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sin na

2481. (_l)"l^, 2482. ( ly-'tan ^
n^i n V n

yourself that

ide the quesl

series 2 a > where

2483. Convince yourself that the d'Alembert test for conver-

gence does not decide the question of the convergence of the

whereas by means of the Cauchy test it is possible to establish

that this series converges.
2484*. Convince yourself that the Leibniz test cannot be

applied to the alternating series a) to d). Find out which of

these series diverge, which converge conditionally and which con-

verge absolutely:

a) _J___l

| j .j;'
" r

1 _1_ . .

1
3 +y 3F + 21 3?+

v i_ . _ L __u
' 3 *~ 3 32

"h
5 3*

"
' ' '

^\ !
i .

] !
i

J !
.

d) T_l + T
_
T + TT

_
T +...

Test the following series with complex terms for convergence:
CO 00

2485. ^2+#. 2488. V.
00 00

2486, X" (2'

37
1)

''. 2489.
1=1 =i
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V
[
r(2-Q + l 1"

-

fa [n(3-20-3ij
'

2493. Between the curves {/
=

-? and y=-^ and to the rightX X

of their point of intersection are constructed segments parallel
to the t/-axis at an equal distance from each other. Will the sum
of the lengths of these segments be finite?

2494. Will the sum of the lengths of the segments mentioned

in Problem 2493 be finite if the curve \)^-\ is replaced by the
x

curve y = ?
X

00

2495. Form the sum of the series ^-^ and

Does this sum converge?
00

2496. Form the difference of the divergent series ]T 2
r

and
rt

anc* *es * '* for convergence.
n i

2497. Does the series formed by subtracting the series
QC 00

sef ies 21 converge?TT -f
n = i n i

2498. Choose two series such that their sum converges while

their difference diverges.
CC QC

2499. Form the product of the series V and V.OTTM-~nVn ntt 2

Does this product converge?

2500. Form the series
(l
+1+1+ .. . + J~-f- . . . V. Does

this series converge?

2501. Given the series 1+1 1+ ...+
(-:^+... Estimate

the error committed when replacing the sum of this series with
the sum of the first four terms, the sum of the first five terms.

What can you say about the signs of these errors?

2502*. Estimate the error due to replacing the sum of the

series

y+ 2! (2")
+

~3\('2J
+ " + 5H2") +"

by the sum of its first n terms.
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2503. Estimate the error due to replacing the sum of the

series

1 JL -L-L-L-l. 4- 4-i ^2M3M "+/i!^"'

by the sum of its first n terms. In particular, estimate the accu-

racy of such an approximation for n=10.
2504**. Estimate the error due to replacing the sum of the

series

1 +
22
+ 32+ +^i+ '

by the sum of its first n terms. In particular, estimate the accu-

racy of such an approximation for n= 1,000.
2505**. Estimate the error due to replacing the sum of the

series

1 + 2(i)'43()V. .

by the sum of its first n terms.
00

Zl
_ I)"" 1

- - does one have
n = i

to take to compute its sum to two decimal places? to three

decimals?

2507. How many terms of the series
(2/1 -MIS*

does one

have to take to compute its sum to two decimal places? to three?

to four?

2508*. Find the sum of the series -L + gL+ jL + .. . +

2509. Find the sum of the series

Sec. 2. Functional Series

1. Region of convergence. The set of values of the argument x for which
the functional series

/.<*) + /.(*)+.. .+M*)+... (1)

converges is called the region of convergence of this series. The function

S(*) = lim Sn (x),
n -* QO

where Sn (x) f l (x) + fz (x)+ ...+fn (x), and x belongs to the region of con-

vergence, is called the sum of the series; Rn (x)
= S(x)Sn (x) is the remainder

of the series.
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In the simplest cases, it is sufficient, when determining the region of

convergence of a series (1), to apply to this series certain convergence tests,

holding x constant.

Diverges .

n,%f? Diverges

-3-101 X

Fit*. 104

Example 1. Determine the region of convergence of the series

x+\ (x+\y (X+\Y (*+iy
TT"1

"

2-2*
~
t"~T^r

"
t""'~t

~

n- 2"
+ '

Solution. Denoting by un the general term of the series, we will have

lim I
M-*| = lim I'+H 11*'* 1 * Jx+l\ '

\Un \
n^*2n + l

(n+\) |jc| 2

Using d'Alembert's test, we can assert that the series converges (and converges

absolutely), if '<! that is, if 3<x<l; the series diverges, if

l, that is, if oo<^< 3 or 1< x < oo (Fig. 104). When x=l

we get the harmonic series 1 + TT+-Q-+.. -t which diverges, and when x= 3
2 o

we have the series 1 + -~ T +..., which (in accord with the Leibniz
2, o

test) converges (conditionally).
Thus, the scries converges when 3^*<1.
2. Power series. For any power series

c + c, (A-a) + c2 (* fl)'+ . . . +cn (x fl)
B + . . . (3)

(cn and a are real numbers) there exists an interval (the interval of conver-

gence) |
x a

|
< R with centre at the point x a, with in which the series (3)

converges absolutely; for \x a
\
> R the series diverges. In special cases, the

radius of convergence R may also be equal to and oo. At the end-points of

the interval of convergence x= a R, the power series may either converge
or diverge. The interval of convergence is ordinarily determined with the

help of the d'Alembert or Cauchy tests, by applying them to a series, the

terms of which are the absolute values of the terms of the given series (3).

Applying to the series of absolute values

the convergence tests of d'Alembert and Cauchy, we get, respectively, for the

radius of convergence of the power series (3), the formulas

= and #= Hm
lim "/|c,,|

-

n - rt* '

too

However, one must be very careful in using them because the limits on the

right frequently do not exist. For example, if an infinitude of coefficients cn
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vanishes [as a particular instance, this occurs if the series contains terms
with only even or only odd powers of (x a)], one cannot use these formulas.

It is then advisable, when determining the interval of convergence, to apply
the d'Alembert or Cauchy tests directly, as was done when we investigated
the series (2), without resorting to general formulas for the radius of con-

vergence.
If z= x+ ty is a complex variable, then for the power series

z-Zo)
Z +...+Cn (Z-ZQ)

n
+... (4)

(cn = an+ ib n , z = Jt -f/f/ )
there exists a certain circle (circle of convergence)

|z -z
|
<R with centre at the point z = z , inside which the series converges

absolutely; for Iz z |>fl the series diverges. At points lying on the cir-

cumference of tne circle of convergence, the series (4) may both converge and

diverge. It is customary to determine the circle of convergence by means of

the d'Alembert or Cauchy tests applied to the scries

whose terms are absolute values of the terms of the given series. Thus, for

example, by means of the d'Alembert test it is easy to see that the circle of

convergence of the series

1-2
""

2-2 2
""

3.2s
~~"'~~

n .2*
~""'

is determined by the inequality |z-f 1 |<2 [it is sufficient to repeat the cal-

culations carried out on page 305 which served to determine the interval of

convergence of the series (2), only here x is replaced by z]. The centre of

the circle of convergence lies at the point z = 1, while the radius R of this

circle (the radius of convergence) is equal to 2.

3. Uniform convergence. The functional series (1) converges uniformly on
some interval if, no matter what e > 0, it is possible to find an N such that

does not depend on x and that when n>N for all x of the given interval

we have the inequality |
Rn (x) \

< e, where Rn (x) is the remainder of the

given series.

If \fn(x)\*f* cn (rt=l, 2, ...) when a^x^b and the number series

2 cn converges, then the functional series (I) converges on the interval

n-\

[a, V absolutely and uniformly (Weierstrass' test).
The power series (3) converges absolutely and uniformly on any interval

lying within its interval of convergence. The power series (3) may be term-
wise differentiated and integrated within its interval of convergence (for

|x fl| <RY, that is, if

*-) 2+ . . +cn (xa)+ . . . =/(*), (5)

then for any x of the interval of convergence of the series (3), we have

-a)+. ..+ncn (xa)*-
l +. . . =f (x), (6)

cQdx+ d (xa) dx+ c2 (xa) 2 dx+ . . . + cn (xa) n dx+...=
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[the number # also belongs to the interval of convergence of. the series (3)J.

Here, the series (6) and (7) have the same interval of convergence as the

series (3).

Find the region of convergence of the series:

2510.

2511. (-D-'. 25.9.
n - 1 n - 1

2512. ( l)"
+I

-jb- 252 -

2-(jzrk-
M = I

n n-i
00 3D

v~^ sin (9n M x v^ 2/1-4- 1
O(T |

O ^'oMI^fl l^A- O^vQI >
^'*'

I
*

n = i ri = o

nr

2514. X 2
"
sin

-J-
2522 -

= i

25.5**. X^i. 2523. V ^ .

/l = /I=l
X

2516. (-l)"
fI *- nMn *. 2524*.

2517. 2-p- 2525.

Find the interval of convergence of the power series and test

the convergence at the end-points of the interval of convergence:

2531.

2532.

30

^ yin I

2528. X 2̂ rr. 2533.
n - 1

2529. . 2534.
n=i '

2530. -_^". 2535.
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CO 00

OCQA V f n V""
1

r* 0**1 V (x + 5)*
n ~ l

25<JO. >, s ;-= . 2551. > ^-rr 7^ .^ \2rt-f-ly ^- 42n4n

2537.

n=i
CO CO

CO

2553. (-!)
n = i

,n V t2"'
2539. ^-'

X
(3

2554.

2541. ^1
a = i

*

2556.

2542**. 2^ nl xnl
.

n=i

/j"

2544*. 2V-
=1

2558.

2545. 2(-l)""
l(

-^|r.
T

n

2559*.

2557. 21 ( l)"
+l

>
/I = l

(AT-2)"

n=o

X(A; 2)".

2549. 2 ^S^ 2562. Y. (3ft
-

2).^-.
3>"

(n+l)
! 2"+ l

n=

2550. V n" (* + 3)". 2563. Y( 1)"
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Determine the circle of convergence:

2564. V W. 2566. V <=gC .
Aarf ^arf fl. J
n=o n=i

00

2565.
(1-M0 2".

2567 ' '

2568. (1 + 2i) + (1 + 20 (3 -h 20 2 + . . . +
+ (l+

2569. l + r=-,+ (l-lHI-20

+ (1-00-20. ..(l-/ii)

9*70257 -

2571. Proceeding from the definition of uniform convergence,

prove that the series

. ..+*"+...

does not converge uniformly in the interval ( 1, 1), but con-

verges uniformly on any subinterval within this interval.

Solution. Using the formula for the sum of a geometric progression, we
get, for |jc|< 1,

Within the interval ( 1, 1) let us take a submterval
[ 1+ct, 1 a], where

a is an arbitrarily small positive number. In this subinterval |jc|s^l a,

|1 xl^a and, consequently,
/I _ at"* 1

I *,.(*) I < (

;>
.

To prove the uniform convergence of the given series over the subintervai

[1+ a, 1 a], it must be shown that for any e > it is possible to choose
an N dependent only on e such that for any n > N we will have the ine-

quality I R n (x) I < e for all x of the subinterval under consideration.
(1 a)"* 1

Taking any e>0, let us require that --- < e; whence (i a)
w+l <ea,

(n+l)ln(l a)<ln(ea), that is, n + 1 > [since ln(l a)<0] and

ln(ea)_ j Thus> putting Ns=s
ln

f

ea
\ 1, we are convinced that

In (1 a) ln(l a)
when n>N t \R n (x)\ is indeed less than e for all x of the subinterval

(- 1+a, 1 aj and the uniform convergence of the given series on any sub-

interval within the interval ( 1, 1) is thus proved.
As for the entire interval ( 1, 1), it contains points that are arbitrarily

J/I+ 1

close to Jt=i, and since Hm Rn (x)
= \im .-- =00, no mattei how large n is,

X-+1 X-+1 1 X
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points x will be found for which Rn (x) is greater than any arbitrarily large
number Hence, it is impossible to choose an N such that for n > N we
would have the inequality |

R n (x) \
< e at all points of the interval ( 1, 1),

and this means that the convergence of the series in the interval ( 1, 1)

is not uniform.

2572. Using the definition of uniform convergence, prove that:

a) the series

converges uniformly in any finite interval;

b) the series
x*

converges uniformly throughout the interval of convergence
(-1. i);

c) the series

1+F + F+- -+;?+...

converges uniformly in the interval (1-1-8, co) where 8 is any
positive number;

d) the series

(x
2

jc
4

) + (x*- *) + (jc

6
jc

8

) -f- . . . + (x
2 " x2n+2 ) -h . . .

converges not only within the interval
( 1, 1), but at the extre-

mities of this interval, however the convergence of the series in

(1, 1) is nonuniform.
Prove the uniform convergence of the functional series in the

indicated intervals:
00

2573 - on the inlerval I" 1 ' !]

on

2574. 2^ ~~2~
over *he en tire number scale.

00

2575. (
I )"~

I

T= on the interval [0, 1].

Applying termwise differentiation and integration, find the

sums of the series:
Y 2 V3 \n

2576. x+^ + ^+. ..+?-+...
y y v

2577. x-*-+
x
--...+(-l)'-*L + ., t

y.3 y5 yLfl l

2578 . ,+ + +... + _ + ...
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v8 s r2"" 1

2579. *- + -' .- +(-!)"- +---

2580. 1 +2x+ 3x* + ... 4
2581. l-3*2

-[5x
4

...

2582. 1.242-3A; + 3-4A:
2
4- ...+(/+ !)*""' 4

Find the sums of the series:

2583 - +++ ++

2586. ^ + l+!+...+^L/ri+...

Sec. 3. Taylor's Series

1. Expanding a function in a power series. If a function f (x) can be
expanded, in some neighbourhood \xa\<R of the point a, in a series of

powers of A: a, then this series (called Taylor's series) is of the form

(I)

When a the Taylor scries is also called a Maclaurin's series. Equation (I)
holds if when \xa\<R the remainder term (or simply remainder) of the

Taylor series

as n * oo.

To evaluate the remainder, one can make use of the formula

fin (x)
=

f(n
* l)

l
fl + <*- fl )l where 0<0<1 (2)

(Lagrant*e's form).
Example 1. Expand the function f (x) = cosh x in a series of powers of x.

Solution. We find the derivatives of the given function f (x)
= cosh x,

f (
X)

=, smh x, f" (x)
= cosh x, f" (.v)

= sinh x, ...; generally, f
(n)

(x)
= cosh x,

if n is even, and /
(H)

(A-) sinn A, if n is odd. Putting a= 0, we get /(0) = 1,

/'(0)=0, T(0)-l, /'"(0) = 0, ...; generally, /
(II

>(0) = 1, if n is even, and
")=-0 if n is odd. Whence, from (1), we have:

(3)

To determine the interval of convergence of the series (3) we apply the
d'Alembert test. We have

lini

n-> oo (2/1
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for any*. Hence, the series converges in the interval QO<JC<OO. The
remainder term, in accord with formula (2), has the form:

Rn (x)= .cosh 9*, if n is odd, and

An + 1

Rn (x)= sinh9*, if n is even.

Since > 9 > 1 , it follows that

- ~ =^e'*', |sinh9*|=

I X I"-*- 1
i . \ Y\ n

and therefore \Rn (x)\^
'**

e 1 * 1

. A series with the general term ^
converges for any x (this is made immediately evident with the help of

d'Alembert's test); therefore, in accord with the necessary condition for

convergence,
n + l

lim

and consequently lim #(*) = () for any x. This signifies that the sum of the
/2->00

series (3) for any x is indeed equal to cosh*.
2. Techniques employed for expanding in power series.

Making use of the principal expansions

I.
*=!++*!+. ..+fj+... (_oo<*<oo),

y

II.

III.

IV.

and also the formula for the sum of a geometric progression, it is possible,
in many cases, simply to obtain the expansion of a given function in a po-
wer series, without having to investigate the remainder term. It is sometimes
advisable to make use of termwise differentiation or integration when expan-
ding a function in a series. When expanding rational functions in power
series it is advisable to decompose these functions into partial fractions.

*) On the boundaries of the interval of convergence (i.e., when x= 1

and x=l) the expansion IV behaves as follows: for m^O it converges abso-

lutely on both boundaries; for > m > 1 it diverges when x--\ and

conditionally converges when x = l; for m^ 1 it diverges on both boun-
daries.
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Example 2. Expand in powers of x *) the function

3

Solution. Decomposing the function into partial fractions, we will have

Since

and

2 _ V^ i \\ n<l nx.
n^^ ... ^ v

^^
1 j fi A> t

it follows that we finally get

n = o

n-Q

(4)

(5)

(6)

/i= o n= Q n v

The geometric progressions (4) and (5) converge, respectively, when |x| < 1

and |*|<y; hence, formula (6) holds for |x|<-j i.e., when

3. Taylor's series for a function of two variables. Expanding a function

of two variables /(x, //) into a Taylor's series in the neighbourhood of a

point (a, b) has the form

... (7)

If a= fc = 0, the Taylor series is then called a Maclaunn's series. Here the

notation is as follows:

(X
, y)

d*f(x,y)
~

dx*

x=a
!l=t>

a)
f+

+ 2
dy*

~W 2 and so forth.

*) Here and henceforward we mean "in positive integral powers".
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The expansion (7) occurs if the remainder term of the series

fe=l

as n * oo. The remainder term may be represented in the form

n + i

where 0<0< 1.

Expand the indicated functions in positive integral powers
of *, find the intervals of convergence of the resulting series and

investigate the behaviour of their remainders:

2587. ax (a>0). 2589. cos(* + a).

9*a cin^r-i-M 2590. sin
2
*.

Jooo. sin * -r--r . ,-,>* 1 /^

Making use of the principal expansions I-V and a geometric

progression, write the expansion, in powers of *, of the following
functions, and indicate the intervals of convergence of the scries:

2592. 7^rJT2 - 2598. cos
2
*.

2593.
2

3
*7

5
.

,. . 2599. sin 3* + * cos 3*.
X ~4X

J
o

2594. xe~*
x

. 2600.

2595. e
x\ 2601.

2596. sinh*. 2602. In
*

.

1 ,v

2597. cos2*. 2603. In (1 -f* 2*
2

).

Applying differentiation, expand the following functions in

powers of *, and indicate the intervals in which these expansions
occur:

2604. (l+*)ln(l+*). 2606. arc sin*._
2605. arc tan* 2607. In (x+ V\ +*2

).

Applying various techniques, expand the given functions in

powers of * and indicate the intervals in which these expansions
occur:

2608. sin
2
*cos

2
*.

2609.

2610. (1 +O 8
-

2613 ' cosh8 *'

2611.
~

2614 -
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2615. ln(x
2 + 3x + 2). in/i_L.^/*v

2618. rMl + *)**
J. f'Jl

2616. \ dx. o

X

2619.
[

^L_
4

2617. * "-*z ^" ^ V 1 *4

Write the first three nonzero terms of the expansion of the

following functions in powers of x:

2620. tan*. 2623. sec*.

2621. tanh*. 2624. In cos*.
2622. e^ x

. 2625. <?*sin*.

2626*. Show that for computing the length ot an ellipse it is

possible to make use of the approximate formula

where e is the eccentricity and 2a is the major axis of the

ellipse.
2627. A heavy string hangs, under its own weight, in a ca-

tenary line //
= acosh

,
where a = and H is the horizontalJ J a q

tension of the string, while q is the weight of unit length. Show
that for small *, to the order of * 4

,
it may be taken that the

V
2

string hangs in a parabola y^a -f ^ .

2628. Expand the function *
8

2*
2 5* 2 in a series of

powers of *-| 4.

2629. f(*)-5*
s

4*
2

3* +2. Expand f(x+h) in a series of

powers of h

2630. Expand In* in a series of powers of * 1.

2631. Expand in a series of powers of * 1.

2632. Expand z
in a series of powers of *+l.X
j

2633. Expand 2 in a series of powers of *-f4.
X ~Y~ oX ~\~ JL

2634. Expand ^ ,

4jc
, 7

in a series of powers of x |-2.

2635. Expand e* in a series of powers of *+ 2.

2636. Expand ]/* in a series of powers of * 4.

2637. Expand cos* in a series of powers of *
^-

.

