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PREFACE

This collection of problems and exercises in mathematical anal-
ysis covers the maximum requirements of general courses in
higher mathematics for higher technical schools. It contains over
3,000 problems sequentially arranged in Chapters I to X covering
all branches of higher mathematics (with the exception of ana-
lytical geomelry) given in college courses. Particular attention is
given to the most important sections of the course that require
established skills (the finding of limits, differentiation techniques,
the graphing of functions, inlegration techniques, the applications
of definite integrals, series, 1he solution of difierential equations).

Since some institutes have exiended courses of malhematics,
the authors have included problems on field theory, the Fourier
method, and approximale calculalions. Experience shows that
the number of problems given in this book not only fully satisfies
the requiremen s of the student, as far as practical mas'ering of
the various sections of the course goes, but also enables the in-
structor to supply a varied choice of problems in each section
and to select problems for tesls and examinations.

Each chap.er begins with a brief theorelical introduction that
covers the basic definitions and formulas of that section of the
course. Here the most imporiant typical problems are worked out
in full. We belicve that this will greatly simplify the work of
the student. Answers are given to all compulational problems;
one aslerisk indicates that hinis to the solulion are given in
the answers, two asterisks, that the solution is given. The
problems are frequently illustrated by drawings.

This collection of problems is the result of many years of
teaching higher mathematics in the technical schools of the Soviet
Union. It includes, in addition to original problems and exam-
ples, a large number of commonly used problems.






Chapter 1
INTRCDUCTICN TO ANALYSIS

Sec. 1. Functions

1°. Real numters. Rational and irrational numbers are collectively known
as real numbers The absolute value of a real number a 1s understood to be
the nonnegative number |a| defined by the conditions' |a| =a if a =0, and
laJ=——a if a<0. The following incquality holds for all real numbers a

and b:
lat-b|<lal+]b].

2°. Definition of a function. If to every value*) of a variable x, which
belongs to some collection (set) E, there corresponds one and only one (inite
value of the quantity y, then y is said to be a function (single-valued) of x
or a dependent tartable defined on the set E, x is the argument or tndepen-
dent variable The fact that y 1s a function of x 1s expressed in brief form
by the notation y=f(x) or y=F (1), and the like

If to every value of x belonging to some set E there corresponds one or
several values of the variable y, then y is called a multiple-valued function
of x defined on E. From now on we shall use the word “function” only in
the meaning of a single-valued function, 1f not otherwise stated

3° The domain of definition of a function. The collection of values of x for
which the given function is delined 1s called the domatn of definition (or the
domain) of this function. In the simplest cases, the domain of a function s
either a closed tnterval |a, b], which is the set of real numbers x that satisfy
the inequalities a<<a << b, or anopen nterval (a.b). which :s the set of real
numbers that satisfy the incqualities a < x < b. Also possible 1s a more com-
|plex2struclure of the domain of delimition of a function (see, for 1nstance, Prob-
em 21)

Example 1. Determine the domain of definition of the function

]
v= l/xz—l )
Solution. The function is defined if
x¥—1>0,

that is, if |x| > 1. Thus, the domain of the function is a set of {wo inter-
valsi—oo <x<—1and l<x <+

4°. Inverse functions. If the equationy = f(x) may be solved uniquely for
the variable x, that is, if there is a function x=g (y) such that y =/ g )},

¢ *) Hencelorth all values will be considered as real, if not otherwise
stated.
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then the function x=g(y), or, in standard notation, y =g (x), is the inverse
of y=/(x). Obviously, g[f(x)] =x, that is, the function f(x) is the tnverse
of g(x) (and vice versa).

In {le gereral case, the equation y=f(x) cefines a multiple-valued 1n-
verse furction x=f~'(y) such that y=f{f~"'(y)] for all y that are values of
the function f(x)

Exanple 2. Cetermine the inverse of the function

y=1—2"% (1)
Solution. Solving equation (1) for x, we have
27 ¥ =1—y
and
__ log(l—y),
T iz ) @

Obviously, the domain of cefinition of the function (2) s— w0 <y<]1.

5°. Cemrposite and implicit functicns. A function y of x defined by a se-
ries of equalitiesy = f (1), whereu=@ (x), etc., is called a composite function,
or a function of a function.

A function defined by an equation not solved for the derencent variable
is called an (mplictt function. For example, the equation x*+4y*=1 defines
y as an impliait function of x.

6°. The graph of a function. A set of points (x,y) in an xy-plane, whose
coordinates are connected by the equation y=f(x), is called the graph of
the given funct:on.

1**. Prove that if a and b are real numbers then
lla|—|b]l<|a—b|<]a|+]|b|.
2. Prove the following equalities:
a) lab|=lal-|b]; <) |§|=15 (©+0)
b) |a|*=a% d) Vat=\a|.
3. Solve the inequalities:
a) |[x—1|<3; o [2x+1]|<;
b) [x+1[>2; d) |[x—1|<|x+1]).

4. Find f(—1), 10, (1), F©@), [3), f@), i = %' —6x*
+11x_"é.f( ) 10), F(1), F(2), [(3), f(4), if f(x)=x"—6x"+

5. Find [(O), F(—5 ). [(—=1 (), i if =V T

6. f(x)=arccos(logx). Find f(ll—o) , F(), fQ0).

7. The function [(x) is linear. Find this function, if f(—1)=2
and f(2) =—3.

hd
b

*) Log x is the logarithm of the number x o the base 10,
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8. Find the rational integral function f(x) of degree two, il
f0)=1, j(1)=0 and [(3)=5.
9. Given that f(4) = —2, [(5)=6. Approximate the value of
f (4, 3) if we consider the function f(x) on the inlerval 4<<x<5
linear (linear interpolation of a function).
10. Write the function
f={

0, if x<O0,
x, if x>0

as a single formula using the absolute-value sign.
Determine the domains of definition of the following functions:

1. a) y=Vx+1, 16. y=Vx—x.
AL
b) y= l/l'H'l' 17. y-—-logzii .
12. y~:4—F. 2__3
— 18. y=log L= +2
13. a) y=V ¥ —2; y=E T
b) y='x]/x2—2. 19. y=arccosﬂ—

1+x°

P VA R
e, y=V2+x—s. 20. y=arcsin(log~l%).

15. y=V:C+"—/—21—_+;;.

21. Determine the domain of definition of the function

y=Vsin2x.
22. f(x) =2x*—3x*—5x*+6x—10. Find

QW =5 F(W+F(—n] and 9(x)=5[f () —F(—2).

23. A function f(x) defined in a symmetric region —Il<<x<<l
is called even if f(—x)=f(x) and odd if f(—x)=—f(x).

Determine which of the following functions are even and which
are odd:

a) f(x)=5 (@ +a~);

b) fO)=VTItx+x—Vi—x+x5
o) fW=V &+ 4+ =05

d) f (x)=log 2=

e) f(x)=log (x+V1+x).

24. Prove that any function f(x) defined in the interval
—Il<<x<l may be represented in the forin of the sum of an
even function and an odd function.
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25. Prove that the product of two even functions or of two odd
functions is an even function, and that the product of an even
function by an odd function is an odd function.

26. A function [(x) 1s called periodic if there exists a positive
numter T (the period of the unction) such that f(x+ T)=f(x)
for all valves of x within the dcmain of definition of f(x).

Cetermine which of the follcwing functions are pertodic, and
for iLe pericdic functicns find their least period T:

a) f(x)=10sin3x, d) f(x)=sin'x;
b) f(x)=asinAx+bcosAx; e) f(x)=sin (V x).
¢) f(x)=Vtanx;
27. Express the length of the segment y=MN and the area S
of the figure AMN as a function of x=AM (Fig 1). Construct

the graphs of these functions.
D [ 28. The linear density (that is,

f mass per unit length) of a rod AB=1{
N b (Fig. 2) on the segments AC=1,,
y CD=!, and DB=1I,(l, + 1, +1,=1)
4 LA { is equal to ¢,, ¢, and g¢,, respec-
_' B
— o Py
~__ C - D B
a - z
Fig. 1 Fig. 2

tively. Express the mass m of a variable segment AM =x of this
rod as a function of x. Construct the graph of this function.
29. Find ¢ [y (x)] and $jg (x)], if ¢(x)=+" and P (x) =2%
30. Find [{f1f(lh, i F) =15
31. Find f(x+ 1), if f(x—1)=x%.
32. Let f(n) be the sum of n terms of an arithmetic progression.

Show that
f(n+3)—3f (n+2)+ 3f (n4-1)—f (n) =0.
33. Show that if

f(x)=kx-+b

and the numters x,, x,, x, form an arithmetic progression, then

the numters f(x,), f(x,) and f(x,) likewise form such a pro-
gression.
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34. Prove that if f(x) is an exponential function, that is,
[ (x)=a"(@>0), and the numters x,, x,, x, form an arithmetic
progression, then the numbers f(x,), f(x,) and f(x,) form a geo-
metric progression.
35. Let
f()=log (1%,

Show that

Fo+fo=F(EL).

14 xy

36. Let (p(.t):%(a"—{—a"‘) and w(x)=-!2-(a"—a"‘).
Show that
PE+Y)=0) Q&) +Vx)P(y)

Y49 =¢ X))+ o) V().

37. Find f(—1), F(0), F(1) if

f(x)—{ arcsinxfor—1<vr <0,
" larctanxfor0 < x 24 oo.

and

38. Determine the roots (zeros) of the region of positivity and
of the region of negativity of the function y if:

a) y=1-+ux, d) y=x*—3x;

b) y =2+ x—x%

-1 2x
c) y=1—x+x% ®) y=log 75

39. Find the inverse of the function y if:

b) y=x'—1, t2 3
0 y= T ¢) y=arctan3x.

In what regions will these inverse functions be defined?
40. Find the inverse of the function

_ I x it x<<O,
=1 X, if x>0.

41. Write the given functions as a series of equalities each
member of which contains a simple elementary function (power,
exponential, trigonometric, and the like):

a) y=(2x—5)'% c) y=logtan—§-;

b) y=2cosx; d) y =arcsin (3-),
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42, Write as a single equation the composite functions repre-
sented as a series of equalities:

a) y=u', u=sinx;
b) y=arctanu, u=Vv, v=Ilogx;
0 y={ u, .if u<O,
0, if u>0;
u=x'—1.
43. Write, explicitly, functions of y defined by the equations:
a) x*—arccos y=mx;
b) 10* 410" =10;
c) x+|y|l=2y.
Find the domains of definition of the given implicit functions.

Sec. 2. Graphs of Elementary Functions

Craphs of functions y=f(x) are mainly constructed by marking a suffi-
ciently dence net of points M;(x;, y;), where y,=f(x;)(i=0, 1, 2,...) and
by connecting the points with a line that takes account of intermediate points.
Calculations are best done by a shide rule.

Y !/7
. /y /yJ
pa ;
R

A X

Fig. 3

Graphs of the basic elementary functions (see Ap pendix VI) are readily
learned through their construction. Proceeding from the graph of

y=f(x), ()

we get the graphs of the following functions by means of simple geometric
constructions:

1) y,=—f(x) is the mirror image of the graph I' about the x-axis;

2) yp=f(—«x) is the mirror image of the graph T about the y-axis;
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3) ys=1[(x—a) Is the T graph displaced along the x-axis by an amount a;
4) y,=b+f(x) is the I' graph displaced along the y-axis by an amount b
(Fig. 3).

Example. Construct the graph of the function

=sin x—f-
y— 4 .

Solution. The desired line is a sine curve y=sinx displaced along the x-axis
to the right by an amount :—;- (Fig. 4)

Y y-sin(.r-—zr-)
NP e _
ALY i N N

Fig. 4

Construct the graphs of the following linear functions
(straight lines):

4. y==Fkx, if k=0, 1, 2, 1/2, —1, —2,

45. y=x+b0, if 6=0, 1, 2, —1, —2.

46. y=1.5x +2.

Construct the graphs of rational integral funetions of degree
two (parabolas).

47. y=ax®, if a=1, 2, 1/2, —1, —2, 0.

48. y=x"+c, il ¢=0, 1, 2, —1.

49. y=(x—x,)* ii x,=0, I, 2, —1.

50. y=y, + (x—1)%, il y,=0, 1, 2, —1.

51*. y=ax*+ bx+ec, il: 1) a=1, b=—2, ¢=3; 2) a=—2,
b=6, c=0.

52, y=2 { x—x*. Find the points ot intersection of this pa-
rabola with the x-axis.

Construct the graphs of the following rational integral func-
tions of degree above two:

53* y=x' (cubic parabola).

54. y=2+ (x— 1)

55. y=x"—3x4-2.

56, y=ux*.

57. y=2x"—x"

Construct the graphs of the following linear fractional func-
tions (hyperbolas):

1
b8*. y=—x-.
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59. y=r—.
—2
60. y=:‘+2'
61*' y=yo_}-x__'t,—x—) if x°=17 y°=—l, m=6.
%—3
62°. y=3i+2

Construct the graphs of the fractional rational functions:
63. y= x+~

64. Yy=7:71i-
65*. y=3
66. y——l,-.
67*. y= ’+1 (Witch of Agnest).

68. y—x’—+l (Newton’s serpentine).
69. y=x+.

70. y=x’+% (trident of Newton).

Construct the graphs of the irrational functions:
1%, y=l/z

72. y= v x.

73*. y=/ x* (Niele’s parabola).

74. y=+ xV'x (semicubical parabola).

75*. y=+ % V285 —x* (ellipse).

76. y=+ I{J_C_’_—Tl- (hyperbola).

71. Y= F—x-’. L
78 y=o x ]/ —; (cissoid of Diocles).
=+ xV2B5—x*.
Construct the graphs of the trigonometric functions:
80*. y=sinx. 83*. y=rcotx.
81*. y=cos x. 84*. y=sec x.
82*, y=tanux. 85*. y=-cosec x.

86. y=Asinx, if A=1, 10, 1/2, —2.
87*. y=sinnx, if n=1, 2, 3 1/2.

88. y=sin(x—¢), if ¢=0, 2 , 3;, T,
89*, y=> sin (2x—3).

ENE
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90*. y=asinx+bcosx, if a=6, b=-—-8.

91. y=sin x4-cos x. 96. y==1—2cosx.

92*. y=cos’x. 97. y= sin x-——% sin 3x.
93*. y=x+sinx, 98. y== cosx+—21-0052x.
94*. y=xsinx. 99*. y= cos -’;— .

95. y=tan’x. 100. y=+ Vsinx.

Construct the graphs of the exponential and logarithmic fune-
tions:

101 y=a*, if a=2, 5, e(e=2, 718..)%).
102*. y=log, x, if a=10, 2, ;—. e.

103*. y=sinhx, where sinh x=1;2 (e*—e~%).
104*. y=cosh x, where coshx=1/2(e* +e7%).

105*. y=tanhx, where tanhx=sci:sl;1§.

1
106. y=10~,
107*. y=e~* (probability curve).

1
108. y—2" =, 113. y=log~.
109. y=log x>, 114. y=log(— x).
110. y=log’x. 115. y=log, (1 + x).
111. y=log(log x). 116. y=log (cos x).
112. -’/=lo{14x' 117, y=2"%sin x.
Construct the graphs of the inverse trigonometric functions:
118*. y=arc sin x. 122. y=arcsin%.
119*, y=arc cos x. 123. y=arccos%.
120*. y=arctanx. 124. y= x+ arccot x.

121*. y=arccot x.
Construct the graphs of the functions:

125. y=|x|.
126, y=15 (x+]x]).
127. a) y=x|x|; b) y=log,+|x|.

128. a) y=sinx+|sinx|; b) y=sinx—|sinx|.
3—x* when |x|< .

129. y=={ '—i—l- when |x|>1.

*) About the number e see p. 22 for more details.
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130. a) y=|x], b) y=x—[x], where [x] is the inegral part
of the number x, that is, the grealest in.eger less than or equal
to x.

Construct the graphs of the following functions in the polar
coordina.e sysiem (r, ¢) (r =0):

131. r =

132*. r=£g— (spiral of Archimedes).
133*. r=¢% (logurithmic spiral).
134*. ’=% (hyperbolic spiral).
135. r=2cosy (circle).

1 . .
136. r=zne (straight line).

137. r =sec? % (parabola).

138*. r=10sin 3¢ (three-leafed rose)

139*. r=a(l +cos @) (a>0) (cardioid).

14)*, r*=a*cos2¢ (a>0) (lemniscate).

lC)ns‘.ruct the graphs of the functions represented parametri-
cally:

141*. x=1t*, y=1* (semicubical parabola).

142*. x=10 cost, y= sint (ellipse).

143*. x=10cos*¢, y=10sin’t (astroid).

144*. x=a(cost+ tsint), y=a(sint—tcost) (involute of a
circle).

145*. x="_’:t,, y=% (folium of Descartes).
146, x— a at - . .
X T y= Vi (semicircle).

147, x==2'+2-!, y=2'—2"' (branch of a hyperbola).

148. x=2cos*t, y=2sin t (segment of a straight line).

149, x=1t—1¢*, y=0-1.

150. x=a(2cost—ws2t) y=a (2 sint—sin 2f) (cardioid).
" Construct ‘the graphs of the following functions defined implic-
1ly:

151*.x* + y* =25 (circle).

152. Xy = 12 (hyperbcla).

153*. y —21 (parabola).

154. 100 —-—l (ellipse).
155. y* = x*(100— x*).

2
156*. x* 4+ y° =aqa* (astroid).
157*. x+y= 10logy.
158. x*=cosy.
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159*. Vx + 4 — " (logarithmic spiral).

160%. x*+y’—3xy=0 (folium of Descartes).

161. Derive the conversion formula from the Celsius scale (C)
to the Fahrenheit scale (F) if it is known that 0°C corresponds
to 32°F and 100°C corresponds to 212°F.

