(^-J ,

we have the

approximate equality

Sec. 9. The L'Hospital-Bernoulli Rule for Evaluating Indeterminate Forms

oo
1. Evaluating the indeterminate forms and . Let the single-valued

u oo

functions / (x) and (p (x) be differentiate for 0<|# a
\ </i; the derivative

of one of them does not vanish.
If f(x) and q>(*) are both infinitesimals or both infinites as x * a\ that

is, if the quotient ^-4 . at x= a, is one of the indeterminate forms -- or

oo
i then . .

,

00 lim /(*) ^lim f (*)

*-+<*
(p (x)

x-+a
q>' (x)

provided that the limit of the ratio of derivatives exists.
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The rule is also applicable when a= 00.

fix)
If the quotient

/

,, again yields an indeterminate form, at the point

x= a, of one of the two above-mentioned types and /' (x) and q>' (x) satisfy

all the requirements that have been stated for f(x) and q? (x), we can then

pass to the ratio of second derivatives, etc.

However, it should be borne in mind that the limit of the ratio -^-~

may exist, whereas the ratios of the derivatives do not tend to any limit

(see Example 809).
2. Other indeterminate forms. To evaluate an indeterminate form like

0oo, transform the appropriate product fi(x)*ft (x), wnere lim/, (jt)
= and

K+O.

/(*)

lim/2 (*) = oo, into thequetient ^^ (the form - (T^T\ (the form -).
*->a * U /i (X) oo

M*)
In the case of the indeterminate form oo oo, one should transform the

appropriate difference /,(*) f2 (x) into the product /t (x) l and
L / 1 (x)j

first evaluate the indeterminate form 7*7^; if lim 7^7^=1, then we re-
r i (X) x-+a i\ \x )

duce the expression to the form

(the form ).

/Tw

The indeterminate forms I, 0, 00 are evaluated by first faking loga

rithms and then finding the limit of the logarithm of the power [fl (x)]^
(x}

(which requires evaluating a form like 0oo).
In certain cases it is useful to combine the L'Hospital rule with tht

finding of limits by elementary techniques.

Example 1. Compute

lim JL1 (form ").
*->o cot x oo

7

Solution. Applying the L'Hospital rule we have

lim JEfL^llm pL*r lim .

x+ocotx jc-o(cot*) jc-*o x

We get the indeterminate form
-jp however, we do not need to use the

L'Hospital rule, since

Um sint * Hm sin *

C-frO X ~~*-H) X

We thus finally get

JC->0 COt X
"
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Example 2. Compute

limf-J- L^ (form oo oo).
*-M)V sin x x J

Reducing to a common denominator, we get

lim (4__J_Ulim*.!z^lf (fonn
x-+o \ sin 2 x x2

J x-o x z sin2 x v '

Before applying the L'Hospital rule, we replace the denominator of the lat-

ter fraction by an equivalent infinitesimal (Ch. 1, Sec. 4) *2
sin

2 A;~ x*. We
obtain

o

The L'Hospital rule gives

lim
( L) = lim

A "~ S

a

m *=lim-

Then, in elementary fashion, we find

1 cos 2x ,. 2 sin
2 * 1_ ___

x-<> \ sin 2 x x2

Example 3. Compute
8

lim (cos 2x)
*2

(form I
00

)

X-M)

Taking logarithms and applying the L'Hospital rule, we get

lim In (cos 2*p = lim
31ncos2*= _ 6 lim = _ 6 .

X-*0 X-+Q X x-+Q %X

J^

Hence, lim (cos 2x)
x
*^e-*.

Jf->0

F
: ind the indicated limits of functions in the following exam-

ples.

77G. lim
x'-

,_>, *'

Solution. lim
;
"

^r2 7
~~

9
*

X->1 OJi "~~
/

777. lim
xcosx

v
r

sinx
, 779. lir

tjm I-*
11IU

jix
'

*7on is tan* sin*
*->il_sin :r 780. lim
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,. sec 2
A- 2tan* n

781.
1+COS4*

'

x + 785. lim-
x

*-cot^
782. lim^. 2

^Ji
tan5x

786. lim
1 [,

S )

783. lim ys
. 787. lim (1 cos x) cot x

*-"
. x->o

, i . 1 n x
1. lim -r-?=r .

