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Denoting by a the angle formed by the tangent (in the direction of

increasing arc of the curve s) with the positive ^-direction, we get

dx
cos a = -3- ,

ds

dy
sina -r .

ds

In polar coordinates,

Denoting by p the angle between the radius vector of the point of the

curve and the tangent to the curve at this point, we have

a dr
008 P = '

sin p /

2. Curvature of a curve. The curvature K of a curve at one of its

points M is the limit of the ratio of the angle between the positive direc-

tions of the tangents at the points M and N of the curve (angle of contin-

gence) to the length of the arc ^MN^\s when .V M (Fig. 35), that is,

K= iim
Au =^,

A s * o A S rfs
*

\\hore a is the angle between the positive directions of the tangent jt the

point M arid the .v-axis.

The radius of curvature R is the reciprocal of the absolute value of the

curvature, i. e.,

The circle f K = , where a is the radius of the circle) and the straight

line (/C= 0) are lines of constant curvature.
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We have the following formulas for computing the curvature in rectan-

gular coordinates (accurate to within the sign):

1) if the curve is given by an equation explicitly, y f(x), then

2) if the curve is given by an equation implicitly, F(x, y) 0, then

F F F
xx.

'
xy x

F
lx F'yy

F
'y

F'x F
v

3
/j

3) if the curve is represented by equations in parametric form, *=
/ \j) (/), then

*,'
y

f

,

^ x
"

y

where
dx dy

-

~~dt*
' ^ ~

In polar coordinates, when the curve is given by the equation
we have

r
z + 2r'

2
rr"

/(q)),

where

,
dr .

r = and
dcp

d"r
-

.

dtp
2

3. Circle of curvature. The circle of curvature (or osculating circle) of a

curve at the point M is the limiting position of a circle drawn through M
and two other points of the curve, P and Q, as P > M and Q v M.

The radius of the circle of curvature is equal to the radius of curvature,
and the centre of the circle of curvature (the centre of curvature) lies on the

normal to the curve drawn at the point M in the direction of concavity of

the curve.
The coordinates X and Y of the centre of curvature of the curve are

computed from the formulas

X=x- L
-

,, , - -jf-r
{j

.

The evolute of a curve is the locus of the centres of curvature of the

curve.
If in the formulas for determining the coordinates of the centre of curva-

ture we regard X and Y as the current coordinates of a point of the evo-

lute, then these formulas yield parametric equations of the evolute \vith

parameter x or y (or /, if the curve itself is represented by equations in

parametric form)
Example 1. Find the equation of the evolute of the parabola // xz

.
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Solution. X= 4*8
, Y--

1 + 6*2

Eliminating the parameter x, we find

the equation of the evolute in explicit form, Y o'+ ^lT")
The involute of a curve is a curve for which the given curve is an

evolute.

The normal MC of the involute P
2

is a tangent to the evolute P,; the

length of the arc CC
l

of the evolute is equal to the corresponding increment

in the radius of curvature CC, M,C, AfC;
that is why the involute P

2 is also called the

evolvent of the curve P, obtained by unwinding
a taut thread wound onto P, (Fig. 36). To each
evolute there corresponds an infinitude of invo-

lutes, which are related to different initial

lengths of thread.

4. Vertices of a curve. The vertex of a curve
is a point of the curve at which the curvature
has a maximum or a minimum. To determine
the vertices of a curve, we form the expression
of the curvature K and find its extremal points.
In place of the curvature K we can take the

radius of curvature R 7-7^ and seek its extremal
I
^

I

points if the computations are simpler in this case.

Example 2. Find the vertex of the catenary

Solution.

1

36

Since

y a cosh (a > 0).

// = sinh and (/"
= coshJ

a J
a a

it follows that tf =
X rf/? X

and, hence, /? = acosh 2
. We have -j- = sinh2 . Equating

x a dx a M 6
. ,

a cosh 2

a
J I") y

the derivative -j to zero, we get sinh 2
ax a

0, whence we find the sole

critical point *= Q Computing the second derivative and putting into

2 A:

,= cosh2
a a

= > 0. Therefore,
a

it the value x Q, we get -r-y-

*= is the minimum point of the radius of curvature (or of the maximum

of curvature) of the catenary. The vertex of the catenary f/
= acosh is,

thus, the point A (0, a).

Find the differential of the arc, and also the cosine and sine

of the angle formed, with the positive ^-direction, by the tangent
to each of the following curves:

993. *2 + */

2 = a2

(circle).

994. ~2+ ^-=l (ellipse).

995 y* = 2px (parabola).



Sec. 5]_Differential of an Arc. Curvature_105

996. x2 / 8
-f t/

2 / = a2 /'
(astroid).

997. y= acosh (catenary).

998. x= a(ts\nt)\ y= a(lcost) (cycloid).
999. x= acos*t, y = asm*t (astroid).
Find the differential of the arc, and also the cosine or sine

of the angle formed by the radius vector and the tangent to each
of the following curves:

1000. r^atp (spiral of Archimedes).

1001. r = (hyperbolic spiral).

1002. r =
asec*-|- (parabola).

1003. r = acos*- (cardioid).

1004. r=za.v (logarithmic spiral).
1005. r

a = a
2

cos2q) (lemniscate).

Compute the curvature of the given curves at the indicated

points:
1006. y = x* 4x* ISA'

2
at the coordinate origin.

1007. x* + xy + y* = 3 at the point (1, 1).

1008. + =1 at the vertices A (a, 0) and 5(0, b).

1009. * = /*, f/
= *' at the point (1, 1).

1010. r
2 = 2a

2

eos2q> at the vertices cp
= and <p

= n.

1011. At what point of the parabola t/

2 = 8x is the curvature

equal to 0.12S?
1012. Find the vertex of the curve y^-e*

1

.

Find the radii of curvature (at any point) of the given lines:

1013. y = x* (cubic parabola).

1014. 5+S =1 (ellipse).

1015. * = -!^.
1016. * = acos 8

/; y = as\n*t (astroid).
1017. A: = a(cosM / sin 0; y = a(s\nt /?osO involute of a

circle).

1018. r = aekv (logarithmic spiral).

1019. r- a(l -f-coscp) (cardioid).
1020. Find the least value of the radius of curvature of the

parabola y* = 2px.
1021. Prove that the radius of curvature of the catenary

y = acosh is equal to a segment of the normal.

Compute the coordinates of the centre of curvature of the

given curves at the indicated points:
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1022. xy=l at the point (1, 1).

1023. ay* = x* at the point (a, a).

Write the equations of the circles of curvature of the given
curves at the indicated points:

1024. y= x* Gjc+10 at the point (3, 1).

1025. y = e* at the point (0, 1).

Find the evolutes of the curves:

1026. y* = 2px (parabola).

1027. J +g=l (ellipse).

1028. Prove that the evolute of the cycloid

x~a(t sin/), y= a(l cost)

is a displaced cycloid.
1029. Prove that the evolute of the logarithmic spiral

r

is also a logarithmic spiral with the same pole.
1030. Show that the curve (the involute of a circle)

x = a (cos / + / sin /), #=-a(sin / /cos /)

is the involute of the circle ;c = acob/; //
= asm/.



Chapter IV

INDEFINITE INTEGRALS

Sec. 1. Direct Integration

1. Basic rules of integration.
1) If F' (A-)--- MA), then

where C is an arbitrary constant.

2) ^Af(x)dx=-A f f (x) dx, where A is a constant quantity.

3)
\ [ft U'H: f 2 ( v)l dv -

( fj (*)/* i f f2 O) dx.

4) If f f (x)dx-~F(\-) -f-C and /-cf (v), then

In particular,

r i

J
ax

a

2. Table of standard integrals.

II. \ =

III
f* dA' 1 \: 1 v:

. \ -r-: == arctan |-C = arc cot + C (a ^ 0).
J X s

-f- a
2 a a a ' '

,*r C dx I

IV \ -= ;
r
~-,T-

) A'
2 a*5 2a

dx a+v

V.

VI.

VII.

r dx

+ C (a yS- 0).

-f-C (a*Q).

(a^O).

(>0); fcxd* =
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VIII.
\
sinxdA;= cosx+ C.

IX. f cosxdx=sinx+ C.

X
COS2

XI. --= cotx+C.
J sin 2 x

'

XII
smx

XIII.
cosx

x
tan H-C = In

|
cosec x cot x |-f-C.

XIV. f sinhxdx=coshx-|-C.

XVL

XVIL

Example 1.

XV.

dx

f (ax
2 + bx+ c) dx= f

Applying the basic rules 1, 2, 3 and the formulas of integra-
tion, find the following integrals:

1031. 5dVd*. 1040.

1032-5(6^ + 8^3)^.

1 033. x (x -i a) (x 4 b) dx. _
r 1042 (V - V x)

,, v
1 034.

J (a + bx3

)* clx.
' U4^'

J j/51

-- dx '

1035. yZpxdx. 1043.

1036.

T
'~ n 1045 f

^x

1037.
J

(nx)
" dx.

'

} ^4+^
'

1046 '

1038.

1039. ^+ljc-/x-dx. 1047 '



Sec 1] Direct Integration_109

1048*. a) tan
2

*dx; 1049. a)

b) Jtanh
2
*d*. b) Jcoth'jtdx.

1050. $3Vdx.

3. Integration under the sign of the differential. Rule 4 considerably

expands the table of standard integrals: by virtue of this rule the table of

integrals holds true irrespective of whether the variable of integration is an

independent variable or a differentiate function.

Example 2.

2 2

where we put u 5* 2. We took advantage of Rule 4 and tabular integral 1.

xdx 1 f d(x
2
) 1

Examp.e 3.

We implied u jc
2

,
and use was made of Rule 4 and tabular integral V.

Example 4. ( x 2
e
xl} dx-^~ ( e*' d (jc

3

)
- i-e^ + C by virtue of Rule 4 and

tabular integral VII.

In examples 2, 3, and 4 we reduced the given integral to the following
form before making use of a tabular integral:

\ / (<P (*)) <p' (*) dx\ I (u) du
t
where a= (p (x).

This type of transformation is called integration under the differential sign.
Some common transformations of differentials, which were used in Exam-

ples 2 and 3, are:

a) dx=^d(ax-\ b) (a ^ 0); b) xdx= ^d(x
2
) and so on.

Using the basic rules and formulas of integration, find the following in-

tegrals:

,053.
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1140. f-^f-. 1143. [tanhxdx.
J sinh x J

H41. f-*_. 1144. (cothxdx.
J cosh x J

r* /f v

1142 \ .

J sinh x cosh x
'

Find the indefinite integrals:

1145. (x 1/5=1? dx. 1163. f-^-.
i v* i ]cos-

< 1 Ad I A \f *J @
46. J?=CT1

,,47. f^d,. "M
-j

1151.

1148. \xe-**dx.
1165 -

ftan/JC
1

1166.

djt
' x i ,-

jcdx

U50.
Jl_!d*. ,, 67 . JV^L
i -- <ioo l

sinx ~ cc^s A* *

i/^c' 1168.
\

dx.
J V e J sin A: -f- cos x

Jx + cos* I f
1
- 51"-^)

2

1169.
v v ^

sin SA:

1170.

J ^tan^-2

ff2 -|--^-
>

)-^-. I179'

,) ^ 2x*+l/ 2x*+l 1172.

1157. ^a
ilax cosxdx. 1173.

[

5 3<
.rfy.

7^Ti
dAt>

1174.
"

J
* + !'

f-i^=. M7.:. f
^ ^

to

fl
_ t ^

1160. Jlan'aArdx (<
1161.

jsin
!

-Jdx.
H76.

j -j^*

( !!!_!-. . ii77. f _
J K4-tan'x J sisinajtcosax'
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J l/T=3

Sec. 2. Integration by Substitution

1. Change of variable in an indefinite integral. Putting

where t is a new variable and cp is a continuously differentiable function, we
will have:

The attempt is made to choose the function q> in such a way that the right
side of (1) becomes more convenient for integration.

Example 1. Find

Solution. It is natural to put t = V~x 1, whence A- =/ 2
-}- 1 and dx = 2tdt.

Hencu,

Sometimes substitutions of the form

are used.

Suppose we succeeded in transforming the integrand f(x)dx to the form

f(x)dx=g(u)du t where u= q>(jc).
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If [g(u)du is known, that is,

then

Actually, we have already made use oi this method in Sec. 1,3.

Examples 2, 3, 4 (Sec. 1) may be solved as follows:

Example 2. u = 5# 2; cfw = 5c(x; dx -du.

1 d _ 1
'

, c_ 2-~ +

Example 3. u = x*; du 2xdx; xdx= -
.

Example 4. w = jc
s

; du = 3x2
dx\ x2 dx= .

-

2. Trigonometric substitutions. _
1) If an integral contains the radical ]fa

z x2
,
the usual thin^ is to put

~a sin /; whence

2) If an integral contains the radical V* 2 a2
,

we put xawct,
whence

/^x
2 a2= a tan ^.

3) If an integral contains the radical V'V+ a2
, we put*= atan/; whence

It should be noted that trigonometric substitutions do not always turn
out to be advantageous.

It is sometimes more convenient to make use of hyperbolic substitutions,
which are similar to trigonometric substitutions (see Example 1209).

For more details about trigonometric and hyperbolic substitutions, see

Sec. 9.

Example 5. Find

i
^

dx.
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Solution. Put xlant. Therefore, dx= r-r
,

cos2
/

f y~x*+l _ f V~ian
2

/ + 1 dt f sec t cos' i dt _
J 1?

*
J tan2

/ cos !
< J sin2 /

.-
cos 2

/

f
dt

f
si" 2

* 4- cos2 * M- ^
^/

,
f
1 cos/ _"~

J sin 2
/ cos /

~~

J sin
2 /-cos/

~
J cos / J sin 2

/

~~

= In
|
tan / + sec /

1

-J + C = In
|

tan / -{- V\ -j-tan
2

/
1

tan<

1191. Applying the indicated substitutions, find the following

integrals:

c)

f
e) \

J

COS A' d*

Applying suitable substitutions, find the following integrals:

1192. S*(2x+5)"djc.
>97. n- csinA )"

1193. ('

1 +
*..d*. 1198.

J l+^A-

1194. f- J!
JxK2t+l ,, 99<

1195. r
**

.

Applying trigonometric substitutions, find the following in-

tegrals:

,201. ('-=*. 1203.
f iZEl'dx.

J K l *' J ^

,202. -=. 1204*.
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1205. (f^+idx 1206*. f ff__
J x J x2

y 4 x2

1207.

1208. Evaluate the integral

dxr

J /*(!-*)

by means of the substitution x=sin 2
/.

1209. Find

by applying the hyperbolic substitution x = as\n\\t.