Construct the graph of the function obtained.

162. Inscribed in a triangle (base b =10, altitude A=6) is a
rectangle (Fig. 5). Express the area of the rectangle y as a func
tion of the base x.

S

¥
%

077

T
L B
I C
b | ——— (] ————]
I
Fig. 5 Fig 6

Construct the graph of this function and find its greatest
value.

163. Given a {riangle ACB with BC =a, AC=0b and a variable
angle r ACB=x (Fig. 6).

Express y=area )\ ABC as a function of x. Plot the graph
of this function and find its greatest value.

164. Give a graphic solution of the equations:

a) 2x*—bx+2=0; d) 10-*=x;
b) x*+x—1=0; e) x=14 0bsinux;
¢) logx==0.1x; f) cot x=x (0<<x< ).

165. Solve the systems of equations graphically:

a) xy=10, x+ y=7,

b) xy=6, x*+y*=13;

c) X*—x+y=4, y—2x=0;

d) ¥*+y=10, x+ y*=6;

e) y=sinx, y=cosx (0<<x<2xm).
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Sec. 3. Limits

1°. The limit of a sequence. The number a is the limit of a sequence
x., x,, ) x,,, ey OF
lim x,=a,
n >

if for any & >0 there is a number N=N (¢g) such that
lx,—a| <e when n> N.
Example 1. Show that

. 2n 41
lim =
n->w N 1 2 u)
Solution. Form the difference
2n +l_ _ 1
n+1 T oon$1
Evaluating the absolute value of this difference, we have:
2n 41 I__ 1
= B e B ®

if |
fl>?—]=N(8)

Thus, for every positive number e there will be a number N=-%-—l such

that for n > N we will have irequality (2) Consequently, the number 2 is
the limit of the sequence x,= (2n-+ 1)/(n + 1), henca, formula (1) is true.
2°. The limit of a function. We say that a function f(x) ~ A as x - a
(A and a are numbers), or
lim [(x)=A4,
X —>a
if for every € > 0 we have 6 =0 (g) > 0 such that
lf—Al<e for 0<|x—a| <.
Similarly,
lim f(x)=A,
X = ®

if [f(x)—A|<efor|x|> N (e).
The following conventional notation 1s also used:

lim f(x)=oo,
xX~>a

which means that [f (x)| > E for 0 <|x—a| < 8 (E), where E is an arbitrary
positive number
3°. One-sided limits. Il x<a and x »a, then we write conventionally
x -+ a—0; stmilarly, if x >a and x — a, then we write x - a+0. The numbers
fla—0)= lim f(x) and }(a+0)= lim f(x)
X >a--0 XxX—+>a+o0
are called, respectively, the limuit on the left of the function f(x) at the point a

and the limif on the right of the function f(x) at the point a (if these
aumbers exist).
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For the existence of the limit of a function f (x) as x —a, it is necessary
and sufficient to have the following equality:

fta—0)=f(a+0).
If the limits lim f, (x) and lim f,(x) exist, then the following theorems.
l old: X—>a X »>a
D) lim [f, (x)+ [, (0] = lim [, (x) + lim [, (x);
xX—>a Xx—>a X —»>d

2) x"—Ta[f‘ ) f2 ()] = x“mafl (x)'xli‘;nafz (x);
3) x“ma[f' X)) = x]imaf‘ (x)/z"maf’ ) i”_:"afa (x) #0).

The following two limits are frequently used:
x>0 X
and
1
o

fim (14+L) = tim 1+ 0% =e=271808 . .,
X a >0

X > ®

Example 2. Find the limits on the right and left of the function

1
f(x)=arc tan <

as x -+ 0.
Solution. We have

F(+0)=lim (arc tan-'_)=1
x> +0 X 2
and

f(—=0)= lim (alcfan%):..i

x> -0 2"

Obviously, the function f(x) in this case has no limit as x —0.

166. Prove that as n— oo the limit of the sequence
1 1

G v g2

1,
1? equal to zero. For which values of n will we have the inequal-~
ity
<o
(e is an arbitrary positive number)?

Calcula e numerically for a) e=0.1; b) e=0.01; c) e=0.001.
167. Prove that the limit of the sequence

n

n+1

X, = n=1,2, ..))
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as n—oo is unity. For which values of n>N will we have
the inequality
|x,—1[<e

(e is an arbitrary positive number)?
Find N for a) e=0.1; b) e=0.01: ¢) e=0.001,
168. Prove that
lim x*=4.
How should one choose, for a given positive number &, some
positive number 8 so that the inequality

|x*—4|<e
should follow from
[x—2]<<§?

Compute & for a) e=0.1; b) e=0.01; ¢) e=0.001.
169. Give the exact meaning of the following notations:
a) lin logx=—o0; b) lim 2= 4 o0; ¢) limf (x)=

X->»+0 X »+® X > ®
170. Find the limits of the sequences:
11 1 (— pn-t
a) 12t _5')6_3'; —'4-’ vee T) ’
4 2n
b) T' 3" 5" ' n—1" !

0 VZ Vava 1/21/2V2

d) 0.2, 0.23, 0.233, 0.2333,

Find the limits:

171. lim (——|— = n,—}— —l—n_l).

p z
naw )\l n

172. lim (n+1)(ﬂ:-s2)(n+3) .

n-»wo

173. lim [“f3+5+7n4;l--+-(2n—l)_2n;1J.
174, lim ZH=

1. lim S

176. lim (g+g+g+ ... +5).

171. lim [ —§4'§—-21—7+ +(—T:_1"l"] .

178, lim LEZ+3+.. +n'

3
n~>® n
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179. lim (V n+1—V n).

n-—-» o

. nsinnl
180. nlﬁl; T

When seckirg the limit of a ratio of two integral polynomials In x as
x — oo, it is uscful first {o divide both terms of the ratio by x", where n is
the highest degree of these polynomials.

A similar procedure is also possible in many cases for fractions contain-
ing irrational terms.

Example 1.
lim (2x—3) (3x + b) (4x—6) .
X —>® 3x’+x——-l -
3 5 6
y (2—‘) (3+3) (““7) 2.3.4
== lll]., l l = 8 =8.
X>%0 3‘}_}_2_;5
Example 2.
im X —aim Ly,
e /a0 Fre 3 1_{_5)
A3
. 1)2 . 2" —3x—4
. lin (xj'—. i86. lim ———"—r
181 l‘-’]w xhhi_l x> ® V-x"-f-l
182. lim i?—o_?)f. 187. lim _.E‘ii/:}:
X > ® X >® x_l_ X
. x?—br4-1 ) %2
8 M e 180, i
.o 2¢—x-+ 3 3/
184. lim 75 189. lim L;‘fli—‘
. (24 +3)* (Bx—2)* ¥ —
185. lim (—————.
x> x*4-5 190. lim — Vx

e 1/ x+Vx4—V—T
If P(x) and Q (x) are integral polynomials and P (¢) #0 or ( ) #0,
then the limit of the rational fraction
lim 1_)_@
t—>aQ(x)
is obtained directly.
But if P (a)=Q (e)=0, then it is advisable to cancel the binonual x=—a

out of the fraction P—(X) once or several times.

Q)
Example 3.

xt—4 = lim (x—2) (x f—2)= lim x+2
223X —3+2 x53(x—2)(x—1) x>2x—1

=4,
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, J . 2 —3
191, lim SE5. 195. lim £=242,
X = -1 x—>1
192. lim ’ﬁi;_s_xig_“_) 196. lim {f:%i_f.
X —>5 xX—>a
2 —
193. lim <ol 197, lim &EA=2
x> -1 h—>o
. x—2x . 1 3
194. "llill’m. 198. xll_l;n‘ (1—__7—1_——‘;,) .

The exrressions containing irrational terms are in many cases rational-
ized by introducing a new variable.

Example 4. Find

lim _Vl_—i-x_—_]_
x>0 Vl+x-——l
Solution. Pufting
1+x=y",
we have
lim M: lim yz l_ lim y’+y+l=_§_.
x>0 °l/1+x_1 yo>r1492—1 4,5, y+1 2
- 3 —
199. lim l/—x———l 201. lim _‘/_"__T_‘_
g1 X1 ‘ V’ ’
V‘— 8 X—>1 x —1
200. lim ===, oV =2V A+
PR x —4 202. ll_r:ll l/ ad (x—-lléx+ .

Another way of finding the limit of an irrational expression is to trans-

fer the irrational term from the numerator to the denominator, or vice versa,
from the deriominator to the numerator.

Example 5.

xsa x—a " raa—a)(Vx+ V)

-

1

; 1
= lim —— = (@a>0).
s»aVx+Va 2Va

. 2—Vx—3 . 3—V5¥x
203. 1:217 7_—49—‘ . 206- xll—f;ﬂ‘ — 5._:; .
204. lin ——51__8—-. li Vigx—Vi—x

r2e) x —2 207. ,‘T’. r ]
205. lim it 208, lim YXth—Vx

t—»li/x—[ h->o h )
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209. lim AT 212. lim (VX (x + a)—x].
. — h . X>+®
h—-o . —_——
oto. lig YEZT0—Vitm—s 213 Jin (V3" —5x 46—,
. 2 __ . —_—
X3 H—dx+3 214, lin x (V¥ +1—x).
211, lim (VX fa—V %). e S
xoto 215. lin(x+ y/1—x%)

The formula
lim S7¥_y

x>0 X
i frequently used when solving the following examples. It is taken for
granted that limsinx=sina and limcos x =cos a.

X»a X—+a
Example 6.
lim sin 5x= lim {sin bx )= _
Jim =22 lim 5)=1.5=5
216, a) lim sinx . 227. a) lim xsin l
xX—>2 X =0
b) lim 22, b) lim xsin l
X—>® X—> o
. in 3 .
217. lim 222, 228. lim (1—x)tan’y .
xX—>0 X1
. sinbx
218. hm YT 229. xh_:rl cot 2xcot(——x)
sin nx :
219. ll. i ) l—sm—2—
x> 230. lim ~—
220. lim (nsm—). =
ne n 231, lim 1=2cosx
221, lim L=~ ol P
X—=>0
. sinx—sina 232, lim S8MX—cosnx,
222. jlﬂ —x:a— . X0 x2
. tanx —six
. Cosx—cosa 233. lim .
223. xh;“a—'—x:a—'_ X0 A!
. tan nx 234, [lim Y0¥
224. xllrgz Fa it 0 )
. . . arc tan 2«
25. lim SR —sinx 235. lim =gra=
h->o
.o l—x?
.y Sinx—cosx 236. lim .
226. lln}‘ PPl Xy SHITTX

x> —
.
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. x—sin2x I Viox
21 m s 239, lim 1=V
c cos%{ 240. lim Vifsinx—VT1—sinx )
238. lim s Jm ~

When taking limits of the form
lim [p (¥)]*® =C 3)
X —a

one should bear in mind that:
1) if there are final limits

lim ¢ (x)=A and lim{ (x)=B8,
xX—»>a X —a

then C=AB;
2) if lim@(x)=A#1 and lim P (x)==+ o, then the problem of finding

X -aQ -l
the limut of (3) is solved in straightforward fashion;
3) il lime(x)=1 and hmY(x)=co, then we put @(x)=1+4a(x),

X—a X +a
where a(x) - 0 as x - a and, hence,

1 lim a(x) P& lim (@ (x) —=1] ¥ (x)
C=lim {[1+a(n))® D@ @ —gr e =7 ’
X +a

where e=2.718 . . . is Napier's number.

Example 7. Find

lim (sin 2x‘) 1+%

X0 X

Solution. Here,

lim (S‘“Q")=2 and lim (14+x)=1;

X0 X x>0
hence,

lim (sln 2x)‘ +*=2| =9

x—+0 X

Example 8. Find

Solution. We have

4~
1 oo

lim X+
x»o 20+

2+-;
and

lim x*=+4o0.
x> ®
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Therefore,
lim i‘tl \x'=
x> m (2x+ 1) 0.
Example 9. Find
lim (x_—-_l\"
x»>o \ X+ l) '
Solution. We have

tim *=!_ tim

x> X4 1 [ ) 1

Transforming, as indicated above. we have

im (=12 g x—=1_ ) *_
x—bmw(x+l) x—l>mm [l+(x+l I
x+1 2x -

. ' —9 ~2y 1+x im  ——
l - —_ X > @ - -2
—:x—lan;{[‘.{-(x——i)] } =e e %,

\

In this case it is easier to find the limit without resorting to the genecral
procedure:

(-1 (=877

tim (*=1)* = tim VP L1 L S =

xso \x+1/ " xse l+—l->x - l+~l— % e
X X>® X

Generally, it is useful to remember that ’

lim ( H__;_‘)x:ek

=e

> ®
. 24+ x\* *
241. li: __) . (X
e (3"" 248. ,'L",}(x+| ) :
s x—1 \*+1 L fx—1\*+3
242. lim (5=1;) 249. lim (13)"""
2x

. 1 x+1 n

243. lim (%) 250. lim (14 %)".
sin L

x'—2-;t+3) = 251. lim (1 +sinx)*.

=0

(

( 1
245. lim("'+2 )

(

(

252**, a) lim (cosx)7:
l n X—0 .
1—2)" _ L
b) lim(cos x)* .
2 \* x>0
1+ ;) .

L
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When solving the problems that follow, it is useful to know that if the
limit limf (x) exists and is positive, then
Xx—>a

lim [Inf(x)]=In [lim f(x)].
X—a x—>a

Example 10. Prove that

lim G+ _ *)
X0 X
Solution. We have
tim WOED) _yim (1n (14 F | =Inlim (1 £ 0 F 1 —lne=1.
x>0 x x>0 X0

Formula (*) is frequently used in the solution of problems.

253. lim[In(2x+1)—In(x+2)].

X—=>®

254. lim'ﬂg-(—]—it—@—ﬂ .

X0
1 T+x -
255. lim (;ln :i’;) 260*. limn(y/a—1) (a>0).
x>0 n—+o
256. lim x|[In(x+1)—Inx]. 261. lim‘“:e”.
>+ ® X—0
257. lim €088 262. lim ="
a0 X x—>o SiNX
258*. lim&—! 263. a) lim %% ;
X—>9 X—>0
269*. limT=1 (a>0), b) lim&shi=t

(see Problems 103 and 104).
Find the' following limits that occur on one side:

264. a) lim ——t— . .
a)jim Vgt ¢ b) lim —! _,
" x40 L
b) lim —_. 14e*
x:»+cn in'f'l . ln(l+e")
265. a) lintanhx; 267. a)x lim ———
X=> =% - —
b) limtanh x, b) lim In (1 + &%) )
x>+ ® Xt @ X
* __po—N .
where tanhx=z¥;—4-_%_—;. 268. a)x“m IW;XI;
. 1 - -
266. a) ,l.l,nl. T ; b) lim lm:x[ .

X=>+0

14+e”*
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269. a) lim <=1.; 270. a) lim—i_—2—;
X—»1-0 X—>2—0
—1
b) 1 b) lim %
x)—nl-{l:‘ —1 l x)—>z+o 2

Construct the graphs of the following functions:
271**, y=Ilim (cos x).

n—»w

272*, y=1im ———-

nswm 1+x"

273. y=Iim V x* ot

a—>0

(x=0).

274. y=Ilin (arctan nx).

275. y=Ilim /1 + x" (x=0).
276. Transform the following mixed periodic fraction into
a common fraction:
a=0.13555...

Regard it as the limit of the corresponding finite fraction.
277. What will happen to the roots of the quadratic equation

ax* +bx+c=0,

if the coefficient @ approaches zero while the coefficients b and ¢
are constant, and b=40?

278. Find the limit of the interior angle of a regular n-gon
as n — oo.

279. Find the limit of the perimeters of regular n-gons inscribed
in a circle of radius R and circumscribed about it as n — oo.

2¢0. Find the limit of the sum ol the lengths of the ordinates
of the curve

Yy = e~ * cos nx,

drawn at the points x=0, 1, 2, ..., n, as n— o0,
5§1. Find the limit of the sum of the areas of the squares
constructed on the ordinates of the curve

y=2|-x

as on bases, where x=1, 2, 3, ..., n, provided that n — oo.
982. Find the limit of the perlmeter of a broken line M M,... M,
inscribed in a logarithmic spiral

r=e?
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(as n — oc), if the vertices of this broken line have, respectively,
the polar angles

?,=0, q>.=“7, ) (pn.___f;ﬂ.

283. A segment AB=a (Fig. 7) is divided into n equal parts,
each part serving as the base of an isosceles triangle with base
angles « =-45°. Show that the limit of the perimeter of the bro-
ken line thus formed diflers fromn the
length of AB despile the fact that in
the limit the broken line “geometrically
merges with the segment AB”. b

- a >
——o g

Fig. 7 Fig 8

284. The point C, divides a segment AB--I in hall; the
point C, divides a segment AC, in half; the point C, divides a
segment C,C, in half; the point C, divides C.C, in hall, and so
on. Determine the linuting position of the point C, when n—-ov.

285. The side a of a right triangle is divided into n equal
parts, on cach of which is constructed an inscribed rectangle
(Fig. 8). Determine the limit of the area of the step-like figure
thus formed if n— ov.

286. Find the constants £ and b from the cquation

lx.rn<kx +b——fa—f—l>=0. )

o » x¢41

What is the geometric meaning of (1)?

287*. A cerlain chemical process proceeds in such fashion
that the increase in quantity of a substance during cach interval
of time © out of the infinite sequence of intervals (tv, (i 1)7)
(=0, 1, 2, ...) is proportional to the quantity of the substance
available at the commencement of each interval and to the length
of the interval. Assuming that the quantity of substance at the
initial time is Q,, determine the quantity of substance Q{* after

the elapse of time ¢ if the increase takes place each nth part of

the time interval t=-tr-'-.

