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1920. Find d'z if

z~f(u, v), where u = ax, v = by^

1921. Find d*z if

z = f(u, v), where u = xey , v = ye*.

1922. Find d*z if

z = e
x
cos y.

1923. Find the third differential of the function

z = * cos y+ y sin x.

Determine all third partial derivatives.

1924. Find df(l 9 2) and d*f(l, 2) if

f(x, y) = x2 + xy + y* 4\nx \Q\ny.

1925. Find d
2

/(0, 0,0) if

f(x 9 y, z) = x
z

Sec. 8. Integration of Total Differentials

t. The condition for a total differential. For an expression P (x, y)dx-}~

+ Q(* y)dy> where the functions P (x, y) and Q (x, y) are continuous in a

simply connected region D together with their first partial derivatives, to be

(in D) the total differential ol some function u (x, y), it is necessary and suf-

ficient that

aq^ap
dx

~~
dy

'

Example t. Make sure that the expression

is a total differential of some function, and find that function.

Solution. In

= 1, and, hence,

Solution. In the given case, P= 2x+ y t Q x+2y. Therefore, ,5= -- =

where u is the desired function.

It is given that -= 2jt+ #; therefore,

But on the other hand = x+ y' (y)
= x+ 2y, whence q>' (y)= 2y, (p(f/)

=
and

Finally we have
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2. The case of three variables. Similarly, the expression

P(x, y, z)dx+ Q(x, y, z)dy+ R(x t y, z)dz,

where P (x, y, z), Q(x, y, z), R(x, y, z) are, together with their first partial

derivatives, continuous functions of the variables x, y and 2, is the total

differential of some function u (x t y, z) if and only if the following conditions
are fulfilled:

dQ^W dR^dQ dP^dR
dx dy

'

dy dz
'

dz dx

Example 2. Be sure that the expression

is the total differential of some function, and find that function.

Solution. Here, p = 3jc
f+ 30 1, Q=z2+ 3x, R= 2yz+\. We establish

the fact thai

dQ dP dR dQ dP OR= = O . = -r = c . rr = r = V. /

dx dy dy dz dz dx

and, hence,

~

where u is the sought-for function.

We have

hence,

u= (3x
2+ 3y \)dx= x*+ 3xy x+ <p(y, z).

On the other hand,

du dtp
-
3
- = ~

dz dz

whence
y^
= z

2 and ~P= 2f/z+l. The problem reduces to finding the function

of two variables q>(#, 2) whose partial derivatives are known and the condi-

tion for total differential is fulfilled.

We find q>:

that is, y(y, e)
= ^2

2+ 2+ C, And finally,
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Having convinced yourself that the expressions given below
are total differentials of certain functions, find these functions.

1926. ydx+ xdy.

1927. (cosx+3x*y)dx+ (x'y1

)

1928-

1930. -dx^dy.*
y

1931. -
x

dx+ r
y

dy.
* * z

1932. Determine the constants a and 6 in such a manner that

the expression

(ax
2 + 2xy+ y

z

) dx-(x
2+ 2xy + by*) dy

should be a total differential of some function z, and find that

function.

Convince yourself that the expressions given below are total

differentials of some functions and find these functions.

1933.

1934. (3x
2 + 2y* + 3z)dx+(4xy+ 2y z)dy + (3x y 2)dz.

1935. (2xyz3y*z+ 8xy* + 2) dx+
l)dy (x

2

y

xdx+ ydy + zdz

1938*. Given the projections of a force on the coordinate axes

v _. y v _ to

where A, is a constant. What must the coefficient K be for the force
to have a potential?

1939. What condition must the function f(x, y) satisfy for the

expression

f(x, y)(dx + dy)

to be a total differential?

1940. Find the function u if

du = f(xy) (ydx + xdy).
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Sec. 9. Differentiation of Implicit Functions

1. The case of one independent variable. If the equation f(x, y) 0, where
/ (* y) is a differentiate function of the variables x and y, defines y as a

function of x, then the derivative of this implicitly defined function, provided
that f'y (x, y) ?= 0, may be found from the formula

dy= f'x (**y)

dx
f'y(x,y)'

Higher-order derivatives are found by successive differentiation of formula

a)

Example 1. Find - and -~ if

dx dx2

Solution. Denoting the left-hand side of this equation by f (x, y), we find
the partial derivatives

f'u (x t y)-=3(x
z + y

z
)

2
.

(

2y

Whence, applying formula (1), we get

To find the second derivative, differentiate with respect to x the first deriva-
tive \vhich we have found, taking into consideration the fact that y is a func-
tiun of x'

y x -~ y x
(

~
)J dx J

\ y J

dx 2
dx\ y J y

2
y
2

if
'

2. The case of several independent variables. Similarly, if the equation
F (x, y, z) 0, where F (x, y, z) is a differentiate function of the variables
x, y and z, defines z as a function of the independent variables x and y and

F
z (x t y, z) ^ 0, then the partial derivatives of this implicitly represented

function can, generally speaking, be found from the formulas

dK F'
z (x, y, z)

'

dlJ F'
g (x, y, z)

Here is another way of finding the derivatives of the function z: different^

ating the equation F (x, y, z)=0, we find

dF
_, ,

dF J ,
dF , rt

Whence it is possible to determine dz, and, therefore,

dz . dz
TT- and 3- .

dx dy
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Example 2. Find -T- and
j-

if

Solution. First method. Denoting the left side of this equation by F (x, //, z),

we find the partial derivatives

F'x (x, y, z)
= 2x, F'

y (x, y, z) = 40-z+l, F
z (x, y, 2)

= 6z-0.

Applying formulas (2), we get

dz _ F'x(x> y. *) _ 2x dz^ Jy(*. !/, 2) ^ 1 4// z

d*~ F'
z (x t y, z)

~~
6* y

'

dy~ ^ (x> ^ z)

~"
62 /

Second method. Differentiating the given equation, we obtain

2x dx 4f/ dy+ 6zdz y dz zdy+ dy= 0.

Whence we determine dz t that is, the total differential of the implicit func-

tion:

\ 4// z}dy

Comparing with the formula dz=
-Q-

dx -\-
~ dy ,

we see that

dz 2x dz \4yz
dx y 6z

'

dy y 62

3. A system of implicit functions. If a system of two equations

f F(x, y, u
t i>)

= 0,

\ G(x, y, u, o) =

defines u and v as functions of the variables x and y and the Jacobian

D(F, G)

D(u, v)'

dF_ dF_
dudv
dGdG
du dv

then the differentials of these functions (and hence their partial derivatives
as well) may be found from the following set of equations

'dF
,, t

dF .
,
dF .

,

dF . .

^- dx + -z- dy+ -^~ du+ ^- dv =0,
dx

^
dy

y ^du ^ dv /Q.

dG
3- -r~ -^--- 3-

,
dx l

dy
y *

du ' dv

Example 3. The equations

define u and v as functions of x and w; find -,,- and rr? .^
dx dy dx dy
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Solution. First method. Differentiating both equations with respect to #
we obtain

du . dv

whence

Similarly we find

?ff __
u ~^~y dv __ u-\-x

dx~~ x y
'

dx~~ x y
'

du _ v + y dv _
dy~~ x y

'

dy~~~ x y
*

Second method. By differentiation we find two equations that connect the

differentials of all four variables:

du 4- dv = dx + dy,

x du + u dx + y dv + v dy =4).

Solving this system for the differentials du and dv, we obtain

Whence
xy

_
dx x y

'

t)f/ x y
f

(}y__-f-x dv _ v -}-x

dx~~xy
'

dy~~x y
'

4. Parametric representation of a function. If a function z of the varia-

bles x and y is represented parametrically by the equations

and
z= z(u, v)

then the differential of this function may be found from the following system
of equations

dx , ,
dx .

dx 5~du-\--5- dv,
du dv

dz
x-du

dz

dv

.

dv.

Knowing the differential dz^p d* + qdy, we find the partial derivatives

dz . dz
^~=p and 3- ~^.dx r

dy
^
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Example 4. The function z of the arguments x and y is defined by the

equations

_. , dz , dz
Find ^- and 3- .

ox dy
Solution. First method. By differentiation we find three equations that

connect the differentials of all five variables:

dx= du + dv ,

From the first two equations we determine du and dv:

20 dx dy , _ dy 2u dx"^
2(v u)

'

2(u w)
'

Substituting into the third equation the values of du and rfy just found, we
have:

dy d

6wu (u=-'

Whence

3-
= 3au, 3- =TT (w-fy).

^jc dt/ 2
v ;

Second method. From the third given equation we can find

*=3Jf +3^; f
= 3'Jf + 3t,'f!. (5)^ dx dx dy dy

l

dy
^ '

Differentiate the first two equations first with respect to x and then with
respect to y:

f .

dx dy dy

From the first system we find

du___
v dv __ u

dx~~ v a' dx~ u v

From the second system we find

da=_l__ dv_ 1

dy~~2(u v)' dy~~2(vu)'

Substituting the expressions ~ and ~ into formula (5), we obtain
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1941. Let y be a [unction of x defined by the equation

y*

Find dy dhj and ^* ma
di' d? ana

dx"'

1942. y is a function defined by the equation

Show that ^ = and explain the result obtained.

1943. Find % if y=\+yx
.

1944. Find ^ and g if y = A;

1945. Find (g) and (g) if

\ax J K~\ \ax
z
jx=i

Taking advantage of the results obtained, show approximately
the portions of the given curve in the neighbourhood of the point
*=1.

1946. The function y is defined by the equation

In|?T72 = arc tan

and
dx dx*

1947. Find and if
dx dx z

1948. The function z of the variables x and y is defined by
the equation

x
9

-1- 2//
s 4 z

8

3;q/z 2r/+ 3 = 0.

c,. j ^2 , ^2
Flnd

5i
and

%-

1949. Find ~ and ^ if
dx dy

A: cosy -|- y cos 2 +zcosx= 1.

1950. The function z is defined by the equation

x* + y
2

z
2

xy = 0.

Find ^ and
-j-

for the system of values *== 1, //
= 0, z = l.
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1QR1 KinA dz dz &* d*
2 d*Z

if1951. Fmd, , l> , , if

1952. /(*, y,z) = 0. Show

1953. 2 = (p(x, y), where y is a function of x defined by the

equation ty(x, f/)
= 0. Find ~.~.

1954. Find dz and d
2

z, if

1955. 2 is a function of the variables x and # defined by the

equation
2x* + 2y* -4- z* 8xz z + 8 - .

Find dz and d
2
z for the values x = 2, f/^=0, 2^=1.

1956. Find dz and d
2

2, if In z=jc + i/ 4-2 1. What are the

first- and second-order derivatives of the function 2?

1957. Let the function 2 be defined by the equation

where <p is an arbitrary differentiate function and a, &, c are

constants. Show that

1958. Show that the function 2 defined by the equation

F(x 02, y bz) Q,

where F is an arbitrary differentiate function of two arguments,
satisfies the equation

a-+b - = 1

1959. f(y , y)
= 0. Show that xfx+y~ = z.

1960. Show that the function 2 defined by the equation
y = xq> (z) + o|> (2) satisfies the equation

d*zf(

1961. The functions y and 2 of the independent variable x are

defined by a system of equations *2 +#2
2
2

^0, x2 + 2#
2 + 32

2 = 4.
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1962. The functions y and z of the independent variable x are

defined by the following system of equations:

Find dy, dz, d*y, d*z.

1963. The functions u and v of the independent variables x and y
are defined implicitly by the system of equations

Calculate

du du d*u d2u dzu dv dv 62v d*v dzv

~dy
2 ' dx' d~y

'
~d\*' dxdy

j

dy*

for x=--Q, y 1.

1964. The functions u and v of the independent variables x
and y are defined implicitly by the system of equations

Find du, dv, d*u, d*v.

1965. The functions u and v of the variables x and y are

defined implicitly by the system of equations

.v = (p(w, v), //=-i|)(w, v).

du du du (b

51' cty' d~x> fy'

1966. a) Find ^ and
g? , if x = M cos u, y w sin u, 2 =

b) Find and ~
y

\l x = u + v, y = u v,z = uv.

c) Find dz, if jc=
, ,

.

1967. e = F(r, cp) where r and <p are functions of the variables

x and y defined by the system of equations

Find
2
and .

ax dy

1968. Regarding z as a function of x and y, find ~ and ~, if

x= a cos q) cos i|), y= b sincpcosij), z =

Sec. 10. Change of Variables

When changing variables in differential expressions, the derivatives in

them should be expressed in terms of other derivatives by the rules of differ-

entiation of a composite function.
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\. Change of variables in expressions containing ordinary derivatives.

Example 1. Transform the equation

dx x2 y

putting *=
y-

Solution. Express the derivatives of y with respect to x in terms of the

derivatives of y with respect to /. We have

dy dy
dt dt

dx dx _
dt t*

dt
'

dt

Substituting the expressions of the derivatives just found into the given

equation and replacing x by -r- ,
we get

or

dt*
ruij -"'

Example 2. Transform the equation

xg+^y_g=0 .

taking y for the argument and x for the function.
Solution. Express the derivatives of y with respect to x in terms of the

derivatives of x with respect to y.

dx^Jx''

dy

\

dx* dx{ dx
}

dyl dx \dx~~ fdx\
2

'

dx
"~

fdx\*
'

^ -
(Ty)

-
\ dy J dy (dy)

Substituting these expressions of the derivatives into the given equation, we
will have

d*x

dj

dy

1 L=o
' dx

'

\dy dy
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or, finally,

Example 3. Transform the equation

dx ~xy'

by passing to the polar coordinates

,v=rcoscp, f/
=

rsinq>. (1)

Solution. Considering r as a function of cp, from formula (1) we have

dx= cos cp dr r sin cp dcp, d// = sin cp dr+ r cos cp dcp,

whence
dr

,

. . . . , sin cp
-

\
r cos (p

d//_sm cp dr -f r cos cp dcp __
r
dcp

Y

3J cos cp dr r sin cp d(p

~~
drT T r

cos cp
--- r sin q)

Putting into the given equation the expressions for x, //, and
-^ , we will have

sin cp 3- -f r cos cp

d<P
^
_rcos cpH- rsm cp

dr rcoscp rsincp*
coscp

- -- r sin cp

or, after simplifications,

2 Change of variables in expressions containing partial derivatives.

Example 4. Take the equation of oscillations of a string

and change it to the new independent variables a and p, where a= .v at,

Solution. Let us express the partial derivatives of u with respect to x and t

in terms of the partial derivatives of u with respect to a and p. Applying
the formulas for differentiating a composite function

du___du da, du dp du__du da du dp

di^dadT^d^dT
9

^dadx^dfidi
1

we get

du du
, ^ ,

du (du du\
^T-=^( a) + -35" Q a is 3~ I

d/ da dp \dp day

du__du du _^_,^f^'^ ^'
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Differentiate again using the same formulas:..
dt 2 ~~dt dt~~dadt

d2u d2
u\, x , (d

2u d*u

dzu

dx*~dx\dx) da\dx

_d2u d*u d'u

/)ft 8 ' rtn /)ft
' /}R2

'

Substituting into the ^iven equation, we will have

2
/d2a d2u d2u\ Jd2u d2u d*u\

d2u
r
= 0.

Example 5. Transform the equation x2

^-+ y
2

-g-

= z
2

, taking =
,v, v ~

-= for the new independent variables, and w for the new
y x *

z x
function.

Solution. Let us express the partial derivatives
y-

and ~ in terms of the

partial derivatives ^~ and
^

. To do this, differentiate the given relation-

ships between the old and new variables:

dx dy dx dz
u x

t
v
-^^,

oy_
^
2

.

On the other hand,
dw dw

dw= :; du ~\ dv
du dv

Therefore,
dw

, ,
dw , dx dz

-3- du + -5- dv = =
du dv x2 z

2

or

dw , i^w_f^x__m dy\^,^x. &*_

Whence
dw 1 dw\ , .

z
2 dw .

and, consequently,

dz^_ 2
/ J dw 1 dw \

dx~~ \x
z ~~du

~~
x*dv J
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and

dz __ z^ dw

dy~~y
2 dv

'

Substituting these expressions into the given equation, we get

or

1969. Transform the equation

x
2
j--

putting x=--e*.

1970. Transform the equation

putting A: cos/.

T

rm 69

1971 Transform the following equations, taking y as the ar-

gument:

1972. The tangent of the angle [A formed by the tangent line

MT and the radius vector OM of the point of tangency (Fig. 69)
is expressed as follows:

tan u=^
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Transform this expression by passing to polar coordinates:

1973. Express, in the polar coordinates x= r cos q>, y = r sin cp,

the formula of the curvature of the curve

1974. Transform the following equation to new independent
variables u and v:

dz dz n

*-*3&= '

if u = x
t
v = x

2 + y
2

.

1975. Transform the following equation to new independent
variables u and v:

dz . dz ~

if 11 = x, 0=-p
1976. Transform the Laplace equation

<Fu
, dM_ n

dx*~*'dy
z
~-"

to the polar coordinates

A:= rcoscp, y = rsm<p.

1977. Transform the equation

2 ^2_ 2 ^__X
dx* y

ar/
2
~ U>

putting u=*xy and y = .