Solution, lim (1 ^cos x) cot ,= Hm
^ cos A

'^- lim

; linrZi!iJ^(

Sill AT X->0 Sill A

a
788. lim(l A*) Ian

~
. 792. lim x" sin -,

,V-^l
^ X^X 'V

789. lim arc sin x cot x. 793. hnilnxln (x 1).
X-+Q

790. lim(jc
ri

e?"*), n>0. 794. lim f^ n"^
v^o ^ *i \

A ] lr %

791. lim x sin .

Solution.

L__l
_^/ AO J

A [-
1 n A' 1

,

A 1 11 A A= lim
j

= lim
j

= lim -7 T-

^^MiiA-l (A 1)
x ~>l \nx [-1

*^ ]

h~?
A X A A'

2

795. lim

796. lim
y A)

797 limf-^ ^}
^Vc ^' 2cosx/

* *
2

798. lim A;*.

Solution. We have **= r/; In y=?x In A". lim In t/
= limjtln x =

s lim p
= lim

j~
0, whence lim//=l, that is, ImiA^ l.
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799. limx*.

a

800. limx4 * 1"*.

801. linues/n
*.

*->0

802. lim(l-*)

804. li

V-H

tan

cos

803. lim(l+x
2

)*-
X-+0

809. Prove that the limits of

805. Hmftan^f) \
X-+l\ 4 /

1

806. lim (cot x)
ln

*.

X-H)

807. lta(I)
ta

".
x-*o \ x /

808. lim (cot x)*
in

*.

a)
X

sin*

cannot be found by the L'Hospital-Bernoulli rule. Find these

limits directly.

810*. Show that the area of a circular segment with minor
central angle a, which has a chord AB=b and CD=A (Fig. 20), is

approximately

with an arbitrarily small relative error when a ->0.



Chapter III

THE EXTREMA OF A FUNCTION AND THE GEOMETRIC
APPLICATIONS OF A DERIVATIVE

Sec. 1. The Extrema of a Function of One Argument

1. Increase and decrease of tunctions. Tlu Junction y f(x) is called

increasing (decreasing) on some interval if, fo. any points x
l
and x2 which

belong to this interval, from the inequality A',<A-2 we get the inequality / (*,)<
</(*i) (Fig 21a) [/(*,)>/ (A,) (Fm. 21&)]. I! f(x) is continuous on the
interval [a, b] and /' (x)>0 [/' (A')<OJ for a< .<b, then /(A) increases (de-
creases) on the interval [a, b\.

ffxj

i, xz X

(a)

i

Fifi. 21 Fig. 22

In the simplest cases, the domain of definition of f (x) may be subdivid-

ed into a finite number of intervals of increase and decrease of the func-

tion (intervals of monotonicity). These intervals are bounded by ciitic-'

points x [where /'(jc)
= or f' (x) does not exist].

Example 1. Test the following function for increase and decrease:

Solution. We find the derivative

t/'
= 2x 2= 2(* 1).

Whence y'
= for x=l. On a number scale we get two intervals of monot-

onicity: (00, 1) and (1, -f oo). From (1) we have: 1) if oo<x<l, then

i/'<0, and, hence, the function f (x) decreases in the interval ( oo, 1); 2)

if l<A'< + oo, then j/'>0, and, hence, the function /(*) increases in the in-

terval (1, +00) (Fig. 22).



84 Extrema and the Geometric Applications of a Derivative [Ch. 3

Example 2. Determine the intervals of increase and decrease of the func-
tion

Solution. Here,

\2
<Q for *^~

2 is a discontinuity of the function and (/'
=

Hence, the function y decreases in the intervals=
,

i o\

oo<*< 2 and
Example 3. Test the following function for increase or decrease:

s a
/i

. v yy ~
5
*

3
* '

Solution Here,

(2)