2638. Expand cos
2
* in a series of powers of *

^-
.

j
_ ^

2639*. Expand In* in a series of powers of
T-J

.
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2640. Expand -* in a series of powers of
.

2641. What is the magnitude of the error if we put appro-

ximately

^2 + 1+ 1 +1?

2642. To what degree of accuracy will we calculate the num-

ber j , if we make use of the series

-

-* . ..,u O

by taking the sum of its first five terms when x=l?

2643*. Calculate the number ^ to three decimals by expand-

ing the function arc sin A: in a series of powers of x (see Exam-

ple 2606).
2644. How many terms do we have to take of the series

cosAr=l
|j+...,

in order to calculate cos 18 to three decimal places?
2645. How many terms do we have to take of the series

* +...,

to calculate sin 15 to four decimal places?
2646. How many terms of the series

have to be taken to find the number e to four decimal places?
2647. How many terms of the series

In

do we have to take to calculate In 2 to two decimals? to 3 de-

cimals?
__

2648. Calculate \/7 to two decimals by expanding the func-

tion l/S + x in a series of powers of x.

2649. Find out the origin of the approximate formula

\/

r

(f-{-x&a+ ~- (a>0), evaluate it by means of Y^3 t putting

a = 5, and estimate the_
error.

2650. Calculate J/I9 to three decimals.
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2651. For what values of x does the approximate formula

, JC
2

yield an error not exceeding 0.01? 0.001? 0.0001?

2652. For what values of x does the approximate formula

sin X&X

yield an error that does not exceed 0.01? 0.001?

'/*
.

2653. Evaluate y^-dx to four decimals.

1

2654. Evaluate ^e~*
2

dx to four decimals.

1

2655. Evaluate
^ l/^ccosxdx to three decimals.

1

2656. Evaluate dx to three decimals.
J _

2657. Evaluate j^l+^'dx to four decimals.

1/9

2658. Evaluate ^yxe*dx to three decimals.

2659. Expand the function cos(x y) in a series of powers
of x and y, find the region of convergence of the resulting series

and investigate the remainder.
Wiite the expansions, in powers of x and y, of the following

functions and indicate the regions of convergence of the series:

2660. sin x> sin y. 2663*. \n(lxy+xy).
2661. sin(*

2

+y*). ,

664* arctan j/_

2662*. \=*!!.
l~*y

\+xy
2665. f(x, y) = ax*-\-2bxy + cy*. Expand f(x+h,y-\k)in po-

wers of ft and k.

2666. /(*, y) = x* 2y* + 3xy. Find the increment of this

function when passing from the values #=1, f/
= 2 to the values

*:= 1 4- ft, y=2 + k.

2667. Expand the function ex+y in powers of x -2 and y + 2.

2668. Expand the function sin(x+y) in powers of x and
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Write the first three or four terms of a power-series expansion
in x and y of the functions:

2669. e
x
cosy.

2670. (H-*)
1

*'-

Sec. 4. Fourier Series

1. Dirichlet's theorem. We say that a function f (x) satisfies the Dirich-

let conditions in an interval (a, b) if, in this interval, the function

1) is uniformly bounded; that is \f(x)\^M when a < x < b, where M
is constant;

2) has no more than a finite number of points of discontinuity and
all of them are of the first kind [i.e., at each discontinuity g

the function f (x) has a finite limit on the left f (g 0)= Urn f (I e) and a

finite limit on the right /(-{-0)= lim /( + e) (e>0)J;
~"

e ->o

3) has no more than a finite number of points of strict extrenium.
Dirichlet's theorem asserts that a function /(*), which in the interval

( ji, Ji) satisfies the Dirichlet conditions at any point x of this interval at

which /(x) is continuous, may be expanded in a trigonometric Fourier series:

f(x)=?+ a, cos x+ b
v
sin x+ a2 cos 2x-\-b2 sin 2*+ . . . +an cos nx+

+ bn sinnx+..., (1)

where the Fourier coefficients an and bn are calculated from the formulas

ji ji

=
\ f(x)cosnxdx(n= Q, 1, 2, ...);&= f

JT J JI J
-n -jt

If x is a point' of discontinuity, belonging to the interval ( jt, n), of a

function f (,v), then the sum of the Fourier series S (x) is equal to the arithme-
tical mean of the left and right limits of the function:

SM =~

At the end-points of the interval *= n and X= K,

2. Incomplete Fourier series. If a function / (*) is even [i. e., /(- x) =
s=/(jc)], then in formula (1)

6
rt
-0 (w = l

f 2, ...)

and
ji

2 r
a
/"=^ J

/
= 0, 1,2, ...).
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If a function / (x) is odd [i.e., /( x) = / (*)], then an= Q t/i
= 0, i, 2 ...)

and IT

bn =~ \ / (x) sin nx dx (n = 1
, 2, . . .).

JT J

A function specified in an interval (0, n) may, at our discretion, be conti-

nued in the interval ( Jt, 0) either as an even or an odd function; hence,
it may be expanded in the interval (0, Ji) in an incomplete Fourier series

of sines or of cosines of multiple arcs.

3. Fourier series of a period 21. If a function f (x) satisfies the Dirichlet

conditions in some interval ( /, /) of length 2/, then at the discontinuities

of the function belonging to this interval the following expansion holds:

r, x a
,

ju
,

. ,
juc

,

2nx . . . 2nx .

/(*) =y+ fli
cos

-J-
+ &! stay +a2 cos

j-
+ b2 sm+..,

nnx
,

. . nnx
,

where

-M e / v flllX . .
/-v t r v

f (x) cos -- dx (/i
= 0, 1, 2, ...),

6n = -L \f(x)sln^-dx(n=\, 2,
'

-i

(2)

At the points of discontinuity of the function f (x) and at the end-pointsx-l of the interval, the sum of the Fourier series is defined in a manner
similar to that which we have in the expansion in the interval ( Jt, n).

In the case of an expansion of the function / (x) in a Fourier series in

an arbitrary interval (a, a-f-2/) of length 2/, the limits of integration in

formulas (2) should be replaced respectively by a and a-|-2/

Expand the following functions in a Fourier series in the

interval ( ji, ji), determine the sum of the series at the points
of discontinuity and at the end-points of the interval (x = ic,

X = JT), construct the graph of the function itself and of the sum
of the corresponding series [outside the interval ( JT, ji) as well]:

when ~~ n< x^ Q
>

Consider the special case when c
t

= ~
1,

9fi79 r2672. x = bx when
Consider the special cases: a) a = b = l\ b) a = 1, 6=1;

c) fl = 0, 6 = 1; d) a=l, 6 = 0.

2673. f(x) = x2
. 2676. / (x)

= cos ax.

2674. f(x) = e
ax

. 2677. f(x)
= smhax.

2675. f(x) = slnax. 2678. f (x)
= cosh ax.

2679. Expand the function f(x) = -jr-
in a Fourier series in

the interval (0, 2ji).
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2680. Expand the function f(x) = ~ in sines of multiple arcs

in the interval (0, n). Use the expansion obtained to sum the

number series:

Take the functions indicated below and expand them, in the

interval (0, jt), into incomplete Fourier series: a) of sines of

multiple arcs, b) of cosines of multiple arcs. Sketch graphs of

the functions and graphs of the sums of the corresponding seiies

in their domains of definition.

2681. f(x) x. Find the sum of the following series by means
of the expansion obtained:

I+P+P+...
2682. f(x) = x2

. Find the sums of the following number series

by means of the expansion obtained:

1) * +7)2+ 32+ i 2) 1

2^" 32 42
"!"

2683. f(x) = e
ax

. ,

1 when
2684. /(*)=

when
-^

x when 0<;c^~
*

ji x when

Expand the following functions, in the interval (0, K), in

sines of multiple arcs:

(x

when 0<#^^-,
n

when ~ < x< n.

2687. f(x) = x(n x).

2688. /(A;)
=

sin-|.

Expand the following functions, in the interval (0, Ji), in co-

sines of multiple arcs:

uwhen
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2690.
when

2691. / (x) = x sin x.

cos x when < x^ ~
,

cos x when Y
2693. Using the expansions oi the functions x and x* in the

interval (0, it)
in cosines of multiple arcs (see Problems 2681 and

2682), prove the equality

2694**. Prove that if the function /(x) is even and we have

?L + x} = f(~ x\
,
then its Fourier series in the interval

( Ji, n) represents an expansion in cosines of odd multiple arcs,

and if the function f(x) is odd arid /fy-f *)
=/ (y~*) then

in the interval ( Ji, Ji) it is expanded in sines of odd mul-

tiple arcs.

Expand the following functions in Fourier series in the indi-

cated intervals:

2695. f(x) = \x\ ( !<*<!).
2696. f(x)=*2x (0<JC< 1).

2697. f(x) = e* (/<*</).
2698. f(jc)=10 Jt (5<jc<15).

Expand the following functions, in the indicated intervals,

in incomplete Fourier series: a) in sines of multiple arcs, and

b) in cosines of multiple arcs:

2699. /(*)=! (0<*< 1).

2700. /(*) = * (Q<x<l).
2701.

2702. /M-{ 2_-;^n
2703. Expand the following function in cosines of multiple

(3
\

T '
^

)
:

,
J

1 when -|<jr<2,
\ 3_j^ when 2<jc<3.

11-1900



Chapter IX

DIFFERENTIAL EQUATIONS

Sec. 1. Verifying Solutions. Forming Differential Equations of Families of

Curves. Initial Conditions

1. Basic concepts. An equation of the type

F(x, y, y' t/)
(n)= 0, (1)

where y y(x) is the sought-for function, is called a differential equation of
order n. The function y= y(x), which converts equation (1) into an identity,
is called the solution of the equation, while the graph of this function is

called an integral curve. If the solution is represented implicitly, O(A, f/)~0,
then it is usually called an integral

Example 1. Check that the function t/
= sinjt is a solution of the equation

Solution. We have:

and, consequently,
/" + y sin x -f sin x^ 0.

The integral

*/, Cp .... Cw )
= (2)

of the differential equation (1), which contains n independent arbitrary con-

stants C
t , ..., Cn and is equivalent (in the given region) to equation (1), is

called the general integral of this equation (in the respective region). By assign-

ing definite values to the constants C,, ..., Cn in (2), we get particular

integrals.

Conversely, if we have a family of curves (2) and eliminate the param-
eters Cj Cn from the system of equations

= 0, -0. .... *-0,
dx dx n

we, generally speaking, get a differential equation of type (1) whose general
integral in the corresponding region is the relation (2).

Example 2. Find the differential equation of the family of parabolas

y^C^x-CJ. (3)

Solution. Differentiating equation (3) twice, we get:

/'
= 2C

l (* C 2) and (/"
= 2C,. (4)

Eliminating the parameters C, and C
2 from equations (3) and (4), we obtain

the desired differential equation
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It is easy to verify that tha function (3) converts this equation into an

identity.
2. Initial conditions. If for the desired particular solution y = y(x) of a

differential equation

y
(n)= f(x, y, y' y

(n ~ l)
) (5)

the initial conditions

are given and we know the general solution of equation (5)

y= <V(x, C, ..... Cn ),

then the arbitrary constants Clt ..., Cn are determined (if this is possible)
from the system of equations

</ -cp(*o, C
lt .... CB ),

</o= <?*(*<>.
c

i ..... c ).

Example 3. Find the curve of the family

*, (6)

for which y(0) = l. y'(0) = 2.

Solution. We have:

i/
'=

Putting #= in formulas (6) and (7), we obtain (?)

1=0, + ^, 2-C
t

2C 2 ,

whence

(:,=(), C,= l

and, hence,

y =e~.

Determine whether the indicated functions are solutions of the

given differential equations:
2704. *//'== 2#, t/

= 5x*.

2705. y
t2 = x* .

2706. (jc h //) djc -h JK dy = 0, //
= ^=^ .

2707. //

// + (/
= 0, ^/

= 3sinjc 4 cos*.

2708. ~?+ a)
2
jc = 0, x = C, cos <o/ 4- C 2

sin CD/.

2709. #" 2j/'+0 = 0; a) y = xe* t b) y = x
8

2710. -(X. f X/ /

-fy^* 2
e.

Show that for the given differential equations the indicated
relations are integrals:

2711. (x

11*
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2712. (x
2713. (xy-x)y" + xy'

t + yy' 2y' = Q, y= \n(xy).
Form differential equations of the given families of curves

(C, C
lt C,, C, are arbitrary constants):

2714. y= Cx. 272l in *.= i +ay
2715. y= Cx*. y

4 ,

2716. *>=-.2C*.

'

9799
( a parameter).

2717. *' + </'
= <:'.

*722. 0,-y.)'-2p*

9718 -* fo' ? 3re Parameters>-
ii&. y

971Q yr2719.*-.
^ 2724. </

=
2720. &M--= 2 + Ce"^. 2725. =

2726. Form
thej

differential equation of all straight lines in the

#//-plane. ;

2727. Form the differential equation of all parabolas with
vertical axis in the ^y-plane.

2728. Form the differential equation of all circles in the

xy-plane.
For the given families of curves find the lines that satisfy

the given initial conditions:

2729. x*y* = C, 0(0) = 5.

2730. y=(C^
2731. y= C

l
sin

2732. y^C.e-x= 0,

Sec. 2. First-Order Differential Equations

P. Types of first-order differential equations. A differential equation of

the first order in an unknown function yt solved for the derivative y' t is of

the form

y' = f(*. </). (i)

where f(x, y) is the given function. In certain cases it is convenient to
consider the variable x as the sought-for function, and to write (1) in the
form

j

x'=e(*,y)> (i')

where gfr $--.
Taking into account that 0'=^ and *'=j^ the differential equations

(1) and (!') may be written in the symmetric form

P(x, y)dx+Q(x, t/)<ty=0, (2)

where P (x, y) and Q (x, y) are knowri functions.

By solutions to (2) we mean functions of the form t/
=

cp(jc) or x=ty(y)
ihat satisfy this equation. The general integral of equations (1) and (I'), or
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equation (2), is of the form

where C is an arbitrary constant.

2. Direction field. The set of directions

tana= /(x, y)

is called a direction field of the differential equation (1) and is ordinarily

depicted by means of short lines or arrows inclined at an angle a.

Curves f(x, y) k, at the points of which the inclination of the field

has a constant value, equal to k, are called isoclines. By constructing the

isoclines and direction field, it is possible, in the simplest cases, to give a

Fig 105

rough sketch of the field of intagral curves, regarding the latter as curves
which at each point have the given direction of the field.

Example 1. Using the method of isoclines, construct the field of integral
curves of the equation

y'=*x.

Solution. By constructing the isoclines x~k (straight lines) and the di-

rection field, we obtain approximately the field of integral curves (Fig. 105).
The family of parabolas

is the general solution.

Using the method of isoclines, make approximate constructions of fields

of integral curves for the indicated differential equations:

2733. y' = x.

2734. </'
=
-f-

2735. y'=l-ftf
8

.

2736. y'=
2737. y' =
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3. Cauchy's theorem. If a function / (#, y) is continuous in some region

U\a<x<A, b < y < B} and in this region has a bounded derivative

f'y (** y)> tnen through each point (* , yQ) that belongs to U there passes one

and only one integral curve y y(x) of the equation (1) [cp (* ) #ol-
4. Euler's broken-line method. For an approximate construction of the

integral curve of equation (1) passing through a given point M (* , t/ ), we
replace the curve by a broken line with vertices M,-(x/, #/), where

f
= /i (one step of the process),

/) (i'0, 1. 2, ...).

Example 2. Using Euler's method for the equation

find (/(I), if y(0)=l (/i -0.1).
We construct the table:

2
'

Thus, /(!)= 1.248. For the sake of comparison, the exact value is

i

e
T ss 1.284

Using Euler's method, find the particular solutions to the

given differential equations for the indicated values of x:

2738. y' = y, y(0)=l; find y(\) (A-0.1).
2739. y'-x + y, /(!)- 1; find y(2), (A = 0.1).

2740. ^' =-X_, t/(0) = 2; find </(!) (A= 0.1).

2741. -, y(Q)=l; find y(l) (/t
= 0.2).



Sec. 3] Differential Equations with Variables Separable 327

Sec. 3. First-Order Differential Equations with Variables Separable.

Orthogonal Trajectories

1. First-order equations with variables separable. An equation with variables

separable is a first-order equation of the type

y'
= f(x)g(y} (i)

X (x) Y (y) dx+ X, (x) Y, (y) dy = Q (!')

Dividing both sides of equation (1) by g(y) and multiplying by dx, we get

- = f(x)dx Whence, by integrating, we get the general integral of equa-

tion (1) in the form

Similarly, dividing both sides of equation (!') by X, (x) Y (y) and integrating,
we get the general integral of (!') in the form

If for some value y = yQ we have (r/ )=0, then the function y= tiQ is

also (as is directly evident) a solution of equation (1) Similarly, the straight
lines x a and y-b will be the integral curves of equation (!'), if a and b

are, respectively, the roots of the equations X, (*)() and Y (*/)
= 0, by the

ieft sides of which we had to divide the initial equation.
Example 1. Solve the equation

'3>

In particular, find the solution that satisfies the initial conditions

Solution. Equation (3) may be written in the torm

dx~~ x

Whence, separating variables, we have

and, consequently,
In

| y |

= In
| x\ + ln C |t

where the arbitrary constant In C, is taken in logarithmic form. After taking
antilogarithms we get the general solution

f
When dividing by y we could lose the solution =0. but the latter is

ila

' ' -

where C= C,.
When dividi

contained in the formula (4) for C= 0.
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Utilizing the given initial conditions, we get C = 2; and, hence, the de-

sired particular solution is

J2y ~~
x

'

2 Certain differential equations that reduce to equations with variables

separable. Differential equations of the form

reduce to equations of the form (1) by means of the substitution u =
where u is the new sough t-for function

3 Orthogonal trajectories are curves that intersect the lines of the given

family O (x, y> ort=0 ia is a parameter) at a right angle. If F (x, y, #') =
is the difierential equation of the family, then

is the differential equation of the orthogonal trajectories.

Example 2. Find the orthogonal trajectories of the family of ellipses

Solution Differentiating the equation (5), we find the duerential equa-
tion of the family

(/' 0.

Fig. 106

Whence, replacing if by ^7, we get the differential equation of the

it'

~~ ~~
x

'

*x* (family of parabolas) (Fig. 106).

orthogonal trajectories

integrating, we have i
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4. Forming differential equations. When forming differential equations in

geometrical problems, we can frequently make use of the geometrical meaning
of the derivative as the tangent of an angle formed by the tangent line to

the curve in the pos'tive x-direction. In many cases this makes it possible

straightway to establish a relationship between the ordinate y of the desired

curve, its abscissa x, and the tangent of the angle of the tangent line (/',

that is to say, to obtain the difleiential equation. In other instances (see
Problems 2783, 2890, 2895), use is made of the geometrical significance of

the definite integral as the area of a curvilinear trapezoid or the length of

an arc. In this case, by hypothesis we have a simple integral equation
(since the desired function is under the sign of the integral); however, we
can readily pass to a differential equation by differentiating both sides.

Example 3. Find a curve passing through the point (3,2) for which the

segment of any tangent line contained between the coordinate axes is divid-

ed in half at the point of tangency.
Solution. Let M (x,y) be the mid-point of the tangent line AB. which by

hypothesis is the point of tangency (the points A and B are points of inter-

section of the tangent line with the y- and *-axes). It is given that OA = 2y
and OB Zx. The slope of the tangent to the curve at M (x, y) is

dy_ OA y

dx~ OB~ x
'

This is the differential equation of the sought-for curve. Transforming, we get

d\ dy _ ~

~x ~T~~y~

and, consequently,

\nx-\-\ny In Cor xy C.

Utilizing the initial condition, we determine C = 3-2 6. Hence, the desired
curve is the hyperbola xy 6.

Solve the differential equations:
2742. tan A: sin

2

y d* + cos
2
x cot ydy = Q.

2743. xy'~ //
=

{/'.

2744. xyy' =-. \x\
2745. // jq/'

= a(l +*V).
2746. 3c

x
fan ydx + (l e

x
) sec* ydy = Q.

2747. y' tan * = //.

Find the particular solutions of equations that satisfy the

indicated initial conditions:

2748. (1 +e
x

) y y' = e*\ //= 1 when jt = 0.