1978. Transform the equation

dz dz ,

yTx- K
jy=(y-^ z

>

by introducing new independent variables

and the new function w=\nz (x+ y).
1979. Transform the equation

dx*

taking u = x+ y, v = ^ for the new independent variables and

>= for the new function.
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1980. Transform the equation

putting u = x+y, v = x y, w= xyz, where w=w(u, v).

Sec. 11. The Tangent Plane and the Normal to a Surface

1. The equations of a tangent plane and a normal for the case of explic-
it representation of a surface. The tangent plane to a surface at a point M
(point of tangency) is a plane in which lie all the tangents at the point M to

various curves drawn on the surface through this point.
The normal to the surface is the perpendicular to the tangent plane at the

point of tangency
If the equation of a surface, in a rectangular coordinate system, is given

in explicit form, z f (x, y), where f (x, y) is a differentiate function, then
the equation of the tangent plane at the point M (x , f/ ,

z ) of the surface is

z-*o=/i(* . 0o)(X-*o) + /i(*o, )0r

-0o). (i)

Here, z f (x , t/ ) and X, K, Z are the current coordinates of the point of

the tangent plane.
The equations of the normal are of the form

where .Y, F, Z are the current coordinates of the point of the normal.

Example 1. Write the equations of the tangent plane and the normal to

the surface z= y
2 at the point M (2, 1,1).

Solution. Let us lind the partial derivatives of the given function and
their values at the point M

<k = v (fo\ =2
dx

'
'

\dxjM

*~
Whence, applying formulas (1) and (2), we will have z 1 =2(* 2) + 2 (r/-|- 1)

or 2x-|-2f/ z 10 which is the equation of the tangent plane and
^

==

= ^-i- = -, which is the equation of the normal.

2. Equations of the tangent plane and the normal for the case of implic-
it representation of a surface. When the equation of a surface is represented
implicitly,

and F (XQ , t/ ,
z )
= 0, the corresponding equations will have the form
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which is the equation of the tangent plane, and

XXQ _ YyQ _ ZZQ
F'X (**, y * ) Fy (*0> 00. *0) F'z (*0. J/0. Z0)

which are the equations of the normal.

Example 2. Write the equations of the tangent plane and the normal to

the surface 3;q/z z
s= a8 at a point for which x = 0, z/

= a.

Solution. Find the z-coordinate of the point of tangency, putting x = 0,

.j/
= a into the equation of the surface: z* = a8

, whence z= a. Thus, the

point of tangency is M (0, a, a).

Denoting by F (x, y, z) the left-hand side of the equation, we find the

partial derivatives and their values at the point Af:

Applying formulas (3) and (4), we get

or ^-(-z+ a=:0, which is the equation of the tangent plane,

x Qj/ a

or ~r~ n
=

i
'
wn ^cn are ^ne eq ua ^ions of the normal.

1981. Write the equation of the tangent plane and the equa-
tions of the normal to the following surfaces at the indicated

points:

a) to the paraboloid of revolution z = x*+y
2

at the point
0- ~ 2 '

5 ) ;

b) to the cone ^+ -^ y-
= at the point (4, 3, 4);

c) to the sphere x*+y* + z
2 = 2Rz at the point (ffcosa,

/?sina, /?).

1982. At what point of the ellipsoid

y2 f.2
~2

_4. f_4.- __ 1

a2 ^ b2 ^ c2
"" *

does the normal to it form equal angles with the coordinate axes?
1983. Planes perpendicular to the A:- and #-axes are drawn

through the point M (3, 4, 12) of the sphere x* + y* + z* = 169.

Write the equation of the plane passing through the tangents to

the obtained sections at their common point M.
1984. Show that the equation of the tangent plane to the

central surface (of order two)

ax2 + by
2

-\-cz
2 = k
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at the point M (x , # ,
z ) has the form

1985. Draw to the surface x
2 + 2tf + 3z

2 = 21 tangent planes
parallel to the plane x+ 4</4 6z = 0.

1986. Draw to the ellipsoid ^a+fi+ 'T^l a tangent plane

which cuts off equal segments on the coordinate axes.

1987. On the surface je
2 +y2

z* 2*^=0 find points at which
the tangent planes are parallel to the coordinate planes.

1988. Prove that the tangent planes to the surface jq/z
= ms

form a tetrahedron of constant volume with the planes of the

coordinates.

1989. Show that the tangent planes to the surface }/

r

x-\-\/
f
y +

-\ \/ z^Ya cut off, on the coordinate axes, segments whose sum
is constant.

1990. Show that the cone
^-i-f!

=
-^

and the sphere

are tangent at the points (0, b,c).
1991. The angle between the tangent planes drawn to given

surfaces at a point under consideration is called the angle between
two surfaces at the point of their intersection.

At what angle does the cylinder x*-\-y* = R* and the sphere

(x-R)
2

!-</'+z
2 -# 2

intersect at the point Affy, ^-^, OJ?
1992. Surfaces are called orthogonal if they intersect at right

angles at each point of the line of their intersection.

Show that the surfaces x*+y* + z* = r
t

(sphere), y = xiany
(plane), and z

2 =
(** + y*)ian*-ty (cone), which are the coordinate

surfaces of the spherical coordinates r, cp, tj?, are mutually ortho-

gonal.
1993. Show that all the planes tangent lo the conical surface

z^xf(~ )
at the point M (,v , // , z ), where x + 0, pass through

\ * /

the coordinate origin.
1994*. Find the projections of the ellipsoid

/' + z
1

xy 1=0

on the coordinate planes.
1995. Prove that the normal at any point of the surface of

revolution z = /(/^
2 + f/

a

) (/' + 0) intersect the axis of rotation.
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Sec. 12. Taylor's Formula for a Function of Several Variables

Let a function f (x, y) have continuous partial derivatives of all orders

up to the (rc+l)th inclusive in the neighbourhood of a point (a, b). Then

Taylor's formula will hold in the neighbourhood under consideration:

-a) + f'y (a, b)(y-b)] +

where

In other notation,

) +
-Jy

[/tfX if

...+[^^

or

-j
df (x, y) + rf

2
/ (x, y) + . . .

The particular case of formula (1), when a b Q, is called Maclaunn's

formula.
Similar formulas hold for functions of three and a larger number of

variables.

Example.' Find the increment obtained by the function f (x, y) = A 3

when passing from the values *= 1, y 1 to the values *,-- 1 -{-//,

Solution. The desired increment may be found by applying formula (2).
First calculate the successive partial derivatives and their values at the

given point (1, 2):

/; (1,2) = 3- 1+3.2=9,

x
f /;il,2)=-6.4 + 3.1 = -21

f

fxx (\, 2) = 6-l=6
f

^(1,2)= -12.2= -24,
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All subsequent derivatives are identically zero. Putting these results

into formula (2), we obtain:

~
[/i

2
-64-2/z k- 3-f fc

2
( 24)) +

^y [/i
8

- G + 3/z
2
fc. + 3/ife

2
-0-f *'( 12)]

1996. Expand f (x i ft, y + k) in a series of positive integral

powers of h and fe if

1997. Expand the function f (x, y) = *2 + 2xy + 3y* 6x

2/y 4 by Taylor's formula in the neighbourhood of the point
(-2, 1).

1998. Find the increment received by the function f(x,y)~
^-x*y when passing from the values x=l, {/=! to

1999. Expand the function f(x, y, z)
= Jc'-fy

1 + 2* +2xy yz
4* 3# z-l-4 by Taylor's formula in the neighbourhood of

the point (1, 1, 1).

2000. Expand f (x t ft, //-J fr, z-| /) in a series of positive in-

tegral powers of /?, k, and /, if

/ (x, y, z)
=--= x

2
* // 4

- z
2

2jr// 2A:e 2yz.

2001. Expand the following function in a Maclaurin's series

up to terms of the third order inclusive:

/(.Y, //)
= ?* sin//.

2002. Expand the following function in a Maclaurin's series

up to terms of order four inclusive:

/ (x, //)
= cos x cos y.

2003. Expand the following function in a Taylor's series in
the neighbourhood of the point (1, 1) up to terms of order two
inclusive:

/(*. {/)
=

{/*

2004. Expand the following function in a Taylor's series in
the neighbourhood of the point (1, 1) up to terms of order
three inclusive:
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2005. Derive approximate formulas (accurate to second -order

terms in a and P) for the expressions

if |a| and |p| are small compared with unity.
2006*. Using Taylor's formulas up to second-order terms,

approximate

a) 1/T03; ^O98; b) (0.95)
2 - 01

.

2007. z is an implicit function of x and y defined by the

equation z
9

2xz + y = 0, which takes on the value z= 1 for x= 1

and y=l. Write several terms of the expansion of the function

z in increasing powers of the differences x\ and y 1.

Sec. 13. The Extremum of a Function of Several Variables

1. Definition of an extremum of a function. We say that a function

f(x,y) has a maximum (minimum) f (a, b) at the point P (a, b), if for all

points P' (x, y) different from P in a sufficiently small neighbourhood of P
the inequality /(a, b) > f(x, y) [or, accordingly, /(a, b) < f (x t y)] is fulfilled.

The generic term for maximum and minimum of a function is extremum.
In similar fashion we define the extremum of a function of three or more
variables.

2. Necessary conditions for an extremum. The points at which a diffe-

rentiate function f (x, y) may attain an extremum (so-called stationary points)
are found by solving the following system of equations:

t'x (x. 0)-0, f'
t/
(x t y)-Q (1)

(necessary conditions for an extremum). System (I) is equivalent to a single
equation, df(x, #) 0. In the general case, at the point of the extremum
P (a, b), the function f (x, y), or df (a, ft)

= 0, or df (a, b) does not exist.

3. Sufficient conditions for an extremum. Let P (a, b) be a stationary
point of the function f(x, y), that is, df (a, &)- 0. Then: a) if d*f (a t b) <
for dxz + dy*>Q t then /(a, b) is the maximum of the function f(x, //); b) if

dz
f(a, ft)>0 for d* 2

-}- di/
2 > 0, then /(a, b) is the minimum of the function

/(* 0); c ) if d2
/(a, ft) changes sign, then f (a, b) is not an extremum of /(v, //).

The foregoing conditions are equivalent to the following: let f[ (a, b)----

=
f'y (a, ft) -0 and A=fxx (a, ft), B~fxy (a, ft), C =

/^(ci, ft). We form the

Then: I) if A > 0, then the function has an extremum at the point
P(a, ft), namely a maximum, if A < (or C < 0), and a minimum, if A >
(or C>0); 2) if A < 0, then there is no extremum at P (a t ft); 3) if A==0.
then the question of an extremum of the function at P (a, ft) remains open
(which is to say, it requires further investigation).

4. The case of a function of many variables. For a function of three or
more variables, the necessary conditions for the existence of an extremum



Sec. 13]_The Extremum of a Function of Several Variables_223

are similar to conditions (1), while the sufficient conditions are analogous to

the conditions a), b), and c) 3.

Example 1. Test the following function for an extremum:

Solution. Find the partial derivatives and form a system of equations (1):

or

r **+ (/*_5-0,
\ xy 2= 0.

Solving the system we get four stationary points:

P,(l,2); Pt (2, 1); P,(-l,-2); P 4 (_2,-1).

Let us find tiie second derivatives

d2
z c d2

z r d*z c
a- = 6.v, 3 T-= 6r/, T-2= 6x
dx2

dxdy
y

dy
2

and form the discriminant A=^/4C B 2
for each stationary point.

1) For the pomt P
t

: A = (g} =6. B = (fL\ =12, C=(g) =
\dx 2

Jp l \dxdyjp, \dy
2
J p,

= 6, A^=4C 2= 36 144 < 0. Thus, there is no extremum at the point P,.

2) For the point P 2 : 4 --12, B^6, C-12; A = 144 36 > 0, /I > 0. At P 2

the function has a minimum. This minimum is equal to the value of the

function for A -2, y~\'
) 3012^28.

3) For the point P9 : ^-6, fi--- 12, C^ 6; A = 36 144 < 0. There
i no extremum.

4) For the point P 4 : ^- 12, B = 6, C= 12; A = 144 36 > 0, A < 0.

At the point P 4 the function has a maximum equal to 2ma x ^ 6-f-30-{-

4- 12 ---28

5*. Conditional extremum. In the simplest case, the conditional extremum
of a function /(A, //) is a maximum or minimum of this function which is

attained on the condition that its arguments are related by the equation
<|)(jr, w) (coupling equation). To find the conditional extremum of a func-

tion /(A-, //), given the relationship q> (A-, i/)
= we form the so-called Lagra<ige

function

F(A-, y)-=f(

where X is an undetermined multiplier, and we seek the ordinary extremum
of this auxiliary function. The necessary conditions for the extremum reduce
to a system of three equations:

with three unknowns x, t/, X, from which it is, generally speaking, possible
to determine these unknowns.
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The question of the existence and character of a conditional extremum is

solved on the basis of a study of the sign of the second differential of the

Lagrange function:

-
yi

dx2
dxdy

y
dy

2

for the given system of values of x, y, h obtained from (2) or the condition

that dx and dy are related by the equation

Namely, the function / (x t y) has a conditional maximum, if d*F <: Q, and a

conditional minimum, if d2F > 0. As a particular case, if the discriminant A
of the function F (x, y) at a stationary point is positive, then at this point
there is a conditional maximum of the function / (x, y), if A < (or C < 0),

and a conditional minimum, if A > (or C > 0)
In similar fashion we find the conditional extremum of a function of

three or more variables provided there is one or several coupling equations
(the number of which, however, must be less than the number of the variables)
Here, we have to introduce into the Lagrange function as many undetermined

multipliers factors as there are coupling equations.
Example 2. Find the extremum of the function

z=:6 4* 3y

provided the variables x and y satisfy the equation

x*-\-y*=\

Solution. Geometrically, the problem reduces to finding the greatest and
least values of the e-coordinate of the plane z 6 4.v 3y for points of its

intersection with the cylinder ji
2
-f//

2 =l
We form the Lagrange function

F(x, y)--=6 4x-3f/-l-M*
2
-|-{/

2
1).

***-
following system of equations:

We have T=~ 4+ 2>jr,
-= 3 + 2X#. The necessary conditions yield the

i

:

Solving this system we find

i - 5 _ 4

^-"2"'
X
'-~5~'

and

____^_ ___
2
~"

2
1 ^~""5" f

Since

dx 2 -*"'
dxdy

it follows that

=0,
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54 3~__ x -=- and /
= --, thend2

/7 >0, and, consequently, the function
2 o o

has a conditional minimum at this point. If K-
5 4^3
-^ , x= -- and f/

= -=- ,

Z O D
then d zF <Q, and, consequently, the function at this point has a conditional
maximum.

Thus,

z max= 6+ i5+ -=ll,

6. Greatest and smallest values of a function. A function that is diffe-

rentiable in a limited closed region attains

its greatest (smallest) value either at a sta-

tionary point or at a point of the boundary
of the region.

Example 3. Determine the greatest and
smallest values of the function

70

in the region

A'<0, [/<0, x + y^z 3

Solution. The indicated region is a tri-

angle (Fig. 70).

1) Let us find the stationary points:

I
z'
K
~ 2xy \- 1=0,

|
7

{J

^ 2y x -}-1^0;

whence x-= 1, //-= 1; and we get the point M ( 1, 1)

At A1 the value of the function ZM = 1 It is not absolutely necessary
to test for an cxtrcmum

2) Let us investigate the function on the boundaries of the region.
When A we have 2=

[/

2
-f-f/, and the problem reduces to seeking the

greatest and smallest values of this function of one argument on the interval

3^//^0. Investigating, we find that
(2g r )x=0= 6 at the point (0, 3);

(2sm ) v_ = at the point (0,
l

l^)

When //~0 we get z xz
-\-x. Similarly, we find that

(2g r)v=0
= 6 at the

point (3,0); (Zsm)y=*
= T" at thc Point (~ V 2 ' )

When x-[-y 3 or //-= 3 A- we will have z= 3A2
-f-9A'-j-6. Similarly

3 / 3 3 \
we find that (z&m )x +,,^^^~r at the point (

-^
,

~
J

; (2gr )

metres coincides with (zgr )x=o anc^ (^r).jf=o- ^n *ne straight line jc + ^= 3
we could test the Function for a conditional extremum without reducing to

a function of one argument.
3) Correlating all the values obtained of the function z, we conclude

that z
gr
= 6 at the points (0, 3) and (3, 0); zsm= 1 at the stationary

point M.

8-1900
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Test for maximum and minimum the following functions of

two variables:

2008. z= (x \)*+2y*.

2009. z = (x I)
2

2y*.

2010. z = x* + xy+ tf 2x y.

2011. z=*y (6 xy)(x>0 9

2012. 2 = x4 + y
4

2x*+4xy 2y
z

.

2013. z = x

2014. z=l
2015. z= (

20,6. 2 =

Find the extrema of the following functions of three variables:

2017. a = x2 + f/

2 +z2

xy+ x 2z.

2018. =^++ + -(^>0, y>0, z>0).

Find the extrema of the following implicitly represented func-

tions:

2019*. x* + y* + z* 2x+4y 62 11=0.

2020. x
9 y*3x+ 4y + z* + z 8= 0.

Determine the conditional extrema of the following functions:

2021. z = xy for *

2022. z^=x + 2y for

2023. z = x* + if for + -=

2024. z = cos
2
A:+ cos

a

f/ for// A: = ~-.