Solving the equation x* -x2
Q, we find the points x

l 1, *2= 0, x,= l

at which the derivative y' vanishes. Since y' can change sign only when
passing through points at which it vanishes or becomes discontinuous (in the

given case, y' has no discontinuities), the derivative in each of the intervals

(00, 1), ( 1, 0), (0,1) and (1, +00) retains its sign; for this reason, the
function under investigation is monotonic in each of these intervals. To
determine in which of the indicated intervals the function increases and in
which it decreases, one has to determine the sign of the derivative in each
of the intervals, To determine what the sign of y' is in the interval

( 00,

1), it is sufficient to determine the sign of y' at some point of the inter-

val; for example, taking x= 2, we get from (2) f/'
= 12>0, hence, y'>Q in

the interval (00, 1) and the function in this interval increases Similar-

ly, we find that y'<Q in the interval (1, 0) (as a check, we can take
1 v ' ~

in the interval (0,1)
/'A **

Y\ I \ (here, we can use x=l/2) and y'>0 in the
interval (1, +00).

Thus, the function being tested in-

creases in the interval ( oo, 1), decreases
in the interval (1, 1) and again increases
in the interval (1, -f oo).

2. Extremum of a function. If there
exists a two-sided neighbourhood of a point
XQ such that for every point X^XQ of this

neighbourhood we have the inequality
f(x)>f(xQ ) J then the point x is called the
minimum point of the function y f(x),
while the number / (x ) is called the mini-
mum of the function y f(x). Similarly, if

for any point xj^xl
of some neighbourhood of the point xlf the inequality

f(*)<f(x\) is fulfilled, then *, is called the maximum point of the function
f(x), and

/(*j)
is the maximum of the function (Fig. 23). The minimum

point or maximum point of a function is its extremal point (bending point),
and the minimum or maximum of a function is called the extremum of the
function. If xn is an extremal point of the function f (x), then /' (* )

= 0, or

Fig 23
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The sufficient conditions for the existence and absence of an extremum of a

continuous function / (x) are given by the following rules:

1. If there exists a neighbourhood (XQ 6, * + 6) of a critical point *
such that /'(x)>0 for XQ d<x<xQ and /'(jt)<0 for xQ<x<xQ+ d, then * is

the maximum point of the function / (*); and if /' (*)<0 for * 6<*<x
and /' (x)>0 for x <x<xe+ 6\ then * is the minimum point of the function

/(*)-

Finally, if there is some positive number 6 such that /' (x) retains its

sign unchanged for 0<|jc X
Q |<6, then x is not an extremal point of the

function / (x).

2. If f
r

(XQ) $ and /"(*<,)<(), then XQ is the maximum point;
if f' (XQ)

= Q and f" (* )>0, then x is the minimum point; but if f (* )
= 0,

f (* )
= 0, and /'" (* )^0, then the point XQ is not an extremal point.

More generally: let the first of the derivatives (not equal to zero at the

point x ) of the function f (x) be of the order k. Then, if k is even, the

point XQ is an extremal point, namely, the maximum point, if f
(k)

(* )<0;
and it is the minimum point, if /

(ft)

(x )>0 But if k is odd, then A-O is not

< n extremal point.

Example 4. Find the extrema of the function

i/ ==2* + 3
j

Solution. Find the derivative

(3)

x V v

Equating the derivative y' to zero, we get:

Whence, we find the critical point x
l
=- 1. From formula (3) we have: if

x- : -/i, where h is a sufficiently small positive number, then /y'>0; but

if x-= \+h, then /'<0*). Hence, *, I is the maximum point of the

function r/ f and //max=-l.

Equating the denominator of the expression of y' in (3) to zero, we get

whence \\e find the second critical point of the function A'2
= 0, where there

is no derivative //' For *== /i, we obviously have //<0; for*/! we have

//>0. Consequently, *
2
= is the minimum point of the function y, and

i/m jn (Fig. 24). It is also possible to test the behaviour of the function

at the point x 1 by means of the second derivative

/=--4^-

Here, r/"<0 for x
p

,
= I and, hence, *,

= 1 is the maximum point of the

function.
3. Greatest and least values. The least (greatest) value of a continuous

function f (x) on a given interval [a, b] is attained either at the critical

points of the function or at the end-points of the interval [a, b].