2749. (xy* + x) dx-\-(x*yy)dy=* 0; //
= ! when x= Q.

2750. r/'sin x = y\ny\ y~l when * =
-|.

Solve the differential equations by changing the variables:

2751. y' = (x+y)**
2752. i/

= (8*42//+l)'.
2753. (2x + 3{/ l)dx-{ (4x + fo/ 5) dij

= 0.

2754. (2x y)dx+ (4x 2y
-
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In Examples 2755 and 2756, pass to polar coordinates:

2755.

2756.

2757*. Find a curve whose segment of the tangent is equal
to the distance of the point of tangency from the origin.

2758. Find the curve whose segment of the normal at any
point of a curve lying between the coordinate axes is divided in

two at this point.
2759. Find a curve whose subtangent is of constant length a.

2760. Find a curve which has a subtangent twice the abscissa

of the point of tangency.
2761*. Find a curve whose abscissa of the centre of gravity

of an area bounded by the coordinate axes, by this curve and
the ordinate of any of its points is equal to 3/4 the abscissa of

this point.
2762. Find the equation of a curve that passes through the

point (3,1), for which the segment of the tangent between the

point of tangency and the *-axis is divided in half at the point
of intersection with the y-axis.

2763. Find the equation of a curve which passes through the

point (2,0), if the segment of the tangent to the curve between
the point of tangency and the t/-axis is of constant length 2.

Find the orthogonal trajectories of the given families of cur-

ves (a is a parameter), construct the families and their orthogo-
nal trajectories.

2764. x2 + y
2 =a2

. 2766. xy = a.

2765. t/

2 = ffx. 2767. (x a)
2

t-f/

2 =a*.

Sec. 4. First-Order Homogeneous Differential Equations

1. Homogeneous equations. A differential equation

P(x t y)dx+Q(x,y)dy= (1)

is called homogeneous, if P (AT, y) and Q (x, y) are homogeneous functions of

the same degree. Equation (1) may be reduced to the form

and by means of the substitution y xu, where u is a new unknown function,
it is transformed to an equation with variables separable. We can also apply
the substitution x-yu.

Example 1. Find the general solution to the equation
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Solution. Put y= ux', then -f xu' = e
u + u or

Q
Integrating, we get w = In In

, whence

y x In In .y x

2. Equations that reduce to homogeneous equations.

If

and 6
' ! Ue 0, then, putting into equation (2) x w + a, j/

= t;-fp, where
I #2^2 I

the constants a and P are found from the following system of equations,

+ c,
= 0, a 2a + b$ + ct

= 0,

we get a homogeneous differential equation in the variables u and v. If

6 0, then, putting in (2) a,x 4- b^y u, we get an equation with variables

separable.

Integrate the differential equations:

2768. 0' = 1 1.
277 - (x-y)ydx-x*dy = Q.

2769. y^-^.
2771. For the equation (x

2

+y*) dx 2xydy = find the family
of integral curves, and also indicate the curves that pass through
the points (4,0) andj_l,l), respectively.

2772.

2773. xdy ydx = Vx* -\-ifdx.

2774. (4x* + 3xy + f/

2

) dx + (4y
2 + 3jvy+ jf) dy = 0.

2775. Find the particular solution of the equation (x
1

3y*)dx+
+ 2xydy = Q, provided that r/=l when x= 2.

Solve the equations:
2776. (2x

9777 ./
1

2/77. f/
-

2779. Find the equation of a curve that passes through the

point (1,0) and has the property that the segment cut off b\ the

tangent line on the r/-axis is equal to the radius vector of the

point of tangency.
2780**. What shape should the reflector of a search light

have so that the rays from a point source of light are reflected

as a parallel beam?
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2781. Find the equation of a curve whose subtangent is equal
to the arithmetic mean of the coordinates of the point of tan-

gency.
2782. Find the equation of a curve for which the segment

cut off on the y-axls by the normal at any point of the curve

is equal to the distance of this point from the origin.
2783*. Find the equation of a curve for which the area con-

tained between the #-axis, the curve and two ordinates, one of

which is a constant and the other a variable, is equal to the

ratio of the cube of the variable ordinate to the appropriate
abscissa.

2784. Find a curve for which the segment on the y-axis cut

off by any tangent line is equal to the abscissa of the point of

tangency.

Sec. 5. First-Order Linear Differential Equations.
Bernoulli's Equation

1. Linear equations. A differential equation of the form

)-y^Q (x) (1)

of degree one in y and y
f

is called linear.

If a function Q(jt)=~0, then equation (1) takes the form

).y= Q (2)

and is called a homogeneous linear differential equation. In this case, the
variables may be separated, and we get the general solution of (2) in the
form

- P P(X) dx

y= C-e J
. (3)

To solve the inhomogeneous linear equation (1), we apply a method that

is called variation of parameters, which consists in first finding the general
solution of the respective homogeneous linear equation, that is, relation-

ship (3). Then, assuming here that C is a function of x, we seek the solution
of the inhomogeneous equation (1) in the form of (3). To do this, we put into

(1) y and y' which are found from (3), and then from the differential equa-
tion thus obtained we determine the function C(x). We thus get the general
solution of the inhomogeneous equation (1) in the form

^/x -f= C(x).e
J

Example I. Solve the equation

y' tan **/-}- cos x. (4)

Solution. The corresponding homogeneous equation is

Solving it we get:

r 1

^- C*^I
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Considering C as a function of x, and differentiating, we fi'nd;

dC sin x ~
A I /,x>o2

'

cos x dx
~

cos2 x

Putting y and y' into (4), we get:

1 dC . sin* C
,

dC
cos* djc cos2 * cos*

'

dx
, or -r-=

whence

= Ccos2 *d*==i-*+ j

Hence, the general solution of equation (4) has the form

COS*

In solving the linear equation (1) we can also make use of the substitu-
tion

y uv
t (5)

where u and v are functions of x. Then equation (1) will have the form

[u
f

\-P(x)u]v + v'u^Q(x). (6)

If we require that
' + P(jc)M = 0, (7)

then from (7) we find M, and from (6) we find u; hence, from (5) we find y.
2\ Bernoulli's equation. A first order equation of the form

y' + P (<) y ^ Q (x) y\

where a 7=0 and a 7= 1, is called Bernoulli's equation It is reduced to a li-

near equation by means of the substitution z
r/

1
""*. It is also possible to

apply directly the substitution y = uv t
or the method of varia-

tion of parameters.
Example 2. Solve the equation

y'
= y+* VH-

Solution. This is Bernoulli's equation. Putting

y=^u>v,
we ijet

u'v + v'u uv +x y"uv or v f u'
:
u

j
-f v'u = x V^taT. (8)

To determine the function u we require that the relation

u' ~w-0
x

be fulfilled, whence we have

u x*.

Putting this expression into (8), we get
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whence we find v:

and, consequently, the general solution is obtained in the form

Find the general integrals of the equations:

2785. -=*.
ax x

2786. + = x*.

2787*. (\

2788. y*dx(2xy
Find the particular solutions that satisfy the indicated con-

ditions:

2789. Xy' + y e* = Q\ y = b when x = a.

2790. y' j-2-7
1-- * = 0; y = when x-0.

2791. y' yianx= ; */
= when jt = 0.

cos x

Find the general solutions of the equations:

2792. *l+ JL = Xy* m

dx ' x y

2793. 2xy x

2794. 0dx +
(

2795. 3xdy--=y(l +x sin A: 3y* smx)dx.
2796. Given three particular solutions y, y lt y 2

of a linear

equation. Prove that the expression ^^ remains unchanged for

any x. What is the geometrical significance of this result?

2797. Find the curves for which the area of a triangle formed

by the *-axis, a tangent line and the radius vector of the point
of tangency is constant.

2798. Find the equation of a curve, a segment of which, cul

off on the x-axis by a tangent line, is equal to the square of the
ordinate of the point of tangency.

2799. Find the equation of a curve, a segment of which, cut
off on the y-axis by a tangent line, is equal to the subnormal.

2800. Find the equation of a curve, a segment of which, cut
off on the y-axis by a tangent line, is proportional to the square
of the ordinate of the point of tangency.
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2801. Find the equation of the curve for which the segment
of the tangent is equal to the distance of the point of intersec-

tion of this tangent with the x-axis from the point M (0,a).

Sec. 6. Exact Differential Equations.

Integrating Factor

1. Exact differential equations. If for the differential equation

P(x.y) dx+Q(x t y)dy= Q (1)

the equality :p =-^-
is fulfilled, then equation (1) may be written in the

form dU (x, t/)
= and is then called an exact differential equation. The gen-

eral integral of equation (1) is U (x, y) = C. The function U (x, y) is deter-

mined by the technique given in Ch. VI, Sec. 8, or from the formula

(see Ch, VII, Sec. 9).

Example 1. Find the general integral of the differential equation

(3x
2 + 6Af/

2
) dx + (6x*y + 4y') dy = 0.

Solution. This is an exact differential equation, since --J

5= i2Xy and, hence, the equation is of the form K/ = 0.

Here,

and =

whence
U = (3^

2+ 6xy*) dx+ q> (y)
= x>+ 3*V + q> (y).

Differentiating U with respect to y, we find
-y

6jc
f
y -f cp' (y) = xl

y + 4y* (by

hypothesis); from this we get q>'(//)
= 4(/* and q> (y)

= y* + C*. We finally get

f/(r, t/)-= jt
s
-f-3xV + .V

4+C C(
, consequently, xs -f3^V+/= C is the sought-for.

general integral of the equation.
2. Integrating factor. If the left side of equation (l)is not a total (exact)

differential and the conditions of the Cauchy theorem are fulfilled, then there
exists a function U, = U.(A', y) (integrating factor) such that

\i(Pdx+ Qdy) = dU. (2)

Whence it is found that the function u, satisfies the equation

The integrating factor u, is readily found in two cases:
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Example 2. Solve the equation f 2xy + x*y +~
J

Solution. Here P = 2*y + rV-f-^ , Q=x*+y*

.
, .

and " " ! ' hence> ft=

Since _ or ^^^ + Q jB,
d# dx r

cty
r dx

' x
dx

it follows that

rffi 1 fdP dQ\ ^ . .
. --r

^.
----JS dx=dx and In 11 = ^, 11 = ^.

\\ Q.\dy dxj
* r

Multiplying the equation by \i
= e*

t we obtain

which is an exact differential equation. Integrating it, we get the general

integral

Find the general integrals of the equations:

2802 (x+ t/)d^+(^ + 2z/)dy = 0.

2803. (V + 1/

1 + 2x) dx + 2xydy = Q.

2804. (jc

3 S^ 8 + 2) dx (3x'y y
8

) d(/
= 0.

2805. ^-^=='
2806. .

y y

2807. Find the particular integral of the equation

which satisfies the initial condition #(0) = 2.

Solve the equations that admit of an integrating factor of the
form fi

= M*) or
M'
=

H'(y) :

2808. (x+ y*)dx2xydy = 0.

2809. y(l 4-xy)dxxdy= Q.

2810.

281 1. (jc cos t/ y sin
r/) rfi/+ (x sin */ -( // cos y) dx = 0.



Sec. 7] First-Order Differential Equation? not Solved for Derivative 337

Sec. 7. First-Order Differential Equations not Solved

for the Derivative

1. First-order differential equations of higher powers. If an equation

F(x, y, !/')
= 0, (I)

which for example is of degree two in y', the.i by solving (1) for y' we get
two equations:

y'=ti(x,y)> </'=/ 2 <*.</) (2)

Thus, generally speaking, through each point M (xQt (/ ) of some region
of a plane there pass two integral curves. The general integral of equation
(1) then, generally speaking, has the form

0(AM/, C^OM*, {/, C) 0> 2 (x. y, C) = 0, (3)

where tl>
1
and <I> 2 are the general integrals of equations (2).

Besides, there may be a singular integral for equation (1). Geometrically,
a singular integral is the envelope of a family of curves (3) and may be ob-

tained by eliminating C from the system of equations

OJx, 0, C) = 0, 0>c (*, y, C) = (4)

or by eliminating p= t/' from the system of equations

F(x t y, p)-0, F'
p (x,y,p)=0. (5)

We note that the curves defined by the equations (4) or (5) are not
always solutions of equation (1); therefore, in each case, a check is necessary.

Example 1. Find the general and singular integrals of the equation

A'//'
2
-f 2A'j/' y Q.

Solution. Solving for y' we have two homogeneous equations:

do fined in the region
x

the general integrals of which are

or

Multiplying, we get the general integral of the given equation

(2*+ y C)
2 4 (A-

2 + xy) -
or

(a family of parabolas).
Differentiating the general integral with respect to C and eliminating C,

we find the singular integral

+ Jt-O.

(It may be verified that y-(-jc=0 is the solution of this equation.)
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It is also possible to find the singular integral by differentiating

+ 2xp #= with respect to p and eliminating p.

2. Solving a differential equation by introducing a parameter. If a first-

order differential equation is of the form

then the variables y and x may be determined from the system of equations

1 dq>

where p= t/' plays the part of a parameter.

Similarly, if y= ty(x > #') tnen x and y are determined from the system
of equations

Example 2. Find the general and singular integrals of the equation

y=y'
2-xy'+^.

Solution. Making the substitution t/'=p, we rewrite the equation in the

form

Diffeientiating with respect to x and considering p a function of x, we have

ft dp dp ,

p-*p-p-*fx+*

or
-p(2p x)**(2p x), or-j-

= l. Integrating we get p= x+ C. Substituting

into the original equation, we have the general solution

or </
=y

Differentiating the general solution with respect to C and eliminating C, we
x^ x*

obtain the singular solution: */
= -r-. (It may be verified that */

= -r- is the

solution of the given equation.)
If we equate to zero the factor 2p x t which was cancelled out, we get
x x2

pay and, putting p into the given equation, we get y=-j , which is the

same singular solution.

Find the general and singular integrals of the equations:
(In Problems 2812 and 2813 construct the field of integral
curves.)

2812. (/''-^'-M^O.
2813. 4y'

2

9JC-0.
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2814. yy'*(xy+l)y' + x= Q.

2815. yij'

2

2xy'+y = Q.

2816. Find the integral curves of the equation y'* +y* = 1

that pass through the point M ( 0, y )
.

Introducing the parameter y'
=

p, solve the equations:

2817. x=smy'+lny'. 2820. 4y = x*+y'\
2818. y = y'*e>". 9 91 ,*

2 /2

2819. = y'*
'

Sec. 8. The Lagrange and Clairaut Equations

1. Lagrange's equation. An equation of the form

= *<P(P) + 1|>(P), (1)

where p = tf is called Lagrange's equation Equation (1) is reduced to a linear

equation in x by differentiation and taking into consideration that dy^pdx:
f

(p)] dp. (2)

If p^q>(p), then from (1) and (2) we get the general solution in parametric
form:

where p is a parameter and f(p)^ g(p) are certain known functions. Besides,
there may be a singular solution that is found in the usual way.

2. C'lairaut's equation. If in equation (l)p^<Mp), then we get
raut' s equation

Its general solution is of the form y-Cx + ^(C) (a family of .straight lines).
There is also a particular solution (envelope) that results by eliminating the

parameter p from the system of equations

I x~
\ lJ:=

Example. Solve the equation

</~2t/'A' + i. (3)

Solution. Putting y'^p we have //^2pv + ; different! a Ting and replac-

ing dy by pdx, we get

p dx = 2p dx+ 2.v dp ~

or

Solving this lineai equation, we will have

*=l
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Hence, the general integral will be

=l(l

To find the singular integral, we form the system

f/-2px+ l, = 2*-
in the usual way. Whence

1 2*=

and, consequently,

Putting y into (3) we are convinced that the function obtained Is not

a solution and, therefore, equation (3) does not have a singular integral.

Solve the Lagrange equations:

2824. y = (1 +y'2822. y-' 2824. =

2823. , = ,' + r=FT
Find the general and singular integrals of the Clairaut equa-

tions and construct the field of integral curves:

2826. y = xy' +y'*.
2827. y = xy'+y'._
2828.

ij
= Xy' + V

r

\-\-(y')
2

.

2829. y = xy' +
j,.

2830. Firid the curve for which the area of a triangle formed

by a tangent at any point and by the coordinate axes is con-
stant.

2831. Find the curve it the distance of a given point to any
tangent to this curve is constant.

2832. Find the curve for which the segment of any of its

tangents lying between the coordinate axes has constant length /,

Sec. 9. Miscellaneous Exercises on First-Order Differential Equations

2833. Determine the types of differential equations and indi-

cate methods for their solution:

b) (*-*/)//' = </';
(f/-

c) y' = 2ju/ + *';
8) U =

d) y'
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i) </'
= (* 4- </)'; 1) (x' + 2xy')dx+

j) x cos f/' + y sin {/'
- 1 ; + (y* + 3*y ) dy= 0;

k) (x* xy) y'
= #'; m) (x' 3xy) dx+ (*

2 + 3)dy= 0;

n)

Solve the equations:

2834. a) (x ycos^

b) jcln dy

2835.
xrfx=(^ y'^dy.

2836. (2xy*y) dx-\-xdy=-Q.
2837. xy' -\- y -^ xtf \nx.

2838. y= xy' +
2839. f/

=
jc#' + or/'

2840. ^(
2841. (1

2842. y'-y^^l.
2845 ' (l-^

2843. y^-((/'-l 2xe>)y'.
2846 ' ^'-T-^= -

2844. //'-|-//cosAr=sin.tcosx. 2847. y' (xcosy-'r a sin 2</)
= 1.

2848. (x'y x* -\-y-l) dx \ (xy +2x3yQ)dy = Q.

2849. y'
=

2850. ./" d.v = (x*y f 2) <///.

2852. 2dx + y dy J-| dJf = 0.

286

2862.
2853. i,'

= .

*
. .

,
*.

X
2862. /

= 2^'H-l/l (-y'
1
.

2854. f/y'-hf/
J = cosA:.

ff

/
2855. xdy-\ ydx^ifdx. 2863. //'== j (1 +lny ln^).

2856. //' (j: |- sin //)
= !. 2864. (2e

x+ y
t

) dy

2857. H? =-P + P
S

. <je
x dx=

J f v 4- 2 \ *

2858. ^' d*- (x
4

f y') ^ - 0. 2865. /'
= 2^ y-1 J

2859. x
1

*/" -h Zxyy' + 2868. ^ (;(/' -1- 1 )dydx=
2/' = 0. =

2860.
x

^^H-\- 2867. a(xt}'
t

2868. xdy-y dx= y* dx.
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2869. (x* 1 )/ dy+ (x*+ 3xy V^-\) dx = 0.
At,

2870.

2871. J/oM1^5
dy+ (x+ y Ya* + x2

) dx= Q.

2872. xyy'* (x* +y*)y'

2873. y = xy' + .

2874. (3*
2 + 2;q/ y'Jdx+ f*

1

2xy 3y*)dy=--Q.

2875.
2</p|

= 3p
2

-t-4*/
2

.

Find solutions to the equations for the indicated initial con-

ditions:

2876. y'=^\ # = for jc=l.

2877. e*-yy' = \\ y=\ for *=1.
2878. cot ;q/' -f y = 2; y = 2 for jt = 0.

2879. e^(^ + !)
= !; = for ^ = 0.

2880. #' + */
= cos A;; {/

= for * = 0.

2881. y' 2y = x*\ y = for x = 0.

2882. y'+y = 2x\ y = \ for * = 0.

2883. xy'=y\ a) //==! for jc=l; b) y = for x = 0.

2884. 2xy' = y\ a) y=l for jc=l; b) y = for x-0.
2885. 2xyy'-\-x

z

#
2 = 0; a) y-0 for x-0; b)y=l forjc=-0;

c) y = Q for je= 1.

2886. Find the curve passing through the point (0, 1), for

which the subtangent is equal to the sum of the cooidinates of

the point' of tangency.
2887. Find a curve if we know that the sum of the segments*

cut off on the coordinate axes by a tangent to it is constant and

equal to 2a.

2888. The sum of the lengths of the normal and subnormal
is equal to unity. Find the equation of the curve if it is known
that the curve passes through the coordinate origin.

