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Note to the Reader 
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not usually included in the high school curriculum; they vary in diffi
culty, and, even within a single book, some parts require a greater degree 
of concentration than others. Thus, while the reader needs little 
technical knowledge to understand most of these books, he will have 
to make an intellectual effort. 

If the reader has so far encountered mathematics only in classroom 
work, he should keep in mind that a book on mathematics cannot be 
read quickly. Nor must he expect to understand all parts of the book 
on first reading. He should feel free to skip complicated parts and 
return to them later; often an argument will be clarified by a subsequent 
remark. On the other hand, sections containing thoroughly familiar 
material may be read very quickly. 

The best way to learn mathematics is to do mathematics, and each 
book includes problems, some of which may require considerable 
thought. The reader is urged to acquire the habit of reading with paper 
and pencil in hand; in this way mathematics will become increasingly 
meaningful to him. 

For the authors and editors this is a new venture. They wish to 
acknowledge the generous help given them by the many high school 
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Preface 

Mathematics has been called the science of tautology; that is to 
say, mathematicians have been accused of spending their time prov
ing that things are equal to themselves. This statement (appropriately 
by a philosopher) is rather inaccurate on two counts. In the first 
place, mathematics, although the language of science, is not a science. 
Rather, it is a creative art. Secondly, the fundamental results of 
mathematics are often inequalities rather than equalities. 

In the pages that follow, we have presented three aspects of the 
theory of inequalities. First, in Chapters 1 ,  2, and 3, we have the 
axiomatic aspect. Secondly, in Chapter 4, we use the products of the 
preceding chapters to derive the basic inequalities of analysis, results 
that are used over and over by the practicing mathematician. In 
Chapter 5, we show how to use these results to derive a number of 
interesting and important maximum and minimum properties of the 
elementary symmetric figures of geometry: the square, cube, equilat
eral triangle, and so on. Finally, in Chapter 6, some properties of dis
tance are studied and some unusual distance functions are exhibited. 

There is thus something for many tastes, material that may be 
read consecutively or separately. Some readers will want to under
stand the axiomatic approach that is basic to higher mathematics. 

3 



4 P R E F A C E 

They will enjoy the first three chapters. In addition, in Chapter 3 
there are many illuminating graphs associated with inequalities. 
Other readers will prefer for the moment to take these results for 
granted and turn immediately to the more analytic results. They will 
find Chapter 4 to their taste. There will be some who are interested 
in the many ways in which the elementary inequalities can be used 
to solve problems that ordinarily are treated by means of calculus. 
Chapter 5 is intended for these. Readers interested in generalizing 
notions and results will enjoy the analysis of some strange non
Euclidean distances described in Chapter 6 .  

Those whose appetites have been whetted by the material presented 
here will want to read the classic work on the subject, Inequalities, 
by G. H. Hardy, J. E. Littlewood, and G. P6lya, Cambridge Univer
sity Press, London, 1934. A more recent work containing different 
types of results is Inequalities, by E. F. Becken bach and R. Bellman, 
Ergebnisse der Mathematik, Julius Springer Verlag, Berlin, 1961 .  

Santa Monica, California, 1960 

E. F. B. 
R. B. 



C HAPT E R  ON E 

Fundamentals 

1.1 The "Greater-than" Relationship 

You will recall that the symbol "> " means "greater than" or "is 
greater than. " Then you can readily answer the question: Is 3 > 2 ?  
Of course it is. 

But is - 3  > - 2 ?  Admittedly, - 3  is a "greater negative number" 
than - 2, but this statement does not answer what is meant by the 
question. If the real numbers (zero and the positive and negative 
rational and irrational numbers) are represented geometrically in the 
usual way by points on a horizontal number scale directed to the 
right, as indicated in Fig. 1. 1, then the numbers appear in order of 

I I I I I - 5 -4 -3 -2 -1  
I 
0 

Figure I I A real-number scale 

increasing value from left to right. The point representing - 2  ap
pears to the right of the point representing - 3, and accordingly 
-2 > - 3. Similarly, 

( l . l )  4 > -4 , 3 > 2, O >  - 2 ,  - 1  > - 2 ,  1 > O . 

Hence we have the following geometric rule for determining 
inequality: Let a and b be any two real numbers represented by points 
on a horizontal number scale directed to the right. Then a > b if and 

5 
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only if the point representing a lies to the right of the point representing b. 
You can say that - 3  > - 2 ,  or that - 300 > -2 ,  but it is not 

true according to the foregoing geometric rule. 
In dealing with inequalities, it is often more fruitful and even nec

essary to work algebraically instead of graphically. The geometric 
rule given above has, in terms of the basic notion of positive number, 
the following simple algebraic equivalent: 

DEFI NITI ON. Let a and b be any two real numbers. Then a > b if 
and only if a - b is a positive number. 

Thus, if a =  - 2  and b = - 3 ,  then a - b = - 2 - ( - 3) = 1 is 
positive. Hence -2 > - 3 , as noted above in the geometric discus
sion. You might check the inequalities in ( 1 . 1 )  by the present alge
braic method of subtraction and verify each of the following inequa
lities both by the geometric method and by the algebraic method: 

77> 3 , 2 > o. 1 > -9, VI> 1 ,  - ! > -40. 

1.2 The Sets of Positive Numbers, Negative Numbers, and Zero 
You will note that in the preceding section we defined the inequality 

a > b in terms of positive numbers. The set P of positive numbers, and 
similarly the set N of negative numbers, as well as the special set 0 
having as its only member the number 0, play essential roles in the 
study of inequalities. In fact, while of course we �hall freely use the 
familiar algebraic (field) properties of the real number system, such 
as the commutative, associative, and distributive laws, a basic thesis of 
this entire tract is that all order relationships in the real number system 
-all algebraic inequalities-can be made to rest on two simple axioms 
regarding the set P of positive numbers. These axioms will be presented 
in the following section. 

Symbolically, for "a is positive" we write "a e P," read in full as 
"a is a member (or element) of the set P." Thus we have 5 e P, 0 e 0, 
-3e N. 

Let us look briefly at the foregoing sets, P, N, and 0, and their 
members. 

The number zero, of course, is the unique member 0 of the set 0; 
it satisfies the equation 

for any real number a. 
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Regarding the set N of negative numbers, it is important to dis
tinguish the idea of the negative of a number from the idea of a nega
tive number: 

The negative of a number a is defined to be the number - a  such 
that 

(a) + ( - a) = 0 .  

Thus, if a = - 3  then the negative of a is -( - 3) = 3 ,  since 
(-3) + (3) = 0 .  Similarly, if a =  0 then - a = 0 since 0 + 0 = 0 .  

A negative number is defined to be the negative of a positive num
ber. Thus, you recognize 3, 1/2, 9/5, TT, VI as being members of the 
set P of positive numbers. Then - 3, - 1/2, -9/5, -TT,-VI are 
members of the set N of negative numbers. 

We shall not attempt to define the basic notion of a positive num
ber, but shall now proceed to characterize these numbers by means 
of two basic axioms. 

1.3 The Basic Inequality Axioms 

The following simple propositions involving the set P of positive 
numbers are stated without proof; accordingly, they are called 
axioms. It is interesting to note that they are the only propositions 
needed, along with the familiar algebraic structure of the real num
ber system,t for the development of the entire theory of inequalities. 

AxiOM I. If a is a real number, then one and only one of the following 
statements is true: a is the unique member 0 of the set 0; a is a mem
ber of the set P of positive numbers; - a  is a member of the set P. 

AXIOM II. If a and b are members of the set P of positive numbers, 
then the sum a + b and the product ab are members of the set P .  

The three alternatives listed in Axiom I relate an arbitrary real 
number a and its negative - a  as follows: If a is zero, then - a  is 
zero, as already noted; if a is positive, then - a  is negative by the fore
going definition of negative number; and if - a  is positive, then 
a =  -(-a) must be negative, again by the definition of negative 
number. Thus a and - a  are paired in the sets P, N, and 0 as indi
cated in Table 1. 

t But see the footnote on page 12. 
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TABLE I. Pairings of Numbers and Their Negatives 

Number Set 

a p N 0 

- a N p 0 

In the geometric representation (Fig . 1.1), the points representing 
a and - a  either coincide at the point representing 0 or lie on oppo
site sides of that point. 

1.4 Reformulation of Axiom I 

Axiom I is concerned with the set P of positive numbers, and the 
inequality a > b was defined in terms of the set P. Let us reformu
late this axiom in terms of the inequality relationship. 

If a and b are arbitrary real numbers, then their difference, a - b ,  
is a real number; accordingly, Axiom I can be applied to a - b .  
Thus either (a - b) e 0 (that is, a = b), or (a - b) e P (that is, a >  b), 
or - (a - b) = (b - a) e P (that is, b > a), and these three possibili
ties are mutually exclusive. Hence, the following statement is a con
sequence of Axiom 1: 

AxiOM 1'. If a and b are real numbers, then one and only one of the 
following relationships holds: 

a =  b ,  a > b , b > a . 

In particular, Axiom I' asserts, in the special case b = 0 ,  that if a 
is a real number then exactly one of the following alternatives holds: 
a = 0 (that is, a e 0), or a >  0 (that is, a e P), or 0 > a  (that is, 
- a  e P). Accordingly, Axiom I can be deduced from Axiom 1'. 

If a statement Scan be deduced from-i.e., is a consequence of
a statement T, we say "T implies S. " We have just seen that Axiom I 
implies Axiom I' and also that Axiom I' implies Axiom I. If each of 
two statements implies the other, we say that they are equivalent. 
Thus, Axioms I and I' are equivalent. 

To illustrate Axioms I and 1', consider the numbers at = 3 ,  
a2 = -4, bt = 0 ,  b2 = 3 . 

Illustrating Axiom I, you note that a1 e P, -a2 e P, bt e 0 ,  and 
b2 e P; you note also that a1 t 0 (read "a1 is not a member of the 
set 0"), and -at t P, etc. 
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Illustrating Axiom I', you have 

a1 - b1 = 3 - 0 = 3 , 
a1 - b2 = 3 - 3 = 0 , 
a2- b1 = -4 - 0 = - 4 ,  
a2 - b2 = -4 - 3 = - 7 ,  

a1 - b1 > 0 ,  
a1 - b2 = 0, 
b1 - a2 > 0, 
b2- a2 > 0 ,  

a1 > b1 ;  
a1 = b2; 
bl > a2; 
b2 > a2. 

9 

You note, then, that in each of the four instances one and only 
one of the three relationships given in Axiom I' holds. This illustra
tion of Axiom I' will be continued in the following section, as addi
tional inequality relationships are introduced. 

1.5 AdditiQnal Inequality Relationships 

In place of an inequality such as b > a, you might equally well 
write a <  b, read "a is less than b." The two inequalities are entirely 
equivalent and neither is generally preferable to the other. In the 
foregoing illustration of Axiom 1', the sign">" was used throughout 
for the sake of consistency. But you might just as well have consid
ered it preferable to be consistent in writing the a's before the b's in 
all the relationships. Then you would have had 

( 1 .2) 
Likewise, 

2 < 3. 
0 < 2, 

- 2 < 0. -2  < - I ,  O <  I, 
-9 < I, I<yl2, -40 < - ! · 

The symbols">" and"<" represent strict inequalities. 
Two other relationships considered in the study of inequalities are 

the mixed inequalities a �band a s b,  read "a is greater than or 
equal to b" and "a is less than or equal to b," respectively. The first 
of these, a � b, means that either a > b or a = b; for example, 
3 � 2 and also 2 � 2 .  The second, a s b, means that either a <  b 
or a = b ; thus I s 2 and also 2 s 2 . 

In ( 1 .2) it is stated that one of the three relationships listed in 
Axiom I' holds in each instance. But the axiom itself asserts further 
that only one of the relationships holds. Therefore, to make the illus
tration of Axiom I' complete, you really should add the statements 

( 1.3) a1 i b1 ,  a1 � b2, a2 l b1, a2 l b2, 

read "a1 is neither less than nor equal to b1," etc. 
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You naturally feel that these negative statements in (1.3) are su
perfluous, and indeed no one would claim that you should ordinarily 
write them down to complete the information contained in (1.2). This 
is due to the fact that the exclusiveness principle-the "one and only 
one" aspect-of Axiom I or I' is taken for granted. 

Because of the exclusiveness principle, the respective relationships 
in (1.2) and (1.3) clearly are equivalent; that is, each implies the 
other. Nevertheless, the negation of an inequality is often a very use
ful concept. 

If you tend to confuse the two symbols ">" and "<",you might 
note that in a valid inequality, such as 3 > 2 or 2 < 3, the larger 
(open) end of the symbol is toward the greater number while the 
smaller (pointed) end is toward the lesser number. 

1.6 Products Involving Negative Numbers 

W hat sort of number is the product of a positive number and a 
negative number? Or the product of two negative numbers? We can 
use Axioms I and II and some of their consequences to determine 
the answers to these questions. 

If a e P and b e N ,  then - b e P according to Table 1, so that the 
product a( - b) e P by Axiom II. Hence - [a( - b)] e N  by the defini
tion of a negative number; but -[a( - b)] = ab by the usual algebraic 
rules for interchanging parentheses and minus signs: 

- [a( - b)] = - [  -(ab)] = ab. 

Therefore abe N ,  and thus we have the following result: 

THEOREM 1.1. The product ab of a positive number a and a negative 
number b is a negative number. 

Similarly, if a e N  and be N ,  then - a  e P and - be P according to 
Table 1. Hence, by Axiom II, their product ( - a)( - b) e P. But by 
the rules of algebra, (-a)( - b) = ab , and therefore abe P. Hence we 
get this result: 

THEOREM 1.2. The product ab of two negative numbers a and b is a 
positive number. 

In particular, by this last result and Axiom II, the square of any 
real number other than zero is a positive number. Of course, 02 = 0 .  
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Thus we obtain one of the simplest and most useful results in the 
entire theory of inequalities: 

THEOREM 1 .3. Any real number a satisfies the inequality a2 � 0. 
The sign of equality holds if and only if a = 0 .  

1.7 "Positive" and "Negative" Numbers 

By this time, you may realize the strength of Axioms I and II. You 
might be amused to learn that from them you could even determine 
which of the nonzero real numbers belong to the set P of positive 
numbers and which belong to the set N of negative numbers-as if 
you didn't already know! 

To see this, let us for the moment put "positive" and "negative" 
in quotation marks to indicate information obtained from the axioms. 

Let us start with the number a = 1 . Since a =F 0 ,  it follows from 
Theorem 1 .3 that a2 > 0 .  Thus a2 is "positive." But 

a2 = 1 2 = 1 '  

so that I is "positive." 
Next, let us try a = 2 .  Since we have now determined that 1 is 

"positive," since 1 + 1 = 2 ,  and since by Axiom II the sum of two 
"positive" numbers is "positive," it follows that 2 is "positive." 

Now let a = t; then 2a = 1 . Thus the product of the "positive" 
number 2 and the number a is the "positive" number 1 .  But if a were 
"negative," then the product of 2 and a would be "negative," by 
Theorem 1.1 .  Therefore a =  t must be "positive." 

Thus the numbers 1 ,  2, tare "positive" and hence, by Table 1 ,  the 
numbers - 1 , -2, --!-are "negative." 

Continuing, we can show that the integers 3, 4, etc.; the fractions 
J-, t, etc.; and the fractions f, 4, t. l• etc., are "positive," and accord
ingly that - 3, - 4, -1. etc., are "negative." Thus, for any nonzero 
rational number we can determine whether it is "positive" or 
"negative." 

Finally, the limiting processes that are used in defining irrational 
numbers can be applied to determine, from our knowledge as to 
which rational numbers are "positive" and which are "negative," 
whether a given irrational number is "positive" or "negative" in the 
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completely ordered field of real numbers. t We shall not discuss irra
tional numbers in any detail in this book; for an interesting treatment 
of them, you should read Numbers: Rational and Irrational, by Ivan 
Niven, also in this New Mathematical Library series. 

Exercises 

I. Make a sketch showing points representing the following numbers on a 
horizontal number scale directed to the right: 

3. - 1 . 0. - 1 .5. ., - 3 .  3 - ., • V2. 2. - 2 .  -3 . 
Rewrite the numbers in increasing order, giving the result as a continued 
inequality of the form a < b < c, etc. 

2. Put a stroke through e, thus f, if the statement is false: 

(a) -3eN, (f ) a2eN, 
(b) 0 e P, (g) ( a2 + 1 )  e P, 
(c) 5e0, (h) - 22eP,  
(d) v"1eN, (i) (a2 + l)eO,  
(e) (w - 3)eP, (j) -3eP.  

3. Fill in each blank with P, N, or 0 so that a true statement results: 

(a) 

(b) 

(c) 

(d) 

(e) 

48 49 
273 - 273 e 

72 1 721 
837 - 838 e __ 

, 

-23 -25 ---rr- - ----n-e --, 

- 23 -23 ----n- - ---rr-e ---· 

-1 I 
- 2 - -2 e ___ , 

(f ) 72 - 4(2)(6)e __ , 

(g) 93(72 + t) - 93(72) e __ , 

(h) 93(72 - t) - 93(72) e -- , 

(i) 2 + 3 1(2 3) 
4 + 5 -24 + 5 e __ , 

(j) ( -3)2 - 32 e __ . 

t Here ordered means that Axioms I and II are satisfied, and complete refers to the 
basic property that, if a non-null set of real numbers has an upper bound, then it has 
a least upper bound. For example, the set { l, 1 .4, 1 .41 ,  . . .  } of rational approximations 
to -../1 is bounded from above by 2, or by 1 .5, hence it has a least upper bound (which 
we denote by y1) The corresponding point on the number scale (see page 5) divides 
that scale into a left-hand and a nght-hand portion Since there is at least one "posi
uve" rational number-e.g. I or 1 .4-in the left-hand portion, we say that -../1 is 
"positive." In Sec. 1 .7 we have shown that the rational numbers can be ordered in only 
one way, and we have stated that, similarly, the real numbers can be ordered in only 
one way. The property of complete ordering, or its equivalent, is used in defining the 
real numbers in terms of the rational numbers, and accordingly it is taken as a postu
late for the real numbers rather than as an Axiom Ill for inequalities 
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4. Fill in each blank with >. <.or = so that a true statement results: 

5 

(a) 

(b) 

(c) 

(d) 

(e) 

48 49 
273 -- 273. 

721 721 
837 -- 838 ' 

-23 -25 
JT -- )2"" · 
-23 -23 
JT -- ]3 ·  
-1 I 
-2 -- -2' 

Label T for true or F for false: 

(a) -2  � -3 

(b) o::;o 
(c) O >  - 1  

(d) t < t 
(e) -t < -t 

(f ) 

(g) 

(h) 

(i) 

(j) 

(f ) 
(g) 

(h) 

(i) 

(j) 

72 -- 4(2)(6)' 

93(72 + t)-_ 93(72), 

93(72 - t) -- 93(72). 

2 + 3 �e 3) 4 + 5--2 4 + 5' 

( -3)2 __ 32 . 

- 1::;2 

t <t 

-! � -! 
I - 22 < -22 

I < O  

6. Wnte the negative of each of the following numbers: 

- 2 3 -'" (3 - 7T)2 _a_ 0 Vb2 - 4ac 
' ' ' b - c' ' · 

13 

7. Fill in the blanks to give affirmative relationships equivalent to the 
stated negative relationships: 

(a) a { b , a __ b, 

(b) a=f=b, a __ b, 

(c) a } b,  a __ b,  

(d) a i b, a __ b,  
(e) a l: b, a __ b, 
(f ) a�b, a __ b .  

8. Show that each positive number pis greater than each negative number n. 
9. For two real numbers a and b, what single conclusion can you draw if 

you can show that a � b and that a ::; b? 

10. Prove by mathematical induction from Axiom II that if Ot. a2 • . . . •  an 
are positive, then the sum a1 + a2 + · • • + an and the product a1a2 ···an 

are positive. (See the comments in Sec. 2.6.) 

II. Use Axioms I and II to show that tis a "positive" number. 





C H A P T E R  T W O 

Tools 

2.1 Introduction 

In dealing with inequalities, the only basic assumptions that are 
ultimately used are the two axioms discussed in Chapter l, along with 
the real number system and its laws, such as the distributive law, 
mathematical induction, etc. Still, there are several simple theorems 
that derive from these axioms and that occur so frequently in the 
development and application of the theory that they might almost 
be called "tools of the trade." 

These theorems, or operational rules, and their proofs are attrac
tive and interesting on their own merits. Moreover, they furnish an 
excellent illustration of the way mathematicians build up an elabo
rate system of results from a few significant basic notions and as
sumptions. The proofs are usually short, but nevertheless complete; 
and in just a few places they call for the touch of ingenuity that makes 
mathematics the fascinating subject that it is. 

In the present chapter, some of these theorems are listed, illus
trated, and proved. The letters a, b, c, etc., that occur in the state
ment of the theorems will be understood to represent real numbers, 
arbitrary except for explicitly given constraints. 

For convenience, the theorems, or rules as we shall sometimes call 
them, will be stated here only for the ">" case. In each instance, 

15  
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there is an equivalent "<" rule. Thus, to the ">" rule for transi
tivity, "If a > b and b > c, then a > c," there corresponds the 
equivalent "<" rule, "If a< b and b < c, then a <c ." 

You can similarly construct the "<" rule that is the companion to 
each of the other ">" rules given in this chapter, but watch out for 
mathematical pitfalls! If a rule involves a positive multiplier, say 
c > 0 ,  and requires that the difference of two arbitrary quantities be 
positive, then the companion "<" rule still has c > 0 (or 0 < c if 
you prefer), not c < 0 . Thus the companion rule to "If a > b and 
c > 0 ,  then ac > be" is "If a < b and c > 0 ,  then ac < be." 