*) If it is difficult to determine the sign of the derivative y', one can
calculate arithmetically by taking for h a sufficiently small positive number.
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Example 5. Find the greatest and least values of the function

on the interval P/2
Solution. Since

it follows that the critical points of the function y are *,
= 1 and

Y

Fig. 24

Comparing the values of the function at these points and the values of the

function at the end-points of the given interval

we conclude (Fig. 25) that the function attains its least value, m=l, at

the point x=l (at the minimum point), and the greatest value A4 = ll
o

at the point *=2J

/i (at the right-hand end-point of the interval).

Determine the intervals of decrease and increase of the func-

1ions:

811. y=l 4* jf. *>- i

812. {/
= (* 2)

2
.

813. y= (A:+4)
s
.

814. {/
= *'(*- 3).

817. =

818. = (x
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819. y^ \-V~x. 823. y= 2e*
z

-'*.

820. y = x -f sin x. 24 y _. 2~<*.

821. y= x\nx.
'

g
*

822. t/
=

arcsin(l-f-x).
825 - ^T"

Test the following functions for extrema:
826. y= x* + 4*4-6.
Solution. We find the derivative of the given function,

Equating y' to zero, we get the critical value of the argument x= 2.

Since i/'<0 when x< 2, and y'>Q when *> 2, it follows that *= 2 is

the minimum point of the function, and #min= 2. We get the same result

by utilizing the sign of the second derivative at the critical point y"~<
827. y --

~

828.
{/
=

.

829. (/
=

!

Solution, We find the derivative

y'= 6* 4- 6x 12= 6 (jc
2+ * 2).

Equating the derivative y' to zero, we get the critical points x,= 2
and *,= !. To determine the nature of the extremum, we calculate the
second derivative ^"^ 6 (2* 4-1). Since /( 2)<0, it follows that x,= 2
is the maximum point of the function y, and #max = 25. Similarly, we have
t/*(l)>0; therefore, x2 =l is the minimum point of the function y and

i= 2.

<- 12)

2
'

840. y-
I)

1

(* 2)'.

841. t/
= je ln(l+*).

842. # =

843. y=

844. /
=

836. V= rr4=^.
845> ,_

837. t/= ^_. 846. y= x'e-*.

838. w=J/(^ 1)'. 847. f/
=-.

X

OQQ it O cin O v I citi ^. v /1ft // - ^ ar/* fan ^ooy. */ === z sin ZA -+ sin ^k*. oto. M /t-~drc idii ^t.

Determine the least and greatest values of the functions on the

indicated intervals (if the interval is not given, determine the
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greatest and least values of the function throughout the domain
of definition).

849. !/
=

rih&. 853 - V = x* on the interval [ 1,3].--

850. y = x(lOx). 854. y = 2x* + 3*2
12*+ 1

851. y= sin
4

A; + cos
4

A;. a) on the interval
f 1,6];

b) on the interval [10,12],
852. #= arc cos x.

855. Show that for positive values of *we have the inequality

856. Determine the coefficients p and q of the quadratic tri-

nomial y*=x*+px + q so that this trinomial should have a min-
imum t/

= 3 when Jt= 1. Explain the result in geometrical terms.

857. Prove the inequality

e*> 1 + x when x 4* 0.

Solution. Consider the function

In the usual way we find lhat this function has a single minimum /(0)

Hence,

/(*)>/ (0) when x 0,

and so e* > 1 +x when x ^ 0,

as we set out to prove.

Prove the inequalities:

858. x ^< sin x< x when *>0.
o

859. cos*>l ^ when

860. A: ~<ln(l +x)<x when
JL

861. Separate a given positive number a into two summands
such that their product is the greatest possible.

862. Bend a piece of wire of length / into a rectangle so that

the area of the latter is greatest.
863. What right triangle of given perimeter 2p has the great-

est area?

864. It is required to build a rectangular playground so that

it should have a wire net on three sides and a long stone wall

on the fourth. What is the optimum (in the sense of area) shape
of the playground if / metres of wire netting are available?



Sec. 1] The Extrema of a Function of One Argument 89

865. It is required to make an open rectangular box of greatest

capacity out of a square sheet of cardboard with side a by cutting

squares at each of the angles and bending up the ends of the

resulting cross-like figure.

866. An open tank with a square base must have a capacity
of v litres. What size will it be if the least amount of tin is used?