2889*. Find a curve whose angle formed by a tangent and the

radius vector of the point of tangency is constant.

2890. Find a curve knowing that the area contained between
the coordinate axes, this curve and the ordinate of any point on
it is equal to the cube of the ordinate.

2891. Find a curve knowing that the area of a sector boun-
ded by the polar axis, by this curve and by the radius vector

of any point of it is proportional to the cube of this radius

vector.

2892. Find a curve, the segment of which, cut off by the

tangent on the x-axis, is equal to the length of the tangent.
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2893. Find the curve, of which the segment of the tangent
contained between the coordinate axes is divided into half by
the parabola if =--2x.

2894. Find the curve whose normal at any point of it is

equal to the distance of this point from the origin.
2895*. The area bounded by a curve, the coordinate axes,

and the ordinate of some point of the curve is equal to the

length of the corresponding arc of the curve. Find the equation
of this curve if it is known that the latter passes through the

point (0, 1).

2896. Find the curve for which the area of a triangle formed

by the x-axis, a tangent, and the radius vector of the point of

tangency is constant and equal to a
2

.

2897. Find the curve if we know that the mid-point of the

segment cut off on the x-axis by a tangent and a normal to the

curve is a constant point (a, 0).

When forming first-order differential equations, particularly in phvsical

problems, it is frequently advisable to apply the so-called method of differen-

tials, which consists in the fact that approximate relationships between
infinitesimal h.crements of the desired quantities (these relationships are

accurate to infinitesimals of higher order) are replaced by the corresponding
relationships between their differentials. This does not affect the result.

Problem. A tank contains 100 litres of an aqueous solution containing
10 kg of salt. Water is entering the tank at the rate of 3 litres per minute,
and the mixture is flowing out at 2 litres per minute. The concentration is

maintained uniform by stirring. How much salt will the tank contain at the

end of one hour?
Solution. The concentration c of a substance is the quantity of it in

unit volume. If the concentration is uniform, then the quantity of sub-
stance in volume V is cV.

Let the quantity of salt in the tank at the end of t minutes be x kg.
The quantity of solution in the tank at that instant will be 100 + / litres,

and, consequently, the concentration c=
QQ kg per litre.

During time dt, 2dt litres of the solution flows out of the tank (the
solution contains 2cdt kg of salt). Therefore, a change of dx in the quantity
of salt in the tank is given by the relationship

This is the sought -for differential equation. Separating variables and integrat-
ing, we obtain

ln*= 21n(100+0 + lnC
or C

*
(100-M)

1 '

The constant C is found from the fact that xvh^n f = 0, \ 10, that is,

C= 100,000. At the expiration of one hour, the tank will contain
100,000 ft

. ..
f ux - =^ 3.9 kilograms of salt.
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2898*. Prove that for a heavy liquid rotating about a vertical

axis the free surface has the form of a paraboloid of revolution.

2899*. Find the relationship between the air pressure and the

altitude if it is known that the pressure is 1 kgf on 1 cm 2
at

sea level and 0.92 kgf on 1 cm 2
at an altitude of 500 metres.

2900*. According to Hooke's law an elastic band of length
/ increases in length klF(k = const) due to a tensile force F.

By how much will the band increase in length due to its weight
W if the band is suspended at one end? (The initial length of

the band is /.)

2901. Solve the same problem for a weight P suspended from
the end of the band.

When solving Problems 2902 and 2903, make use of Newton's

law, by which the rate of cooling of a body is proportional to the

difference of temperatures of the body and the ambient medium.
2902. Find the relationship between the temperature T and

the time f if a body, heated to T degrees, is brought into a room
at constant temperature (a degrees).

2903. During what time will a body heated to 100 cool off

to 30 if the temperature of the room is 20 and during the first

20 minutes the body cooled to 60?
2904. The retarding action of friction on a disk rotating in

a liquid is proportional to the angular velocity of rotation. Find
the relationship between the angular velocity and time if it is

known that the disk began rotating at 100 rpm and after one
minute was rotating at 60 rpm.

2905*. The rate of disintegration of radium is proportional
to the quantity of radium present. Radium disintegrates by one
half in 1600 years. Find the percentage of radium that has disinte-

grated after 100 years.
2906*. The rate of outflow of water from an aperture at

a vertical distance h from the free surface is defined by the

formula

where c0.6 and g is the acceleration of gravity.

During what period of time will the water filling a hemi-

spherical boiler of diameter 2 metres flow out of it through a cir-

cular opening of radius 0.1 m in the bottom.
2907*. The quantity of light absorbed in passing through

a thin layer of water is proportional to the quantity of incident

light and to the thickness of the layer. If one half of the original

quantity of light is absorbed in passing through a three-metre-

thick layer of water, what part of this quantity will reach a depth
of 30 metres?
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2908*. The air resistance to a body falling with a parachute
is proportional to the square of the rate of fall. Find the limit-

ing velocity of descent.

2909*. The bottom of a tank with a capacity of 300 litres

is covered with a mixture of salt and some insoluble substance.

Assuming that the rate at which the salt dissolves is proportion-
al to Ihe difference between the concentration at the given time
and the concentration of a saturated solution (1 kg of salt per 3
litres of water) and that the given quantity of pure water dis-

solves 1/3 kg of salt in 1 minute, find the quantity of salt in solu-

tion at the expiration of one hour.

2910*. The electromotive force e in a circuit with current i,

resistance /? and self-induction L is made up of the voltage drop

Rl and the electromotive force of self-induction L^. Determine

the current / at time / if e^Esmat (E and o> are constants)
and i = when = 0.

Sec. 10. Higher-Order Differentia) Equations

1. The case of direct integration. If

then

n i Miles

2. Cases of reduction of order. I) If a differential equation does not

contain y explicitly, for instance,

then, assuming y' p, we get an equation ot an order one unit lower;

F(x, p t p')-0.

Example I. Find the particular solution of the equation

that satisfies the conditions

^= 0, f/'
= when x= 0.

Solution. Putting #'=p, we have / = p', whence

Solving the latter equation as a linear equation in the function p,
we get
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From the fact that y'=p= when x= 0, we have =^ 0, i.e., Cj==0.
Hence,

or

___ ____
dx~~ 2

'

whence, integrating once again, w? obtain

Putting y~ when x 0, we find C
2
= 0. Hence, the desired particular

solution is

y^ *2
-

2) If a differential equation does not contain x explicitly, for instance,

then, putting y'=p, y" p-?-> we get an equation of an order one unit

lower:

Example 2. Find the particular solution of the equation

provided that /=!, #'= when #= 0.

Solution. Put y' = p t then tf^p-- and our equation becomes

We have obtained an equation of the Bernoulli type in p (y is considered
the argument). Solving it, we find

From the fact that f/'=p= when r/=l, we have C
1
= 1. Hence,

P=y Vy^
or

Integrating, we have

arc cos x = C
2 ,

Putting y=l and *=0, we obtain C 2
= 0, whence = cosx or t/==secx.
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Solve the following equations:

291 1 . / = 1 . 2920. yy" = jfy' + y".

2912.
</"=-|T.

2921. yif-y' (I + y')
= 0.

2913. y"=\-y'\ 2922. /"= -p .

2914. xy" \ i/'
= 0. 2923. (x -f- !)</" (x-[- 2) y' +x+

+ 2 = 0.

2915. // = {/". 2924. *f/" = r/'ln^.
2916. <//4- f/" = 0.

! t

*

2917. (1 I- X
s

) </" + </"+ 1=0.
2925 ' y'+T^" =^"-

2918. t/'(l + t/")=a/". 2926. xy"
' + /"= 1+x

2919. xy + x0' = l. 2927. y""-f y"*=l.
Find the particular solutions for the indicated initial con-

ditions:

2928. (1 -M')z/" 2*/' = 0; j/
= 0, j/'

= 3 for * = 0.

2929. l+t/'
l=

2j/t/"; r/=l, y'
= 1 forx=l.

2930. ytf + i/"=*y"\ y=*l, y' = \ for x = 0.

2931. xy" = y'; t/
= 0, t/'

= for JC= 0.

Find the general integrals of the following equations:

2932. yy^Vy^ify'-y'if.
2933. yy' = y" +
2934. y"-yy"=ify'.
2935. f/i/"-hf/'

J

-y'lnj/ = 0.

Find solutions that satisfy the indicated conditions:

2936. i/V=l; f/
= l, (/'

= ! forjt= i.

2937. yy" + y" = l; 0=1, y'=\ for Jt = 0.

2938. xif=V\ -\-y'

2

; y = for x=l; y=l for A: = e
s

.

2939. y"(\-\-\nx) + -^'y'
= 2 + \nx;y = -^, y' = \ tor

2940. /-n-ln; = -i, y'-l for jc= 1.

2941. y'y'' + y'(y\)=*Q; (/
= 2, </'

= 2 for x = 0.

2942. 3/Y = {/-(-i/"

<

-F 1; y= 2, y'
= for ^ = 0.

2943. J/

l

-t-y"-2//'' = 0; (/=!, /'
= 1 foi x = 0.

2944. ^j/' + /'* -|- yy" = 0; j/=l for jc= and /
= for *= 1,
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2945. 2y' + (y'

z

Gx)-y" = Q\ y = 0, y'
= 2 for A: = 2.

2946. y'y*+yif */'

2 = 0; y=l, #'
= 2 for *= 0.

2947. 2jr-3/
i = 40

I
; t/= 1, */' -0 for jc = 0.

2948. 2yy"-\-y* */'*
= 0; #=1, y' = l for * = 0.

2949. I/"-*/'
2

-*/; y=-l, y'
= l for x=l.

2950. / + -

i e>y-2^'
i = 0; //-I, y'

= e for ^--
2951. H-//y"-f y'

= 0; = 0, 0'
= 1 for*=l.

2952. (H-00')/ = (l+0'")0'; 0=1, 0'=1 for x =
2953. (*+l)0" + x0

ff =
0'; 0=-2, 0'=4 forx=l.

Solve the equations:

2954. y' =
2955. 0' = j

2956. y"
/2= 4y

//

.

2957. yy'y" --= y'* + y"* . Choose the integral curve passing through
the point (0, 0) and tangent, at it, to the straight line y + x= Q.

2958. Find the curves of constant radius of curvature.

2959. Find a curve whose radius of curvature is proportional
to the cube of the normal.

2960. Find a curve whose radius of curvature is equal to the

normal.
2961. Find a curve whose radius of curvature is double the

normal.
2962. Find the curves whose projection of the radius of cur-

vature on the //-axis is a constant.

2963. Find the equation of the cable of a suspension bridge
on the assumption that the load is distributed uniformly along
the projection of the cable on a horizontal straight line. The

weight of the cable is neglected.
2964*. Find the position of equilibrium of a flexible nonten-

sile thread, the ends of which are attached at two points and
which has a constant load q (including the weight of the thread)

per unit length.
2965*. A heavy body with no initial velocity is sliding along

an inclined plane. Find the law of motion if the angle of incli-

nation is a, and the coefficient of friction is p,.

(Hint. The frictional force is ji/V, where ^V is the force of reaction of the

plane.)

2966*. We may consider that the air resistance in free fall

is proportional to the square of the velocity. Find the law of

motion if the initial velocity is zero..
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2967*. A motor-boat weighing 300 kgf is in rectilinear motion
with initial velocity 66 m/sec. The resistance of the water is pro-

portional to the velocity and is 10 kgf at 1 metre/sec. How long
will it be before the velocity becomes 8 m/sec?

Sec. 11. Linear Differential Equations

1. Homogeneous equations. The functions 0i = q>i(x), f/2
=

q> 2 (A:) t ...

!/
==(P/iW are called linearly dependent if there are constants C, f C lf ..., Cn

not alt equal to zero, such that

otherwise, these functions are called linearly independent.
The general solution of a homogeneous linear differential equation

//<> + P, (x) e/<"-
'> + . . . + Pn (x) y= (1)

w ; th continuous coefficients P,-(x) (/
= !, 2, .... n) is of the form

where (/,, ytt ...,/ are linearly independent solutions of equation (1)

(fundamental system of solutions).

2. Inhomogcneous equations. The general solution of an inhomogeneous
linear differential equation

(2)

with continuous coefficients P,- (x) and the right side f (x) has the form

where f/ is the general solution of the corresponding homogeneous equation (1)
and Y is a particular solution of the given inhomogeneous equation (2).

If the fundamental system of solutions (/,, y %..... yn of the homogeneous
equation (1) is known, then the general solution of the corresponding inho-

mogeneous equation (2) may be found from the formula

y = C
l (x) y, + C t (x) y2+ . . . +Cn (x) ya ,

where the functions Cj(x) (*'
= !, 2, .... n) are determined from the follow-

ing system of equations:

'[ (*) </i + C'
t (*)y* + + C'n (x) /,

= 0,

:;w</; +...+c;(o;=o.

0)

(the method of variation of parameters).

Example. Solve the equation

(4)
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Solution. Solving the homogeneous equation

*ir+if'=o f

we get
(5)

Hence, it may be taken that

y l
= \nx and # 2

= 1

and the solution of equation (4) may be sought in the form

Forming the system (3) and taking into account that the reduced form of

the equation (4) is t/"+~= jt, we obtain

+ >l and

Whence

and, consequently,

y=

where A and B are arbitrary constants.

2968. Test the following systems of functions for linear rela-

tionships:

a) x, x + 1; e) *, x\ x'\

b) x2

, 2x2

; f) e* 9 e
2

*, e**\

c) 0, 1, x\ g) sin *, cos A:, 1;

d) x, x+1, x +2; h) sin
2

x, cos
2
*, 1.

2969. Form a linear homogeneous differential equation, know-

ing its fundamental system of equations:

a) y l
= sin x, y2

= cos x\

b) y^e*. y2 ==xe*\

c) y^x* #2
= *2

<

d) f/,
= ^

x
y*
= ^

x
sin ^, f/8

= ^ cos A:.

2970. Knowing the fundamental system of solutions of a linear

homogeneous differential equation

find its particular solution y that satisfies the initial conditions
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2971*. Solve the equation

knowing its particular solution y l

= -^.

2972. Solve the equation

x*(\nx-l)y"-xy' 4-y = 0,

knowing its particular solution y }
=x.

By the method of variation of parameters, solve the following

inhomogeneous linear equations.
2973. **(/" xy' = 3;t

a
.

2974*. x*y" + xy' y = x
2

.

2975. y'" -f (/'-sec A:.

Sec. 12. Linear Differential Equations of Second Order

with Constant Coefficients

t. Homogeneous equations. A second-order linear equation with constant
coeflicients p and q without the right side is of the form

U)

If k
l
and fc 2 are roots of the characteristic equation

.Q t (2)

then the general solution of equation (1) is \vritten in one of the following
three ways:

1) (/-CVV + C.e*-* if 6, and k z are real and /?, ^ k.\

2) y-eV(C, + CV) if *,
=

*,;

3) (/ -^(^cnspx-HC^mpA) if *,=a + p and * a -=a pi (p 76 0).

2. Inhomogeneous equations. The general solution of a linear inhomoge-
neous differential equation

y" + py' +w=fW (3)

may be written in the form of a sum:

where y is the general solution of the corresponding equation (I) without
ritfht side and determined from formulas (1) to (3), and Y is a particular
solution of the given equation (3).

The function Y may be found by the method of undetermined coefficients
in the following simple cases:

1. f (x)
= ea*Pn (x), where Pn (x) is a polynomial of degree n.

If a is not a root of the characteristic equation (2), that is, (p (a) 96 0,
then we put Y e**Q n (x) where Q n (x) is a polynomial of degree n with
undetermined coeflicients.

If a is a root of the characteristic equation (2), that is, <p(a)
= 0, then

Y = xreax Q n (x) t \\here r is the multiplicity of the root a(r=l or r= 2).
2. / (*) = *

[Pn (*) cos bx+ Q m (x) sin bx\.
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If cp(a i bi) ^ 0, then we put

Y= e
ax

[SN (x) cos bx+ TN (x) sin bx],

where S^(x) and Tu(x) are polynomials of degree N-max {n, m},
But if cp(a &/) = 0, then

K= xreax [Stf (x) cos 6*+ TN (x) sin to] ,

where r is the multiplicity of the roots a bi (for second-order equations,
r=l).

In the general case, the method of variation of parameters (see Sec. 11)
is used to solve equation (3).

Example 1. Find the general solution of the equation 2y" y' y 4xe2
*.

Solution. The characteristic equation 2& 2 & l=u has roots fc,~l and

fc2
=

. The general solution of the corresponding homogeneous equation

(first type) is f/ ==C
1
e* + C2e

2
. The right side of the given equation is/ (x)

=
=4xezx =tax Pn (x). Hence, Y= e

zx
(Ax + B),

since n=l and /=0. Difleren-

tiating Y twice and putting the derivatives into the given equation, we
obtain:

%,** (4A X+ 45 + 4^) __ ei* (2Ax+ 25 + A) e
2*

(Ax H- B) 4xezx .

Cancelling out e
zx and equating the coefficients of identical powers of x arid

the absolute terms on the left and right of the equality, we have bA=4 and
4 28

744-5fl= 0, whence 4 = -=- and 5 = -.
o Jo

Thus, K^2A
f
-g-* oH

)
anc^ * ne gei]eral solution of the given equation is

Example 2. Find the general solution of the equation y* 2y
f + y = xe* .

Solution. The characteristic equation k2
2/f-f- 1 has a double root

ft=l The ri^ht side of the equation is o! the form f(x)xex \ here, 0=1
and n=-l. The particular solution is Y =x*e* (Ax + B), since a coincides \nHth

the double root k=-\ and, consequently, r = 2.

Diilerentiating Y twice, substituting into the equation, and equating the

coefficients, we obtain /l = -
, fl = 0, Hence, the general solution of the given

equation will be written in the form

* l

Example 3, Find the general solution of the equation */*-f y=
Solution. The characteristic equation fe

2
-j-l=r() has roots

/?,
/' and

fca
= i. The general solution ot the corresponding homogeneous equation

will |see 3, where a~0 and P = l| be*

The right side is of the form
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where a= 0, 6=1, Pn (jc)=0, Q OT (*)
= *. To this side there corresponds the

particular solution Y,

(here, #=1, a= 0, fc=l, r=l).
Differentiating twice and substituting into the equation, we equate the

coefficients of both sides in cos*, xcosx, sin*, and xsmx. We then get four

equations 2A + 2D = 0, 4C = 0, -25 + 20= 0, 44 = 1, from which we deter-
1 1 X2 X

mine A = ,
= 0, C = 0, D= . Therefore, K= cos * -f- -j- sin *.

4 4 44
The general solution is

x2 x
y = C, cos jc+ C 2 sin x -j-

cos A:+ -7- sin *.

3. The principle of superposition of solutions. If the right side of equa-
tion (3) is the sum of several functions

and K/(/ = l, 2, 3, . .., n) are the corresponding solutions of the equations

y'+py'+w^-fiW (<
= i. 2..... n).

then the sum
y = Y

l + Yn +...+Yn

is the solution of equation (3).

Find the general solutions of the equations:

2976. tf 5y'6y = Q. 2982. y" + 2y'
2977. if 9y = 0. 2983. / 4y'
2978. yy'^Q. 2984. y" + ky
2979. iT + y = 0. 2985. y=
2980. ^_2i/

f

+2j/ = 0.

2981. / + 40' +130 = 0.

Find the particular solutions that satisfy the indicated condi-
tions:

2987. y"5tj'-\-4y= Q\ y= 5 t y' = 8 for * =
2988. y"+ 3tf' +20 = 0; y=5 1, 0' = 1 for jc0.
2989. 0" + 40 = 0; = 0,

f = 2 for x = 0.

2990. 0^ + 20' = 0; 0=1, 0'=0 for ^ =

2991. /=; = a, 0' = for x= 0.

2992. 0" + 30'=0; = for x = and = for x = 3.

2993. 0" + ji
f = 0; = for jc = and = for x=l.

2994. Indicate the type of particulai solutions for the given

inhomogeneous equations:

a) 0"-40 = A:Vx ;

b) 0" + 90 = cos 2x\

12-1900
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c) y" 4y' -f 4y= sin 2x+ e**\

d) y" + 2y' + 2y= e
x
sir\x\

e) </"
-

5</' + 60= (x* + l)e*+ xe**\

f) y"2y' + 5# = xe* cos 2x #V sin 2x.