Find Q,=1inQ,

n-»e
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Sec. 4. Infinitely Small and Large Quantities

1°. Infinitely small quantities (infinitesimals). If

lima (x)=0,
xX—a
i.e., if |a(x)]<e when 0 <|x—a|<8(e), then the function a(x) is an
infinitesimal as x— a. In similar fashion we define the infinitesimal a (x)
as x —> .
The sum and product of a limited number of infinitesimals as x — qa are
also infinitesimals as x - a.
If a(x) and P (x) are infinitesimals as x—>a and
lim E_L{!—_—
x—a ﬂ (x) c.

where C is some number different from zero, then the functions @ (x) and B(x)
are called infinitesimals of the same order; but if C=0, then we say that the
function a(x) is an infinitesimal of higher order than B (x). The function
« (x) is called an infinitesimal of order n compared with the function B (x) if

lim __a_(i =
—a [
wheref0<IC[ < + oo.

1

lim a(x)__l'

x—a l'} (X) -
then the functions a (x) and B (x) are called equivalent functions as x —a:
a (x)~f (x).

For example, for x— 0 we have

sinx~x; tanx~x; In(l4x)~x
and so forth,
The sum of two infinitesimals of different orders is equivalent to the
term whose order is lower.
The limit of a ratio of two infinitesimals remains unchanged if the terms
of the ratio are replaced by equivalent quantities. By virtue of this theorem,
when taking the limit of a fraction

lim 9_(’9

x=af(x)’

where a(x) — 0 and f(x) — 0 as x—> a, we can subtract from (or add to)
the numerator or denominator infinitesimals of higher orders chosen so that
the resultant quantities should be equivalent to the original quantities.

Example 1. s = 3
3 2 4 3
i V22 VX =1
x_)olﬂ (l+2x) X—»0 2x 2

2°, Infinitely large quantities (inflnites). If for an arbitrarily large num-
ber N there exists a 8 (N) such that when 0 <|x—a| < 3§ (N) we have the

inequality
[f )| >N,
then the function f(x) is called an infinite as x—a.

2—-1900
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The definition of an infinite f(x) as x— oo is analogous. As in the case
of infinitesimals, we introduce the concept of infinites of different orders.

288. Prove that the function

sin x

f(x)———T

is an infinilesimal as x— oo. For what values of x is the ine-
quality
IfFx)<e

fulfilled if e is an arbitrary number?
Calculate for: a) e =0.1; b) e=0.01; c) e=10.001.
289. Prove that the function

fx)=1—x*

is an infinitesimal for x— 1. For what values of x is the ine-
quality
[Tx)|<e

fuliilled if e is an arbitrary positive number? Calculate numeri-
cally for: a) e=0.1; b) e=0.01; c) e=0.001.
290. Prove that the function

fx)=

1
x—2

is an infinite for x— 2. In what neighbourhoods of |x—2|<<¥§ is
the inequality
[Fx)|>N

fulfilled if N is an arbitrary positive number? ;
Find 6 if a) N=10; b) N=100;
0 ¢) N=1000.

A B 291. Determine the order of smallness
of: a) the surface of a sphere, b) the volume
of a sphere if the radius of the sphere r

| R is an infinitesimal of order one. What
3 will the orders be of the radius of the
sphere and the volume of the sphere with
0 respect to its surface?
Fie. 9 292. Let the central angle o of a cir-
18- cular sector ABO (Fig. 9) with radius R
tend to zero. Determine the orders of
the infinilesimals relative to the infinitesimal a: a) of the
chord AB; b) of the line CD; c) of the area of A ABD.
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293. For x— 0 determine the orders of smallness relative to
x of the functions:

a) 2, d) 1 —cosx;

T+x e) tan x — sin x.

b) Vx—}—l/;;

o) V=V

294. Prove that the length of an infinitesimal arc of a circle
of constant radius is equivalent to the length of its chord.

295. Can we say that an infinitesimally small segment and
an infinitesimally small semicircle constructed on this segment

as a diameter are equivalent?
Using the theorem of the ratio of two infinitesimals, find

. in 3x.sin bx . Inx
296. lim Z0°XS09% 298. lim )
x->0 (x—x*)? o 1—x
arc sin 299. lim COS X —COs2x
297. lim __.Kl;f: x>0 1—COSX

x>0 In(1—x)

300. Prove that when x— 0 the quantities % and V' T+x—1

are equivalent. Using this result, demonstrate that when [x| is
small we have the approximate equality

Vitaml+3 . )
Applying formula (1), approximate the following:
a) V' 1.06; b) V0.97; ¢) V'10; d) V120

and compare the values obtained with tabular data.
301. Prove that when x — 0 we have the following approxi-
mate equalities accurate to terms of order x*:

1 .
a) m%l-—-x,

b) Va'+x=a+z, (a>0);
¢) (14+x)"~1+4+nx (n is a positive integer);
d) log (1 +x) = Mx,

where M =loge=0.43429...

Using these formulas, approximate:
1. 1. 1. 18- . .
D152 5970 3 1550 Y V'15; 6) 1.04% 6)0.93%; 7) log 1.1«
Compare the values obtained with tabular data.

2*
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302. Show that for x — oo the rational integral function
P(x)=ax"+ax""'+ ... +a, (a,0)
is an infinitely large quantity equivalent to the term of highest
degree a x".

303. Let x— oo. Taking x to be an infinite of the first order,
determine the order of growth of the functions:

a) x’x—-; 100 x — 1,000; o) m
b) 57 d) / x—2x*.

Sec. 5. Continuity of Functions

1°. Definition of continuity. A function f(x) is continuous when x=§

(or “at the point §”), if: 1) this function is defined at the point §, that is,

there exists a number f (§); 2) there exists a finite limit lim f(x); 3) this lim-
X%

it is equal to the value of the function at the point §, i.e.,

limf (x)=f (§). (1)
x>
Putting
x=E+AE,
where AE— 0, condition (1) may be rewritten as
lim Af €)= lim [f (§+ AE)—f (§)]=0. @
AE->0 A0

or the function f(x) is continuous at the point § if (and only if) at this point
to an infinitesimal increment in the argument there corresponds an infinitesi-
mal increment in the function.

If a function is continuous at every point of some region (interval, etc.),
then it is said to be continuous in this region.
Example 1. Prove that the function
' y=sinx
is continuous for every value of the argument x.
Solution. We have
Ax

, ) Ax Ax\ Sin A
Ay =sin (x 4+ Ax)—sin x = 2 sin =~ cos (x —) = 2 . axy .
Y ( 3 +3 B cos ( ¥+ 5 Ax.

Since 2

Ax

sin — Ax
}Alln-»o Ax =1 and lcos(x+ ?)l<l,

2
it follows that for any x we have
) lim Ay=0.

Ax—>0

Hence, the function sinx is continuous when — oo <x<+ ®.
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2°. Points of discontinuity of a function. We say that a function f(x)has
a_discontinuity 'at x=1x, (or at the point x;) within the domain of definition
of the function or on the boundary of this domain if there is a break in the
continuity of the function at this point.

Example 2. The function f(x)= i ! (Fig. 10a) is discontinuous

(1—x)*
when x=1. This function is not defined at the point x=1, and no matter
N | ”4
1 PR y=E()
| y(,-;)z 2—-‘——';—";
| 1 r'*'-1-—>: :
! : . 0 : 3 :}
. 1 X
. H o |
of 1 2 X =/
(a) (b)
v
1

| P
N W A7

(¢)
Fig. 10

how we choose the number f (1), the redefined function f(x) will not be con-
tinuous for x=1.
If the function f(x) has finite limits:

im f()=f(,—0) and lm f(x)=F(x+0)
X3Xo+0

X>X5=0

and not all three numbers f(x,), f (x,—0), f(x,+0) are equal, then x, is called
a discontinuity of the first kind. In particular, if

[ (xo=0)=F (x,+0),

then x, is called a removable discontinuity.
For continuity of a function f(x) at a point x,, it is necessary and suf-

ficient that
f () =f (%g=—0)=F (xo+ 0).
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Example 3. The function f(x)=s|l—:;—‘ has a discontinuity of the first kind
at x=0. Indeed, here,
f(+0)= lim 22X_ 4
x>+0 X

and

f(—0)= lim Sn*_ _
X4=0 —X

Example 4, The function y=E (x), where E (x) denotes the integral part
of the number x [i.e., E (x) isan integer that satisfies theequality x=E(x) +g¢,
where 0 < g < 1], is discontinuous (Fig. 10b) at every integral point: x=0,
+1, +£2, ..., and all the discontinuities are of the first kind.

Indeed, if n is an integer, then E (n—0)-=n—1 and E (n40)=n. At all
other points this function is, obviously, continuous,

Discontinuities of a function that are not of the first kind are called
discontinuities of the second Rind.

Infinite discontinuities also belong to discontinuities of the second kind.
These are points x, such that at least one of the one-sided limits, f (x,—0)or
f(x,+0), is equal to « (see Example 2).

Example 5. The function y=cos%t (Fig. 10c) at the point x=0 has a

'c]iiscontinuity of the second kind, since both one-sided limits are nonexistent
ere:

limcos®™ and lim cos®. |
x>=0 X X>+0 X

3°. Properties of continuous functions. When testing functions for conti-
nuity, bear in mind the following theorems:

1) the sum and product of a limited number of functions continuous in
some region is a function that is continuous in this region;

2) the quotient of two functions continuous in some region isa continuous
function for all values of the argument of this region that do not make the
divisor zero;

3) if a function f(x) is continuous in an interval (a, b), and a setof its
values is contdined in the interval (A, B), and a function @ (x) is continuous
in (A, B), then the composite function ¢ [f(x)] is continuous in (a, b).

\ A function f(x) continuous in an interval [a, b] hasthe following proper-
ties:

1) f(x) is bounded on [a, b}, i.e., there is some number M such that
Hf(x) | <M when e<<x<<¥b;

2) f (x) has a minimum and a maximum value on [a, b};

3) j(x? takes on all intermediate values between the two given values;
that is, if f(a)=A and f(f)=B (e<<a < P=<b), then no matter what the
number C between A and B, there will be at least one valuex=1y (a<y<f)
such that f (y)=C.

In particular, if f(a)f(B)<O0, then the equation

[(x)=0

has at least one real root in the interval (a, B).

304. Show that the function y=x?is continuous for any value
of the argument x.
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305. Prove that the rational integral tunction
P(x)=ax"+ax"""+... +a,

is continuous for any value of «x.
306. Prove that the rational fractional function

_ apx"+ax""'4 ... +a,
R (%) T bbb,y

is continuous for all values of x except those that make the de-
nominator zero.

307*. Prove that the function y=V¥x is continuous for x =0.
308. Prove that if the function f(x) is continuous and non-
negative in the interval (a, b), then the function

Fx)=Vf()

is likewise continuous in this interval.

309*. Prove that the function y=:cos x is continuous for any x.

310. For what values of x are the functions a) tanx and
b) cot x continuous?

311*. Show that the function y=|x| is continuous. Plot the
graph of this function.

312. Prove that the absolute value of a continuous function
is a continuous function.

313. A function is defined by the formulas

[ x*—4
—— for xz£2,

Flry={ *—2
A for x=2.

How should one choose the value of the function A=f(2) so
that the thus redefined fungtion f(x) is continuous for x=2?
Plot the graph of the function y=Ff(x).

314. The right side of the equation

fx)=1—x siﬁ%

is meaningless for x=0. How should one choose the value f(0)
so that f(x) is continuous for x=0?
315. The function
1
f (x) =arc tan —
is meaningless for x=2. Is it possible to define the value of f(2)

in such a way that the redefined function should be continuous
for x=2?
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316. The function f(x) is not defined for x=0. Define f(0)

so that f(x) is continuous for x=0, if:

a) f=SFL=1 (1 is a positive integer);

I—cosx

b) f(X)= I ’
¢) f(x)=ln(l+x)—xln(l-—-x) :

d) fr=2—

X

e) f(x)=x‘sin-:7;
f) f(x)=xcotx.

Investigate the following functions for continuity:

317. y=x’i2. 324. y=lnltan%'.
318. y=:if . 325. y=arctan% .
319. y=KZj__"4—_3 © 326. y=(1+x)arctan1_‘——)-‘-,.
820. y=|%|. 327. y=e}-l—'-.
321. a) y=sin ; 398, y=e—;’l?.
b) y=xsin—. 329, y=—o0o= .
322. y=1—. 14eivF

323. y=In(cos x).

Pal for x<<3,
y={ 2x4-1 for x>3.
331. Prove that the Dirichlet function g (x), which is zero for

330. Plot the graph of this function.

irrational x and unity for rational x, is discontinuous for every
value of x.

Investigate the following functions for continuity and construct

their graphs:

332. y=Ilim —

nsw 1+ X"

333. y=1lim (xarc tan nx).
n-»-w

(x=0).
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334. a) y=sgnx, b) y=x sgnx, c) y==sgn(sinx), where the
function sgn x is defined by the formulas:

+1, if x>0,
sgn x = 0, if x=0,
—1, if x<0.

335. a) y=x—E (x), b) y=xE (x), where E (x) is the integral
part of the number x.

336. Give an example to show that the sum of two discontin-
uous functions may be a continuous function.

337*. Let a be a regular positive fraction tending to zero
(0<<a<<1). Can we put the limit of a into the equality

E(Q4+a)=E(l—0)+1,
which is true for all values of a?
338. Show that the equation
xX—3x+1=0
has a real root in the interval (1,2). Approximate this root.
339. Prove that any polynomial P (x) of odd power has at

least one real root.
340. Prove that the equation

tanx=x

has an infinite number of real roots.



Chapter 11
DIFFERENTIATION OF FUNCTIONS

Sec. 1. Calculating Derivatives Directly
1°. Increment of the argument and increment of the function. If x and x,
are values of the argument x, and y=f(x) and y,=f(x,) are corresponding
values of the function y=f (x), then
Ax=1x,—x

is called the increment of the argument x in the interval (x, x,), and

Ay=y,—y
or
Ay=Ff(x)—f (@)= (x + Ax) —f (x) (1)
Yy
N(-Tr.yi)
Py~
Ny-r'(:z)flfl(r.y) l
A1
NN -
T 0] 7 =z I X
Fig. 11

is called the increment of the function y in the same interval (x, x,) (Fig. 11,
where Ax=MA and Ay= AN). The ratio

Ay _
Z}_tanu

is the slope of the secant MN of the graph of the function y=f(x) (Fig. 11)

and is called the mean rate of change of the function y over the inferval
(x, x4+ Ax).

Example 1. For the function

y=x*—bx+6
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calculate Ax and Ay, corresponding to a change in the argument:

a) fromx=1 to x=1.1;
b) fromx=3 to x=2

Solution. We have

a) Ax=1.1—1=0.1,
Ay=(1.12*—=5-1.14-6)—(12—5.14-6) = —0.29;
b) Ax=2—-3=—1,
Ay =(2'—5-2+6)—(3'—5.34-6) =0.

Example 2. In the case of the hyperbola y=%. find the slope of the

’ /
secant passing through the points M (3, —;-) and NS!O i)
4

" 10
Solution. Here, Ax=10—3=7 and Ay:m—%=—3%. Hence,
p=by__ 1
TAxT 0
2°, The derivative. The derivative y'.—:% of a function y=Ff(x) with re-
spect to the argument x is the limit of the ratio By when Ax approaches zero;
Ax p
that is,
y'= lim 3¢,
Ax o0 Ax

The magnitude of the derivative yields the slope of the tangent MT fo the
graph of the function y=f(x) at the point x (Fig. 11):

y =tanq.

Finding the derivative y’ is usually called differentiation of the function. The
derivative y’=f’ (x) is the rate of change of the function at the point x.
Example 3. Find the derivative of the function

y=x'.
Solution. From formula (1) we have
Ay=(x+ Ax)'—x*=2xAx -+ (Ax)*

and
Ay
-A—x__2x+ Ax.
Hence,
’ Ay -
y= lim <= lim (2x+ Ax)=20.
Ax—>o0Ax  Axoo

3°. One-sided derivatives. The expressions
fo= lim [&E+80—F()
- Ax—+-o Ax
and
f'+ (x)= lim [+ Ax)—[ (%)

Ax 40 Ax
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are called, respectivelﬁ, the left-hand or right-hand derivative of the function
f(x) at the point x. For f' (x) to exist, it is necessary and sufficient that

o =Ff, ().
Example 4 Find f_ (0) and f’, (0) of the function
f)=]x].
Solution. By the definition we have

fo@= tim B*__
Ax—>-0 Ax

" (0)= lim Léil=
£ O Ax >+0 Ax L

4°. Infinite derjvative. If at some point we have
lim [CHAD—F()_
Ax -0 Ax !

then we say that the continuous function f (x) has an infinite derivative at x.

In this case, the tangent to the graph of the function y=F(x) is perpendicu-
lar to the x-axis.

Example 5. Find f’ (0) of the function
y=y/ %
3 p—

frO)=1 Ax li !
= iim —= lim ——— =00,
Ax—o Ax Ax -0 "l/Ax"’ ®

Solution. We have

341. Find the increment of the function y= x* that corresponds
fo a change in argument:

a) fromx=1 to x, =2;

b) fromx=1 to x,=1.1;

c) fromx=1 to x,=1+h.

342. Find Ay of the function y= 3/ if:

a) x=0, Ax=0.001;

b) x=81 sz'_g;

¢) x=a, Ax=~h.

343. Why can we, for the function y=2x+43, determine the
increment Ay if all we know is the corresponding increment
Ax=5, while for the function y=x* this cannot be done?