The statement of the theorem at the beginning of each section is 
divided into two paragraphs. The simpler first paragraph, dealing 
with the strict ">" inequality sign, contains the heart of the result. 
The second paragraph involves the mixed "� " inequality sign, and 
in addition it sometimes includes the case of an arbitrary number n 
of real values. Thus it deals with a more general and inclusive situa
tion. The proof is usually given for the more inclusive general case 
only, but it can readily be specialized to apply to the first paragraph. 

The illustrations of the theorems given in this chapter will some
times involve the stated ">" rule, and sometimes the implied "<" 
rule. 

2.2 Transitivity 

THEOREM 2.1. If a> b and b > c, then a> c. 
More generally, if a1 � a2 , a2 � aa, .. . , an-I� an, then a1 � an, 

with a1 = an if and only if all the a's are equal. 

Thus, if a consideration of your personal expenditures has led you 
to observe that you spend more money on Saturday than on any 
weekday, and that you spend at least as much on Sunday as on Sat
urday, then you can conclude that you spend more money on Sun
day than you do on any weekday. 

Again, the solution of Exercise I in Chapter I is 

-3 < -2 < -1.5 < - 1 < 3 - 'IT < 0 < 'IT - 3 < V2 < 2 < 3 ; 

this might be interpreted narrowly as meaning only that each of the 
first nine members of the set is less than the immediately succeeding 
number, thus: -3 < -2, -2 < -1.5, etc. If so, it still implies, by 
the foregoing transitivity rule, that each of these numbers is less than 
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any succeeding number; for example, -3 < - 1 .5 ,  - 1 < 2 ,  
3 - 'TT< -J2. 

PROOF. The transitivity rule could be proved by simple mathe
matical induction (for which see the comments in Sec. 2. 6). But for 
this first rule, we shall give a single direct proof involving four real 
numbers. 

Suppose, then, that a1 � a2 , a2 � aa , aa � a4. By the algebraic 
definition of inequality, each of the quantities a1 - a2 , a2 - aa, 
a3 - a4 is either in the set P or in the set 0. Therefore the sum 

(a1 - a2) + (a2 - aa) + (aa - a4) = a1 - a4 
is either in P ,  by Axiom II, or in 0; and it is in 0 if and only 
if a1 - a2 = 0 ,  a2 - a a = 0 , a a - a4 = 0 . Thus a1 � a4 , and the 
sign of equality holds if and only if a1 = a2 , a2 = aa, aa = a4. 

The proof for the general case is left as an exercise. 

2.3 Addition 

THEOREM 2.2. If a> b and c > d, then a+ c > b +d. If 
a > b, and c is any real number, then a + c > b + c. 

More generally, if a1 � b1 , a2 d b2 , . .. , an� bn, then 
(2. 1 )  a1 + a2 + .. · + an � b1 + b2 + .. · + bn . 
The sign of equality holds in (2. 1 )  if and only if a1 = b1 , a2 = b2 , ... , 
an = bn . 

Thus, if the inequalities I < y1. and 3 < ., are added, they yield 
I + 3 < Vi+., . This last inequality combined with - 1  = - 1  
gives 3 < V2 + ., - I . And all five of these relationships added to
gether produce 1 0  < 3( V2 + .,) - 2 .  

PRooF. As in the case of transitivity, an inductive proof is again 
available. This time, however, a direct proof of the general case will 
be given. Since by hypothesis each of the quantities a1 - b1 , 
a2 - b2 , . . .  , an - bn e P or e 0, then by the generalization of Axiom 
II given in Exercise 1 0  of Chapter I, the sum (a1 - b1) + (a2 - b2) + 
"· + (an - bn) = (a1 + a2 + .. • + an) - (b1 + b2 + • • • + bn) E P, 
unless it e 0 with a1 - b1 = 0 , a2 - b2 = 0 , . . .  , an - bn = 0 . Thus 

a1 + a2 + • • • + an � b1 + b2 + • • • + bn, 
and equality holds if and only if a1 = b1 , a2 = b2 , . .. , an = bn. 
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2.4 Multiplication by a Number 

THEOREM 2.3. If a > b and c > 0, then ac > be. If a > b and 
c < 0 , then ac < be . 

More generally, if a � b and c > 0 ,  then ac � be, with ac = be 
if and only if a = b .  If a � b and c < 0 ,  then ac � be, with 
ac = be if and only if a = b . 

Thus, multiplying the terms of an inequality by a positive number 
leaves the sign of inequality unchanged, but multiplying by a nega
tive number reverses it. In particular, for c = - I , if a � b then 
-a� -b . 

For example, if you multiply 3 > 2 by 1 and -1, you obtain 
3 > 2 and -3 < -2 , respectively. 

PRooF. It is given that a � b ,  so that a -be P or e 0. If c e P, 
then it follows from Axiom II that c(a -b) = ca -cbe P or e 0 ; 
that is, ca � cb . 

But if c e N ,  then it follows from Theorem 1.1 that c(a -b) e N  or 
e 0 ; hence, -[ c( a - b)] = cb - ca e P or e 0 ,  so that cb � ca . 

In either case, the sign of equality holds if and only if a = b. 

2.5 Subtraction 

THEOREM 2.4. If a> b and c > d, then a - d> b - c. If 
a > b ,  and c is any real number, then a - c > b - c . 

More generally, if a �  b and c � d, then a - d� b - c, with 
a - d = b - c if and only if a = b and c = d .  

Note that dis subtracted from a, and c from b-not c from a, or 
dfrom b. 

Thus, by subtraction, the inequalities 7 > 6 and 5 > 3 yield 
7 - 3 > 6 - 5 ,  that is, 4 > 1; but the inequality 7 - 5 > 6 -3 
is false. Or, to illustrate the rule in terms of"<", the inequalities 
-5 < 1 0  and -4 < -3 yield - 5 - ( -3) < 10 - ( -4); that is, 
-2 < 14 . 

PRooF. Applying the rule for multiplying an inequality by a nega
tive number (Theorem 2.3) to c � d, we get -c � -d, that is, 
- d � - c, where the sign of equality holds if and only if c = d. 
Now applying the rule for adding inequalities to a � b and 
-d� - c, we obtain a+( - d)� b+(- c), or a - d� b -e, 
with a -d = b - c if and only if a = b and c = d .  
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Exercises 

I. Show that if a < b then a < t(a + b) < b .  
2. Show that 

(a2 - b2)(c2 - d2) � (ac - bd)2 
and 

(a2 + b2)(c2 + d2) :;::: (ac + bd)2 
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for all a, b, c, d, and that the signs of equality hold if  and only if  ad = be. 
3. Show that 

(a2 - b2)2 :;::: 4ab(a - b)2 

for all a, b, and that the sign of equality holds if and only if a = b .  
4. Prove the general ">" transitivity rule by mathematical induction. 

2.6 Multiplication 

THEOREM 2.5. If a> b > 0 and c > d > 0, then ac > bd. 
More generally, if a1 � b1 > 0 ,  a2 � b2 > 0, . . . , an � bn > 0, 

then 
(2.2) 

The sign of equality holds in (2.2) if and only if a1 = b1 ,  a2 = b2 , . . .  , 
an = bn. 

Thus, from 2 > 1 and 4 > 3 you obtain (2)( 4) > ( 1 )(3) , or 8 > 3 .  
But note that -1 > -2 and - 3  > -4, yet ( -1)( - 3) < ( -2)( -4); 
accordingly, the requirement that the numbers be positive cannot be 
dropped. 

PROOF. We shall give a proof by mathematical induction. The 
standard procedure in constructing such a proof consists of the fol
lowing steps. First, the statement to be proved for all positive 
integers n is tested for the first one or two; then, under the assump
tion that the statement is true for all integers up to and including a 
certain one, say k - 1 , it is proved that the statement is true also 
for the next integer, k. Since k can be any integer > 1 (in particular, 
let k - 1 = 1 or 2, for which the statement was verified), we may 
conclude that the statement is indeed true for all positive integers. 

For n = 1 , the conclusion a1 � b1 of Theorem 2.5 is simply a 
repetition of the hypothesis. This observation is sufficient for the first 
step in the proof by mathematical induction, but we shall give the 
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proof also for n = 2 ; that is, we shall show that if a1 � b1 > 0 and 
a2 � b2 > 0 ,  then a1a2 � b1b2 . 

The inequality 

(2.3) 

follows from the rule for the multiplication of an inequality by 
a positive number; the sign of equality holds if and only if a1 = b1 . 
The inequality 

(2.4) b1a2 � b1b2 
follows from the same rule; the sign of equality holds if and only if 
a2 = b2 . Now, the desired inequality 

(2.5) 

follows from (2.3) and (2.4) by the transitivity rule (Theorem 2.1); 
the sign of equality holds in (2.5) if and only if it holds in (2.3) and 
(2.4), that is, if and only if a1 = b1 and a2 = b2 . 

We have demonstrated that the inequality (2.2) holds for n = I 
and n = 2 .  

Assume that the inequality (2.2) is true for n = 1 , 2 ,  . . .  , k - I , 
that is, for products of k - 1 numbers: 

(2.6) 

equality holds if and only if a1 = b1 , a2 = b2 , . . .  , ak-1 = bk-1· 
Then from the rule for multiplication by a positive number 
(Theorem 2.3), when we multiply the inequality (2.6) by ak we obtain 

(2.7) (a1a2 • • • ak-1)ak � (b1b2 • • • bk-1)ak; 
the sign of equality holds if and only if 

a1a2 • • • ak-1 = b1b2 • • • bk-1 . 
Also, from the same rule, when we multiply the inequality 

ak � bk 
by b1b2 •• • bk-1 ,  we get 

(2.8) (b1b2 • • •  bk-1)ak � (b1b2 • • •  bk-1)bk; 
the sign of equality holds if and only if ak = bk. It now follows 
from (2.7) and (2.8), by the transitivity rule, that 

a1a2 • • • ak-1ak � b1b2 • • • bk-1bk; 
equality holds if and only if a1 = b1 ,  a2 = b2 , . . .  , ak = bk. 
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2. 7 Division 

2 1  

THEOREM 2.6. If a>b>O and c>d>O, then ald>blc . In 
particular, for a = b = I , if c > d > 0 , then 1 /  d > 1 /  c . 

More generally, if a� b > 0 and c � d > 0 ,  then aid� blc, 
with aid = blc if and only if a =  b and c = d. 

Note that a is divided by d, and b by c-not a by c, or b by d 
Thus, by division, the inequalities 7 > 6 and 5 > 3 yield 

713 > 615 ; but the inequality 715 > 613 is false. 
The two given inequalities also yield 1 16 > 1 17 and 1 13 > 1 15 .  

PROOF. We have 

a b 
d c 

ac - bd 
cd 

The denominator cd e P by Axiom II, since c e P and de P .  Also, 
since a� band c � d, it follows from Theorem 2.5 that ac � bd; 
hence the numerator ac - bd e P or e 0, and actually ac - bd e P 
unless a = b and c = d .  By Theorem 1 . 1 , the product of a nega
tive number and a positive number is negative; but the product 

cde
c 
;d bd) 

is equal to the nonnegative number ac - bd, and cd is positive. 
Hence 

ac - bd 
cd 

is nonnegative. Thus aid� blc, with aid = blc if and only if 
a =  band c = d. 

Exercises 

l. From the inequality (Ja-�Yzo. 
show that 

(1/a) ! (lib) S Vafi 
for all positive a, b. Under what circumstances does the sign of equality 
hold? 
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2. Show that the sum of a positive number and its reciprocal is at least 2; 
that is, show that 

a + l> 2 a -

for all positive values a. For what value of a does the sign of equality hold? 
3. Show that 

a2 + b2 + c2 2 ab + be + ca 
for all a, b, c. 

4. Show that 

and 

for all a, b. 
5. Show that 

a2b + b2c + c2a + ab2 + bc2 + ca2 2 6abc 
for all nonnegative a, b, c. 

6. Show that 
(a2 _ b2)2 2 (a - b)4 

for all a, b satisfying ab 2 0 and that 

(a2 - b2)2 � (a -b)4 

for all a, b satisfying ab � 0 .  
7. Show that 

a3 + b3 2 a2b + ab2 
for all a, b satisfying a + b 2 0 .  

8. For any of Exercises 3 through 7 that you have worked, determine under 
what circumstances the signs of equality hold. 

2.8 Powers and Roots 

THEOREM 2. 7. If a > b > 0 , if m and n are positive integers, and 
if a11n and b11n denote positive nth roots, then 

amln > bmln and b-mln > a-min 0 

More generally, if a � b > 0, if m is a nonnegative integer and n 
a positive integer, and if alln and blln denote positive nth roots, then 
(2.9) amln � bmln and b-mln � a-min' 
with amln = bmln and b-mln = a-min if and only if either (i) a = b 
or (ii) m = 0 .  
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For a = 9 and b = 4 , certain values of amln, bm1n, b-mln, a-min 
appear in Table 2. For each positive value of min you will note that 
9mln > 4mln' while 4-mln > 9-mln 0 

TABLE 2. Samples of Powers of Numbers 

m - 9m1n 4m1n 4-mln 9-mln n 

0 I I I I 

t 3 2 t t 
I 9 4 t ! 
t 27 8 i ..;., 
2 8 I  I 6  -h -n 

PROOF. If m = 0 '  then amln = bmln = b -mln = a-min = I ' so that 
the sign of equality holds in (2.9) in this case. 

If m =1= 0 ,  then am � bm by the rule for multiplication of inequali
ties (Theorem 2.5); the sign of equality holds if and only if a = b .  If 
it were true that alln < blln , then it would also be true that 
(alln)n < (blln)n , or a < b; but, by hypothesis, a � b.  Accordingly, 
avn � blln . Therefore am1n � bmln , with am1n = bmln if and only 
ifa = b. 

For negative exponents, let 

Then 
amln = c, 

a-min -! - ' c 

Since we have just shown that 

bmln = d . 

c � d, 
it follows from Theorem 2.6 that 

that is, 

the sign of equality holding if and only if c = d, that is, a = b .  
The rule can be extended to positive and negative irrational 

powers. 
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1. Show that 

Exercises 

a + b < ( a2 + b2)112 
2 - 2 

for all a, b. Under what circumstance does the sign of equality hold? 

2. Show that if a, b, and e, dare positive (and e and dare rational), then 
( ac - bc)( ad - bd) � 0 

and 
ac+d + bc+d � acbd + adbc 

Under what circumstance do the signs of equality hold? 
3. To what does the second inequality in Exercise 2 reduce in the case 

e = d = I? in the case e = d = t? 
4. For bd > 0, show that a/ b ::; e/ d if and only if ad ::; be , and that the 

sign of equality holds in each place if and only if it does in the other 
5. Show that if alb::; e/d, then 

a+b<e+d 
b - d ' 

and that the sign of equality holds if and only if ad = be. 
6. Show that if alb ::; e/d, with a, b, e, d positive, then 

_a_ < _e_ 
a+ b-e +  d' 

and that the sign of equality holds if and only if ad = be. 
7. Show that if alb$ e/d, with b and d positive, then 

f!<a + e<f. 
b-b + d-d' 

and that the sign of equality holds if and only if ad = be. 
8. Verify, by the test given in Exercise 4, that the four inequalities in the 

conclusion of Exercises 5, 6, and 7 are valid for the values a = 2 ,  b = 3 , 
e =5 ,d=6. 

9. Write the " <" inequality rule equivalent to the first paragraph of the 
">"inequality rule for transitivity, addition, multiplication by a number, 
subtraction, multiplication, division, and powers and roots. 
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Absolute Value 

3.1 Introduction 

In Chapter I ,  as you will recall, the inequality a > b was defined 
in terms of the set P of positive numbers. You may also recall that 
for the validity of several of the results of Chapter 2, such as Theo
rem 2.5 concerning the multiplication of inequalities, it was necessary 
to specify that certain of the numbers involved should be positive. 

Again, in many instances the fractional powers of numbers that 
appear in Theorem 2.7 would not even be real if the numbers them
selves were negative; consider, for instance, a112 with a =  -9 . Many 
of the fundamental inequalities, which will be derived in Chapter 4, 
involve just such fractional powers of numbers. It is natural, then, 
that we should often restrict our attention to positive numbers or to 
nonnegative numbers (positive numbers and zero) in this study . 

In applied problems involving inequalities , we often deal with 
weights, volumes, etc., and with the magnitudes, or absolute values, 
of certain mathematical objects such as real numbers, complex num
bers, vectors. The magnitudes of all these are measured by nonnega
tive numbers. Thus, even though you may choose to denote gains by 
positive numbers and losses by negative numbers, a loss of $3 is still 
a loss of greater magnitude than a loss of $2; the absolute value of 
- 3  is greater than the absolute value of - 2. 

25 
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In this chapter we shall define and study some properties of the 
absolute value of real numbers, for application to inequalities in sub
sequent chapters. We shall also exhibit the graphs of some interest
ing but rather "off-beat" functions involving absolute values and 
shall present some new ideas regarding them. 

3.2 Definition 

The absolute value of the real number a is denoted by I a 1 ; it can 
be defined in a variety of equivalent ways. We shall consider several 
of the definitions here. 

DEFIN ITION. The absolute value I a I of the real number a is defined 
to be a if a is positive or zero, and to be -a if a is negative. 

Thus, 121 = 2 ,  101 = 0 ,  and 1-21 = - ( - 2) = 2 .  
The principal disadvantage of the foregoing definition is that it is 

unsuitable for algebraic manipulation. Thus (see Theorem 3.2 later 
in this chapter) for all a, b it is true that 

l a+b l�l a l+!b!, 
as you can verify by considering separately the cases in which a and 
b are both positive, one positive and the other negative, both nega
tive, one zero and one positive, one zero and one negative, and both 
zero. But it would be preferable to give a unified proof of such 
a result by standard algebraic procedures; this will be done in Sec. 
3 .8 ,  after a different but equivalent definition of absolute value in 
terms of squares and square roots will have been given. 

We could rephrase the above definition somewhat differently: 

The absolute value I a 1 of the real number a is 0 if a e 0, and other
wise I a I is the positive member of the set { a, -a} . 

Thus, if a = 2 ,  then I a I is the positive member of { 2, -2 }  , i.e., 
2; if a= -2 , then I a! is the positive member of { - 2, - ( - 2)} , i.e., 
2. But this characterization of I a I has the same algebraic disadvan
tages as the preceding one. 

3.3 Special Symbols 

The next two characterizations of I a I depend on two useful spe
cial symbols, max { } and { } +, which we shall now define. 
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For any set { Gt. a2, . . . , an} of real numbers, the symbol 
max { a1, a2, ... , an} denotes the greatest member of the set. 

If there are only one or two members in the set, we still say 
"greatest" in this connection; and if the greatest value is taken on by 
more than one of the members, then any one of these is understood 
to be the greatest. Thus, 

max { 3. 7,0, -2,5} = 7 ,  max {4,4} = 4 ,  max { -3, -I}= -1 . 

With some difficulty, arithmetic operations can be performed on 
expressions involving the symbol max { } ; for example, 

(max {4, -3}) (max {0, 5}) +max { -4, 4} -max { -9, -8} = 4_ 2 max {1, 4} 

In particular, consider max {a, -a}; if a = 2 , then 

max {a, -a}= max {2, -2} = 2 = I a I ; 
if a = -3 , then 

max {a, -a}= max { -3, -( -3)} = 3 = I a  I; 
if a= 0 ,  then 

max {a, -a}= max { 0, 0} = 0 = I a I :  
and so on. Thus, for all a, 
( 3.1) max {a, -a} = I a  I , 

so that ( 3.1) gives us another characterization of I a I · 
Let us turn now to the consideration of a second special symbol. 
The symbol { a1. a2, .. . , an}+ denotes the greatest member of the set 

{ a1. a2, ... , an} if there is at least one nonnegative member of the set; 
but if all the members of the set are negative then the symbol denotes 0. 

Thus 

{ 3. 7. 0, -2, 5} + = 7' {4,4}+ = 4 ,  { -3,-1}+ = 0 .  

As in the case of max { }. it is awkward but possible to deal 
arithmetically with expressions involving the symbol { }+ ; for 
example, 

({4, -3}+)({0, 5}+) + { -4, 4}+-{ -9, -8}+- 3 
2{1,4}+ - . 
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The symbols max { } and { } + are not equivalent, as the above 
examples show; in fact, you can easily see from the definitions that 

{ a1, a2, .. . , an}+ = max { 0, a1, a2, ... , an} 
= max { 0, max { at, a2, .. . , an} [ . 

Thus it follows that 

where the sign of equality holds if and only if there is at least one 
nonnegative member of the set { a1, a2, . .. , an} . 

Accordingly, since the special set { a, - a} does have a nonnega
tive member for all a, 

{ a, -a}+ = max { a, -a}  = I a  I. 

Thus, the equation 

{ a, -a}+ = I a I 

might also be considered as a definition of I a I · 

Exercises 

Determine the values of 

(a) max { -7, -4, - I }, 

(b) max {3, .,, y'2} , 
(c) max {-7, 0, - I}, 
(d) max {0, 4, 1 }, 
(e) max {3, -3, 3}, 

(f ) { -7, -4, - I )+, 
(g) {3, 'Tr, yz}+' 
(h) { -7, 0, - 1 }+, 
(i) {0, 4, q+, 
(j) {3, -3, 3}+. 

2. For any set { a1. a2, . •  , On} of real values, the symbol min { Ot. a2, • • •  , an} 
denotes the least member of the set { a1. a2, • • •  , an}. and the symbol 
{ a1. a2, . . •  , an}- denotes the least member of the set { 0, a1, a2, • . .  , an}. 