Find the general solutions of the equations:
2995. y" 4i/' + 4(/

= jc
t

.

2996. / ^ +# = *' + 6.

2997. ^ + 2^' + ^=^.
2998. / 8^ + 7^=14.
2999. y"y^e*.
3000.

3001.

3002.

3003. /
. 3004. t/'

/+ f

3005. y" 2y'-{ 5y =
3006. Find the solution of the equation y" + 4y= sin x that

satisfies the conditions y=l, */'= 1 for x = 0.

Solve the equations:
W2y

3007.
^-2 + o)

2x=/l sinp/. Consider the cases: 1) p + o>;

2) p-co.
3008. /
3009. t/"

3010. y"
3011. y" 2y' =
3012. y" 2(/' 8y = e

x
8cos2*.

3013. y"-\-y' = 5x + 2e
x

.

3014. ^_y'^2;c-~l 3e
x

.

3015. {/"+ 2r/
/

+ y = ^+^ x
.

3016. f/" 2y
f + lQy=s\r\3xi-e

x
.

3017. /_4f/' + 4f/= 2^+ .

3018. if 3y' =
3019. Find the solution to the equation / 2y'=e

tx

that satisfies the conditions /=-, f/
/==l for ^ = 0,

Solve the equations:
3020. (/" y= 2xsmx.
3021. j/" 4(/==g

2x
sin2A:.

3022.

3023. tf

3024.

3025. / H- 9y= 2x sin
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3026. tf2y' 3y= x(l+e'
x
).

3027. y" 2y' = 3x + 2xe*.

3028. */" 4y'+4y = xe*
x

.

3029. y"+ 2y' 3y= 2xe-'*+ (x^ l)e*.
3030*. y" + y= 2x cos x cos 2x.

3031. t/' 2y= 2xe*(cosx sinx).

Applying the method of variation of parameters, solve the

following equations:

3032. y" + y= ianx. 3036. < .

3033. y" + y = cot x. 3037.

3034. y" 2y' -(-*/
= -. 3038. a) </" y= tanh A:.

3035. y" + 2y' + y = . b) y" 2y = 4x*ex\
V

3039. Two identical loads are suspended from the end of a

spring. Find the equation of motion that will be performed by
one of these loads if the other falls.

Solution. Let the increase in the length of the spring under the action
of one load in a state of rest be a and the mass of the load, m. Denote by x

the coordinate of the load reckoned vertically from the position of equilib-
rium in the case of a single load. Then

where, obviously, k = and, consequently, 7*7*
^ ~"^ * The general solu-

tion is x=C
l
cos I/ - 1 + C2 sin I/ t. The initial conditions yield Jt= u

d*

Tt
:and

-77
= when / = 0; whence C

t
= a and Ca

= 0; and so

3040*. The force stretching a spring is proportional to the
increase in its length and is equal to 1 kgf when the length
increases by 1 cm. A load weighing 2 kgf is suspended from the

spring. Find the period of oscillatory motion of the load if it

is pulled downwards slightly and then released.

3041*. A load weighing P = 4 kgf is suspended from a spring
and increases the length of the spring by 1 cm. Find the law
of motion of the load if the upper end of the spring performs
a vertical harmonic oscillation (/

= 2sin30/ cm and if at the
initial instant the load was at rest (resistance of the medium is

neglected). . L

12*
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3042. A material point of mass m is attracted by each of two
centres with a force proportional to the distance (the constant

of proportionality is k). Find the law of motion of the point

knowing that the distance between the centres is 26, at the ini-

tial instant the point was located on the line connecting the

centres (at a distance c from its midpoint) and had a velocity
of zero.

3043. A chain of length 6 metres is sliding from a support
without friction. If the motion begins when 1 m of the chain
is hanging from the support, how long will it take for the entire

chain to slide down?
3044*. A long narrow tube is revolving with constant angular

velocity o> about a vertical axis perpendicular to it. A ball in-

side the tube is sliding along it without friction. Find the law
of motion of the ball relative to the tube, considering that

a) at the initial instant the ball was at a distance a from
the axis of rotation; the initial velocity of the ball was zero;

b) at the initial instant the ball was located on the axis of

rotation and had an initial velocity v
9

.

Sec. 13. Linear Differential Equations of Order Higher than Two with

Constant Coefficients

1. Homogeneous equations. The fundamental system of solutions y lt

#t Un f a homogeneous linear equation with constant coefficients

y<
n >+ aiy

<n- + . . . + an _,y' +any = (1)

is constructed on the basis of the character of the roots of the characteristic

equation

Q. (2)

Namely, 1) if k is a real root of the equation (2) of multiplicity m, then to

this root there correspond m linearly independent solutions of equation (1):

2) if a i p/ is a pair of complex roots of equation (2) of multiplicity m,
then to the latter there correspond 2m linearly independent solutions of

equation (1):

y l
= e

*x cos PX, #,= e*x sin px, yt
= xe*

x
cos PX, y4

= xe*
x

sin PX, ...

2. Inhotnogeneous equations. A particular solution of the inhomogeneous
equation

(3)

is sought on the basis of rules 2 and 3 of Sec. 12.
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Find the general solutions of the equations:
3045. y'" 13</"+12</'=0. 3058. y

/

3048. y'
v

2J/"
= 0. ,

n(n-l) ,.
3049. y'" 3t"

' n
'

^

3050. y'v + 4y

3060. -
3053. w'v' + ^O. 306 >- y'

v -
*054. w' 1' ai/ = b. 3062 - y'"iJ = x'

sss- ^T
SB: MS,---..
3067. Find the particular solution of the equation

y'"+2y"-{-2y'+y = x

that satisfies the initial conditions y (0)
= y' (0)

= y" (0)=-=0.

Sec. 14. Euler's Equations

A linear equation of the form

ny^f(x) t (I)

where a, b, A
l ..... <4,,_,, A n are constants, is called Enter's equation.

Let us introduce a new independent variable /, putting

ax + b-^e 1
.

Then

and Euler's equation is transformed into a linear equation with constant
coefficients.

Fxample 1. Solve the equation x z
y" + xy' +{/ = 1.

Solution. Putting x^e*. we get

~Sx
==e

Tr dx~z==e
z

(~di*~~~di)'

Consequently, the given equatioi takes on the form

whence

y = C, cos t + C, sin t + 1

or

y= C, cos (In *) + Ca sin (In x) + 1.
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For the homogeneous Euler equation

Q (2)

the solution may be sought in the form

</
= **. (3)

Putting into (2) (/, y' , ..., y
(n} found from (3), we get a characteristic equa-

tion from which we can find the exponent k.

If k is a real root of the characteristic equation of multiplicity m t
then to it

correspond m linearly independent solutions

0i= **. 0,
= **-ln*. */,

= ** (In*)
2
, ..., ym= xk (\nx)

m- 1
.

If a p* is a pair of complex roots of multiplicity m, then to it there

correspond 2m linearly independent solutions

(/8
= *a In x cos (P In *),

y4=*Mnx.sin(plnx) ..... ^m-i^*" (In*)*"
1 cos (p I

Example 2. Solve the equation

X*y'' 3Xy' +4l/=0.
Solution. We put

Substituting into the given equation, after cancelling out xk
, we get the

characteristic equation
2

46-1-4= 0.

Solving it we find

Hence, the general solution will be

y^C

Solve the equations:

3068. *'g+ 3*|+ <,
= 0.

3069. *V xy' 3(/= 0.

3070. xY-|-x(/'4-4(/= 0.

3071.

3072.

3073. tT= .

3074.

3075. ^y_
3076.
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*

3077. Find the particular solution of the equation

*V xy' + y = 2x

that satisfies the initial conditions y = 0, */'
= ! when *=1.

Sec. 15. Systems of Differential Equations

Method of elimination. To find the solution, for instance, of a normal
system of two first-order differential equations, that is, of a system of the
form

solved for the derivatives of the desired functions, we differentiate one of

them with respect to x. We have, for example,

Determining z from the first equation of the system (1) and substituting the

value found,
/ A.. \

(3)

into equation (2), we get a second-order equation with one unknown func-

tion u. Solving it, we find

(4)

where C, and C2 are arbitrary constants. Substituting function (4) into for-

mula (3), we determine the function z without new integrations. The set of

formulas (3) and (4), where y is replaced by \|>, yields the general solution

of the system (1).

Example. Solve the system

z
,

3 f

+'-'-T*
Solution. We differentiate the first equation with respect to x:

^+2^+4^-4.dx*^ dx^ dx

\ / dy \
From the first equation we determine ^= -T- ( l+4x ~

2y
j
and then

from the second we will have -^= -5-
**+ * + -; -75- y TT"- Putting z

ax & 4 & T ax

and j- into the equation obtained after differentiation, we arrive at a second-

order equation in one unknown y:
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Solving it we find:

and then

We can do likewise in the case of a system with a larger number of

equations.

Solve the systems:
dy= z

3078. I JJ

3079.

3080.

3081.

3082.

3083.

3084.

dz

dT

dx

dy

dz

da

3085.

dx

r/
= 0, z = when je= 0.

3086.

: = 0, y=\ when / = 0.

4/_//
2

3087.

3088*.

c)

dx _ dy __dz_ t

xy~ x-\-y~~~ z
'

__ dy __ dz

dz

yz zx xif
isolate the integral curve pas-
sing through the point (1, 1, 2).

dy

3089.

3090.
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3091**. A shell leaves a gun with initial velocity u at an

angle a to the horizon. Find the equation of motion if we take

the air resistance as proportional to the velocity.
3092*. A material point is attracted by a centre with a

force proportional to the distance. The motion begins from point A
at a distance a from the centre with initial velocity perpen-
dicular to OA. Find the trajectory.

Sec. 16. Integration of Differential Equations by Means of Power Series

If it is not possible to integrate a differential equation with the help of

elementary functions, then in some cases its solution may be sought in the

form of a power series:

00

y=2 '(* *o)
n

- 0)
n = o

The undetermined coefficients cn (n = \, 2, ...) are found by putting the

series (1) into the equation and equating the coefficients of identical powers
of the binomial x x on the left-hand and right-hand sides of the resulting

equation.
We can also seek the solution of the equation

in the form of the Taylor's series

y(*) = ^ y^^ (*-*)" (3)

where y(x Q)
= yQ , y' (x )

=
f (* , t/ ) and the subsequent derivatives y

(n)
(x )

(n- 2, 3, ...) are successively found by differentiating equation (2) and by
putting XQ in place of x

Example 1. Find the solution of the equation

Solution. We put

y=

whence, differentiating, we get

y"= 2.\Ct+ 3.2csx+...+n(n-\)cnx
n-*+ (n+l

+ In + 2)(rt-t-l) <:+,*"+...

Substituting y and y" into the given equation, we arrive at the identity

Collecting together, on the left of this equation, the terms with identical

powers of x and equating to zero the coefiicients of these powers, we will
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have

cs= ^~ and so forth.

Generally,

3.4-6. 7-... -

2
= (k =1,2, 3, ...).

Consequently,

(X*
X1 X^ 1 \

* +
3T4

+
3.4.6.7

+ '" +
3.4-6.?.. . .-3* (3fc+ 1)

+ '"
)*

(4)

where c =f/ and c
l
= y'Q .

Applying d'Alembert's test, it is readily seen that series (4) converges
for oo < x < + oo .

Example 2. Find the solution of the equation

y'

Solution. We put

We have y =\, i^
= + l = l. Differentiating equation y' = x+ y, we succes-

sively find /=! + (/', ^=1 + 1 = 2, y'"=y\ /o"
= 2, etc. Consequently,

For the example at hand, this solution may be written in final form as

*-l x) or = 2e* 1 x.

The procedure is similar for differential equations of higher orders. Test-

ing the resulting series for convergence is, generally speaking, complicated
and is not obligatory when solving the problems of this section.

With the help of power series, find the solutions of the equa-
tions for the indicated initial conditions.

In Examples 3097, 3098, 3099, 3101, test the solutions
obtained for convergence.

3093. y' = y+ x
2

\ y= 2 for *= 0.

3094. y' = 2y+ x 1; y= y for x=l.

3095. 0' = / + *; f/
= y for x==a

3096. y' = x* y*\ #= for *= 0.

3097. (1 x)y' = l+x y\ y= for
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3098*.

3099.

3100*.

3101*.

3102.

= 0; y = 0, y' = 1 for x = 0.

0\ 0=1, #' = for * = 0.

/' + */
= 0; y=l, */'=0 for Jt =

+ */
= 0; 0=1, 0'=0 for x=

= 0; *= a; ~ = for * = 0.

Sec. 17. Problems on Fourier's Method

To find the solutions of a linear homogeneous partial differential equation
by Fourier's method, first seek the particular solutions of this special-type
equation, each of which represents the product of functions that are dependent
on one argument only. In the simplest case, there is an infinite set of such
solutions M

rt (tt=l, 2,...), which are linearly independent among themselves
in any finite number and which satisfy the given boundary conditions. The
desired solution u is represented in the form of a series arranged according
to these particular solutions:

u= Cnun . (1)

The coefficients Cn which remain undetermined are found from the initial

conditions.

Problem. A transversal displacement u = u(x t t) of the points of a string
with abscissa x satisfies, at time *, the equation

dt*

_~~ a
dx*

(2)

where a2 = -? (TQ is the tensile force and Q is the linear density of the

string). Find the form of the string at time t if its ends x= and *= / are

U

2

Fig. 107

fixed and at the initial instant, f = 0, the string had the form of a parabola

u =~* (/ x) (Fig. 107) and its points had zero velocity.

Solution. It is required to find the solution u= u(x, t) of equation (2)

that satisfies the boundary conditions

a(0, 0-0, !!(/, 0=0 (3)
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and the initial conditions

(*,0) =^ *(/-*), ;<*, 0)= 0. (4)

We seek the nonzero solutions of equation (2) of the special form

u = X (x)T(t).

Putting this expression into equation (2) and separating the variables, we get

ZL(0--*1W (5)
a27tO~~ * (x)

' l '

Since the variables x and t are independent, equation (5) is possible only
when the general quantity of relation (5) is constant Denoting this constant

by X2
, we find two ordinary differential equations:

)*-T(t) = Q and X" (x) + K*X (x)
= 0.

Solving these equations, we get

T (t)
= A cos a\t + B sin aKt,

X (*) = C cos Kx + D sin X*.

where A, B, C, D are arbitrary constants. Let us determine the constants.
From condition (3) we have X(0) = and X(/) = 0; hence, C = and
sinX/= (since D cannot be equal to zero at the same time as C is zero).

For this reason, XA = -p
where k is an integer. It will readily be seen that

we do not lose generality by taking for k only positive values (k=\ 9 2, 3,...).
To every value hk there corresponds a particular solution

(,

kan
Ak cos-j-

kan . \ . knx

tj sin-y-

Ihat satisfies the boundary conditions (3).
We construct the series

f . kant
. kant\

. knx
I ^ cos

-7- + ^sm-y-J sm-j-

whose sum obviously satisfies equation (2) and the boundary conditions (3).We choose the constants A k and Bk so that the sum of the series should
satisfy the initial conditions (4). Since

CD

du y kan ( . kant kant\ , knx
& =2* ~\~ A* sm -p + ^cos-y-J sin -^ .

it follows that, by putting / = 0, we obtain

and

0) V kan
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Hence, to determine the coefficients Ak and B^ it is necessary to expand in

a Fourier series, in sines only, the function u(x, 0)= ^-
x (lx) and the

. .. du (x, 0) n
function ^ ' ^ 0.

at

From familiar formulas (Ch. VIII, Sec. 4,3) we have

/

ft . knx . 32h

if & is odd, and Ak Q if & is even;

/

kast _ 2 f A ,
jix . A A

*
=

T- J
Osin d*= 0, fl*

= 0.

The sought-for solution will be

cos
/ . (2/i-f \)jtx

sin V
3103*. At the initial instant / = 0, a string, attached at

its ends, x = and * = /, had the form of the sine curve

u A sin y , and the points of it had zero velocity. Find the

form of the string at time t.

3104*. At the initial time / = 0, the points of a straight

string 0<jt</ receive a velocity -~ = 1. Find the form of the

string at time t if the ends of the string # = and x = l are

fixed (see Problem 3103).
3105*. A string of length /=100 cm and attached at its ends,

x = and *=-/, is pulled out to a distance A = 2 cm at point
*=;50 cm at the initial time, and is then released without any
impulse. Determine the shape of the string at any time /.

3106*. In longitudinal vibrations of a thin homogeneous
and rectilinear rod, whose axis coincides with the jr-axis, the

displacement u = u(x 9 t) of a cross-section of the rod with

abscissa x satisfies, at time /, the equation

c^u_ 2 <Pu

d/ 2
~~ a

dx*
*

r

where a
f = (E is Young's modulus and Q is the density of the

rod). Determine the longitudinal vibrations of an elastic hori-

zontal rod of length /= 100 cm fixed at the end * = and pulled
back at the end *=100 by A/ = l cm, and then released without

impulse.
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3107*. For a rectilinear homogeneous rod whose axis coincides

with the Jt-axis, the temperature u = u(x, t) in a cross-section with
abscissa x at time /, in the absence of sources of heat, satisfies

the equation of heat conduction

di

where a is a constant. Determine the temperature distribution

for any time t in a rod of length 100 cm if we know the initial

temperature distribution

u(x, 0) = 0.01 A; (100 x).



Chapter X

APPROXIMATE CALCULATIONS

Sec. 1. Operations on Approximate Numbers

1. Absolute error. The absolute error of an approximate number a which
replaces the exact number A is the absolute value of the difference between
them. The number A, which satisfies the inequality

is called the limiting absolute error. The exact number A is located within
the limits a A^/l^a+ A or, more briefly, A=a A

2. Relative error. By the relative error of an approximate number a

replacing an exact number A (A > 0) we understand the ratio of the absolute
error of the number a to the exact number A. The number 6, which satisfies

the inequality

\*-l ^*
A -, (2)

is called the limiting relative error of the approximate number a. Since in

actual practice A^a, we often take the number 6 = for the limiting

relative error.

3. Number of correct decimals. We say that a positive approximate
number a written in the form of a decimal expansion has n correct decimal

places in a narrow sense if the absolute error of this number does not exceed
one half unit of the nth decimal place. In this case, when n > \ we can

take, for the limiting relative error, the number

1 / 1

where k is the first significant digit of the number a. And conversely, if it

I
/

i
\-i

is known that 6^ , . . ,
. 77: ) , then the number a has n correct decimal

2(k-\- 1) \10/
places in the narrow meaning of the word. In particular, the number a

1 / 1 \
w

definitely has n correct decimals in the narrow meaning if ^
"if I To)

If the absolute error of an approximate number a does not exceed a

unit of the last decimal
place (such, for example, are numbers resulting

from measurements made to a definite accuracy), then it is said that all

decimal places of this approximate number are correct in a broad sense. If

there is a larger number of significant digits in the approximate number,
the latter (if it is the final result of calculations) is ordinarily rounded off

so that all the remaining digits are correct in the narrow or broad sense.
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Henceforth, we shall assume that all digits in the initial data are

correct (if not otherwise stated) in the narrow sense. The results of inter-

mediate calculations may contain one or two reserve digits.
We note that the examples of this section are, as a rule, the results of

final calculations, and for this reason the answers to them are given as

approximate numbers with only correct decimals.
4. Addition and subtraction of approximate numbers. The limiting ab-

solute error ot an algebraic sum of several numbers is equal to the sum of

the limiting absolute errors of these numbers. Therefore, in order to have,
in the sum of a small number of approximate numbers (all decimal places
of which are correct), only correct digits (at least in the broad sense), all

summands should be put into the form of that summand which has the

smallest number of decimal places, and in each summand a reserve digit
should be retained. Then add the resulting numbers as exact numbers, and
round off the sum by one decimal place

If we have to add approximate numbers that have not been rounded off,

they should be rounded off and one or two reserve digits should be retained.

Then be guided by the foregoing rule of addition while retaining the appro-
priate extra digits in the sum up to the end of the calculations.