344. Find the increment Ay and the ratio % for the func-
tions: : Ax

a) y-——(?l_—?)—, forx=1 and Ax=0.4;

b) y=Vx forx=0 and Ax = 0.0001;
¢) y=1logx for x= 100,000 and Ax ==— 90,000.
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345. Find Ay and%—% which correspond to a change in argu-
ment fromx to x-+ Ax for the functions:

a) y=ax+b; d)y= l/x,

b) y=x"; e) y=
c)y=;‘;; f)y-—lnx.
346. Find the slope of the secant to the parabola
y=2x—x*,
if the abscissas of the points of intersection are equal:
a) x,=1, x,=2;
b) x, =1, x =0.9;
c) x,=1, x, =l+h.
To what limit does the slope of the secant tend in the latter case

if h—0?

347. What is the mean rate of change of the function y=x*
in the interval 1 <x<<4?

348. The law of motion of a point is s=2¢*+3¢t+5, where
the distance s is given in centimetres and the time £ is in seconds.
What is the average velocity of the point over the interval of
time from f==1 to £=2>5?

349. Find the mean rise of the curve y=2* in the interval
l<<x<5.

350. Find the mean rise of the curve y=f(x) in the interval
[x, x4 Ax].

351. What is to be understood by the rise of the curve y=f(x)
at a given point x?

352. Define: a) the mean rate of rotation; b) the instantaneous
rate of rotation.

353. A hot body placed in a medium of lower temperature
cools off. What is to be understood by: a) the mean rate of
cooling; b) the rate of cooling at a given instant?

354. What is to be understood by the rate of reaction of a sub-
stance in a chemical reaction?

355. Let m={(x) be the mass of a non-homogeneous rod over
the interval [0, x]. What is to be understood by: a) the mean
linear density of the rod on the interval [x, x + Ax]; b) the linear
density of the rod at a point x?

356. Find the ratio %% of the function y—;— at the point

x=2, il: a) Ax=1; b) Ax=0.1; ¢) Ax=0.01. What is the deriv-
ative y° when x=2?
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357**. Find the derivative of the function y=tanux.

358. Find y' = lim % of the functions:
Ax—>o0

a) y=x% ¢ y=Vx
b)y=%; d) y=cot x.

359. Calculate f' (8), if f(x)-_/

360. Find f'(0), f (1), £ (2), if f(¥)=»x(x—1)'(x—2)".

361. At what points does the derivative of the function
f (x)= x* coincide numerically with the value of the function itself,
that is, f(x)=f"(x)?

362. The law of motion of a point is s=5¢*, where the dis-
tance g is in metres and the time ¢ is in seconds. Find the speed
at £ =3.

363. Find the slope of the tangent to the curve y=0.1x*
drawn at a point with abscissa x=2.

364. Find the slope of the tangent to the curve y=sinx at
the point (x, 0).

365. Find the value of the derivative of the function f(x)=—
at the point x=ux,(x, # 0).
366*. What are the slopes of the tangents to the curves y=

and y=x' at the point of their intersection? Find the angle be
tween these tangents.

367**. Show that the following functions do not have finite
derivatives at the indicated points:

a) y=€/_x-i at x=0;
2k 41
¢) y=|cosx| at x=""—um, k=0, &1, +2,

Sec. 2. Tabular Differentiation

l° Basic rules for finding a derivative. If ¢ is a constant and u=g(x),
P (x) are functions that have derivatives, then

1) () =0; 5) (uv)’ =u u—!—v u;
2 (=1 6) (“) =24 —uvu

> (v % 0);
S wtoy=u £0; 1) (5)'=“’”' (© #0).

vl
4) (cu) =cu’;
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2°, Table of derivatives of basic functions
I. () =nx""1,

quDE3;7

I11. (sin x)’ = cos x.

(x> 0).

1V. (cos x)’ =—sinx.
V. (tan JC)'=EES—2—J—‘.
,  —1

V1. (cot x) =m

1
VII. (arcsinx)' = x|<
(aresin 8)' = =g (Ix] <D
VIIL. (arccosx)’ =—— (x| <.

=

1

a '=_____-

IX. (arc 12 x) Tre
o =1

X. (arc cot x) =ari

XI. (@)’ =a*Ina.
XII. (e¥) =e*.

X1 (Inx)’ =% (x> 0).

XIV. (1og,,x)'=xllna=‘°Lf ®>0, a>0).

XV. (sinh x)’ =cosh x.
XVI. (cosh x)’ =sinh x.

XVIIL. (tanh x)’ =§>sl_h’—x .
XVIII. (coth x)’=m—%‘.

1

XIX. (arcsinh x)' = ?=
14 x2

XX. («'H'CCOth)I='-V.—xi-_——l ('Xl) 1).

XXI1. (arc tanh x)’ =1_]_-———x—, (Jxl< ).

XXII. (arc coth x)'=x,___l (xl>1.

3°. Rule for differentiating a composite function. If y=f(4) and u=o (x),
that is, y=f [¢ ()], where the functions y and u have derivatives, then

Y=Y, U, 1))
or in other notations
dy_ dydu
dx dudx’

This rule extends to a series of any finite number of differentiable functions,
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Example 1. Find the derivative of the function

y=(x"—2x+ 3.

Solution. Putting y=u®, where u=(@x*—2x+3), by formula (1) we will
have

¥ =(u¥), (—2x+3), =5u (2x—2) =10 (x—1) (x* —2x + 3)*.

Example 2. Find the derivative of the function
y =sin® 4x.
Solution. Putting
y=u®, u=sinv; v=4x,
we find
y’ =3u?.cosv-4= 12 sin® 4x cos 4x.

Find the derivatives of the following functions (the rule for
differentiating a composite function is not used in problems
368-408).

A. Algebraic Functions

2 5

368. y=x"—4x*+ 2x—3. 375. y=3x> —2x* 4+ x~%,
369. y=-i——%x+x’—0.5x‘. 376*. y==x'}/ x".

370. y=ax® + bx+c. 377, y=at — .
y=ax'+bx+c Y i;/x, xV”
371, y="2. 318. y=212%.
 4m m+n . 2x+3
372 y=at™+bt"*", 819, Y=g 5
_ax*4b _# 2 1
374. y=" 2. 381, y=tVz
y=-+1n 81. y v
B. Inverse Circular and Trigonometric Functions
382. y=>5sinx+ 3 cos x. 386. y=arctanx+ arccot x.
383. y=tanx—cot x. 387. y=xcotx.
384, y=nitCx, 388. y= xarc sin x.

(14 x* arc tan x —x

385. y=2t sin t—(t*—2) cost. 389. y= 5
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390.
391.

392.

393.

394.
39G.

401.
402.

403.
404 y=

C. Exponential and Logarithmic Functions

y=x"-e*
y=(x—1)e*.
ex
=-x—.-_
x5
=;‘€"
f(x)=e"cos x.

Y= (x*—2x 4 2)e*.

D. Hyperbolic and

y=xsinhx,

x!
Y= oshx
y=tanh x—x.

3cothx
Inx

396.
397.

398.

399.
400.

y=e* arc sin x.

Y=tz
y=x‘lnx—£.

3
Inx

1
y=—++2 Inx—=—=.

y=Inxlogx—Inalog, x.

Inverse Hyperbolic Functions

405. y =arc tan x—arctanh x.

406. y=arc sin x arcstnh x.

407. y:ﬂf%sr‘_x_
408, y=2CU

E. Composite Functions

In problems 409 to 466, use the rule for differentiating a composite func-

tion with one intermediate argument.

Find the derivatives of the following functions:

409**. y=(1 +3x-- 5x*)*.

Solution. Denote 1+ 3x—>5x®=u; then y=u®. We have:
y:‘ = 30u?; u; =3—10x;

u,, = 30u%%+(3—10x) =30 (1 4+ 3x —5x2)*. (3 — 10x).

410.

411,
412,

413.

414.

415.
416.

ax+b\*
I~ (22
f(y)=(2a + 3by)".
y=3+2x""

1

Y=5s (21}—1)"24 2x—1)F W0Ex—1)¢"

3
y=l/l—-x’.
Y= Va + bx’.
y= (a’ll—x’ll)‘ll.
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417. y=(3—2sinx)".
Solution. y' =5 (3—2sin x)*-(3—2sin x)' =5 (3—2sin x)* (— 2cos x) =
— 10 cos x (3—2 sin x)*.

418. y=tan x——;- tan*x + % tan® x.

419. y=Veotx—Vecota. 423 y=Jt 1.
420. y=2x+5cos’ x. 424, y= ]/@_g—’_—z_ci’i_—"
421*, x=cosec’t -+-sec’ . 425. y:ngh_o%;.
422. f(X)=— rr—s

6(T—3cosx)* "

426. y=)/1+arcsinx.

427. y=V arctan x— (arc sin x)*.
428. y=5rt15n—x.

429. y=Vx&* +x.

430. y=3/2—2* +1+In*x.
431. y=sin3x +cos 5 +tanV'x.

Solution. 4’ = cos 3x-(3x)' —sin — (_x_ )' + (Vx) =3cos3x—

5
1
2 2V xcost Vix
432. y=sin (x'—5x+1)+tan—.
433. f(xj= cos (ax+P).
434. f(f)=sint sin (¢ + ).

cos? V_

1 x
——— sin

w95, =25

436. f(x)=a cot i .

437. y=— g;cos (5x’)- 2 cos &%,

438. y=arc sin 2x.

Solution. ' =..}7;:1___(__2;._? (20 = }/1—2_7;5

439. y=arc sin;‘;. 441, y=arc tan—l— .

440. | (x)=arccos V x. 442. y=arccot; 1~
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443. y="5e~*". 447. y=arccose”.
1 48, y=In(2x+7).

44. y= —.

V=g 449. y=log sin x.
445. y=x"10**. 450. y=In(1—x*).
446. f(¢)=t¢sin2', 451. y=In* x—In(Inx).
452. y=In(e* + 5 sin x— 4 arc sin x).
453. y=arctan (Inx)+ In (arc tanx).
454, y=VInx+1+In(Vx+1).

485**. y= sin®5xcos’ .
456.
457.

458.

459. y=
460.

461.

462.
463.

464.
465.
466.

467.
468.
469.

470.
471.

F. Miscellaneous Functions

X

w

15 10

Y=—Fx—3% 3x—3)) 2(x—3)*"

X.
Y=g —x¢"
Vo —2x+1
—_—
X

cVare

x3

Y=V

y=

y
y

x—1

Yy x+2°

y=x* (a 2xY)t.

__{a+bx"\™

y—(m) :
9

7/)7’+%3x?/§+3‘x Vi
VT oy—g i/ T2
4

6
+5x V.

I=5aror it T o
y=(a+x)Va—x.

y=V (x+a)(x+b) (x+oc).
=V y V7.

f)y=@t+1)(3t+2)y/ 3+2.

T2+
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1
472. x__"l/_;—ay_—_—__j"

473. y=In(VTF+e&E—1)—In(V'TF& +1).

474. y= 115 cos® x (3 cos* x—5).

475. y— (tan? x—-l)(t;nt‘a:;:l-xmtan x+1)

476. y=tan®5x. 485. y=arc sin xz-,

477. y=- sin (x"). 486. y=arc sin le+ =

478. y= sin® (). 487. y=“;l°f;_

479. y=3sinx cos’x+ sin*x. 488. y=—Vl;_arc sin <x ]/_%.) .

480. y=%tan’x—-tanx+x. 489, y=Va—x +aarcsin= .
481. y=—%%c+;cotx. 490. y=xV a* — x* +a* arc sm%

482. y=Vasin*x+pcos’x. 491. y=arcsin(l—x)+V 2x—x*.
483. y =arc sinx® 4 arccosx®.

484. y= l5(arc sinx)®arccosx.

492, y= (x——lé-) arcsin}Vx +17l/x—x’.

493. y=1In (arc sin 5x).
494. y=arc sin (Inx).

x sina
495. y-==arc tanm.
9 51211%4—4
496. y= 3 arc tan —_—
497. y=3b*arc tan ———('%b +2x) Vbx—x.
498, y-——l/2 arc cot t:/nx

499. y= Ve=.
500. y==gsin'x,

501. F (x) =(2ma™ + b)*.
502. F (t)=e¢" cos pt.

__(asin px—Pcos Br)e*
603. y= o .
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504.

505.
506.

510.

511.
512.

513.

517.

518.
519.

520.

521.
522,

y=—lﬁ —"(3 sin3x—cos 3x). g7, y= 3! %
y=x"a 508. y=In(ax’+ bx +c).
y=Vc osxaV°°” 509. y=In(x+Va*+x°).
y=x—2Vx+2In(1 +Vx)-

_ x4 VT =2y
y_ In(a+x+V2ax+x*). 5140, y=In 7%
y_ln | 515. y:lng_ll(%ﬂ
y=In osx%.

516. y=—m+lntanx.
y._x]/x a——ln(x-l—]/x —ad).

y=Inln(3—2x%).
y=5]n’(ax+b).
o Vifai4x
y=Iny—
y=—ln(x —a) + 5 In

x+a’
y==x-sin (lnx——i:—).

1 X 1 cosx
523. y=§lntan T T st
524. f(x)= l/x—’—-:—_l-—-lnl—”L—L?"l_—l.
1 =241
526, y=2arcsinax 4 (1 —arc cos 3x)*.
sin ux
1 sinfa
527. y=3t+ 5 3 cgs’ bfc
{ tan—2-+ 2—V3
528. y=—=In ——-—r.
V3 tan 5+ 2+ V3
529. y=arctanlnux.

530.
531.

532.

. 1 .
y=Inarcsinx+ 3 In*x+ arc sinlnx.

1
y=arctanin—.

__V2 ) X 1 x—1
y-—Tarctan—‘-/—é—.—i—Eln P
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14 Vsln x By
633. y= ln————— 2arctan ) sinx.
y V_+ V

534. y———lnx+l+ =-arc tan x.

x+l+
535. f(x)——-——ln(l +x)——ln(x —x+ l)+— arctan 2!

V3 V“
536. f() xarcsinx+anl_x

T
§37. y=sinh® 2x. 542. y=arccoshlnx.
538. y=e"* cosh px. 543. y= arc tanh (tan x).
639, y=tanh®2x, 544. y=arc coth (se(. Xx).
540. y=Insinh 2x. 545. y=arctanh ;= +x,
2
541. y=arcsinh%. 546. ——(x —l)arctanhx+—x
547. y= (% X' —|—%) arc sinh x-—T sV1+x.
548. Find ¢', if:
a) y=|x|;
b) y=x|x|.

Construct the graphs of the functions y and y'.

549. Find y' if
_ y=In|x| (x+0).
550. Find f' (x) if
l—x for x<<O,

f(x)={ e* for x>0.
651. Calculate f (0) if
f(x) =e* cos 3x.
Solution. [’ (x)=e~* (—3 sin 3x) —e—* cos 3x;
F (0)=e® (—3sin0)—e° cos 0 =—1.
562. f(x)=ln(1+x)+arcsin-;-. Find £ (1).
553. y=tan' 7. Find ( ax),,=,
554. Find f+(0) and f_(0) of the functions:
a) [=Vsin(&®: & [W=xsiny, x£0 fO=
b) f(x)_arcsm +x:, @) f(M=xsin+ x70; {(©)=0
o f)=—"5, x0; [(0)=

1+e*
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555. Find f(0)+ xf' (0) of the function f(x)=e""*.

556. Find f(3)4 (x—3)f (3) of the function f(x)=V1+ x.
557. Given the functions f(x)=tanx and ¢ (x)=In(1—x),

q [(0)
find PR
558. Given the functions f(x)=1—x and (p(x)=l—sin£2f,
g 2()
find 0

559. Prove that the derivative of an even function is an odd
function, and the derivative of an odd function is an even func-
tion.

560. Prove that the derivative of a periodic function is also
a periodic function.

561. Show that the function y=xe~* satisfies the equation

xy' =(1—x)y. p

562. Show that the function y=xe ¢ Satisfies the equation
xy' =(1—x"y.

563. Show that the function y=
tion xy' =y (yInx—1).

1 . o
TFiTing satisfies the equa-

G. Logarithmic Derivative

A logarithmic derivative of a function y=f(x) is the derivative of the
Jogarithm of this function; that is,
Y )
lny) ==—=-—2L
Uy ==t

Finding the derivative is sometimes simplified by first taking logs of the func-
tion.
Example. Find the derivative of the exponential function

y=u"
where u=¢@ (x) and v=1 (x).
Solution. Taking logarithms we get
Iny=vinu.
Differentiate both sides of this equation with respect fo x:

(Iny)=v'Inu+v(Inu),
or

1 1

—y'=0'l ~u

yy v nu+vuu.
whence

' ’ _v_ ’
y—y(v lnu+u u),
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or

" ___ ’ u ’
y _u°(v lnu+— u)
564. Find y', if

y=y/ % 11_*—_:: sin® x cos? x.

Solution. lny=—§—|nx+ln(l —x)—In (1 +x%)+31Insin x +2 In cos x;
1, 21 (=) 2x 1 2sinx
7Y _Ti'?+l—x-l_+x’+ssinxcosx— cosx
whence y'= 3—;——2)C—+3cotx——2tanx)
Y=Y\&%" T—x I+2 '

565. Find y’, if y=(sinx)*.
Solution. Iny=xInsinx; %y’:ln sin x + x cot x;
y’ = (sin x)* (In sin x 4 x cot x).

In the following problems find 4’ after first taking logs of the

function y={f(x):

566. y=(x+1)2x+ 1)(3x+1). 574. y=3/x.

__ (x+2 VT
567. y—m. 575. y=x .
568. y= ]/xix_:—;). 576. y=x* .
569. y=x i/x,x—_:_l 577. y=yxsinx,
=.'__£:L = 5 x)sin
570. y Vo e 578. y=(cos x)sinx,
Vx—l 1\*
6571. y=- . . Y= - .
I=VGrer Viror 0. y=(1+7)
572. y=x*. 580. y=/(arc tan x)*.
573. y=x*.