2025. W = A: 2y + 2z for A:
2 + r

2026. ^ = ^
2+ f/

2 + 2
8

for - + -

2027. u = xtfz* for .v-f-y + z= 12(jc>0,
2028. u^xyz provided x-(~j/+e=5, xy+yz+zx=8.
2029. Prove the inequality

if x^zQ

Hint: Seek the maximum of the function u= xyz provided
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2030. Determine the greatest value of the function z=l+x+ 2y
in the regions: a) x>0, y^*0, x+y^l\ b)

2031. Determine the greatest and smallest values of the func-

tions a) z = x*y and b) z = #* y
2

in the region x?+y
2
*^l.

2032. Determine the greatest and smallest values of the func-

tion z = sinx-h sin y-f- sin (x+ y) in the region O^jt^-2.-

2033. Determine the greatest and smallest values of the func-

tion z = x' + y* 3xy in the region 0^x^2, 1 ^

Sec. 14. Finding the Greatest and Smallest Values of Functions

Example t. It is required to break up a positive number a into three

nonnegative numbers so that their product should be the greatest possible.
Solution. Let the desired numbers be x, y, a x //. We seek the maxi-

mum of the function / (x, y) xy(a x y).

According to the problem, the function / (x, y) is considered inside a
closed triangle x^O, y^zQ, x+y^a (Fig. 71).

Fig. 71

Solving the system of equations

f'(x,

we will have the unique stationary point (-TTI T j
^or *ne

triangle. Let us test the sufficiency conditions. We have

of the

> (/)
= 20, f (x, y)=a2x2y, f" (x, /)

=
IXIf yy'
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Consequently,

And so at
f-g-, ~) the function reaches a maximum. Since f(x, */)=0 on

the contour of the triangle, this maximum will be the greatest value, which

is to say that the product will be greatest, if x= y = a x //
= --, and the

a 3

greatest value is equal to
-^=-

.

Note The ploblem can also be solved by the methods of a conditional

extremum, by seeking the maximum of the function u = xyz on the condition
that x+ y + z= a.

2034. From among all rectangular parallelepipeds with a

given volume V, find the one whose total surface is the least.

2035. For what dimensions does an open rectangular bathtub
of a given capacity V have the smallest surface?

2036. Of all triangles of a given perimeter 2p, find the one
that has the greatest area.

2037. Find a rectangular parallelepiped of a given surface S
with greatest volume.

2038. Represent a positive number a in the form of a product of

four positive factors which have the least possible sum.
2039. Find a point M (x, y), on an x^- plane, the sum of

the squares of the distances of which from three straight lines

(x = Q, f/
= 0, x y+l=0) is the least possible.

2040. Find a triangle of a given perimeter 2p, which, upon
being revolved about one of its sides, generates a solid of

greatest volume.
2041. Given in a plane are three material points P, (x lf # t ),

P*(xz' #2)* ^i(*> #3) with masses m
lf m 2 ,

m
3

. For what position
of the point P(x, y) will the quadratic moment (the moment of

inertia) of the given system of points relative to the point P

(i.e., the sum m.P.P
2 +m 2

P
2
P 2 +m 3

P
3
P 2

) be the least?

2042. Draw a plane through the point M (a, b
t c) to form

a tetrahedron of least volume with the planes of the coordinates.

2043. Inscribe in an ellipsoid a rectangular parallelepiped of

greatest volume.
2044. Determine the outer dimensions of an open box with a

given wall thickness 8 and capacity (internal) V so that the

smallest quantity of material is used to make it.
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2045. At what point of the ellipse

r2 w 2

-T-+ TT-1a2 '

b z

does the tangent line to it form with the coordinate axes a tri-

angle of smallest area?

2046*. Find the axes of the ellipse

5x2

-f- 8xy+ 5tf = 9.

2047. Inscribe in a given sphere a cylinder having the

greatest total surface.

2048. The beds of two rivers (in a certain region) approxi-

mately represent a parabola y = x* and a straight line x y 2 = 0.

It is required to connect these rivers by a straight canal of least

length. Through what points will it pass?
2049. Find the shortest distance from the point M(l, 2, 3)

to the straight line

x __ y _ 2

1

~~
3
~~

2
'

2050*. The points A and B are situated in different optical
media separated by a straight line (Fig. 72). The velocity of

*1

Fii<. 72 Fig. 73

light in the first medium is v
l9

in the second, v
2

. Applying the

Fermat principle, according to which a light ray is propagated
along a line AMD which requires the least time to cover, derive

the law of refraction of light rays.
2051. Using the Fermat principle, derive the law of reflection

of a light ray from a plane in a homogeneous medium (Fig. 73).
2052*. If a current / Hows in an electric circuit containing a

resistance /?, then the quantity of heat released in unit time is

proportional to /
2

/?. Determine how to divide the current / into
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currents /
t , 7

2 , /, by means of three wires, whose resistances are

#i #a R*> so that the generation of heat would be the least

possible?

Sec. 15. Singular Points of Plane Curves

1. Definition of a singular point. A point Af (xc , yQ)
of a plane curve

f(x, #)= is called a singular point if its coordinates satisfy three equations
at once:

2. Basic types of singular points. At a singular point M (* , # ), let the

second derivatives

be not all equal to zero and

A= /1C-B 2
,

then:

a) if A>0, then M is an isolated point (Fig. 74);

b) if A<0, then M is a node (double point) (Fig. 75);

c) if A= 0, then M is either a cusp of the first kind (Fig. 76) or of the

second kind (Fig. 77), or an isolated point, or a tacnode (Fig. 78).

Fig. 74 Fig. 75

When solving the problems of this section it is always necessary to draw
the curves.

Example 1. Show that the curve y
z= ax*+ x* has a node if a > 0; an

isolated point if a < 0; a cusp of the first kind if a= 0.

Solution. Here, f (x, y)z=zax
2+x'yz

. Let us find the partial derivati-
ves and equate them to zero:

fx (x, t/)
=



Sec. 15] Singular Points of Plane Curves 231

This system has two solutions: 0(0, 0) and N ( --~a t Oj,'btit
the

coordinates of the point N do not satisfy the equation of the given curve.

Hence, there is a unique singular point (0, 0).

Fig. 76 Fig. 77 Fig. 78

Let us find the second derivatives and their values at the point 0:

, 4=20,

0=0,

Pig. 79

fa>0

a =0

Fig. 80 Fig. 81

Hence,

if a>0, then A<0 and the point is a node (Fig. 79);

if a < 0, then A > and is an isolated point (Fig. 80);

if a--^0, then Aj^O. The equation of the curve in this case will be

{/

2= x8 or #= Y^\ y exists only when Jc^O; the curve is symmetric
about the x-axis, which is a tangent. Hence, the point M is a cusp of the

first kind (Fig. 81).
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Determine the character of the singular points of the follo-

wing curves:

2053. y* = x* -\-x\

2054. (y x8

)

2 = *5
.

2055. ay=aV-x'.
2056. jtyjt

2

f/^O.
2057. x* + y

9

3axy = Q (folium of Descartes).
2058. y*(a x)

= jc
3

(cissoid).

2059. (x* + y*)
2 = a*(x

2

y
z

) (lemniscate).
2060. (a + x)y* = (a x)x

2

(strophoid).

2061. (x* + y*)(x a)* = ftV (a>0, 6>0) (conchoid).
Consider three cases:

1) a>6, 2) a = 6, 3) a<6.

2062. Determine the change in character of the singular point
of the curve y

2 =
(x a)(x b) (x c) depending on the values of

a, 6, c(a<ft<c are real).

Sec. 16. Envelope

t. Definition of an envelope. The envelope of a family of plane curves
is a curve (or a set of several curves) which is tangent to all lines of the

given family, and at each point is tangent to some line of the given family.
2. Equations of an envelope. If a family of curves

f(x t y, a)=0

dependent on a single variable parameter a has an envelope, then the para-
metric equations of the latter are found from the system of equations

t f(x. y, a) = 0,

\ &(*. y. a) = o.
(1)

Eliminating the parameter a from the system (1), we get an equation of
the form

D(x, 0) = 0. (2)

It should be pointed out that the formally obtained curve (2) (the *>o-

called "discriminant curve") may contain, in addition to an envelope (if
there is one), a locus of singular points of the given

f
amily, which locus ts

not part of the envelope of this family.
When solving the problems of this section it is advisable to make

drawings.

Example. Find the envelope of the family of curves

*cosa+f/sina p = 0(p = const, p>0).
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Solution. The given family of curves depends on the parameter a. Form
the system of equations (1):

J
*cosa+ y sin a p= 0,

\ x sin a+ y cos a = 0.

Solving the system for x and y t we obtain parametric equations of the

envelope
x= pcosa, r/

=

Squaring both equations and adding, we eliminate the parameter a:

frig. 82

Thus, the envelope of this family of straight lines is a circle of radius p
with centre at the origin. This particular family of straight lines is a family
of tangent lines to this circle (Fig. 82).

2063. Find the envelope of the family of circles

2064. Find the envelope of the family of straight lines

(k is a variable parameter).
2065. Find the envelope of a family of circles of the same

radius R whose centres lie on the jc-axis.

2066. Find a curve which forms an envelope of a section

of length / when its end-points slide along the coordinate axes.

2067. Find the envelope of a family of straight lines that

form with the coordinate axes a triangle of constant area S.

2068. Find the envelope of ellipses of constant area S whose
axes of symmetry coincide.
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2069. Investigate the character of the "discriminant curves"

of families of the following lines (C is a constant parameter):

a) cubic parabolas y= (x C)
8

;

b) semicubical parabolas t/

2 = (x C)*;

c) Neile parabolas y* = (x C)
2

;

d) strophoids (a + x) (y C)
8 =*2

(a x).

Fig. 83

2070. The equation of the trajectory of a shell fired from a

point with initial velocity v at an angle a to the horizon

(air resistance disregarded) is

Taking the angle a as the parameter, find the envelope of all

trajectories bf the shell located in one and the same vertical

plane ("safety parabola'
1

) (Fig. 83).

Sec. 17. Arc Length of a Space Curve

The differential of an arc of a space curve in rectangular Cartesian coor-

dinates is equal to

where x, y, z are the current coordinates of a point of the curve.
If

are parametric equations of the space curve, then the arc length of a section
of it from t = t

l
to t= t 2 is

/a

f 1/7 <M 2
, (dy\* , (

dz=
j yM +

(-df)
+

(-dr
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In Problems 2071-2076 find the arc length of the curve:

2071. x = t, y=/
2

,
2-~-' from / = to t = 2.

2072. x = 2 cos /, y = 2 sin t, z =
-|-

1 from / == to t = it.

2073. A: = *' cos /, y = e* sin /, z = e
t from f = to arbitrary t.

2074. y = 4~' 2 = 4~ from JC==0 to x==6 -

2075. *
f =

3(/, 2jcy= 92 from the point (0, 0, 0) toM (3, 3, 2).

2076. f/
= aarcsin~, z =

-|-ln ^j from the point 0(0,0,0)

to the point M(* , j/ ,
z ).

2077. The position of a point for any time f (f>0) is defined

by the equations

Find the mean velocity of motion between times f = l and ^=10.

Sec. 18. The Vector Function of a Scalar Argument

1. The derivative of the vector function of a scalar argument. The vector

function a a (0 may be defined by specifying three scalar functions ax (t) 9

a
y (t) and az (t) t

which are its projections on the coordinate axes:

The derivative of the vector function a-=a(t) with respect to the scalar

argument t is a new vector function defined by the equality

da a(t + M)-a(t)_dax (t) .
day (0 . daf (t)

The modulus of the derivative of the vector function is

da
dt

The end-point of the variable of the radius vector r=r(/) describes in space
the curve

r=x(t)l+y(t)J+*(t)*.

which is called the hodograph of the vector r.

The derivative -~ is a vector, tangent to the hodograph at the corre-

sponding point; here,

[

dr [_ ds

\
dt

\
dt

'

where s is the arc length of the hodograph reckoned from some initial point.

For example, Up
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If the parameter t is the time, then -jT= tf is the velocity vector of the

extremity of the vector r, and
JTS
=

"^T
=w is *ne acceleration vector of the

extremity of the vector r.

2. Basic rules for differentiating the vector function of a scalar argument.

2) -77- (ma) = m-~-, where m is a constant scalar;

3) -77- (cpa)==-~-a+ (p-^- ,
where q>(0 is a scalar function of /;

4, <*,_..+..:

7) a-~=0, if
|
a |-= const.

Example 1. The radius vector of a moving point is at any instant of

time defined by the equation

r=i 4t*j+3t*k. (1)

Determine the trajectory of motion, the velocity and acceleration.
Solution. From (1) we have:

Eliminating the time t, we find that the trajectory of motion is a straight
line:

x 1 u z
~~

4"" 3
'

From equation (1), differentiating, we find the velocity

and the acceleration

The magnitude of the velocity is

We note that the acceleration is constant and is

\*L
\dt*

= ]/(_ 8)
2+62 =iO.
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2078. Show that the vector equation rr, =
(/* 2 r,) /,

where r
l
and r 2

are radius vectors of two given points, is the

equation of a straight line.

2079. Determine which lines are hodographs of the following
vector functions:

a) r = at -f c\ c) r = a cos t -f b sin t\

b) r = a/
2 + ft/; d) r = a cosh / -f 6 sinh /,

where a, ft, and c are constant vectors; the vectors a and b
are perpendicular to each other.

2080. Find the derivative vector-function of the function

a(t) = a(t)a (/), where a(t) is a scalar function, while a(/)
is a unit vector, for cases when the vector a(t) varies: 1) in

length only, 2) in direction only, 3) in length and in direction

(general case). Interpret geometrically the results obtained.

2081. Using the rules of differentiating a vector functisn with

respect to a scalar argument, derive a formula for differentiating
a mixed product of three vector functions a, 6, and c.

2082. Find the derivative, with respect to the parameter t,

of the volume of a parallelepiped constructed on three vectors:

a = i + tj+t
z
k,

2083. The equation of motion is

r = 3/cos/~j-4/sinf,

where / is the time. Determine the trajectory of motion, the

velocity and the acceleration. Construct the trajectory of motion
and the vectors of velocity and acceleration for times, / = 0,

.

2084. The equation of motion is

Determine the trajectory of motion, the velocity and the accel-

eration. What are the magnitudes of velocity and acceleration

and what directions have they for time = and / = -y?
2085. The equation of motion is

r= i cos a cos at -\-jsmacostot + k sincof,

where a and o are constants and / is the time. Determine the

trajectory of motion and the magnitudes and directions o! the

velocity and the acceleration.
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2086. The equation of motion of a shell (neglecting air re-

sistance) is

where V
Q {V OX ,

v
oy ,

voz} is the initial velocity. Find the velocity
and the acceleration at any instant of time.

2087. Prove that if a point is in motion along the parabola
2

z/= , z in such a manner that the projection of velocity

on the x-axis remains constant [-= const],
then the accelera-

tion remains constant as well.

2088. A point lying on the thread of a screw being screwed

into a beam describes the spiral

where 9 is the turning angle of the screw, a is the radius of the

screw, and h is the height of rise in a rotation of one radian.

Determine the velocity of the point.
2089. Find the velocity of a point on the circumference of a

wheel of radius a rotating with constant angular velocity co so

that its centre moves in a straight line with constant velocity V
Q

.

Sec. 19. The Natural Trihedron of a Space Curve

At any nonsingular point M (;c, //, z) of a space curve r r(t) it is pos-
sible to construct a natural trihedron consisting of three mutually perpen-
dicular planes (Fig. 84):

1) osculating plane M A4jA4 2 , containing the vectors TT and
-r-^ ;

2) normal plane MM*M S , which is perpendicular to the vector ~ and
at

3) rectifying plane MMjAIj, which is perpendicular to the first two planes.

At the intersection we obtain three straight lines;

1) the tangent MM^ 2) the principal normal MAf 2 ; 3) the binomial MM 9t

all of which are defined by the appropriate vectors:

1) T=-rr (the vector of the tangent l'me)\

2) ^-gfx^p (the vect r f tne binormal);

3) NBXT (the vector of the principal normal)]

The corresponding unit vectors

T o JV
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may be computed from the formulas

t= dr

dF ; v = ds

dt

ds

If X f K, Z are the current coordinates of the point of the tangent, then

the equations of the tangent have the form

X-x= Y
y==

Z z

'
3C * if '2

(I)

Rectifying
plane

Normal

plane

Osculating
plane

Fig. 84

where Tx
--

; T v
=~

, T 2
= -~

; from the condition of perpendicularity

of the line and the plane we get an equation of the normal plane:

Z 2)
= 0. (2)

If in equations (1) and (2), we replace Tx ,
Ty , 7\ by Bx , B v ,

Bz and A^.

Wy, ^V^, we get the equations of the binomial and the principal normal and,

respectively, the osculating plane and the rectifying plane.

Example t. Find the basic unit vectors T, v and p of the curve

at the point i = 1.