Solution. We have: ]Aa
2 + x2 = ]/~a

2

Whence

\ y az
-\-x

2 dx=
^
a cosh t-a cosh f ctf =

Solution. We have: ]Aa
2 + x2 = ]/~a

2+ a2 suih 2 /=a cosh ^ and dx=a cosh /d/.
Whence

~~~2~

Since

__ x~
a

and

we finally get

where C1=^C In a is a new arbitrary constant.

1210. Find

C

}

putting x = a cosh/.

Sec. 3. Integration by Parts

on

\ udv = uv ( vdu.

A formula for integration by parts. If H = <p(*) and u = i|)(*)are differen-
tiable functions, then
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Example 1. Find

\ x In xdx.

dx x*
Putting u In*, dv xdx

%
we have da

, v
~~9

Whence

2 dx x*

Sometimes, to reduce a given integral to tabular form, one has to apply the
fcrmula of integration by parts several times. In certain cases, integration

by parts yields an equation from which the desired integral is determined.

Example 2. Find

\ e* cos x dx.

We have

V e* cos x dx= \ e
xd (sin x) e* sin x \ e

x
sin AT dx e

x
sin x +

+ \ e
x d (cos x) e* sin x -\- e

x cos x \ e* cos x dx.

Hence,

\ e* cos x dx e
x sm .v-j-e^cos x V e

x cos x dx,

whence

cos v dx --~ (sin x -f- cos .v) -f C.

Applying the formula of integration by parts, find the following
integrals:

1211.
^
\nxdx. 1221. { x sin x cos x d\

1212.
Jarclanjcdx.

1222*
$

(jt

a

+5x+6)cos

1213.
Jarcsin

A-rfjc. 1223.
^
x* \nxdx.

1214.
Jjcsiiucr/.v.

1224.
Jln'xd*.

1215.
Jjccos3A'Jx.

1225. (^djc.

1216. Urfjc. 1226. f^d*.J
J K A

1217.
Jx-2-*rfx. 1227.

Jjcarctanjcdjc.

1218**. JjV'd*. 1228.
Jjcarcsmxdjc.

1219*. (x
2 ^2A'+ 5)^*dA:. 1229. \n (x + V T~x*) dx.

1220*. '- 1230 '
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1231 -

JisFr**-
1234 '

\
eax *mb* dx -

1232.
Je*sinxdx.

'235.
$sin(lnx)dx.

1233.
$3*cosjtdx.

Applying various methods, find the following integrals:

1236. (x*e~*
2

dx. 1246.
J V\-x

1237. \e
v
*dx. 1247. f jttan

2
2*d;t.

1238. (x
2 -2x + 3)\nxdx. 1248.

1239. ^x\n~dx. 1249.
J
cos

2

(In x)dx.

1240. f^dx. 1250**,

1241. fllL^d*. 1251*.
:

2
-| a 2

)
2

'

1242. f jc
2
arctan3jcdA:. 1252*.

1243. { x (arc tan A:)

2
dx. 1253*. ^ 1//1 -4- x z

dx.
j j

1 244. ( (arc sin jc)

2
dx. \ 254*. f -4^- .

*n/ir fare sin x ,

1245. \ 5 ^.
J ^2

Sec. 4. Standard Integrals Containing a Quadratic Trinomial

1. Integrals of the form

f mx+ n .

\ 2-7-7 7dx.
J

The principal calculation procedure is to reduce the quadratic trinomial to

the form

axz + bx+ c= a(x-}-k)
z
-{-l, (1)

where k and / are constants. To perform the transformations in (1), it is

best to take the perfect square out of the quadratic trinomial. The follo-

wing substitution may also be used:

If m=0, then, reducing the quadratic trinomial to the form (1), we get
the tabular integrals III or IV (see Table).
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Example 1.

dx _ 1

(-*)
H- -7

-
g \2 Qi -o2 5 2

.

=-o*~7= arc tan

(-TJ+S '*?
"S?+c.

4

2

If m&Q, then from the numerator we can take the derivative
out of the quadratic trinomial

f -+ .

J a.v
2 + ^

and thus we arrive at the integral discussed above.

Example 2.

f
->

, f" -
J ;5=^ni

d -v^J
-

A'-x-i

IV 5 2x-l +

2. Integrals of the form I d*. The methods of calculation

are similar to those analyzed above. The integral is finally reduced to tabu-

lar integral V, if a > 0, and VI, if a < 0.

Example 3.

dx 1 f* dx 1 4jt 3

Example 4.

r ^+ 3 ^^ f

J yV+2x+ 2
*"

2
J ^ ^ + 2x4-2

^JC
. 2^
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3. Integrals of the form f
*

= . By means of the in-

J (mx+ n) V^ax'+ bx+ c

verse substitution

i = /

mx+n
these integrals are reduced to integrals of the form 2.

Example 5. Find
dx

Solution. We put

whence

4. Integrals of the form \ ]T ax*-\-bx+ cdv. By taking the perfect square

out of the quadratic trinomial, the given integral is reduced to one of the

following two basic integrals (sec examples 1252 and 1253):

1) (' V a* A'
2 dx=4 fa^x* +^ arc sin + C;

J ^ 2 c/

(a > 0);

2)
J
Vl?

Example 6.

sin

Find the following integrals:

1256. ,cS P xdx
''00'

J ^7^+
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i o Kn i j - < < c r\ I
dx

\o\J. \
---

1270.

v2 dy f*

1 O *7 1 t

*~ J

1272.
I V~2 {-3* 2*2

'

r d* 1273.
J
/"*-

J ' X X
1 1-7/1 f l/"o

,H4. f~=.J V % xdx

1265.
1 V>1J 5

^

1266. T -
x
."~ - dx.

1277
t' g

x
cJJt

1267. [ -,-^ dK. 197n (

sin x dA

J /5,2-2, f-1
1278

J T^PTTT^TlT-
1268. 1'-^=.

, 279
i' Injfdi

JYKI -v
2

J x ^ 1
_ ilnA._ !n 2

K

m

Sec. 5. Integration of Rational Functions

t. The method of undetermined coefficients. Integration of a rational

function, after taking out the whole part, reduces to integration of the proper
rational fraction

where P (x) and Q (A-) are integral polynomials, and the degree of the nume-
rator P (x) is lower than that of the denominator Q (A-).

If

Q(jr) = (* a)*. . .(A'-/)\

where a, . . ., / are real distinct roots of the polynomial Q (x), and a, ....
K are natural numbers (root multiplicities), then decomposition of (1) into

partial fractions is justified:

^
To calculate the undetermined coefficients A lt A 2t ..., both sides of the

identity (2) are reduced to an integral form, and then the coefficients of

like powers of the variable x are equated (llrst method). These coeffi-

cients may likewise be determined by putting [in equation (2) or in an equi-
valent equation] x equal to suitably chosen numbers (second method).
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Example 1. Find

xdx

(*-!)(*+ 1)
2 "

Solution. We have:

Whence
t (x\). (3)

a) F/rsf method of determining the coefficients. We rewrite identity (3) in

the form x^(A-{- B^ x2
-{-(2A-{- B 2)x-\-(A B

l
B 2 ) Equating the coeffici-

ents of identical powers of x
t
we get:

Whence

, =i ; B
,
= _i

: ,,4.
b) Second method of determining the coefficients. Putting x=\ in identity

<3), we will have:

1=4-4, i.e., 4 = '/4 .

Putting x 1, we get:

1 =
2 -2, i.e., B 2

= l

/2 .

Further, putting *= 0, we will have:

Hence,

T \ v 1

~~
T \ x* J A 1 t J A

4-1 f

AT 1

Example 2. Find

Solution. We have:

x(x I)
2
""

x x 1(JC 1)*

tind

1 = A (* I)
2 + Bx (x 1) + Cx. (4)

When solving this example it is advisable to combine the two methods
of determining coefficients. Applying the second method, we put *= in

identity (4). We get 1=4. Then, putting jc=l, we get 1=C. Further, app-
lying the first method, we equate the coefficients of x2

in identity (4), and
get-

= 4 + 0, i.e., B = 1.

Hence,
4 = 1. fl-= l, and C=l.
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Consequently,

f dx f* dx
, p dx

, , , , , ,
1

,
~/=

\ \ 7+ \ ;
r-

2
= ln JC In JC 1 r-f C.

J X J jc1
'

J (*l) 2 ' ' ' '

A- 1

If the polynomial Q (x) has complex roots a ib of multiplicity k, then

partial fractions of the form

will enter into the expansion (2). Here,

(5)

and A
lt

B lt .., Ak ,
Bk are undetermined coeflicients which are determined

by the methods given above For k~\, the fraction (5) is integrated direct-

ly; for k>\, use is made of the reduction method; here, it is first advi-

sable to represent the quadratic trinomial xz + px~{-q in the form
( x-\-~ \

-f-

q ~] and make the substitution A--J-
= z.

Example 3. Find

Solution. Since
A
2

-| 4x
i
5-

then, putting x -\-2---z, wo got

r==
r *\._ dz=z r _j_^ r Hit i!ini

2

j2^

jrc tan ? - - - -- -- arc tan z=

2. The Ostrogradsky method. If Q (A) has multiple roots, then

P(x) A'(v) p r (.Y) A"-
(6)

where Q, (A:) is the greatest common divisor of the polynomial Q (x) and its

derivative Q' (A-);

X (A-) and Y (x) are polynomials with undetermined coefficients, whose degrees
arc, respectively, less by unity than those of Q, (A-) and Q 2 (x).

The undetermined coeflicients of the polynomials X (x) and Y (x) are

computed by differentiating the identity (6).

Example 4. Find
dx

C
dx

} U'-
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Solution.
dx Axz + Bx+ C

. ?Dx2
-\-Ex+ F .

ax

Differentiating this identity, we get

Dxz+Ex

\=(2Ax-\-B)(x* 1) 3x*(Ax*+ Bx+ C) + (Dx*+ Ex+ F)(x* i).

Equating the coefficients of the respective degrees of x, we will have:

D = 0; E 4 = 0; F 2fl--=0; D + 3C= 0; + 24 = 0; B + F== 1;

whence

and, consequently,
C

(x
9

5= ~; C= 0; D= 0; = 0; F= -4O O

C ^ _ 1 x__ 2 P dx

1)
2
~

3^8 -l 3 J x8
1

To compute the integral on the right of (7), we decompose the fraction

-^
r into partial fractions:

1

x8

lhat is,

1 = L (x
2+ A:+ 1) + MX (x 1) + N (A: 1). (8)

Putting #=1, we get L=-.
<j

Equating the coefficients of identical degrees of x on the right and left

,of (8), we find .

or

Therefore,

r dx _ i p dx
\_

r

\yS 1 ^\V 1 Q\
J * i o J x 1 J j

=ll 11-1~~
3

]X '

6

and

^^^^^(J^\\ + ^ ln \x

r^ l+^^ mian^^+C '

Find the following integrals:

1280 ' ' 1282 '
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1284 C
5*' + 2

dx 12Q1 f
dx

' **
J *- 5* + 4*

* ' 29J -

j (Ii_4jt+ 3)<J

1285 c dx
'

J *(* + !)*

-~
-r-g^gdx. 1296. C

4 ,

d*
.--.

I
^"* "

C/
^

I
*

I
'

C* R V2 ( A v t Q rt J .

1288.

-290. .Tjpfc 1299.

l291 ' J^Sf*. .300.

'292. J^d*.

Applying Ostrogradsky's method, find the following integrals:

Applying different procedures, find the integrals:

l306 '

I3 7' rf*- l312 '

l309-

Sec. 6. Intagrating Certain Irrational Functions

1. Integrals of the f.rm

i

/? <s a rational function and p lt qv p a , q z are whole numbers.
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Integrals of form (1) are found by the substitution

where n is the least common multiple of the numbers </,, q 2 , ...

Example 1. Find

dx
I

a*

Solution. The substitution 2,x 1 2
4 leads to an integral of the form

f ____dx_ f 2z'dz =2 r^i
J V"5jc=T-- J/2?=l""j

z
2-^

J
2" 1

= 2

= (1+ /23T-i)
2 +

Find the integrals:

13 15. f-^^djc. 1321. ('J^Zdjc.
J /*-! J .v-f-2

r A dx c (jv

1316. 7,7==. 1322. --^7=
J (o -A) V

A
1- x

. ('-.----^.---
.

J /v+l I- )/(v+l)
1U7. -.---- .---

. 1323.
v+1

1324.

1325.

,320.

where Pn (x) is a polynomial of degree n
Put

dx

2. Integrals of the form

r
"

- dx, (2)r
ai* + t,x+ c

where Q n _i(x) is a polynomial of degree (n 1) with undetermined coeffi-

cients and A, is a number.
The coefficients of the polynomial Q n -i(x) and the number K are found

by differentiating identity (3).
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Example 2.

Whence

Multiplying by V^*
2+ 4 and equating the coefficients of identical degrees oi

A-, we obtain

= -

; D-0; X=_

Hence,

-

3. Integrals of the form

i;

dx

a)
n
V ax

They are reduced to integrals of the form (2) by the substitution:

A a

Find the integrals:

1326 . j__^_.
1329.

1327. (-f^dx. 1330.

fv-^Vl-i

v

-^^rfjc. 1331.
FA'

2 X+l

4. Integrals of the binomial differentials

x t (5)

where m, n and p are rational numbers.

Chebyshev's conditions. The integral (5) can be expressed in terms of a

finite combination of elementary functions only in the following three cases:

1) if p is a whole number;

2) if

"

is a whole number. Here, we make the substitution a+ bxn =
n

= z
s

t
where s is the denominator of the fraction p;

3) if

m
+p is a whole number. Here, use is made of the substitution
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Example 3. Find

-1+1
, x. 2

T
Solution. Here, m=-^;n= -r ;p= -^;

=-:
- =2. Hence,

we have here Case 2 integrability.
The substitution

yields *= (z
3

I)
4

; dx=\2z* (z* \Y dz Therefore,

= 12 f
(2 e ),fe=J2ef_

where e y 1 + J/T .

Find the integrals:

1332.
* z

~ T 1335 '

1333. r dx 133G

,334. f_-
*

. 337.{

0. f ^-T .

J .v:

2
(2 + JC

3
)

3

i'
, r*

J
^3

y 1+

where m and n are integers.

1) If m^2/j+l is an odd positive number, then we put

, n \
s

'

l(]Zk x cos" xd (cos ^) \ ( 1 cos2
x)

k cos" xd (cos A:).

We do the same if n is an odd positive number.

Example 1.

( sin10 x cos8* dx= f sin10 x (1 sin
2
x) d (sin *)=

sin
11 x sin

13
.v

Sec. 7. Integrating Trigonometric Functions

1. Integrals of the form

: 'm.. 0)



Sec. 7]_Integrating Trigonometric Functions__129

2) If m and n are even positive numbers, then the integrand (I) is trans-

formed by means of the formulas

sin
2 *= y (1 cos 2*), cos2 *= y (1 + cos 2*),

sin JCGOS x= sin 2*.

Example 2. f cos 2 3x sin
4 3* dx= f (cos 3* sin 3*)

2
sin

2 3x dx=

p sin
2 6x1 cos 6* , 1 f

'

, , Zc . 2C fi
v .= \ ----- dx= \ (sin

2
6A: sin

2 6x cos o^) ax=

1 f / 1 cos 12* . , c c \ ,=
3- \
-

n
-= sin

2
GA: cos 6^ dx=

^> J \ ^ /

x sin 12AC

3) If m= [i
and n= v are integral negative numbers of identical

parity, then

_ C

J

dx

cosv

In particular, the following integrals reduce to this case:

Example 3. f -^-= C sec 2 xd (tan *)= f (l+tan*x) d (tan x)
J COS X J J

'*+ C.

_1 r

= tan x-p--=- tan 8
jc+ C.

o

""- -

tan 2 ~

5-1900
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4) Integrals of the form f tanw xdx (or V cotw xdx), where m is an in-

tegral positive number, are evaluated by the formula

(or, respectively, cot* x= cosec* x 1).

Example 5. \ tan*xdx= V tan2 x (sec*x 1) dx=-^-^
\ tan*xdx=

tan 1 x P. . tv . tan* x ,
, ,

~
= =

\ (sec*x l)dx= -5
tanx+x+C.

5 J 3

5) In the general case, integrals 7m>n of the form (1) are evaluated by
means of reduction formulas that are usually derived by integration by parts.

Example 6. \ = =
\

J cos* x J cos

sin A; dx

sin x

Find the integrals:

1338. Jcos'xdx.

1339. Jsin'xdx.

1 340.
J

sin
2 x cos

8
x dx.

C x x
1341. \

sin
8

-jr cos
5

-~- dx.
J * *

1342.

1343.

1344.
^
sm*xcos*xdx.

1 345.
J
sin

1
A: cos

4 x dx.

1346. Jcos'Sxdx.

-

sin* x

COS' X

1 1 C cos x .
, f

2^^"j c-^ cos x

1352. {;
J

sin
-2

COS'T

1353.

1354.
J

1355. JsecMxdx.

1356. Jtan
!
5jcdA:.

1357.
jjcot'*d*.

1358.

1359.

1360.

1362.
J sin'xi/cosxdx.

1363. f .
dx

J V sin x cos* *

1364. f-==.
J l^tan*
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2. Integrals of the form V sin mx cos nxdx, \ sin rnx sin nx dx and

V cos mx cos nx dx. In these cases the following formulas are used;