Sec. 3. The Derivatives of Functions Not Represented Explicitly

1°. The derivative of an inverse function. I a function y=Ff(x) has a

derivative y;;eo, then the derivative of the inverse function x=f=!(y) is

x__l
[ Yy
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or
de_ 1
dy dy’
dx

Example 1. Find the derivative x,, if

y=x-+Inx.
C_ I x41 p_ X
Solution. We have y, -—l+;-__ ret hence, x, =TT

2°. The derivatives of functions represented parametrically. If a function y
is related to an argument x by means of a parameter ¢,

{ =),

= (1),
then =¥

or, in other notation,

.. dy
Example 2. Find ax’ if
x=acost,
y=asin

Solution. We find Z—;‘:—-—a sint? and %—%:acos t. Whence

(_I_g!__acost

dx~  asint =—cot L.

3°. The derivative of an implicit function. If the relationship between x
and y is given in implicit form,

F(x, y)=0, 4y

then to find the derivative y;=y' in the simplest cases it is sufficient: 1) to

calculate the derivative, with respect to x, of the left side of equation (1),
taking y as a function of x; 2) to equate this derivative to zero, that is, to put

2 =0, @

and 3) to solve the resulting equation for y'.
Example 3. Find the derivative y, if
x* 4 y*—3axy =0. (6)]
Solution. Forming the derivative of the left side of (3) and equating it

to zero, we get
3x*+ 3y’ —3a (y + xy') =0,
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whence

’ x’——-ay
V==

681. Find the derivative x, if

In the following problems, find the derivative y'=g—z of the
functions y represented parametrically:
x 2t —1, [ x=acos"t,
589.
582. _t= \ y=bsin't.
=t i 90 I x=acos®f,
583. __(_t_ 690. \ y=bsin’t.
f+1 (. cos’t
, - Vecos2t’
1 t’
584 { G?I—tz) 591' __ sin® ¢
y ‘+t: ¢ - ‘/—:‘35—27 )
3at ( x=arc cos —
Ty Vit
585. __ Bat® 592. . t
Y=ixo- y ==arc sin ViTe
= = —'
586. { 2=V, 593. { x=e
Y= / t. y=e-.
x=,l/t‘+1, x=a( In tan %—{—cost—sint),
587. __t—1 594. .
y—-Vm- y=a(sint + cos ).
588. x=a(c?st+tsxn 1),
y=a(sint—1{cost).
dy .
595. Calculate i when t—-? if
x=a(t—sinf),
y=a(l—cos).
dy asin ¢ sin ¢
Solution. = =2 (I—cosf)” T—cost

a) y=3x+x%

b) y=x—l?sinx;

c) y=0.1x+e*.
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and
sini
(8)z g
dx ’="’;" l—cos%
d x=tInt,
596. Find 3/ when (=1 if Int
X Y= —t- .
.t
597. Find % when (=2 if {""e, cost,
x 4 y=¢e sint.
6598. Prove that a function y represented parametrically by the
equations
x =2t 4+ 3t%,
y=1t" 42t

satisfies the equation . .
v=(&)+2(3) -
599. When x=2 the following equation is true:
x'=2x.
Does it follow from this that

(x)" = (2%)’
when x=2?
600. Let y=1a®—x*. Is it possible to perform term-by-term
differentiation of
xl +yl —_— al")
In the examples that follow it is required to find the deriva-
tive y’=3—"; of the implicit functions y.

601. 2x—5y-+10=0. 609. acos’(x+y)=0b.

LI 610. tany=xy.
602. S4+4=1. y=xy )
603. x’+y*=ad’. 611. xy-——arctan—y-.

2 2
604. x*-xy+y*=0. 612. arctan (x+y)=x.
605. Vx+Vy=Va. 613. & =x+y.
_u
606. /X4 y =y a'. 614. Inx+e * =c.
_x—y 615. Iny+—>=c.

607. y'—x+y. y+7

. 1
608. y—0.3siny=ux. 616. arctan%=—2-ln(x'+y').
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617. Vx'—}—y’:carctan%. 618. » =y
619. Find y’ at the point M(1,1),
2y==1++ xy.

Solution. Dlﬁerentlatmg, we get 2y =y’ +3xyy Putting x=1 and
y=1, we obtain 2y'=1+43y’, whence y' =— .

620. Find the derivatives y’ of specified functions y at the
indicated points:

a) (x+y)*=27(x—y) for x=2 and y=1;

b) ye’ =e**! for x=0 and y=1;

) yf=x+In< for x=1 and y=1.

Sec. 4. Geometrical and Mechanical Applications of the Derivative

1°. Equations of the tangent and the normal. From the geometric signifi-
cance of a derivative it follows that the equation of the tangent to a curve
y=f(x) or F(x,y)=0 at a point M (x,, y,) will be

Y—Yo=1Y, (x—1x,).

where y; is the value of the derivative y’ at the point M (x,, y,). The straight

line passing through the point of tangency perpendicularly to the tangent is
called the normal to the curve. For the
normal we have the equation

x—xy+y, (Y —yo) =0.

2°. The angle between curves. The
angle between the curves
y=f, (x)
and

y=Fs(x)

at their common point M, (x,, ¥,) (Fig. 12)
Fig. 12 is the angle ® between the tangents
& MyA and MyB to these curves at the
point M,.
Using a familiar formula of analytic geometry. we get

L+ f, (xo)+fy (xo)

3°. Segments associated with the tangent and the normal in a rectangular
coordinate system. The tangent and the normal determine the following four

tanow=
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segments (Fig. 13):

t=TM is the so-called segment of the tangent,
8;=TK is the subtangent,

n=NM is the segment of the normal,
S,=KN is the subnormal.

Y|

M(z,,4%)

o' =T S K Se N X
Fig. 13

Since KM =|y,| and tan @=y,, it follows that

t=TM= %Vl-{-(y;)’l; n=NM=|yon+(y;)’|;
0

S;=TK=|%1, S,=]|u,|.
0

4°, Segments associated with the tangent and the normal in a polar sys-
tem of coordinates. If a curve is giv-
en 1n polar coordinates by the equa-
tion r=f(g), then the angle pn
formed by the tangent MT and the
radius vector r=0M (Fig. 14), is
defined by the following formula:

dp r

tanp=r =7

The tangent MT and the normal MN
at the point M together with the radi-
us vector of the point of tangency
and with the perpendicular to the
radius vector drawn through the pole Fie. 14
O determine the following four seg- 8.
ments (see Fig. 14):

t=MT is the segment of the polar tangent,
n=MN is the segment of the polar normal,
8;=0O0T is the polar subtangent,
S,=ON is the polar subnormal.
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These segments are expressed by the following formulas:

T VAT —or=_"".
I_MT‘—'I'J'V”*'(') ’ St OT l,ll’
n=MN=Vr+({'); S,=ON=|r"|.

621. What angles ¢ are formed with the x-axis by the tangents
to the curve y=x—x" at points with abscissas:
a) x=0; b) x=1/2; ¢) x=1?
Solution. We have y’'=1—2x. Whence

a) tan p=1, ¢=45° b) tan ¢=0, p=0%
¢) tan =—1, ¢=135° (Fig. 15).

622. At what angles do the sine
curves y=sinx and y= sin2x inter-
sect the axis of abscissas at the
origin?

Fig. 15 623. At what angle does the tan-
gent curve y=tanx intersect the
axis of abscissas at the origin?

624. At what angle does the curve y=e"** intersect the
straight line x=2?

625. Find the points at which the tangents to the curve
y=3x"+4x*—12x*+20 are parallel to the x-axis.

626. At what point is the tangent to the parabola

y=x'—T7x+3

parallel to the straight line 5x+4-y—3=0?

627. Find the equation of the parabola y= x*4 bx+c that is
tangent to the straight line x=y at the point (1,1).

628. Determine the slope of the tangent to the curve x*+y* —
— xy—7=0 at the point (1,2).

629. At what point of the curve y*=2x* is the tangent per-
pendicular to the straight line 4x—3y+42=0?

630. Write the equation of the tangent and the normal to the
parabola y=Vx

at the point with abscissa x=4.

Solution. We have y’=2 ! —; whence the slope of the tangent is
x

k=[y']x=,=%. Since the point of tangency has coordinates x=4, y=2, it

follows that the equation of the tangent is y—2=1/4 (x—4) or x—4y4-4=0.
Since the slope of the normal must be perpendicular,

ky=—4,
whence the equation of the normal: y—2=—4 (x—4) or 4x4y—18==0.
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631. Write the equations of the tangent and the normal to the
curve y=x"+2x*—4x—3 at the point (—2,5).
632. Find the equations of the tangent and the normal to the

curve
y=Vx—l
at the point (1,0).

633. Form the equations of the tangent and the normal to the
curves at the indicated points:
a) y=tan2x at the origin;

b) y=arc sin ’ﬁ;—l at the point of intersection with the

x-axis;

¢) y=arccos3x at the point of intersection with the y-axis;

d) y=Inx at the point of intersection with the x-axis;

e) y=e'-*" at the points of intersection with the straight
line y=1.

634. Write the equations of the tangent and the normal at the
point (2,2) to the curve

14t
x=t—,,

3 1
y_2—tz+ﬂ'

635. Write the equations of the tangent to the curve

x=tcost, y=tsint

at the origin and at the point t=%.

636. Write the equations of the tangent and the normal to the
curve x*-+y*+2x—6=0 at the point with ordinate y=3.

637. Write the equation of the tangent to the curve x*4y*—
—-2xy=0 at the point (1,1).

638. Write the equations of the tangents and the normals to
the curve y=(x—1)(x—2) (x— 3) at the points of its intersection
with the x-axis.

639. Write the equations of the tangent and the normal to the
curve y*=4x*46xy at the point (1,2).

640*. Show that the segment of the tangent to the hyperbola
xy=a® (the segment lies between the coordinate axes) is divided
in two at the point of tangency.

641. Show that in the case of the astroid x?° 4 y**=q2 the
segment of the tangent between the coordinate axes has a con-
stant value equal to a.
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642. Show that the normals to the involute of the circle
x=a(cost+tsint), y=a(sint—£cost)

are tangents to the circle x*+y*=a’.

643. Find the angle at which the parabolas y=(x—2)* and
y=-—4 +6x—x* infersect.
644. At what angle do the parabolas y=x® and y=x* inter-
sect? '

645. Show that the curves y=4x*4 2x—8 and y=x*—x+10
are tangent to each other at the point (3,34). Will we have the
same thing at (—2,4)?

646. Show that the hyperbolas

w=a*;, x*—y=2>"

intersect at a right angle.

647. Given a parabola y*=4x. At the point (1,2) evaluate the
lengths of the segments of the subtangent, subnormal, tangent,
and normal.

648. Find the length of the segment of the subtangent of the
curve y—=2* at any point of it.

649. Show that in the equilateral hyperbola x*—y*=a* the
length of the normal at any point is equal to the radius vector
of this point.

650. Show that the length of the segment of the subnormal
in the hyperbola x*—y*=a® at any point is equal to the abscissa
of this point.

651. Show that the segments of the sublangents of the ellipse

%:——}-By,—’:l and the circle x*+4y*=a*® at points with the same
abscissas are equal. What procedure of construction of the tan-
gent to the ellipse follows from this?

652. Find the length of the segment of the tangent, the nor-
mal, the subtangent, and the subnormal of the cycloid

{ x=a(l—sint),
y=a(l—cost)
at an arbitrary point {=1,.

653. Find the angle between the tangent and the radius vector
of the point of tangency in the case of the logarithmic spiral

r =ae*.

654. Find the angle between the tangent and the radius vec-

tor of the point of tangency in the case of the lemniscate
r*=a" cos 2¢.
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655. Find the lengths of the segments of the polar subtangent,
subnormal, tangent and normal, and also the angle between the
tangent and the radius vector of the point of tangency in the
case of the spiral of Archimedes

r=ag

at a point with polar angle ¢ =2mn.
656. Find the lengths of the segments of the polar subtangent,
subnormal, tangent, and normal, and also the angle between the tan-

gent and the radius vector in the hyperbolic spiral r= (’%at an

arbitrary point o=¢,; r=r,.
657. The law of motion of a point on the x-axis is

x=3f—1.

Find the velocity of the point at {,=0, ¢, =1, and {,=2 (x 1s
in centimetres and ¢ is in seconds).

658. Moving along the x-axis are two points that have the
following laws of motion: x=100+45f and x=1/2¢*, where £ =0.
With what speed are these points receding from each other at
the time of encounter (x is in centimetres and { is in seconds)?

659. The end-points of a segment AB==5 m are sliding along
the coordinate axes OX and OY (Fig. 16). A is moving at 2 m/sec.

Y
8 Y|
5
Y
{\“
o3 4 X 0 2 >
Fig. 16 Fig. 17

What is the rate of motion of B when A is at a distance 0A=3m
from the origin?

660*. The law of motion of a material point thrown up at an
angle a to the horizon with initial velocity v, (in the vertical
plane OXY in Fig. 17) is given by the formulas (air resistance is

31900
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disregarded):
gt

X=1v,tcosa, y=v,tsina—=,
where ¢ is the time and g is the acceleration of gravity. Find the
trajectory of motion and the distance covered. Also determine the
speed of motion and its direction.

661. A point is in motion along a hyperbola y=%) so that its

abscissa x increases uniformly at a rate of 1 unit per second.
What is the rate of change of its ordinate when the point passes
through (5,2)?

662. At what point of the parabola y* = 18x does the ordinate
increase at twice the rate of the abscissa?

663. One side of a rectangle, a=10 cm, is of constant length,
while the other side, b, increases at a constant rate of 4 cm/'sec.
At what rate are the diagonal of the rectangle and its area increas-
ing when 6=30 cm?

664. The radius of a sphere is increasing at a uniform rate
of 5 cmjsec. At what rate are the area of the surface of the
sphere and the volume of the sphere increasing when the radius
becomes 50 cm?

665. A point is in motion along the spiral of Archimedes

r=aqg

(a=10 cm) so that the angular velocity of rotation of its radius
vector is constant and equal to 6° per second. Determine the rate
of elongation of the radius vector r when r=25 em.

666. A nonhomogeneous rod AB is 12 cm long. The mass of a
part of it, AM, increases with the square of the distance of the
moving point, M from the end A and is 10 gm when AM=2cm.
Find the mass of the entire rod AB and the linear density at
any point M. What is the linear density of the rod at A and B?

Sec. 6. Derivatives of Higher Orders

1°. Definition of higher derivatives. A derivative of the second order, or
the second derivative, of the function y=f(x) is the derivative of its deriva.
tive; that is,

yil=(yl)l.
The second derivative may be denoted as
d? .
y', or a}y?, or f'(x).

2
If x=Ff(#) is the law of rectilinear motion of a point, then Zt—f is the accel-
eration of this motion.
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Generally, the nth derivative of afunction y=Ff(x) is the derivative of
a derivative of order (n—1). For the nth derivative we use the notation

d"y

y™, or e OF F & (x).

Example 1. Find the second derivative of the function

y=In(1—x).
Soluti el B Y = ,_:l_>’__l_.
ombon ¥y =13 ¥=\1T—x) “{—=n*"

2°, Leibniz rule. If the functions u=¢q (x) and v =19 (x) have derivatives
up to the nth order inclusive, then to evaluate the nth derivative of a prod-
uct of these functions we can use the Leibniz rule (or formula):

(@D) " = 4™y 4 g BV o7 4 "—“(rf.; D u=nv" g uom,

3°. Higher-order derivatives of functions represented parametrical.y. If

{ x=q (),

y=% ),
” 2

then the derivatives y;=dy =34

I Y=gz -+ Can successively be calculated
by the formulas

y’t-_—:—y#- R y”xx=( y;);::( y,t)‘ ) y;;x = -(if—:)—‘- and so iorth,
Xy t *e

For a second derivative we have the formula

y» _ XYy — XYy
xx ’\3
(x)

x=acost,
y=>bsint.

Example 2. Find y", if

Solution. We have

"_(bsin t)"__ b-cost b

~_-(a cost);——a si t——FCOt .
and
b ! b -1
_(""&'°°”)¢__"Tz"sm't=__ b
y'= (@costy, —asint atsin*t *

3‘
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A. Higher-Order Derivatives of Explicit Functions

In the examples that follow, find the second derivative of th

given function.

667. y=x*+4+7x"—5x +4. 671. y=In(x+Va'+x%).
X2

668. y=e*.
669. y= sin®x.

670. y=Inj/ T+«

675. Show that the

672. f(x) = (14 x*)-arctanx.
673. y= (arcsin x).
674. y=acosh i;— .

x4-2x+2
2

function y= satisfies the difler

ential equation 1+ y'*==2yy".
676. Show that the function yz%x’e" satisfies the differen

tial equation y"—2y’ 4y

=e*,

677. Show that the function y=C,e~*+ C,e~** satisfies th
equation y" +3y’ 4-2y=0 for all constants C, and C,.
678. Show that the function y=e** sinbx satisfies the equa

tion y"'—4y’ +29y=0.

679. Find y'"', if y=x"—5x"+7x—2.

680. Find ['"' (3), il [(x)=(2x—3)".

681. Find y' of the function y=In(14-x).

682. Find yV' of the function y= sin 2x.

683. Show that the function y=e~*cos x satisfies the difler

Fig. 18

ential equation y!'V 4 4y=0.

684. Find [(0), f' (0), f"(0) and [’ (O
if f(x)=e”*sinx.

685. The equation of motion of a poin
along the x-axis is

x =100 + 5¢—0.001¢°.