Example 1. 215.21 -f- 14.182 -f 21 .4-215.2(1) + 14.1(8)4-21 4-= 250.8.

The relative error of a sum of positive terms lies between the least and

greatest relative errors of these terms.

The relative error of a difference is not amenable to simple counting.
Particularly unfavourable in this sense is the difference of two close numbers.

Example 2. In subtracting the approximate numbers 6 135 and 6.131 to

four correct decimal places, we get the difference 004. The limiting relative

.J.
0.001 + 1 0/XM

j

error is 6= , t
.. . =-= 0.25. Hence, not one of the decimals

0.004 4

of the difference is correct. Therefore, it is always advisable to avoid

subtracting close approximate numbers and to transform the given expression,
if need be, so that this undesirable operation is omitted.

5. Multiplication and division of approximate numbers. The limiting
relative error of a product and a quotient of approximate numbers is equal
lo the sum of the limiting relative errors of these numbers Proceeding from
Ihis and applying the rule for the number of correct decimals (3), we retain

in the answer only a definite number of decimals

Example 3. The product of the approximate numbers 25.3-4.12=104.236.

Assuming that all decimals of the factors are correct, we find that the

limiting relative error of the product is

6=
^0.01 +^0.01=^0.003.

Whence the number of correct decimals of the product is three and the

result, if it is final, should be written as follows: 25.3-4 12=104, or more

correctly, 25 3-4.12= 104 2 0.3.

6. Powers and roots of approximate numbers. The limiting relative error

of the mth power of an approximate number a is equal to the m-fold limiting
relative error of this number

The limiting relative error of the mth root of an approximate number a

Is the th part of the limiting relative error of the number a.

7. Calculating the error of the result of various operations on approxi-
mate numbers. If Aalf ... , Aa,, are the limiting absolute errors of the appro-
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xitnate numbers a
t , . . . , an , then the limiting absolute error AS of the resuU

S = /(at, ..., an )

may be evaluated approximately from the formula

,**-
*Ji/r

The limiting relative error S is then equal to

".++
Example 4. Evaluate S = ln (10.3+ V^4. 4 ); the approximate numbers

10.3 and 4.4 are correct to one decimal place.
Solution. Let us first compute the limiting absolute error AS in the

general form: S = ln (a+ V
r
~b), AS= Aa

1 A& \

^TT;
We have

Aa=A6=i=2Q; 1^4.4 = 2.0976...; we leave 2.1, since the relative error of

the approximate number y is equal to ^ =- -r= ^ ; the absolute error

is then equal to ^SOTT^JQ
' we can be sure f tne first decimal place. Hence,

20 "2"

Thus, two decimal places will be correct.

Now let us do the calculations with one reserve decimal:

0005U - UUi> '

log (10.3+ |/4 4) =5= log 12 4-1.093, In (10 3+ V 4.4)=^ 1.093-2.303 = 2.517.
And we pet the answer: 2 52

8. Establishing admissible errors of approximate numbers for a given
error in the result of operations on them. Applying the formulas of 7 for

the quantities AS or 6S given us and considering all particular differentials

U-M Ac* or the quantities \-~- equal, we calculate the admissible
\dak \

* M
\dak \f\

absolute errors Aa lt ... , Aa^, ... o the approximate numbers a
t , . .. ,an , ...

that enter into the operations (the principle of equal effects).

It should be pointed out that sometimes when calculating the admissible
errors of the arguments of a function it is not advantageous to use the

principle of equal effects, since the latter may make demands that are

practically unfulfilable In these cases it is advisable to make a reasonable

redistribution of errors (if this is possible) so that the overall total error does
not exceed a specified quantity. Thus, strictly speaking, the problem thus

posed is indeterminate.

Example 5. The volume of a "cylindrical segment", that is, *a solid cut
off a circular cylinder by a plane passing through the diameter of the base

(equal to 2R) at an angle a to the base, is computed from the formula
2

V =~ R* tan a. To what degree of accuracy should we measure the radius
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#=s:60 cm and the angle of inclination a so that the volume of the cylindrical

segment is found to an accuracy up to 1%?
Solution. If AV, A/? and Aa are the limiting absolute errors of the

quantities V, R and a, then the limiting relative error of the volume V that

we are calculating is

* 3A/? 2Act 1

R "Nn^a 100"

... 3A 1 . 2Aa 1

We assume -^ <m and_ <- . Whence

60 cm
f-- =1 mm;

sin 2a

Thus, we ensure the desired accuracy in the answer to 1% if we measure
Ihe radius to 1 mm and the angle of inclination a to 9'.

3108. Measurements yielded the following approximate numbers
that are correct in the broad meaning to the number of decimal

places indicated:

a) 1207'14"; b) 38.5 cm; c) 62.215 kg.

Compute their absolute and relative errors.

3109. Compute the absolute and relative errors of the follow-

ing approximate numbers which are correct in the narrow sense
to the decimal places indicated:

a) 241.7; b) 0.035; c) 3.14.

3110. Determine the number of correct (in the narrow sense)
decimals and write the approximate numbers:

a) 48.361 for an accuracy of 1%;
b) 14.9360 for. an accuracy of l%\
c) 592.8 for an accuracy of 2%.
3111. Add the approximate numbers, which are correct to the

indicated decimals:

a) 25.386 + 0.49 + 3.10 + 0.5;

b) 1.2-10
2 + 41.72 + 0.09;

c) 38.1+2.0 + 3.124.

3112. Subtract the approximate numbers, which are correct

to the indicated decimals:

a) 148.1-63.871; b) 29.7211.25; c) 34.22-34.21.
3113*. Find the difference of the areas of two squares whose

measured sides are 15.28 cm and 15.22 cm (accurate to 0.05 mm).
3114. Find the product of the approximate numbers, which

are correct to the indicated decimals:

a) 3.49-8.6; b) 25.1-1.743; c) 0.02-16.5. Indicate the possible
limits of the results.
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3115. The sides of a rectangle are 4.02 and 4.96 m (accurate
to 1 cm). Compute the area of the rectangle.

3116. Find the quotient of the approximate numbers, which
are correct to the indicated decimals:

a) 5.684 : 5.032; b) 0.144 : 1.2; c) 216:4.

3117. The legs of a right triangle are 12.10 cm and 25.21 cm
(accurate to 0.01 cm). Compute the tangent of the angle opposite
the first leg.

3118. Compute the indicated powers of the approximate
numbers (the bases are correct to the indicated decimals):

a) 0.4158'; b) 65.2'; c) 1.5
2

.

3119. The side of a square is 45.3 cm (accurate to 1 mm).
Find the area.

3120. Compute the values of the roots (the radicands are
correct to the indicated decimals):

a) 1/27715; b) j/65^2 ; c) KsTT.

3121. The radii of the bases and the generatrix of a truncated
cone are # = 23.64 cm 0.01 cm; r= 17.31 cm 0.01 cm; / =
= 10.21 cm 0.01 cm; ji = 3.14. Use these data to compute the

total surface of the truncated cone. Evaluate the absolute and
relative errors of the result.

3122. The hypotenuse of a right triangle is 15.4 cm 0.1 cm;
one of the legs is 6.8 cm 0.1 cm. To what degree of accuracy
can we determine the second leg and the adjacent acute angle?
Find their values.

3123. Calculate the specific weight of aluminium if an alumin-
ium cylinder of diameter 2 cm and altitude 11 cm weighs
93.4 gm. The relative error in measuring the lengths is 0.01,
while the relative error in weighing is 0.001.

3124. Compute the current if the electromotive force is equal
to 221 volts 1 volt and the resistance is 809 ohms 1 ohm.

3125. The period of oscillation of a pendulum of length / is

equal to

where g is the acceleration of gravity. To what degree of accuracy
do we have to measure the length of the pendulum, whose period
is close to 2 sec, in order to obtain its oscillation period with a

relative error of 0.5%? How accurate must the numbers n and g
be taken?

3126. It is required to measure, to within 1%, the lateral

surface of a truncated cone whose base radii are 2 m and 1 m,
and the generatrix is 5 m (approximately). To what degree of



372_Approximate Calculations_[Ch. 1Q

accuracy do we have to measure the radii and the generatrix and
to how many decimal places do we have to take the number n?

3127. To determine Young's modulus for the bending of a

rod of rectangular cross-section we use the formula

P 1 flL* ~~
4

'

d*bs
'

where / is the rod length, b and d are the basis and altitude ol

the cross-section of the rod, s is the sag, and P the load. To
what degree of accuracy do we have to measure the length / and
the sag s so that the error E should not exceed 5.5%, provided
that the load P is known to 0.1%, and the quantities d and 6

are known to an accuracy of 1%, /50 cm, s2.5 cm?

Sec. 2. Interpolation of Functions

1. Newton's interpolation formula. Let * , xlt . ... xn be the tabular val-

ues of an argument, the difference of which h Ax; (Ax/ = *,-+, x/; i = 0,l t

..., n 1) is constant (table interval) and # , ylt ., yn are the correspond-
ing values of the function y Then the value of the function y for an inter-

mediate value of the argument x is approximately given by Newton's inter-

polation formula

where o= "7 and A# = #, # , A 2
t/
= A#, A# , ... are successive finite

diilerences of the function y. \\hen x= x/ U 0, 1, ..., n), the polynomial
(1) takes on, accordingly, the tabular values y { (/

= 0, 1, . ., n). As partic-
ular cases of Newton's formula we obtain: for n=l, linear interpotation;
for /i 2, quadratic interpolation. To simplify the use of Newton's formula,
it is advisab'ie first to set up a table of finite differences.

If y= f (x) is a polynomial of degree n, then

&n
y. = const and A" +1

f//=^0

and, hence, formula (1) is exact
In the general case, if / (x) has a continuous derivative f

ln + l}
(x\ on the

interval [a, b], which includes the points *
,
x

lt ..., xn and x, then the error
of formula (1) is

where | is some intermediate value between *;(/
=

(), I, ..., n) and x. For
practical use, the following approximate formula is more convenient:
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If the number n may be any number, then it is best to choose it so that
the difference A" + 1

{/
^0 within the limits of the given accuracy; in other

words, the differences Aw
# should be constant to within the given places of

decimals

Example 1. Find sin 2615' using the tabular data sin 26 = 0,43837,
sin 27 -0.45399, sin 28 -0.46947.

Solution. We set up the table

Here, /i= 60', q--

26 15' 26

60'
_!_

4
'

have
Applying formula (1) and using the first horizontal line of the table, we

sin 2615' = 0.43837 + 0.01562 +
2

(0.00014) = 0.44229.

Let us evaluate the error R 2 Using formula (2) and taking into account

that if */ sun, then |*/
(/l
'|*^l, we will have:

Thus, all the decimals of sin 2615' are correct.

Using Newton's formula, it is alsc possible, from a given intermediate
value of the function //, to find the corresponding value of the argument x

(inverse interpolation). To do this, first determine the corresponding value q
by the method of successive approximation, putting

and

?C'H
2!

(i-O, 1, 2, ...).

n\

Here, for q we take the common value (to the given accuracy!) of two sue*

cessive approximations q
(m}

<;<

m + l

>. Whence x = jt -{-<//!.

Example 2. Using the table

approximate the root of the equation smhx
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Solution. Taking y = 4.457, we have

a,_5-4.457 0.543~
1.009 ^i.oog

5 =0.538;

0.565-0.435 0.220

= 0.538+ 0.027 = 0.565;

:0, 538 + 0. 027 = 0. 565.
2 1.009

We can thus take

*= 2. 2+ 0. 565- 0.2 = 2. 2 + 0. 113= 2. 313.

2. Lagrange's interpolation formula. In the general case, a polynomial of

degree n, which for *=*/ takes on given values yf (/
= 0, 1, .... n), is given

by the Lagrange interpolation formula

__ (x *!> (x x2) . . . (x xn ) (x XQ) (x *2) . . . (x xn)

'

*o) (* *,). . .(X Xk^) (X
' "

' ' ' ^

3128. Given a table of the values of x and y:

Set up a table of the finite differences of the function y.
3129. Set lip a table of differences of the function y = x*

5jc
f + JC 1 for the values *=1, 3, 5, 7, 9, 11. Make sure that

all the finite differences of order 3 are equal.
3130*. Utilizing the constancy of fourth-order differences, set

up a table of differences of the function y= x* 10*' +2** + 3jt

for integral values of x lying in the range l^jt^lO.
3131. Given the table

log 1=0.000,

log 2 -0.301,

log 3= 0.477,

log 4 = 0.602,

log 5 = 0.699.

Use linear interpolation to compute the numbers: log 1.7, Iog2.5,
log 3.1, and log 4.6.



Sec. 2] Interpolation of Functions 375

3132. Given the table

sin 10 = 0.1736, sin 13 = 0.2250,
sin 11 = 0.1908, sin 14 = 0.2419,
sin 12 = 0.2079, sin 15 = 0.2588.

Fill in the table by computing (with Newton's formula, for = 2)

the values of the sine every half degree.
3133. Form Newton's interpolation polynomial for a function

represented by the table

3134*. Form Newton's interpolation polynomial for a function

represented by the table

Find y for x = 5. 5. For what x will y=
3135. A function is given by the table

Form Lagrange's interpolation polynomial and find the value of

y for JC = 0.

3136. Experiment has yielded the contraction of a spring (x mm)
as a function of the load (P kg) carried by the spring:

Find the load that yields a contraction of the spring by 14 mm.
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3137. Given a table of the quantities x and y

Compute the values of y for x= 0.5 and for x 2: a) by means
of linear interpolation; b) by Lagrange's formula.

Sec. 3. Computing the Real Roots of Equations

1. Establishing initial approximations of roots. The approximation of the

roots of a given equation
/(*)=0 (i)

consists of two stages: 1) separating the roots, that is, establishing the inter-

vals (as small as possible) within which lies one and only one root of equa-
tion (1); 2) computing the roots to a given degree of accuracy

If a function /(A) is defined and continuous on an interval [a, b] and

/(a)./(6)<0, then on [a, b] there is at least one root of equation (1).

This root will definitely be the only one if /' (x) > or /' (x) < when
a<x<b.

In approximating the root it is advisable to use millimetre paper and
construct a graph of the function y = f(x). The abscissas of the points of

intersection of the graph with the x-axis are the rools of the equation /(x) = 0.

It is sometimes convenient to replace the given equation with an equivalent
equation (p (#) if (A). Then the roots of the equation are found as the abs-

cissas of points of intersection of the graohs y = q)(x) and y ty (x).

2. The rule of proportionate parts (chord method). If on an interval [a, b]

there is a unique root of the equation f (A) = O, where the function f (x)
is continuous on [a, b], then by replacing the curve y f(x) by a chord

passing through the points [a, f (a)] and [b, f (b)], we obtain the first

approximation
4

of the root

t /~\

(2)

To obtain a second approximation c2 , we apply formula (2) to that one of

the intervals [a, c,] or [c,, b] at the ends of which the function f (x) has
values of opposite sign. The succeeding approximations are constructed in the
same manner. The sequence of numbers cn (n=l, 2, . . .) converges to the

root , that is,

Generally speaking, we should continue to calculate the approximations c,,

c2 , . . ., until the decimals retained in the answer cease to change (in accord
with the specified degree of accuracy!); for intermediate calculations, take
one or two reserve decimals This is a general remark.

If the function / (x) has a nonzero continuous derivative /' (x) on the
interval [a, b], then to evaluate the absolute error of the approximate root
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c
rt , we can make use of the formula

where u= min (/' (x) |.

a < x < b

3. Newton's method (method of tangents). If /' (x) and f" (x) ^ for

a^x^b, where f(a)f(b)<0, f(a)f'(a)>Q, then the successive approxima-
tions *

rt (rt
= 0, 1, 2, ...) to the root of an equation f(x)=Q are computed

from the formulas

(3)

Under the given assumptions, the sequence xn (n = 1, 2, ...) is mono-
tonic and

lim * = .

n -> oo

To evaluate the errors we can use the formula

where u,= min \f'(x)\.
a < x < b

For practical purposes it is more convenient to use the simpler formulas

xQ
= a, * =*_, a/^.,) i/i

= l, 2, ...), (3')

where a= ., ,
which yield the same accuracy as formulas (3).

If f(b)f"(b)>Q, then in formulas (3) and (3') we should put x = &.

4. Iterative method. Let the yiven equation be reduced to the form

*= <PM, (4)

where \y' (x)\*^r< 1 (r is constant) for a ^x^b. Proceeding from the ini-

tial value *
,
winch belongs 4o the interval [a, b], we build a sequence of

numbers xlt x2 , ... according to the following law:

If a<jcrt <6 (n = l, 2, ...), then the limit

is the on/r/ roo/ of equation (4) on the interval [a, 6]; that is, xn are succes-

sive approximations to the root |.

The evaluation of the absolute error of the nth approximation to xn is

given by the formula

it_ y \ ^- *
xn + l

xn I

IS xn I ^s
j _ r

Therefore, if xn and xn + l
coincide to within E, then the limiting absolute

error for xn will be -r -
.

In order to transform equation f(x) Q to (4), we replace the latter with
an equivalent equation

where the number A, ^ is chosen so that the function -7- [x Kf (x)]
= 1 Kf

f
(jc)
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should be small in absolute value in the neighbourhood of the point * (for

example, we can put 1 X/'(x )=0].
Example 1. Reduce the equation 2x Inx 4=0 to the form (4) for the

initial approximation to the root * = 2.5.

Solution. Here, /(x) = 2x In * 4; /'(jc)
=2-~. We write the equiva-

lent equation x= x k(2x \nx 4) and take 0.5 as one of the suitable

values of A,; this number is close to the root of the equation

|l_ A,( 2- ^ I =0, that is, close to r^O.6.
| \ X ] U= 2.5 1 .6

The initial equation is reduced to the form

x= x 0.5 (2x Inx 4)
or

Example 2. Compute, to two decimal places, the root \ of the preceeding
equation that lies between 2 and 3.

Computing the root by th iterative method. We make use of the result

of Example 1, putting x
?
= 2.5. We carry out the calculations using formulas

(5) with one reserve decimal.

*f
= 2 + y In2.458ss2.450,

*,
= 2 + 4- In 2.450 ^2. 448,

2

*4= 2 + ~ln2. 448=^2. 448.

And so 1^:2 45 (we can stop here since the third decimal place has
Become fixed)

Let us npw evaluate the error. Here,

(p(*)
= 2+~lnx and

<P'(*)=^..

Considering that all approximations to xn lie in the interval [2.4, 2.5], we
get

Hence, the limiting absolute error in the approximation to x9 is, by virtue
of the remark made above,

A==
^-^-=0.0012 ^=0.001.

Thus, the exact root g of the equation lies within the limits

2 447 < g < 2.449;

we can take g^2.45, and all the decimals of this approximate number will
be correct in the narrow sense.
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Calculating the root by Newton's method. Here,

On the interval 2 <x<3 we have: /' (x) > and f (x) > 0; /(2)f(3)<0;
(3)>0.
e take

/(3)f (3)>0. Hence, the conditions of 3 for * = 3 are fulfilled.

We

We carry out the calculations using formulas (3') with two reserve decimals:

jtj^S 0.6(2-3 In 3 4)
= 2 4592;

*,= 2. 4592 0.6(2-2 4592 In 2 4592 4) = 2 4481;

*, = 2.4481 0.6(2-2.4481 In 2. 4481 4) = 2. 4477;

*4= 2. 4477 0.6(2-2 4477 In2. 4477 4) = 2 4475.

At this stage we stop the calculations, since the third decimal place
does not change any more. The answer is: the root, = 2. 45. We omit the

evaluation o! the error;

5. The case of a system of two equations. Let it be required to calcu-

late the real roots of a system of two equations in two unknowns (to a given
degree of accuracy):

f(*. 0=0, ,

6
.

and let there be an initial approximation to one of the solutions (|, r\) of

this system Jt= xot y = yQ .