1) sin mx cos nx= -~
[sin (m+ n) x+ sin (m n) x] ;

2) sin mx sin nx=
-^ [cos (m n) x cos(m + n) x]\

3) cosm*cos ^^=
-9- [

c s (m n)*-fcos (m-f/i) x].

Example 7. I sin 9* sin xdx= \
-^ [cos 8* cos lOjt] dx=*

Find the integrals:

1365.
^
sin 3jc cosSxdx. 1369.

J cos(aA: f

1366.
J
sin 10* sin 15 A: d*. 1370.

$
sin a>/ sin (co/ -f-cp) dt.

1367. f cos ~ cos
^-

djc, 1371.
^
cos x cos* 3x dx .

1368. f sin
|-

sin ~ djc. 1372.
J
sin x sin 2* sin 3* dx.

3. Integrals of the form

f /? (sin *, cos x) dx, (2)

where R is a rational function.

1) By means of substitution

whence
2*

. x
tan t,

integrals of form (2) are reduced to integrals of rational functions by the

new variable t.

Example 8. Find

f_*E_ /.

J 1 + sin x+ cos x

Solution. Putting tan -pr^*' we wil1 have

f*

J
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2) If we have the identity

R( sin*, cos*) s/? (sin*, cos*),

Ihen we can use the substitution tan *= / to reduce the integral (2) to a

rational form.

Here,

sin jg=
t
COS*= ,-

and

*=arc tan/, dx .
2

.

Example 9. Find

Jnn-'- <3>

Solution. Putting
t
2 dt

tan*= f, sin
2 * =

:j ^,
dx=-jz

we will have

dt p dt = 1 r

* i

= -^=arctan (/ /" 2~) + C= -7= arc tan (/T tan *) + C.

K 2 F 2

We note that the integral (3) is evaluated faster if the numerator and
denominator of the fraction are first divided by cos 2 *.

In individual cases, it is useful to apply artificial procedures (see, for

example, 1379).

Find the integrals:

dx
1373 '

J 3 + 5*cos*
' 1382*'

J 3 sin 2 * + 5 cos 2 *
'

1374. C^ *!.
. 1383*. f

**

J sin *+ cos * J sin2 * -|- 3sin *cos * cos 2 *
'

cos* , iooyi* P dx

5sln*cos*
'1384*-

JiHiJT
10 or P s in X ,

1 385. \ T. r-. dx.
J (1 cos*)

3

1386.
J.

Sin2x <*-

100T P COS ^ -

1387. jj p-j-^-rfx

1388 '

Is.n *-6
S

sin*+ 5
^

1389*.^sin*) (3 sin*)
'

mi-. \ T^^. I39
o-.j |;;;;;i::;>.
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Sec. 8. Integration of Hyperbolic Functions

Integration of hyperbolic functions is completely analogous to the inte-

gration of trigonometric functions.

The following basic formulas should be remembered:

1) cosh 2 X sinh 2 *=l;

2) sinh 2 *= ~ (cosh 2* 1);

3) cosh 2 x= Y (cosh 2x+ 1);

4) sinh x cosh x= ~ sinh 2x.

Example 1. Find

V cosh 2 *djt.

Solution. We have

f cosh 2 x djc-=r~(cosh 2x+ \)dx = jsinh
2x + ^

Example 2. Find

\ cosh3 ****.

Solution. We have

( cosh 8 xcU= f cosh 2 xd (sinh x)=
J

(l + sinh 2
Jc)d(sinhA:) =

. ,
,= smh x-\

Find the integrals:

1391. Jsinh'jtd*.
1397.

1392. ^cosh'xdx. 1398.

1393.

1394. sinh'* cosh*

1396 .
C

^
. 1402.

J sinh 2
A: cosh 2

A;

Sec. 9. Using Trigonometric and Hyperbolio Substitutions for Finding

Integrals of the Form

(1)

R is a rational function.
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Transfor
of squares, t

of integrals:

Transforming the quadratic trinomial ax*+ bx-\-c into a sum or difference

of squares, the integral (1) becomes reducible to one of the following types

2) R (z, m* + z*) dz\

3) R (z, Vz2 mz
) dz.

The latter integrals are, respectively, taken by means of substitutions:

1) 2= msin/ or z= m tanh /,

2) 2= mtan/ or 2= msinh/,
3) 2= msec/ or z= m cosh/.

Example 1. Find

dx

(x+\Y
Solution. We have

==/.

Putting *+l = tan2, we then have dx= sec*zdz and

dx f sec2 zdz f cos 2 .= \ - = x ~ dz=
tan 2

zsec2~"J

Example 2. Find

Solution. We have

Putting
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we finally have

Find the integrals:

1403. S/3-2jt-x'd*. 1409.
J W-6*-7d*.

1404.
"

1410.

1405.

1406.

Sec. 10. Integration of Various Transcendental Functions

Find the integrals:

1415.
J (*

2 + I)
2
e
2x

dx.

1416. $*
2
cos

2
SJCC/A;.

1417.
]
x s\nxcos2xdx.

1418. $e
2
*sin

2
jcdjt.

1419.
\^e

x smxsmSxdx.

1420. ^ A'e
x
cos x dx.

1421.

1422. (*-/=
J ^

1423. f^lnj^djc.
J I *

1424.
J
In

1

(x + /FT?) djc.

1425.
J

jc arc cos (5jc 5

1426. ? smxsinhxdx.

Sec. 11. Using Reduction Formulas

Derive the reduction formulas for the following integrals:

1427.
/..Jj-^,,;

find /. and
/,.

1428. / =
$ sln"xdje; find /4 and

/,.
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1429. /w
=
J^h;;

find I* and 7
4-

1430. 7n= (xn
e~*dx\ find / 10 .

Sec. 12. Miscellaneous Examples on Integration

dx

J
x 5

*'-2*+2
dx

1433. P T dx.

J 2

dx

dx

dx

P dx
'

J (x*+ 2)
i '

r dx

Jx-2A' + l

C__^L_

'

J

1442.
J

1443.
-1

1444.

1447.
P y2

j^===d.

1448. f
xdx

JO+jt1
) KI-J

1449. C ..

xdx

j y^i 2^j x

1450. r
^ +1

t
dx

d-v
'

1452.

1453.

f-7^y l/^v2 -
t/ A r *

1455.

dx

1457.
fJ * VT^X*

'

,458.

f
5jt

dx

1460.

1461 - IHB^T^

1462.
'-^- sin' A;

J/ (Jl
+
a!+i)'

ax
1463. f^

1446. r
dA; ^ ^COS'

1464. \ cosec'SxdA;.

1465.
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1466.

M67.J.-(f,4
f* d)c

!468 '

J 2sinx+ 3cosx-5

l469 -

J 2-+w-*-
1470. ]>

dx

.471.
j

1472.
J

d.v

sin jc sin 2x
"

dx

1474.

j-

f
<

JV?
aX

+ sin* a*

1476.
J

A: sin
2
x dx.

1477. ^*V'djt.

1478. Jxe^djc.

1479.
J
x' \nYT=xdx.

1480. I >- dv
J Y i .j-^z

r* y *^i*

1481. \ sin* -s- cos
"2"^*.

2>
J (sin x+ cos x)*'

1483. C-

1 484. sinh ^ cosh A: dx,

fsinh^l-A
1485

J f X

f."
,)sinh'*"

A -

1488. C_^_,.
J e2

* 2e*

1489.

rfx.
i

1491. CJiLdx.

1492. J(x
2

1) 10~
!
*cfx.

1493. J/?Tirfx.
/ /\ > ( src tdn x *

1494. \ 1 dx.

1495. (Varc
sinyd.v.

1496.
J cos(lnx)dA:.

1497.
J (x

1

3x) sin 5* rfjc.

1498. Jxarctan(2x+3)dx.

1499. fare sinV^ dx.

1500.



Chapter V

DEFINITE INTEGRALS

Sec. 1. The Definite Integral as the Limit of a Sum

1. Integral sum. Let a function f (x) be defined on an interval

and a=xc <Xt < . . . < xn = b is an arbitrary partition of this interval into
n subintervals (Fig. 37). A sum of the form

(1)

where

/= 0, 1, 2, ... (n 1),

is called the integral sum of the function f (x) on [a, b]. Geometrically, S,,
is the algebraic area of a step-like figure (see Fig. 37).

10

Fig. 37 Fig. 38

2. The definite integral. The limit of the sum Snt provided that the
number of subdivisions n tends to infinity, and the largest of them, Ax/,
to zero, is called the definite integral of the function f (x) within the limits
from x=a to *= &; that is,

max A*j -> o
^

(2)
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If the function / (x) is continuous on [a, b], it is integrable on [a, b]\ i.e.,

the limit of (2) exists and is independent of the mode of partition of the
interval of integration [a, b] into subintervals and is independent of the
choice of points /

in these subintervals. Geometrically, the definite integral

(2) is the algebraic sum of the areas of the figures that make up the curvilin-

ear trapezoid aABb, in which the areas of the parts located above the #-axis
are plus, those below the jc-axis, minus (Fig. 37).

The definitions of integral sum and definite integral are naturally gen-
eralized to the case of an interval [a, b], where a > b.

Example 1. Form the integral sum Sn for the function

on the interval [1,10] by dividing the interval into n equal parts and choos-

ing points |/ that coincide with the left end-points of the subintervals

[xit
xi+l ]. What is the lim Sn

Solution. Here, Ax. =

equal to?
n -+ CO

101 9 . t= and c/ = J

n n
-. Whence

Hence (Fig. 38),

lim Sn -58-L.
n ->> oo 2

Example 2. Find the area bounded by an arc of the parabola
jc-axis, and the ordinates *= 0, and x= a (a > 0).

Solution. Partition the base a into n equal y

= x*
t
the

parts =
. Choosing the value of the func-

tion at the beginning of each subinterval, we will

have

The areas of the rectangles are obtained by mul-

tiplying each yk by the base A*= (Fig. 39).

Summing, we get the area of the step-like figure Fig. 39

Using the formula for the sum of the squares of integers,

2> n(n+\)(2n+\)
6
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we find

g'n(n-l)(2n-l)S =
6H*

'

and, passing 'to the limit, we obtain

S- lim Sn= lim
>(-D(2-l) = al

>

n -* w n -* co 6n

Evaluate the following definite integrals, regarding them as the

limits of appropriate integral sums:
b i

1501. dx. 1503. x*dx.

a -2
T 10

1502. J(0 t +g*)<tt, 1504. J2*dx.

S

and g are constant. 1505*.
j
x8

dx.

i

1506*. Find the area of a curvilinear trapezoid bounded by
the hyperbola

by two ordinates: x= a and x= b (0<a<&), and the x-axis.

1507*. Find
X

= sintdt.

Sec. 2. Evaluating Definite Integrals by Means of Indefinite Integrals

1. A definite integral with variable upper limit. If a function f (t) is

continuous on an interval [a, b], then the function

a

is the aritiderivative of the function f (x)\ that is,

F' (x) = f (x) for a<*<6.

2. The Newton-Leibniz formula. If F' (*) = /(*) th^n

o
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The antiderivative F (x) is computed by finding the indefinite integral

Example 1. Find the integral

Find

Find the derivatives of the following functions:
X

\={\ntdt (

1510. f(jc)=Td/. 1512. /

*

1513. Find the points of the extremum of the function

X

y = j!lild/
in the region *>0.

Applying the Newton-Leibniz formula, find the integrals:
1 X

1514. l^~- 1516.
J
Jdt.

~*
- 1 X

1515. f ^-. 1517. J*cos/<#.
-.

* '

Using definite integrals, find the limits of the sums:

1520. lim
n-
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Evaluate the integrals:
A

.
J(jt*

2* + 3)d*.

1522.

1523.

1524. JK* 2d*.
2

*
]'

JF
1

l

***

f dx

JF=3F

1831.

.L
4

1532. sec
2
a da.

8

P dx

I

Jl

4

1536. cos* a da.

Jl

2

1537. sin'cpdcp.

1

1539.

1540.

Jl

4

71

4~

iL
8

1541.

1543. \ coshA:dA;.
j

Ins
f* rfjt

*'

J cosh5!'
In

.
J
sinh*xdjc.
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Sec. 3. Improper Integrals

1. Integrals of unbounded functions. If a function f (x) is not bounded
in any neighbourhood of a point c of an interval [a, b] and is continuous
for a<*<c and c<x<>b t then by definition we put

b C-B b

(f(x)dx= lim f(x)dx + lim C f(x)dx. (1)

a
J C ^a e -*%+e

If the limits' on the right side of (1) exist and are finite, the improper inte-

gral is called convergent, otherwise it is divergent. When c= a or c= b, thj
definition is correspondingly simplified.

If there is a continuous function F (x) on [a, b] such that F'(x) = f(x)
when x * c (generalized antiderivative), then

F(a). (2)

If |/(*)|<F(x) when a<*<6 and f F(*)dx converges, then the in-

a

tegral (1) also converges (comparison test).

and lim f (x) \
c x

\

m ^A oo, A ^ 0, i. e., f(x)~ ^
X-+C \

C *
I

when x-+ c, then 1) for m< 1 the integral (1) converges, 2) for m^>l the

integral (1) diverges.
2. Integrals with infinite limits. If the function / (x) is continuous when
< oo, then we assume

\f(x)dx= lim \f(x)dx (3)
J b -> oo J

and depending on whether there is a finite limit or not on the right of (3),

the respective integral is called convergent or divergent.

Similarly,

b oo b

f(x)dx= lim (f(x)dx and f f(x)dx= lim \f(x)dx.
a -^ oo J ) a-> oo Ja -^ oo

a

I' I/WK^W and the integral [p(x)dx converges, then the infe-

a

gral (3) converges as well.

If /W^rO and lim f (x) xm = Ajt<x> t A^Q, i.e., /(x)~-4 when

oo, then 1) for m > 1 the integral (3) converges, 2) for m<l the inte-

gral (3) diverges.
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Example 1.

f
&_ lim "f"*+ M f 4?= lim (I-lU lim (l-l

J x2
e -K> J *2 e-*oJ* e->oVe / e-*oV e

-i e

and the integral diverges.

Example 2.

QO 6

= lim (*rT^2= lim (arc tan 6 arc tan ())
= .

ft-oo J 1+^2
&->< 2

Example 3. Test the convergence of the probability integral

(4)
*r

Solution. We put

00 1 00

C e~ x
* dx= C <r*2

dv+ C e~ x*
dx.

1

The first of the two integrals on the right is not an improper integral, while
the second one converges, since e~x2 <e~* when x^\ and

dx= lim ( e~ b+ e~ l)=e~ l '

t

hence, the integral (4) converges.

Example 4. Test the following integral for convergence:

w

r
^^

j yJ?

Solution. When
'

x -++&>, we have

Since the integral

converges, our integral (5) likewise converges.
Example 5. Test for convergence the elliptic integral

dx
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Solution. The point of discontinuity of the integrand is x=l. Applying
the Lagrange formula we get

where *<*,<!. Hence, for *-+ I we have

1 1 / 1 V
/T ^ 2 \\-xj

'

Since the integral

ff
i v

nr^y

1

dx

converges, the given integral (6) converges as well.

Evaluate the improper integrals (or establish their divergence):

xlnx
a

P AY f1

1552. -^. 1560. I

i a

*L
oo a

1553. J. 1561. Jcotjcdx
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00

1562. \e-
kx dx (*>0). 1565.

GO

f arc tan*^- d*- 1566 -

1564.

Test the convergence of the following integrals:

100 1

1567. f 5 .- **..,_- . 1571. C ./* ..

j)
/*+2 */*+* J ^/l-jc

1570.

1574*. Prove that the Euler integral of the fiist kind (beta-

function)

B(P, q)=*

converges when p>0 and q>0.
1575*. Prove that the Euler integral of the second kind (gam-

ma-function)

converges for p>Q.

Sec. 4. Change of Variable in a Definite Integral

If a function f (x) is continuous over a<x<b and *=-q>(0 It a function
continuous together with its derivative cp' (t) over a<^<6, where a=*9(a)
and &=cp(P), and /[<p(01 is defined and continuous on the intervtl
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then

Example 1. Find

Solution. We put

x* V~a*x*dx (a > 0).

asin t\

dt.

Then ? = arc sin and, consequently, we can take a= arcsinO= 0,

P= arc sin l =y . Therefore, we shall have

IL
a 2

C x2 VV x2

dx=\ a2
sin

2
1 J/~a

2 a2 sin2
1 a cos t dt

jl JL
2 Z

= a4 f sin
2

/ cos2
/ d/ =

-^-
f sin

2
2/ d/ =

-^-
C (1

IL
t

Jtfl

1576. Can the substitution A:= COS/ be made in the integral

Transform the following definite integrals by means of the

indicated substitutions:

8

1577.

1578

i

. ly=,

. f(x)dx, x= arc tan/.

1581. For the integral
b
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indicate an integral linear substitution