Find the velocity and the acceleration ¢
the point for times ¢,=0, ¢ =1, an
t,=10.

686. A point M is in motion around
circle x*4+y*=a* with constant angules
velocily . Find the law of motion of il
projection M, on the x-axis if at time ¢{=

the point is at M, (a, 0) (Fig. 18). Find the velocity and the ac
celeration of motion of M,.
What is the velocity and the acceleration of M, at the in

tial time and when it

passes through the origin?

What are the maximum values of the absolute velocity and tt
absolute acceleration of M,?
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687. Find the nth derivative of the function y=(ax+b)",

where n js a natural number.
688. Find the nth derivatives of the functions:

and b) y=Vx.

1
) y=y—:

689. Find the ath derivative of the functions:
1

a) y=sinx; €) y=11%:
b) y=cos 2x; f) y—:i; ;
c) y=e™'% g) y=sin®x;

d) y=In(14x); h) y=In(ax+0b).

690. Using the Leibniz rule, find y*, if:

a) y=x-e%; d) y='—l,i§;
b) y=x*.e7*% e) y=x"lnx.

¢) y=(1—x*cosx;
691. Find f™ (0), if f(x)=1In—

B. Iligher-Order Derivatives of Functions Represented
Parametrically and of Implicit Functions

In the following problems find 32% .

692. a) ( x=Int¢, b) [ x=arctan{, c){x=arcsint
{ =t y=In(l +1%); y=Vi-"=.

693. 2) x=acos ¢, x=a(t—sint),
y=asint, y=a(l —cost);
x=acos't, x=a((sint—fcost),
b) y=asin’f; y=a(cost +¢ sint).
X ==cos 2¢, x=arctant,
694. a 695. a) 1
== sin*¢; =7t';
x——e“’t x=Int,
_eat. b){ _ 1
y=1=7*
696. Find i x=¢'cost,
96. Fin dy“ "\ y=¢sint.
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=In(l+1),
697. Find %% for £=0, if xzt?( +)
698. Show that y (as a function of x) defined by the equa-

tions x=sint,y=aet V* 4-be-tV* for any constants a and &
satisfies the differential equation

d
( )dx’ sz:Qy'
In the following examples find y”'=%—’, .
9 x=sect, 201 x=e~t
699. ""tanl : J.—{’
x e~! cost, x=Int,
700. 702. Find ¢ Y i n
y=e'sint. dx y=t"

703. Knowing the function y=f(x), find the derivatives x",
of the inverse function x=f""(y).
704. Find v, if x¥*+y*=1.
Solution. By the rule for dlfferentlatmg a_composite functlon we have
2x+2yy’ =0; whence gy’ =— — X and Y'=— i) =___—:’x___/_

Y /x y

ree

Substituting the value of y’, we finally get:
p=—t2__ L

y® Yy’

In the following examples it i1s required to determine the
derivative y” of the function y=7f(x) represented implicitly.
705. y*=2px.
706. 4+ 4 =1.
707. y=x-arctan y.
708. Having the equation y=x+Iny, find d", and g;f,.
709. Find y" at the point (1,1) if
x* +5xy+y*—2x+y—6=0.
710. Find y” at (0,1) if
x*—xy+y'=1.
711. a) The function y is defined implicitly by the equation
42y +y'—4x+4-2y—2=0.
Find :—;—;y; at the point (1,1).

b) Find gixy_“ if x*+y'=a’
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Sec. 6. Differentials of First and Higher Orders
1°. First-order differential. The differential (first-order) of a function

y=1[(x) is the principal part of its increment, which part is linear relative
to the increment Ax=dx of the independent variable x. The differential of a

Y) N

Mzy)

0 P Q@ X
Fig. 19

function is equal to the product of its derivative by the differential of the
independent variable

dy=y’dx,
whence
, d
y =d%.

If MN is an arc of the graph of the function y=f(x) (Fig. 19), MT is the
tangent at M (x, y) and
PQ=Ax=dx,

then the increment in the ordinate of the tangent

AT =dy
and the segment AN = Ay.
Example 1. Find the increment and the differential of the function
y=3x*—x.
Solution. First method:

Ay=3(x+Ax)*—(x+ Ax) —3x*+x
or
Ay=(6x—1) Ax+3 (Ax)%.
Hence,
dy = (6x—1) Ax=(6x—1) dx.
Second method:
y =6x—1, dy=y’ dx=(6x—1)dx.

Example 2. Calculate Ay and dy of the function y=3x*—x for x=1
and Ax=0.01.

Solution. Ay=(6x—1)-Ax+3 (Ax)2=5.0.0143-(0.01)*=0.0503

and
dy=(6x—1) Ax=15.0.01=0.0500.
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2°. Principal properties of differentials.
1) dc=0, where c=const.
2) dx=Ax, where x is an independent variable.
3) d(cu)=cdu.
4) d(u + v)=du + dv.
5) d (uv)=udv-+vdu.
_vdu—udv

u
7) df (uy=F['" (u)du.
3°. Applying the differential to approximate calculations. If the increment
Ax of the argument x is small in absolute value, then the differential dy of the
function y=f(x) and the increment Ay of the function are approximately
equal:

that is,

Ay =dy,
fx+Ax)—f (x) <[ (x) Ax,

[+ Ax)=f @)+ [ (x)dx.

Example 3. By how much (approximately) does the side of a square change
if its area increases from 9 m? to 9.1 m??
Solution. If x is the area of the square and y is its side, then

y=Vx.

It is given that x=9 and Ax=0.1.
The increment Ay in the side of the square may be calculated approxi-
mately as follows:

whence

1
2V9
4°, Higher-order differentials. A second-order differential is the differential
of a first-order differential:

Ay=dy=y’' Ax= -0.1=0.016 m.

d*y =d (dy).

We similarly define the differentials of the third and higher orders.
If y=f(x) and x is an independent variable, then

d’y =y’ (dx)*,
d*y=y'"’ (dx)?,
d*y =y (dx)".
But if y=f(4), where u=¢q (x), then
d*y =y" (du)*+y' d'u,
d*y=y'"’ (du)®+3y" du-d*u+y' d®u
and so forth. (Here the primes denote derivatives with respect fo u).

_ 712. Find the increment Ay and the differential dy of the func-
tion y=>5x-+ x* for x=2 and Ax=0.001.
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713. Without calculating the derivative, find
d(1—x")
for x=1 and Ax=—

714. The area of a square S with side x is given by S=ux%.
Find the increment and the differential of this function and ex-
plain the geometric significance of the latter.

715. Give a geometric interpretation of the increment and
differcntial of the following functions:

a) the area of a circle, S=nx?

b) the volume of a cube, v=x’.

716. Show that when Ax — 0, the increment in the function
y=2%, corresponding to an increment Ax in x, is, for any x,
equivalent to the expression 2*In2 Ax.

717. For what value of x is the diflerential of the function
y = x* not cquivalent to the increment in this function as Ax —0?

718. Has the function y=|x| a differential for x=0?

719. Using the derivative, find the diflerential of the function

14 11
y=cosx for x=+ and Ax.-:gg.
720. Find the diflerential of the function

o —

2
for x=9 and Ax=—0.01l.
721. Calculate the diflerential of the function
y=tanx

for x:—;1 and Ax=]—g§.
In the following problems find the differentials of the given
functions for arbitrary values of the argument and its increment.

722. yr:ﬁ. 727. y=xInx—x.

X 1—x
723. 1 :-T_—_—;_. 728. y=lnm.
724, y=arc sin—z—. 729. r =cot @ 4-cosec ¢.
725. y=arctan§ . 730. s=arc tane'.
726. y=e"*".

731 Find dy if x*+2xy—y'=a’.
Solution. Taking advantage of the invariancy of the form of a differential,
we obtain 2x dx 42 (y dx -+ xdy)—2ydy=0
Whence
Xty dx.
x—y

dy =—
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In the following examples find the differentials of the functions
defined implicitly.
732. (x+y)-(2x+y)=1.
X

733. y=e V.
734. In}Y x*+y* =arctan % .

735. Find dy at the point (1,2), if y*—y=6x"
736. Find the approximate value of sin 31°.

Solution. Putting x=arc 30°=—2— and Ax=arc l°=i‘__ from formula (1)

180"~
(see 3°) we have sin31°=sin 30°+% cos 30°=0.500+0.017-l[-2£=0.515.

737. Replacing the increment of the function by the differen-
tial, calculate approximately:

a) cos61° d) In0.9;

b) tan 44°; e) arctan 1.08.

C) eo.l;

738. What will be the approximate increase in the volume of
a sphere if its radius R=15 cm increases by 2 mm?
739. Derive the approximate formula (for | Ax| that are small

compared to x)
S ) Ax
Vix+ax~Vx +2V.;.

Using it, approximate V5, V17, V70, V 640.
740. Derive the approximate formula

T L Av .~ 3T Ax
i/x-,'-AXN ;/x +?_d’_/_x-=’-‘

and find approximate values for /10, }/70, 3/ 200.
741. Approximate the functions:

a) y=x"—4x*4+5x4+3 for x=1.03;

b) F)=VT1+=x for x=0.2;
) f(x)= i/ i—ﬁ for x=0.1;
d) y=e'-* for x=1.05.

742. Approximate tan 45°320".
743. Find the approximate value of arc sin 0.54.
744. Approximate ;/17.
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745. Using Ohm’s law, 1=£R, show that a small change in
the current, due to a small change in the resistance, may be
found approximately by the formula

I
Al=— & AR.

746. Show that, in determining the length of the radius, a
relative error of 1°/, results in a relative error of approximately
2°/, in calculating the area of a circle and the surface of a sphere.

747. Compute d%y, if y= cos bx.

Solution. d’y=y" (dx?)=— 25 cos 5x (dx)%
748. u=)1—x, find d'u.

749. y=arccos x, find d’y.
750. y=sinxlInx, find d*y.

751. z=l%’5, find d*z.
752. z=x*¢"*, find d’z.
753. 2=, find d'z.

754. u =3 sin(2x +9), find d"u.
755, y=e*s¢sin (x sina), find d"y.

Sec. 7. Mean-Value Theorems

1°. Rolle’s theorem. If a function f(x) is continuous on the interval

a<<x<Cb, has a derivative [’ (x) at every interior point of this interval, and
f(@)=F (b),

then the argument x has at least one value & where a <§< b, such that
' (8)=0.

2°. Lagrange’s theorem. If a function f(x) is continuous on the interval
a<<x<b and has a derivative at every interior point of this interval, then

f ) —f @=(—a) [’ (§),
where a < < b.

3°. Cauchy’s theorem. If the functions f (x) and F (x) are continuous on the
interval a<<x<cb and for a< x<b have derivatives that do not vanish
simultaneously, and F (b) # F (a), then

F®O)—f(@) _['®
FO—F@ F®'

where a < § < b.

756. Show that the function f(x)=x—x' on the intervals
—l<x<0 and 0<<x <1 satisfies the Rolle theorem. Find the
appropriate values of §.
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Solution. The function f (x) is continuous and differentiable for all values
of x, and f(—1)=f(0)=Ff(1)=0. Hence, the Rolle theorem is applicable on
the intervals —l<<x<<0 and 0<x <1 To ﬁnd__E we form the equation
f' (x)=1—3x2=0. Whence § =— ]/%, E,= ]/é- where —1 <§, <0
and 0 < g, <1,

757. The function f(x)=f/(x—2)‘ takes on equal values

(0)=f(4)=3/4 at the end-points of the interval [0.4]. Does
he Rolle theorem hold for this function on [0.4]?
758. Does the Rolle theorem hold for the function

f(x)=tanx

f
t

on the interval [0, n]?
759. Let

fF(X)y=x(x4+1)(x+2) (x+3).
Show that the equation
) ['(x)=0
has three real roots.
760. The equation
e*=1tx

obviously has a root x=0. Show that this equation cannot have
any other real root.

761. Test whether the Lagrange theorem holds for the function
f(x)=x—x*

on the interval [—2,1] and find the appropriate intermediate
value of &.

Solution. The function f(x)=x—x® is continuous and differentiable for
all values of x, and [’ (x)=1—3x2 Whence, by the Lagrange formula, we
have f(I)—f(—2j=0—6=[1—(—2)] ' (§), that is, f (§):==—2 Hence,
1—-38*=—2 and = +1; the only suitable value is E=—1, for which the
inequality —2 < £ < | holds

762. Test the validity of the Lagrange theorem and find the

appropriate intermediate point & for the function f(x)==x*"* on
the interval [—1,1].

763. Given a segment of the parabola y=x* lying between

two points 4 (1,1) and B(3,9), find a point the tangent to which
is parallel to the chord AB.

764. Using the Lagrange theorem, prove the formula

sin (x 4 h) — sinx =h cos §,
where x<<t<<x+h.
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765. a) For the functions [(x)=x*-+2 and F(x)=x"—1 test
whether the Cauchy theorem holds on the interval [1,2] and
find &;

b) do the same with respect to f(x)=sinx and F(x)=cosx

on the interval [o, g]

Sec. 8. Taylor’s Formula

If a function f(x) is continuous and has continuous derivatives up to the
(n—1)th order inclusive on the interval a<{x<<b (or b<<x<Ca), and there
1s a finite derivative f'™ (x) at each interior point of the interval, then Tay-
lor’s formula

Lt e @4 E= D e g4

(Tn-—_—i; "=t )+( “) ™ @),

where £=a+4-0 (x—a) and 0<6<1, holds true on the interval.
In particular, when a=0 we have (Maclaurin’s formula)

fx)=F@+@x—a)f (a)+ T——

ot

PO =T @ +51 O+ " O+ + o (7= 0+ 17 @,
where £ =0x, 0<0<]1.

766. Expand the polynomial f(x)=x*—2x*+3x+5 in posi-
tive integral powers of the binomial x—2.

Solution. f' (x) =3x2—4x+3; [ (x)=6x—4&; """ (x)=6; f™ (x)=0
for n>==4. Whence

[@=1L [ @=7]"(2=8["(@2) =6.

Therefore,

— 2% 4 3x4-5=11 +(x-2)-7+(";2)-2.8+(";2)’-6

or
=20 434+ 5=114+7(x—2)+ 4 (x—2)2F (x—2)%.

767. Expand the function f(x)=e* in powers of x--1 to the
term containing (x+ 1)
Solution. /™ (x)=¢* for all n, f‘"’(—l)::ei. Hence,

(x+l)’ 411 =+
=gt D+ O S R 2 B

where £= —140 (x4 1); 0<0<1.

768. Expand the function f(x)=Inx in powers of x—1 up to
the term with (x—1).
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769. Expand f(x)=sinx in powers of x up to the term con-
taining x* and to the term containing x°.

770. Expand f(x)=¢€* in powers of x up to the term contain-
ing x"~1,
771. Show that sin(a+h) differs from
sina+hcosa
by not more than 1/2 k%
772. Determine the origin of the approximate formulas:
a) VIifam 1 fga—gx, |x|<l,

b) ¥ TFam I 45 x—gr', |x]<I

and evaluate their errors.
773. Evaluate the error in the formula

11,1

774. Due to its own weight, a heavy suspended thread lies
in a catenary line y=a cosh=. Show that for small x| the
shape of the thread is approximately expressed by the parabola

xz
y=a+y; .

775*. Show that for |x|<<a, to within (—2-)2, we have the
approximate equality

&
Y™
4

Q
+
*

Sec. 9. The L’Hospital-Bernoulli Rule for Evaluating Indeterminate Forms

1°. Evaluating the indeterminate forms% and %:—. Let the single-valued
functions f(x) and ¢ (x) be differentiable for 0<|x—a| <h; the derivative
of one of them does not vanish.

If f(x) and ¢ (x) are both infinitesimals or both infinites as x — a; that

is, if the quotient (p—(xﬁ. at x=a, is one of the indeterminate forms —g— or

3, then '
© lim £(¥) _ lim [’ (x)
¥aQ(x) *aq(x)

provided that the limit of the ratio of derivatives exists.
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The rule is also applicable when a=o0

')

T(x again yields an indeterminate form, at the point

x=a, of one of the two above-mentioned types and [’ (x) and ¢’ (x) satisfy

all the requirements that have been stated for f(x) and ¢ (x), we can then
pass to the ratio of second derivatives, etc.

However, it should be borne in mind that the limit of the ratio ﬂ-—)

may exist, whereas the ratios of the derivatives do not tend to any llmlt
(see Example 809).

2°. Other indeterminate forms. To evaluate an indeterminate form like
0.0, transform the appropriate product f, (x)-f, (x), where limf, (x) =0 and
x->a

f:(x)
limf, (x) = o0, into the quetient f'( ) (the form — (orf ) (the form ——)
x—-a

1f the quotient

fa(x ( )
In the case of the indeterminate form o — o, one should transform the
appropriate difference f; (x)—/,(x) inio the product f, (x) [l fx [1 (%) and

h(®
first evaluate the indeterminate form f2 (x); if lim fa(x )_l then we re-
f1(x) x—a F1 (%)

duce the expression to the form

l_fl (x)

h(x) 0
B — (the form F)'
f (%)

The indeterminate forms 1%, 0% o° are evaluated by first faking loga-
rithms and then finding the limit of the logarithm of the power [/, (x)]/2*
(which requires evaluating a form like 0- o).

In certain cases it is useful to combine the L'Hospital rule with the
finding of limits by elementary techniques.

Example 1. Compute

lim Inx
x-»0 cot x

)
(form ;).

Solution. Applying the L'Hospital rule we have

lim 10X _jim (nx)’ lim Sin'%

x»0Cot x x>0 (cot x)’ -0 X

We get the indeterminafe form %; however, we do not need fo use the
L’Hospital rule, since
sin x

lim sin x lim—_ sinx=1.0=0,
0 x X0

We thus finally get

lim Inx
x-»0 COt x

=0.
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Example 2. Compute

lim (—1—-—%5) (form o0 — o).

x»0 \ sin? x

Reducing to a common denominator, we get

: 1 1 . x*—sin?x 0
llm( - __—>—llm ~Tsmix (form 3).

x—>0 \ 8in? x2 x-0 X2sin?