Determine the values of 

(a) min { -7, -4, - I }, (f) { -7, -4, - 1 }-. 
(b) min {3, .,, y'2} , (g) {3, .,, vl2)-. 
(c) min { -7, 0, - 1 }, (h) { -7' 0, - 1 }-' 
(d) min {0, 4, 1 }, (i) {0, 4, q-, 
(e) min {3, -3, 3}, (j) {3, - 3, 3}-. 
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3 Determine the value of 

(max {-I, - 2} )( { -I, - 2} +) -(min {I, 2 } )( {I, 2} -) 

4. Show that 

max { max {a. b, c}, max {d. e} } =max {a, b, c, d, e} . 

5 Give an example showing that the inequality 

max {a. h} + max { c, d} � max {a. b, c, d} 

is not always valid. 
6. Show that 

{a, b} + + { c, d}  + � {a, b, c, d}  +. 

7. Show that 
{ a1, a2, ... , an}+ � max {a�. a2 .... , an} 

� min { a1, a2, ... , an} 
� {a1.a2 . . .  an}-
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ls there any set for which the strict inequality sign holds in all three 
places? 

8. Show that if a= max {a, b, c}, then -a = min { - a, -b, -c}.  
9. Show that { - a, -b}- = -{a, b)+. 

10. Show that max { a1, a2, ... , an} = max { a1, max { a2, a3, ... , an}}. 

3.4 Graphical Considerations 

A graphical representation can furnish a vivid and striking picture 
of the behavior of a function, whether we are dealing with mean 
daily temperatures, the fluctuations of the stock market, 1 xI, or 
what-not; for one thing, a graph lets us see at a glance some of the 
over-all properties of the function that otherwise might have been 
obscure. 

For example, the symbols max { } and { } + are made more 
meaningful by a consideration of the graphs of 

and 

-�X-]_ }+ 
4 4 ' 

which are shown in Figs. 3.1 and 3.2, respectively. In these figures, 
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the graphs of 
1 1 y =-x -- and 
2 2 

are extended as dashed lines. 

y 

2 

" 

Figure 3.1. 
Graph of y = max { !x- ! , 

2 2 
-3 �X� 3 
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3 7 y = --x --4 4 

y 

2 

" 

Figure 3 2. 

Graph of y ={!x- ! - �x -.:?.}+ 
2 2' 4 4 ' 

-3 �X� 3 

Let us now construct the graph of the function defined by the 
equation y = I x I· This graph provides us with a visual characteriza
tion of absolute value. It will be sufficient for our purposes to restrict 
our attention to the incomplete graph corresponding to the interval 
-3�x�3. 

In the construction of this graph, it is helpful and interesting to 
consider first the graph of y' = x, that is, the graph of the set 
of ordered pairs of real numbers (x, y') such that y' = x, and also 
the graph of y" = -x, as shown in Figs. 3.3 and 3.4, respectively. 

y
' Y" 

Figure 3.3. Figure 3.4. 
Graph of y' = x, .-3 � x � 3 Graph of y" = -x, -3 � x � 3 
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From these figures and the definition 

lx l =max {x, -x} =max {Y',y"}, 
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you can see at once that the graph of y = I xI is  simply the graph of 
y =max {Y',y"}, as illustrated in Fig. 3.5. Thus for each abscissa x, 
the greater of the ordinates y' andy" was chosen from Figs. 3.3 and 
3.4 as the ordinate y in Fig. 3.5. For example, when x = -2 , the 

greater ordinate is y" = 2 ;  when x = I , the greater ordinate is 
y' = I, etc. 

Figure 3. 6 shows the graph of y = - I x I· 
y 

- I  

-2 

-:3 

Figure 3 5. 

)' 

:3 

2 

Figure 3 6 
Graph of y = I x 1. -3 � x � 3 Graph of y = - 1 x 1. -3 � x � 3 

Looking at the four graphs in Figs. 3.3 through 3.6, you will note 
that for no value of the abscissa x is any one of the corresponding 
ordinates less than -1 x 1 or more than I xI· Explicitly, from Figs. 3.3, 
3. 5, and 3. 6, you can read off the following result, which of course 

you might have discovered and proved without considering the 
graphs at all: 

THEOREM 3.1. For each real number a, 
- l a l�a�l a l . 

The first sign of equality holds if and only if a � 0 ,  and the second if 
and only if a 2:: 0 . 

Theorem 3.1 follows, for instance, from the fact that a = - I a I if 
a e N or a e 0,  and a = I a I if a e P or a e 0,  and from the fact 
(see Exercise 8 in Chapter I) that any positive number is greater 
than any negative number. 
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Now, for exercises, let us consider the graphs of some more com
plicated functions involving absolute values. 

Consider first the graph of 

y = ! <x + lx l ). 

For x 2:: 0 , I x I = x,  and hence 

y = .!(x + x) = x; 2 
but for x < O , lx l = -x , so that 

I y = 2(x - x) = 0 .  

This graph, which is shown in Fig. 3.7, could easily have been pic
tured from a consideration of Figs. 3.3 and 3.5 by taking the average 
of the ordinates y', y for each abscissa x. 

You might observe that the graph shown in Fig. 3.7 is also the 
graph of y = max { O, x} ,  as well as the graph of y = { xV. Thus, 

{x}+  = max { 0, x }  = 4 <x + lx l ) 

for all x. 
Now let us look at the graph of 

(3.2) y = 2 1x + I I+ lx l + lx - I I - 3 
in the interval - 2  ::;; x ::;; 2 .  For I ::;; x ,  the terms in the right-hand 
member of (3.2) can be written thus: 

2 1x+I 1 = 2x+2 , lx l = x , l x - I I = x - 1 , -3  = -3 , 
so that for 1 ::;; x we have 

y = 2x + 2 + x + x - I - 3 = 4x - 2 .  

For 0 < x < I ,  the first two members in the right-hand member of 
(3.2) can be written as before, but 

l x - I I =  I - x ,  not l x - I I = x - 1 .  

(Can you explain why?) Accordingly, for 0 < x < I , 
y = 2x+2+x+ I - x - 3 = 2x .  
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Similarly, for - 1 :=;; x :=;; 0 ,  

y = 2x + 2-x + I - x- 3 = 0 ;  

and for x < -I , 

y = -2x - 2 -x + I -x - 3 = -4x - 4 .  

y 

- I  
- 2 

- 3  

Figure 3.7. 

Graph ofy = t<x + l x l ) ,  -3 � x � 3 

y 

- I 

2 

Figure 3 8. Graph of 

y = 2 1 x + l l + l x l + l x - 1 1 - 3 ,  

- 2  �X� 2 
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Thus eq. ( 3.2) is equivalent to a different linear equation in each of 
the foregoing intervals. Plotting the corresponding linear segments in 
the appropriate intervals, we obtain the continuous graph shown in 
Fig. 3.8. 

Exercises 

I. From a consideration of Figs. 3.4, 3.5, 3.6, obtain a result for -a analog
ous to Theorem 3. I for a. 

2 For - 3 � x � 3 ,  sketch the graphs  of 

(a) y =i(x-l x l ), (b) y =! < l x l - x), 

3. Determine which of the graphs in Exercise 2 is also the graph of 

(d) y =min {O, x} , (g) y = {x}- , 
(e) y =max {0, -x} , (h) y = { -x)+, 
(f) y =nun {0, -x} , (i) y = { -x}-. 
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4. For -3 � x � 3 ,  sketch the graph of 

(a) y = max {x, -x - 2} ,  
(b) y = min {x, -x - 2} ,  

(c) y = {x, -x - 2}+ ,  
(d ) y = {x, -x - 2}-. 

5. For -3 � x � 3 ,  sketch the graph of 
y = 2 1 x - l l - l x 1 + 2 1 x + 1 1 - 5 . 

6. A function f defined by an equation y = f(x) is said to be even if 
/( - x) = f(x) for all x, and is said to be odd iff( -x) = -f(x) for all x. 
Thus, the function defined by y = x2 is even since ( -x)2 = x2, and the 
function defined by y = x3 is odd since ( -x)3 = -x3; of course, some 
functions are neither even nor odd. W hich of the functions illustrated in 
Figs. 3.3 through 3.6 are even and which are odd? 

3.5 The "Sign" Function 

Another function closely related to I x I is illustrated in Fig. 3.9. 
It is the function denoted by y = sgn x (read "sign of x," but not to 
be confused with sin x), and defined by the equations 

sgn x = + I for x > O , 
(3.3) sgn x = 0 for X = 0 ,  

sgn x = -I for x < O . 

y 
3 

2 

- 3  - 2  - I  0 I 2 3 
X 

- 2  

- 3  

Figure 3 9 .  Graph of y = sgn x ,  - 3 :.:::; X :.:::; 3 

In the graph, the points corresponding to ( 0, I) and ( 0, -I) are en
closed in unshaded, or open, circles to emphasize the fact that they 
are not included in the graph, and the point corresponding to ( 0, 0) 
is covered by a shaded circle to emphasize that it is included. 
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The function y = sgn x is related toy = I xI through the notion of 
slope, which is defined as follows:  

Let L be a nonvertical line in the coordinate plane, and let 
P1 : (Xt.JI) and Pz : (xz,yz) be distinct points on L; see Figs. 3. 1 0 and 
3 . 1 1. In going from P1 to P2, the vertical rise is the directed distance 

yz - Y1 , and the horizontal run is the directed distance xz -x1 =I= 0 .  
Of course, either the rise or the run or both might be negative ; thus 
in Fig. 3. II, the rise y2 -y1 is negative (actually, then, a fall). The 
ratio of the rise to the run, which has the same value for all pairs of 
distinct points P1, P2 on L, is defined to be the slope m of L: 

m = Yz-Y1 . Xz - X1 

Figure 3.10 Figure 3. 1 1 . 

A line L having positive slope A hne L having negative slope 

It should be easy for you to verify that the slopes of the linear 
graphs of y = x andy= - x  are 1 and -I, respectively. See Figs. 
3.3 and 3.4. 

Now consider the slope of the graph of y = I x I ,  shown in Fig. 
3. 5 ;  at the same time, keep in mind the ordinate of the graph of 

y = sgn x shown in Fig. 3.9. 
For x > 0 ,  the graph of y = I x I coincides with the linear graph of 

y = x ,  and it has slope m = I . Also, for x > 0 ,  the graph of 
y = sgn x has ordinate y = I . 

For x < 0 ,  the graph of y = 1 xI coincides with the linear graph 
of y = -x, and it has slope m = - I. Also, for x < 0 ,  the graph of 

y = sgn x has ordinate y = - I . 
For x = 0 ,  the slope of the graph of y = I x 1 is undefined, but you 

can say that the right-hand slope at ( 0, 0) is I and the left-hand slope 
at that point is - 1. The average of these slopes is 1[ 1 + (-I)] = 0 .  
Also, for x = 0 ,  the graph of y = sgn x has ordinate y = 0 .  
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Thus, y = I x I andy = sgn x are related geometrically as follows: 

For x =I= 0 ,  the value of y = sgn x is equal to the value of the slope 
of the graph y = I x I ; and for x = 0 ,  it is equal to the average of the 
values of the right-hand and left-hand slopes. 

It is interesting to note that although we have been analyzing two 
relatively simple functions, y = 1 x I and y = sgn x ,  the graph of 

y = 1 x 1 is somewhat peculiar in that it does not have a continuous 
slope ; and the graph of y = sgn x is even more strange in that it is, 
itself, discontinuous. We shall not here attempt to define continuity 
and discontinuity, but the meaning should be intuitively clear in the 
present instances. 

The function defined by y = sgn x is related toy = 1 x 1 in a sec
ond instructive way. A moment's reflection shows that, for each 
real number a, 

a sgn a = l a l ; 
accordingly, this equation gives us another characterization of the 
absolute value I a I of a number a. 

Exercises 

I. For - 3  � x � 3 ,  draw lines passing through (0, 0) and having slopes 
(a) m = 0, (b) m = f ,  (c) m = - 1 .  

2. Sketch the portions of the graphs of 

(a) y = x, (b) y = x +  I ,  
(d) y = x + 3 ,  (e) y = x - 1 ,  

(c) y = x + 2 ,  
(f) J = X - 2 ,  

that lie in the square - 1 � x � 1 , - 1 � y � 1 . It is either impossi
ble or extremely easy to do part (d) ;  which? why? 

3. For - 3  � x � 3 ,  sketch the graphs of 

(a) y = (x + 1 ) sgn x ,  (b) y = x sgn (x + 1) . 

4. For - 3  < x < 3 ,  sketch an (x, y) graph such that, for each x, the value 
of y is the slope of the graph in Fig. 3.6; for any x where there is no defi
nite slope, use the average of the right-hand slope and the left-hand slope. 

3.6 Graphs of Inequalities 

Before we leave the visually instructive subject of graphs, let us 
investigate a few inequalities involving absolute values. 
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Consider, for example, the equati0n 

l x l  = 1 

and the inequality 

l x l :s:; l .  

The equation has just two solutions, namely 

x = 1 and x = -1 ; 

but the inequality has the entire interval 

-I :s:; x :s:; I 

as solution. 
Again, the equation 

has just the two solutions 

X =  -1 

but the inequality 

l x- II= 2 

and 

l x- 1 1 ::=:; 2  

has, as solutions, each value x satisfying 

-1 :=; x :=; 3 .  

See Fig. 3.1 2. 

X= 3 ;  

- 4 - 3  - 2 -1 0 2 3 4 

Figure 3. 12. Graph of the inequality 1 x - I I ::::; 2 

To find the solution of the inequality 

( 3. 4) I X I + ly I ::::; I ' 
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X + 

we consider values in each of the quadrants of the (x, y)-plane sepa
rately. Thus in the first quadrant, where 

x ;:::: 0 and y ;:::: 0 ,  

the inequality ( 3.4) is equivalent to 

x +y :=; I. 
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We draw the portion of the line 

x +y =l ,  

i.e., of the line 

y = I - X ,  

that lies in the first quadrant; and since we seek the solution of 

y ::;; I-X ,  

our graph consists of those points in this quadrant that lie either on 
or below the line. 

The graph is shown in Fig. 3. 1 3, while the entire graph of the 
inequality ( 3. 4) appears in Fig. 3. 1 4. 

y 

Figure 3.13. 

Graph of I x I + ly I :-::;; I , x � 0 ,  y � 0 

y 

( 0 ,  - I )  

Figure 3.14 

Graph of l x l  + IY I :-::;; I 

Figure 3. 1 3  might be considered also as showing the graph of the 
solution of the set of inequalities 

( 3. 5) 
X +  y ::;; I 

x � O  
y �  0 .  

In Fig. 3. 1 5  the shaded regions in (a), (b), and (c) comprise the solu
tions, respectively, of the first, second, and third inequality in ( 3. 5); 
the triply shaded region in (d) is the simultaneous solution of all the 
inequalities ( 3. 5). Thus, though the set of equations 

X +  y = I  
x =O 
y =O 
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is satisfied by no pair of values (x, y), the set of inequalities ( 3.5) has 
an entire area of solutions. 

You will recall that, somewhat similarly, the equation I x I  = I has 
only two solutions while the inequality I xI ::::; l has an entire interval 
of solutions. Thus the set of all solutions of an inequality (or set of 
inequalities) is often much "richer" than the set of all solutions of 
the corresponding equation (or set of equations). 

Exercises 

I. In Fig. 3. 1 5(d), the plane is separated into seven differently shaded por
tions. Each, together with its boundary, constitutes the solution of a set 
of three inequalities; for example, one set is x � 0, y ;::: 0, x + y ;::: I . 

y 

0 
X 

(a) ( b ) 
y 

X 
0 

(c) 
Figure 3.15 Incomplete graph of (a) x + y ::::; I , (b) x � 0 ,  and (c) y � 0 ;  tnply 

shaded graph (d) of the intersection of (a), (b), and (c) 

Give sets of inequalities for each of the areas. 
2. Sketch the graphs of 

(a) l x l - ly l ;::: I for -2 � x � 2 .  (b) l x l + 2 1y l � I . 
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3. Sketch the graph of the system 
y � x + 3 

- 2  � X �  2 
y � 0. 

4. Sketch the graph of the system 

2x + y � 5  
x - y � l 

X + 2y � 7.  

5. Sketch the graph of the system 
2x + y � 5  
x - y  � 1 

X +  2y � 7. 

3. 7 Algebraic Characterization 

Our next, and last, characterization of 1 a 1 perhaps seems, at first 
glance, to be the least desirable as a definition, for it appears to be 
devious and unnatural; but it has the virtue of being algebraically 
the most tractable, and accordingly it is the one we shall most often 
use. 

To this end, consider the following: 

a2 = (- 2)2 = 4 , yl4 = 2 = I a I, 

if a= 0 ,  then 

a2 = 02 = 0 ,  yo= 0 = I a I, 

and if a = 2 , then 

a2 = 22 = 4 , 
Similarly for all real a, 

P= l a l , 

If a= -2 , then 

so that y;i2 = l a l ; 

so that P= l a l ;  

so that P= l a l. 

and this is our algebraic characterization of I a I· 
Actually the characterization I a I = ...jQ2 expresses the special case 

b = 0 of the Pythagorean relationship, 

c = ya2 + b2 ,  
between the lengths a, b of the sides and the length c of the hypote
nuse of a right triangle. Thus the absolute value of the real number 
a can be interpreted as the length, or magnitude, of the line segment 
from the origin to the point representing a on the number scale 
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(Fig. 1 . 1). The reader who continues to study mathematics will soon 
learn that this last characterization of absolute value (and the accom
panying geometric concept of length) can be appropriately general
ized so that absolute value may be defined also for other mathematical 
objects, e.g., vectors and complex numbers. 

Two points to note in the foregoing algebraic expression of I a I 
are, first, that a2 is nonnegative, so that its square roots are real, and 
secondly, that by definition the symbol y means the nonnegative 
square root. To be sure, (-+-2)2 = 4 , so that 4 has two square roots
namely -+- 2; but in algebraic manipulations the symbol y'4 denotes 
only 2, not -2. For example, consider the equations 

and 
5 + V'f= 7 ,  

5 - Vlf = 7 , 

5 - vf4 = 3 , 

5 + V'f= 3 .  
The first two of these equations we consider to be valid, and the sec
ond two invalid, but only because the symbol y always means the 
nonnegative square root. It is for this reason, also, that -+- appears 
before the symbol y in the familiar formula for the solutions of 
the quadratic equation 

namely 
ax2 + bx + c = 0 ,  

_ -b -+- yb2 - 4ac x - 2a · 

Exercises 

I. You can see from the Pythagorean relationship that, for the equation 
x2 + y2 = r2 , 

the solution set (locus) of points (x,y) constitutes the circle with center at 
the origin and radius r. Determine the solution set of values (x,y) for the 
inequality 

x2 + y2 � 25 . 

2. The absolute value of the complex number x + iy is defined by 
I x + iy I = y x2 + y2 . 

Representing x + iy by the point having coordinates (x, y) in the plane, 
determine the solution set for 

I � l x + iy l � 2 . 

3. Determine the locus of points x + iy for which 

l x + iy + I I =  l x + iy - 1 1 . 



42 A N l N T R 0 D U C T l 0 N T 0 l N E Q U A L l  T l E S 

3.8 The "Triangle" Inequality 

The inequality ( 3.6) in Theorem 3.2 below, to which we have 
referred earlier in this chapter, is often called the "triangle" inequal
ity for geometric reasons that will be discussed further in Chapter 4. 
Here is a complete statement concerning the inequality: 

THEOREM 3.2. For all real numbers a and b, 

( 3. 6) l a l + l b l � l a + b l . 
The sign of equality holds if and only if ab � 0 ,  that is, if and only if 
a and b are either both � 0  or both s O. 

For example, if a = 5 and b = - 2 ,  then 

I a + b I = 1 5 + < -2) I = 3 . 
while 

I a  I + l b l  = 1 5 1 + 1 -2 1 = 7 .  

But if a =  - 5  and b = - 2 ,  then 

I a + b l  = 1 ( - 5) + ( - 2) 1 = 7 
and 

I a  I + l b l  = 1 - 5 1 + 1 - 2 1 = 7 .  

You can grasp the validity of the inequality ( 3. 6) intuitively by 
noting that if a and b are of opposite sign, then on the right-hand 
side of the inequality the numbers a and b will "work against each 
other" and emerge from the encounter with diminished joint magni
tude, whereas on the left-hand side they are forced to "pull together" 
positively from the start. 

On the same basis, you can understand the inequality 

( 3.7) l a - b l � i l a l-l b l l . 

in which the sign of equality holds again if and only if ab � 0 (i.e., 
a and b are both � 0 or both s 0). Here, on the right-hand side of 
the inequality, the numbers a and b are always forced to "settle their 
difference," whereas on the left-hand side, if a and b are of opposite 
sign, then they will pull together to increase their joint magnitude. 

Inequalities ( 3. 6) and ( 3.7) can be proved by using the algebraic 
definition I a I = ....jii2. Thus inequality ( 3.6) can be restated equiva
lently as 

( 3.8) 
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Now, ( 3.8) is equivalent to 

( 3.9) ( yaz + Vfll)2 2 (a + b)2 ; 

43 

that is, the validity of either ( 3.8) or ( 3.9) implies that of the other. 
Thus ( 3.9) follows from ( 3.8) by squaring (see Theorem 2.5), and ( 3.8) 
follows from ( 3.9) by taking nonnegative square roots (see Theo
rem 2.7). 

Next, ( 3.9) can be rewritten as 

a2 + 2 -.jii252 + b2 2 a2 + 2ab + b2 . 

Accordingly, ( 3.9) is equivalent to 

( 3.1 0) -.J(i252 2 ab 
by the inequality rules for addition, subtraction, and multiplication 
by a positive number. But 

-.Jii252 = yl(ti7))2 = I ab I , 

so that ( 3.1 0) is equivalent to 

( 3.1 1) l ab l 2 ab. 
Thus ( 3.6) is equivalent to ( 3. 1 1). 