as a result of which the limits of integration would be and 1,

respectively.

Applying the indicated substitutions, evaluate the following

integrals:

1583.

a

1584. \Ve
x
-\dx,

n

o

n
2

1586.

Evaluate the following integrals by means of appropriate
substitutions:

1587. x f^= A ~ i589.
' *

2

2 ____ 8

1538. fi^^d*. 1590. f %=.
J * J 2*4- 1^3*+ 1

Evaluate the integrals:
a

1591. C
y

dx
e 1593. tyax x*dx.

J xV x2+ 5x4-\ J
o

271

1594. fg-f .

J 53 cos x
i o

1595. Prove that if f(x) is an even function, then
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But if f(x) is an odd function, then

1596. Show that

00 00 00

~'T=
dx -

-00

1597. Show that

!L
1 2

arc cos x J x
o o

1598. Show that

T T
C f(s\nx)dx = f

Sec. 5. Integration by Parts

If the functions u (x) and v (x) are continuously differentiate on the

interval [a, b], then

- t; (*) u' (x) dx. (1)u (x) v' (x) dx = u (x) v(x)

Applying the formula for integration by parts, evaluate the

following integrals:

*L
2 00

1

1

1601. J*V*dx.
1605.

o o

1599. ^xcosxdx. 1603.

e oe

1600. Jlnxd*.
1604.

J
e- aJC cos6A:dA: (fl>0).

1602. Je*sinxdx.
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1606**. Show that for the gamma-function (see Example 1575)
the following reduction formula holds true:

From this derive that T (n + \)
= n\, if n is a natural number.

1607. Show that for the integral

2 2

/= [sm
nxdx= [ cos

71

n
= f sin"

the reduction formula

n n n ~*

holds true.

Find /, if n is a natural number. Using the formula obtained,
Devaluate I

9
and 7 10 .

1608. Applying repeated integration by parts, evaluate the

integral (see Example 1574)

B(p, <7)
=

where p and 9 are positive integers.
1609*. Express the following integral in terms of B (beta-

function):

m = sin
w x cos

n

if m and n are nonnegative integers.

Sec. 6. Mean-Value Theorem

1. Evaluation of integrals. If f(x)^F(x) for a<*<&, then

b b

^f(x)dx^^F(
X)dx. (1)

a a

If f(x) and <p(x) are continuous for a<*<6 and, besides, (p(*)^0, then66 6

mJq>(x)d*<J/(*)9(*)dx<M j
9W ^. (2)

a a a

where m is the smallest and M is the largest value of the function / (x) on
the interval [a, b]>
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In particular, if <p(#)s=l, then

b

m (ba) <.[f(x)dx*^M (6 a). (3>

a

The inequalities (2) and (3) may be replaced, respectively, by their equiva-
lent equalities:

b b

a

and

b

-a),
a

where c and are certain numbers lying between a and b.

Example 1. Evaluate the integral

5L
2

M
Solution. Since (Xsin'x^l, we have

i/l
2 K 2

'

Jl

2'
<

that is,

1.57 </< 1.91.

2. The mean value of a function. The number

b

is called the mean value of the function / (x) on the interval

1610*. Determine the signs of the integrals without evaluating
them:

n

b)
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1611. Determine (without evaluating) which of the following

integrals is greater:

i i

a) V\+x* dx or
J dx\

1 1

b) ^
x2

sin
2
x dx or J x sin

2
x dx\

2

c) \ ex*dx or

Find the mean values of the functions on the indicated inter-

vals:

1612. /(x) = x
2

, 0<x<l.
1613. f(x) = a

1614. f(x)=sm
2

x,

1615.

1616. Prove that ( r
dx

lies between 4 0.67 and -4=
J 1/2+^ ^2 3

V^2
o

0.70. Find the exact value of this integral.

Evaluate the integrals:
n
4

1617. 4+ jfdx. 1620*.

JT

+ 1 2

1618 r
djf

.

J gqpjj.

2JI

1619. f

1622. Integrating by parts, prove that

200JI

10071
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Sec. 7. The Areas of Plane Figures

1. Area in rectangular coordinates. If a continuous curve is defined in

rectangular coordinates by the equation y f(x) [f(x)^Q], the area of the

curvilinear trapezoid bounded by this curve, by two vertical lines at the

a b X

Fig. 40

points x a and x= 6 and by a segment of the jc-axis

is given by the formula b
(Fig. 40),

(1)

X
Example 1. Compute the area bounded by the parabola y = -~ the

straight lines x = \ and .v 3, and the x-axis (Fig. 41).
^

y-fi(*)

Fig. 42 Fig. 43

Solution. The sought-for area is expressed by the integral

b X
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Example 2. Evaluate the area bounded by the curve #= 2 */ y* and
the /-axis (Fig. 42).

Solution. Here, the roles of the coordinate axes are changed and so the

sought-for area is expressed by the integral

where the limits of integration y l
= 2 and i/ 2=l are found as the ordinates

of the points of intersection of the curve with the t/-axis,

Fig. 44

a X

Fig. 45

In the more general case, if the area S is bounded by two continuous
curves /

= M*) and y = f2 (x) and by two vertical lines x= a and x= b, where
/i(*XM*) wn n a<*<& (Fig. 43), we will then have:

(2)

Example 3. Evaluate the area 5 contained between the curves

y= 2 x2 and /
l =JC2

(3)

<Fig. 44).
Solution. Solving the set of equations (3) simultaneously, we find the

Jiniits of integration: x,= 1 and #2 =1. By virtue of formula (2), we obtain

If the curve is defined by equations in parametric form x= q>(/), y = y(t\
then the area of the curvilinear trapezoid bounded by this curve, by two
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vertical lines (x a and #=&), and by a segment of the *-axis is expressed

by the integral

where /, and f, are determined from the equations
a = (p(/j) and 6= <p( 2) [\|?(/)^0 on the interval [/ lt /,]].

Example 4. Find the area of the ellipse (Fig. 45) by using its parametric
equations

c a cos /,

l
= bsint.

I x = c

\ y = i

Solution. Due to the symmetry, it is sufficient to compute the area of a

quadrant and then multiply the result by four. If in the equation jc = aco

we first put x and then x a, we get the limits of integration /,
=y and

/ 2
= 0. Therefore,

ji

2

-i-S = (b sin a ( sin /) dt=ab( sin
2

/ dt=^

and, hence, S nab.
2. The area in polar coordinates. If a curve is defined in polar coordi-

nates by the equation r~f (<p), then the area of the sector AOB (Fig. 46),
bounded by an arc of the curve, and by two radius vectors OA and OB,

Fig. 46 Fig. 47

which correspond to the values cp,
= a and cp,= p, is expressed by the

integral

Example 5. Find the area contained inside Bernoulli's lemniscate

(Fig. 47).
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Solution. By virtue of the symmetry of the curve we determine first one

quadrant of the sought-for area:

Whence S= a2
.

1623. Compute the area bounded by the parabola y = 4x x
z

and the x-axis.

1624. Compute the area bounded by the curve y = \nx, the

;t-axis and the straight line x = e.

1625*. Find the area bounded by the curve y x (x 1) (* 2)

and the x-axis.

1626. Find the area bounded by the curve y* = x, the straight
line y=l and the vertical line x = 8.

1627. Compute the area bounded by a single half-wave of the

sinusoidal curve y=smx and the Jt-axis.

1628. Compute the area contained between the curve y= ianx,

the x-axis and the straight line x= ~ .

1629. Find the area contained between the hyperbola xy = m*,
the vertical lines x^a and x = 3a (a>0) and the x-axis.

1630. Find the area contained between the witch of Agnesi

u= - and the x-axis.y x2 + a2

1631. Compute the area of the figure bounded by the curve

y~x*, the straight line y= 8 and the y-axis.
1632. Find the area bounded by the parabolas y**=2px and

x
2 =

2py.
1633. Evaluate the area bounded by the parabola y = 2x x*

and the straight line f/
= x.

1634. Compute the area of a segment cut off by the straight
line y= 3 2x from the parabola y= x

2
.

1635. Compute the area contained between the parabolas y*=*x*,

*/=Y and the straight line y= 2x.

1636. Compute the area contained between the parabolas

y = and y= 4 |x
2

.

1637. Compute the area contained between the witch of
1 xz

Agnesi y= and the parabola f^.
1638. Compute the area bounded by the curves y**e*>

and the straight line x=l.
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1639. Find the area of the figure bounded by the hyperbola
~

f2
= l and the straight linex= 2a.

1640*. Find the entire area bounded by the astroid

1641. Find the area between the catenary

y= a cosh
,

the (/-axis and the straight line f/
= ~(e

2 + !)

1642. Find the area bounded by the curve a*y* = x2

(a* ;c
2

).

1643. Compute the area contained within the curve

1644. Find the area between the equilateral hyperbola x* y* ~
= 9, the x-axis and the diameter passing through the point (5,4).

1645. Find the area between the curve y ~i, the x-axis,

and the ordinate x=l (x>l).
X9

1646*. Find the area bounded by the cissoid r/

2 =
oJ y 2ax

and its asymptote x = 2a (a>0).

1647*. Find the area between the strophoid y* =
x (x ~~ a)2 and

2Jfl^~~ X

its asymptote (a>0).
1648. Compute the area of the two parts into which the

circle jt
2 + r/

2
=--8 is divided by the parabola if =2x.

1649. Compute the area contained between the circle x2 + y
2 = 16

and the parabola x*=l2(y 1).

1650. Find the area contained within the astroid

jc= acos 8

/; y= b sin
8
/.

1651. Find the area bounded by the x-axis and one arc of

the cycloid

f x = a(t sin/),

\ # = a(l cos/).

1652. Find the area bounded by one branch of the trochoid

tefr***/- <P<<
and a tangent to it at its lower points.
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1653. Find the area bounded by the cardioid

cos2/),
-- sin20.

1654*. Find the area of the loop of the folium of Descartes

*-r+T" *-

1655*. Find the entire area of the cardioid r a (1-f coscp).
1656*. Find the area contained between the first and second

turns of Archimedes' spiral, r = acp

(Fig. 48).
1657. Find the area of one of the

leaves of the curve r= acos2cp.
1658. Find the entire area bound-

ed by the curve r
2 = a

2

sin4cp.
1659*. Find the area bounded by

the curve r = asin3cp.
1660. Find the area bounded by

Pascal's limagon

Fig. 48 r = 2 + cos cp.

1661. Find the area bounded by the parabola r= a sec
2

^
and the two half-lines 9=4- and 9 = y.

1662. Fin'd the area of the ellipse r = -r (e<l).r
1 + e cos cp

v '

1663. Find the area bounded by the curve r = 2acos3cp and

lying outside the circle r= a.

1664*. Find the area bounded by the curve x* + y* = x* + y*.

Sec. 8. The Arc Length of a Curve

1. The arc length in rectangular coordinates. The arc length s of a curve

y=f(x) contained between two points with abscissas x= a and x~b is

Example I. Find the length of the astroid *2'8

+/'*-= a
2 '8

(Fig. 49).
Solution. Differentiating the equation of the astroid, we get
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For this reason, we have for th* arc length of a quarter of the astroid:

Whence s= 6a.

2. The arc length of a curve represented parametrically. If a curve is

represented by equations in parametric form, #= <p(0 and y = ty(t), then the
arc length s of the curve is

s "

where t
l
and t 2 are values of the parameter that correspond to the extremities

of the arc.

Fig 49 Fig. 50

Example 2. Find the length of one arc of the cycloid (Fig. 50)

[
x = a(t sin/),

\ j/=:a(l cos/)-

Solution. We have
-^=a(l cosf) and

-^
= asin/. Therefore,

/=2a C sln~-d/=

The limits of integration ^ = and * 2
= 2ji correspond to the extreme points

of the arc of the cycloid.
If a curve is defined by the equation r= /(cp) in polar coordinates, then

the arc length s is

P

where a and p are the values of the polar angle at the extreme points of

the arc.
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Example 3. Find the length of the entire curve r =
asin-|- (Fig. 51).

The entire curve is described by a point as cp ranges from to 3ji.

Fig. 51

Solution. We have r'= a sin
2

-^- cos , therefore the entire arc length of
o o

She curve is

8JI 8JI

s=
J J/a* sin

-| +o sin*
-|-

cos'
-f-

d<p
= a

j
sin

2

-f-
rfq>=^ .

1665. Compute the arc length of the semicubical parabola
y*
= x* from the coordinate origin to the point x= 4.

1666*. Find the length of the catenary y = acosh-^-
from the

vertex A (6,a) to the point B(b,h).
1667. Compute the arc length of the parabola y = 2}/"x from

x=0 to x=l.
1668. Find the arc length of the curve y = e* lying between

the points (0,1) and (l,e).

1669. Find the arc length of the curve y= lnx from x = /3
to *=K8.

1670. Find the arc length of the curve y = arc sin (e~*) from
*= to jc=l.

1671. Compute the arc length of the curve x = In secy, lying

between t/
= and

j/
= -5- .

o

1672. Find the arc length of the curve x=
^-y

2

-^\ny from

=1 to = e.
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1673. Find the length of the right branch of the tractrix

a+vV-t/2

from y = a to t/=&(0<6<a).
y

1674. Find the length of the closed part of the- curve
= x(x 3a)

a
.

1675. Find the length of the curve t/
= ln (coth

~-J
from

to x=b (0<a<6).
1676*. Find the arc length of the involute of the circle

f = to / = 7\

1677. Find the length of the evolute of the ellipse

1678. Find the length of the curve

x=- a (2 cos/ cos 2/) f I

y= a(2 sin/ sin 2/). /

1679. Find the length of the first turn of Archimedes' spiral

1680. Find the entire length of the cardioid r = a(l + coscp).
1681. Find the arc length of that part of the parabola

r = asec 2

-y
which is cut off by a vertical line passing through

the pole.
1682. Find the length of the hyperbolic spiral rq>= 1 from the

point (2,'/ 2 )
to the point C/,,2).

1683. Find the arc length of the logarithmic spiral r = aemv,

lying inside the circle r = a.

1684. Find the arc length of the curve <p
=

-g-
( r+

j
from

r=l to r = 3.

Sec. 9. Volumes of Solids
'

.

1. The volume of a solid of revolution. The volumes of solids formed by
the revolution of a curvilinear trapezoid [bounded by the curve y&f (x) t

J

fhe
AT-ax is and two vertical lines x= a and x b\ about the x- and '(/-axes are

6 - 1900
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expressed, respectively, by the formulas:

b b

1) Vx=ji
J
y*dx\ 2) VY=2n

J
xr/dx*).

a a