Write the equations of the tangent, the principal normal and the binor-

mal at this point.
Solution. We have

and
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Whence, when 1, we get

dt

= X^= 1 2 3
dt dt 026

i J >'662
1 2 3

Consequently,

T= <+2/+3A
P = 3/-ay+* V ~ ' -1U-8/+9*

Since for ?=1 we have *=1, y=l, 2=1, it follows that

1

""
2

"~
3

are the equations of the tangent,

x\_y l_z 1

3
~~

3
~~

1

are the equations of the binomial and

*-l y-1 z-1
11 8 9

are the equations of the principal normal.
If a space curve is represented as an intersection of two surfaces

F(JC, y, z)
= 0, G(x, y, 2)

= 0,

then in place of the vectors
-^-

and TT-Z we can take the vectors dr{dx, dy, dz}

and d2r {d*x, d*y, d z

z};
and one of the variables x, y, z may be considered

independent and we can put its second differential equal to zero.

Example 2. Write the equation of the osculating plane of the circle

*2+ J/

2+ z2= 6, x+ y + z^Q (3)

at its point M(l, 1, 2).

Solution. Differentiating the system (3) and considering x an independent
variable, we will have

x dx+ y dy+ z dz --= 0,

and
dx*+ dy

1 + y d*y+ dz2+ z d*z .= 0,

d2
(/

Putting x=l, y=\> z~2, we get
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Hence, the osculating plane is defined by the vectors

{dx,
dx t 0} and

|o,
-
yd*

2
, jdx*\

or

{1, 1, 0} and {0, 1, 1}.

Whence the normal vector of the osculating plane is

J
= lj kB= 1 1

-1 1

and, therefore, its equation is

-l(x-l
that is,

as it should be, since our curve is located in this plane.

2090. Find the basic unit vectors T, v, p of the curve

x^l cosf, y=sin/, z = t

at the point f =
-g-

*

2091. Find the unit vectors of the tangent and the principal
normal of the conic spiral

at an arbitrary point. Determine the angles that these lines make
with the z-axis.

2092. Find the basic unit vectors r, v, p of the curve

y x*, z = 2x
at the point x = 2.

2093. For the screw line

y = asmt, z = bt

write the equations of the straight lines that form a natural

trihedron at an arbitrary point of the line. Determine the direc-

tion cosines of the tangent line and the principal normal.
2094. Write the equations of the planes that form the natural

trihedron of the curve

x* -1- 1/

2 + *
2 = 6, x

2

if -1- z
2 - 4

at one of its points M(l, 1, 2).

2095. Form the equations ot the tangent line, the normal

plane and the osculating plane of the curve *= /, y = t*, z = t*

at the point M (2, 4, 8).
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2096. Form the equations of the tangent, principal normal,
and binormal at an arbitrary point of the curve

Find the points at which the tangent to this curve is parallel
to the plane x+ 3y-\- 2z 10 = 0.

2097. Form equations of the tangent, the osculating plane,
the principal normal and the binormal of the curve

at the point / = 2. Compute the direction cosines of the binormal
at this point.

2098. Write the equations of the tangent and the normal

plane to the following curves:

a) x= R cos
2

/, y= R sin /cos/, z= Rsmt for / = ?-;

b) z=x*+y*, x= y at the point (1,1, 2);

C) *2 + y
2 + z

2 = 25, x + z = 5 at the point (2, 2/3, 3).

2099 Find the equation of the normal plane to the curve

z=xz

if, y = x at the coordinate origin.

2100. Find the equation of the osculating plane to the curve

* = *, (/
= <>-', 2 = ty2 at the point / = 0.

2101. Find the equations of the osculating plane to the curves:

a) *
2 +y2 + 2

2 = 9, x
2

y
2 = 3 at the point (2, 1, 2);

b) *
2 = 4y, x' = 24z at the point (6, 9, 9);

c) JC
2 + z

2 = a
2

, y
2

fz
2 = 6

2
at any point of the curve (xQJ yot

z ).

2102. Form the equations of the osculating plane, the principal
normal and the binormal to the curve

y
z = x, *2 = z at the point (1, 1, 1).

2103. Form the equations of the osculating plane, the princi-

pal normal and the binormal to the conical screw-line A; = /COS/,

j/=/sin/, z~bt at the origin. Find the unit vectors of the

tangent, the principal normal, and the binormal at the origin.

Sec. 20. Curvature and Torsion of a Space Curve

1. Curvature. By the curvature of a curve at a point M we mean the
number

/(
* = lim JL,R AS-+O As

f
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where (p is the angle of turn of the tangent line (angle of continence) on a

segment of the curve MN, As is the arc length of this segment of the curve.
R is called the radius of curvature. If a curve is defined by the equation
r=r(s), where s is the arc length, then

For the case of a general parametric representation of the curve we have

(1)

2. Torsion. By torsion (second curvature) of a curve at a point M we
mean the number

r-l-ihn -1
Q As-*o As

where is the angle of turn of the binormal (angle of contingence of the

second kind) on the segment of the curve MN. The quantity Q is called the

radius of torsion or the radius of second curvature. If r=r(s), then

drd 2rd sr

ds ds2 ds3

dp_
ds

where the minus sign is taken when the vectors and v have the same

direction, and the plus sign, when not the same.
If /=/(/), where t is an arbitrary parameter, then

dr d2r dV
1 d/d?" d7= -

Q
(2)

dt ~d,

Example 1. Find the curvature and the torsion of the screw-line

r= i a cos t -\-j a sin / + k bt (a > 0).

Solution. We have

~= _/ a sin t +ja cos t + kb t

d 2r_ == / a cos / / a sin /,

Whence

= _/ a sin/ Ja cos/.

a sin t

a cos /

J k
a cost b

-a sin /

= i ab sin / jab cos t+ a*k



Hence, on the basis of formulas (1) and (2), we get

1
JDL VaT+b*^ a

R ~( fl
i+ 6i)

a
/. "fl' + a1

and
1 a*b = b

Q
~

a2
(a

2 + b*)~~ a
2 + b2

'

Thus, for a screw-line, the curvature and torsion are constants.

3 Frenet formulas:

dr_ v ^v ___ T iP ^P_ v

7s~"~R
'