867. Which cylinder of a given volume has the least overall

surface?

868. In a given sphere inscribe a cylinder with the greatest volume.
869. In a given sphere inscribe a cylinder having the greatest

lateral surface.

870. In a given sphere inscribe a cone with the greatest volume.
871. Inscribe in a given sphere a right circular cone with the

greatest lateral surface.

872. About a given cylinder circumscribe a right cone of least

volume (the planes and centres of their circular bases coincide).
873. Which of the cones circumscribed about a given sphere

has the least volume?
874. A sheet of tin of width a has to be bent into an open

cylindrical channel (Fig. 26). What should the central angle cp be
so that the channel will have maximum capacity?

D

N

I

M

Fig. 27

875. Out of a circular sheet cut a sector such that when made
into a funnel it will have the greatest possible capacity.

876. An open vessel consists of a cylinder with a hemisphere
at the bottom; the walls are of constant thickness. What will the

dimensions of the vessel be if a minimum of material is used for

a given capacity?
877. Determine the least height h = OB of the door of a ver-

tical tower ABCD so that this door can pass a rigid rod MN of

length /, the end of which, M, slides along a horizontal straight
line AB. The width of the tower is d<l (Fig. 27).
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878. A point M (x , # ) lies in the first quadrant of a coordi-

nate plane. Draw a straight line through this point so that the

triangle which it forms with the positive semi-axes is of least area.

879. Inscribe in a given ellipse a rectangle of largest area with
sides parallel to the axes of the ellipse.

880. Inscribe a rectangle of maximum area in a segment of

the parabola y*
= 2px cut off by the straight line x= 2a.

881. On the curve y = ,

-

t
find a point at which the tangent

1 -\- X

forms with the A>axis the greatest (in absolute value) angle.
882. A messenger leaving A on one side of a river has to get

to B on the other side. Knowing that the velocity along the bank
is k times that on the water, determine the angle at which the

messenger has to cross the river so as to reach B in the shortest

possible time. The width of the river is h and the distance be-

tween A and B along the bank is d.

883. On a straight line AB=a connecting two sources of light A
(of intensity p) and B (of intensity </), find the point M that

receives least light (the intensity of illumination is inversely pro-

portional to the square of the distance from the light source).
884. A lamp is suspended above the centre of a round table

of radius r. At what distance should the lamp be above the table

so that an object on the edge of the table will get the greatest

illumination? (The intensity of illumination is directly proportion-
al to the cosine of the angle of incidence of the light rays and

is inversely proportional to the square of the distance from the

light source.)
885. It is required to cut a beam of rectangular cross-section

ont of a round log of diameter d. What should the width x and
the height y be of this cross-section

so that the beam will offer maximum

I

resistance a) to compression and b) to

bending?

Note. The resistance of a beam to compres-
i/J

sion is proportional to the area of its cross-

section, to bending to the product of the

width of the cross-section by the square of

its height.

Fig. 2 886. A homogeneous rod AB, which
can rotate about a point A (Fig. 28),

is carrying a load Q kilograms at a distance of a cm from A
and is held in equilibrium by a vertical force P applied to the

free end B of the rod. A linear centimetre of the rod weighs
q kilograms. Determine the length of the rod x so that the force P
should be least, and find Pmln .
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887*. The centres of three elastic spheres A, B\ C are situated
on a single straight line. Sphere A of mass M moving with ve-

locity v strikes fi, which, having acquired a certain velocity,
strikes C of mass m. What mass should B have so that C will
have the greatest possible velocity?

888. N identical electric cells can be formed into a battery
in different ways by combining n cells in series and then combin-

ing the resulting groups (the
number of groups is

]
in par-

allel. The current supplied by this battery is given by the formula

, NnS
~~

where < is the electromotive force of one cell, r is its internal

resistance, and R is its external resistance.

For what value of n will the battery produce the greatest
current?

889. Determine the diameter y of a circular opening in the

body of a dam for which the discharge of water per second Q
will be greatest, if Q = cy Vhtj, where h is the depth of the
lowest point of the opening (h and the empirical coefficient c are

constant).
890. If x

lf
#

2 , ..., xn are the results of measurements of equal
precision of a quantity x, then its most probable value will be
that for which the sum of the squares of the errors

0=2 (*-*,)
1=1

is of least value (the principle of least squares).
Prove that the most probable value of x is the arithmetic mean

of the measurements.