Example 1. Compute the volumes of solids formed by the revolution of a

figure bounded by a single lobe of the sinusoidal curve #= sinx and by the

segment O<;*<JT of the x-axis about: a) the x-axis and b) the j/-axis.

Solution.

a) V^^-ji

b) Vy=2n \ xsinxdx=2jt( xcosx+ sinx)J
c ~2jit

.

The volume of a solid formed by revolution about the t/-axis of a figure
bounded by the curve x=g(y), the (/-axis and by two parallel lines y= c and

t/
= d, may be determined from the formula

obtained from formula (1), given above, by interchanging the coordinates
x and y.

If the curve is defined in a different form (parametrically, in polar coor-

dinates, etc.), then in the foregoing formulas we must change the variable of

integration in appropriate fashion.

In the more general case, the volumes of solids formed by the revolution

about the x- and (/-axes of a figure bounded by the curves /!
=

/! (x) and y2 fz (x)

[where f\(x)^f z (x)] t and the straight lines x= a and x= b are, respectively,

equal to

a

and
b

Example 2. Find the volume of a torus formed by the rotation of the

circle x*+ (y &)
2= a2

(6^a) about the x-axis (Fig. 52).

*) The solid is formed by the revolution, about the (/-axis, of a curvilinear

trapezoid bounded by the curve y= f(x) and the straight lines x= a, x= b,

and = 0. For a volume element we take the volume of that part of the solid
formed by revolving about the 0-axis a rectangle with sides y and dx at a
distance x from the (/-axis, Then the volume element dVy=2nxydx, whence

b

VK=2JI { xydx.
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Solution. We have

I/,
=6 I^a

2 x9 and y2
= t>+ Va*x2

Therefore,

(the latter integral is taken by the substitution x=asi

K

-a x a

Fig 52

The volume of a solid obtained by the rotation, about the polar axis, of a

sector formed by an arc of the curve r = F((p) and by two radius vectors

ipr-=a, <p
= P may be computed from the formula

3

2 C
Vp=~ JT \ r8

sin cpd q>.

a

This same formula is conveniently used when seeking the volume obtained
by the rotation, about the polar axis, of some closed curve defined in polar
coordinates.

Example 3. Determine the volume formed by the rotation of the curve
r = asin2(p about the polar axis.

Solution.

= 2.--n\ rsinq>d(p = yJia
8 C sin

8

2(p sin q> dcp=

.L
2

=^ Jia
8 f sin

4
<p

cos8
cp dcp

=^ jia
8
.

3 J lOo
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2. Computing the volumes of solids from known cross-sections. If S S(x)
is the cross-sectional area cut off by a plane perpendicular to some straight

line (which we take to be the x-axis) at a point with abscissa *, then the

volume of the solid is

where *, and x2 are the abscissas of the extreme cross-sections of the solid.

Example 4. Determine the volume of a wedge cut off a circular cylinder

by a plane passing through the diameter of the base and inclined to the base
at an angle a. The radius of the base is R (Fig. 53).

Solution. For the *-axis we take th? diameter of the base along which
the cutting plane intersects the base, and for the (/-axis we take the diameter
of the base perpendicular to it. The equation of the circumference of the base
is *2 + j/

2 = R 2
.

The area of the section ABC at a distance x from the origin is

1 1 r/
2

S(x) = area A ABC = -^ ABBC= -^yy tana =^- tana. Therefore, the sought-
,

for volume of the wedge is

R R

y=2~ f y
2 tanad*=tana (* (R

1
*)<&=y tana R 1

.

1685. Find the volume of a solid formed by rotation, about
the x-axis, of an area bounded by the x-axis and the parabola

1686. Find the volume of an ellipsoid formed by the rotation

of the ellipse ^r+ |8
- = l about the x-axis.

1687. Find the volume of a solid formed by the rotation, about

the x-axis', of an area bounded by the catenary y = acosh
, the

xr-axis, and the straight lines xa.
1688. Find the volume of a solid formed by the rotation, about

the x-axis, of the curve j/=sin
a x in the interval between x =

and x = n.

1689. Find the volume of a solid formed by the rotation, about
the x-axis, of an area bounded by the semicubical parabola if

= x
s

,

the x-axis, and the straight line x== 1.

1690. Find the volume of a solid formed by the rotation of

the same area (as in Problem 1689) about the {/-axis.
1691. Find-, the volumes of the solids formed by the rotation

of an area bounded by the lines y = e*, x = 0, y = about: a) the
x-axis and b) the y-axis.

1692. Find the volume of a solid formed by the rotation, about
the t/-axis, of that part of the parabola j/

2 = 4ax which is cut off

by the straight line x = a.
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1693. Find the volume of a solid formed by the rotation, about
the straight line x = a, of that part of the parabola y*=4ax which
is cut oft by this line.

1694. Find the volume of a solid formed by the rotation, about
the straight line y = p, of a figure bounded by the parabola

t/

2 = 2p* and the straight line * = --
.

1695. Find the volume of a solid formed by the rotation, about
the x-axisL of the area contained between the parabolas y = x*

and y= Y*.
1696. Find the volume of a solid formed by the rotation,

about the x-axis, of a loop of the curve (* 4a)tf =ax(x 3j)

1697. Find the volume of a solid generated by the rotation
A 8

of the cyssoid y* = ^ _ x
about its asymptote x= 2a.

1698. Find the volume of a paraboloid of revolution whose
base has radius R and whose altitude is //.

1699. A right parabolic segment whose base is 2a and altitude h
is in rotation about the base. Determine the volume of the result-

ing solid of revolution (Cavalieri's "lemon").
1700. Show that the volume of a part cut by the plane jc = 2a

off a solid formed by the rotation of the equilateral hyperbola
x* tf^c? about the *-axis is equal to the volume of a sphere
of radius a.

1701. Find the volume of a solid formed by the rotation of a

figure bounded by one arc of the cycloid x=-a (/ sin t),

y=^ a (\ cos/) and the x-axis, about: a) the x-axis, b) the y-axis,
and c) the axis of symmetry ot the figure.

1702. Find the volume of a solid formed by the rotation of

the astroid * = acos 8

/, y = bsm*t about the //-axis.

1703. Find the volume of a solid obtained by rotating the
cardioid r = a(l -hcostp) about the polar axis.

1704. Find the volume of a solid formed by rotation of the
curve r = acos 2

<p about the polar axis.

1705. Find the volume of an obelisk whose parallel bases are

rectangles with sides A, B arid a, ft, and the altitude is h.

1706. Find the volume of a right elliptic cone whose base is

an ellipse with semi-axes a arid &, and altitude h.

1707. On the chords of the astroid *'/ + {/'/
^= a\ which are

parallel to the *-axis, are constructed squares whose sides are

equal to the lengths of the chords and whose planes are perpen-
dicular to the A#-plane. Find tfte volume of the solid formed by
these squares.
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1708. A circle undergoing deformation is moving so that one
of the points of its circumference lies on the y-axis, the centre

describes an ellipse ^-+ ^-=1, and the plane of the circle is

perpendicular to the jq/-plane. Find the volume of the solid

generated by the circle.

1709. The plane of a moving triangle remains perpendicular
to the stationary diameter of a circle of radius a. The base of

the triangle is a chord of the circle, while its vertex slides along
a straight line parallel to the stationary diameter at a distance h

from the plane of the circle. Find the volume of the solid (called

a conoid) formed by the motion of this triangle from one end of

the diameter to the other.

1710. Find the volume of the solid bounded by the cylinders
"' = a

2 and y
z + z* = a*.

1711. Find the volume of the segment cut off from the ellip-
u2

z
2

tic paraboloid |- + 2-
= * by the plane x = a.

1712. Find the volume of the solid bounded by the hyperbo-

loid of one sheet ^ -f rj ^-=1 and the planes 2 = and z = li.

X2 U 2
Z2

1713. Find the volume of the ellipsoid ^2 +^+ ^2"=
!

Sec. 10. The Area of a Surface of Revolution

The area of a surface formed by the rotation, about the x-axis, of an
arc of the curve y f(x) between the points x= a and x = b, is expressed by
the formula b b

Vl+y'*dx (1)

(ds is the differential ol the arc of the curve).

Zfta

Fig. 54

If the equation of the curve is represented differently, the area of the

surface $x is cbtained from formula (!) by an appropriate change of variables.
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Example 1. Find the area of a surface formed by rotation, about the
x-axis, of a loop of the curve 9i/

2= ;t(3 x)* (Fig. 54).
Solution. For the upper part of the curve, when (X*<3, we have

/
= --

(3 x) y~x. Whence the differential of the arc ds=
X ~^

r_dx. Fromfor-
2 V x

mula (1) the area of the surface

9

= 2n ( \($-
J

6 2 V

Example 2. Find the area of a surface formed by the rotation of one arc
of the cycloid x= a (t s\nt)\ y= a(l cost) about its axis of symmetry
(Fig. 55).

Solution. The desired surface is formed by rotation of the arc OA about
the straight line AB, the equation of which is x= na. Taking y as the inde-
pendent variable and noting that the axis of rotation
AB is displaced relative to the #-axis a distance na, we
will have Y

da
Passing to the variable /, we obtain

(na d

n

= 4na2 ( ( nsin /sin y+ sinf sin ~-
j

dt--

y
Fig. 56

1714. The dimensions of a parabolic mirror AOB are indicated
in Fig. 56. It is required to find the area of its surface.

1715. Find the area of the surface of a spindle obtained by
rotation of a lobe of the sinusoidal curve ys'mx about the
#-axis.

1716. Find the area of the surface formed by the rotation of

a part of the tangential curve t/
= tan* from Jt= to

A:==^-,
about the jc-axis.

1717. Find the area of the surface formed by rotation, about
the x-axis, of an arc of the curve y= e-*

9 from x= to x
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1718. Find the area of the surface (called a catenoid) formed

by the rotation of a catenary # = acosh about the x-axis from

x= to x = a.

1719. Find the area of the surface of rotation of the astroid
x'/'-i /'/

3 -a3
'
3

about the y-axis.
1720. Find the area of the surface of rotation of the curve

JC= -^/
2

y In (/about the *-axis from y=\ to y= e.

1721*. Find the surface of a torus formed by rotation of the
circle x* + (y b)

2
^=a* about the *-axis <b>a).

1722. Find the area of the surface formed by rotation of the

ellipse ^+^ = 1 about: 1) the *-axis, 2) the y-axis (a>6).
1723. Find the area of the surface formed by rotation of one

arc of the cycloid x = a(t sin/) and r/
= a(l cos t) about: a) the

x-axis, b) the y-axis, c) the tangent to the cycloid at its highest
point.

1724. Find the area of the surface formed by rotation, about
the j^-axis, of the cardioid

x = a (2 cost cos 2/), \
t/
= a(2sin/ sin2/). /

1725. Determine the area of the surface formed by the rotation
of the lemniscate r

2 = a
2

cos2<p about the polar axis.
1726. Determine the area of the surface formed by the rotation

of the cardioid r = 2a (1 +coscp) about the polar axis.

Sec. 11. Moments. Centres of Gravity. Guldin's Theorems

1. Static moment. The static moment relative to the /-axis of a material
point A having mass m and at a distance d from tha /-axis is the quantitv
Mi~md.

The static moment relative to the /-axis of a system of n material points
with masses m,, m

2 , ..., mn lying in the plane of the axis and at distances
dlt d2 , ..., dn is the sum

n

Mi= 2 mA- (1)
/= !

where the distances of points lying on one side of the /-axis have the plus
sign, those on the other side have the minus sign. In a similar manner we
define the static moment of a system of points relative to a plane.

If the masses continuously fill the line or figure of the x#-plane, then the
static moments M x and My about the x- and /-axes are expressed ^respective-
ly) as integrals and not as the sums (1). For the cases of geometric figures,
Itie density is considered equal to unity.
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In particular: 1) for the curve *= *(s); y=y(s) t whare the parameter s

is the arc length, we have
L L

y (s) ds\ M Y =. x (s) ds (2)

(ds= V(dx)*+ (dy)* is the differential of the arc);

Fig. 57 Fig. 58

2) for a plane figure bounded by th3 curve y= y(x), ihz Jt-axis and two
vertical lines x= a and y b t we obtain

b b

x\y\dx. (3)

a a

Example 1. Find the static moments about the x- and /-axes of a triangle

bounded by the straight lines: ~-f-^ = l, x= 0, //
= (Fig. 57)

a b

Solution. Here, y= b II ~
)

. Applying formula (3), we obtain

ab*

and

2. Moment of inertia. The moment of inertia, about an /-axis, of a imfe-

rial point of mass m at a distance d from the /-axis, is the number l
t
-=-tnd

2
.

The moment of inertia, about an /-axis, of a system of n material points
with masses m lt

m 2t ..., mn is the sum
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where d lf d2 ..., dn are the distances of the points from the /-axis. In the

case of a continuous mass, we get an appropriate integral in place of a sum.

Example 2. Find the moment of inertia of a triangle with base b and
altitude h about its base.

Solution. For the base of the triangle we take the x-axis, for its altitude,

the y-axis (Fig 58).
Divide the triangle into infinitely narrow horizontal strips of width dy t

which play the role of elementary masses dm. Utilizing the similarity of

triangles, we obtain

j L h y ,dm= b . dy
n

and

Whence

3. Centre of gravity. The coordinates of the centre of gravity of a plane
figure (arc or area) of mass M are computed from the formulas

where MX and My are the static moments of the mass. In the case of geomet-
ric figures, the mass M is numerically equal to the corresponding arc or area.

For the coordinates of the centre of gravity (x, y) of an arc of the plane