Before applying the L'Hospital rule, we replace the denominator of the lat-
ter fraction by an equivalent infinitesimal (Ch. 1, Sec. 4) x?sin?x~x% We
obtain

1 1 sin? x

lim | — —_ = lim—_ (form _)
x—o0 \ SIiN% x  x2 X0 x4

The L’Hospital rule gives

. 1 1 . 2x—sin 2x 2—2co0s 2x
lim — — )=Ilim = lim
( sin? x xz) xl.,o 4x® X0 12x2

.
X0

Then. in elementary fashion, we find
in2
lim ( ! _.$>=lim I—cos2¢ . 2sin®x |

x—0 \ sin? x x>0  Ox2 x>0 Ox2 3°

Example 3. Compute
3

lim (cos 2):)72 (form 1%)
X—>0

Taking logarithms and applying the L'Hospital rule, we get

3
lim In (cos 2x) ** = lim 3lncos2v  _ g yjp, tan 2«
X0 X—>0 X x>0 2x

=—6

Hence, lim (cos 2x)*' e~
X—>0

| Find the indicated limits of functions in the following exam-
ples.
. e X824 x| 2
776, lim— ==

. 3x2—4x—1 1
llm_..____ —
Solution. x»1 B—Tx+6 oy 37 5 -

777, lim 28X —sinx 779. lim SoShx=1
x50 X too 1 —COSX
: 1—x

778. lim ——— . .
x1 ] _gin ¥ 780 limianx sin x .

2 T x5 X—sinx
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. 2x—2tlanx T
781, lim ¥ A= 20% z
x’% 1 4-cos 4x 785. lim x
X—>0 cot__;
782. lim ttaa:Sxx * ln(512n mx)
P 786. lim Trsmx
2 " X0 nsinx
. e i
783. lim —. 787. lim (1— cos x) cot x.
Y>> 1 X >0
. nx
784. llm 7_— .
X->% X
Solution. lim (I —cos x) cot x=1lim (I-C?S 2 COS X __ jjgy (1—COS )1
X0 X0 sl x x>0 s x
= lim sin v __
x-»0COS ¥
788. lim (1 —x)tan iy 792. lim x" sin ﬁ, n>0.
X-»1 2 X% X
789. limarc sin x cot x. 793. iminxin(x—1).
X—>0 ¥—>1
. . 1
790. lim (x"e™ %), n>0. 794. lim (A_-—\T—ll'l_\>
r—0 X »1 °
791. lim x sin 3— .
1> X
Solution. lim (- — .1\ fim ¥Inx—x+1_
x->1\r—1 Inx x» (x—1)1In
1
. x--;-;_ln,\-—l 01 < 1
= lim ————— =lim = lim i T =9-
X-»1 -—— I X ->1 O ¥>1___ —_—
Ina+ x(,\ 1) >1nx erl A+x2
. 1 5
795. lim <x—3—m>'
796. lim L 13 — | .
1] 2(1—=V %) 3(1—[/.\‘)
797 lim (J—~—n—) .
. g\cotx 2cosx
>
798. limx~*,
x>0
Solution. We  have x*=y; Iny=xlInx: limlny=limxlnx=
x>0 X0

1

In x x
= lim—~ = lim— =0, whence limy=1, that 1s, lma* =1,
x>0 x0_ X0 x40
X X
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1 1
799. lim x*. 804. limx'-=.
X—>+ @ -1
] tan’:—x
800. lim x4+1n x, 805. lim(tan’%) .
X0 X1
1
801. lim x®inx, 806. lim (cot x)I" *,
X0 x X0
802. lim(1—x)™=. 807. lim(l)"‘"".
X-1 X0
1
803. lim (1 + x*)*. 808. lim (cot x)%in =,
X0 X0
809. Prove that the limits of
i x* sin—’l‘
a) xl-rI: sin x =0;

. X—sinx
b) j_‘,‘ﬂ x+sinx 1

cannot be found by the L'Hospital-Bernoulli rule. Find these
limits directly.

Fig. 20

810*. Show that the area of a circular segment with minor

central angle a, which has a chord AB=b and CD=h (Fig. 20), is
approximately

bh

w| o

S~

with an arbitrarily small relative error when a—0.



Chapter 111

THE EXTREMA OF A FUNCTION AND THE GEOMETRIC
APPLICATIONS OF A DERIVATIVE

Sec. 1. The Extrema of a Function of One Argument

_ 1° Increase and decrease of tunctions. Thc¢ lunction y=f(x) is called
increasing (decreasing) on some interval if, fo. any points x;, and x, which
belong to this interval, from the inequality x,<x, we get the inequality [ (x,)<
<f(x,) (Fig 2la) [f(x)>}(x,) (Fig. 216)]. 11 f(x) is continuous on the
interval [a, 6] and [ (x)>0 [f (x)<O0) for a< .<b, then [ (1) increases (de-
creases) on the interval [a. b).

l
Y
Y ] ,
y=flx) y=~f(z) 4 I
|
lz) flz;) |
fi, flz,) !
Ul I, Iz X 0 I, Iz X ] } N
(a) (b) 0
Fig. 21 Fig. 22

In the simplest cascs, the domain of definition of f(x) may be subdivid-
ed into a finite number of intervals of increase and decrease of the func-
tion (intervals of monotonicity). These intervals are bounded by ciitic~’
points x [where f'(x)=0 or f’(x) does not exist].

Example 1. Test the following function for increase and decrease:

y=x>*—2x+45.
Solution. We find the derivative
Yy =2x—2=2x—1).
Whence y’=0 for x=1. On a number scale we get two intervals of monot-
onicity: (—eo, 1) and (1, 4+ ). From (1) we have: 1) if —o<x<l, then
y’'<0, and, hence, the function f(x) decreases in the interval (— o, 1); 2)

if 1<x<< 4 o, then y’>0, and, hence, the function f(x) increases in the in-
terval (1, 4+ ) (Fig. 22).
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Example 2. Determine the intervals of increase and decrease of the func-
tion
|

y=x+2 '
Solution. Here, x=—2 is a discontinuity of the function and ¢'=

= _(_x_—'}l——W<0 for x#—2. Hence, the function y decreases in the intervals

—0<x<—2 and —2<x< 4 .
Example 3. Test the following function for increase or decrease:

— 1 5 1 3
y-——-s—x —3- X%,
Solution Here,
Y =xt—x 2)
Solving the equation x*—x*=0, we find the points x;=—1, x,=0, x,=1

at which the derivative y' vanishes. Since y’ can change sign only when
passing through points at which it vanishes or becomes discontinuous (in the
given case, y’ has no discontinuities), the derivative in each of the intervals
(—o, —1), (—1, 0), (0,1) and (1, + o) retains its sign; for this reason, the
function under investigation is monotonic in each of these intervals. To
determine in which of the indicated intervals the function increases and in
which it decreases, one has to determine the sign of the derivative in each
of the intervals. To determine what the sign of y’ is in the interval (— oo,
—1), it is sufficient to determine the sign of y’ at some point of the inter-
val; for example, taking x=—2, we get from (2) y'=12>0, hence, 4'>0 n
the interval (—oo, —1) and the function in this interval increases Similar-
ly, we find that y'<0 in the interval (—1, 0) (as a check, we can take

xz_%—), y'<0 in the interval (0,1)

Y r\ (here, we can use x=1/2) and y'>0 in the
=fiz) | interval (1, + o).

y=flz) Thus, the function being tested in-

£ creases in the interval (— o, —1), decreases

/:Z‘,) in the interval (—1, 1) and again increases
. in the interval (1, 4 o0).

2°. Extremum of a function. If there

frx,) exists a two-sided neighbourhood of a point

xo such that for every point x#x, of this

0 I I neighbourhood we have the inequality

(Y 1 f(x)>f (x,), then the point x, is called the

Fig 23 minimum point of the function y==f(x),

g while the number f(x,) is called the muni-

mum of the function y=f(x). Similarly, if

for any point xsx, of some neighbourhood of the point x,, the inequality

[(x)<f(x) is fulfilled, then x, is called the maximum point of the function

f(x), and f(x,) is the maximum of the function (Fig. 23). The minimum

point or maximum point of a function is its extremal point (bending point),

and the minimum or maximum of a function is called the extremum of the

function. If x, is an extremal point of the function f(x), then [’ (x;)=0, or

f' (x,) does not exist (necessary condition for the existence of an extremum).

The converse is not true: points at which /' (x)=0, or f’(x), does not exist

(critical points) are not necessarily extremal points of the function f(x),

] |
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The sufficient conditions for the existence and absence of an extremum of a
continuous function f (x) are given by the following rules:

1. If there exists a neighbourhood (x,—3&, x,+98) of a critical point x,
such that f" (x)>0 for x,—0<x<x, and f' (x)<0 for x,<x<x,+8, then x, is
the maximum point of the function f(x); and if f’'(x)<0 for x,—O8<x<x,
and f' (x)>0 for x,<x<x,+ 0, then x, is the minimum point of the function
f(x).

Finally, if there is some positive number § such that f’(x) retains its
sign unchanged for 0<|x—x, |<0, then x, is not an extremal point of the
function f (x).

2. If f'(x)=0 and [’"(x,)<0, then x, is the maximum point;
if ['(x)=0 and [’ (x,)>0, then x, is the minimum point; but if f' (x,)=0,
f" (xg) =0, and f"’’ (x,)#0, then the point x, is not an extremal point.

More generally: let the first of the derivatives (not equal to zero at the
point x,) of the function f(x) be of the order k. Then, if & is even, the
point x, 1s an extremal point, namely, the maximum point, if f® (x,)<0;
and it is the minimum point, if f® (x)>0 But if % 1s odd, then x, is not
«n extremal point.

Example 4. Find the extrema of the function

y=2x+3 /.
Solution. Find the derivative
22
i’/x ‘J/x‘
Equating the derivative y’ to zero, we get:
V s+ 1=0.

y =2+ V x+1). 3)

Whence, we find the critical point x;==—1. From formula (3) we have: if
x= — . -h, where h 1s a sufficienlly small positive number, then y’>0; but
if x==—1+4h, then y’<0*). Hence, x,=—1 1s the maximum point of the

function gy, and ymax = 1.

Equating the denominator of the expression of 4’ in (3) to zero, we get

3/~ _ .

x=Y
whence we find the second critical point of the function x,=0, where there
1s no derivative y' For x:=—h, we obviously have ¢’'<0; for x=~h we have
y'>0. Consequently, x,==0 is the mimumum point of the function gy, and
ymin=0 (F1g. 24). It is also possible to test the behaviour of the function

at the point x=—1 by means of the second derivative
2
Y=———.
3x f/ X
Here, <0 for x,= —1 and, hence, x, = —1 is the maximum point of the
function.

3°, Greatest and least values. The least (greatest) value of a continuous
function f(x) on a given interval [a, b] is attained either at the critical
points of the function or at the end-points of the interval [a, b].

*) If 1t is difficult to determine the sign of the derivative y’, one can
calculate arithmetically by taking for & a sufficiently small positive number.
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Example 5. Find the greatest and least values of the function

y=x3—3x+3

on the interval —1'/,<x<<2'/,.
Solution. Since

Yy =3x*—3,
it follows that the critical points of the function y are x,=—1 and x,=1.
Y
~ - -
118
Yl
|
I
I
!
I
! I
I
|
cmemsn——— i —
-1 0 X 1 21—7
z
Fig. 24 Fig. w

Comparing the values of the function at these points and the values of the
function at the end-points of the given interval

1 1 1 1
v—D=5 5=ty —13) =45 v(25)=17.

we conclude (Fig. 25) that the function attains its least value, m=1, at
the point x=1 (at the minimum point), and the greatest value M= 118l
at the point x=2'/, (at the right-hand end-point of the interval).

Determine the intervals of decrease and increase of the func-
tions:

811. y=1—4x—x" 1

812, y— (x—2)". 816. y=G—y -
813. y=(x+4) x
814. y=x*(x—3). 817. Y= "x—16"

X
8. y=7=5- 818. y=(x—3))x.
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819. y=5— x. 823. y=2e'-*%,
820. y=ux + sinx. 824. y=2x_‘-a_
821, y=xlInx. e*

822. y=arcsin(l +x). 826. y=+-

Test the following functions for extrema:

826. y==x*44x4-6.

Solution. We find the derivative of the given function, y'=2x44.
Equating y' to zero, we get the critical value of the argument x= —2.
Since y'<0 when x<—2, and y'>0 when x>—2, it follows that x=—2 is
the minimum point of the function, and ymin=2. We get the same result
by utilizing the sign of the second derivative at the critical point y”=2>0.

827. y=2+4x—x*.

828. y=x'—3x*43x 2.

829. y=2x"+3x*— 12x+35.

Solution. We find the derivative
y' =6x*46x—12=6 (x*4+x—2).

Equating the derivative y' to zero, we get the critical points x,= —2
and x,=1. To determine the nature of the extremum, we calculate the
second derivative y'==6(2x+1). Since ¥ (—2)<0, it follows that x,= —2
is the maximum point of the function y, and ymax=25. Similarly, we have
Y’ (1)>0; therefore, x,=1 is the minimum point of the function y and
Ymin= —2.

830. y=x*(x— 12)%.

840. y=2cos = +3cos= .
831, y=x(x—1) (x—2)". y g T9¢083

832. y=x,—":_-§. 841, y=x—In(l+x).
833. y=£§ifli?. 842. y=xInx.

834. y=(—)f:-2¥_—x)- 843. y=xIn'x.

835. y‘=ml_‘6_“x_=)' 844. y=cosh x.

836. y=ﬁ' 845. y=xe*.

837. y =?l7xf_~:—4' 846. y— x'e".

838. y=}/ @ —1). 847. y==.

839. y=2 sin 2x + sin 4x. 848. y=x—arctan x.

Determine the least and greatest values of the functions on the
indicated intervals (if the interval is not given, determine the
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greatest and least values of the function throughout the domain
of definition).

849, y=inJ-C_x"‘ 853. y=x" on the interval [—1,3].
850. y=1x(10—x). 854. y=2x"4-3x*—12x+1
851. y=sin*x +cos*x. a) on the interval [—1,6];

b) on the interval [—10,12].
852. y=arccos x.

855. Show that for positive values of x we have the inequality
X -+ % =2,

856. Determine the coefficients p and g of the quadratic tri-
nomial y=x*-+px-+q so that this trinomial should have a min-
imum y=3 when x=1. Explain the result in geometrical terms.

857. Prove the inequality

e*>1-+x when x 0.
Solution. Consider the function
f (x)=e*—(1+4x).

11»{“ the usual way we find that this function has a single minimum f (0)=0.
ence,

f(x)>Ff(0) when x #0,
and so ¢* >1+x when x#0,

as we set out to prove.

Prove the inéqual ities:

858. x—%a <sinx<<x when x>0.
859. cosx > 1——’—‘2: when x=0.
860. x-——f;<ln(l+x)<x when x>0.

861. Separate a given positive number a into two summands
such that their product is the greatest possible.

862. Bend a piece of wire of length [/ into a rectangle so that
the area of the latter is greatest.

863. What right triangle of given perimeter 2p has the great-
est area?

864. It is required to build a rectangular playground so that
it should have a wire net on three sides and a long stone wall
on the fourth. What is the optimum (in the sense of area) shape
of the playground if / metres of wire netting are available?
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865. It is required to make an open rectangular box of greatest
capacity out of a square sheet of cardboard with side a by cutting
squares at each of the angles and bending up the ends of the
resulting cross-like figure.

866. An open tank with a square base must have a capacity
of v litres. What size will it be if the least amount of tin is used?

867. Which cylinder of a given volume has the least overall
surface?

868. In agiven sphere inscribe a cylinder with the greatest volume.

869. In a given sphere inscribe a cylinder having the greatest
lateral surface.

870. In a given sphere inscribe a cone with the greatest volume.

871. Inscribe in a given sphere a right circular cone with the
greatest lateral surface.

872. About a given cylinder circumscribe a right cone of least
volume (the planes and centres of their circular bases coincide).

873. Which of the comnes circumscribed about a given sphere
has the least volume?

874. A sheet of tin of width a has to be bent into an open
cylindrical channel (Fig. 26). What should the central angle ¢ be
so that the channel will have maximum capacity?

D c

A\ 0
VAR RN e d

|
]
a A B M
Fig. 26 Fig. 27

875. Out of a circular sheet cut a sector such that when made
into a funnel it will have the greatest possible capacity.

876. An open vessel consists of a cylinder with a hemisphere
at the bottom; the walls are of constant thickness. What will the
dimensions of the vessel be if a minimum of material is used for
a given capacity?

877. Determine the least height h=0B of the door of a ver-
tical tower ABCD so that this door can pass a rigid rod MN of
length [, the end of which, M, slides along a horizontal straight
iine AB. The width of the tower is d <</ (Fig. 27).
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878. A point M, (x,, y,) lies in the first quadrant of a coordi-
nate plane. Draw a straight line through this point so that the
triangle which it forms with the positive semi-axes is of least area.

879. Inscribe in a given ellipse a rectangle of largest area with
sides parallel to the axes of the ellipse.

880. Inscribe a rectangle of maximum area in a segment of
the parabola y*=2px cut off by the straight line x=2a.

881. On the curve Yy=1rn find a point at which the tangent

forms with the x-axis the greatest (in absolute value) angle.