5s
~~

~~~~R~T~~Q
'

ds~~~~o"'

2104. Prove that if the curvature at all points of a line is

zero, then the line is a straight line.

2105. Prove that if the torsion at all points of a curve is zero,

then the curve is a plane curve.

2106. Prove that the curve

x=\+3t + 2t
2

, y = 22t + 5t\ z=lt*
is a plane curve; find the plane in which it lies.

2107. Compute the curvature of the following curves:

a) x = cost, y = s'mt, z = cosh / at the point / = 0;

b) x* //

2

-| z
2 =

l, y
2 -2x + z = Q at the point (1, 1, 1).

2108. Compute the curvature and torsion at any point of the

curves:

a) je = e'cos/, y = e
i

sint, z e*\

b) x^acosht, y asiuht. z = at (hyperbolic screw-line).

2109. Find the radii of curvature and torsion at an arbitrary

point (x, y, z) of the curves:

a) x
2 =

b) x
9 =

2110. Prove that the tangential and normal components of

acceleration w are expressed by the formulas

dv v 2

VOif T <MJ VWT-^T, Wv- R V,

where v is the velocity, R is the radius of curvature of the

trajectory, T and v are unit vectors of the tangent and principal
normal to the curve.
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2111. A point is in uniform motion along a screw-line r =*

= la cost +ja sin t + btk with velocity v. Compute its accelera-

tion w.

2112. The equation of motion is

Determine, at times / and /=!: 1) the curvature of the

trajectory and 2) the tangential and normal components of the
acceleration.



Chapter VII

MULTIPLE AND LINE INTEGRALS

Sec. 1. The Double Integral in Rectangular Coordinates

1. Direct computation of double integrals. The double integral of a con-
tinuous function f (x, y) over a bounded closed region S is the limit of the

corresponding two-dimensional integral sum

f (x, y)dx dy= lim

max A*i -

max Ar//c
-

(1)

where A*
t

-=
Xf +l xg, &yk= yk+l yk and the sum is extended over those

values of i and k for which the points (*/, yk) belong to S.
2. Setting up the limits of integration in a double integral. We dis-

tinguish two basic types of region of integration.

x, x

Fig. 85

o

Fig. 86

1) The region of integration 5 (Fig. 85) is bounded on the left and right

Fig. 85). In the region S, the variable x varies from xl to x while the va-
riable y (for x constant) varies from^= 9, (x) to j/2

=
q>2 (x). The integral (1) ma>
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be computed by reducing to an iterated integral by the formula

*a <Pa (X)

J
f(x, y)dy,

(S)

<PaU>

where x is held constant when calculating \ /(x, y) dy.

2) The region of integration S is bounded from below and from above

by the straight lines y y l
and y yt(yz >yi), and from the left and the

right by the continuous curves x= ^> l (y) (AB) and x=
i|? 2 (y) (CD) [t|? 2 (y)^^ (y)],

each of which intersects the parallel y= Y (y* ^ Y< yt) at only one point

(Fig. 86).
As before, we have

Vl $2 (U)

JJ/(*. y)dxdy=\dy J
f (x. y)dx t

(S) j/i i|?, ((/)

here, in the integral \ f(x, y) dx we consider y constant.

If the region of integration does not belong to any of the above-discussed

types, then an attempt is made to break it up into parts, each of which does

belong to one of these two
types.

Example 1. Evaluate the integral

/

Solution.

D

Example 2. Determine the limits of integration of the integral

(x, y)dxdy

(S)
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if the region of integration 5 (Fig. 87) is bounded by the hyperbola y
2 *2= 1

and by two straight lines *= 2 and x= 2 (we have in view the region con-

taining the coordinate origin).

Solution. The region of integration ABCD (Fig. 87) is bounded by the

straight lines x- 2 and x= 2 and by two branches of the hyperbola

y=yT+* and (/--1

that is, it belongs to the first type. We have:

=
J

dx
J

f(x, y)dy.

Evaluate the following iterated integrals:21 35
2113. \dy\(jf + 2y)dx. 2117.

Jdy J

2114 ^pTv?- 2118. dcp j
rrfr.

2115 '

31 o a sin <p

Jt_

X2dU 2 8 COS (p

00
Write the equations of curves bounding regions over which the

following dduble integrals are extended, and draw these regions:
2 2-t/ 3 2X

2121.
Jrf/ J f(x, y)dx. 2124.

JdxJ/(*. y)dy.

3 X + 9 3 K25-JC-1

2122.
JdxJ f(x, y)dy. 2125. ^dx $ f(x, y)dy.IX3 00
4 10-y 2 X + 2

2123. dy f(x, ^)dx. 2126. d* f(x, y)dy.
o y -ix*

Set up the limits of integration in one order and then in the
other in the double integral

JJ/(*. y)dxdy
(S)

for the indicated regions S.
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2127. S is a rectangle with vertices 0(0, 0), 4(2,0), 5(2, 1),

C(0, 1).

2128. S is a triangle with vertices 0(0, 0), 4(1, 0), 5(1, 1).

2129. S is a trapezoid with vertices 0(0, 0), A (2, 0), 5(1, 1),

C(0, 1).

2130. S is a parallelogram with vertices 4(1, 2), 5(2, 4),

C(2, 7), D(l, 5).

2131. S is a circular sector 045 with centre at the point
(0, 0), whose arc end-points are A (1, 1) and 5 f

-
1, 1) (Fig. 88).

Fig 89

2132. S is a right parabolic segment 405 bounded by the

parabola 504 and a segment of the straight line 54 connecting
the points 5(~-l, 2) and 4(1, 2) (Fig. 89).

2133. S is a circular ring bounded by circles with radii r=l
and /?-=2 and with common centre 0(0, 0).

2134. S is bounded by the hyperbola if x? \ and the circle

x
2

| //

2 ^9 (the region containing the origin is meant).
2135. Set up the limits of integration in the double integral

(x, y)dxdy
(S)

if the region S is defined by the inequalities

b) *
2

h//
2 <a 2

; e) //<x<y4 2a;

c) x
2

|- //* *; 0<*/ = :a.

Change the order of integration in the following double integrals:

\2X

2136. f(x, y)dy. 2137. JdJ/(x. y)dy.
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2138. \dx \ f(x, y)dy.
2141.

\
dy \ f(x t y)dx.

- -

a VTZx^tf * V*-*

2139.
$
d*

J f(x, y)dy.
2142. \dy $/(*,

2

20

yi
~2

2140.
Jdx J f(x 9 y)dy.

RVT
A -V

2143.
J d*J/(x, t/)dy+ f(x. y)dy.
o o

sin x

2144. \dx J/(jc, /)d/.

Evaluate the following double integrals:

2145. (
[ xdxdy t

where S is a triangle with vertices 0(0, 0),

(S)

A(\, 1), and B(0, 1).

A(2,0)X

Fig. 90 Fig. 91

2146. ^xdxdy, where the region of integration Sis bounded
(S)

by the straight line passing through the points A (2, 0), fi(0, 2)
and by the arc of a circle with centre at the point C(0, 1), and
radius 1 (Fig. 90).
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2147. \ \ ,r
*
===, where S is a part of a circle of radius

JJ V a 2 x*y* r

(S)

a with centre at 0(0, 0) lying in the first quadrant.

2148.
$ $ V** y

2 dx dy t where S is a triangle with vertices

(S)

0(0,0), A (I, -1), and fl(l, 1).

2149. \j !/"*# y*dxdy, where S is a triangle with vertices

(S)

0(0, 0), 4(10, 1), and fl(l, 1).

rr -
2150.

J J
e y dxdy, where S is a curvilinear triangle OAB bound-

(S)

ed by the parabola y* = x and the straight lines x= Q, (/=!
(Fig. 91).

2151. ff^Ti, where S is a parabolic segment bounded by-

the parabola y=7f and the straight line y= x.

2152. Compute the integrals and draw the regions over which they
extend:

a) \dx [ tfsmxdy;
j j

at i-f-cosjc
_rt

2

c) $ <ty $
x* sin' ,

/ /

2 1

b)

"

COS*

When solving Problems 2153 to 2157 it is abvisable to make
the drawings first.

2153. Evaluate the double integral

(5)

if S is a region bounded by the parabola y* = 2px and the straight
line x= p.

2154*. Evaluate the double integral

^xydxdy,

extended over the region S, which is bounded by the #-axis

and an upper semicircle (x 2)
2+ #

2 = 1.
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2155. Evaluate the double integral

dxdy

/25=5 f

(S)

where S is the area of a circle of radius a, which circle is tan-

gent to the coordinate axes and lies in the first quadrant.
2156*. Evaluate the double integral

^ydxdy,
(S)

where the region S is bounded by the axis of abscissas and an
of the cycloid

x = R(t sin/),

y = R(\ cos/).

2157. Evaluate the double integral

(S)

in which the region of integration S is bounded by the coordi-

nate axes and an arc of the astroid

2158. Find the mean value of the function f(x, y)=--xy
2

in the

region SJO^Jt^l, 0<y<l}.
Hint. The mean value of a function f(x, y) in the region 5 is the number

2159. Find the mean value of the square of the distance of

a point M (x, y) of the circle (x af+y2 ^R 2
from the coordi-

nate origin.

Sec. 2. Change of Variables in a Double Integral

1. Double integral in polar coordinates. In a double integral, when passing
from rectangular coordinates (x, y) to polar coordinates (r, cp), which are
connected with rectangular coordinates by the relations

#= /'Cos(p, y r sin ip,

we have the formula

^{ f (*> y)dxdy=(( (r cos q>, r sin cp) r dr e/cp, (1)

(S) (S)
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If the region of integration (S) is bounded by the half-lines r a and

r=^p(a<P) and the curves r r,(cp) and r = r2 ((p), where r
l (q>) and

r z f<P) [
r

i (
fP)^ r2((P)l are single-valued functions on the interval a^rp^p,

then the double integral may be evaluated by the formula

P /-J <<p)

C f F (q), r) r dr dcp = \ dcp f F (cp, r) r rfr,

(S) a r, (cp)

r2 (cp)

where F (cp, r)~/(rcos(p, r sin (p). In evaluating the integral \ F ((p, r)rrfr

'i (<p)

we hold the quantity (p constant.

If the region of integration does not belong to one of the kinds that has
been examined, it is broken up into parts, each of which is a region of a

given type.
2. Double integral in curvilinear coordinates. In the more general case,

if in the double integral

(x, y)dxdy

it is required to pass from the variables x, y to the variables u, v, which
are connected with x, y by the continuous and differentiate relationships

A-^cp(w, i), I/ t|?(K, v)

that establish a one-to-one (and, in both directions, continuous) correspondence
between the points of the region S of the .v//-plane and the points of some

region S f

of the UV- plane, and if the Jacobian

w *^
V' , y)

D(u t

dx dy
du da

dx dy
dv dv

retains a constant sign in the region 5, then the formula

f (^ y) dx dy - I [cp (u, v), $ (w, v
) ] |

/
|
du du

(6)

holds true

The limits of the new integral are determined from general rules on the

basis of the type of region S'

Example 1. In passing to polar coordinates, evaluate

where the region 5 is a circle of radius /? = ! with centre at the coordinate

origin (Fig 92).
Solution. Putting x rcoscp, // rsincp, we obtain:

J/'l x2
if^ Y"\ (r cos cp)

2
(r sin cp)

2 = ^1 r8
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Since the coordinate r in the region S varies from to 1 for any q>, and q>

varies from to 2jt, it follows that
2Jt 1

f f y\x*

Pass to polar coordinates r and cp and set up the limits of

integration with respect to the new variables in the following

integrals:

2160. K, y)dy. 2161.
Jd*$/(]/J

2162.
JJ/(x, y)dxdy,
\-'/

where S is a triangle bounded by the straight lines (/
= #, y~ x,

</=!.

2163.

-i *

2164. ^f(x, y)dxdy, where S is bounded by the lemniscate

(S)

gral

Fig. 92

2165. Passing to polar coordinates, calculate the double inte

(S)

where S is a semicircle of diameter a with centre at the poin

C(f,0) (Fig. 93).
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2166. Passing to polar coordinates, evaluate the double inte-

gral

(S)

extended over a region bounded by the circle jc*+ y* = 2ax.

2167. Passing to polar coordinates, evaluate the double in-

tegral

(S)

where the region of integration S is a semicircle of radius a with
centre at the coordinate origin and lying above the #-axis.

2168. Evaluate the double integral of a function f(r, <p)
= r

over a region bounded by the cardioid r = a(\ +coscp) and the

circle r = a. (This is a region that does not contain a pole.)
2169. Passing to polar coordinates, evaluate

a V a*-x*

Jdx J
Vx' + tfdy.

2170. Passing to polar coordinates, evaluate

(S)

where the region S is a loop of the lemniscate

2171*. Evaluate the double integral

ll T/^R;
(S)

x*x u
extended over the region S bounded by the ellipse -j+^^
passing to generalized polar coordinates:

X = r ^wo Y , y

2172**. Transform
c p*

\dx\f (x t y)dy
o ax

(0<a<p and c:>0) by introducing new variables u
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2173*. Change the variables u = x+ y, v =xy in the integral
i i

\dx\f (x,y)dy.

2174**. Evaluate the double integral

(S)

where S is a region bounded by the curve

-_
b2 ~~fi 2 k2 '

Hint. Make the substitution

>, y br sin cp.

Sec. 3. Computing Areas

1. Area in rectangular coordinates. The area of a plane region S is

(S)

If the region S is defined by the inequalities a^x^b, q> (x) ^ y^ \|) (x) ,

then
b op (X )

S =
\dx J

dy.

a cp (x)

2. Area in polar coordinates. If a region S in polar coordinates r and q>

is defined by the inequalities a^cp^p, / (cp)^/' <F (q>), then

P F P)

S = ffrdcpdr= C 6/9 C /-dr.

(S) a /(q

2175. Construct regions whose areas are expressed by the in-

tegrals _
2 x+2

a) dx d; b) dy d*.)
J
dx

j
dy; b)

j
dy

J

Evaluate these areas and change the order of integration.
2176. Construct regions whose areas are expressed dy the in-

tegrals
ji

arc tan 2 * sec <p 2 a(i+coscp)

a) ] d(f J rdr\ b) J ^9 \
n_

o n a

T "T"

Compute these areas.
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2177. Compute the area bounded by the straight lines x y,

2178. Compute the area lying above the x-axis and bounded

by this axis, the parabola y* = 4ax, and the straight line x-[-y= 3a.

2179*. Compute the area bounded by the ellipse

2180. Find the area bounded by the parabolas

y
f
=10x4- 25 and y

z = 6x + 9.

2181. Passing to polar coordinates, find the area bounded by
the lines

x
2 -y2 = 2x, x

z

-[-y* = 4x, y = x, y = Q.

2182. Find the area bounded by the straight line r cosq)=l
and the circle r~2. (The area is not to contain a pole.)

2183. Find the area bounded by the curves

r = a(14coscp) and r acosq>(a>Q).

2184. Find the area bounded by the line

(
*

, (/!V__ **_//?
V 4 ~*~

"9 J

"~
4" 9

'

2185*. Find the area bounded by the ellipse

(x2y !-3)
2

4 (3* -\-4y- 1)
2 - 100.

2186. Find the area of a curvilinear quadrangle bounded by
the arcs of the parabolas x z

--=ay y x* = by y y* = a,x, y
2 = $x(Q<.

<a<b, 0<a<p).
Hint. Introduce the new variables u and u, and put

x2= uy, if vx.

2187. Find the area of a curvilinear quadrangle bounded by
the arcs of the curves if=ax, if = bx, xy = a, xy = $(Q<.a<.b,
0<a<p).

Hint. Introduce the new variables u and v, and put

u, y*~vx.

9 -1900
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Sec. 4. Ccmputing Volumes

The volume V of a cyltndroid bounded above by a continuous surface

* = /(*, y), be low by the ph-ne 2 0, and on the sides by a right cylindrical

surface, which cuts out of the ju/-plane a region S (Fig. 94), is equal to

2188. Use a double integral to express the volume of a pyra-
mid wiih vertices 0(0, 0)", A(\, 0, 0), fl(l, 1,0) and C(0, 0, 1)

(Fig. 95). Set up the limits ol integration.

C(0,0,1)

Fig. 94 Fig. 95

In Problems 2189 to 2192 sketch the solid whose volume is

expressed by the given double integral:

2189. f dx f (1 x y)dy. 2191.
J J

x)dy.

Z-X

2190. 2192.

2193. Sketch the solid whose volume is expressed by the in-

a V a* - x*_
tegral f dx ( YC? tfy* dy\ reason geometrically to find the

value of this integral.
2184. Find the volume of a solid bounded by the elliptical

paraboloid z = 2x* -f f/

2 + 1, the plane x + y=\, and the coordi-
nate planes.

215. A solid is bounded by a hyperbolic paraboloid z x* tf
and the planes (/

= 0, e = 0, x=l. Compute its volume.
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2196. A solid is bounded by the cylinder x2

+-z
2 =a2 and the

planes */
= 0, 2 = 0, y = x. Compute its volume.

Find the volumes bounded by the following surfaces:

2197. az = y\ x* -\-y* --='*, 2 = 0.

2198. y = y"x, f/
= 2J/T, * + 2 = 6, 2 = 0.

2199. z = x* +y\ y = x2

, //=!, 2 = 0.

2200. x -}-*H-2 = a, 3*4-*/ = a, ~x4-tj=^a, */
= 0, 2 = 0.

2201. , + -1, y = *' = 0, 2 = 0.

2202. x2

-h if = 2ax, 2 = a*, 2 = p* (a > p).

In Problems 2203 to 2211 use polar and generalized polar
coordinates.

2203. Find the entire volume enclosed between the cylinder
x 2

-\-y
2 a2 and the hyperboloid x2

-f- if 2* = a2
.

2204. Find the entire volume contained between the cone

2(*
2

+if) 2
2 = and the hyperboloid x

2
-f- if z* = a

2
.

2205. Find the volume bounded by the surfaces 2a2 = x2 + /* f

** 4-//
2

2
2 =a2

, 2 = 0.

2206. Determine the volume of the ellipsoid

2207. Find the volume of a solid bounded by the paraboloid
202 -= x2

H- //

2 and the sphere *2

4- ^ -f- 2
2 = 3a2

. (The volume lying
inside the paraboloid is meant.)

2208. Compute the volume of a solid bounded by the jq/-plane t

the cyl inder x2
-*- y

2 = 2a^, and the cone x
2

-f if
= 2

2
.

2209. Compute the volume of a solid bounded by the jq/-plane,
the surface 2 =-ae~ <*'J4 " J

>, and the cylinder x
2
+ y

2 = /?
2

.

2210. Compute the volume of a solid bounded by the *f/-plane,

the paraboloid z = ^ + 5 , and the cylinder ^-h|
2

2
= 2~.

2211. In what ratio does the hyperboloid jc
2

-h//
2

2
2 = a*

divide the volume of the sphere x 2
4- t^ 4- 2

2 ^3a2
?

2212*. Find the volume of a solid bounded by the surfaces

Sec. 5. Computing the Areas of Surfaces

The area o of a smooth single-valued surface z= f(x t y), whose projection
on the jci/-plane is the region S, is equal to

-JJ
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2213. Find the area of that part of the plane %+j+== 1

which lies between the coordinate planes.
2214. Find the area of that part of the surface of the cylin-

der x2

4 y
2 = R 2

(z^O) which lies between the planes z = mxand
z = nx(m>n>Q).

2215*. Compute the area of that part of the surface of the

cone x2

y
2 = z

2 which is situated in the first octant and is

bounded by the plane y -\-z-a.
2216. Compute the area of that part of the surface of the

cylinder x
2 + y

2 =ax which is cut out of it by the sphere
x 2 + y

2 +z 2
=-a

2
.

2217. Compute the area of that part of the surface of the
y2 ..2

sphere x
2

-\- y
2 + z

2 = a
2
cut out by the surface

-^+ ^=1.
2218. Compute the area of that part of the surface of the

paraboloid y
2 + z

2 = 2ax which lies between the cylinder tf = ax
and the plane x= a.

2219. Compute the area of that part of the surface of the

cylinder x2 + y
2

2ax which lies between the xy-plane and the

cone x2

-\-y
2 = z

2
.

2220*. Compute the area of that part of the surface ol the

cone x 2

y
2 = z

2 which lies inside the cylinder x
2 + f/

2 = 2ax.

2221*. Prove that the areas of the parts of the surfaces of the

paraboloids x2 + y
2 = 2az arid x

2

y
z = 2az cut out by the cylin-

der x
2

-\-tf
= R 2

are of equivalent size.

2222*. A sphere of radius a is cut by two circular cylinders
whose base diameters are equal to the radius of the sphere and
which are tangent to each other along one of the diameters of the