Sec. 2. The Direction of Concavity. Points of Inflection

1. The concavity of the graph of a function. We say that the graph of a

differentiable function y f(x) is concave down in the interval (a,b) [concave
up in the interval (ap 6,)] if for a<x<6 the arc of the curve is below (or
for a.<x<b lt above) the tangent drawn at any point of the interval (a, b)
or of the interval (a,, &.)] (Fig. 29). A sufficient condition for the concavity
downwards (upwards) of a graph y= f(x) is that the following inequality be-

fulfilled in the appropriate interval:

rw<o irw>oj.

2. Points of inflection. A point [* , f (jc )] at which the direction of con-

cavity of the graph of some function changes is called a point of inflection

(Fig. 29).
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For the abscissa of the point of inflection x of the graph of a function

y f (x) there is no second derivative f (* )
= or /" (x ). Points at which

f'(x) Q or f (x) does not exist are called critical points of the second kind.

The critical point of the second kind x is the abscissa of the point of inflec-

tion if I" (x) retains constant signs in the intervals x 6 < * < * an
.d

x
?
< x < Jc + 6, where 6 is some posi-

tive number; provided these signs are

opposite. And it is not a point of

inflection if the signs of f (x) are the

same in the above-indicated intervals.

Example 1. Determine the inter-

vals of concavity and convexity and
also the points of inflection of the

Gaussian curve

y~f(x)

I

I i

Solution. We have

bx a,

Fig. 29

b, X
and

Equating the second derivative y* to zero, we find the critical points of tHe
second kind

* = 7=r and *o= T=-

These points divide the number scale OO<A:< + OO into three intervals:
1 (00, xj, II (*j, x

2), and III (x2 , +00). The signs of t/' will be, respec-

Fig. 31

lively, +, , -f- (this is obvious if, for example, we take one
point

in each

of the intervals and substitute the corresponding values of x into y ) Therefore:

1) the curve is concave up when oo< x < 7= and F= < x <-f oo; 2) the
F 2 V 2

curve is concave down when -=^ < x < == . The points ( -=^ , r=] are

F 2 V 2 \V2 VeJ
points of inflection (Fig. 30).

It will be noted that due to the symmetry of the Gaussian curve about
the #-axis, it would be sufficient to investigate the sign of the concavity of

this curve on the semiaxis < x < +00 alone.
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Example 2. Find the points of inflection of the graph of the function

y=*/7+2.
Solution. We have:

It is obvious that y" does not vanish anywhere.
Equating to zero the denominator of the fraction on the right of (1), we

find that y" does not exist for x 2. Since y" > for x< 2 and f/"<0 for

*> 2, it follows that ( 2,0) is the point of inflection (Fig. 31). The tan-

gent at this point is parallel to the axis of ordinates, since the first derivative y'
is infinite at x 2.

Find the intervals of concavity and the points of inflection

of the graphs of the following functions:

891. y = x* 6x* + 12x + 4. 896. y = cosx.

892. y = (x + l)\ 897. y = x sin*.

893. y = -4r . 898. y = x
2
In x.

X-\- o

X9

i , 12
.

X
894. ff

=
i ,

. 899. //
= arc tanx x.

895. y=i/4x* \2x. 900. y = (l+x*)e*.

Sec. 3. Asymptotes

1. Definition. If a point (#,/) is in continuous motion along a curve

y f(x) in such a way that at least one of its coordinates approaches infinity

(and at the same time the distance of the point from some straight line tends

to zero), then this straight line is called an asymptote of the curve.