curve y= f (x) (a^x^b), connecting the points A[a t f (a)] and B [6, f (b)],
we have

B t> B b

\yds ( y 1^1 +(y')
2 dx

-A a

S b

'}
2 dx

The coordinates of the centre of gravity (x, y) of the curvilinear trapezoid
x^b, Q^y<^f(x) may be computed from the formulas

b b

^xydx
-.(y^dx

~~ a *~~
a

X -
f y _

^O ,3

b

where S=f y dx is the area of the figure.

a

There are similar formulas for the coordinates of the centre of gravitv of
a volume.

6 y

Example 3. Find the centre of gravity of an arc of the semicircle,,2^n*- i,i^n\
(pig 59)
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Solution. We have

and

Whence

f, ' ,. xJ ..

yds-- yV-.v 2 ^=
J y a 2

Hence,

4. Guldin's theorems.
Theorem 1. The area of a surface obtained by the rotation of an arc of

a plane curve about some axis lying in the. same plane as the curve and not

intersecting it is equal to the product of the length of the curve by the
circumference of the circle described by the centre of gravity of the arc of

the curve.

Theorem 2. The volume of a solid obtained by rotation of a plane figure
about some axis lying in the plane of the figure and not intersecting it is

equal to the product of the area of this figure by the circumference of the
circle described by the centre of gravity of the figure.

Fig. 59

1727. Find the static moments about the coordinate axes of

a segment of the straight line

x y
o o

lying between the axes.
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1728. Find the static moments of a rectangle, with sides a and &,
about its sides.

1729. Find the static moments, about the x- and t/-axes, and
the coordinates of the centre of gravity of a triangle bounded by
the straight lines x + y = a, x = Q, and y = Q.

1730. Find the static moments, about the x- and (/-axes, and
the coordinates of the centre of gravity of an arc of the astroid

_t_ _i^
>

* -If/* ==aT
>

lying in the first quadrant.
1731. Find the static moment of the circle

r = 2asin<p
about the polar axis.

1732. Find the coordinates of the centre of gravity of an arc
of the catenary

y= a cosh ~

from x= a to x= a.

1733. Find the centre of gravity of an arc of a circle of radius a

subtending an angle 2a.

1734. Find the coordinates of the centre of gravity of the arc
of one arch of the cycloid

x= a(t sin/); y = a(\ cos/).

1735. Find the coordinates of the centre of gravity of an area

bounded by the ellipse
-

2 -|-=l and the coordinate axes (

1736. Find the coordinates of the centre of gravity of an area
bounded by the curves

1737. Find the coordinates of the centre of gravity of an area
bounded by the first arch of the cycloid

x= a(t sin/), r/
= a(l cos/)

and the jc-axis.

1738**. Find the centre of gravity of a hemisphere of radius a
lying above the ;q/-plane with centre at the origin.

1739**. Find the centre of gravity of a homogeneous right
circular cone with base radius r and altitude h.

1740**. Find the centre of gravity of a homogeneous hemi-
sphere of radius a lying above the jo/-plane with centre at the

origin.
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1741. Find the moment of inertia of a circle of radius a about
its diarneler.

1742. Find the moments of inertia of a rectangle with sides

a and b about its sides.

1743. Find the moment of inertia of a right parabolic segment
with base 26 and altitude ft about its axis of symmetry.

1744. Find the moments of inertia of the area of the ellipse
JC
2 U2

^ + ^=1 about its principal axes.

1745**. Find the polar moment of inertia of a circular ring
with radii R^ and R

t (R } <RJ> that is, the moment of inertia

about the axis passing through the centre of the ring and perpen-
dicular to its plane.

1746**. Find the moment of inertia of a homogeneous right
circular cone with base radius R and altitude H about its axis.

1747**. Find the moment of inertia of a homogeneous sphere
of radius a and of mass M about its diameter.

1748. Find the surlace and volume of a torus obtained by
rotating a circle of radius a about an axis lying in its plane
and at a distance b (b>a) from its centre.

1749. a) Determine the position of the centre of gravity of
2 2 t

an arc of the astroid xT -\-i/
T = a* lying in the first quadrant.

b) Find the centre of gravity of an area bounded by the curves

t/

2 = 2px and x* = 2py.
17f>0**. a) Find the centre of gravity of a semicircle using

Guldin's theorem.

b) Prove by Guldin's theorem that the centre of gravity of

a triangle is distant from its base by one third of its altitude

Sec. 12. Applying Definite Integrals to the Solution of Physical Problems

1. The path traversed by a point. If a point is in motion along some
curve and the absolute value of the velocity o~/(/) is a known function of

the time t, then the path traversed by the point in an interval of time

'. * is

Example 1. The velocity of a point is

o= 0. 1/
8

m/sec.

Find the path s covered by the point in the interval of time 7=10 sec follow-

ing the commencement ol motion. What is the mean velocity cf motion
during this interval?
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Solution. We have:

and

10

p t*

.-Jo.irt-o.i T
= 250 metres

=-=25 m/sec.

2. The work of a force. If a variable force X=f(x) acts in the direction

of the x-axis, then the work of this force over an interval [xly xz ] is

A =

Example 2. What work has to be performed to stretch a spring 6 cm, if

a force of 1 kgf stretches it by 1 cm?
Solution, According to Hook's law the force X kgf stretching the spring

by xm is equal to X = kx, where k is a proportionality constant.

Putting x= 0.01 m and X = l kgf, we get = 100 and, hence, X = 100v.

Whence the sought-for work is

0.06 0.08

A =
j

100 x dx= 50 x2 = 0. 18 kgm

3. Kinetic energy. The kinetic energy of a material point of mass m and

velocity v is defined as

mv*

The kinetic energy of a system of n material points with masses
mv m 2% ..., mn having respective velocities t; lf v 2 , ..., vn , is equal to

To compute the kinetic energy of a solid, the latter is appropriately parti-
tioned into elementary particles (which play the part of material points); then

by summing the kinetic energies of these particles we get, in the limit, an
integral in place of the sum (1).

Example 3. Find the kinetic energy of a homogeneous circular cylinder
of density 6 with base radius R and altitude h rotating about its axis with

angular velocity CD.

Solution. For the elementary mass dm we take the mass of a hollow

cylinder of altitude h with inner radius r and wall thickness dr (Fig. 60).
We have:

Since the linear velocity of the mass dm is equal to t; = /-co, the elementary
kinetic energy is
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Whence

r9dr^=
nco

2
6/?

4
fc

4. Pressure of a liquid. To compute the force of liquid pressure we use

Pascal's law, which states that the force of pressure of a liquid on an area S
at a depth of immersion h Is

where y is the specific weight of the liquid.

Example 4. Find the force of pressure experienced by a semicircle of
radius r submerged vertically in water so that its diameter is flush with the
water surface (Fig 61).

Solution, We partition the area of the semicircle into elements strips

parallel to the surface of the water. The area of one such element (ignoring
higher-order infinitesimals) located at a distance h from the surface is

ds ^ 2xdh = 2 V'* h2
dli.

The pressure experienced by this element is

where y is the specific weight of the water equal to unity.
Whence the entire pressure is

r

= 2 C
J

1751. The velocity of a body thrown vertically upwards with
initial velocity V

Q (air resistance neglected), is given by the
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formula
=

. ff'.

where t is the time that elapses and g is the acceleration of grav-
ity. At what distance from the initial position will the body
be in t seconds from the time it is thrown?

1752. The velocity of a body thrown vertically upwards with
initial velocity v (air resistance allowed for) is given by the
formula

where t is the time, g is the acceleration of gravity, and c is

a constant. Find the altitude reached by the body.
1753. A point on the x-axis performs harmonic oscillations

about the coordinate origin; its velocity is given by the formula

where t is the time and t;
,

co are constants.
Find the law of oscillation of a point if when / = it had

an abscissa * = 0. What is the mean value of the absolute magni-
tude of the velocity of the point during one cycle?

1754. The velocity of motion of a point is v = te~"'
Qlt

m/sec.
Find the path covered by the point from the commencement of
motion to full stop.

1755. A rocket rises vertically upwards. Considering that when
the rocket thrust is constant, the acceleration due to decreasing

weight of the rocket increases by the law /==^~^ (a ftf >0),

find the velocity at any instant of time /, if the initial velocity
is zero. Find the altitude reached at lima / = / r

1756*. Calculate the work that has to be done to pump the
water out of a vertical cylindrical barrel with base radius R and
altitude H.

1757. Calculate the work that has to be done in order to pump
the water out of a conical vessel with vertex downwards, the
radius of the base of which is R and the altitude H.

1758. Calculate the work to be done in order to pump water
out of a semispherical boiler of radius R = 10 m.

1759. Calculate the work needed to pump oil out of a tank
through an upper opening (the tank has the shape of a cylinder
with horizontal axis) if the specific weight of the oil is y, the
length of the tank H and the radius of the base R.

1760**. What work has to be done to raise a body of massm
from the earth's surface (radius R) to an altitude ft? What is

the work if the body is removed to infinity?
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1761**. Two electric charges * = 100 CGSE-and el==200 CGSE
lie on the x-axis at points * = and *, 1 cm, respectively.
What work will be done if the second charge is moved to point
*

2
=10 cm?
1762**. A cylinder with a movable piston of diameter D= 20 cm

and length / = 80cm is filled with steam at a pressure

p=10kgfcm
2

. What work must be done to halve the volume of

the steam with temperature kept constant (isoihermic process)?
1763**. Determine the work performed in the adiabatic expan-

sion of air (having initial volume u =l m3
and pressure

p ft
_=l kgf/cm

2

)
to volume u,

= 10 m 8
?

1764**. A vertical shaft of weight P and
radius a rests on a bearing AB (Fig. 62).
The frictional force between a small part a
of the base of the shaft and the surface of

the support in contact with it is F==fipa,
where p = const is the pressure of the shaft

on the surface of the support referred to

unit area of the support, while pi is the coef-

ficient of friction. Find the work done by the

frictional force during one revolution of the

shaft.

1765**. Calculate the kinetic energy of a

disk of mass M and radius R rotating with

angular velocity G> about an axis that passes through its centre

perpendicular to its plane.
1766. Calculate the kinetic energy of a right circular cone of

mass M rotating with angular velocity CD about its axis, if the

radius of the base of the cone is R and the altitude is H.
1767*. What work has to be don? to stop an iron sphere of

radius R = 2 me'res rotating with angular velocity w = 1,000 rpm
about its diameter? (Specific weight of iron, y = 7.8 s/cm

j

.)

1768. A vertical triangle with base 6 and altitude h is sub-

merged vertex downwards in water so that its base is on the

surface of the water. Find the pressure of the water.

1769. A vertical dam has the shipa of a trapezoid. Calculate

the water pressure on the dam if we know that the upper base

a = 70 m, the lower base 6=50 m, and the height h = 20 m.
1770. Find the pressure of a liquid, whose specific weight is y.

on a vertical ellipse (with axes 2a and 26) whose centre is sub-

merged in the liquid to a distance h, while the major axis 2a

of the ellipse is parallel to the level of the liquid (h^b).
1771. Find the water pressure on a vertical circular cone

with radius of base R and altitude H submerged in walei vertex

downwards so that its base is on the surface of the water.
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Miscellaneous Problems

1772. Find the mass of a rod of length / = 100 cm if the linear

density of the rod at a distance x cm from one of its ends is

6= 2+ 0.001 x2

g/cm.

1773. According to empirical data the specific thermal capacity
of water at a temperature /C (0^/<100) is

= 0.9983 5.184xlO- 5
/ + 6.912xlO- 7

/
2

.

What quantity of heat has to be expended to heat 1 g of water
from 0C to 100 C?

1774. The wind exerts a uniform pressure p g/cm
2 on a door

of width b cm and height h cm. Find the moment of the pressure
of the wind striving to turn the door on its hinges.

1775. What is the force of attraction of a material rod of

length / and mass M on a material point of mass m lying on
a straight line with the rod at a distance a from one of its ends?

1776**. In the case of steady-state laminar (low of a liquid

through a pipe of circular cross-section of radius a, the velocity
of flow v at a point distant r from the axis of the pipe is given
by the formula

where p is the pressure difference at the ends of the pipe, |i is

the coefficient of viscosity, and / is the length of the pipe.
Determine the discharge of liquid Q (that is, the quantity of

liquid flowjng through a cross-section of the pipe in unit time).
1777*. The conditions are the same as in Problem 1776, but

the pipe has a rectangular cross-section, and the base a is great

compared with the altitude 26. Here the rate of flow u at a point

M(x,y) is defined by the formula

Determine the discharge of liquid Q.
1778**. In studies of the dynamic qualities of an automobile,