sphere. Find the volume and the area of the surface of the re-

maining part of the sphere.
2223* An opening with square base whose side is equal

to a is cut out of a sphere of radius a. The axis of the opening
coincides with the diameter of the sphere. Find the area of the

surface of the sphere cut out by the opening.
2224*. Compute the area of that part of the helicoid

e = carctan which lies in the first octant between the cylin-X

ders x2

-i-y
2 = a 2 and

Sec. 6. Applications of the Double Integral in Mechanics

1. The mass and static moments ot a lamina. If S is a region in an

jq/-plane occupied by a lamina, and Q (x, y) is the surface density of the

lamina at the point (x, y), then the mass M of the lamina and its static
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moments Mx and M Y relative to the x- and t/-axes are expressed by the
double integrals

A4 --=

H jj

Q (x, y) dx dy, Mx=
J J

yQ (x, y) dx dy,

(S) (S)

M Y=^ J*e(x, y)dxdy. (1)

(5)

If the lamina is homogeneous, then Q (x, y) const.

2. The coordinates of the centre of gravity of a lamina. If C (x, y) is the

centre of gravity of a lamina, then

- My -Mxy _i_ / / . _d
M ' J ~ M '

where M is the mass of the lamina and M x , My are its static moments rela-

tive to the coordinate axes (see 1). If the lamina is homogeneous, then in

formulas (1) we can put Q=l.
3. The moments of inertia of a lamina. The moments of inertia 01 a

lamina relative to the x- and t/-axes are, respectively, equal to

/X=
S S

y'Q (x, y) dx dy, /r=
J J

*2
Q (*. y) *x dy. (2)

(S) (S)

The moment of inertia of a lamina relative to the origin is

(3)

Putting Q(X, //)-=! in formulas (2) and (3), we get the geometric moments of

inertia of a plane iigure.

2225. Find the mass of a circular lamina of radius R if the

density is proportional to the distance of a point from the centre

and is equal to 6 at the edge of the lamina.
2226. A lamina has the shape of a right triangle with legs

OB = a and OA = b, and its density at any point is equal to the

distance of the point from the leg 0/4. Find the static moments
of the lamina relative to the legs 0/4 and OB.

2227. Compute the coordinates of the centre of gravity of the

area OmAnO (Fig. 96), which is bounded by the curve // sin*
and the straight line OA that passes through the coordinate origin

and the vertex A
(-^

, Ij
of a sine curve.

2228. Find the coordinates of the centre of gravity of an area

bounded by the cardioid r = a(\ + cosij)).

2229. Find the coordinates of the centre of gravity of a cir-

cular sector of radius a with angle at the vertex 2a (Fig. 97).
2230. Compute the coordinates of the centre of gravity of an

area bounded by the parabolas // = 4.x f 4 and if = 2x4-4.
2231. Compute the moment of inertia of a triangle bounded

by the straight lines x+ y 2, # = 2, y = 2 relative to the #-axis.
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2232. Find the moment of inertia of an annulus with diame-

ters d and D(d<D): a) relative to its centre, and b) relative to

its diameter.

2233. Compute the moment of inertia of a square with side a

relative to the axis passing through its vertex perpendicularly to

the plane of the square.
2234*. C)mpute the moment of inertia of a segment cut oil

the parabola if
= ax by the straight line x = a relative to the

straight line //
= a.

Fig. 96

2235*. Compute the moment of inertia of an area bounded by
the hyperbola xy = 4 and the straight line x-\-y = 5 relative to

the straight line x = y.

2236*. In a square lamina with side a, the density is propor-
tional to the distance from one of its vertices. C:>mpute the mo-
ment of inertia of the lamina relative to the side that passes
through this vertex.

2237. Find the moment of in?rtia of the cardioid r = a(l + cos<p)
relative to the pole.

2238. Compute the moment of inertia of the area of the lem-
niscate r

2
^-2a 2

cos2cp relative to the axis perpendicular to its

plane in the pole.
2239*. Compute the moment of inertia of a homogeneous lamina

bounded by one arc of the cycloid x^a(t sin/), y = a(\ cos/)
and the x-axis, relative to the x-axis.

Sec. 7. Triple Integrals

1. Triple integrals in rectangular coordinates. The triple integral of the
function /(*, y, <) extended over the region V is the limit of the corre-

sponding threefold iterated sum:

62 = lim 22 2^ (*t> &/>
zd '

max \x\
- o

f
i

fa

max
A'/j

~> o

max Az/c -> o



Sec. 7] Triple Integrals 2o3

Evaluation of a triple integral reduces to th? successive computation of the

three ordinary (onefold iterated) integrals or to the computation of one
double and one single integral.

Example 1. Compute

/=.$ JJ*yZ d*d/dz,
V

where the region V is defined by the inequalities

Solution. We have

1 X

'</

2
7T dy

Example 2. Evaluate

AT
2

//
2

Z
2

extended over the volume of the ellipsoid
-

t -|-
--

-j-
= 1 .

Solution.
a a

J ^ x2 dxdy dz -
J

x 2
dA-

J J
dydz=

^
x*S

yz
dx

t

(V) -a (5^.) -a

M^ ^^ j^2

\\here Syz
is the area of the ellipse ^ + -^^1 --2

JC= cons^ an(^

S vz
-=Jib I/ l-~-c V \--

2
=*n

vz V a- r a 2

We therefore finally get

(V) -a

2. Change of variables in a triple integral. If in tha triple integral

. 0. 2)dxdydz

it is required to pass from the variables AT, //, z to the variables
, u, ay,

which are connected with *, //, z bv the relations x ^(u t v, w), y = ty(u,v,w),
z = X(". u ^)i where the functions cp, i|), x are:

1) continuous together with their paitial first derivatives;

2) in one-to-one (ind, in both directions, continuju?) correspondence be-

tween the points of the region of integration V oi xf/z-space and the points of

some region V of l/l/l^-space;
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3) the functional determinant (Jacobian) of these functions

dx dx dx

dii ~dv dw

dy dy dy

D (u, v, w) da dv dw
dz dz dz

da dv dw

retains a constant sign in the region V, then we can make use of the for-

mula

$ J \f(x,y,2)dxdydz
=

(V)

\ \ \ f IT (w L?
>
w )> ty(u >

y * w)< \
du dv dw.

Fig. 98 Fig. 99

In particular,
1) for cylindrical coordinates r, cp, h (Fig. 98), where

X rcosrp, // rsinrp, z^-//,

we get / r\

2) for spherical coordinates cp, ap, r
(<p is the longitude, \\>

the latitude,
r the radius vector) (Fig. 99), where

x = r cos
i|)

cos 9, f/
=

/-cosi|3 sin q), z / sin v|\

we have / r
2 cos i[).

Example 3. Passing to spherical coordinates, compute

JSJ
(V)

where V is a sphere of radius R.
Solution. For a sphere, the ranges of the spherical coordinates fp (longi-

tude), \|) (latitude), and r (radius vector) will be
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We therefore have

f f f Vxz
-\-y

2

-\-z*dxdydz=\ dcp f dty f r A'COS \|?dr= Ji#4 .

3. Applications of triple integrals. The volume of a region of three-dimen-
sional A'//z-space is

<n

The mass of a solid occupying the region V is

M ----- C f f Y (
v z) d

(V)

where \(x,y,z) is the density of the body at the point (*,//,*).
The slal/c moments of the body relative to the coordinate planes are

M yy =
"(V)'
(* (* I

Myz = )}
'

0')"

MZX ~-
\

\
\ Y (A

'

f/ 2
) f/ dx dy dz.

(V)

The coordinates of the centre of gravity are

_ _
f J ~~

'M f
~~
M '

Al
'

If the solid is homogeneous, then we can put Y (*, y> z)
= I in the for-

mulas for the coordinates of the centre of gravity.
The moments of inertia relative to the coordinate axes are

T-
J J $

(y*+ **) Y (*, U, 2) dx dy dz;

(V)

(V)

=J J J
(*

l

(V)

Putting Y(*0 ^i^21 in *nese formulas, we get the geometric moments
of inertia of the body.

A. Evaluating triple integrals

Set up the limits of integration in the triple integral

J J ^f(x,y,
z)dxdydz

(V)

for the indicated regions V.
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2240. V is a tetrahedron bounded by the planes

X Jr yJrZ =\, X = 0, J/
= 0, 2 = 0.

2241. V is a cylinder bounded by the surfaces

JC' +^fl 1

,
2 = 0, 2 = /f.

2242*. V is a cone bounded by the surfaces

2243. V is a volume bounded by the surfaces

Compute the following integrals:

2244.
* + +-2+1000

2 2 V

2245. djt
J

dy
J

a

2246 . fd* I rfy ('

.) .1 J00
1 1-X 1-JC-t/

2247.
]
dx

J dy J xyzdz.
p o o

2248. Evaluate
d* dy dz

1)3
'

where V is the region ol integration bounded by the coordinate

planes and the plane x-\~y-[z\.
2249. Evaluate

r r r

(V}

where V (the region of integration) is the common part of the

paiaboloid 2cu^x2

-\-y
2 and the sphere X? + y* + 2

2 ^3a2
.

2250. Evaluate

(V)

where V (region of integration) is the common part of the

spheres x
2 + y* \-z* ^R' and x

2 + \f + z
2 ^ 2Rz
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2251. Evaluate

^zdxdydz,
(V)

where V is a volume bounded by the plane z = and the upper

half of the ellipsoid -+ j.+ -J.==l.

2252. Evaluate

(V)

Xz
IJ

2

where V is the interior of the ellipsoid ~^r+ "^r

2253. Evaluate

where V (the region of integration) is bounded by the cone.

2
2 =

(jc

2

hi/
2

)
and the plane z = h.

2254. Passing to cylindrical coordinates, evaluate

where V is a region bounded by the surfaces x* +y* -\-
z* = 2Rz 9

jc
2

-| //

2
-=z

a
and containing the point (0,0, R).

2255. Evaluate

2 J 21 -
jc

j a

first transforming it to cylindrical coordinates.

225(5. Evaluate
- - -

di/ J dz,

first transforming it to cylindrical coordinates.

2257. Evaluate

R VR*-X* Vfla-jir*-0a

\dx \ dy J (A:

J +
-/? -/f^TJa o

first transforming it to spherical coordinates.
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2258. Passing to spherical coordinates, evaluate the integral

(V)

where V is the interior of the sphere x
2

-\-y
2 +z 2

B. Computing volumes by means of triple integrals

2259. Use a triple integral to compute the volume of a solid

bounded by the surfaces

2260**. Compute the volume of that part of the cylinder
x2

-f tf = 2ax which is contained between the paraboloid*
2 + y

2 = 2az

and the xy-plane.
2261*. Compute the volume of a solid bounded by the sphere

x
2

+y
2 +z 2 =a2 and the cone z

2
---x

2 + /y" (external to the cone).
2262*. Compute the volume of a solid bounded by the sphere

x2 +yz +z 2 = 4 and the paraboloid x
2

+if=-3z (internal to the

paraboloid).
2263. Compute the volume of a solid bounded by the xy-plane,

the cylinder x
2 +y z = ax and the sphere x

2 +y2

-f- z
z = a

2

(internal
to the cylinder).

2264. Compute the volume of a solid bounded by the paraboloid
- + -~ = 2 -i and the plane x--=a.

C. Applications of triple integrals
to mechanics and physics

2265. Find the mass M of a rec-

tangular parallelepiped Q^x^a,
<*/<??, 0<z<c, if the den-

sity at the point (x, y, z) is

(l(x, y, z)
= x-\-y-\-z.

2266. Out of an octant of the

sphere x
2 + y

2 + z
2 < c

2

, x .> 0,

*/^0, z^O cut a solid OABC
bounded by the coordinate planes

c, &<c) (Fig. 100). Find the mass

of this body if the density at each point (x, y, z) is equal to

the 0-coordinate of the point.
2267*. In a solid which has the shape of a hemisphere

22*0, the density varies in proportion to the

Fig. 100

and the plane -+- = 1 (a
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distance of the point from the centre. Find the centre of gravity
of the solid.

2268. Find the centre of gravity of a solid bounded by the

paraboloid //

2

+2z
2 = 4x and the plane x=2.

2269*. Find the moment of inertia of a circular cylinder,
whose altitude is h and the radius of the base is a, relative to

the axis which serves as the diameter of the base of the cylinder.
2270*. Find the moment of inertia of a circular con^

(altitude, /i, radius of base, a, and density Q) relative to

the diameter of the base.

2271**. Find the force of attraction exerted by a homogeneous
cone of altitude h and vertex angle a (in axial cross-section) on

a material point containing unit mas^ and located at its vertex.

2272**. Show that the force of attraction exerted by a homo-

geneous sphere on an external material point does not change if

the entire mass of the sphere is concentrated at its centre.

Sec. 8. Improper Integrals Dependent on a Parameter.

Improper Multiple Integrals

1. Differentiation with respect to a parameter. In the case of certain

restrictions imposed on the functions / (.v, a), f'a (x, a) and on the correspond-

ing improper integrals \vc have the Leibniz rule

(.v, a) dx= \ fa (A-, a) dx.

a 'i

Example 1. By differentiating with respect to a parameter, evaluate

~~

dx (a > 0, p > 0).

>

\

Solution. Let

Then

da
~

1 2a "2a*

Whence F (a, p)
= - Ina+ C(p). To find C(p), we put a= in the latter

equation. We have 0= ~ In P + C(P).

Whence C(p) = -^-lnp. Hence,



270 Multiple and Line Integrals [Ch. 7

2. Improper double and triple integrals.

a) An infinite region. If a function f (x, y) is continuous in an unbounded

region 5, then we put

\{f(x, y) dx dy= lim
\
( f (x, y) dx dy, (1)

U " SW
where a is a finite region lying entirely within S, where a -+ S signifies that

we expand the region o by an arbitrary law so that any point of 5 should
enter it and remain in it. If there is a limit on the right and if it does not

depend on the choice of the region o , then the corresponding improper inte-

gral is called convergent , otherwise it is divergent.
If the inU'grand / (,v, //) is nonnegative [f (x, y)^Q], then for the con-

vergence of an inirioper integral it is necej-sary and sufficient for the limit

on the right of (1) lo exist at least for one system of regions o that exhaust
the region 5.

b) A discontinuous function. If a function / (x, y) is everywhere contin-

uous in a bounded closed region S, except the point P (a, b), then we put

(*, y)dxdy=\\m f(x,y)dxdy. (2)

where S
6

is a region obtained from S by eliminating a small region of dia

meter e that contains the roint P. If (2) has a limit that does not depend
on the tyre of small regions eliminated from 5, the improper integral under
consideration is called convergent, otherwise it is divergent.

If /(A, //)^>0, then the limit on the ripht of (2) is not dependent on the

type of regions eliminated from S; for instance, such regions may be circles

of radius with centre at P.

The concept of improper double integrals is readily extended to the case
of triple integrals.

Example 2. Test for convergence

dxdy ,

3)

is}

where S is the entire j/-plane.
Solution. Let a be a circle of radius Q with centre at the coordinate

origin. Passing to polar coordinates for p^ 1, we have

If p< 1, then lim 7 (a)= lim /(a) =00 and the integral diverges. But if p> 1,
O -* S Q ~f QC

then lim 7(o)= r and the integral converges. For p=l we have
o - a P *
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2JT Q

/ (a)= Cdcpf -f^l-==jiln(l+Q
2
); lim/(a) = oo, that is, the integral

J J * ~r r
Q -* oo

o o

diverges.

Thus, 'the integral (3) converges for p> 1.

2273. Find /' (*), if

2274. Prove that the function

+ 00

r *f w j
u = \ 2 ,

'

, 2 dz
J ^ 2 + (l/ 2)

2

QC

satisfies the Laplace equation

*u + d*-Q
dx*
^

~c)y*

~ U '

2275. The Laplace transformation F (p) for the function /(/)

is defined by the formula

Find F(p), if: a) /(O-l; b) /(/)=e; c) /(/) = sinp/;

d) /(/) = cos p/.

2276. Taking advantage of the (ormula

compute the integral

\ xn
~

l \nxdx.

2277*. Using the formula

evaluate the integral
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Applying differentiation with respect to a parameter, evaluate

the following integrals:

GO

2278.
f

""-""*
dx (a > 0, > 0).

2279

00

. (
e~**~ e~'X

smrnxdx (a>0, p>0).

rno^ arc tan ax .

228 - dx -

2282. e-<"d* (o^O).

Evaluate the following improper integrals:

GO QC

2283.

x_

2284. \dy\ev dx.

2285. \\ 4 *,
y
2 ,

where S is a region defined by the inequali-
c) c/

^ ~r /

(5)

ties #^5 1,

2287. The Euler-Poisson integral defined by the formula
00

may also be written in the form I=\c-^dy. Eval-

uate / by multiplying these formulas and then passing to polar
coordinates.

2288. Evaluate

CO 00 GO

dz
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Test for convergence the improper double integrals:

2289**. 55 \nVx*-\-y
2

dxdy, where S is a circle *2 + f/

2 <K
(S)

2290. U TTiriva where S is a region defined by the ine-

(6')

quality x 2

-| tf^\ ("exterior" of the circle).

2291 *. I I $, J_ .
2 ,

where S is a square |

A;
|
< 1

, \y\^l.

2292. CCr
t 2

d
.

xd
^\

*

, ,
where V is a region defined by the

JJJ (x T~ y \
z

)

(V)

inequality x 2

-\- if -\- z
2 ^ 1 ("exterior" of a sphere).

Sec. 9. Line Integrals

1. Line integrals of the (Irst type. Let / (x, y) be a continuous function
and */

=
(p (A-) [a<: \ <;&] be the equation of some smooth curve C.

Let us construct a system of points M, (A-,-, //,) (/~0, 1, 2, .... n) that

break up the curve C into elementary arcs Al
I _,M t

- = As
t

- and let us form the

integral sum Sn 2^AV #/) ^sr ^ ne ' im it of this sum, when n -* oo and

max As/ -^ 0, is called a line integral of the first type

n

lim 2 /(xf, r/,-) As/= \ / (x, i/) ds
"->>ac / = i c

(cfs is the arc differential) and is evaluated from the formula

b

\ f (A
'

!/) rfs
\ f(x t cp (,v)) y~\ + (q>' (A-))

2
c/.vr.

J J
C a

In the case of parametric representation of the curve C: .Y= q>(/),- ' " rt

], we have

Also considered are line integrals of the first type of functions of three

variables f (x, y, z) taken along a space curve. These integrals are evaluated
in like fashion A line integral of the lirsl type does not depend on the direc-

tion of the path of integration; if the integrand / is interpreted as a linear

density of Hie curve of integration C, then this integral represents the mass
of the curve C.
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Example 1. Evaluate the line integral

where C is the contour of the triangle ABO with vertices A (1, 0), B (0, 1),

and 0(0, 0) (Fig 101).

Solution. Here, the equation AB is (/=l x, the equation OB is x= 0,

and the equation OA is */
= 0. We therefore have

AB BO OA

2. Line integrals of the second type. If P (x, y) and Q (x, y) are contin-

uous functions and f/
=

<p(A) is a smooth curve C that runs from a to b as

B

A X

Fig. 101

x varies, then the corresponding line integral of the second type is expressed
as follows:

P (x, y)dx+ Q (x, y)dy = [P (x, cp (*)) + <p' (x) Q (x, q> (x))\ dx.

C a

In the more general case when the curve C is represented parametrically:= <P(0, y= ty(t), where / vanes from a to 0, we have

y) dy + [P (<p (0,
'

(OJ(9(0,

Similar formulas hold for a Une integral of the second type taken over a

space curve.

A line integral of the second type changes sign when the direction of the

path of integration is reversed. This integral may he interpreted mechanically
as the work of an appropriate variable force

{
P (x, y), Q(x, y) } along the

curve of integration C
Example 2. Evaluate the line integral

Cyi
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where C is the upper half of the ellipse *--=a cost, y= b sin* traversed