Now, ( 3. 1 1) is valid by Theorem 3. 1, which states that any real 
number is less than or equal to its absolute value. The sign of equality 
in ( 3. 1 1 )  holds if and only if ab 2 0 .  Therefore the inequality ( 3. 6), 
which is equivalent to ( 3.1 1), is also valid, and the sign of equality 
holds if and only if ab 2 0 . 

The inequahty ( 3.7) can be proved similarly after it has been written 
in the equivalent form 

y(a - b)2 2 J< Vfi2 - y'b2)2 . 
However, it is interesting to note that ( 3.7) can also be derived 
directly from ( 3.6). Thus, substitution of the real number a - b for 
the arbitrary real number a in ( 3 . 6 ) yields 

I a - b l + l b l 2 1 a - b + b l , 
or 

whence 
I a - b l + l b l 2 1 a l , 

( 3.1 2) 

by Theorem 2. 4, the subtraction rule. Similarly, substitution of b - a 
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for b in ( 3 . 6) yields 

or 

whence 

( 3.1 3) 

Since 

I a  I + l b - a l z l a + b - a l , 

l a l + l a - b l z l b l , 

l a - b l z l b l - l a l .  

j l a l - l b l j  = max {( l a l - l b l ) , - ( l a l - l b l )} 
= max { < I a I - I b I ) , < I b I - I a I ) } , 

it follows from ( 3.1 2) and ( 3.1 3) that 

l a - b l z l l a l - l b l 

Hence ( 3. 7) is valid, the sign of equality holding if and only if it holds 
either in ( 3.1 2) or in ( 3.1 3). 

Since a - b was substituted for a in deriving ( 3.1 2), the sign of 
equality holds in ( 3.1 2) if and only if (a - b)b 2 0 ,  i.e., ab 2 b2 . The 
latter inequality is valid if and only if ab 2 0 and I a I 2 I b I ·  Simi
larly, the sign of equality holds in ( 3. 1 3) if and only if a(b - a) 2 0 ,  
that is, ab 2 a2 • This is valid if and only if ab 2 0 and l b l z l a l . 
Since at least one of the inequalities I a 1 2 I b I and I b I 2 I a I holds, 
it follows that the sign of equality holds in ( 3.7) if and only if ab 2 0 .  

It might be noted that since b represents an arbitrary real number
positive, zero, or negative-the inequalities ( 3.6) and ( 3.7) still hold 
if b is replaced by -b. We thus obtain 

( 3.1 4) l a l + l b l z l a - b l 

from ( 3. 6), and 

( 3.1 5) 

from ( 3 .7), with the signs of equality holding if and only if 
a( -b) 2 0 ,  that is, ab � 0 .  Together, inequalities ( 3.6), ( 3.7), ( 3 . 1 4), 
and ( 3.1 5) can be written as 

(3. 16) I a  I + l b l z l a -+- b i z  l l a l - l b l l · 
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Exercises 
45 

I .  From the algebraic characterization of absolute value, show for all real 
a, b that 

(a) 1 -a l = l a l , 

and if b =F 0 that 
(b) l ab l = l a l · l b l , 

l a ,_ l a l (c) h - fbi '  

2 Deterrrune whether it is the sign < or the sign = that holds in the mixed 
inequality I a - b l � l l a l - l b l l , if 

(a) a =  'TT , b = 2'TT ; 
(b) a = -'TT , b = y'2; 
(c) a = 2 , b = O ; 

(d) a = -9 , b = - 1 0 ;  
(e) a = 9 , b =  - 10 .  

3. Determine whether it is the sign > or the sign = that holds in the mixed 
inequality I a  I +  l b l � I a  + b l , if 

(a) a =  3 ,  b = - 2 ; 
(b) a =  -3 , b = -2 ; 
(c) a = 3 , b = 2 ; 

(d) a =  0 ,  
(e) a = O , 

b = - 2 ;  
b = 0 .  

4. Repeat Exercise 2 for the inequality I a + b I � I I a I - I b I I  . 
5. Repeat Exercise 3 for the inequality I a I + I b I � I a - b I · 
6. Show that the inequality I a - b I � I I a I - I b I I is equivalent to the in

equality I ab I � ab . 

7. Show that if ab � 0 then ab � min {a2, b2 } .  
8. Show that each o f  the other characteristic properties o f  I a I ,  given in this 

chapter, follows from I a I = Vfi2. 
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The Classical Inequalities 

4.1 Introduction 

Now that we have forged our basic tools, we shall demonstrate more 
of the magic of mathematics. As an artist evokes, out of a few lines 
on a canvas, scenes of great beauty, and as a musician conjures up 
exquisite melodies from combinations of a few notes, so the mathe
matician with a few penetrating logical steps portrays results of 
simple elegance. Often, like the product of the magician's wand, these 
results seem quite mysterious, despite their simplicity, until their 
origin is perceived. 

In this chapter, we shall employ the basic results derived in the 
previous chapters to obtain some of the most famous inequalities in 
the field of mathematical analysis. These inequalities are the every
day working tools of the specialist in this branch of mathematics. 

In Chapter 5, we shall then show how these new relationships may 
be used to solve a number of interesting problems that, at first sight, 
seem far removed from algebra and inequalities. The applications are 
continued in Chapter 6, where we discuss and extend the notion of 
distance. 

This, indeed, is one of the fascinations of mathematics-that simple 
ideas applied one after the other, in the proper order, yield results 
that never could have been envisaged at the outset. 

47 
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4.2 The Inequality of the Arithmetic and Geometric Means 

(a) Mathematical Experimentation. Given two nonnegative num
bers, say I and 2, let us obtain their "mean" in the following two ways: 
the arithmetic mean (or half their sum), usually called "average," 

I + 2 = 1.5 ,  
2 

and the geometric mean (or square root of their product ) 

yr:2 = 1.4 1 · · ·  0 

Observe that 1. 5 > 1. 4 1  • • • . Similarly, if we start with the numbers 
3 and 9, for the arithmetic mean we obtain the value !( 3 + 9) = 6 ,  

and for the geometric mean we get the value VJ.1 = 5 . 19 · · · .Note 
that 6 > 5.19 • • • . Continuing with various pairs of nonnegative 
numbers chosen at random, say I I  and 1 3, t and t. and so on, we 
observe in each case that the arithmetic mean is greater than the 
geometric mean. 

Can we safely generalize this discovery and reach some conclusions? 
Our mathematical nose begins to twitch as we scent a theorem. 
Maybe the result is true for all pairs of nonnegative numbers! In 
other words, we conjecture that the arithmetic mean of two nonnega
tive numbers is always at least as great as their geometric mean. We 
shall express this conjecture in terms of algebraic symbols and we 
shall see in subsection (b) that our conjecture is true. We may there
fore state it as 

THEOREM 4.1. For any nonnegative numbers a and b, 

( 4.1) a + b > - !{r .  
2 

_ y uv 

The sign of equality holds if and only if a = b .  

Note that if one of the two numbers were positive and the other 
negative, then ( 4.1) would be meaningless since its right-hand side 
would be imaginary.t If both numbers were negative, then the left
hand side of ( 4. 1) would be negative and the right-hand side positive, 
so that the theorem would not be valid. 

t The notion of inequality is not directly applicable to imaginary numbers, but only 
to their absolute values 
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The type of experimentation that led us to Theorem 4.1 repre
sents the sort of trial-and-error methods often used by mathemati
cians on the trail of theorems. Formerly, it was quite laborious work. 
Nowadays, with the modern digital computer to aid mathematical 
experimentation, we can test thousands and millions of cases in a few 
hours. In this way, we obtain valuable clues to general mathematical 
truths. 

Exercises 

l .  Determine the geometric mean and the arithmetic mean for the following 
pairs of numbers: 

(a) 2, 8, (b) 3, 1 2, (c) 4, 9, (d) 0, 20. 
2. If p is nonnegative, determine the geometric mean and the arithmetic 

mean of the following pairs of numbers: 

(a) p, 9p, (b) 0, p, (c) 2, 2p2. 

(b) Proof of the Arithmetic-mean-Geometric-mean Inequality for 
Two Numbers. Since square roots are a bit bothersome, let us elimi
nate them by writing 

( 4.2) a =  c2 , 

This is permissible because a and b were assumed, in Theorem 4. 1, 
to be nonnegative. The relationship ( 4.1) that we wish to prove for 
arbitrary nonnegative a, b then becomes 

( 4. 3) c2 + d2 
2 

?:. cd 

for arbitrary real c, d. Now ( 4.3) is true if and only if 

( 4.4) 

which is equivalent to 

( 4.5) 

c2 + d2
- cd ?:. 0 ,  

2 

c2 + d2 - 2cd ?:. 0 

as a result of our elementary rules for dealing with inequalities. 
We now recognize a familiar friend, namely 

( 4.6) c2 + d2 - 2cd = (c - d)2 , 

so that ( 4.5) is equivalent to 

( 4.7) (c - d)2 ?:. 0 .  
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Since, by Theorem 1.3, the square of any real number is nonnega
tive, we see that ( 4.7) is indeed true. Thus ( 4.5) is a valid inequality, 
and hence ( 4.4), ( 4.3), and ( 4.1) are also valid. The sign of equality 
holds in ( 4. 7), and therefore in ( 4. 1 ), if and only if c - d = 0, that is, 
c = d, or, equivalently, if and only if a = b .  

Note that, while the inequality ( 4.1) of Theorem 4.1 applies only 
to nonnegative numbers a, b, the foregoing proof shows that in
equality ( 4.3) is valid for all real numbers c, d, the sign of equality 
holding if and only if c = d .  You will observe that the results of 
Sees. 4. 4 and 4.6 also are valid for all real numbers, not merely non
negative numbers; this fact increases the geometric significance of 
those results. 

(c) A Geometric Proof Let us now show that Theorem 4.1 can also 
be obtained geometrically by means of a simple comparison of areas. 
Consider the graph of y = x ,  as shown in Fig. 4.1. Let S and T be 
points on the line y = x,  with coordinates (c, c) and (d, d), respec
tively, and consider the points P:  (c, 0) , Q :  (0, d) , and R :  (c, d) , as 
shown. Since OP is of length c, PS has the same length c. Then the 
area of the triangle OPS is c2/ 2 , i.e., one half of the base times the 
altitude. Similarly, the area of the right triangle OQT is d2!2. 

c 

Figure 4. 1 Geometric proof of the inequality 
c2 i d2 :::>: cd 

Now examine the rectangle OPRQ. Its area is completely covered 
by the triangles OPS and OQT, so that 

( 4.8) area (OPS ) +area (OQT) 2 area (OPRQ) . 

Since the area of OPRQ is cd, length times width, we may write ( 4.8) 
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in algebraic symbols as 

(4.9) c2 i d2 2 cd . 

5 1  

Now the inequality (4.9) is identical with the inequality (4.3), so that 
our geometric proof is complete. 

Furthermore, we see that there is equality only when the triangle 
TRS has area zero, that is, only when S and T coincide, so that 
c = d . 

(d) A Geometric Generalization. A little thought will show that the 
foregoing arguments remain valid even in cases where the curve OTS 
is not a straight line. Consider the diagram shown in Fig. 4.2. It is 
still true that 

(4. 10) area (OPS) +area (OQT) 2 area (OPRQ) . 

Figure 4.2. A more general geometnc inequality 

When you have studied calculus and have learned how to evaluate 
the area underneath simple curves, such as y = xa , for arbitrary 
positive a, you will find that this process will yield a number of in
teresting inequalities in a very simple fashion. In later sections of this 
chapter, we shall obtain some of these inequalities in a different way. 

Exercises 

l .  Let a and b be the lengths of a pair of adjacent segments on a line, and 
draw a semicircle with the two segments together as its diameter, as in 

1- 0 .. ,. 0 b ----'•10-ll 
Figure 4.3 

Fig. 4.3. Show that the radius r of the circle is the arithmetic mean of a 

and b, and that the perpendicular distance h is their geometric mean. 
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2. An average that occurs quite naturally in optics and in the study of elec
trical networks is the harmonic mean. For two given positive quantities 
a and b, the quantity c determined by means of the relationship 

� = l + l 
c a b 

is called the harmonic mean. Solving this equation for c, we obtain 

c - 2 _ 2ab - 1 /a + 1 /b - a +  b · 

Show that the harmonic mean is less than or equal to the arithmetic mean, 
and also less than or equal to the geometric mean, with equality if and 
only if a = b ; i.e., show that 

a + b> Vfi6> 2ab . 2 - - a + h  

3. Determine the harmonic, geometric, and arithmetic means of the pairs 
(a) 2, 8; (b) 3, 1 2; (c) 4, 9; (d) 5, 7 ; (e) 6, 6. 

4. The relationship between distance d, rate r, and time t is d = rt . Show 
that if in traveling from one town to another you go half the distance at 
rate r�> and half at rate r2, then your average rate is the harmonic mean 
of r1 and r2, but that if you travel half the time at rate r1 and half the time at 
rate r2, then your average rate is their arithmetic mean. If r1 =F r2 , which 
method would get you there sooner? 

5. Use the result of Theorem 4.1 to solve Exercise 2 on page 22. 

(e) The Arithmetic-mean-Geometric-mean Inequality for Three 
Numbers. Let us now perform some further experimentation. Taking 
three nonnegative numbers, say 1 ,  2, and 4, let us compute their 
arithmetic mean-the simple average-as before: 

1 + 2 + 4 = 2.33 • • • . 3 
Let us also compute their geometric mean, i.e., the cube root of their 
product: 

� 1 · 2 · 4 = 2 .  

We observe that the arithmetic mean of these three numbers is 
greater than their geometric mean. Performing a number of such ex
periments with triplets of nonnegative numbers, we constantly observe 
the same result. We begin to suspect that we have found another 
theorem. Can it be true that there is an extension of Theorem 4. 1 ,  a 
result asserting that the arithmetic mean of three nonnegative quan-
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tities is at least as great as their geometric mean? 
We wish to prove 

THEOREM 4.2. For any three nonnegative numbers a, b, c, 

(4. 1 1 ) 

The sign of equality holds if and only if a = b = c . 
To remove the cube roots, let us set 

(4. 12) a =  x3 , c = z3 . 

Substituting these values for a, b, and c in ( 4. 1 1  ), we obtain 

(4. 13) 

which is equivalent to 

x3 + y3 + z3 
3 :::::: xyz , 

(4. 14) x3 + y3 + z3 - 3xyz :::::: 0 . 
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We shall prove Theorem 4.2 by proving the validity of (4. 14) for 
arbitrary nonnegative x, y, z. 

Once again we have an expression that can be factored. Its factori
zation is not as common as the one used before, but is still a quite 
useful one. We assert that 

x3 + y3 + z3 - 3xyz (4. 15) 
= (x + y + z)(x2 + yz + z2 - xy - xz - yz) , 

a result that can be verified by multiplication. 
Since x + y + z is nonnegative, the first factor on the right in 

(4. 15) is positive unless x = y = z = 0 .  In order to demonstrate 
(4. 14), it is sufficient to show that the second factor also is nonnega
tive, i.e., that 

(4. 16) x2 + yz + z2 - xy - xz - yz :::::: 0 .  

Referring back to the inequality (x - y)2 = xz + yz - 2xy :::::: 0 
already used in the algebraic proof of the arithmetic-mean-geometric
mean inequality for two numbers [see subsection (b)], we see that the 
inequality (4. 16) can be derived from this in the following fashion. 
Write 

( 4. 17) x2 + y2 :::::: 2xy , x2 + z2 :::::: 2xz , y2 + z2 :::::: 2yz , 
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and add the three inequalities. The result is 

(4. 1 8) 2(x2 + yz + z2) ;:::: 2(xy + xz + yz) , 

which is equivalent to the desired inequality ( 4. 16). The sign of 
equality holds if and only if x = y = z .  

Since (4. 1 6) is a valid inequality, and since x + y + z ;:::: 0 ,  it fol
lows that the left-hand side of ( 4. 1 5) is also ;:::: 0; that is, the inequality 
(4. 14) is valid. Since (4. 14) is equivalent to (4. 1 1 ), we have now proved 
that the arithmetic-mean-geometric-mean inequality is valid for 
means of three numbers ; the condition x = y = z under which the 
sign of equality holds in ( 4. 14), and therefore in ( 4. 1 1  ), is equivalent 
to the condition a = b = c .  

(f) The Arithmetic-mean-Geometric-mean Inequality for n Numbers. 
Emboldened by this success, let us conjecture that the results we 
have obtained for means of two and three numbers are merely spe
cial cases of a general theorem valid for any number of positive 
quantities. If this conjecture is true, then we have the following result : 

THEOREM 4.3. For any n nonnegative numbers a1, a2, • . .  , a,., 

(4. 19) 

The sign of equality holds if and only if a1 = az = · · · = a,. . 

This is the famous inequality connecting the arithmetic mean of n 
quantities with the geometric mean of the n quantities, and is, indeed, 
true. We have concentrated on this inequality for several reasons. In 
the first place, it is a fascinating one, and one that can be established 
in a large number of interesting ways; there are literally dozens of 
different proofs based on ideas from a great variety of sources. In 
the second place, it can be used as the fundamental theorem of the 
theory of inequalities, the keystone on which many other very impor
tant results rest. In the third place, as you will see in Chapter 5, we 
can use some of its consequences to solve a number of maximization 
and minimization problems. 

In attempting to prove the general inequality, a first thought may 
be to continue along the preceding lines, using another algebraic 
factorization for n = 4 ,  still another one for n = 5 , and so on. 
But this approach is neither attractive nor feasible. As a matter of 
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fact, no simple proof along these lines exists. 
Instead, we shall present a simple proof based on two applications 

of mathematical induction; one, a "forward" induction, will lead to 
the desired result for all the integers n that are powers of two, i.e., 
for n = 2k ; the other, a "backward" induction (from any positive 
integer to the preceding one), together with the forward induction 
will enable us to establish the result for all positive integers n. 

(i) Forward Induction. The method we shall now employ will 
illustrate an amusing variant of the fundamental technique of proof 
by mathematical induction, which we have previously discussed in 
Sec. 2.6 (Chapter 2). 

Let us start with the result for n = 2 ,  namely 

(4.20) a + b > · 'ali 
2 

_ y uu ,  

which, by Theorem 4. 1 ,  is valid for all nonnegative a and b, and use 
some mathematical ingenuity. Although there are very many simple 
proofs of Theorem 4.3, they all possess the common ingredient of 
ingenuity. 

Set 

where at. a2, a3, a4 are nonnegative numbers. Substituting these 
values for a and b in (4.20), we obtain the inequality 

or 

(4.2 1)  

a1 + az + a3 + a4 
2 2 

2 

a1 + az + a3 + a4 
4 

� Jel i az)(a3 i a4)
· 

> j(al i az)e3 i a4)
· 

Since the left-hand side of the inequality (4.2 1 )  has the desired form 
(see Theorem 4.3), let us concentrate on the right-hand side. Using 
the valid inequalities 

(4.22) 
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and the transitivity rule (Theorem 2. 1), we obtain from (4.2 1)  the 
further inequality 

a1 + az + a3 + a4 0 1 0 � 0 � ( 4.23) 
4 

2:: v v a1a2 v a3a4 2:: (a1a2a3a4)114 . 

But this is precisely the desired result for four nonnegative quanti
ties! The arithmetic mean is greater than or equal to the geometric 
mean for n = 4 .  

The sign of equality holds in (4.2 1 )  if and only if 

and in (4.22) if and only if a1 = a2 , a3 = a4 ; consequently, it holds 
in ( 4.23) if and only if a1 = az = a3 = a4 . 

Nothing stops us from repeating the foregoing trick. Set 

where the bi (i = I ,  2, . . .  , 8) are nonnegative quantities. Substitut
ing in (4.23), we have 

b1 + bz � • . .  + bs 2:: [ el i bz) b3 1 b�e5 1 b�C1 1 bH)] 114 
Using the inequalities 

b1 + bz > 0 n:;--r:-
2 _ y utuz , . . . ' 

and the transitivity rule, we obtain 

b1 + bs > 0 � 
2 - V V7V8 , 

b1 + bz + · · · + bs 2:: ( VJiJi; VliJii � Vfii�Js)114 
8 

2:: (btbz · · · bs)118 , 
the desired result for eight quantities. The sign of equality holds if 
and only if all the bi are equal. 

Continuing in this way, we clearly can establish the inequality for 
all values of n that are powers of two, i.e., for n = 2, 4, 8, 16, . . . . 
To tie the result down rigorously, we use mathematical induction. The 
main step consists of proving the following result: 

The arithmetic-mean-geometric-mean inequality is valid for all n of 
the form 2k, k = 1 ,  2, . . . . 
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PRooF. We already know that the result is true for n = 2 = 21, i.e., 
for k = I, and indeed for n = 22 and 23. Let us assume that the 
result is true for an integer n of the form 2k, and then establish it for 
2k+1 . Since 2k+1 = 2 . 2k , this means that we shall prove that the 
result is true for 2n. 

Thus we have assumed that 

(4.24) 

for any set of nonnegative quantities at. a2, . . .  , a,. , where n = 2k . 
Choose a; (i = I, 2, . . .  , n) to have the following values: 

where the 2n numbers b; U = I ,  2, . . .  , 2n) are given nonnegative 
numbers, and substitute in (4.24). Proceeding as before, we finally 
obtain 

b1 + b2 + · · · + b2n > (b b b } 11211 
2n _ 1 2 · · · 2,. · 

As before, the sign of equality holds if and only if all the b; are 
equal. Hence we have established the desired result for 2n, or 2k+1 •  

Thus, since the inequality is valid for k = I, the principle of 
(forward) mathematical induction asserts that the result is true for 
all positive integers k, and hence that the inequality (4.24) holds for 
all n that are powers of two. 