use is frequently made of special types of diagrams: the veloci-

ties v are laid off on the Jtr-axis, and the reciprocals of correspond-

ing accelerations a, on the (/-axis. Show that the area S bounded

by an arc of this graph, by two ordinates v = v
l
and v = v

2t and

by the *-axis is numerically equal to the time needed to increase

the velocity of motion of the automobile from v
l
to v

2 (accelera-
tion time).



Sec. 12] Applying Definite Integrals to Solution of Physical Problems 179

1779. A horizontal beam of length / is in- equilibrium due to

a downward vertical load uniformly distributed over the length

of the beam, and of support reactions A and
fi(yl==5==-y-j t

directed vertically upwards. Find the bending moment Mx in

a cross-section x, that is, the moment about the point P with

abscissa x of all forces acting on the portion of the beam AP.
1780. A horizontal beam of length / is in equilibrium due to

support reactions A and B and a load distributed along the

length of the beam with intensity q= kx, where x is the distance

from the left support and k is a constant factor. Find the bend-

ing moment M x in cross-section x.

Note. The intensity of load distribution is the load (force) referred to

unit length.

1781*. Find the quantity of heat released by an alternating
sinusoidal current

during a cycle T in a conductor with resistance /?.



Chapter VI

FUNCTIONS OF SEVERAL VARIABLES

Sec. 1. Faiic Notions

1. The concept of a function of several variables. Functional notation.

A variable quantity 2 is called a single-valued function of two variables jc,

y, if to each set of their values (x, //) in a givm range there corresponds a

unique value of z The variables x and y are called arguments or independent
variables. The functional relation is denoted by

*= /(*, y).

Similarly, we define functions of three or more arguments.
Fxample 1. Express the volume of a cone V as a function of its gen-

eratrix x and of its base radius y
Solution. From geometry we know that the volume of a cone is

where h is the altitude of the cone. But h y ** y
2
- Hence,

This is the desired functional relation.
The value of the function z^f(x.y) at a

point P (a.b). that is, when x=^-a and y b
t

is denoted by / (a,b) or f (P) Generally speak-
ing, the geometric representation of a func-
tion like z f (x,y) in a rectangular coordi-
nate system X, Y. Z is a surface (Fig. 63).

Example 2. Find/ (2, 3) and/1, if

Fig. 63

Solution. Substituting r=2 and t/= 3, we find
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Putting *=1 and replacing y by ~
, we will have

SL\
1

*'

thai is,

/(l. )=f(*.
0).

2. Domain of definition of a function. By the domain of definition of a
function ? f(x, y) we understand a set of points (*, r/) in an jq/-plane in
which the given function is defined (that is to say, in which it takes on def-
inite real values) In the simplest cases, the domain of definition of a func-
tion U a finite or infinite part of the jo/-plane bounded by one or several
curves (the boundan, of the domain).

Similarly, for a function of three variables u = f(x, y, z) the domain of

definition of the function is a volume in At/z-space.

Example 3. Find the domain of definition of the function

1

Solution. The function has real values if 4 x2
y
2 > or x* + y

2 < 4.

The latter inequality is satisfied hy the coordinates of points lying inside a
circle of radius 2 with centre at the coordinate origin. The domain of defi-

nition oi the function is the interior of the circle (Fig 64).

Fig. 64 Fiy 65

Example 4. Find the domain of definition of the function

z = arc sin + |/ xy

Solution. The first term of the function is defined for 1<~ or

The second term has real values if xr/^O, i.e., in two cases:

or when
|

*
.The domain of definition of the entirewhen

|

function is shown in Fig. 65 and includes the boundaries of the domain.
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3. Level lines and level surfaces of a function. The level line of a func-

tion 2= f(x, y) is a line / (*, y)-C (in an *r/-plane) at the points of which
the function takes on one and the same value z C (usually labelled in

drawings).
The level surface of a function of three arguments u~f(x, y t z) is a sur-

iace / (x, y, z) = C, at the points of which the function takes on a constant
value u~C.

Example 5. Construct the level lines of

the function z= x*y.
Solution. The equation of the level lines

has the form x2
y= C or y~ -j .

Putting C = 0, 1, i 2, .... we get a family
of level lines (Fig. 66).

1782. Express the volume V of a

regular tetragonal pyramid as a func-

tion of its altitude x and lateral edge y.

1783. Express the lateral surface S
of a regular hexagonal truncated pyra-

Fig. 66 mid as a function of the sides x and y
of the bases and the altitude z.

1784. Find /(1/2, 3), /(I, -1), if

1785 Find f(y,x), f( x, y),

__x
z

y
2

1786. Find the values assumed by the function

1

1

f(*,y)
,

if

at points of the parabola y =
function

z

,
and construct the graph of the

1787. Find the value of the function

Z rrr -

at points of the circle x2 +y*=R 2
.

1788*. Determine f(x), if

1789*. Find f(x, y) if
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1790*. Let * = V7+/(l/x 1). Determine the functions / and
z if z = x when y= 1.

1791**. Letz = */(-V Determine the functions f and z if

when x=\.
1792. Find and sketch the domains of definition of the fol-

lowing functions:

a) z==Y\ x2

y
2

\

b) z=\-\-V (x

c) z =
d) 2 - x+ arc cos //;

e) z-l/l-^2 +
f) z = arc sin ;' X

g) 2 = V
r7IT

h) 2 =

1793. Find the domains of the following functions of three
arguments:

a) u=-\x+ y + z\ c) w=--arc sin jc+arc sin #+ arc sinz;

b) u = ln(xyz): d) u =V\x2

y
2

z\

1794. Construct the level lines of the given functions and de-
termine the character of the surfaces depicted by these functions:

a) z^x + y; d) z =

b) 2 =^+y2

; e) z =

c) z = x*-y*; O^
1795. Find the level lines of the following functions:

a) z = ln(*'+f/); d) z = /(y a*);

b) 2 = ar

1796. Find the level surfaces of the functions of three inde-
pendent variables:

a) u = x+ y-\-z;

b) u = * ' '

c) u= J
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Sec. 2. Continuity

1. The limit of a function. A number A is called the limit of a function
2= /(*, y) as the point P 1

(x, y) approaches the point P (o. ft), if for any
e > there is a 6 > such that when < Q < 6, where Q = |/\x a)*+ U/ 6)

1

is the distance between P and P', we have the inequality

I /(*, y)A\<e.
In this case we write

lim f(x, y) = A.
X-K2
y-*b

2. Continuity and points of discontinuity. A function z=f(x, y) is called

continuous at a point P (a, b) if

lim f(x 9 0) = /(a, b).
x-+a

A function that is continuous at all points of a given range is called

continuous over this range
A function /(AT, y) may cease to be continuous either at separate points

(isolated point of discontinuity) or at points that form one or several lines

(lines of discontinuity) or (at times) more complex geometric objects.

Example 1. Find the discontinuities of the function

_*+>

Solution. The function will be meaningless if the denominator becomes
zero. But ** -r/

= or y x2
is the equation of a parabola. Hence, the given

function has for its discontinuity the parabola y x2
.

1797*. Find the following limits of functions:

a) liin(*?^)sinl; c)li n M; e)lin-L;

1798. Test the following function for continuity:

ftx /) = / V\x* if when *
2

-r-//
2

<l,
I when x* 4-//*> 1.

1799. Find points of discontinuity of the functions:

a) z =ln; c) e-
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1800*. Show that the function

-{
SL when ** + </' =^=0,

when jt = =

is continuous with respect to each of the variables x and y sepa-
rately, but is not continuous at the point (0, 0) with respect to
these variables together.

Sec. 3. Partial Derivatives

t. Definition of a partial derivative. If z f(x,y), then assuming, for

example, y constant, we get the derivative

which is called the partial derivative of the function z with respect to the
variable x. In similar fashion we define and denote the partial derivative of
the function z with respect to the variable y It is obvious that to find partial
derivatives, one can use the ordinary formulas of differentiation.

Example 1. Find the partial derivatives of the function

y

Solution. Regarding y as constant, we get

dz 1 1 1
t =

dx , x , x y . 2x'
tan cos2 y

I/sin
y y

y
y

Similarly, holding x constant, we will have

dz 1 / x 2*

y y

Example 2. Find the partial derivatives of the following function of three

arguments:
a=*yz+ 2* 3y+ 2+ 5.

Solution. ?

2. Euler's theorem. A function f (x, y) fs called a homogeneous function of

degree n if for every real factor k we have the equality

f (kx, ky) --= ttf (x, //)
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A rational integral function will be homogeneous if all its terms are of one
and the same degree.

The following relationship holds for a homogeneous differentiable function

of degree n (Euler's theorem):

xfx (x, y) + yfy (x, y) = nf (x, y).

Find the partial derivatives of the following functions:

3axy.1801. z = 1808. 2=

1809. 2=

1810. 2 =

1811. 2 =

1806.

1807. z = arc tan

xy+L .1814. Find /;(2, 1) and fy (2, 1) if f(x,y)

1815. Find /;(!, 2, 0), /i(l, 2, 0), ft (l, 2, 0) if

/(*, y,z) = ln(xy-\-z).

Verify Euler's theorem on homogeneous functions in Exam-
ples 1816 to 1819:

1816. f(x,y) = Ax 3+ 2Bxy-Cy
t

. 1818. /

1817. z =

1820. J-
) , where r = :

2
1821. Calculate

1822. Show that

1823. Show that x+

and y

57,
= 2, if 2 = ln(*'

, if 2 =

1824. Show that g+fj+S-0, if u = (x-y)(y-z)(z-X).

1825. Show that g+g+g-1, if
-*+J=J.

J826. Find -.(,. y), it
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1827. Find z--^z(x t y) knowing that

(J2 X2
-4- J/

2

= ^- and z(x, y) = slny when *=1.

1828. Through the point M(l,2, 6) of a surface z = 2x*+y*
are drawn planes parallel to the coordinate surfaces XOZ and
YOZ. Determine the angles formed with the coordinate axes by
the tangent lines (to the resulting cross-sections) drawn at their

common point M.
1829. The area of a trapezoid with bases a and b and alti-

tude h is equal to S= l

/,(fl + &) A. Find g, g, g and, using

the drawing, determine their geometrical meaning.
1830*. Show that the function

0,

has partial derivatives fx (x, y) and fy (x, y) at the point (0,0),

although it is discontinuous at this point. Construct the geomet-
ric image of this function near the point (0, 0).

Sec. 4. Total Differential of a Function

1. Total increment of a function. The total increment of a function
z = /(*i y) is the difference

Az-Af (x, #)--=/(*+ Ax, + Aj/)-f (*, y).

2. The total differential of a function. The total (or exact) differential of

a function z f(x, y) is the principal part of the total increment Az, which
is linear with respect to the increments in the arguments Ax and A//.

The difference between the total increment and the total differential of

the function is an infinitesimal of higher order compared with Q \^&x*+ At/*.

A function definitely has a total differential if its partial derivatives are
continuous. If a function has a total differential, then it is called differen-

t table. The differentials of independent variables coincide with their incre-

ments, that is, dx=kx and dy=ky. The total differential of the function

z= /(x, y) is computed by the 'formula

, dz .
,

dz .

d2==^ dX+
d-y

dy -

Similarly, the total differential of a function of three arguments u =/ (x, y, z)
is computed from the formula

. du .
,
du , . du .

du = -3- dx -j- ^- dy+ -r- dz.
dx

'

dy dz

Example 1. For the function

f(x t y)=x*+xyy 2

find the total increment and the total differential.
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Solution. f(x+Ax, y + Ay) = (x -f Ax)
2
-f (x + A*) (y -f- Ay) (y -f Ay)

2
;

= 2x Ax + AA 2 + x - Ay + y Ax + Ax Ay 2y Ay Ay
a=

= [(2x+ y) A* + (x 2y) A^l + (A*
2 + AA> Ay Ay

Here, the expression d/ = (2x + y) A* -{-(* 2y) Ay is the total differential of

the function, while (A*
2
-f AJC*AyAy2

) is an infinitesimal of higher order

comared with VAx2 +Ay2
.compared with .

Example 2. Find the total differential of the function

Solution.

3. Applying the total differential of a function to approximate calculations.
For sufficiently small |AA:| and |Ay| and, hence, for sufficiently small

Q= y Av 2
-f Ay

2
, we have for a differentiate function z= f(x t y) the approx-

imate equality Az^dz or

. dz

Example 3. The altitude of a cone is // = 30cm, the radius of the base
fl= 10cm. How will the volume of the cone change, if we increase H by
3mm and diminish R by 1 mm?

Solution, The volume of the cone is V= -~-nR
2H. The change in volume

o
we replace approximately by the differential

AV =^ dV=
-j

n (2RH dR+ R* dH) =

= lji( 2.10.30.0.1 + 100.0.3)= lOjiss 31. 4 cm*.
3

Example 4. Compute 1.02s -01
approximately.

Solution. We consider the function z^x^. The desired number may be
considered the increased value of this function when jc=l, y= 3, Ajc= 0.02,

Ay= 0.01. The initial value of the function z = l
s =l,

In x Ay= 3-1.0.02+ 1- In 1-0.01 =0.06.

Hence, 1.028 -01 ^ 1+0.06=1.06.

1831. For the function f(x,y) = x*y find the total increment
and the total differential at the point (1, 2); compare them if

a) Ax=l, A//-2; b) A* = 0.1 f Ay = 0.2.

1832. Show that for the functions u and v of several (for

example, two) variables the ordinary rules of differentiation holcb

v du udv
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Find the total differentials of the following functions:

1841. z- In tan i.
x

1842. Find df(l, 1), if

K tj) ~*'
1836. z = si

1837. 2=yx?.
1843 - " =

1838. z = ln(x*+y*). 1844. u =

1839. /*, = lnl+i. 1845. u=

1840. 2 = arc tan -2-+ 1846. w =
arctan^.

+ arctan-*.