882. A messenger leaving A on one side of a river has to get
to B on the other side. Knowing that the velocity along the bank
is & times that on the water, determine the angle at which the
messenger has to cross the river so as to reach B in the shortest
possible time. The width of the river is A and the distance be-
tween A and B along the bank is d.

883. On a straight line AB=a connecting two sources of light A
(of intensity p) and B (of intensity g¢), find the point M that
receives least light (the intensity of illumination is inversely pro-
portional to the square of the distance from the light source).

884. A lamp is suspended above the centre of a round table
of radius r. At what distance should the lamp be above the table
so that an object on the edge of the table will get the greatest
illumination? (The intensity of illumination is directly proportion-
al to the cosine of the angle of incidence of the light rays and
is inversely proportional to the square of the distance from the
light source.)

885. It is required to cut a beam of rectangular cross-section
ont of a round log of diameter d. What should the width x and

the height y be of this cross-section

2 so that the beam will offer maximum
. resistance a) to compression and b) to

é p bending?
Y x Note. The resistance of a beam to compres-
44 B sion is proportional to the area of its cross-
4=~ a—-% section, to bending—to the product of the
width of the cross-section by the square of

Q its height.

Fig. 2 886. A homogeneous rod AB, which

can rotate about a point A (Fig. 28),

is carrying a load Q kilograms at a distance of a cm from A

and is held in equilibrium by a vertical force P applied to the

free end B of the rod. A linear centimetre of the rod weighs

q kilograms. Determine the length of the rod x so that the force P
should be least, and find P,.
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887*. The centres of three elastic spheres A, B, C are situated
on a single straight line. Sphere A of mass M moving with ve-
locity v strikes B, which, having acquired a certain velocity,
strikes C of mass m. What mass should B have so that C will
have the greatest possible velocity?

888. N identical electric cells can be formed into a battery
in diflerent ways by combining n cells in series and then combin-

ing the resulting groups (the number of groups is % in par-

allel. The current supplied by this battery is given by the formula

[— Nné&
" NR+-n2r’

where & is the electromotive force of one cell, r is its internal
resistance, and R is its external resistance.

For what value of n will the battery produce the greatest
current?

889. Determine the diameter y of a circular opening in the
body of a dam for which the discharge of water per second Q

will be greatest, if Q=cy V' h—y, where h is the depth of the
lowest point of the opening (4 and the empirical coefficient ¢ are
constant).

890. If x,, x,, ..., x, are the results of measurements of equal
precision of a quantity x, then its most probable value will be
that for which the sum of the squares of the errors

n

o= (x—x;)

i=1

is of least value (the principle of least squares).
Prove that the most probable value of x is the arithmetic mean
of the measurements.

Sec. 2. The Direction of Concavity. Points of Inflection

1°. The concavity of the graph of a function. We say that the graph of a
differentiable function y=f§x) is concave down in the interval (a,b) [concave
up in the interval (a,,b,)] if for a <x < b the arc of the curve is below (or
for @, < x < b, above) the tangent drawn at any point of the interval (a,b)
or of the interval (a,,b,)] (Fig. 29). A sufficient condition for the concavity
downwards (upwards) of a graph y=f(x) is that the following inequality be-
fulfilled in the appropriate interval:

F'(x) <0 [f" (x) >0).
2°. Points of inflection. A point [x,, f(x,)] at which the direction of con-

cavity gt' the graph of some function cilanges is called a point of inflection
(Fig. 29).
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For the abscissa of the point of inflection x, of the graph of a function
y=f(x) there is no second derivative [’ (xs)=0 or f’(x,). Points at which
" (x)=0 or f”(x) does not exist are called critical points of the second kind.
The critical point of the second kind x, is the abscissa of the point of inflec-
tion if f”(x) retains constant signs in the intervals x,—8 <x <x, and

%, < ¥ < xo+98, where 8 is some posi-

Y tive number; provided these signs are

| opposite. And it is not a point of

inflection if the signs of [’ (x) are the

#(z) same in the above-indicated intervals.

y= Example 1. Determine the inter-

vals of concavity and convexity and

also the points of inflection of the
Gaussian curve

|
|
|
|
|
b

[ |
I l ' ' y=e—x2-
| I |
i [ . Solution. We have
0 a z, aq b X Yy =—2xe"%
d
Fig. 29 an

Y=4x2—2) e~ %

Equating the second derivative y° to zero, we find the critical points of tHe
second kind

X ————l— and «x =L
1 V‘i' !—V§"

These points divide the number scale — o < x<4 o into three intervals:
1 (—o, x), II(x,, x,), and 111 (x,, + ). The signs of 4 will be, respec-

14
Y
1
1L 11
2 2
& & r— - Y
vz V2
Fig. 30 Fig. 31
tively, 4+, —, + (this is obvious if, for example, we take one Point in each

of the intervals and substitute the correspondinlg values of x into y") Therefore:
1
1) the curve is concave up when —o0< x < — —= and —= < x <+ c0; 2) the
p V3 V3 )

1 1 +1 1
curve 1s concave down when——= < x < —==. The points { ——, ——= ) are
V2 V2 P ( Ve Ve )

points of inflection (Fi%. 30).

It will be noted that due to the symmetry of the Gaussian curve about
the y-axis, it would be sufficient to investigate the sign of the concavity of
this curve on the semiaxis 0 < x < 4 o alone.
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Example 2. Find the points of inflection of the graph of the function

y=Vx+2.
Solution. We have:
5

2 ) —2
Y=—5((+2 =—g—. 1
9 9/ x+2° D
1t is obvious that y’ does not vanish anywhere.
Equating to zero the denominator of the fraction on the right of (1), we
find that 4" does not exist for x=—2. Since 4" > 0 for x <—2 and y"<0 for
x> —2, it follows that (—2,0) is the point of inflection (Fig. 31). The tan-

gent at this point is parallel to the axis of ordinates, since the first derivative y’
is infimte at x=—2.

Find the intervals of concavity and the points of inflection
of the graphs of the following functions:

891. y=x"—6x"+12x + 4. 896. y=cos x.

892. y=(x+1)% 897. y=x—sinux.
893. y=—7. 898. y=x'Inx.

894. y=)ﬁT2. 899. y=arctanx—ux.
895. y =/ 4x—2x. 900. y=(1 4 x*)€".

Sec. 3. Asymptotes

1°. Definition. If a point (x,y) is in continuous motion along a curve
y—f(x) in such a way that at least one of its coordinates approaches infinity
(and at the same time the distance of the point from somie straight line tends
{o zero), then this straight line is called an asymptote of the curve.
2°. Vertical asymptotes. If there is a number a such that
lim f (v)= £ o0,

X—->a

then the straight line x=a is an asymptote (vertical asymptote).
3° Inclined asymptotes. If there are limits

x>+ X
and

lim [f (x)—kyx] =b,,
x>+ ®

then the straight line y=~k,x4-b, will be an asymptote (a right inclined
asymptote or, when k, =0, a right horizontal asymptote).
If there are limits

lim M:k,

v X
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and
lim [f (x)—kyx] =b,,
X->=-®

then the straight line y==~k,x+b, is an asymptote (a left inclined asymptote

or, when k,=0, a left horizontal asymptote). The graph of the function y=f (x)

(we assume the function is single-valued) cannot have more than one right

(inclined or horizontal) and more than one left (inclined or horizontal) asymptote.
Example 1. Find the asymptotes of the curve

xz
yeo

Solution. Equating the denominator to zero, we get two vertical asymp-
lotes:

x=—1 and x=1,

We seek the inclined asymptotes. For x — +- oo we obtain

2
k= lim L= lim ———==1
xs>+o X xs+mv ]/x’— 1
2 2 __
b= lim (y—x)=1lim X—X—V-x———le,
X+ % x>+ o YV e—1

vy
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Fig. 32

hence, the straight line y=x is the right asymptote. Similarly, when x — — oo,
we have

ky= lim L=—y;
X=X
by= lim (y+x)=0.
@®

x—>=

Thus, the left asymptote is y= —x (Fig. 32). Testing a curve for asymp-
totes is simplified if we take into consideration the symmetry of the curve.
Example 2. Find the asymptotes of the curve

y=x+Inx.
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Solution. Since

lim y= —oo,
x->+0

the straight line x=0 is a vertical asymptote (lower). Let us now test the
curvsvonll]y for the inclined right asymptote (since x > 0).
e have:

b= lim (y—x)= lim lnx=o0.
x>+ ® X>+®

Hence, there is no inclined asymptote.

If a curve is represented by the parametric equations x=¢ (¢), y="1 (¢),
then we first test to find out whether there are any values of the parameter ¢
for which one of the functions ¢ () or ¥ (f) becomes infinite, while the other
remains finite. When ¢ (f;)=o0 and ¥ (f{;)=c, the curve has a horizontal
asymptote y=c. When Y ({))=c and @ (f{)=c, the curve has a vertical
asymptote x=c.

I @ ty)=1 ({)) =0 and

im YO _p. 1 — -
tl—l>nt1°¢(t) ks :hTt[nw(t) ko =5

then the curve has an inclined asymptote y==Fkx—+b.

If the curve is represented by a polar equation r=f(¢), then we can
find its asymptotes by the preceding rule after transforming the equation of
the curve to the parametric form by the formulas x=r cos@=f(¢) cos ¢;
y=rsin p=f (¢) sin ¢.

Find the asymptotes of the following curves:

1 x?
901. y———(x—__—Q)—,. 908. y—-x—2+77ﬁ.
902. y=x*TZ.{'T——3' 909. y=e-xz+2.
903. y=);é4—. 910. y=ﬁ".
x® 1
904 y=577 - 911. y=e*.
905. y=V ¥ —1. 012, y="L1,
906. y':Tf;—Ta‘ 913. y=In(l4-x).
907. y=1—;—:—%-1_. 914, x=t¢;, y=t+42arctant.

915. Find the asymptote of the hyperbolic spiral r=—-:-)-.
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Sec. 4. Graphing Functions by Characteristic Points

In constructing the graph of a function, first find its domain of definition
and then determine the behaviour of the function on the boundary of this
domain. It is also useful to note any peculiarities of the function (if there
are any), such as symmetry, periodicity, constancy of sign, monotonicity, etc.

Then find any points of discontinuity, bending points, points of inflection,
asymptotes, etc. These elements help to determine the general nature of the
graph of the function and to obtain a mathematically correct outline of it.

Example 1. Construct the graph of the function

_ x
a1
Solution. a) The function exists everywhere except at the points x= 41.
The function is odd, and therefore the graph is symmetric about the point
0 (0, 0). This simplifies construction of the graph
b) The discontinuities are x=—1 and x=1; and lim y=4 o and
x—>140
lim y= 4 oo; hence, the straight lines x= 41 are vertical asymptotes of the
X>=140
graph.
c) We seck inclined asymptotes, and find
Y

k= lim ==0,
x>+w X

b= lim y=o00,
X>+®

thus, there is no right asymptote. From the symmetry of the curve it follows
that there is no left-hand asymptote either.

d) We find the critical points of the first and second kinds, that is,
oints at which the first (or, respectively, the second) derivative of the given
unction vanishes or does not exist.

We have: |,
’=_ﬁ__ (])
[} S:l’/(x—z——_—lT"
, y = 2x (9—x?) ) @

9i’/(x2—1)7

The derivatives y’ and y” are nonexistent only at x= 41, that is, only at
points where the function y itself does not exist; and so the critical points
are only those at which y’ and y” vanish.

From (1) and (2) it follows that

y'=0 when x=+ V3;
y"=0 when x=0 and x= 43.

Thus, y’ retains a constant sign in each of the intervals (—o, — V3 )s
(—V3, —1), (=1, 1,0, ¥3) and (V3, + ), and y"—in each of the
intervals (—o, —3), (—3, —1), (—1, 0), (0, 1), (1, 3) and (3, + o).

To determine the signs of y’ (or, respectively, y”) 1n each of the indicated
intervals, it is sufficient to determine the sign of 4’ (or y”) at some one point
of each of these intervals.
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It is convenient to tabulate the results of such an investigation (Table I),
calculating also the ordinates of the characteristic points of the graph of the
function. It will be noted that due to the oddness of the function y, it is
enough to calculate only for x=0; the left-hand half of the graph is con-
structed by the principle of odd symmetry.

Table 1
p 0 ©, 1) 1|, V3V 3=1.73[(V3,3) 3 |3 +w)
V3_,.
y 0 — + o0 4 3—5::1.37 + 1.5 -+
. non-
Yy - - exist - 0 + + +
" non-
Y B - exist + + + 0 -
i Function Function Function | pgint | Function
Con- p?)';m decreases, |pyccon-| decreases, Min. increases; g increases;
clu- | nfec- | &raph s Inuit | graph s point graph inflec- |, . gf&[’h
s10ns tion concave ! concave 1S (oncave tion is concave
down up up down

e) Using the results of the investigation, we construct the graph of the
function (Fig 33).

4_1900
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Example 2. Graph the function
Inx

X

Solution. a) The domain of definition of the function is 0 < x <+ .
b) There are no discontinuities in the domain of definition, but as we
approach the boundary point (x=0) of the domain of definition we have
limy=1lim Inx__ o
x>0 x>0 X

Hence, the straight line x=0 (ordinate axis) is a vertical asymptote.
c) We seek the right asymptote (there is no left asymptote, since x can-
not tend to — oo):

k= lim Y —q;

X>+® X

b= lim y=0.

X >+ ®

The right asymptote is the axis of abscissas: y=0.
d) We find the critical points; and have

, l—Inx
y=—pg—>
, 2lnx—3
!/=—},—";

¢’ and y" exist at all points of the domain of definition of the function and
y'=0 when Inx=1, that is, when x=e¢;
=0 when lnx:%, that is, when x=¢%2
We form a table, including the characteristic points (Table II). In addition
to the characteristic points it is useful to find the points of intersection of

Yy

1 lnz
="z
4 D
0 1 € ez X
Fig. 34

the curve with the coordinate axes. Putting y=0, we find x=1 (the point
of intersection of the curve with the axis of abscissas); the curve does not
intersect the axis of ordinates

e) Utilizing the results of investigation, we construct the graph of the
tunction (Fig. 34).
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Graph the following functions and determine for each function
fits domain of definition, discontinuities, extremal points, inter-
vals of increase and decrease, points of inflection of its graph,
the direction of concavity, and also the asymptotes.

916. y=x"—3x" 939. y=y/ x+1—}/ x—1.
017, y=t¥'==" 940. y=3/ (x+4°'—y —4*
' 9 941. y=y/ (x—2)* 4/ (x—4)}
918, y=(x—1) (x+2). 042. yz—‘/—:——;
019, y = B—=2(x+4) 8
WA y : 943, y=—o—.
(x*— 5)* X Vx’—‘l
920. y= . x
195 944, y=2—.
021, y=2242 VI
x4_f__3—l 945. Y= X
022, y=""3. ) V (x—2y
946. y=xe™”".
023, y="12 Y 2y
A 947. y=(a+-—)e“.
924, y=x*'+4+ = -
X 948' y=eax—x —14'
925. y=}F‘_3, 949. y=(2+ 1) e~ "
926. y 28 950. y=2|x|—x"
x4¥—4 951 _Inx
927. y—_‘—‘m' * y_ﬁ'
4x—12 XX
928. =(;T2)2 952. y= 2xln -
029, y=—. 953. y=r3-
954. y=(x+ 1)In*(x 4 1).
930. y= oz
* gz"(i—l4). 55- y=ln(x2—‘1)"i—;'2-?l,
X
931. y="=3 956. y—In Vx=+x-1—1
932. y=V x+Vi—x. 957. y=In(l +-e~%).
933. y=V8+x—V8—x. 958. y=1In (e—i——l).
934. y=xVx+ 3. 929. y=sinx+ cosx.
035. y=V ¥ 3% 960. y=sin x+ 232,
936, y— Y T—7 961. y=cosx—cos®x,

937. y=y/1—x. 962. y=sin’ :c + cos’ x.

038. y=2x+2—3/ (xr ). 963 V=g
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964. y=—sm—xn—. 976. y = arc cosh (x +i).
" X
sin <x+T) sinx

965. y = sinx-sin 2x. 071 y=ens. _

966. y = cos x-cos 2x. 978. y=earcsinV'x,

967. y=x+ sinx. . 979. y=earctanx

968. y=arcsin(1—)/¥). 98, y—Insinx.

9, y="7208 = (__1)

969. y Ve 981. y=Intan 79"

970. y=2x—tanx. 982. y=Inx—arc tanx.

971. y=xarctanx.
983. y=rcos x—In cos x.

1
972. y=xarctan - when x50 gg4

and y=0 when x=0. 98
973. y=x—2arccot x. 5

9 986. y=x~.
974. y=5-+arc tan x. 1

975. y=Insinx. 987. y=x*.

A good exercise is to graph the functions indicated in Exam-
ples 826-848.

Construct the graphs of the following functions represented
parametrically.

988. x=1*— 2t y=:1" 42t

989. x-—--a\os t{, y=a smt (a>0).

990. x=te', y=te!

991, x=(+{e !, y= ot + e~

992. x=a (sinht—t), y=a(cosht{—1) (a>0).

. y=arctan(Inx).
. y=arcsinln (x* +1).

Sec. 5. Differential of an Arc. Curvature
1°. Differential of an arc. The differential of an arc s of a plane curve

represented by an cquation in Cartesian coordinates x and y is expressed by
the formula

ds = Y (dx)* F (dy)%
here, if the equation of the curve is of the form

a) y=f(x), then ds = 1/l+(g%>2dx,
b) x=/,(y). then ds= ]/H(Z—;)z'iy;
c) x=9¢ (), y=9P (f), then ds= l/(g_;)’_'_(dy) dt;

VFirF? x~l/F' +F,,‘d,
)] 7T

d) F(x, y)=0, then ds=