(ii) Backward Induction. Now that we have established the 
result for those integers that are powers of two, how do we establish 
it for the full set of positive integers? 

Another procedure is required. Consider the case n = 3 ,  for 
which, of course, we have already established the result by a differ
ent method. Using the relationship for n = 22 = 4 ,  

(4.25) a1 + a2 + a3 + a4 > ( )114 4 _ a1a2a3a4 , 

which has already been established by forward induction, let us see 
if we can derive the corresponding result for n = 3 . 
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We accomplish this by means of the important technique of spe
cialization. Starting with (4.25), we choose the quantities a1, a2, a3, 
and a4 in a special way. Set 

(4.26) 

and ask for the value a4 that yields the equality 

a1 + a2 + a3 + a4 b1 + b2 + b3 
4 3 

By the values given in (4.26), this requires that 

whence 

Substituting these particular values for the ai in (4.25), we derive the 
relationship 

b1 + b2 + b3 > . lb b b (b1 + b2 + b3) 3 \¥1 1 2 3  3 . 

Raising both sides to the fourth power, we obtain 

(b1 + b2 + b3)4 
> b b b (b1 + b2 + b3) 

3 - 1 2 3 3 ' 

or finally, dividing by (b1 + b2 + b;>,)/3 , (b1 + b2 + b3)3 > b b b 3 - 1 2 3 · 
which is equivalent to the desired result 

(4.27) b1 + b2 + b3 > V' b b b 3 - 1 2 3 · 
Since equality holds in ( 4.25) if and only if a1 = a2 = a3 = a4 ,  it 
follows that equality holds in (4.27) if and only if b1 = b2 = b3 • 

In order to extend this method to the general case, we shall employ 
an inductive technique, but an inductive technique of nonstandard 
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type. Instead of proving that if the result holds for n then it holds for 
n + 1 , we shall prove that if it holds for n then it holds for n - 1 . 
Since we already know that it holds for n = 2k (k = 1 ,  2, . . . ) , this 
method will yield the theorem in all generality. 

Let us now show that if the result holds for n, then it holds for 
n - I . To do this, we repeat the trick of specialization that we used 
above. Let 

(4.28) 0 • •  ' 

and determine an by the requirement that 

a1 + a2 + · · · + a,. _ bt + b2 + · · · + b,._l . 
n n - I 

' 

using the values (4.28) and solving for a,., we get 

bt + b2 + . .  · + b,._t a,. = . 
n - I 

(4.29) 

We have assumed that the inequality 

for the n nonnegative quantities a1, a2, . . .  , an is valid; substituting 
the values (4.28) and (4.29) for the a;, we have 

bt + b2 + " •  + bn-1 > n / b b . . . b (b1 + b2 + • "  + bn-1 ) 
n _ I _ V .  1 2 n- I  n _ I 

Raising both sides to the nth power and simplifying, we obtain the 
inequality (b! + b2 + " •  + bn-l)n-l 

> b b b I _ 1 2 ' ' '  n-1 , 
n -

which is equivalent to the desired result 

b1 + b2 + • • • + b,._l > "-::lib b b 
n _ I _ v 1 2 • • • n-t . 

As before, equality holds if and only if b1 = b2 = · · · = b,._1 , and 
the proof of Theorem 4.3 is complete. 
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4.3 Generalizations of the Arithmetic-mean
Geometric-mean Inequality 

We shall now show that a number of results that appear to be 
generalizations of the fundamental arithmetic-mean-geometric-mean 
theorem, derived above, are actually special cases. 

First, let us take the arithmetic-mean-geometric-mean inequality 

Xt + Xz + • • • + Xn :2:: (XtXz • • • Xn)lln n 

and set the first m of the numbers xi equal to the same nonnegative 
value x, and the remaining n - m equal to a common nonnegative 
value y; that is, 

Xt = Xz = • •  • = Xm = X , Xm+l = Xm+2 = • • •  = Xn = y . 

The arithmetic-mean-geometric-mean inequality for x1, xz, . . .  , Xn 
becomes 

or 

mx + (n - m)y > (xmyn-mpln 
n -

Here n is any positive integer, and m is any integer in the range 
1 :::::; m :::::; n - I .  It follows that min can represent any rational frac
tion r occurring in the interval 0 < r < I . Let us then write the 
foregoing inequality in the form 

(4.30) rx + (I - r)y :2:: xryt-r, 

a most important result for our subsequent purposes. 
This inequality ( 4.30) is valid for any two nonnegative quantities 

x and y, and for any fraction r between 0 and I .  Equality occurs if 
and only if x = y . 

Let r be denoted by I !p .  Since 0 < r < I ,  we see that p > I .  
Then 

I - r = I - .!  = E._=l, 
p p 

Let q denote the quantity pl(p - 1) , so that 1 /q = I - r and 

.!_ + .!_ = I . 
p q 
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The inequality (4.30) then has the form 

(4.31) � + l 2:: xllvyllq . 
p q 

To eliminate the fractional powers, set 

( 4.32) X = (JP ,  y = bq . 

Then ( 4.3 1) assumes the form 

(4.33) aP bq - + - > ab 
p q - ' 

6 I  

where a and b are nonnegative numbers, and p and q are rational num
bers satisfying l ip + l !q = 1 .  There is equality if and only if 
(4.34) 

Once we have defined what we mean by irrational numbers and 
by functions of the form xr, where r is irrational, we can show, 
either directly or by means of a limiting procedure starting from the 
inequality ( 4.30), that the inequality ( 4.30) is actually valid for all r 
between 0 and 1 ,  "'and therefore that (4.33) is valid for all p > 1 ,  
q > I satisfying l ip + 1 /  q = I . If you wish to pursue this refine
ment further, you should first read Numbers: Rational and Irrational 
by Ivan Niven, to which we have already referred in Chapter I .  

Exercises 

I. Show that if the values Yt.J2, . . .  ,yk are all nonnegative, and if mt . m2, 
. . .  , mk are positive integers, then 

ml)'t + mY'2 + . . .  + m!Jik � (ytm':Y2m2 • • •ykmk)ll(m, + m.+ • • • + m.>. mt + m2 + · · · + mk 
Show consequently that if r1, r2, . . .  , rk are proper fractions satisfying 

r1 + r2 + · · · + rk = I , 
then 

'l.Yt + r2y2 + · · · + rkyk � Yt''Y2'' · · · Jk'• · 
2. An important average in statistics is the root-mean-square. For two non

negative numbers a and b, the root-mean-square is the value 

- j a2 + b2 s - --2- . 
For the pairs (5, 1 2), (0, 1 ), and (p. p), compute the arithmetic mean and 
the root-mean-square. 
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3. Show that the arithmetic mean of two positive numbers is less than or equal 
to their root-mean-square: 

a +  b < ja2 + b2 
2 - 2 

Under what circumstance does the sign of equality hold? How does the 
root-mean-square compare with the geometric mean and with the har
monic mean? 

4. Let ABDC be a trapezoid with AB = a ,  CD = b (see Fig. 4.4). Let 0 
be the point of intersection of its diagonals. Show that 

Figure 4.4 Geometric Illustration of 2ab < . !(if- < a + b < � a + b - v uu - 2 - V -y--

(a) The anthmeuc mean (a + b)/2 of a and b is represented by the line 
segment GH parallel to the bases and halfway between them. 
(b) The geometric mean yaTi is represented by the line segment KL 
parallel to the bases and situated so that trapezoids ABLK and KLDC are 
similar. 
(c) The harmonic mean is represented by the line segment EF parallel to 
the bases and passing through 0. 
(d) The root-mean-square is represented by the line segment MN parallel 
to the bases and dividing the trapezoid ABDC into two trapezoids of equal 
area. 

4.4 The Cauchy Inequality 

(a) The Two-dimensional Version: (a2 + b2)(c2 + d2) 2:: (ac + bd)2. 
Let us now introduce a new theme. As in a musical composition, this 
theme will intertwine with the original theme to produce further and 
more beautiful results. 

We begin with the observation that the inequality 

a2 + b2 2:: 2ab . 
on which all the proofs in the preceding sections of this chapter were 
based [see Sec. 4.2(b)], is a simple consequence of the identity 

a2 - 2ab + b2 = (a - b)2 , 
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which is valid for all real a, b, not merely for nonnegative a, b. 
Consider now the product 

(4.35) (a2 + b2)(c2 + d2) .  

We see, upon multiplying out, that this product yields 

a2c2 + b2d2 + a2d2 + b2c2 , 
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which is identically what we obtain from expanding the expression 

(4.36) (ac + bd)2 + (be - ad)2 . 

Hence we have 

(4.37) (a2 + b2) (c2 + d2) = (ac + bd)2 + (be - ad)2 . 

Since the square (be - ad )2 is nonnegative, from (4.37) we obtain 

(4.38) (a2 + b2) (c2 + d2) 2:: (ac + bd)2 , for all real a, b, c, d, 

a very pretty inequality of great importance throughout much of 
analysis and mathematical physics. It is called the Cauchy inequality, 
or, more precisely, the two-dimensional version of the Cauchy 
inequality.t 

Furthermore, we see from (4.37) that the sign of equality holds in 
( 4.38) if and only if 

(4.39) be - ad = 0 .  

In this case, we say that the two pairs (a, b) and (c, d )  are proportional 
to each other; if c =¥= 0 and d =¥= 0 ,  the condition ( 4.39) can be 
written as 

(b) Geometric Interpretation. On first seeing the identity of the 
expressions (4.35) and (4.36), the reader should quite naturally and 
legitimately wonder how in the world anyone would ever stumble 
upon this result. It strikes him as having been "pulled out of a hat," 
a piece of mathematical sleight of hand. 

It is a tenet of a mathematician's faith that there are no accidents 
in mathematics. Every result of any significance has an explanation 

t A generahzation of this inequality to expressions occurnng in integral calculus 
was discovered independently by the mathematicians Buniakowski and Schwarz. The 
name "Cauchy-Schwarz inequality" is sometimes applied to the inequality in the text, 
but more particularly to its generalization. 
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which, once grasped, makes the result self-evident. The explanation 
may not immediately be obvious, and it may not be found for some 
time. Often the significance of a mathematical theorem becomes clear 
only when looked at from above-that is to say, from the standpoint 
of a more advanced theory. But the meaning is always there. This is 
a vitally important point. Were it not for this, mathematics would 
degenerate into a collection of unrelated formalisms and parlor tricks. 

Frequently, the simplest interpretation of an algebraic result is in 
terms of a geometric setting. Formulas that seem quite strange and 
complex become obvious when their geometric origin is laid bare. 

y 

Figure 4.5 Geometnc interpretation of the Cauchy inequality 

Consider the triangle shown in Fig. 4.5. The lengths of the seg
mentst OP, OQ, and PQ are given by 

and 

respectively. 

OP = (a2 + b2)112 ' 
OQ = (c2 + d2)112 , 

PQ = [(a - c)2 + (b - d)2]112 , 

Denote the angle between OP and OQ by 0. By the law of cosines, 
we have 

(PQ)2 = (OP)2 + (OQ)2 - 2(0P)(OQ) cos 0 .  

Substituting the values of OP, OQ, and PQ, and simplifying, we 
obtain 

(4.40) 0 _ ac + bd cos - (a2 + b2)112 (c2 + d2)112 

t The length of a segment XY, often written XY, will be wntten XY m this book for 
reasons of typography 
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Since the cosine of an angle must always lie between - 1  and + 1 ,  
we must have 

( 4.4 1) 0 :::::; cos20 :::::; 1 .  

Squaring both sides of (4.40) and (4.4 1 ), we obtain 

and finally 

2 _ ( ac + bd )2 
1 cos 0 - (a2 + b2)(c2 + d 2) 

:::::; , 

(a2 + b2)(c2 + d2) 2:: (ac + bd)2 . 

This is again the two-dimensional version of Cauchy's inequality 
(4.38), which seemed so magical in its algebraic setting. 

Furthermore, we see that there is equality if and only if cos20 = 1 , 
i.e., if and only if 0 is a zero or straight angle-that is to say, if and 
only if the points 0, P, and Q lie on the same line. In that case, we 
must have an equality of slopes; in other words, unless c = d = 0 ,  

(c) Three-Dimensional Version of the Cauchy Inequality. An advan
tage of an interpretation of the foregoing type lies in the fact that we 
can use geometric intuition to obtain similar results in any number 
of dimensions. 

Turning to three dimensions, let P:  (at. a2, a3) and Q:  (b1, b2, b3) 
be points distinct from the origin 0 :  (0, 0, 0) . Then the cosine of the 
angle 0 between OP and OQ is givent by 

0 a1b1 + a2b2 + a3b3 cos = 
(a12 + a22 + a32)112 (b12 + b22 + b32)112 ' 

which, together with the fact that cos20 :::::; 1 ,  implies the three
dimensional version of the famous inequality of Cauchy: 

(4.42) (a12 + a22 + a32)(b12 + b22 + b32) 2:: (a1b1 + a2b2 + a3b3)2 . 

The sign of equality holds if and only if the three points 0, P, and 

t For a derivation see W. F. Osgood and W. C. Graustein, Plane and Solid Anarytic 
Geometry, Macmillan and Co., New York, 1 930. 
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Q are collinear; this is expressed by 

a1 a2 a3 
bl b2 b3 

, 

provided the b 's are all different from zero. 

(d) The Cauchy-Lagrange Identity and the n-Dimensional Version of 
the Cauchy Inequality. A strictly algebraic proof of the three-dimen
sional Cauchy inequality (4.42) may be obtained by noting that 

(a12 + a22 + a32)(h12 + b22 + b32) - (a1h1 + a2b2 + a3b3)2 

( 4.43) 
= (a12b22 + a22b12) + (a12b32 + a32b12) + (a22h32 + a32b22) 

- 2a1b1a2b2 - 2a1b1a3b3 - 2a2b2a3b3 

= (a1b2 - a2b1)2 + (a1b3 - a3b1)2 + (a2b3 - a3b2)2 . 

The last expression in (4.43) clearly must be nonnegative, since it 
is a sum of three nonnegative terms. Hence 

(a12 + a22 + a32)(b12 + b22 + b32) - (a1b1 + a2b2 + a3b3)2 � 0, 

and thus Cauchy's inequality for three dimensions is proved again. 
The identity (4.43) yields both the inequality and the case of equality; 
the last expression in ( 4.43) is zero if each term vanishes, i.e., if the 
a 's and b's are proportional . 

When you study the analytic geometry of three dimensions, you 
will see that the identity (4.43) is simply the result 

cos20 + sin20 = 1 

written in another way. 
The identity (4.43) can be generalized as follows: For any set of 

real quantities a; and b; (i = 1 ,  2, . . .  , n) , we have 

(a12 + a22 + · · · + an2)(b12 + b22 + · · · + bn2) 
(4.44) - (a1b1 + a2b2 + • • • + anbn)2 

= (a1b2 - a2b1)2 + (a1b3 - a3b1)2 + • • • + (an-lbn - anbn-1)2 ; 

this is the famous identity of Cauchy and Lagrange. From this identity 
we obtain the n-dimensional version of the Cauchy inequality 

(a12 + a22 + · · · + an2)(b12 + b22 + · · · + bn2) 
(4.45) 

� (a1b1 + a2b2 + • • • + anbn)2 , 

valid for all real values of the a; and b; . 
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(e) An A lternative Proof of the Three-Dimensional Version. The 
proofs that we have given above were perfectly satisfactory as far as 
the results at hand were concerned. However, they do not generalize 
in such a way as to yield some results that we wish to derive later on. 
Consequently, we start all over again and introduce a new device. 

Let us begin with our basic inequality (x - y)2 2:: 0 in the form 

(4.46) x2 y2 
2 + 2 2:: xy, 

which is valid for all real x and y, and substitute, in turn, 

then 

then 

a1 b1 x = (a12 + a22 + a32)1 12 , y = (b12 + b22 + b32)112 , 

where the a; and b; are all real quantities. Adding the three inequali
ties obtained in this way, we find 

l (a12 + a22 + a32) l (b12 + b22 + b32) 
"2\a12 + a22 + a:12 + 2 b12 + b22 + b32 

> a1b1 + a2b2 + a3b3 
- (a12 + a22 + a32)112(b12 + b22 + b32)112 , 

which, very obligingly, yields the inequality 

1 > a1b1 + a2b2 + a3b3 
- (a1 2 + a22 + a32)112(b12 + b22 + b32)112 ' 

equivalent to Cauchy's inequality (4.42) [subsection (c)], as desired. 
The n-dimensional version (4.45) of Cauchy's inequality may be 
proved in an analogous manner. 

4.5 The Holder Inequality 

We now possess all the tools necessary to fashion one of the most 
useful inequalities of analysis, the HOlder inequality. This states that 
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for any set of nonnegative quantities ai and bi (i = I, 2, . . .  , n) , we 
have 

(4.47) 
(alP + azP + · · · + anP)11P(blq + b2q + · • · + hnq)llq 

2:: a1b1 + a2b2 + · · · + anbn , 

where p and q are related by the equation 

(4.48) 

and p > 1 .  
The case p = q = 2 is the Cauchy inequality established in the 

preceding sections. In the general case, however, we must restrict our 
attention to nonnegative ai and bi, since fractional powers p and q 
might be involved. 

Actually we shall prove (4.47) only for rational numbers p, q; how
ever, the result is valid also for irrational p and q. 

We begin with the inequality 

aP + bq > ab p q - ' 

which we established in Sec. 4.3 ; see (4.33) for rational p, q and non
negative a, b. Then we use the trick employed in Sec. 4.4. We set 

a _  a1 
- (a1P + azP + . . .  + anP)llp '  

then 

and so on, and add the resulting inequalities. We thus obtain 

(4.49) 

I f.a1P + azP + • • • + anP) I (b1q + b2q + · · • + bnq) 
p\alP + a2P + • · · + anP 

+ 
q\blq + b2q + · · · + bnq 

> alb! + a2b2 + . . .  + anbn 
- (alP + azP + • • • + anP)11P(blq + b2q + • • • + bnq)llq ' 

or, finally, using (4.48), the result stated in the inequality (4.47). 
Equality can occur in ( 4.49) if and only if biq/aiP has a common 
value for all i. 
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4.6 The Triangle Inequality 

69 

We are all familiar with the geometric theorem that the sum of the 
lengths of two sides of a triangle is greater than or equal to the length 
of the third side. Let us see what this implies in algebraic terms. 

Take the triangle to be situated as shown in Fig. 4.6. Then the 
geometric inequality 

OP + PR :2: OR 

is equivalent to the algebraic triangle inequality 

(4.50) yx12 + y12 + yx22 + y22 :2: y(x1 + x2)2 + (yl + y2)2 . 

y 

Figure 4 6 The tnangle inequality 

Can we establish the triangle inequality (4.50) without resorting to 
geometry? In the one-dimensional case this was done in Sec. 3.8 (see 
Theorem 3.2), where the inequality was written in the form 

I x1 l + I x2 l :2: I X1 + x2 l 

more often than in the equivalent form 

N + N :2:  y(x1 + x2)2 . 

Now, the simplest way of proving the two-dimensional triangle 
inequality (4.50) is to establish the validity of an equivalent inequality. 
To this end, we square both members of ( 4.50), obtaining the equiva
lent inequality 

x12 + Y12 + X22 + Y22 + 2yx12 + Y12 yx22 + Y22 

:2: (x1 + x2)2 + (y1 + y2)2 , 

which is readily seen to be equivalent to 

(4.5 1)  yx12 + Y12 yx22 + y22 :2: X1X2 + Y1Y2 ; 
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but this is a simple consequence of the familiar Cauchy inequality 
[two-dimensional version, see (4.38)] 

(4.52) 

and thus the triangle inequality is established. 
As in the one-dimensional case (Theorem 3.2), the discussion of 

the conditions under which the sign of equality holds in the triangle 
inequality (4.50) is just a bit involved. You will recall that in the 
Cauchy inequality (4.52) the sign of equality holds if and only if 
(x1.y1) and (x2,y2) are proportional, i.e., x1 = kx2 , Y1 = ky2 . Now 
( 4.5 1 )  is obtained from ( 4.52) by taking a square root of each mem
ber; this is a valid operation since it is the nonnegative square root of 
the left-hand member that was taken. But if x1x2 + Y:tY2 < 0 , 
that is to say, if x1x2 + yl)'2 is the negative square root of the 
right-hand member (x1x2 + yl)'2)2 of (4.52), then the strict inequality 
holds in (4.5 1 )  even though (x1.y1) and (x2,y2) are proportional. Thus 
the sign of equality holds in ( 4.5 1 ), and hence also in the triangle in
equality (4.50), if and only if X1 = kx2 and Yl = ky2 with a non
negative constant k of proportionality. t 

Geometrically, the foregoing necessary and sufficient condition for 
the sign of equality to hold in the triangle inequality (4.50) has the 
interpretation that the points 0, P, and Q in Fig. 4.5 be collinear and 
that P and Q be on the same side of 0. Then the triangle OPR col
lapses. In this case, we say not merely that P and Q are collinear with 
0, but that they are on the same ray issuing from 0. 

You might check that the foregoing discussion is consistent with 
the discussion of the corresponding condition in the one-dimensional 
case I a I + I b I 2 I a + b I ,  namely, that the equality sign holds if and 
only if a and b are of the same sign. 

Our proof of the triangle inequality can be generalized, following 
the pattern set in the proof of the Holder inequality, to yield 

\fx12 + X22 + • • • + Xn2 + VY12 + Y22 + • • • + Yn2 

2 y(xl + Y1)2 + (x2 + Y2)2 + • • • + (Xn + Yn)2 , 

valid for all real xi, Yi. and with the sign of equality holding, as before, 
if and only if the Xi and the Yi are proportional with a positive factor 
of proportionality. We shall return to this inequality in Chapter 6, 

t For example, ( - 3, 4) and (6, - 8) are proportional with a negative constant of 
proportionality, while ( -3, 4) and ( - 6, 8) have a positive constant of proportionality. 