1847. Find d/ (3, 4, 5) if

1848. One side of a rectangle is a= 10 cm, the other & = 24cm.
How will a diagonal / of the rectangle change if the side a is

increased by 4 mm and b is shortened by 1 mm? Approximate
the change and compare it with the exact value.

1849. A closed box with outer dimensions 10 cm, 8 cm,
and 6 cm is made of 2-mm-thick plywood. Approximate the
volume of material used in making the box.

1850*. The central angle of a circular sector is 80; it is desired
to reduce it by 1. By how much should the radius of the sector

be increased so that the area will remain unchanged, if the orig-
inal leng:h of the radius is 20 cm?

1851. Approximate:

a) (1.02)'- (0.97)
2

; b) . .

c) sin32-cos59 (when converting degrees into radius and
calculating sin 60 take three significant figures; round off the
last digit).

1852. Show that the relative error of a product is approxima-
tely equal to the sum of the relative errors of the factors.

1853. Measurements of a triangle ABC yielded the following
data: side a=-100m2m. side fc = 200m3m, angle
C 601. To what degree of accuracy can we compute the
side c?

1854. The oscillation period T of a pendulum is computed
from the formula
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where / is the length of the pendulum and g is the acceleration

of gravity. Find the error, when determining T, obtained as a

result of small errors A/ = a and Ag= (J
in measuring / and g.

1855. The distance between the points P (* , V and P (x, y)

is equal to Q, while the angle formed by the vector P P with

the x-axis is a. By how much will the angle a change if the

point P(P is fixed) moves to P
l (x + dx, y+ dy)?

Sec. 5. Differentiation of Composite Functions

1. The case of one independent variable* If z f(x, y) is a differentiate

function of the arguments x and y, which in turn are differentiate functions
of an independent variable /,

then the derivative of the composite function z= /[<p(0i ^(01 ma X be com-

puted from the formula

dz ____i
dt '"dxdt^dydt

'

In particular, if / coincides with one of the arguments, for instance x,
then the "total" derivative of the function z with respect to x will be:

dzdy

Example 1. Find ~, if

y, where *= cos/, y t*.

Solution. From formula (1) we have:

e'*+ 2^3(-sinO + *8X+^-2^

Example 2. Find the partial derivative ~ and the total derivative
, if

z= e*y t where y

Solution.
jZ^syety.

From formula (2) we obtain

2. The case of several independent variables. If z is a composite function of
several independent variables, for instance, z = f(x,y), where *=q> (u t v)
y=ty(u t v) (u and v are independent variables), then the partial derivatives z
with respect to u and v are expressed as

dz dy~
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and

dz__dzdx dzdy~~-~ *

In all the cases considered the following formula holds:

. dz . . dz .

dz -j- dx+ 5- dy
dx dy

y

(the invariance property of a total differential).

Example 3. Find ^- and ^- , ifp
du dv

z=:f(x, y), where x=uv, y= .

Solution. Applying formulas (3) and (4), we get:

and

Example 4. Show that the function z= <p (x*+ y
2
) satisfies the equation

* =
dx dy

Solution. The function cp depends on x and y via the intermediate argu-
ment x*+ y*=t, therefore,

dz__dzdt___ 2

and
\z dzdt .

, .
, rt

Substituting the partial derivatives into the left-hand side of the equa-
tion, we get

t/i)2*~^
that is, the function z satisfies the given equation.

1856. Find ~ if

2 =
,
where x= e

t

t y = \nt.
y

1857. Find if

u = lnsin-=, where x = 3t\ y= yt'+l.
f y

1858. Find
j

if

u = xyz, where ^=/I
+l, y=ln^, z
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1859. Find ^ if

r, where x=

I860. Find if

z = uv , where u = sin x, v = cos #,

1861. Find g and ~ if

2 = arc tan and */
= #*.

1862. Find g and ~ if

= xy t where y = <f>(x).

then

1863. Find ~ and j if

z = f(u, v), where a = A:
1

t/

1

, v^e

1864. Find ~ and ~
if

ow oy

2 = arc tan , where x= usmv, //
= a

1865. Find ~ and | if

z = /(u), where w = x^/+ ^.
1866. Show that if

-

3*), where x= R cos 9 cos
\|>>

cos cp sin ip, e = R sin 9,

= and *_a.

1867. Find if

= /(*. y> *). where y= (

1868. Show that if

where / is a differentiable function, then

dz dz
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1869. Show that the function

w = f(u, v),

where u = x+ at, v = y+ bt satisfy the equation

dw dw
,

, dw
dT=a

dt

1870. Show that the function

satisfies the equation + = J

1871. Show that the function

satisfies the equation x-^ + y -^
= j

1872. Show that the function

satisfies the equation (A-

2

y
2

) ^-
+ xy-^

=

1873. The side of a rectangle x -^20 m increases at the rate

of 5 m/sec, the other side f/
= 30 m decreases at 4 m/sec. What

is the rate of change of the perimeter and the area of the rect-

angle?
1874. The equations of motion of a material point are

What is the rate of recession of this point from the coordinate

origin?

1875. Two boats start out from A at one time; one moves
northwards, the other in a northeasterly direction. Their veloci-

ties are respectively 20 km/hr and 40 km/hr. At what rate does
the distance between them increase?

Sec. 6. Derivative in a Given Direction and the Gradient of a Function

1. The derivative of a function in a given direction. The derivative of a

function z = /(#, y) in a given direction /= PP, is

7- 1900
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where f(P) and / (P,) are values of the function at the points P and
If the function z is differentiate, then the following formula holds:

where a is the angle formed by the vector / with the x-axis (Fig. 67).

Y

e^

P(*,y)

Fig. 67

In similar fashion we define the derivative in a given direction / for a

function of three arguments u= f(x, y t z). In this case

du du
,
du

,
du= cos a + 5- cos p + 3- cos v,

dl dx
'

dy
r dz T (2)

where a, P, Y are ^ne angles between the direction / and the corresponding
coordinate axes. The directional derivative characterises the rate of change
of the function in the given direction.

Example 1. Find the derivative of the function z= 2x2
3</

2
at the point

P(l, 0) in a direction that makes a 120 angle with the x-axis.

Solution. Find the partial derivatives of the given function and their
values at the point P:

dz . (dz\ A-. = 4*; 3- =4;
dx \dxjp

dz

Here,

sina= sin 120 =

Applying formula (1), we get

The minus sign indicates that the function diminishes at the given point and
in the given direction.

2. The gradient of a function. The gradient of a function z = f(x, ij) is

3 vector whose projections on the coordinate axes are the corresponding par-
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tial derivatives of the given function:

dz , ,
dz

(3)

The derivative of the given function in the direction / is connected with
the gradient of the function by the following formula:

~

That is, the derivative in a given direction is equal to the projection of the

gradient of the function on the direction of differentiation.

The gradient of a function at each point is directed along the normal to

the corresponding level line of the function. The direction of the gradient of

the function at a given point is the direction of the maximum rate of increase

of the function at this point, thlft is, when /=grad z the derivative
-^

takes

on its greatest value, equal to

In similar fashion we define the gradient of a function of three variables,
u -=/(*, y, z):

du .
,
du .

,
du .

The gradient of a function of three variables at each point is directed along
the normal to the level surface passing through this point.

Example 2. Find and construct the gradient of the function z~x*y at
the point P(I, 1).

X-
2

J X

Fig. 68

_ i 9.

dxjp-
2 -

Solution. Compute the partial derivatives and their values at the point P.

dz sy'*^T" \ .

Hence, grad z = 2t+J (Fig. 68).

7*
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1876. Find the derivative of the function z = x* xy2y*
at the point P(l, 2) in the direction that produces an angle
of 60 with the x-axis.

1877. Find the derivative of the function z = x* 2x*y+ xy* + 1

at the point Af(l, 2) in the direction from this point to the

point tf (4, 6). _
1878. Find the derivative of the function z = lnYx* + y* at

the point P(l, 1) in the direction of the bisector of the first

quadrantal angle.
1879. Find the derivative of the function u = x* 3yz + 5 at

the point Af(l, 2, 1) in the direction that forms identical

angles with all the coordinate axes.

1880. Find the derivative of the function u = xy + yz -)- zx at

the point M(2, 1, 3) in the direction from this point to the

point N(S, 5, 15).

1881. Find the derivative of the function u = \n (e* + eP + e*)

at the origin in the direction which forms with the coordinate

axes x, y, z the angles a, p, y, respectively.
1882. The point at which the derivative of a function in any

direction is zero is called the stationary point of this function.

Find the stationary points of the following functions:

a) z-=x*

b) z = x* + y*-
c) u = 2y*-{ z*xyyz
1883. Show that the derivative of the function z= taken

at any point of the ellipse 2x* + y* = C* along the normal to the

ellipse is equal to zero.

1884. Find grad z at the point (2, 1) if

1885. Find grad z at the point (5, 3) if

1886. Find grad u at the point (1, 2, 3), if u=xyz.
1887. Find the magnitude and direction of grad u at the

point (2, 2, 1) if

1888. Find the angle between the gradients of the function

*=ln-j- at the points A (1/2, 1/4) and 5(1, 1).
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1889. Find the steepest slope of the surface

z = x' + 4y*
at the point (2, 1, 8).

1890. Construct a vector field of the gradient of the following
functions:

a) z = je-f y: c) z = x* + y
z

\

Sec. 7. Higher-Order Derivatives and Differentials

1. Higher-order partial derivatives. The second partial derivatives of a

function z /(*, y) are the partial derivatives of its first partial derivatives.
For second derivatives we use the notations

d (dz\ 32
z

Derivatives of order higher than second are similarly defined and denoted.
If the partial derivatives to be evaluated are continuous, then the result

of repeated differentiation is independent of the order in which the differentia-
tion is performed.

Example 1. Find the second partial derivatives of the function

z~ arc tan
.

y

Solution. First lind the first partial derivatives:

dz
==_J_ m j__ y

dz^ 1_

dy~~ ,
J

Now differentiate a second time:

^L= .
d f y \- 2*y

dz
z .

dxdy~~dydx

dxdy

so-

el

d /

dx(

We note that the so-called "mixed" partial derivative may be found in a

different way, namely:
2

y*
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2. Higher-order differentials. The second differential of a function

z f(x t y) is the differential of the differential (first-order) of this function:

We similarly define the differentials of a function z of order higher than

two, for instance:

d*z= d(d*z)

and, generally,
dz= d(d

n - l

z).

If z= /(x, y), where x and y are independent variables, then the second
differential of the function z is computed from the formula

Generally, the following symbolic formula holds true:

(1)

it is formally expanded by the binomial law.

If z = f (x, (/), where the arguments x and y are functions of one or sev-

eral independent variables, then

"- * + 2

If x and i/ are independent variables, then d2
jt= 0, d2

y= Q, and formula (2)

becomes identical with formula (!)

Example 2. Find the total differentials of the first and second orders of

the function

z= 2;t
2 3xyy2

.

Solution. First method. We have

*-<*-* I*-*.
Therefore,

dz=
fr

Further we have

^-4 J*!L-_ 3 ^l2

djc
2
~

'

djcd^""
'

dy*

whence it follows that

Second method. Differentiating we find

Differentiating again and remembering that dx and dy are not dependent on
x and y, we get

= (4dx 3dj/) dx (3d*+ 2d(/) dy=4dx*6dxdy2dy z
.
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if

1893 . Find if

1894. Find if

A
^ = arc tan . .

1 xy

1895. Find if

1896. Find all second partial derivatives of the function

1897. Find ^~- if

dxdy dz

1898. Find , if

u =

z = sin (xy).

1899. Find f(0, 0), f
xt/

(Q, 0), /^(O, 0) if

=
(l 4

1900. Show that if

= arc sin
y

1901. Show that = if

1902*. Show that for the function
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[provided that f(0, 0) = 0] we have

rxy(' 0)=-1, /;,(0, 0)=+1.

1903 - Find &$"
z= f(u, v),

where u = x*+ y*, v = xy.

1904. Find g if u = f(x, y, z),

where z y(x, y).

z= f(u, v), where u = <((x, y),

1906. Show that the function

u = arc tan

satisfies the Laplace equation

1907. Show that the function

/ = lny ,

where r = Y(x a)* + (y b)\ satisfies the Laplace equation

1908. Show that the function

u (x, t)
= A sin (akt + cp) sin Kx

satisfies the equation of oscillations of a string

d^u_ 2 d^u
dt*

~~~ a
dx2 '

1909. Show that the function

i
(x-x )* + (y-yn)*

u(x ' y > z
> '>- e

(where *
, // , z , a are constants) satisfies the equation of heat

conduction

^a'/^-u^U*^
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1910. Show that the function

where cp and
\|)

are arbitrary twice differentiable functions, satis-

fies the equation of oscillations of a string

1911. Show that the function

satisfies the equation

x

1912. Show that the function

satisfies the equation

2 , , 2 nx 5-,+ 2w -7
r- + y x-,= 0.

dv2 ' y
dxdy

l J
dy*

dsu

1913. Show that the function z = f[x + y(y)] satisfies the equa-
tion

dz d2
2 dzd 2z

dx dx dy
~
dy dx 2 '

1914. Find u-^u(x, y) if

dTSy^^

1915. Determine the form of the function u = u(x, y), which
satisfies the equation

1916. Find d*z if

1917. Find d
2
u if

11 = .

1918. Find d*z if

rn (f} whpr^ / -r y 2
-1- /y*- \l^ \^/F vviitivx t> j\r

| y .

1919. Find dz and d*z if

z = uv where u = ~
,
v = xy.