2. Vertical asymptotes. If there is a number a such that

Jim /(v)--= 00,

then the straight line x a is an asymptote (vertical asymptote).
3 Inclined asymptotes. If there are limits

llm
X ->> + 00 K

and

lim [/(*)-Ml = *i.
X-++ 00

then the straight line y= k
lx+b l

will be an asymptote (a right inclined

asymptote or, when ^ = 0, a right horizontal asymptote).
If there are limits

llm
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Urn

then the straight line y= k zx+ b^ is an asymptote (a left inclined asymptote
or, when fe 2

= 0, a left horizontal asymptote). The graph of the function y = f(x)

(we assume the function is single-valued) cannot have more than one right

(inclined or horizontal) and more than one left (inclined or horizontal) asymptote.
Example 1. Find the asymptotes of the curve

lotos-

Solution. Equating the denominator to zero, we get two vertical asyinp-

x= 1 and x=l.

We seek the inclined asymptotes. For x > + oo we obtain

k
l

lim = lim

b
l

=- lim (// x) = lim
*

*-+o> v }^xz

X
2 x y^2

~l,

=0,

\
\

S
-/

Fig. 32

hence, the straight line y= x is the right asymptote. Similarly, when* oo,

we have

fca
= Hm ~= 1;

fc = lim
AC->~

Thus, the left asymptote Is y= -x (Fig. 32). Testing a curve for asymp-
totes is simplified if we take into consideration the symmetry of the curve.

Example 2. Find the asymptotes of the curve
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Solution. Since

lim t/
= oo,

the straight line x= is a vertical asymptote (lower). Let us now test the
curve only for the inclined right asymptote (since x>0).

We have:

k= lim =
1,

X++OD X

b lim (y x)= lim \nx oo.

*-*+ 00 #->+<

Hence, there is no inclined asymptote.
If a curve is represented by the parametric equations x= cp(0i */

= ^(0
then we first test to find out whether there are any values of the parameter /

for which one of the functions cp (t) or \|> (/) becomes infinite, while the other

remains finite. When (p(/ )=oo and ty(t )
= c, the curve has a horizontal

asymptote y c. When \j)(f )
= oo and (p(V )

= c, the curve has a vertical

asymptote x= c.

If <pU )
= *(*o)=< and

lim

then the curve has an inclined asymptote y kx+ b.

If the curve is represented by a polar equation r /(cp), then we can
find its asymptotes by the preceding rule after transforming the equation of

the curve to the parametric form by the formulas x r cos cp
=

/((p) cos q>;

y r sin <p
=

/ (q>) sin (p.

Find the asymptotes of the following curves:

901. 11 =
-, ^rr. 908. u = x 2

909. y = e-

903. y = . 910. i/=

911.

905. y^Y^^l. 912.

906. y==- 913 -

907. </= . 914. x= /; j/
=

r * ~~"
*

915. Find the asymptote of the hyperbolic spiral r = .
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Sec. 4. Graphing Functions by Characteristic Points

In constructing the graph of a function, first find its domain of definition

and then determine the behaviour of the function on the boundary of this

domain. It is also useful to note any peculiarities of the function (if there

are any), such as symmetry, periodicity, constancy of sign, monotonicity, etc.

Then find any points of discontinuity, bending points, points of inflection,

asymptotes, etc. These elements help to determine the general nature of the

graph of the function and to obtain a mathematically correct outline of it.

Example 1. Construct the graph of the function

Solution, a) The function exists everywhere except at the points x 1.

The function is odd, and therefore the graph is symmetric about the point
0(0, 0). This simplifies construction of the graph

b) The discontinuities are x= 1 and jc 1; and lim J/= oo and
V-M + O

lim t/=oo; hence, the straight lines #=1 are vertical asymptotes of the
X->--10

graph.
c) We seek inclined asymptotes, and find

,= lim -- = 0,
X -> + oo x

b
l

lim y oo,
#->-t-oo

thus, there is no right asymptote. From the symmetry of the curve it follows
that there is no left-hand asymptote either.

d) We find the critical points of the first and second kinds, that is,

points at which the first (or, respectively, the second) derivative of the given
function vanishes or does not exist.

We have: ,

The derivatives y' and \f are nonexistent only at x=l, that is, only at

points where the function y itself does not exist; and so the critical points
are only those at which y' and y" vanish.

From (1) and (2) it follows that

y'=Q when x= V$\

r/"
= when x= and x= 3.