T H E  C L A S S I C A L  I N E Q U A L I T I E S  71  

when we consider its geometric significance. 
An alternative proof of the triangle inequality, which can be 

extended to give a more general result, is the following. We write the 
identity 

(x1 + x2)2 + (yl + Y2)2 

= Xl(Xl + X2) + Yl(Yl + Y2) + X2(Xl + X2) + Y2(Yl + Y2) 

and apply the Cauchy inequality in square-root form [see eq. (4.5 1)] 
separately to the two expressions 

x1(x1 + x2) + y1(Y1 + y2) 
and 

obtaining 

(x12 + Y12)112[(xl + X2)2 + (yl + Y2)2)112 

:;::: X!(Xl + X2) + Yl(Yl + Y2) ' 

and 

(x22 + Y22)112((xl + x2)2 + (yl + Y2)2)112 

:;::: X2(Xl + X2) + Y2(Yl + Y2) . 

Adding, we have 

[(x12 + y12)112 + (x22 + y22)112) [(x1 + x2)2 + (y1 + y2)2)112 

:;::: (x1 + x2)2 + (yl + y2)2 . 

Dividing through by the common factor [(x1 + x2)2 + (y1 + y2)2]112 , 
we get 

(x12 + y12)112 + (x22 + y22)112 :;::: [(x1 + x2)2 + (y1 + y2)2)112 . 

Thus we have again established the triangle inequality (4.50). 
Returning to the point where the Cauchy inequality was applied 

in square-root form, we see again that equality occurs if and only if 

for some nonnegative factor of proportionality k-that is to say, if 
and only if the three points 0, P, and Q are collinear, with P and Q 
on the same side of 0. 
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4.7 The Minkowski Inequality 

We now possess all the tools and devices to establish another 
famous inequality, that due to Minkowski. It asserts that for any set 
of nonnegativet quantities Xt, Yt• x2, y2, and any p > I , we have 

(x1P + y1P)11P + (x� + y�)liP 
� [(Xt + X2)P + (Yt + Y2)P)11P . (4.53) 

The triangle inequality is the special case p = 2 . 
The proof of Minkowski's inequality is similar to that just given 

for the triangle inequality, with the difference that the more general 
Holder inequality (Sec. 4.5) is used in place of Cauchy's inequality. 
Write the identity 

(Xt + X2)P + (yl + Y2)P = [Xt(Xt + X2)P-l + Yt(yt + Y2)P-l) 

+ [x2(x1 + x2)P-1 + Y2(Yt + Y2)P-1] 

and apply Holder's inequality to each of the terms separately. The 
results are 

(XtP + YtP)liP((Xt + X2)(p-l)q + (Jt + Y2)(p-llq)llq 
� Xt(Xt + X2)p-l + Yt(Yt + Y2)P-l 

and 

(x� + y�)ll�>[(xt + x2)(11-tlq + (Yt + Y2)(11-tlq )llq 

� X2(Xt + X2)p-l + J2(yl + Y2)P-l . 

Since 1 /p + I /q = I ,  we see that (p - I )q = p .  Adding, we obtain 

[(xt + x2)P + (Yt + y2)P]11Q[(x1P + y1P)11P + (x� + y�)liP) 
� (Xt + X2)P + (yl + Y2)P ; 

and then dividing by [(xt + x2)P + (y1 + y2)P]11q , we get 

(xtP + YtP)11P + (x2P + y2P)11P � [(xt + x2)P + (Yt + y2)P)1-11q 

which, since I - l lq = I !p ,  is the stated Minkowski inequality 
(4.53). 

The sign of equality holds in the Minkowski inequality if and only 
if it  holds in the Holder inequality [by means of which (4.53) was 
proved], that is, if and only if the points (x1,y1) and (x2,y2) [which 
are in the first quadrant] are collinear. 

t The restriction to nonnegative quantities is necessary because, in general, fractional 
powers p and q are involved. 
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As you might surmise from the foregoing generalizations of the 
Cauchy, Holder, and triangle inequalities, the general Minkowski 
inequality for sets of n nonnegative numbers 

Xt. X2, • . .  , Xn and Jt,J2, . . · •Yn 
is 

[x1P + x� + . . .  + XnP)liP + [y1P + y2P + . . .  + YnPJliP 
:2: [(Xt + Yt)P + (x2 + y2)P + • • • + (Xn + Yn)P)11P 

for p ;;::: 1 . The inequality sign is reversed for p < 1 . 

4.8 Absolute Values and the Classical Inequalities 

The arithmetic-mean-geometric-mean inequality, the Cauchy in
equality, the Holder inequality, the triangle inequality, and the 
Minkowski inequality are the classical inequalities of mathematical 
analysis. For ready reference, they are collected in Table 3. 

TABLE 3. The Classical Inequalities for Nonnegative Values 

Name 

Arithmetic-mean
geometric-mean 
inequality 

Cauchy 
inequality 

Holder 
inequality 

Triangle 
inequality 

Minkowski 
inequality 

Inequality 

(a12 + a22 + . . .  + a,.2)112(b12 + b22 + . . .  + b,.2)112 

� a1b1 + a2b2 + · · · + a,.b,. 

(a1P + a2P + • • • + a,.P)11P(b1q + b2q + • • • + b,.q)llq 

� a1b1 + a2b2 + · · · + a,.b,. 

(a12 + a22 + . . .  + a,.2)112 + (b12 + b22 + . . .  + b,.2)112 

� ((a1 + b1)2 + (a2 + b2)2 + · · · + (a,. + b,.)2)112 

(a1P + a2" + . . .  + a,.P)liP + (b1P + b2" + . . .  + b,.P)liP 

� ((a1 + b1)" + (a2 + b2)" + · · · + (a,. + b,.)"]11P 

The inequalities are valid for any nonnegative values a1, a2, • • •  , an 
and bt, b2, . . . , bn; for arbitrary p > 1 ;  and for 1 /p + 1 /q = 1 .  
The Cauchy inequality and the triangle inequality constitute the 
special case p = 2 of the Holder inequality and the Minkowski 
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inequality, respectively. The sign of equality holds if and only if all 
the a; are equal, for the arithmetic-mean-geometric-mean inequality; 
the sets (a;�>), (b;q) are proportional, for the Holder inequality; and the 
sets (a;), (b;) are proportional, for the other inequalities. 

The foregoing inequalities are primarily concerned with nonnega
tive values. However, the absolute value of any real number is non
negative, so that the inequalities apply, in particular, to the absolute 
values of arbitrary real numbers. This observation can be extended 
somewhat by means of the result in Theorem 3.2, which states that 
a sum of absolute values is greater than or equal to the absolute value 
of the corresponding sum; thus, relative to the Minkowski inequality, 
we have 

the sign of equality holding if and only if a; and b; are of the same 
sign. The extended inequalities are exhibited in Table 4. 

TABLE 4. The Classical Inequalities for Arbitrary Values 

Name 

Arithmetic-mean
geometric-mean 
inequality 

Cauchy 
inequality 

Holder 
inequality 

Triangle 
inequality 

Minkowski 
inequality 

Inequality 

(a12 + a22 + . • •  + a,.2)1 12(b12 + b22 + . • . + b,.2)112 
2 a1b1 + a2b2 + · · · + a,.b,. 

< I a1 l "  + I a2 i "  + • • • + I a,. I ")11" 
• < I bt l q + I b2 l q + • • • + I b .. I qptq 

2 a1b1 + a2b2 + · · · + a,.b,. 

(a12 + a22 + . . .  + a,.2)112 + (b12 + b22 + . . .  + b .. 2)112 
2 [(at + bt)2 + (a2 + b2)2 + · • • + (a,. + b,.)2J112 

( I  at I " + l a2 I P + · · ·  + l an i ")1 1" 
+ < I bt l " + I b2 i "  + · · · + I b,. I "P1" 

2 [ ! at + bt l " + l a2 + b2 i " + · · · + i an + b,. I PJ l'P 
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For these inequalities involving arbitrary real values a1, a2, • . .  , an 
and bt . b2, . . . , bn, the sign of equality holds if and only if all the 1 ai I 
are equal, for the arithmetic-mean-geometric-mean inequality; the 
sets ( I ai 1 �>), ( I  bi I q) are proportional and each ai bi nonnegative, for the 
Holder inequality; and the sets (ai), (bi) are nonnegatively propor
tional. for the other inequalities. 

As an application, for given sets of values (x1, x2, • • •  , Xn), 
(y1 .y2, . . . ,yn), and (zt, z2, . . .  , Zn), let 

Then 
ai = zi - Yi and 

and the extended Minkowski inequality yields 

( l zt - Yt l 11  + 1 z2 - Y2 l 11  + • •  • + l zn - Yn l 11)1111 
+ ( IYt - Xt l 11  + IY2 - X2 l 11 + • • • + IYn - Xn l 11)1111 

� ( l zt - Xt l 11  + l z2 - X2 l 11 + • • • + l zn - Xn l 11)1111 ; 
equality holds if and only if the sets (zt - Yt. z2 - y2, . . . , Zn - Yn) 
and (Yt - Xt..Y2 - x2, . . . ,yn - Xn) are proportional with a non
negative constant of proportionality. 

4.9 Symmetric Means 

You might think, by this time, that the subject of inequalities has 
been pretty well exhausted. Actually, just the opposite is true. All 
that has gone before represents the barest scratching of the surface. 
The inequalities that we have established can be generalized in count
less ways, and then these generalizations in turn can be generalized. 
They can be combined in many ingenious ways to give many further 
results, as we shall indicate in this section and in Sec. 4. 10. 

For example, one extension of the arithmetic-mean-geometric-mean 
inequality that is rather interesting is the following: Form the three 
means, 

Xt + X2 + X3 mt = 
3 

, 

_ (XtX2 + XtX3 + X2X3 �l/2 m2 - 3 ) , 

rna = (XtX2Xa)113 • 
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Then the continued inequality 

mt � m2 � m3 
is valid for all nonnegative quantities Xt. x2, and x3• We leave the 
proof of this for the reader. This, in turn, is a special case of the analo
gous result valid for any n nonnegative quantities, in which there are n 
mean values starting with the arithmetic mean and ending with the 
geometric. 

4.10 The Arithmetic-Geometric Mean of Gauss 

Let a and b be two nonnegative quantities, and consider the 
quantities a1 and b1 defined in terms of a and b by 

By our basic Axiom II, page 7, a1 and b1 must also be nonnegative. 
If we assume that a > b ,  we have 

a + a at < -2- = a ,  

Furthermore, by the arithmetic-mean-geometric-mean inequality, 

a1 > bt .  

Let us now repeat this process, introducing a2 and b2 by means of 
the formulas 

Then, by the same reasoning as above, 

a >  a1 > a2 , 
b < bt < b2 , 

and 

a2 > b2 . 

Let us now continue this process, defining 
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then a4, b4, and generally an. bn. by the recurrence relationships 

(4.54) On-1 + bn-1 
On = 

2 
, 

After the kth step of our process, we have numbers at, a2, • • •  , ak and 
b1, b2, . . .  , bk satisfying the inequalities 

For example, if a =  4 and b = 1 ,  then the first few a's and b's are 
represented on the line shown in Fig. 4.7. We observe that b is the 
smallest and a the largest of all these numbers, and that all the b's 
are smaller than all the a's. 

0 2 3 4 

Figure 4.7. The anthmetic-geometric mean of Gauss 

We need not stop after k steps. Suppose we continue defining more 
and more a's and b's by the relationships (4.54). Each pair at. b, so 
defined, is sandwiched between the previous pair ai-t. bi_1• Thus it 
is plausible that the quantities an. which decrease as n gets larger but 
which must always remain bigger than each bi , approach some 
fixed value A; similarly, the bn, which increase as n gets larger but 
which remain smaller than each at. approach a fixed value B. The 
reader familiar with the concept of limit will readily see that A is the 
limit of the infinite sequence of numbers {an} and B is the limit of 
the infinite sequence { bn} ·  

Moreover, the difference an - bn becomes rapidly smaller as  n 
increases. We can show that, at each step, this difference is less than 
half of what it was at the previous step. Just write, using (4.54), 

(4.55) b _ On + bn _ r;;,:;- _ an - 2 -VaJi': + bn an+1 - n+1 - 2 - V Onvn - 2 
· 

Since Vfi: < yo:, we have 

2bn < 2 ya;:Fi;. ; 
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adding an - bn - 2 � to both sides of this inequality, we obtain 

an - 2 .....;a;Ji;. + bn < an - bn 

which, when applied to (4.55), yields 

as we set out to show. 
Since the a's and b's approach each other in this manner, their 

limits A and B must coincide. So 

A = B, 

and this common limit depends only on the numbers a and b with 
which we started; in mathematical language, A is a function of a and 
b. It was shown by Gauss that this function is not just a curiosity but is 
rather basic in analysis ; it may be used to found the branch of 
mathematics called the "theory of elliptic functions." 
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Maximization and Minimization 
Problems 

5.1 Introduction 

Now we shall demonstrate how the inequalities that were derived 
in the preceding chapter can be used to treat an important and fasci
nating set of problems. These are maximization and minimization 
problems. 

In the study of algebra and trigonometry, the problems you encoun
tered were all of the following general nature: Given certain initial 
data, and certain operations that were to be performed, you were to 
determine the outcome. Or, conversely, given the operations that were 
performed and the outcome, you were to determine what the initial 
data must have been. 

For example, you met three workmen, eager and industrious A, 
plodding and conscientious B, and downright lazy C. They were put 
to work digging ditches, constructing swimming pools, or building 
houses, and the problem was always that of determining how long it 
would take the three of them together to perform the job, given their 
individual efficiency ratings-or, given the time required for all three 
together, and the rates of effort of two of the three workers, it was 
required to find the rate of the third. 

Sometimes you were given triangles in which two sides and an 
included angle were known, and sometimes you were given three sides 

79 
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of the triangle. In each case, the problem was that of determining the 
remaining sides and angles. 

The foregoing kinds of problems are simple versions of what may 
be called descriptive problems. 

Here, we wish to consider quite different types of problems. We 
shall consider situations in which there are many ways of proceeding, 
and for which the problem is that of determining optimal choices. 
Questions of this nature occur in all branches of science and consti
tute one of the most important applications of mathematical analysis. 
Furthermore, much of physics and engineering is dominated by prin
ciples asserting that physical processes occur in nature as if some 
quantity, such as time or energy, were being minimized or maximized. 

Many processes of this sort can be treated in routine fashion by 
that magic technique of Fermat, Leibniz, and Newton, the calculus. 
Supposedly, in the 1 7th century, men who knew calculus were pointed 
out in the street as possessing this extraordinary knowledge. Today 
it is a subject that can be taught in high school and college, and 
requires no exceptional aptitude. 

When you take a course in calculus, you will find that many of the 
problems treated here by algebraic processes can also be solved quite 
readily by means of calculus. I t  will then be amusing to solve them 
mentally by means of the techniques presented here, but to follow 
the formalism of calculus in order to check your answer. 

Each technique, calculus as well as the theory of inequalities, has 
its own advantages and disadvantages as far as applications to maxi
mization and minimization problems are concerned. It is rather 
characteristic of mathematics that there should be a great overlapping 
of techniques in the solution of any particular problem. Usually, a 
problem that can be solved in one way can also be solved in a num
ber of other ways. 

5.2 The Problem of Dido 

According to legend, the city of Carthage was founded by Dido, a 
princess from the land of Tyre. Seeking land for this new settlement, 
she obtained a grudging concession from the local natives to occupy 
as much land as could be encompassed by a cowhide. Realizing that, 
taken literally, this would result in a certain amount of overcrowding, 
she very ingeniously cut the skin into thin strips and then strung them 
out so as to surround a much larger territory than the one-cowhide 
area that the natives had intended. 
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The mathematical problem that she faced was that of determining 
the closed curve of fixed perimeter that would surround the greatest 
area; see Fig. 5 . 1 .  

I n  its general form, the problem is much too complicated for u s  to 
handle. As a matter of fact, at our present level we don't even know 
how to formulate it in precise terms, since we have no way of express
ing what we mean either by the perimeter of an arbitrary curve or 
by the area enclosed by this curve. Calculus suggests definitions and 
provides analytic expressions for these quantities, and a still more 
advanced part of mathematics called the calculus of variations pro
vides a solution to the problem. 

As one might guess, the optimal curve in Dido's problem is a 
circle: Let us here, however, concentrate on certain simple versions 
of the problem that we can' easily handle by means of the fundamen
tal results we have already obtained in the theory of inequalities. If 
you would like to pursue the study still further, you should read the 
interesting tract Geometric Inequalities by N.  D. Kazarinoff, also in 
this series. 

5.3 A Simplified Version of Dido's Problem 

Let us suppose, for various practical considerations, that Dido was 
constrained to select a rectangular plot ofland, as indicated in Fig. 5.2. 

Figure 5 . 1 .  

The problem of Dido 

X 

X 

Figure 5.2. 

Simplified version of the problem of Dido 

With the lengths of the sides of the rectangle designated by x and 
y, respectively, we see that the length of its perimeter is given by the 
algebraic expression 

(5. 1)  L = 2x + 2y , 

and its area is represented by the formula 

(5.2) A = xy .  
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Since x andy represent lengths, they necessarily are nonnegative 
quantities. The fact that the perimeter 2x + 2y is equal to L implies 
that x andy must satisfy the inequalities 

L L (5.3) 2 � X � 0 '  T � y � 0 .  

It is clear, then, that the area A = xy cannot be arbitrarily large. 
Indeed, from the inequalities (5.3) and the expression (5.2) for the 
area, we see by Theorem 2. 5 of Chapter 2 that A cannot exceed the 
value L214 ; that is, we have 

(5.4) L2 
4 � xy= A .  

How are we going to determine the dimensions that yield the 
maximum area? 

Referring to the inequality connecting the arithmetic mean and 
geometric mean of two quantities, we observe that 

(5.5) 

for all nonnegative numbers x andy. Since, in this case, we have 
x + y = L/ 2 ,  the inequality (5.5) yields the relationship 

(5.6) or L2 
16 

� xy = A .  

Consequently, we see that our first rough bound for the area, L214 , 
obtained in (5.4), can be considerably "tightened." We can, however, 
go much further. Recall that we have established that the equality in 
(5.6) holds if and only if x = y .  In our case, this means that the 
new upper bound, L2 I 16 , is attained if and only if x = y . For all 
other nonnegative choices of x andy satisfying the relationship (5. 1 ), 
the area is less than L2 I 1 6  . 

What does the foregoing analysis tell us? It tells us that in no case 
can the area of a rectangle with perimeter L exceed the quantity 
L2 I 16  , and that this maximum value is actually reached if and only 
if we choose the sides equal to each other, and therefore equal to the 
quantity L14 . 

Thus, by purely algebraic means we have achieved a proof of the 
well-known and rather intuitively obvious fact that the rectangle of 
greatest area for a given perimeter is a square. 
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5.4 The Reverse Problem 

Let us now consider the problem of determining the rectangle of 
minimum perimeter that encloses a fixed area. This is a dual or 
reverse problem to the original. 

Returning to the equations (5. 1 )  and (5.2), we see that we now wish 
to determine the nonnegative values of x andy that make the expres
sion 2x + 2y a minimum, while preserving a fixed value A for the 
product xy. 

As might be expected, the same inequality between the arithmetic 
and geometric means yields the solution to this problem. From the 
relationship (5.5) above, we know that 

Hence we see that 

and that 

(x + y)2 > xv = A . 
4 - '/ 

L = 2x + 2y � 4 y'A. 
Consequently, we can assert that the perimeter must be at least as 

great as 4 VA and, furthermore, that this minimum value is actually 
attained if and only if x = y = y'A. Hence, once again, the optimal 
rectangular shape must be that of a square. 

This reciprocal relationship between the solutions of the two prob
lems is no accident. Usually, in the study of variational problems of 
this type, the solution of one problem automatically yields the solu
tion of the dual problem as well. For a proof of this duality principle, 
see, e.g., N. D. Kazarinoff's Geometric Inequalities mentioned earlier. 

5.5 The Path of a Ray of Light 

Suppose we wish to determine the path of a ray oflight going from 
a point P to a point Q by way of reflection in a plane surface, as shown 
in Fig. 5.3. Actually, the problem as here stated is a three-dimensional 
one, but an extension of the following analysis shows that the ray 
must travel in the plane through P and Q and perpendicular to the 
reflecting plane. 

We assume that the medium is homogeneous, so that a ray of light 
travels at constant speed. How shall we determine the point R and 
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the paths PR and RQ? Let us invoke Fermat's principle, which states 
that the total length of time required must be a minimum for all pos
sible choices of the point R. Again, because the medium is homoge
neous, this means that the paths PR and RQ are straight lines and 
that R is so located that the length PR + RQ is a minimum. 

Let the coordinates of P, Q be (0, a), (q, b) respectively, and let r 
be the unknown distance OR. Then 

OP = a, TQ = b, OR = r, RT = q - r, 
and 

PR = y'a2 + r2 , RQ = y'b2 + (q - r)2 ; 

see Fig. 5 .4. Our problem is to determine r so that PR + RQ is a 
minimum, i.e., so that 

y'a2 + r2 + y'b2 + (q _ r)2 

is a minimum. 

p� 
R 

Figure 5.3. Path of a reflected ray of light Figure 5.4. Determmation of the point R 

We apply the triangle inequality as follows: 

y'a2 + r2 + y'b2 + (q - r)2 � y'(a + b)2 + (r + q - r)2 
= y'(a + b)2 + q2 . 