This initial approximation may be obtained, for example, graphically,

by plotting (in the same Cartesian coordinate system) the curves f(x, #)
and tp (x, #) = and by determining the coordinates of the points of inter-

section of these curves.

a) Newton's method. Let us suppose that the functional determinant

dtf.jp)

d(x,y)

does not vanish near the initial approximation xxQ1 y= y . Then by New-
ton's method the first approximate solution to the system (6) has the form

x,
= x + a ,

j/,

=
f/ +P where a , P O

are the solution of the system of two.

linear equations

The second approximation is obtained in the very same way:

*,= *!+<*!, ^1
= ^1+ Pi,

where ap $ v
are the solution of the system of linear equations

Similarly we obtain the third and succeeding approximations.
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b) Iterative method. We can also apply the iterative method to solving
the system of equations (6), by transforming this system to an equivalent one

(
*= F(x.y).

\ y= (D(*, y)
(f)

and assuming thai

|F>.y)| + |0;<x t 0)|<r<l; \F'y (x, y)\ + \<S>v (x. #|<r< 1 (8)

in some two-dimensional neighbourhood U of the initial approximation (* , yQ ) t

which neighbourhood also contains the exact solution (, rj)
of the system.

The sequence of approximations (xn , yn ) (
=

1, 2, ...), which converges
to the solution ol the system (7) or, what is the same thing, to the solution
x>f (6), is constructed according to the following law:

= F(xt , yz ) t */,-c

If all (*, yn ) belong to U
% then lim * = , lim yn =i\.

n -+ oo n - oo

The following technique is advised for transforming the system of equa*
tions (6) to (7) with condition (8) observed. We consider the system of

equations

( a/ (x.

which is equivalent to (6) provided that
a.

Y.

, y)^F(x t y),

0. Rewrite it in the form

Choose the parameters a, p, y, & such that the partial derivatives of the
functions F(v, y) -jnd O (x, y} will be equal or close to zero in the initial

approximation;
in other words, we find a, fi, Y. o as approximate solutions

of the system of equations

,v , t/ )
= 0,

Condition (8) will be observed in such a choice of parameters a, P, Y
on the assumption that the partial derivatives of the functions / (x, y) and
<p(A, y) do not vary very rapidly in the neighbourhood of the initial approx-
imation (XQ , // ).

Example 3. Reduce to the form (7) the system of equations

given the initial approximation to the root * = 0.8, = 0.55.



J a(*
2 + //

2-l) + p(*'-i/)-0, /la, pi \

\ Yl*
2+ 2

-0-i-a(*'-</)=0 VI Y. *l /
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Solution. Here, f (x t y)-=x* +y*\ t q> (x, y)=x'-y-t fx (x i/c)
= 1.6,

fv (x* y )
= 1.1; <P* (*<>. 0o)

= 1-92,
<fy(*

, y )
= 1.

Write down the system (that is equivalent to the initial one)

in the form

For suitable numerical values of a, p, Y anc* ^ choose the solution of the

system of equations
1 + 1.60+1.920 = 0,

l.la p-0,
1.6Y + 1.925 = 0,

1 + 1. lY 6 = 0;

i. e., we put a =^0.3, p ^r 0.3, y^ 0.5, b^QA.
Then the system of equations

i x= x 0.3(^
2 + r/

2
1) 0.3(A- y),

\ y = y 0.5 (*
2
-{-#

2
1) + 04 (x*y) t

which is equivalent to the initial system, has the form (7); and in a suffi-

ciently small neighbourhood of the point (xQt yQ ) condition (8) will be fulfilled.

Isolate the real roots of the equations by trial and error, and

by means of the rule of proportional parts compute them to two
decimal places.

3138. X s- x -\ 1-0.
3139. *4 + 05* 1.55 = 0.

3140. x8 4* -1--0.

Proceeding from the graphically found initial approximations,
use Newton's method to compute the real roots of the equations
to two decimal places:

3141. JC _2jc 5-0. 3143. 2
x = 4x.

3142. 2x In* 4 = 0. 3144. logjc=y.

Utilizing the graphically found initial approximations, use the

iterative method to compute the real roots of the equations to

two decimal places:
3145. x'-5.*M 0.1=0. 3147. jc

8 x 2 = 0.

3146. 4* = cos*.

Find graphically the initial approximations and compute the

real roots of the equations and systems to two decimals:

3148. A:' 3* -(-1=0. 3151. x- In* 14 = 0.

3149. *8 2*2

+ 3* 5 = 0. 3152. x
8 +3* 0.5 = 0.

3150. *4 +*2
2* 2 = 0. 3153. 4* 7sin* = 0.
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3154. x* + 2x 6 = 0. ( x* + y 4 = 0,

3155. e* + e-
8 * 4 = 0.

157 '

\ y \Qgx-l =0.

3156.
' " "Lff ~~ ~~

3158. Compute to three decimals the smallest positive root of

the equation tan jc = jc.

3159. Compute the roots of the equation x-tanh x=l to four

decimal places.

Sec. 4. Numerical Integration of Functions

1. Trapezoidal formula. For the approximate evaluation of the integral

b

If (x) is a function continuous on [a, b]] we divide the interval of integration

[a, b] into n equal parts and choose the interval of calculations h==- .

Let Xi
= xQ+ ih (x a, xn= b, / 0, 1, 2, ..., n) be the abscissas of the par-

tition points, and let
// /(*/) be the corresponding values of the integrand

y f(x). Then the trapezoidal formula yields

a

with an absolute error of

where M 2
= max

| f (x) \

when
To attain* the specified accuracy e when evaluating the integral, the in-

terval h is found from the inequality

That is, h must be of the order of V^e . The value of h obtained is rounded
off to the smaller value so that

b
a==

h
~~ n

should be an integer; this is what gives us the number of partitions n.

Having established h and n from (1), we compute the integral by taking the
values of the integrand with one or two reserve decimal places.

2. Simpson's formula (parabolic formula). If n is an even number, then
in the notation of 1 Simpson's formula
b

h
Q- K#o+ #n) + 4 (y\ + #3+.. +yn -\) +

+0n-2)l (3)
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holds with an absolute error of

(4)

where M 4
= max

| /
!

(x) \
when

To ensure the specified accuracy e when evaluating the integral, the
interval of calculations h is determined from the inequality

(5)

That is, the interval h is of the order
J/JF,

The number h is rounded off

to the smaller value so that n is an even integer.

Remark. Since, generally speaking, it is difficult to determine the inter-

val h and the number n associated with it from the inequalities (2) and (5),
in practical work h is determined in the form of a rough estimate. Then,
after the result is obtained, the number n is doubled; that is, h is halved.
If the new result coincides with the earlier one to the number of decimal

places that we retain, then the calculations are stopped, otherwise the pro-
cedure is repeated, etc.

For an approximate calculation of the absolute error R of Simpson's
quadrature formula (3), use can also be made of the Range principle, accord-

ing to which

where 2 and S are the results of calculations from formula (3) with interval

h and // = 2/i, respectively.

3160. Under the action of a variable force F directed along
the x-axis, a material point is made to move along the x-axis

from x= to x = 4. Approximate the work A of a force F if a

table is given of the values of its modulus F:

Carry out the calculations by the trapezoidal formula and by
the Simpson formula.

i

3161. Approximate J (3*
2

4x)dx by the trapezoidal formula

putting rt=10. Evaluate this integral exactly and find the abso-

lute and relative errors of the result. Establish the upper limit A
of absolute error in calculating for n=10, utilizing the error

formula given in the text.
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i

3162. Using the Simpson formula, calculate V
*

.

*
to four

J * r *

o

decimal places, taking n== 10. Establish the upper limit A of abso-

lute error, using the error Formula given in the text.

Calculate the following definite integrals to two decimals:

3,63. Ife. 3,68. (-!<,.
1 Jl

3164. C -~. 3169.

-
317 -

>

2

3166. [x\ogxdx. Q | 7i fcos*
Jcos*

,

FT dX.
\+X

8187. ^ dr.
3172>

3173. Evaluate to two decimal places the improper integral

a PPlyinS the substitution ^
-7-- Verify the calculations

1 ft Jy

by applying Simpson's formula to the integral \ rr 2 , where b
+ QO J * ~r x

is chosen ,so that 2< 10
7^72

3174, A plane figure bounded by a half-wave of the sine curve

f/=sin^ and the *-axis is in rotation about the x-axis. Using the

Simpson formula, calculate the volume ot the solid of rotation
to two decimal places.

3175*. Using Simpson's formula, calculate to two decimal

places the length ot an arc of the ellipse y+ ^ 2
= 1 situated

in the first quadrant.

Sec. 5. Numerical Integration of Ordinary Differential Equations

1. A method of successive approximation (Picard's method). Let there
be given a first-order differential equation

y'^f(x.y) <1)

subject to the initial condition /
= # when x= * .
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The solution y (x) of (1), which satisfies the given initial condition, can,

generally speaking, be represented in the form

y(x)= lira yi (x) (2)
t -* 00

where the successive approximations *//(*) are determined from the formulas

y ,

X

(*)=#<>+ / (x. yt-i (*)) dx

If the right side f(x, y) is defined and continuous in the neighbourhood

R{ |x x
|

and satisfies, in this neighbourhood, the Lipschitz condition

\f(x, Vi)-f(x. i/JKJ-ltfi-tfil

(L is constant), then the process of successive approximation (2) definitely
converges in the interval

I* *

where ft= min(a, ^ ]
and Af= max|/U, y)\. And the error here is

/? \ M / /?

)
- yn W \<ML*

~ 1

The method of successive approximation (PicarcTs method) is also appli-
cable, with slight modifications, to normal systems of differential equations.
Differential equations of higher orders may be written in the form of systems
of differential equations.

2. The Runge-Kutta method. Let it be required, on a given interval

, to find the solution y (x) of (1) to a specified degree of accuracy e.

To do this, we choose the interval of calculations /i= by dividing

the interval [* , X] into n equal parts so that h* < e. The partition points

Xf are determined from the formula

X|
= x +M (i=0, 1, 2, ..., n).

By the Runge-Kutta method, the corresponding values
/;
=

(/ (x/) of the desired
function are successively computed from the formulas

1 3 1900
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where

f =0, 1, 2, ..., n and

(3)

*i" =/(*/+ A,,

To check the correct choice of the interval h it is advisable to verify
the quantity

e=

The fraction 6 should amount to a few hundredths, otherwise h has to be
reduced.

The Runge-Kutta method is accurate to the order of h 1
. A rough estimate

of the error of the Runge-Kutta method on the given interval [x , X] may
be obtained by proceeding from the Runge principle:

n I y*m Urn IR
15

'

where /i = 2m, y2m and ym are the results of calculations using the scheme (3)
with interval h and interval 2/i.

The Runge-Kutta method is also applicable for solving systems of diffe-

rential equations

y' = f(x, y> z). *' = <p(x, y, z) (4)

with given initial conditions /
=

t/ , z = 2 when x x .

3. Milne's method. To solve (1) by the Milne method, subject to the
initial conditions y=^y when X= XQ ,

we in some way find the successive
values

yi=y(*i), y=0(*i). / =*/(*)

of the desired function y (x) [for instance, one can expand the solution y (x)
in a series (Ch. IX, Sec. 17) or find these values by the method of successive

approximation^or by using the Runge-Kutta method, and so forth]. The ap-

proximations y t
and y] for the following values of r/ t

- (i=4, 5, ..., n) are

successively found from the formulas

*= = +~(7"

\vhere fi
= f(x it y^ and7i= /(*i, Hi)- To check we calculate the quantity

(6)
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If e/ does not exceed the unit of the last decimal \(y m retained in the

answer for y (x), then for f/ t

- we take I// and calculate the next value y/ + 1 ,

repeating the process. But if e/ > 10~ w
,
then one has to start from the be-

ginning and reduce the interval of calculations. The magnitude of the initial

interval is determined approximately from the inequality h4 < 10~ m .

For the case of a solution of the system (4), the Milne formulas are
written separately for the functions y (x) and z (x). The order of calculations
remains the same.

Example 1. Given a differential equation */'=*/ x with the initial con-
dition y(0)=1.5. Calculate to two decimal places the value of the solution
of this equation when the argument is x 1.5. Carry out the calculations

by a combined Runge-Kutta and Milne method.
Solution. We choose the initial interval h from the condition /r*<0.01.

To avoid involved writing, let us take h 0.25. Then the entire interval of

integration from x to jc=1.5 is divided into six equal parts of length
0.25 by means of points x

f (i
= 0, 1, 2, 3, 4, 5, 6); we denote by y f

and y^
the corresponding values of the solution y and the derivative y' .

We calculate the first three values of y (not counting the initial one) by
the Runge-Kutta method [from formulas (3)]; the remaining three values

1/4. */s y& we calculate by the Milne method [from formulas (5)]
The value of // fl

will obviously be the answer to the problem.
We carry out the calculations with two reserve decimals according to a

definite scheme consisting of two sequential Tables 1 and 2. At the end of

Table 2 we obtain the answer.

Calculating the value y r Here, / (x, */)
= # + #, x =^0, // =1.5

/i = 0.25. A^ =i (*<

= 4- (0.3750 + 2-0. 3906+ 2.0.3926 + 0.4106) ==0. 3920;
D

(

,

0) = / (*o. 0o) h =
( 0+ 1 .5000)0.25-0.3730;

/ / fc
(0)

\

*(> = /
(
Xo + ~ , + -y- j

/i = (- 0.125+1.5000 + 0.1875) 0.25= 0.3906;

/ h & (0)
\

*i
)=s=n *o+y. 0o+ -|-)

^=(0 125+1.5000 + 0.1953)0.25 = 0.3926;

^= ( 0.25+1.5000 + 0.3926)0.25 = 0.4106;

= 1.5000+ 0.3920 =1.8920 (the first three decimals in tins

approximate number are guaranteed).
Let us check:

6 = _ |0.3906Q.3926|_ 20

10.37500.39061"" 156
.1= 0. 13.

By this criterion, the interval h that we chose was rather rough.
Similarly we calculate the values yt and y9 . The results are tabulated

in Table 1.

13*
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Table 1. Calculating^,, jr2 , y9 by the Runge-Kutta Method.

f(x, y) =

Calculating the value of jf4 . We have: f(x, y) =
j/ =1. 5000, r/,

= 1.8920, yt
= 2.3243,

^=1.5000, ^'
= 1.6420, ^=1.8243,

Applying formulas (5), we find

= 02 + ^(01

y, /z= 0.25,

,== 2.8084;

= 2.0584.

4 A OK
= 1.5000 +-^ (2- 1.6420-1.8243+ 2. 2.0584) = 3.3588;

1+3.3588= 2.3588;

h y't)
= 2.3243+^ (2.3588+ 4- 2.0584+ 1 .8243)= 3.3590;

. ' 3.3588-3.3590
1

hence, there is no need to reconsider the interval of calculations.
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We obtain i/4
= y4= 3.3590 (in this approximate number the first three

decimals are guaranteed).

Similarly we calculate the values of y^ and y^. The results are given in

Table 2.

Thus, we finally have

y (1.5) = 4.74.

4. Adams' method. To solve (1) by the Adams method on the basis of

the initial data */(x
g
)
=

/o we in some way find the following three values
of the desired function y (x):

[these three values may be obtained, for instance, by expanding y (x) in a

power series (Ch IX, Sec. 16), or they may be found by the method of suc-

cessive approximation (1), or by applying the Runge-Kutta method (2)
and so forth].

With the help of the numbers XQ , xit *2 , xt and */ . y lt yzt ys we calcu-

late </ , q lt q 2 , ?, where

2
= h y'2

= hf (x2 , //2), qs
= hy'3

= hf (x,,

We then form a diagonal table of the finite differences of q:

I/O

f/2

V'=f(x, y)

i/5
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The Adams method consists in continuing the diagonal table of differen-

ces with the aid of the Adams formula

Thus, utilizing the numbers </ 8 , A<7 2 ,
A2

?,, A8
</ situated diagonally in

Hhe difference table, we calculate, by means of formula (7) and putting n-- 3
i e o

in it, A#, = <7,+ -- A? 2+ -r^ A
2
<7,+ A*<7 . After finding A//,, we calculate

IZ O

#4 */3+ A*/8 - And when we know *4 and #4 , we calculate q^~hf(x^ f/4),

introduce */4 , A#8
and </4 into the difference table and then fill into it the

finite differences A</,, A 2
^2 ,

A3
<7,, which are situated (together with 4 ) along

a new diagonal parallel to the first one.

Then, utilizing the numbers of the new diagonal, we use formula (8)

(putting n = 4 in it) to calculate A//4 , */R
and qt and obtain the next diagonal:

ft, A^4 , A2
<7,, A*<72 . Using this diagonal we calculate the value of */6

of the

desired solution y(x), and so forth.

The Adams formula (7) for calculating by proceeds from the assumption
that the third finite differences A3

</ are constant. Accordingly, the quantity h
of the initial interval of calculations is determined from the inequality
/t
4 <10~m [if we wish to obtain the value of y (x) to an accuracy ofW m

].

In this sense the Adams formula (7) is equivalent to the formulas of

Milne (5) and Runge-Kutta (3).

Evaluation of the error for the Adams method is complicated and for

practical purposes is useless, since in the general case it yields results with
considerable excess. In actual practice, we follow the course of the third

finite differences, choosing the interval h so small that the adjacent diffe-

rences A8

<7f
and A*</; +1 differ by not more than one or two units of the given

decimal place (not counting reserve desimals).
To increase the accuracy of the result, Adams' formula maybe extended

by terms containing fourth and higher differences of q, in which case there

is an increase in the number of first values of the function y that are needed
when we first fill in the table. We shall not here give the Adams formula
for higher accuracy.

Example 2. Using the combined Runge-Kutta and Adams method, calcu-

late to two decimal places (when #1.5) the value of the solution of the
differential equation y'y x with the initial condition f/(0) 1.5 (see

Example 1).

Solution. We use the values ylt yz , //, that we obtained in the solution
of Example 1. Their calculation is given in Table 1.

We calculate the subsequent values //4 , f/5 , #6 by the Adams method (see
Tables 3 and 4).

The answer to the problem is #4
= 4.74.

For solving system (4), the Adams formula (7) and the calculation scheme
shown in Table 3 are applied separately for both functions y(x) and z(x).

Find three successive approximations to the solutions of the
differential equations and systems indicated below.

3176. y'=jf+y*\ y(Q) = Q.

3177. y' = x+ y + 2, z' = y-z\ f/(0)=l, z(0) = -2.
3178. */"

= -#; y(0) = 0, y'(0)=l.





Table 3. Basic Table for Calculating y4 , yg , y^ by the Adams Method.

/(*, </)
= -* + */; fc = 0.25

(Italicised figures are input data)

Answer: 4.74

Table -1 Auxiliary Table for Calculating by the Adams Method153
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Putting the interval /i= 0.2, use the Runge-Kutta method to

calculate approximately the solutions of the given differential

equations and systems for the indicated intervals:

3179. 0'
= x; 0(0) = 1.5 (

3180. 0' = | 0'; 0(1) = 1 (Kx<2).
3181. y'=*z+ 1. z'=0 x, 0(0) = 1, z(0) = l (0<x<l).
Applying a combined Runge-Kutta and Milne method or

Runge-Kutta and Adams method, calculate to two decimal places
the solutions to the differential equations and systems indicated

below for the indicated values of the argument;
3182. 0'=x+0; 0=1 when x=--0. Compute y when x = 0.5.

3183. 0'
= x* + 0; 0=1 when x = 0. Compute y when x=l.

3184. 0'
= 20 3; 0=1 when x = 0. Compute when x= 0.5.

3185. J0'
= x + 20+z,

I z' = x + 20 + 3z; = 2, z = 2 when x = 0.

Compute y and z when x = 0.5.

3186. f0' = 30 z,

)2r'=y z; y = 2, z = 1 when x = 0.

Compute and z when A: = 0.5.

3187. 0*
= 2 0;

= 2, 0' = 1 when x = 0.

Compute when x=l.
3188. 0V +1=0; 0=1, 0'

= when jc=l.

Compute y when A: =1.5.

3189. ^2 + |-cos2/
= 0; x= Q, Jc' = l when f=-0.

Find A:(JI) and x' (n).