clockwise.
Solution. We have

y
2 dx+ x* dy= [b

2
sin

2 t-(a sin /) + a2 cos2
/ -b cos /] dt =

n oo
= ab* f sin

8
1 dt + a*b C cos8

/ dt = -t a&.

jt ?t

3. The case of a total differential. If the integrand of a line integral
of the second type is a total differential of some single-valued function

U^--U(x, */), that is, P (x, y)dx-\-Q(x, y)dy-=dU(x, y], then this line integral
is not dependent on the path of integration and we have the Newton-Leibniz
formula

(x2 , yj

P(x, y)dx + Q(x, y)dy = U(x 2 , yJ U (xl9 </,), (1)

where (xlt y } ) is the initial and (*2 , #,) is the terminal point of the path
In particular, if the contour of integration C is closed, then

(2)

If 1) the contour of integration C is contained entirely within some
simnlv-connectH reaio.i S and 2) the functions P(r, (/) and Q (x, y) together
with tlvir partial dcnviitives of the first order are continuous in 5, then a

necessary and sufficient coiditioi foi th? existence of the function U is the
identical" fulJilment (in S) of the equality

2_^ (3)
dX ~dy

(d)

(see integration of total differentials) If conditions one and two are not ful-

jillcd, the presence of condition (3) does not guarantee the existence of a

single-valued lunction U, and formulas (1) and (2) may prove wrong (see

Problem 23:2) We give a method of finding a function U (x, u) from its

total diflerential based on the use of line integrals (which is yet another

method of integrating a total differential). For the contour of integration C
let us take a broken line P

II
P

1
M (Fig 102), where P (.v (J

, y ) is a fixed [oint
and M (x, y) is a variable point. Then along P P, we have y y and dy ~ 0,

and along P
t
M we have dx We get:

U (x t y)-U (x , y )= P (x, y) dx + Q (x, y) dy=
y

(x. y)dy.

Similarly, integrating with respect to P
C
P 2M, we have

u x

U(x. y)-U(*v */ )-$Q(* , y)dy+^P(x, y)dx.

Vo x*
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Example 3. (4x+ 2y) dx+ (2x 6y) dy= dU. Find U.
Solution. Let A-O

= O, y = Q. Then

U(x, y)
=

or

+ 2y) dx + C= 3//
2

-i-c,

where C U (0, 0) is an arbitrary constant.

Y

Uo --4-
/I

XQ X

Fig. 102

4. Green's formula for a plane. If C is the boundary of a region S and
the functions P (x, y) and Q (x, y) are continuous together with their first-

order partial derivatives in the closed region S-j-C, then Green's formula holds:

(S)

here t'^e circulation about the contour C is chosen so that the region S should

remain to the left.

5. Applications of line integrals.
1

) An area bounded by the closed contour C is

=
(p y dx= (p xdy

(the direction of circulation of the contour is chosen counterclockwise).
The fo lowing formula for area is more convenient for application:

2)
Z
2) The work of a force, having projections X= X(x, y, 2), Y = Y (x, y, z),

(x, y t z) (or, accordingly, the work of a force field), along a path C is
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expressed by the integral

A=
^Xdx + Ydy + Zdz.

c

If the force has a potential, i.e., if there exists a function U = U (x, y, z)

(a potential function or a force function) such that

dV dU dU
- = A

,
TT j ,

-7 L ,

dx dy dz

then the work, irrespective of the shape of the path C, is equal to

(*. //2, *j) (*J, '/J. Z.)

A =
J

Xdx + Ydy + Zdz^
J

dU = U(x 2t y tt
z 2)-t/ (x lt y, z

} ),

(*|. {/,, Zi) (*i, l/ lt 2-J

where (v l5 f/ 1? Zj) is the initial and (x 2 , </,, z
2 ) is tli2 terminal point of the path.

A. Line Integrals of the First Type

Evaluate the following line integrals:

2293.
J xyds, where C is the contour of the square | x\ + \ y\ = a

(fl>0).

2294. \ r ,.
s
--^=

, where C is a segment of the straight line
c K A:

2
|- if \- \

connecting the points 0(0, 0) and A (I, 2).

2295. ^xyds, where C is a quarter of the ellipse ^i
+

fi>

= l

c

lying in the first quadrant.

2296. ifds, where C is the first arc of the cycloid x = a (t sin /)>
c

a (1 cos /).

2297. }x 2 + y
2

ds, where C is an arc of the involute of the
c

circle x ---- a (cos / (-/sin/), y = a(smt tcost) I0^/=^2ji].

2298.
^ (x

2

-\- y
2

)

2

d$, where C is an arc of the logarithmic spi-
c

ral r^aemv(m>Q) from the point A (0, a) to the point 0( oo, 0).

2299. JU + y) rfs where C is the right-hand loop of the lem-
c

niscate r
2 = a2

cos2<p.

2300.
J (A: \-y)ds, where C is an arc of the curve JK = ^
c

q/2
>
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2301. \ 2 . i . 2
where C is the first turn of the screw-line

(*
% ~T~ y i

*

#= acos/ f y = as\nt, z = bt.

2302.
J t/"2#

2

-I- z
2
ds y where C is the circle x

2+ y
2 +z 2 = a

2

,

c

x=y.
2303*. Find the area of the lateral surface of the parabolic

o

cylinder y = x
2 bounded by the planes z = 0, x~0, 2 = x, //

= 6.

2304. Find the arc length of the conic screw-line C x ae
1

cos?,

y = ae* sin /, z = ae
l

from the point 0(0, 0, 0) to the point A (a, 0, a).

2305. Determine the mass of the contour of the ellipse
2

yi

2- + -T2-
= l, if the linear density ot it at each point M (x, y) is

equal to \y\.
2306. Find the mass of the first turn of the screw-line A;= a cos/,

y = asmt, zbt, if the density at each point is equal to the

radius vector of this point.
2307. Determine the coordinates of the centre of gravity of

a half-arc of the cycloid

x= a(t sin /), y = a(\ cost) [0</<ji].

2308. Find the moment of inertia, about the z-axis, of the

first turn of the screw-line x = a cos/, !/
= asin/, z = bt.

2309. With what force will a mass M distributed with uni-

form density over the circle x
2

-f y
2 = a

2

,
z = 0, act on a mass m

located at the point A (0, 0, &)?

B. Line Integrals of the Second Type

Evaluate the following line integrals:

2310.
J (x

2

2xy)dx-\- (2xy+tf)dy, where AB is an arc of the
AB

parabola y = x
2
from the point ^4(1, 1) to the point B(2, 4).

2311.
^ (2a y)dx \ -xdy, where C is an arc of the first

c

arch of the cycloid
x = a(t sin/), #= a(l cos/)

which arc runs in the direction of increasing parameter /.

2312.
J 2xydxx2

dy taken along different paths emanating
OA

from the coordinate origin 0(0, 0) and terminating at the point
A (2, 1) (Fig. .103):

ia) the straight line OmA\
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b) the parabola OnA, the axis oi symmetry of which is the

(/-axis;

c) the parabola OpA, the axis of symmetry of which is the

x-axis;

d) the broken line OBA\
e) the broken line OCA.

2313.
J 2xydx ^x2

dy as in Problem 2312.
OA

(x+u)dx (x i/)dy

x* + y*

counterclockwise.

Fig. 103

2315. ^tfdx + x*dy, where C is the upper half of the ellipse
c

x^acost, y = bs\r\t traced clockwise.

2316.
\ cosydxsmxdy taken along the segment AB of the

bisector of the second quadrantal angle, if the abscissa oi the

point A is 2 and the ordinate of B is 2.

2317.
(f

x!f(l' d

^*
dll}

,
where C is the right-hand loop ol the

lemmscate r* = rt

a

co$2(p traced counterclockwise.

2318. Evaluate the line integrals with respect to expressions-
which are total differentials:

(2. 8)

a) ^ xdy -\-ydx,
(
-

1 2)

(2, 1)

(a. 4) (i. i)

b) J
xdx + ydy, c) $

(Or 1) (0, 0)

d) f

ydx
,

xdy
(along a path that does not intersect the

(1. 2)
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(x, y)

e) f
dx+ dy

(a iong a path ^at (joes not intersect the
J x ~ry

straight line A;-f-y
=

0),

(*2 , J/ 2 )

f) J q>

(*;, </0

2319. Find the antiderivative functions of the integrands and
evaluate the integrals:

(3, 0)

a) J (x< + 4xy') dx 4 (6xV 5#
4

) dy ,

(-2, -1)
(i, o)

b) \

*
!
J ~~~y

^
x

(the integration path does not intersect the
j \x y)

(0, -1)

straight line y = x),

(, 1)

C) j
(x+Wx+ ydy

(the integration path does not intersect

a. i)

the straight line y = x),

A\ I f X
! y A

fix
I / y I \

fat

,
J \Vx* + y* J \}^xZ + y

z
J

(0, 0)

2320. Compute

/=. f xdx+ yfy

X* W 2

taken clockwise along the quarter of the ellipse -5+^=! that

lies in the first quadrant.
2321. Show that if f(u) is a continuous function and C is a

closed piecewise-smooth contour, then

c

2322. Find the antiderivative function U if:

a) du = (2x+ 3y)dx+ (3x4y)dy\
b) du = (3*

2

2xy+ y
2

) dx (x
2

2xy+ 3y*) dy\

c) du =

d) dtt ='
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Evaluate the line integrals taken along the following space
curves:

2323.
^ (y z)dx+(zx)dy+ (x tj)dz, where C is a turn
c

of the screw- line
i

-

/
= asin/,

corresponding to the variation of the parameter / from to

2324.
(p ydx + zdy+ xdz, where C is the circle

c

I ;t= /?cosacos/,
\ /y

= /?cosa sin /,

^ = ^sina (a = const),

traced in the direction of increasing parameter.

2325. ( xydx + yzdy + zxdz, where OA is an arc of the
OA

circle

situated on the side of the A'Z-plane where //>0.
2326. Evaluate the line integrals of the total differentials:

(, 4. 8)

a) ] xdx-\-ydy zdz,
(1, 0, -3)

b) //
z dx -f 2x dy -

\- xy dz ,

(i. i. i)

(3, 4. 5)

x r
j

J

xd\ \-\idij-\-zdz

rA'.|.y" + 2
'

(0, 0, 0)

-M^v

d) f
yte+mv + 'y**

(the integration path is situated
J xyz

(i. , D
in the first octant).

C. Green's Formula

2327. Using Green's formula, transform the line integral

/ = \f*
2

-\ if dx+ y [xy+ In (jc 4 K?T?)] dy,
c

where the contour C bounds the region S.
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2328. Applying Green's formula, evaluate

/ = 2 (x? -t- if) dx + (x + y)
2

dy,

where C is the contour of a triangle (traced in the positive direc-

tion) with verlices at the points A (I, 1), fl(2, 2) and C(l, 3).

Verify the result obiained by computing the integral directly.
2329. Applying Green's formula, evaluate the integral

x*y dx + xif dy,
c

where C is the circle x* + if = R* traced counterclockwise.

2330. A parabola AmB, whose axis is the #-axis and whose
chord is AnB, is drawn through the points A (1,0) and 8(2,3).

Find y (x + y)dx(x y)dy directly and by applying Green's
AmBnA

formula.

2331. Find
$

e*y [y* dx \- (1 -f xtj)dy\, if the points A and B
AmB

lie on the #-axis, while the area, bounded by the integration

path AmB and the segment AB, is equal to S.

2332*. Evaluate ^ifc^f. Consider two cases:

a) when the origin is outside the contour C,

b) when the contour encircles the origin n times.

2333**. Show that if C is a closed curve, then

where s is the arc length and n is the outer normal.
2334. Applying Green's formula, find the value of the integral

I =
(j)[xcos(X, n)+ysm(X, n)]ds,
c

where ds is the differential of the arc and n is the outer normal to

the contour C.

2335*. Evaluate the integral

taken along the contour of a square with vertices at the points
A (1, 0). fl(0 f 1), C(-l, 0) and>(0, 1), provided the contour
is traced counterclockwise.
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D. Applications of the Line Integral

Evaluate the areas of figures bounded by the following curves:

2336. The ellipse x = a cos/, y = bs\nt.

2337. The astroid jt = acos 3

/, #-=asin
8
/.

2338. The cardioid x = a (2 cos/ cos 2/), y = a (2 sin/

sin 20-
2339*. A loop of the folium of Descartes x* +if 3zxy = Q

(a>0).
2340. The curve (x + y)* = axy.
2341*. A circle of radius r is rolling without sliding along a

n
fixed circle of radius R and outside it. Assuming that is an

integer, find the area bounded by the curve (epicycloid) described

by some point of the moving circle. Analyze the particular case

of r R (cardioid).
2342*. A circle of radius r is rolling without sliding along

D
a fixed circle of radius R and inside it. Assuming that is an

integer, find the area bounded by the curve (hypocycloid) de-

scribed by some point of the moving circle. Analyze the particular
r>

case when r = j (astroid).

2343. A field is generated by a force of constant magnitude F
in the positive jt-direelion Find the work that the field does
when a material point traces clockwise a quarter of the circle

x 2

-^-y
2
^=R lying in the first quadrant.

2344. Find the work done by the force of gravity when
a material point of mass m is moved ironi position A (JCP // l? zj-
to position B (x 2 , // 2 ,

z
2 ) (the z-axis is directed vertically up-

wards).
2345. Find the work done by an elastic force directed towards

the coordinate origin if the magnitude of the force is proportion-
al to the distance of the point fiom the origin and if the point
of application of the force traces counterclockwise a quarter of

the ellipse ^s4-^i=l lying in the first quadrant.

2346. Find the potential function of a force R {X, Y, Z\
and determine the work done by the force over a given path if:

a) X = 0, K:=0. Z-=rng (force of gravity) and the mate-
rial point is moved from position A (x lt y l9 zj to position

B(* Uv *i)'-

b) x= ?, K=-^. Z=-* f where jx
= const and

r Yx* 4 if -\- f (Newton attractive force) and the material point
moves from position A (a, b, c) to infinity;
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c) X= k*x, Y = k*y, Z = k*z, where k = const (elastic

force), and the initial point of the path is located on the sphere
x* 4- #

2 + z
2 = /?

2

,
while the terminal point is located on the sphere

Sec. 10. Surface Integrals

1. Surface integral of the first type. Let f (x, //, 2) be a continuous
function and z=-cp(*, y) a smooth surface S.

The surface integral of the first type is the limit of the integral sum

'(x, //, z)dS= lim
n -> 00 fas I

.3

where AS/ is the area of the /th element of the surface S, the point (*/, ylt

z/) belongs to this element, and the maximum diameter of elements of par-
tition tends to zero.

The value of this integral is not dependent on the choice of side of the

surface S over which the integration is performed.
If a projection a of the surface S on the jo/-plane is single-valued, that

is, every straight line parallel to the z-axis intersects the surface S at only
one point, then the appropriate surface integral of the first type may be
calculated from the formula

(*' y) dx dlJ-

S (a)

Example 1. Compute the surface integral

where S is the surf ace of the cube 0<Jt<l, <//<!,
Let us compute the sum of the surface integrals over the upper edge of

the cube (z=l) and over the lower edge of the cube (z 0):

00 00 00

The desired surface integral is obviously three times greater and equal to

2. Surface integral of the second type. If P = P(x, //, z), Q = Q (*, y, z),
R = R(x, y, z) are continuous functions and S + is a side of the smooth sur-
face S characterized by the direction of the normal n {cos a, cos p, cos Y}. t'hen

ihe corresponding surface integral of the second type is expressed as follows:

P dy dz + Q dz dx+ R dx dy= f f (P cos a -f Q cos p + R cos Y) dS.
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When we pass to the other side, S~, of the surface, this integral re-

verses sign.
If the surface 5 is represented implicitly, F (x, y, z)

= 0, then the direc-

tion cosines of the normal of this surface are determined from the formulas

1 OF Q 1 dF 1 OF
COSa==-pr^-, COSB -FT^ ,

COS V = -rr- -T ,D dx ^ D dy
T D dz

where

and the choice of sign before the radical should be brought into agreement
with the side of the surface S.

3. Stokes' formula. If the functions P = P (.v, //, z), Q = Q (x, //, z),

R = R(x, y, z) are continuously differentiable and C is a closed contour bound-

ing a two-sided surface S, we then have the Stokes' formula

(j)

C

rr\fdR dQ\ Id? dR\ a , fdQ dP\ 1 _=
\ \ 3-- 5-

1 c s a + -3 T- cos fi + 3-2- T- 1 cos v dS,
JJ l\dy dz J ^\dt dx j

l ^
\dx dy J

y
|

5

where cos a, cos p, cosy are the direction cosines of the normal to the sur-

face S, and the direction of the normal is defined so that on the side of the
normal the contour S is traced counterclockwise (in a rigiit-handed coordinate

system).
Evaluate the following surface integrals of the first type:

2347. $$ (*
8

4 tf)dS, where S is the sphere xz

+//
2

-{-z
2 = a*.

6

2348. 5$ Vx
2

-\-tfdS where 5 is the lateral surface of the
s

.

cone + g_?6
s

i==0 [O^z^bl
Evaluate the following surface integrals of the second type:

2349. \ \ yz dydz -\-xzdz dx-\- xydxdy, where 5 is the external
s

side of the surface of a tetrahedron bounded by the planes A: 0,

y = Q
t

2 = 0, x+y + z = a.

2350. Nzdxdy, where S is the external side of the ellipsoid

2351. xt

dydz-\-y*dzdx + z*dxdy, where S is the external
o

side of the surface of the hemisphere +// +? 2 = a
2

(z ^0).
2352. Find the mass ot the surface of the cube O^x^l,

O^y^l, Os^z < 1, if the surface density at the point M (x, y, z)
Is equal to xyz.
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2353. Determine the coordinates of the centre of gravity of a

homogeneous parabolic envelope az^je2

+ #
2

(0<z<a).
2354. Find the moment of inertia of a part of the lateral

surface of the cone z = Vx 2

-f y
2

[0 < z < ft]
about the z-axis.

2355. Applying Stokes* formula, transform the integrals:

a) (x
2-

yz) dx+ (y
2

zx) dy + (z
2

xy) dz\

c

b)
(j)
ydx-\-zdy+ xdz.

c

Applying Stokes' formula, find the given integrals and verify
the results by direct calculations:

2356.
(f (y + z)dx + (z + x)dy + (x + y)dz, where C is the circle

c

2357. (y z)dx^(z x)dy + (x y)dz, where C is the ellipse

JC
2

-|-//
2

=1, X+ 2=l.

2358. ()xdx+ (x-{-y)dy + (x+ y+ z)dz, where C is the curve
c

0sin/, //
= acos/, z = a (sin / + cos/) [0 </^2nj.

2359. $ y
2

dx-{ z
z

dy+ x 2

dz, where ABCA is the contour of

ABCA
/IflC with vertices A (a, 0, 0), B (0, a, 0), C (0, 0, a).

2360. In what case is the line integral

/ = $ Pdx + Qdy + Rdz
c

over any closed contour C equal to zero?

Sec. 11. The Ostrogradsky-Gauss Formula

If 5 is a closed smooth surface bounding the volume V, and P P (x, y, z),

Q = Q (A% y, z), R = /? (v, (/, e) are functions that are continuous together with
thMr first partial derivatives in the closed region V t then we have the Ostro-

gradsky-Gauss formula

where crsa, cos p, cosy are the direction cosines of the outer normal to the
surface S

Applying the Ostrogradsky-Gauss formula, transform the fol-

lowing surface integrals over the closed surfaces S bounding the
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/olume V(t*osa, cosp, cosy are direction cosines of the outer

lormal to the surface S).

2361. JJ xydxdy+yzdydz -\-zxdzdx.
s

2362.
J J

x 2

dy dz + y* dz dx + z
2 d* dy.

6

2363.

Using the Ostrogradsky-Gauss formula, compute the following
surface integrals:

2o65. x*dydz + y*dzdx+ z*dxdy, where S is the external
J
s

side of the surface of the cube O^x^a, O^r/^n, O^z^a.
2366.

\ \ xdydz + ydzdx + zdxdy, where 5 is the external side

V
of a pyramid bounded by the surfaces x+ y-{-z = a, x = Q,y = Q,

z=-0.

2367. x* dydz-\-if dzdx = z* dxdy, where 5 is the external
^

side of the sphere x 2

f //

2

-|-z
2 ~a 2

.

2368 ^(jc
2

cosa-t y
2
cos p + 2

2
cos y) d5, where S is the exter-

o

nal total surface of the cone