Thus, y' retains a
constant_ sign in each of the intervals ( 00, J/T),

(-V3, l), (1, 1), (l, V$) and (V~3 t +00), and / in each of the
intervals ( 00, 3), ( 3, 1), (1, 0), (0, 1), (1, 3) and (3, +00).

To determine the signs of y' (or, respectively, y") in each of the indicated
intervals, it is sufficient to determine the sign of y' (or y") at some one point
of each of these intervals.
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It is convenient to tabulate the results of such an investigation (Table I),

calculating also the ordinates of the characteristic points of the graph of the
function. It will be noted that due to the oddness of the function r/, it is

enough to calculate only for Jc^O; the left-hand half of the graph is con-
structed by the principle of odd symmetry.

Table I

e) Usin^ the results of the investigation, we construct the graph of the

function (Fig 33).

-/

Fig. 33

4-1900
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Example 2. Graph the function

In x

x

Solution, a) The domain of definition of the function is 0<x<-f-oo.
b) There are no discontinuities in the domain of definition, but as we

approach the boundary point (# = 0) of the domain of definition we have

limw = lim JL?= oo
JC-> X-*0 X

Hence, the straight line jc= (ordinate axis) is a vertical asymptote.
c) We seek the right asymptote (there is no left asymptote, since x can-

not tend to oo ):

k= lim -^= 0;
X<-++ 00 X

. = lim #= 0.

x->+<

The right asymptote is the axis of abscissas: j/
= 0.

d) We find the critical points; and have

y
1 Inx

3

y' and y" exist at all points of the domain of definition of the function and

y' = Q when ln*=l, that is, when x= <?;

o

(/'=0 when Inx^y, that is, when x~e*l*.

We form a table,, including the characteristic points (Table 11). In addition

io the characteristic points it is useful to find the points of intersection of

34

the curve with the coordinate axes. Putting /
= 0, we find * = 1 (the point

of intersection of the curve with the axis of abscissas); the curve does not
intersect the axis of ordinates

e) Utilizing the results of investigation, we construct the graph of the

lunction (Fig. 34).
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Graph the following functions and determine for each function

its domain of definition, discontinuities, extremal points, inter-

vals of increase and decrease, points of inflection of its graph,
the direction of concavity, and also the asymptotes.

916. y= x
9

3x*.

" 9

918. u = (x \

919. y-

921. (/
=

922. (/
=

923. y=

924. y=

925. </
=

926. y==

928.

929.

__,6
930. =,-

3*'+!

932.

933.

934.

935.

936. _
938. y= 2x + 2-3'l/(xl- l

z
.

963 ' #=
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964. y= 976. y= arc cosh. .

sin *+ -7-
I

\ 4 /

965. */= sin*- sin 2*.

966. (/
= COS*-COS2*. 978. ,,= <>arcsin

K

967. y = *-l-sin*. 979. ^ = garcun* >

968. y = arc sin (1 /F). 953. ,,
= j n sin x

970.

971. tan A;.

972. = x arc tan - when

and y = when * = 0.

982 . ,/
= lnA:-arc tan*.

983. y = cos^ In cos x.

984 . ,/
= arc tan(ln je).

985. = arc sin In (*' 4-1).

y==x
*

987. y=

973. i/
= Af 2 arc cot*.

974. f/
=

-^-+ arc tan*.

975. y = lnsin*.
A good exercise is to graph the functions indicated in Fxam-

ples 826-848.

Construct the graphs of the following functions represented

parainelrically.
988. x=--t* 2t, //----/

l + 2/.

989. x=--acob*/, y^a sin/ (a>0).
990. jc = /e', y = te~

l

.

991. x = / 4-g-
1

, i/=2/ + e-
fl

.

992. x = a (sinh/ /), i/
= a (cosh / I) (a>0).

Sec. 5. Differential of an Arc. Curvature

1. Differential of an arc. The differential of an arc s of a plane curve

represented by an equation in Cartesian coordinates x and y is expressed by
the formula _

ds- J/~(d*)
2 + (dy)

2
',

here, if the equation of the curve is of the form

a) //
= /(*), then ds -

b)* = /,Urt. then ds

c) *= q>(0, y = +(0, then ds-

V F* + F 2

d) ^(*, f/)
= 0, then ds^-

'

.

/;
V F'