Thus the distance traveled cannot be less than the fixed amount 
y(a + b)2 + q2 ; and this minimum value is achieved precisely if 
the sets (a, r) and (b, q - r) are proportional with a positive constant 
of proportionality, that is, if 

(5.7) � = _b_ >  0 .  r q - r 

Observe what the condition (5.7) means geometrically. It means that 
the right triangles ORP and TRQ are similar and that, since b is posi
tive, q - r is positive so that R falls between 0 and T. From the 
similarity of the right triangles, we conclude that the angles ORP and 
TRQ are equal. Therefore, their complements 4 SRP and 4 SRQ 
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are also equal. Thus Fermat's principle has enabled us to deduce the 
famous result that the angle of incidence is equal to the angle of 
reflection, 

4 SRP = 4 SRQ, 

and the more obvious fact that R lies between 0 and T. 
The above principle of reflection can also be proved by purely 

geometric considerations. If R' in Fig. 5.5 denotes any point on the 
x-axis different from R, and if Q' is the point (q, - b), then 

PR + RQ = PR + RQ' = PQ' < PR' + R'Q' = PR' + R'Q, 

so that the point R is again seen to minimize the distance PR + RQ . 

y 
p 

Q' 
Figure 5.5. Geometric determination of the point R 

Suppose a plane divides two homogeneous media M1 and M2 of 
different density so that in M1 light rays travel with velocity v1 
along straight lines and in M2 they travel with velocity v2 along 
straight lines. We now wish to determine the least time-consuming 
path from a point P in M1 to a point Q in M2; see Fig. 5.6. Again 
we have 

PR = ya2 + r2 , RQ = yb2 + (q - r)2 

y 
P (o , a )  

Figure 5.6. A refracted ray of light 
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and wish to minimize the time (distance/velocity) 

1 = ...ja2 + r2 + yb2 + (q - r)2 . v1 v2 
While this is an easy problem in differential calculus, the minimum 

value does not seem to be obtainable directly from our elementary 
inequalities. The minimum value of t is obtained if the path from P 
to Q is a broken straight line PRQ (see Fig. 5.6) located so that the 
angles fh and fJ2 (between PR and the normal to the plane and RQ 
and the normal to the plane, respectively) satisfy the relation 

sinfJ1 v1 
sinfJ2 v2 

This relation is known as Snell's law of refraction. 

5.6 Simplified Three-dimensional Version of Dido's Problem 

Consider now the problem of determining the rectangular box that 
encloses the greatest volume for a fixed surface area; see Fig. 5.7. 
Designating the lengths of the sides by x, y, and z, we see that the 
volume is given by the expression 

V = xyz ,  
while the surface area is represented by the formula 

A = 2xy + 2xz + 2yz . 

y 
Figure 5.7. Three-d1mensional version of the s1mpltfied problem of Dido 

Given the value of A, we wish to choose the values of x, y, and z 
that make V as large as possible. Once again, an application of the 
arithmetic-mean-geometric-mean inequality will resolve the problem 
for us. 

Considering xy, xz, and yz as three nonnegative quantities, we 
obtain the inequality 

(5.8) xy + x; 
+ yz ;::: [(xy)(xz)(yz))l13 = (xyz)213 . 
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We know that equality can occur if and only if 

xy = xz = yz ,  

a relationship that holds i f  and only if 

Since 
x = y = z .  

A xy + xz + yz = 2 ,  

the inequality (5.8) yields 

1 � (xyz)213 = V213 or 
(A)312 
6 � v .  

It follows that the volume of the rectangular box with surface area 
A is less than or equal to (A/6)312 , and that this value is attained if 
and only if 

X = y  = Z = 
(�)112

• 

Hence, the rectangular box of maximum volume for a given surface 
area is a cube; and, dually, the rectangular box of minimum surface 
area that encloses a given volume is a cube. Once again, we observe 
a reciprocal relationship between two problems. 

Exercises 

I .  Show that, if the sum of the lengths of the twelve edges of a rectangular 
box is a fixed value E, then the surface area A of the box is at most 
£ 2/24 , and that the box is a cube if and only if £ 2/24 = A .  

2. State and prove the reverse of the result expressed in Exercise I. 
3. Of all rectangles having the same length of diagonal, determine which has 

the greatest perimeter and determine which has the greatest area. (Use 
the results in Exercise 3 on page 24 or Exercise 3 on page 62.) 

5. 7 Triangles of Maximum Area for a Fixed Perimeter 

Let us now consider the problem of determining the triangle of 
maximum area for a given perimeter. In Fig. 5.8, let s denote half 
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� Y z X 
Figure 5 8 The problem of Dido for a triangle 

the length of the perimeter of the triangle shown; that is, let 

_ x + y + z  s - 2 . 

As is well known, the area A of the triangle can be expressed by the 
formula 

A = [s(s - x)(s - y)(s - z))112 . 

We wish to find the maximum value of the area as x, y, and z vary 
over all positive values for which the relationship 

2s = x + y + z  

holds, where the value s is fixed. 
Once again, the arithmetic-mean-geometric-mean inequality yields 

the solution in a very simple way. For the three nonnegative values 
s - x ,  s - y, and s - z ,  we have 

[(s - x)(s - y)(s - z))113 :s; (s - x) + (s � y) + (s - z) 

Hence, 

(5.9) 

< 3s - (x + y + z) = 3s - 2s = � 
- 3 3 3 . 

(s - x)(s - y)(s - z) :s; GY· 
From (5.9), by easy steps, we obtain the result , [ (§..)3] 112 = 

( 54)112 = s 2 A = [s(s - x)(s - y)(s _: z)]112 :s; s 
3 33 3\73" 

There is equality if and only if 

s - x = s - y = s - z ,  

that is, i f  and only i f  x = y = z .  Consequently, we can assert: 
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THEOREM 5. 1 .  Of all triangles with a fixed perimeter, the equilateral 
triangle maximizes the area. 

Observe that all the results we have so far obtained in this chapter 
seem to indicate that symmetry and optimal behavior are closely in
terrelated. Perhaps the profound and aesthetic observation of Keats, 
"Beauty is truth, truth beauty," sums this up best. 

Exercises 

1 .  Let s denote half the length of the perimeter and A the area of the triangle 
having sides of length x, y, and z, so that 

and 
s - x + y + z  

- 2 

A2 = s(s - x)(s - y)(s - z) . 
For the special case of an isosceles triangle, with y = z ,  let the area be 
denoted by /; and for the special case of an equilateral triangle, with 
x = y = z ,  let the area be denoted by E. Show that 

/2 = � x2(s - x) 
and 

2. With the notation of Exercise 1 ,  show that, for triangles of equal perime-
ter s, 

and 
J2 - A2 = {<s - x)(y - z)2 , 

where x is the length of the base of the isosceles triangle and also the length 
of one side of the general triangle. 

3. Using the formulas in Exercise 2, show that 

and 
£ 2 - [ 2 2': 0 

J 2 - A2 2': 0 . 
Under what circumstances do the signs of equality hold? 

4. Using one of the inequalities in Exercise 3, show that, if the perimeter and 
one side of a triangle are given, then the area is maximized by making the 
triangle isosceles. 

5. Using one of the inequalities in Exercise 3, show that of all isosceles tn
angles with a given perimeter, the equilateral triangle maximizes the area. 
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6. Using the inequalities in Exercise 3, explain how the formula 

A = y£2 _ (£2 _ J2) _ (12 _ A2) 
exhibits A in terms of nonnegative expressions, and how the results stated 
in Exercise 4, Exercise 5, and Theorem 5. 1 follow from this formula. 

7. Of all right triangles having the same length of hypotenuse, determine 
which has the greatest altitude to the hypotenuse. 

5.8 The Wealthy Football Player 

Consider now a problem of a similar but slightly more complex 
type. 

A football player, having parlayed his athletic prowess on the 
gridiron into a position in Wall Street and thence by natural stages 
into the possession of a variety of stocks and bonds of his own, be
came, in the course of time, quite wealthy. Being of a sentimental 
turn of mind, as retired football players are wont, he stipulated in 
his last will and testament that he be buried in a vault shaped like a 
giant football. His executors, honoring his last request, were faced 
with the problem of carrying out this assignment in the most eco
nomical fashion. 

After some thought, they decided that the mathematical problem 
most closely approximating the physical situation that they faced was 
that of enclosing a rectangular box of given dimensions within an ellips
oid of the least possible volume. 

Following the leads contained in the foregoing problems, they 
began with the reverse problem, i.e., that of inscribing a rectangular 
box of greatest volume in a given ellipsoid 

According to solid analytic geometry, an ellipsoid with center at 
the origin and axes along the coordinate axes has an equation of the 
form 

(5. 10) 

where 2a, 2b, 2c represent the lengths of the axes of the ellipsoid. Now, 
it is intuitively clear that the inscribed rectangular box will have its 
center at the origin and its sides parallel to the axes. Thus, if one ver
tex of the box is at the point (x, y, z) on the surface of the ellipsoid 
(see Fig. 5 .9 which shows one eighth of the ellipsoid), then the other 
seven vertices must be located symmetrically. This means that the 



X 

M A X I M I Z A T I O N  A N D  M I N I M I Z A T I O N  91  

z 

(o,o,c) 

Figure 5 9. One octant of a box in an ellipsoid 

coordinates of the other seven vertices of the box are given by 

( -x,y, z) , (x, -y, z) , (x, y, -z) ,  ( -x, -y, z) , 
(x, -y, -z) ,  (-x, y, -z) , ( -x, -y, -z) . 

Since the sides of the box have lengths 2x, 2y, 2z, it follows that 
the volume of the box is given by the expression 

(5. 1 1 ) V = 8xyz . 

The problem that confronts us is that of maximizing the expression 
(5. 1 1 ) subject to the condition that the quantities x, y, and z satisfy 
eq. (5 . 10). 

Once again, this problem is easily resolved by use of the arithmetic
mean-geometric-mean inequality. We have 

(5. 12) 

Using the fact that x, y, and z satisfy eq. (5. 10), and using the formula 
(5. 1 1 ) for V, we see that the inequality (5. 1 2) yields 

.l > v213 
3 - 4(a2b2c2)113 

or 1 <abc)213 ;::: V213 . 

It follows that the volume of the box is at most Sabc/3 y'3; further
more, by the condition for equality in (5. 1 2), this value is attained if 
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and only if 

or 

(5. 13) a 
X = \73' b y = \73' c z = \73. 

These values (5. 13) furnish the desired dimensions of the box, 
given an ellipsoid with semiaxes a, b, and c. 

Now let us return to the original problem. We have seen that for 
given values a, b, c, the values (5. 13)  for x, y, z give the lengths of 
the half sides of a rectangular box of maximum volume. But in the 
other direction, is it true that for given values x, y, z, the values 

(5. 14) a =  -Jj x, c = -Jj z 

give the minimum volume for a containing ellipsoid? Whether the 
executors were perspicacious or just lucky, they were right in follow
ing their mathematical hunch. Here is a proof of that fact: 

The volume W of the ellipsoid (5. 10) is given by the formula 

4 W = 3'1T abc, 

and for given positive x, y, z we want to choose positive a, b, c satis
fying eq. (5. 10) in such a way as to minimize W. 

In order to see the reciprocal relationship between the two prob
lems, it is convenient to consider reciprocals ; and since it is now 
x, y, z that are given and a, b, c to be determined, we also reverse 
ends of the alphabet and set 

(5 1 5) a - 1 b = 
Y
I , c - _!_ · . - X '  - Z '  

Eq. (5. 10) then becomes 

I I 
X = A , y = B , 

( l /A)2 ( l /B)2 ( l /C)2 

( l /X)2 
+ 

( l / Y)2 
+ 

( I /Z )2 
= I 

or 

(5. IO') 

I Z = - . 
c 

and, subject to this constraint, we wish to choose X, Y, Z so as to 
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4 W =  3 ?T abc . 

Since the coefficient 4?T/3 is a constant, minimizing W is equivalent 
to minimizing 

1 abc = XYZ 
which, in turn, is equivalent to maximizing 

(5. 1 1 ') V'  = 8XYZ . 
But this is just the problem we have already solved, namely, the 
problem of determining the box of maximum volume that can be in
scribed in a given ellipsoid. It does not matter that this ellipsoid 
(5. 10') and box of volume (5. 1 1 ') have no physical existence relative 
to our football player; indeed, this fact serves to emphasize and 
dramatize the importance of pure mathematical analysis. The solu
tion values [cf. eq. (5. 1 3)] are 

(5. 13') A X =  -Jj' B y = -Jj' 

Substituting from (5. 15) into (5. 13'), we obtain (5. 13) and (5. 14). 
Considering, in a typical case, a length 2x of 6 feet, a width 2y of 

2 feet, and a height 2z of I foot, we obtain the values 

a =  3 -Jj
, c = yJ/2 ,  

for an ellipsoid of minimum volume that would contain the box. 
Because of the curvature of the elliptical vault, there would be 

ample room for the inclusion of a few well-worn footballs to accom
pany our gridiron hero to his place of rest. 

5.9 Tangents 

Let us now apply the theory of inequalities to the problem of find
ing a tangent to a given curve. Of course, we can do this only in an 
intuitive fashion at this time, since any precise definition of what we 
mean by a tangent to a curve at a point lies outside our chosen 
domain of discourse. 
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Consider a curve determined by an equation of the form y = f(x) , 
as shown in Fig. 5. 10, and a line, with equation 

(5. 16) mx + ny = k,  

that cuts the curve in the points P and Q. Let us move the line parallel 
to itself [this merely involves changing the value of k in the equation 
(5. 1 6) of our line] until these two points become coincident at R, as 
shown in Fig. 5. 1 1 . The line mx + ny = k' may be called the tan
gent line to the curve y = f(x) at the point R. Let us again point 
out that we are proceeding in an intuitive fashion without attempt
ing to make the notion of a tangent precise. But you are familiar at 
least with tangents to circles and can see that the procedure does lead 
to the desired result in this special case. 

y 
y 

0 
Figure 5 10 A curve and a cutting lme Figure 5. 1 1 .  A curve and a tangent line 

We shall use the foregoing procedure and the theory of inequalities 
in order to determine the tangent lines in a given direction to an 
ellipse. Suppose the ellipse (see Fig. 5 . 12) is given by the equation 

x2 y2 _ 
a2 + b2 - 1 ,  

and let (x1oy1) be one of the two points of tangency for lines of the 
form mx + ny = k, where m and n are fixed, m2 + n2 -=!= 0 ,  and k 
varies through all values. Observe that this point of tangency can be 
characterized in the following way: 

(a) The point (x1, y1) lies on the ellipse; i.e., the values x1, y1 
satisfy the equation 

(5. 17) X12 Y12 -
a2 + v - 1 .  

(b) The point (x1oy1) lies on the line; i.e., the values x1o y1 satisfy 
the equation 

mx1 + ny1 = k .  
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y 

Figure 5 . 12  An ellipse and two parallel tangent lines 

(c) The distance from the origin to the line mx + ny = k is a 
maximum for all points (x1.y1) satisfying conditions (a) and (b), as 
k varies. 

The distance d from the origin to the line mx + ny = k is given 
by the formula 

(5. 1 8) d - l k l - ym2 + n2 
! mx1 + ny1 i  
ym2 + n2 . 

To see this, observe that the line 

(5. 19) mx + ny = k 
has slope -min (see Fig. 5 . 13) and that a perpendicular line OP 
through the origin must therefore have the equation 

(5.20) n y = -x .  
m 

Solving the system of linear equations (5. 19) and (5 .20), we find the 

y 

Figure 5 13.  The distance formula 
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coordinates of P to be 

x =  km , m2 + n2 
kn y = 

m2 + n2 · 

The distance from the origin to P is therefore 

d = OP = 
[ k2m2 + _...:.k;:_2...:.n_2 

-J 112 
(m2 + n2)2 (m2 + n2)2 

_ ( k2 )v2 _ 1 k 1 
- m2 + n2 - 'Jm2 + n2 ' 

and, since k = mx1 + ny1 by condition (b), formula (5. 1 8) is proved. 
It follows that the problem of determining the tangent line is that 

of maximizing the expression (5. 1 8) over all x1 and y1, subject to the 
constraint (5. 1 7). 

An application of Cauchy's inequality, i.e., the inequality (4.38) in 
Sec. 4.4(a) of Chapter 4, yields 

(5.21)  

d _ 1 mx1 + ny1 l  _ l (am)(x1/a) + (bn)(y1/b) l - ym2 + n2 - ym2 + n2 

The points of tangency are determined by two conditions. Namely, 
they must lie on the ellipse, so that (x1,y1) satisfies (5 . 1 7) :  and the 
distance (5. 1 8) must attain its maximum value, so that the equality 
sign holds in (5.2 1 ), which is the case if and only if 

(5.22) 

The solution of the system of linear equations (5. 1 7) and (5.22) yields 
the values 

(5 .23) y _ -+- ..,.......,.-...::b:.....2.:.:n:-:----1 - - (a2m2 + b2n2)112 ' 

where either both plus signs or both minus signs are taken, and the 
desired values k' and k" (see Fig. 5 . 12) of the constant k can then be 
found by substitution in eq. (5. 19). 
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5.10 Tangents (Concluded) 

With a slight amount of additional effort, we can obtain a much 
more elegant result, resolving the problem of finding the tangent to 
an ellipse at a given point on the ellipse, rather than the tangent in a 
given direction. 

In place of solving for x1 and Yt in terms of m and n, we need only to 
solve for m and n in terms of Xt and Yt· It is that simple! From 
eq. (5.22), we see that we must have 

!l.! n = b2 

where r is some as-yet-undetermined constant of proportionality. 
Using these values in the equation mx + ny = k, we obtain the 
equation of the tangent line in the form 

( �t)x + ('�t)y = k 
or 

Since, on the one hand, (x1,y1) is a point on this tangent line, and 
since, on the other hand, it is also on the ellipse-that is, (xt.y1) sat
isfies equation (5. I 7)-we must have klr = I . Hence, we obtain the 
very simple and elegant result that the tangent to the ellipse 

x2 y2 _ 
a2 + b2 - I 

at the point (Xt.Yt) on the ellipse has the form 

XXt + ll.!_ = I 
a2 b2 . 

As you will see when you study calculus, this is the same result that 
one obtains through the use of derivatives. 

Exercises 

I .  Determine which of the points (5, - 3), (3, 5), and (7, 0) is on the ellipse 
x2 y2 _ 
50 + 18 - I .  
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2. For x = 2 ,  determine the values y such that the point (x, y) lies on the 
ellipse in Exercise 1. Also for x = 2 ,  detenrune the values of y such that 
the point (x,y) hes either inside or on the ellipse. 

3. Determine the equation of the tangent to the ellipse in Exercise 1, at the 
point ( - 5, 3) on the ellipse. 

4. Solve the system of equations 
x2 y2 _ 
a2 + b2 - 1 ,  

mx + ny = k ,  
where a, b, m, and n are fixed, choosing k so that the resulting quadratic 
equation has a double root. (You will find that k2 = a2m2 + b2n2 .) 
Compare your answer with the values of Xt, Yt given at the end of Sec. 
5.9, page 96. 
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Properties of Distance 

6.1 Euclidean Distance 

The distance with which you are familiar, between two points 
P : (xt.Jt) and Q : (x2,y2) in the (x,y)-plane, is called Euclidean dis
tance. We shall denote it by d2(PQ); it is given by the formula 

(6. 1 )  d2(PQ) = [(x2 - Xt)2 + (y2 - Yt)2]112 . 

We shall now enumerate some of the properties that characterize 
this distance function. 

I. The distance between two points depends only on the position 
of one relative to the other; that is, it depends only on the differences 
x2 - Xt and Y2 - Yt of their coordinates. This property (that the 
distance between two points does not change when both points are 
shifted by an equal amount in the same direction) is called translation 
invariance. 

2. The distance from a point P to a point Q is equal to the distance 
from Q to P. This is seen by venfying, in (6. 1 ), that 

Property 2 is usually called the symmetry of the distance function. 

99 
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3. The triangle inequality 

d2(PR) ::; d2(PQ) + d2(QR) 

is satisfied by the distance function (6. 1) ;  see Sec. 4.6. 
4. The distance d2(PQ) between any two points is nonnegative 

for all P and Q. That is, 

d2(PQ) z 0 ;  

the sign of equality holds if and only if the points P and Q coincide. 
This is often called the positivity of the distance function; it follows 
immediately from the definition (6. 1). 

5. If P has coordinates (x,y) and Q has coordinates (ax, ay), where 
a is a nonnegative constant, then 

d2(0Q) = ad2(0P) ; 

here 0 denotes the origin (0, 0). This property is sometimes called 
the homogeneity of the distance function, and it holds because 

d2(0Q) = [(ax)2 + (ay)2)112 = [a2(x2 + y2))112 
= a(x2 + y2)112 = a  d2(0P) . 

The Euclidean distance has still another property: 
6. The Euclidean distance between two points remains unchanged 

if the (x, y)-plane is rotated about the origin through some angle. 
This property is sometimes called rotation invariance. 

6.2 City-Block Distance 

It turns out that many other useful and interesting "non-Euclidean" 
distances can be defined. In order to be called a "distance," a func
tion of P and Q must have the properties 1 through 5 that we just 
verified for the familiar distance ( 6. 1 ). The Euclidean distance d2 
alone has all six properties. 