Sec. 6. Approximating Fourier Coefficients

Twelve-ordinate scheme. Let yn ~f(xn) (n = 0, 1, ..., 12) be the values

the function y f(x) at equidist

and yQ -f/12 We set up the tables:

of the function y f(x) at equidistant points xn= - of the interval lU,2ji],

Sums (2j)
Differences (A)

y* y\ yz y* y*

yu y\9 y> y*

Iu
Q u

l
uz

U* U 6 M 4

Sums
Diilerences

s s
l

s2 s, Sums
t t v t Differences
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The Fourier coefficients an ,
bn (n= 0, 1, 2, 3) of the function y= f(x)

may be determined approximately from the formulas:

a 2
= s s,+ 0.5(s, s2),

6
t
= 0.50! + 0.866a2 + a8 ,

&,
= 0.866 (1, + *,),

&
8
=

a, a8 ,

(1)

where 0.866=

We have

.
10 30

'

f(x) zz + (an cos nx+ bn sin nx).

Other schemes are also used. Calculations are simplified by the use of

patterns.
Example. Find the Fourier polynomial for the function y= f(x)

represented by the table

From formulas (1) we have

= 9.7; a,
= 24.9; 2 =i0.3; aa

= 3.8;

6,
= 13.9; 62

= 8.4; 6,= 0.8.

Consequently,

/ (x) ^ 4.8+ (24.9 cos x + 13.9 sin x) + (10.3 cos2x 8.4 sin 2x) +
+ (3. 8 cos 3*+ 0.8 sin 3x).

Using the 12-ordinate scheme, find the Fourier polynomials
for the following functions defined in the interval (0,2:rc) by the
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tables of their values that correspond to the equidistant values

of the argument.
. 3190. </

= 7200 #,
= 4300

/,
= 7400 0,

= 7600

4
=

y,
=- 2250

</,
= 4500

yt
= 5200 yg

= 3850 ^, = 250

3191. y =
y,
= 9.72 y,

= 7.42 y. =5.60

y,
= 6.68

f/4
= 8.97 y,

= 6.81 /10 =4.88

t/,
= 9.68 y,

= 8.18 </8
= 6.22 /n =3.67

3192. J/
- 2.714 t/s

= 1.273 y,
= 0.370 y, =-0.357

y,
= 3.042 y4

= 0.788 y, = 0.540 #,
= 0.437

/2
= 2.134 y s

= 0.495 y,
= 0.191 t/n = 0.767

3193. Using the 12-ordinate scheme, evaluate the first several
Fourier coefficients for the following functions:

a) f(x) = (x>



ANSWERS

Chapter I

1. Solution. Since a=(a b)+ b
t then

\
a \<\ab\+ \b\. Whence (a

>|a| \b\ and \ab |

=
|
& a (^ I 6

| |a |. Hence, |a &
| ^ |

a
| | |.

Besides, \a-b |

= |a+ ( b) |<|a| + | -6| = |a/ + |6 |.
3. a) -2<x<4;

0; d) x> 0. 4. 24; 6; 0; 0; 0; 6. 5. 1;b) x < 3, x > 1; c) 1 < x < 0;

.; ~; 0. 7. (*)= --x+ .

b)~oo <*< + oo. 12. ( 00, 2), (~-2, 2), (2, +00). 13. a) oo <*<
/2<*< + oo; b) *=0, |jc|^ K2. 14. l<;t<2. Solution. It should
be 2+ * x'^0, or ^2 ^ 2<0; that is, (A:+ 1) (* 2)<0. Whence either

A'+l^O, * 2<0, i. e., l<x<2- or *-|-KO, x 2^0, i. e., x<l,
Jt^*2, but this is impossible. Thus, K*<2. 15.

16. oo <^< 1, 0<*<1. 17. 2<x<2. 18. \<x< 1

19. -4-< Jt< 1 - 20 - K*<100. 21. Arji<A:</2Jt + ~(/2 = 0, 1, 2,...).

22. q>(*)
= 2^ 5*2 10. i|>(x)

= 3^+ 6x23. a) Even, b)odd, c) even, d)odd,

e) odd.24. Hint. Utilize the identity / (x)
= i[f (x) + / (-x)} + ![/ (x)-f (-x)}.

2 2n
26. a) Periodic, T= -^ n, b) periodic, r= -r-, c) periodic, 7 =ji, d) periodicu A

T = JI, e) nonperiodic. 27. y= x, if 0<x<c; t/
= 6 if C<

28. m q^ when

=
^i^i + ^2(^ -'i) when /^A;^/,-!-^; m = qil l +q2l 2+ q s (x l

l
l 2) when

/
1+ /2<^</, + /2+ / = /. 29. (p[x|)(jc)]

= 2 2Jf
;^[(p(x)] = 2^ 30. x. 31. (x + 2)

2
.

37. -^-;0; 7-. 38. a) y= Q when x= 1, y > when # > 1, y <Q
when jc< 1; b) i/

= when x= 1 and *= 2, / > when 1 <x< 2,

i/ < when oo < x < 1 and 2 < x < -f oo; c) z/>0 when oo<x< -|- oo;

d) j/
= when x= 0, x= ]/~3~and A;= /" "3, r/>0 when V%< x<0 and

1 and l<x<-f oo, y<0 whenO<^<! 39. a) *= --
(y 3)

oo); b) x=V y+ \ and x=
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c) *= \ if ( oo<#< + oo); d) x= 2-10>
f

( oo<#< + oo); e) x=

=y lanyf ~
<y<^\ 40. *= # when oo<0<0; x=/l/ when

. 41. a) y= u l
,

= 2x 5; b) #= 2a
,

= cos.r, c) </
=

^=--; d) t/
= arc sinw, a = 3u , u = x2

. 42. a) #= sin 2 x; b)

= arc tan VlogT; c) y= 2(x* 1) if |x|<l, and = if |*|>1.
43. a) */

= -cosjc2
, !/""< |

JC
| < 1/2S; b) y = log (10 10*), -oo<x<l;

c) #= when oo<x<0 and y= x when 0<x< + oo. 46. Hint. See Appen-
\j

dix VI, Fig. 1. 51. Hint. Completing the square in the quadratic trinomial
we will have y= y + a(x * )

2 where * = b',2a and yQ
= (4ac b2

)j4a.
Whence the desired graph is a parabola y= ax* displaced along the *-axisby
XQ and along the t/-axis by yQ . 53. Hint. See .Appendix VI,

Fig. 2. 58. Hint. See Appendix VI, Fig. 3. 61. Hint.

The graph is a hyperbola y= , shifted along the *-axis by XQ and along

2 13 /

the t/-axis by yQ . 62. Hint. Taking the integral part, we have y=-~ -- /o 9 '

x+ \ (Cf. 61*). 65. Hint. See Appendix VI, Fig. 4. 67.Hint. See Appendix VI,(

Fig. 5. 71. Hint. See Appendix VI, Fig. 6. 72. Hint. See Appendix VI,

Fig. 7. 73. Hint. See Appendix VI, Fig. 8. 75. Hint. See Appendix VI,

Fig. 19 78. Hint. See Appendix VI, Fig. 23. 80. Hint. See Appendix VI,

Fig. 9. 81. Hint. See Appendix VI, Fig. 9. 82. Hint. See Appendix VI,

Fig. 10 83. Hint. See Appendix VI, Fig. 10. 84. Hint. See Appendix VI,

Fig 11. 85. Hint. See Appendix VI, Fig. 11. 87. Hint. The period of the function

is T 2njn. 89. Hint. The desired graph is the sine curve y 5 sin 2x with am-

plitude 5 and period n displaced rightwards along the x-axis by the quantity

1 . 90. Hint. Putting a=A cos cp and b= A sin cp, we will have y=A sin (x cp)
,

where A =- V&+ b2 and (p
=

arctan(
--- V In our case, 4= 10, cp=0.927. 92.

Hint. cos
2 x= -jr-(l+cos2jc). 93. Hint. The desired graph is the sum of the graphs

i

y l
= x and t/ 2

= sinjc. 94. Hint. The desired graph is the product of the graphs

y l
= x and i/2

= sinx. 99. Hint. The function is even For x>0 we determine

the points at which 1) # = 0; 2) y = \\ and 3) y=\. When x >+<,
y+\. 101. Hint. See Appendix VI, Fig. 14. 102. Hint. See Appendix VI,

Fig. 15. 103. Hint. See Appendix VI, Fig. 17. 104. Hint. See Appendix VI,

Fig. 17. 105. Hint. See Appendix VI, Fig. 18. 107. Hint. See Appendix VI,

Fig. 18. 118. Hint. See Appendix VI, Fig. 12. 119. Hint. See Appendix VI,

Fig. 12. 120. Hint. See Appendix VI, Fig. 13. 121. Hint. See Appendix

VI, Fig. 13. 132. Hint. See Appendix VI, Fig. 30. 133.Hint See Appendix VI,

Fig. 32. 134. Hint. See Appendix VI, Fig. 31. 138. Hint. See Appendix VI,

Fig. 33. 139. Hint. See Appendix VI, Fig. 28. 140. Hint. See Appendix VI,

Fig. 25. 141. Hint.
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Form a table of values:

Constructing the points (x, y) obtained, we get the desired curve (see Appen-
dix VI, Fig. 7). (Here, the parameter t cannot be laid off geometrically!)
142. See Appendix VI, Fig. 19. 143. See Appendix VI, Fig. 27. 144. See

Appendix VI, Fig. 29. 145. See Appendix VI, Fig. 22 150. See Appendix VI,

Fig. 28. 151. Hint. Solving the equation for y, we get y= 1^25 x2
. It is

now easy to construct the desired curve from the points. 153. See Appen-
dix VI, Fig. 21. 156. See Appendix VI, Fig. 27. It is sufficient to construct

the points (x, y) corresponding to the abscissas x= 0,
-^

, a. 157. Hint.

Solving the equation for x, we have * 10 \ogy y
(* ]

. Whence we get the

points (x, y) of the sought-for curve, assigning to the ordinate y arbitrary
values (*/>0) and calculating the abscissa x from the formula ( * } Bear in

mind that log y -* oo as y -+ 0. 159. Hint. Passing to polar coordinates

r YX* -f- y* and tancp=~ , we will have r= e? (see Appendix VI, Fig 32)

160. Hint. Passing to polar coordinates x= rcosq, and //
= rsincp, we will

haver=
3sin cp cos cp

Appendix VI, Fig. 32) 161. F= 32+ l, 8C
8

>
3

(
KK ft / i

162.

cos8
q> + sin 3

(p

= 0.6* (10 *); =15 when x= 163. ^=

r=" 1M. .),,-'

d) x= 0.4

b) *,=_;

:2.9, y,

_1
2̂

'

e) x=1.50; f) x= 0.86.

^=-2; *
2
= -2, 2

=-
.1 f /2 =i= 2.5; d) ^^=

165. a) *!= 2, ^ = 5; *2
= 5, f/ 2

= 2;

; ^= 2,^= 3;^ = 3, y4
= 2; c) x,=--2,

3.6, y,25s 3.1; A-2 ^=2.7, yz ^ 2 9;

Sit

**= T ^e) Xl=., yi
=

166. n > -~
V e

a) n^ 4; b) /i > 10; c) n^ 32. 167. /i >

1=JV. a) A^=9; b) W= 99; c) A^= 168. 6= - (e<l). a) 002;

b) 0002; c) 0.0002. 169. a) logAr< N when 0<*<6(AO; b) 2* > N when

x>X(N); c)\f(x)\>N when \x\>X(N). 170. a) 0; b) 1; c) 2; d)
~

.

oU

Hint.171. I. 172. 1. 173. ~~. 174. 1. 175. 3. 176. 1. 177. J . 178. j.

Use the formula !
2+ 22

-f . . . +i 2=
-g

( + l) (2/i+ 1). 179. 0. 180.0. 181. 1.

182. 0. 183. oo. 184. 0. 185. 72. 186. 2. 187. 2. 188. oo. 189. 0. 190. 1. 191. 0.

192. oo. 193. 2. 194. oo. 195. ~ 196.
3aa

197. 3*2
. 198. -1. 199.

^-
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200. 3. 201. 1 . 202. i-
. 203. -1 . 204. 12. 205.

-|
. 206. --i

. 207. 1.

208. =:. 209. . . 210. -- 211. - 212. - 213. ---. 214. -
.

x 3
j/jt

2 3 2 22'
215. 0. 216. a) -^s\n2\ b) 0. 217. 3. 218. A

. 219. 4". 220. Jt. 221. I
.

z 2 o Z

222. cos a. 223. sin a. 224. ji. 225. cos A:. 226. --JL 227. a) 0; b) 1.

228. A. 229. 1. 230. 0. 231.
~:j4=.

232. I(rt
2-m 2

). 233. y . 234. 1.

235. 4 236. . 237. I. 238. ji. 239. i-
. 240. 1. 241. 1. 242. -i

o Jt 4 4 4

243. 244.
-|.

245. 0. 246. e" 1
. 247. e

2
. 248. e" 1

. 249. "*.

250. e*. 251.6.252. a) 1. Solution, lim (cos*)
* = lim [1 (1 cos x)]

X-+0 X-0

2sina

"m

Si nee lim V = 2 lim
X-+Q

= 2-1- lim 7=0, it follows
v ^n *

that lim (cos*)
* = e 1. b) "/==-. Solution. As in the preceding

*->o V e

i lim

case (see a), lim (cos x)* = e . Since lim
X-+0

: 2 lim = _J_, it follows that lim (cos*)* =<?
2

2 *-).o

=
. 253. In 2. 254. lOloge. 255. 1. 256. 1. 257. -- 258 ' K Hint -

y e
z

Put 6*^1=0, where a-^0. 259. Ina. Hint. Utilize the identity a= e
na

.

260. In a Hint. Put = a, where a -* (see Example 259) 261. a 6.
M

262. 1. 263. a) 1; b)
-i

. 264. a) -1; b) 1. 265. a) -1; b) 1. 266. a) 1; b) 0.

267. a) 0; b) 1. 268. a) 1; b) 1. 269. a) 1; b) 1. 270. a) oo; b) +00.
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271. Solution. If x & kn (fe=0, 1, 2, ...), then cos*x<l and y=0;

but if x= /Swi, then cos2 x=l and /=!. 272. y=x when 0<x < 1; #= -5-

when x=l; /
= when x> 1 273. J/

=
|x|. 274.

j/
= y when x<0; #=

whenx= 0;i/=y when x>0. 275. 0=1 when 0<x<l; j/
= x when

l<x< + oo. 276.
^g.

277. *,-*---; x2 -*oo. 278. si. 279.

280 t
. 281. 1 4- 282.

+ *

. 284. lim <4Cn= 4" 285 - ^ - 2^
e 1 o fL n-Mo " *

e
2 -!

6=0; the straight line y= x is the asymptote of the curve y^zT (

287. Q/^^Qo 1
1 H )

where k is the proportionality factor (law of

v nj
i

compound interest); Q t
= Q<f

kt
. 288. U|> , a) |*|>10; b) U|>100;6

c) | x\ > 1000. 289. |x 1
1 < ~ when 0<e<l; a) jx 1

| < 0.05;

b) |x 1|<0.005; c) |
x 1

1 < 0.0005 290. |x 2|<
-^-=6; a) 6= 0.1;

b) 6= 0.01; c) 6= 0.001. 291. a) Second, b) third. 1
,

~
. 292. a) 1; b) 2;

c) 3. 293 a) 1; b)
-i

; c)
~

; d) 2; e) 3. 295. No 296. 15. 297. 1. 298. 1.

299. 3. 300. a) 1.03(1 0296); b) 0.985(0.9849); c) 3.167(3.1623) Hint.

)/"lO= l/"9Tl = 3 y 1 +1; d) 10.954(10.954). 301. 1) 0.98(09804);

2) 1.03(1.0309); 3) 0.0095(0.00952); 4) 3.875(3.8730); 5) 1.12(1.125);

6) 072(0.7480); 7) 0.043(0.04139). 303, a) 2; b) 4; c) y ; d) j . 307. Hint.

If x > 0, then when \&x\<x we have
| J/x-fAx-- /"il =

=
| Ax|/(V

r
A:+ Ax+ l^"x)<| Ajc|/V^x. 309. Hint. Take advantage of the

inequality |cos (x-f- AJC) cos A:) <| Ax
|

310. a) x 7=
~ +kn, where k is an

integer; b) x kn, where k is an integer 311. Hint. Take advantage of the

inequality 1
1 x+ A*

| |
x

\ \ <,\ Ax
I

313. >l=4. 314. f(0) = l. 315. No

316. a) /(0) = n; b) /(0)1; c) /(0) = 2; d) f (0)
= 2; e) / (0)

= 0; f) /(0) = 1.

317. x 2 is a discontinuity of the second kind. 318. x= 1 is a removable dis-

continuity. 319. x= 2 is a discontinuity of the second kind; x=2 is a removable

discontinuity 320. x= is a discontinuity of the first kind. 321. a) x= is

a discontinuity of the second kind; b) x=0 is'a removable discontinuity. 322. x=0
is a remo vable discontinuity, x= kn (k=\, 2, . ..) are infinite discontinuities

323. x=2jifcy (fc
= 0, 1, 2,...) are infinite discontinuities.

324. x^kn (=0, 1, 2, ...) are infinite discontinuities. 325. x= is a

discontinuity of the first kind. 326. x= 1 is a removable discontinuity;
x= 1 is a point of discontiauity of the first kind. 327. x= 1 is a discon-
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tinuity of the second kind. 328. x=0 is a removable discontinuity. 329. x=l
is a discontinuity of the first kind. 330. x= 3 is a discontinuity of the first

kind. 332. x= 1 is a discontinuity of the first kind. 333. The function is

continuous. 334. a) x=0 is a discontinuity of the first kind; b) the function
is continuous; c) x= kn (k is integral) are discontinuities of the first kind.

335. a) x~k (k is integral) are discontinuities of the first kind; b) x= k

(k is integral) are points of discontinuity of the first kind. 337. No, since

the function y= E(x) is discontinuous at x=l. 338. 1.53. 339. Hint. Show
that when * is sufficiently large, we have P ( x ) P (x ) <0.

Chapter II

341. a) 3; b) 0.21; c) 2ft+ A2
. 342. a) 0.1; b) 3; c)

344. a) 624; 1560; b) 0.01; 100; c) 1; 0.000011. 345. a) abx; b) 3x*&x+
c)
-

-.; e) 2*(2-_l) ; g^'-i);jt+Ax-f-J^x A*

AX IT)
* 346> a)

~~
l; b) - l; c)

"" h; - 347> 21 -

348. 15 cm/sec. 349. 7.5. 350. /(*+Ax)~/(x) 35l f
>

(x) ^ ]im f(x+ Ax) / (x)

Ax A*-*O Ax

352. a) 2; b) JP= lim 2, where cp is the angle of turn at time t.

Ar dt Af-M> Ar

353. a) _ ; b) ~- = lim _ , where T is the temperature at time t.

354. rX = lim A!?
, where Q is the quantity of substance at time t.

dt A/-H) At

355. a) \ b) lim 356. a) L^ 0.16; b) A =^ 0238;
Ax AJC-M) Ax 6 21

c) ^ 0.249; ^=E
= 0.25. 357. sec 2

x. Solution.
201

'= lim _ _
Ax AJ^-^O Ax cos x cos (x-f- Ax) AX *o Ax

X lim
* = J^- = sec

2
x. 358. a) 3x2

; b)
- 4 ;

c > 7=
Ax->o cos x cos (x+ Ax) cos2 x x* 2 V^ v

d)
"^ 1

. 359. 1 Solution. n8)= lim ^ (8 + A^~^ (8)

sin2 x 12 A*-M> Ax
" " "~

8+ Ax 8
..= hm.--

,Ax AA:^O Ax
[J/ (8 + Ax)

2 + ^/ (8 + Ax) 8 + j/ 82

]

= Hm _ 1 _=- = 1. 360. r(0) = -8, r(l) = 0,
Ax-^o 3/(8+ Ax) + 2^/8 + Ax+4 12

/'(2) = 0. 361. x,
= 0, x2

= 3. Hint. For the given function the equation

/'(*)=:/ (x) has the form 3x2= x8
. 362. 30m/sec. 363. 1, 2. 364. 1.

365. nx )
=^. 366 - L 2 tanq>=3. Hint. Use the results of Example 3

x
o 3

and Problem 365. 367. Solution, a) f'(Q)^ lim Ll !_= lim = 4- oo;
Ax

AJC+OJ^/
AX