2369. Prove that if S is a closed surface and / is any fixed

direction, then

where n is the outer normal to the surface S.

2370. Prove that the volume of the solid V bounded by the

surface S is equal to

=
-3
M

where cose, cosp, cosy are the direction cosines of the outer

normal to the surface S.
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Sec. 12. Fundamentals of Field Theory

1. Scalar and vector fields. A scalar field is defined by the scalar function
of the point = /(/>) = /(*, t/, z), where P (x, y, z) is a point of space. The
surfaces f (x, y, z) = C, where C = const, are called level surfaces of the scalar

field.

A vector field is defined by the vector function of the point a= a(P)~
a(r), where P is a point of space and r=xi-\-yj+zk is the radius vector

of the point P. In coordinate form, a axi+ a
vj-\-azk, where ax ~ax (x, y, z),

a
y ay(x, y, z), and az= az (x, //, z) are projections of the vector a on the

coordinate axes. The vector lines (force lines, flow lines) of a vector field are

found from the following system of differential equations

dx__dy_dz~~~'
A scalar or vector field that does not depend on the time t is called

'ry; if it depends on t

Gradient. The vector
stationary; if it depends on the time, it is called nonstationary.- ~ "

t. Th

where V= ^3-+y^- + ^y is the Hamiltonian operator (del, or nabla), is

called the gradient of the field U = f (P) at the given point P (ci. Ch. VI, Sec. 6).
The gradient is in the direction of the normal n to the level surface at the

point P and in the direction of increasing function U, and has length equal
to

dn~~ \dx

If the direction is given by the unit vector / {cos a, cos p, cos
Y}, then

= - cos a + - cos p + -

cosy

(the derivative of the function U in the direction /).

3. Divergence and rotation. The divergence of a vector field a (P) ~ a^i \~

+ a
yj+azk is the scalar diva-^+^+^^Va.
The rotation (curl) of a vector field a (P) = axi+ a

yj+ azk is the vector

daz
da
y

4. Flux of a vector. The flux of a vector field a(P) through a surfaces
in a direction defined by the unit vector of the normal ujcosa, cos p, COSY}
to the surface S is the integral

\ \ an dS = \
\
an dS \

\ (ax cos a -|- ay
cos p + az cos Y) dS.

S s S

If S is a closed surface bounding a volume V, and n is a unit vector of the

outer normal to the surface S, then the Ostrogradsky-Gauss formula holds,
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which in vector form is

ff (\ r\ r*

div a dx dy dz.

5. Circulation of a vector, the work of a Held. The line integral of the

vector a along the curve C is defined by the formula

f a dr= \ as ds V ax dx -f- aydy -f az dz

C C C

(0

and represents the work done by the field a along the curve C (as is the

projection of the vector a on the tangent to C).
If C is closed, then the line integral (1) is called the circulation of the

vector field a around the contour C.
If the closed curve C bounds a two-sided surfaces, then Stokes' formula

holds, which in vector form has the form

adr= f f /i rotadS,

where n is the vector of the normal to the surface S; the direction of the

vector should be chosen so that for an observer looking in the direction of n
the circulation of the contour C should be counterclockwise in a right-handed
coordinate system.

6. Potential and solenoidal fields. The vector iield a(r) is called poten-
tial if

U,

where Uf(r) is a scalar function (the potential of the field).

For the potentiality of a field a, given in a simply-connected domain,
it is necessary and sufficient that it be non rotational, that is, rota= 0. In
that case there exists a potential U defined by the equation

dU ~ax dx-}- av dy -f- a2 dz.

If the potential U is a single-valued function, then \ a dr U (B) U (A);

AB

in particular, the circulation of the vector a is equal to zero: m adr=Q.

A vector field a (r) is called solenoidal if at each point of the field div
a = 0; in this case the flux of the vector through any closed surface is zero.

If the field is at the same time potential and solenoidal, then div (grad U)=.Q
and the potential function U is harmonic; that is, it satisfies the Laplace

"Er++5-<>. or AU=0' where A= *'=;+>+> isthe

Laplacian operator

2371. Determine the level surfaces of the scalar field

where r \fx*+y*-\-z*. What will the level surfaces be of a field

U = F(Q), where

10-1900



290_Multiple and Line Integrals_[Ch. 7

2372. Determine the level surfaces ot the scalar field

U = arc sin -

2373. Show that straight lines parallel to a vector c are the

vector lines of a vector field a(P) = c t where c is a constant

vector.

2374. Find the vector lines of the field a = CD*// 4 CDJC/, where CD

is a constant.

2375. Derive the formulas:

a) grad(C l
i/+ C

2 K) = C
1 gradf/+ C

2 gradV, where C, and C
2

are constants;

b) gTad(UV) = Ugrad
c) grad (t/

2

)
= 26/ grad

j\ AfU\ V grad(/ U
d) grad (^ J

=-*

e) grad <p ((/)
=

cp' (t7) grad U.

2376. Find the magnitude and the direction of the gradient
of the field U = x* + if + z

3

3xyz at the point A (2, 1, 1). Deter-

mine at what points the gradient of the field is perpendicular to

the z-axis and at what points it is equal to zero.

2377. Evaluate grad f/, if U is equal, respectively, to: a) r,

b) r\ c) j , d) /(r)(r = /?+^qr?).
2378. Find the gradient of the scalar field U = cr, where c is

a constant vector. What will the level surfaces be of this field,

and what will their position be relative to the vector c?

2379. Find the derivative of the function U = x

^ +
y

^ + ~ala

given point P(x, y, z) in the direction of the radius vector r of

this point. 'In what case will this derivative be equal to the

magnitude of the gradient?

2380. Find the derivative of the function U = in the di-

rection of /{cosa, cosp, cosy}. In what case will this derivative
be equal to zero?

2381. Derive the formulas:

a) div^aj + C^^Cjdivaj + Cjjdivajj, where C
l
and C

2
are

constants;

b) div (i/c)
= grad /, where c is a constant vector;

c) div((/a) = grad U-a+ (/diva.

2382. Evaluate di

2383. Find div a for the central vector field a(P) = /(r)~ ,

where r =
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2384. Derive the formulas:

a) rot(C 1
a

l + C
2
a

2 )
= C

1
rota

l + C
f
rota

2 , where C
t
and C

2
are

constants;

b) rot(/c) = grad U-c, where c is a constant vector;

c) rot (Ua) = grad U a + U rot a.

2385. Evaluate the divergence and the rotation of the vector
a if a is, respectively, equal to: a) r\ b) re and c) f(r)c, where c
is a constant vector.

2386. Find the divergence and rotation of the field of linear
velocities of the points of a solid rotating counterclockwise with
constant angular velocity o> about the z-axis.

2387.' Evaluate the rotation of a field of linear velocities
= co r of the points of a body rotating with constant angular

velocity <o about some axis passing through the coordinate origin.
2388. Evaluate the divergence and rotation of the gradient of

the scalar field U.
2389. Prove that div(rota) = 0.

2390. Using the Ostrogradsky-Qauss theorem, prove that the
flux of the vector a = r through a closed surface bounding an
arbitrary volume v is equal to three times the volume.

2391. Find the flux of the vector r through the total surface
of the cylinder #2 + //

2 </? 2

, 0<e<//.
2392. Find the flux of the vector a = x*i + y*j+z*k through:

a) the lateral surface of the cone j<f^, 0<e<//; b) the
total surface of the cone.

2393*. Evaluate the divergence and the flux of an attractive

force F = ^ of a point of mass w, located at the coordinate

origin, through an arbitrary closed surface surrounding this point.
2394. Evaluate the line integral of a vector r around one

turn of the screw-line * = /?cos/; y = Rsmt\ z = lif from / =
to / = 2n.

2395. Using Stokes' theorem, evaluate the circulation of the
vector a = x*tfi +j+ zk along the circumference x* + if = R 2

\ z=-0,

taking the hemisphere z = J/"/?
2

jt
2

if for the surface.
2396. Show that if a force F is central, that is, it is directed

towards a fixed point and depends only on the distance r from
this

point:
F= f(r)r, where f(r) is a single-valued continuous

function, then the field is a potential field. Find the potential U
of the field.

2397. Find the potential U of a gravitational field generated
by a material point of mass m located at the origin of coordi-

nates: a = ~r. Show that the potential U satisfies the Laplace

equation

10*
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2398. Find out whether the given vector field has a potential U,
and find U if the potential exists:

a) a
b) a
c) a =

2399. Prove that the central space field = /(r)rwill be so-

lenoidal only when f(r) = ~, where k is constant.

2400. Will the vector field a= r(cxr) be solenoidal (where c
is a constant vector)?



Chapter VIII

SERIES

Sec. 1. Number Series

1. Fundamental concepts. A number series

00

a,+at+...+att +...= 2l
a

tt (1)

n-\

is called convergent if its partial sum

has a finite limit as n > oo. The quantity S= lim Sn is then called the sum
n -+ oo

of the series, while the number

is called the remainder of the series. If the limit lim Sn does not exist (or is

n -* QO

infinite), the series is then called divergent.
If a series converges, then lim an Q (necessary condition for convergence).

n-*oo

The converse is not true.

For convergence of the series (1) it is necessary and sufficient that for

any positive number e it be possible to choose an N such that for n > N
and for any positive p the following inequality is fulfilled:

(Cauchifs test).

The convergence or divergence of a series is not violated if we add or

subtract a finite number of its terms.

2. Tests of convergence and divergence of positive series.

a) Comparison test I. If <a,,<6n after a certain n = n , and the series

*! + *,+ .. +*,!+. ..^ (2)

converges, then the series (1) also converges. If the series ( J) diverges, then

(2) diverges as well.

It is convenient, for purposes of comparing series, to take a geometric
progression:

00

2 aq
n

(a * 0),

n=o
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which converges for |^|<land diverges for \q\^\, and the harmonic series

which is a divergent series.

Example 1. The series

+ ++ +

converges, since here

= 1 J_a
"~n-2n 2*'

while the geometric progression

1

n=i

whose ratio is
<7
=

, converges.

Example 2. The series

ln_2 ln_3 In /i

diverges, since its general term is greater than the corresponding term

of the harmonic series (which diverges).

b) Comparison test II. If there exists a finite and nonzero limit lim ?
n - y. bn

(in particular, if an -^bn ), then the series (1) and (2) converge or diverge at

the same time.

Example 3. The series

diverges, since

1 1" n J 2

whereas a series with general term diverges.n

Example 4. The series

_J_ _J 1

converges, since

while a series with general term ^ converges.
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c) D'Alembert's test. Let an > (after a certain n) and let there be
a limit

lim -l= q.
n -> GO an

Then the series (1) converges if q < 1, and diverges if q > 1. If
<7
= 1, then

it is not known whether the series is convergent or not.

Example 5. Test the convergence of the series

1+1+1+
2

'

2 2 2s

Solution. Here,

and

lim ?-H =
2

Hence, the given series converges.
d) Cauchy's test. Let of^^O (after a certain n) and let there be a limif

lim n/~=
n -> OD V n

Then (1) converges if q<\, and diverges if q>\. When q=l t the question
of the convergence of the series remains open.

e) Cauchy's integral test. If an = f(n), where the function f (x) is positive,

rnonotomcally decreasing and continuous for jc^a^l, the series (1) and the

integral
00
"

/ (x) dx

converge or diverge at the same time.

By means of the integral test it may be proved that the Dirichlet series

converges if p> 1, and diverges if p<^\. The convergence of a large number
of series may be tested by comparing with the corresponding Dirichlet

series (3)

Example 6. Test the following series for convergence

-U--L + -L+ i

*

i--^" 1 - r "'

Solution. We have

1 __1_1 J^~

4/i
2

'
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Since the Dirichlet series converges for p= 2, it follows that on the basis of

comparison test II we can say that the given series likewise converges.
3. Tests for convergence of alternating series. If a series

l+.-. + |fll+..., (4)

composed of the absolute values of the terms of the series (1), converges,
then (1) also converges and is called absolutely convergent. But if (1) con-

verges and (4) diverges, then the series (1) is called conditionally (not abso-

lutely) convergent.
For investigating the absolute convergence of the series (1), we can make

use [for the series (4)] of the familiar convergence tests of positive series.

For instance, (1) converges absolutely if

lim
n -> oo 0-n

< \ or lim /KI< 1.

n

In the general case, the divergence of (1) does not follow from the diver-

gence of (4). But if lim ?2_J I > 1 or lim /\an \> 1, then not only does
n - GO I n f

n -> oo
K

(4) diverge but the series (1) does also.

Leibniz test If for the alternating series

*!-* +*3- **+ (*^0) (5)

the following conditions are fulfilled: 1) b
l ^ b2 ^bs ^. . . ; 2) lim bn =

n - oc

then (5) converges.
In this case, for the remainder of the series Rn the evaluation

holds.

Example 7. Test for convergence the series

Solution. Let us form a series of the absolute values o! the terms of

this series:

lim . lim
I 1 n - oo

,

Since

the series converges absolutely.
Example 8. The series

converges, since the conditions of the Leibniz test are fulfilled. This series

converges conditionally, since the series

14- -* 4- 4-4
diverges (harmonic series).
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Note. For the convergence of an alternating series it is not sufficient that
its general term should tend to zero. The Leibniz test only states that an

alternating series converges if the absolute value of its general term tends
to zero monotonically. Thus, for example, the series

diverges despite the fact that its general term tends to zero (here, of course,
the monotonic variation of the absolute value of the general term has been

violated). Indeed, here, S 2k
= S'k + S"k ,

where

and lim Sk
= cc(Sk is a partial sum of the harmonic series), whereas the

k -

limit lim S
k

exists and is finite (Sk is a partial sum o f the convergent geo-
fe -*

metric progression), hence, lim S
2fe
=oo.

k -> 00

On the other hand, the Leibniz test is not necessary for the convergence
of an alternating series: an alternating series may converge if the absolute
value of its general term tends to zero in nonmonotonic fashion

Thus, the series.- _
2 2 ~3a 4 2 ~~'""(2n 1)'

converges (and it converges absolutely), although the Leibniz test is not ful-

filled: though the absolute value of the general term of the series tends to

zero, it does not do so monotonically.
4. Series with complex terms A series with the general term cn

= an +
00

-]-ibn (i
z

1) converges if, and only if, the series with real terms 2 an
n=i

00

and 2&,, converge a * the same time; in this case

n \

SCB=S 8 +'2X- (6)

n = i n = i n = i

The series (6) definitely converges and is called absolutely convergent, if the

series

whose terms are the moduli of the terms of the series (6), converges.
5. Operations on series.

a) A convergent series may be multiplied termwise by any number fc;

that is, if

a, + a1 +...+fln + ...=S t

then
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b) By the sum (difference) of two convergent series

fli + flt+-..+fln +...=5 If (7)

*! + *,+ .. .+*+...=$, (8)

we mean a series

(a, b
l )+ (a l b z) + . . . + (an bn ) + . . . =S, S 2 .

c) The product of the series (7) and (8) is the series

c
l + c>+...+cn +... t (9)

where cn
= a,bn + aA-I + +0M =

*> 2
)

If the series (7) and (8) converge absolutely, then the series (9) also con-

verges absolutely and has a sum equal to S
{
S 2 .

d) If a series converges absolutely, its sum remains unchanged when the

terms of the series are rearranged. This property is absent if the series con-

verges conditionally.

Write the simplest formula of the /ith term of the series using
the indicated terms:

2401. 1+1+J + I+... 2404. i+4 +j+^+...
2402. 1+1+1+1+"- 2405. 4+*.+ ^+...
2403. 1+1+4 + 4+.. . 2406. f + { + + + . . .

2407. + ~4 + + +...

2409. 1
-

1 H- 1 - 14 1 ~ 1 -I-

2410. 1+

In Problems 2411-2415 it is required to write the first 4 or
5 terms of the series on the basis of the known general term an .

2411. an= |q^. 2414. an=

2412. t^.
2415 a =din*. \*

2413
flrt
=

Test the following series for convergence by applying the com-

parison tests (or the necessary condition):

2416. 1 1 +1 ! + ...+( 1)-' + ...
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2418. + +

0419 J___1_

4- 4- 4- -I- 4-.

2 ^ 4 ^ 6 ^ ' ' '
' 2i

^ ' ' '

2421. + ++ ... + +

2422. -= + -=-f -= + ... 4-
'

... .

1/2-3 ^3-4
'

]fn (n + \)

02 OJ O"
2423. 2+ i-+ y+... +=;-+..

.

-' 3 V'2 4 J/3 (n 1-1) K "

Using d'Alembert's lest, test the following bones for conver-

gence:

2427. -l= + 4 4-^- +...-'
2"~'

'

98
2

1 + ''-} i-*'
! ^

-
j

'
'

-

1 1-5 1-5-9
'

'

1-5- 9. ..(4/i-3)

Test for convergence, using Cauchy's test:

Test for convergence the positive series:

2431. 1+1 + 1+...+1+...

2432. 1+ 1+ 1+ . ..+
((H [

1

)2
_

1
+...

2433 - r4+4T7+ 7no+ +(3n-2M3n+l

24.i+f)-^+... +sSFI+ ...

2435. ^ + 1-
+^+...+^+...

.'^ 5 7 9 j_ ir/lo/ ^
i i i i

^ *
l

*

^TtjO I I J_ _X. __________
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2439. -+ + +...

2440. 1+ + +... ++...
2441>

2442. 1++.+ ...

1, -3, 1-3.5 1.3.5.. .(2/1-1)
-

4 1-jT 4^M2~*"
' ""

4-8-12...4n

2445.

2447
2

1000. 1002. 1004... (998 +2n)""
1-4-7. ..(3n-2)

2.5-8...(6n -7)(6g-4)
!. 5.9... (8_H)(8n -7)

"

...

2449 I, '- 4
I

1 ' 4 ' 9
|

1-4-9. ..^--^ ....^ '
1.3.5.7.9

'""
1-3-5-7- 9... (4n 3)

""*

2450. arcsin. 2455. !,

2451. sin. 2456.
i=J

2452152. Ulnfl+l). 2457. ,. . . ^- .^ \ n J ~ ri'lnn-ln In n

00

2453. yin^i. 2458.
/J=2

2454 - E-' 2459 -

STTOTJ
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2464.
cos-2-)

.

^

2469. Prove that the series

1) converges for arbitrary q t
if p>l, and for ?>1, if p=l;

2) diverges for arbitrary q, if p<l, and for </<!, if p=l.
Test for convergence the following alternating series. For con-

vergent series, test for absolute and conditional convergence.
i i (_n-i

2470. l- + -....ui--f...

2471. 1 -- - + - ...
/2 K 3

2472. l_ + _... + l + ..

2473. l_ + 3_... +(^S + .

2474 '
" + ^- -. +(-!)-

2475. __ + . +
I
_. ..+(_!) .^+...

9 ^ a
2476. --7=4

--
1

--
7=4
---^--h...+

2|^2 1 3^3 1 4^41
,

/

{)
n n+\

(n + \)

947Q l_k!-J-lL_ -i / ii-' 1-4. 7... (3/1-2)"'
7 7.9~t"7.9.11 "TV U

7.9-11. ..(2/1 + 5)'