As an example, let us invent a "city-block distance" by determining 
the actual length of a path between two addresses P : (x1.y1) and 
Q :  (x2, y2) in your home town, assuming that all the streets are laid 
out strictly north-south and east-west, and that there are no empty 
lots to cut across; see Fig. 6. 1 .  Any path from P to Q is made up ex
clusively of horizontal and vertical pieces, so that the distance d(PQ) 
we would have to traverse consists of the sum of all the horizontal 
distances and all the vertical distances making up the path from P to 
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Figure 6. 1 .  City-block distance 

6 

Q. We shall therefore define city-block distance d1 by 

(6.2) 

IOI 

X 

although, strictly speaking, this does not quite accurately describe 
the situation. It is not correct for the case shown in Fig. 6.2, where 
the addresses P and Q lie between the same two north-south (or 
east-west) streets; in this case, the traveler is forced to reverse direc
tions in the course of his walk. Nevertheless, let us take (6.2) as the 
definition of a new "non-Euclidean" distance. Mter all, our city-block 
example just served as a motivation. (If our blocks are very small, 
(6.2) is fairly accurate. More precisely, our new distance function is 
the minimum distance required in traveling from P to Q when con
strained to move only in the four principal compass directions.) 

Figure 6.2. City-block distance, exceptional case 

Next, let us see if d1. as defined by (6.2), has the five properties 
required of a distance. 

Since only the difference of the coordinates enters the expression 
(6.2), our new distance is certainly translation invariant, so that it has 
property 1 .  

Since d1(PQ) = d1(QP ) ,  d1 i s  symmetric, and thus i t  has prop
erty 2. 
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To establish the triangle inequality 

d1(PR) :::; d1(PQ) + d1(QR) , 

let P, Q, R have coordinates (x1,y1), (x2,y2), and (x3,y3), and write 

d1(PR) = l x1 - x3 1 + IY1 - Y3 1 
= I X! - X2 + X2 - X3 l + IYl - Y2 + Y2 - Y3 l ;  

since, by Theorem 3.2, page 42, 

we have 

I x1 - x2 + x2 - X3 I :::; I x1 - x2 l + I x2 - x3 1 , 
IY1 - Y2 + Y2 - Y3 1 :::; IY1 - Y2 l  + IY2 - Y3 1 , 

d1(PR) :::; l x1 - X2 l + IY1 - Y2 l + l x2 - X3 l + IY2 - Y3 1 
= d1(PQ) + d1(QR) . 

The city-block distance certainly satisfies our fourth condition 
since the absolute value of any real number is always nonnegative. 
It is positive unless P and Q coincide. 

Property 5 is easily verified since, for a 2 0 ,  

I ax I + I ay I = a[ I x I + IY I ] . 

Next, let us try to generalize the notion of a circle from Euclidean 
to city-block geometry. In Euclidean geometry, a circle is the locus 
of points equidistant from a fixed point. Let us carry this definition 
over to our new geometry. According to (6.2), the "unit circle" with 
center at the origin 0 :  (0, 0) would be given by the equation 

d1(0P) = l x l  + IY I = 1 . 
Its graph in the ordinary Euclidean plane is shown in Fig. 6.3 (see 
also Fig. 3 . 1 4). 

y 

Figure 6 3 The unit circle in city-block geometry 
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6.3 Some Other Non-Euclidean Distances 

Suppose that we now define the "distance" between the origin 0 
and an arbitrary point P to be given by the expression 

(6.3) 

for some fixed value of p 2 I ,  and generally, that we define the dis
tance between any two points P : (xt.y1) and Q : (x2,y2) to be 
given by 

(6.4) dp(PQ) = [ I Xt - X2 1 p + IYt - Y2 1 P)l!p . 

Again, we check the five distance properties. The distance (6.4) 
certainly is translation invariant. Moreover, it is symmetric; that is, 
dp(PQ) = dp(QP) . Thirdly, the triangle inequality follows from for
mula (4.53'), which was proved at the end of Sec. 4.8 from the Min
kowski inequality. Property 4 on positivity is also satisfied by (6.4); 
and finally, for P: (x, y) and Q : (ax, ay) ,  we have 

dp(OQ) = [ l ax i P + l ay i P)liP = (aP )liP( I x i P  + IY I P)11P = a dp(OP) , 

so that our distance dp also possesses the fifth property. 
In this case the "unit circle," i.e., the locus of points at a distance 

I from the origin, is given by 

I X I p + IY I p = I . 

Just what such locus curves look like depends on the particular value 
of p. For example, when p = I ,  we are back at the city-block unit 

Figure 6 4 Euclidean graphs of non-Euchdean "unit circles" 
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circle; for p = 2 ,  we have the usual Euclidean unit circle. For 
p = 1 ,  2, 4 ,  we have the inequalities 

i x i + IY I � ( i x i 2 + IY I 2)112 � ( i x l 4 + IY I 4)114 • 

which are easily verified by squaring. The Euclidean graphs of the 
corresponding "unit circles" are shown in Fig. 6.4; the curve for 
p = 1 is contained in that for p = 4 .  Is it true, in general, that the 
"unit circles" for distances defined by (6.3) are situated in such a way 
that the one for any fixed p contains those corresponding to smaller 
p? If so, do these curves become larger and larger as p increases? 

To answer the first question, we first formulate an equivalent 
question: Does the inequality 

[ ! x i " + IY I ")l!n � [ i x l m + ly l m)l!m 

hold whenever m � n � 1 ? It does indeed. Let us give a proof for 
m = 3 , n = 2 , and leave the general case for the reader as an 
exercise. 

In order to avoid writing so many absolute-value signs, let us 
introduce 

a = i x l ,  b = IY I · 

We must then prove 

(a2 + b2)112 � (a3 + b3)113 for a, b � 0 .  

We write 

a3 + b3 = aa2 + bb2 

and apply Cauchy's inequality (in square-root form), obtaining 

(6.5) 

Since 

(6.5) yields 

or 

whence 

The proof for arbitrary rational m � n � 1 can be obtained by a 
corresponding application of Holder's inequality. It is not difficult to 
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see from the above discussion that, as p approaches 1, the "unit 
circles" 

I X I P + Iy i P = 1 ,  p >  1 ,  

approach the square I x I + IY I = 1 shown in Fig. 6.3. 
In order to see what happens asp gets larger and larger, we observe 

that 

(6.6) max { 1 x 1 v, ly l v} :::; 1 x 1 v  + ly l v :::; 2 max { 1 x 1 v, ly i P} . 

Since 

(6.6) yields 
[max { I x I v, IY I P} )11P = max { I x I , IY I } , 

(6.7) max { l x i . IY I } :::; [ l x i P  + ly l v)llv :::; 211v max { l x i , IY I } .  

Now consider what happens to the right-hand member of (6.7) as p 
becomes very large; p occurs only in the exponent l ip of 2. As p be
comes very large, l ip becomes very small and 211P therefore ap
proaches 20 = 1 .  In other words, (6.7) tells us that 

dp(OP) = ( l x i P  + ly i P)11P 

approaches the distance 

(6.8) d"'( 0 P) = max { I x I , ly I } 

as p "approaches infinity." It can be shown that d"' has all five 
distance properties. 

Now, what does the "unit circle" 

max { I x I , IY I } = 1 

look like? It is given by the square with sides 

(6.9) 

So we see that 

l x l = 1 ,  

IY I = 1 , 
0 :::; IY I :::; 1 
0 :::; l x l :::; 1 .  

dv(PQ) = [ l x1 - x2 I P + IY1 - Y2 I P]11P 

can be used as a distance function for all p 2 1 and that, asp grows 
larger, the "unit circles" 

I X I P + IJ I P = 1 

grow larger, approaching the square (6.9) as p approaches infinity; 
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in spite of the fact that these "unit circles" grow bigger and bigger, 
they never get out of the square (see Fig . 6.4). 

The "unit circle," in all these cases, divides the (x, y)-plane into two 
regions : the interior of the "unit circle," comprised of all points at dis
tance less than 1 from the origin, and the exterior, comprised of all 
points at distance greater than 1 from the origin. The set of points 
defined by the inequality 

d(OP) ::; 1 

is sometimes called the unit disc, and the "unit circle" 

d(OP) = 1 

is called the boundary of the unit disc . 
Some general remarks are in order . The Euclidean distance, as 

pointed out earlier, is invariant under translations (property 1 )  and 
rotations (property 6), i.e., under the so-called displacements or 
rigid-body motions. The other distances treated above also do not 
change under translation, but they do change under rotation. In fact, 
we can see from Fig. 6.4 that the city-block distance d1 goes into the 
distance d"' = max { I x2 - Xt l ,  IY2 - Yt l }  (stretched by a factor 
-J2) when the (x,y)-plane is rotated through 45° about the point 
(x1 ,  y1). It can be shown (but we shall not do so here) that the 
Euclidean distance is completely characterized by the six properties 
enumerated in Sec . 6. 1 ;  this means that the only distance that has, in 
addition to the five required properties, the property of rotation 
invariance is the Euclidean distance. 

6.4 Unit Discs 

There are many other functions having the five properties required 
of a distance ; we have considered only a few. 

We might ask the following question : Given a set S of points 
(which we shall henceforth call a point set) in the (x, y)-plane, such that 
S contains the origin in its interior, under what conditions does it 
represent the unit disc belonging to some distance d? In other words, 
under what conditions does there exist a distance function d for which 
S contains exactly those points P that are characterized by the 
inequality 

d(OP) ::; 1 ?  
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We claim that, for a given point set S having the origin in its interior 
there exists a distance function d such that S plus its boundary is the 
unit disc for d if and only if the following conditions are satisfied: 

(a) The point set S is symmetric with respect to the origin. 
(b) The point set S is convex. 
A point set S is symmetric with respect to the origin if, for each 

point (x, y) belonging to S, the point ( -x, -y) also belongs to S. It is 
convex if, for each pair of points in S, the line segment joining these 
points is entirely in S. See Fig. 6.5, (a) and (b). 

y 

(a )  

y 

( b )  
Figure 6.5. Point sets i n  the plane 

(a) Pomt set symmetric with respect to the origin 
(b) Convex Point set 

We shall first prove that property (a) holds if d is a distance func
tion: If d is a distance function and S its unit disc, then S is symmetric 
with respect to the origin. In other words, if d is a distance function 
and P: (x, y) satisfies d(OP) s I ,  then the point Q : (  -x, -y) 
satisfies d( OQ) s 1 . 

If d is a distance, then it is translation invariant; hence, if we shift 
the points Q and 0 by an amount x in the horizontal direction and 
an amount y in the vertical, their distance d( QO) will remain un
changed. But such a shift brings the point Q into the origin 0 and 
the origin 0 into the point P. Hence 

d(QO) = d(OP) S I, 

and, since d is also symmetric, 

d(OQ) = d(QO) s 1 .  

Accordingly Q lies in the unit disc. 
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Next, let us prove that if d is a distance function then property (b) 
holds by showing that, if P and Q are any two points in the unit disc, 
then the line segment PQ lies entirely in the unit disc. Symbolically, 
the problem is expressed thus: Given any two points P, Q such that 
d(OP) s I ,  d(OQ) s I for some distance function d, and any given 
point R on the segment PQ, prove that d(OR) s I .  This is imme
diately seen to be true if P = Q or if either P or Q is at the origin, 
so we may assume that 0, P, and Q are distinct points. 

y 

0 

Figure 6.6 Convexity of the unit disc 

The first step in the proof consists in expressing the fact that R lies 
on PQ in a convenient form. Let P' R be parallel to OQ and let Q' R 
be parallel to OP (see Fig. 6.6). Then we claim that 

(6. 10) d(OP') = a d(OP) , d(OQ') = b d(OQ) , 

where a >  0 ,  b > 0 ,  and a +  b = 1 .  To see this, we shall first 
employ the Euclidean theory of proportions (similar triangles). Using 
the same symbol AB for a Euclidean line segment and its length, we 
have 

(6. 1 1) 

where a and b simply denote these ratios and hence are positive 
numbers. Moreover, by adding these ratios, we obtain 

a + b = QR + RP = 
QP 

= I 
QP QP 

. 

Since P and P' lie along the same straight line through 0, their 
coordinates are proportional. We may therefore make use of prop
erty 5 of the Euclidean distance and deduce, from (6. 1 I ), that if P 
has coordinates (Xt.Yl), then P' has coordinates (ax1. ay1). Similarly, 
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since Q and Q' are on the same line through 0, if Q has coordinates 
(x2,y2), then Q' has. coordinates (bx2, by2). We now use the fact that 
our distance d also has property 5, so that 

(6. 12) d(OP') = a d(OP) , d(OQ') = b d(OQ) . 

Finally, we use property 3 (the triangle inequality; see Fig. 6.6): 

d(OR) S d(OP') + d(P'R) , 

or, since d(P'R) = d(OQ') by property 1 ,  

d(OR) S d(OP') + d(OQ') . 

Substituting from (6. 12), we have 

d(OR) S a d(OP) + b d(OQ) , 

and, since d(OP) s 1 ,  d(OQ) s I ,  and a +  b = I ,  

d(OR) s a +  b = I ,  

which, by definition, means that R is in the unit disc. 
So far we have shown that, if d is a distance and S its unit disc, 

then S is symmetric with respect to the origin and convex. We must 
still prove the converse: If S is a point set containing the origin in its 
interior, and S is convex and symmetric with respect to the origin, then 
there exists a distance function d for which S is the unit disc. 

We shall indicate how such a distance d may be defined, but we 
shall leave to the reader the job of verifying that d has the five pre
scribed distance properties. 

z 
y 

y ' �  

/ 1' ,  Q I I _  \a·-----
- + -f-1== - - - x' 

\ I I \ I 
' r  

Figure 6 7. d(OZ) = OZ , 
OZ' d(PQ) = !!2_ PQ' 
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Let S be a point set of the prescribed sort; see Fig. 6.7. Let Z be 
any point other than 0 in the plane. Draw the ray from 0 through 
Z and let it intersect the boundary of S in the point Z'. (It follows 
from the convexity of S that there is just one such intersection of the 
ray with the boundary of S.) Then calculate the ratio 

oz r = 
OZ' 

of the Euclidean distances OZ to OZ' and define the distance from 
0 to Z to be this ratio; i.e., let 

d(OZ) = r .  

Observe that d(OZ) is less than 1 ,  equal to 1 , or greater than I de
pending on whether Z is an interior point of S, a boundary point of 
S, or an exterior point of S, respectively. 

To define d(PQ) for any points P and Q, shift the coordinates as 
indicated in Fig. 6.7 and proceed as before. 

In an ordinary Euclidean circle, the ratio of the circumference to 
the diameter is denoted by the symbol ., and is approximately 3. 14. 
In the exercises below, the task is to find the ratio r of the non
Euclidean length of the circumference to that of the diameter of some 
non-Euclidean unit circles. We shall analyze the situation in one par
ticular case, below, and leave other simple cases for the reader to 
investigate. 

y 

Figure 6.8. A regular hexagon symmetric With respect 
to the co-ordinate axes 

ExAMPLE. Let S consist of the points of a regular hexagon symmetrically 
situated with respect to the coordinate axes, together with the points of its 
interior; see Fig. 6.8. Since S is convex and symmetric with respect to the 
origin, it may be considered the unit disc for some distance function d. Since 
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the non-Euclidean radius of the unit disc is I by definition, its diameter is 2. 
To calculate the circumference, we observe that, because of the translation 
invariance of d, the following relations hold: 
d(P1P2) = d(OP3) = I ,  d(P2P3) = d(OP4) = I ,  
d(P4Ps) = d(OPs) = I ,  d(PsPs) = d(OPt) = I ,  

d(P3P4) = d(OPs) = I ,  
d(PsPt) = d(OP2) = I .  

I f  we add the lengths o f  all these segments, we find that the circumference 
is 6. Hence, the desired ratio is 

r = � = 3 . 

Exercises 

Calculate the ratio of the non-Euclidean length of the circumference to that 
of the diameter for the following unit discs S: 

I. S is the unit disc for the city-block distance I x2 - Xt l + IY2 - Yt l ;  see 
Fig. 6.3. 

2. S is the unit disc for the distance function 
d( 0 P) = max { I x I , IY I } . 

3. The unit disc S consists of the interior and boundary points of a regular 
octagon with center at the origin. 

4. The unit disc S consists of the interior and boundary points of a regular 
ten-sided polygon with center at the origin. 

6.5 Algebra and Geometry 

What we have observed in the preceding sections is that geometric 
intuition can be used to derive interesting algebraic results. In two 
or three dimensions, this technique works well. As soon as we tum 
to a discussion of n-dimensional geometry, for n 2 4 , the situation 
reverses. Now, we often rely on algebra to make geometric definitions 
and to establish geometric results. 

Let us briefly illustrate this idea. Consider a set of n real quantities 
Xt. x2, . . .  , Xn as constituting a point P in n-dimensional space. The 
Euclidean distance between the two points P: (xt. x2, . . .  , Xn) and 
Q : (yl, y2, . . .  , Yn) is defined to be 

(6. 13) d(PQ) = [(x1 - y1)2 + (x2 - y2)2 + · · · + (xn - Yn)2)112 . 

For n = 2 ,  (6. 13) reduces to the familiar expression for the distance 
between two points (xt. x2) and (yt.y2) in the plane. If we denote the 
origin (0, 0, . . .  , 0) by 0 and the point (x1 + Yt. x2 + y2, . . .  , Xn + Yn) 
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by R, then the n-dimensional triangle inequality 

d(OP) + d(PR) ;::: d(OR) 

would read 

(6. 14) 
[x12 + x22 + . . .  + Xn2]112 + [y12 + y22 + . . .  + Yn2]112 

;::: [(xl + Yt)2 + (x2 + Y2)2 + · · · + (Xn + Yn)2]112 . 

This is a valid inequality, as was noted on page 70 in Sec. 4.6. 
Next, let us define the cosine of the angle () between the lines OP 

and OQ by 

(6 15) COS () - XJ..Yt + Xg,Y2 + • • • + Xo/'n · - (x12 + x22 + . . .  + Xn2)112(y12 + y22 + . . .  + Yn2)112 · 

The Cauchy inequality [see Sec. 4.4(d), inequality (4.45)] shows that 
1 cos 8 1  � 1 .  

We now have the foundations for an analytic geometry of n 
dimensions. 
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{ah a2, 0 o 0 ,  an} 

max {a1. a2, 0 0 0 ,  an} 
min {a1, a2, o o o ,  an} 

{ah a2, 0 0 0 ' an}+ 
{a1, a2, o o o , an}

sgn x 

SYMBOLS 

absolute value of a 
set of all negative numbers 
set of one element, namely, the number 0 
set of all positive numbers 
is a member of 
is not a member of 
equal to 
not equal to 
greater than 
not greater than 
less than 
not less than 
greater than or equal to 
neither greater than nor equal to 
less than or equal to 
neither less than nor equal to 
neither greater than nor less than 
nonnegative square root 
set of elements a1, a2, 0 0 0 , an 
greatest element of {a1, a2, 0 0 0 ,  an} 
least element of { a1. a2, 0 0 0 , an} 
max {0, a1, a2, o o o ,  an} 
min {0, a1. a2, 0 0 0 , an} 
0 for x = 0 ,  I for x > 0 , - I for x < 0 0 

1 1 3 





A nswers to Exercises 

Chapter 1 

Pages 1 2- 13 

I .  ./2 - 1 5  3 - 7T  7T- 3 
+ 

-3 -2 - I  0 2 3 

-3 < - 2  < - 1 .5 < - I < 3 - 'TT < 0 < 'TT - 3 < V2 < 2 < 3 

2. (a) e (b) j (c) f (d) f (e) e (f) f (g) e (h) f (i) f (j) t 
3. (a) N (b) P (c) P (d) N (e) P (f) P (g) P (h) N (i) P (j) 0 

4. (a) < (b) > (c) > (d) < (e) > (f) > 

(g) > (h) < (i) > (J) = 

5. (a) T (b) T (c) T (d) F (e) T (f) T (g) F (h) T (i) F (j) F 

6. 2 ,  "' - 3 ,  - (3 - w)2 , al(c - b) , 0 ,  - yb2 - 4ac . 

7. (a) :;:::: (b) � (c) � (d) > (e) < (f) = 

S. p > O , -n > O . so p - n > O , so p > n . 

9. a =  b 

1 1 5 
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10. True for n = 1 by hypothesis; induction step by AxiOm II. 

1 1 .  Numbers 1 and 2 were shown in text to be "positive," so 1 + 2 = 3 is 
"positive" by Axiom II. Let a = 1 I 3 ; then 3a = 1 , so a is "positive" 
since 3 and 1 are "positive." Then 2a = 2/3 is "positive" by Axiom II. 

Chapter 2 

Page 19 

1 .  Add a/2 < b/2 first to a/2 = a/2 , then to b/2 = b/2 . 

2. Both inequalities are equivalent to (ad - bc)2 :2:: 0 .  

3. Equivalent to (a - b)4 :2:: 0 .  

4. For n = 2 ,  the theorem states: I f  a1 :2:: a2 , then a1 :2:: a2 , which is 
true. Suppose true for n and let a1 :2:: a2 , . . .  , a,._1 :2:: a,. , a,. :2:: a,.+1 .  
Then a1 :2:: a,. , a,. :2:: a,.+1 ,  so a1 :2:: a,.+l · Sign of equality if and only 
if a1 = a2 , . . .  , a,._l = a,., and a,. = an+l · 

Pages 2 1-22 

1 .  Intermediate step: 
2 < !  + ! 

ya!j - a b "  

Equality if and only if a = b .  

2. In Exercise 1 ,  let b = l la . Equality if and only if a =  I .  

3. Add together a2 + b2 :2:: 2ab, b2 + c2 :2:: 2bc, c2 + a2 :2:: 2ca , then 
divide by 2. 

4. Equivalent to a2b2(a - b)2 :2:: 0 .  

5. Multiply a2 + b2 :2:: 2ab by c, b2 + c2 :2:: 2bc by a, c2 + a2 :2:: 2ac by 
b, then add. 

6. Intermediate step: 

(a2 - b2)2 - (a - b)4 = 4ab(a - b)2 . 

7. Intermediate step: 
(a3 + b3) - (a2b + ab2) = (a + b)(a - b)2 . 

8. (3) a = b = c ;  (4) a = b or at least one of them = 0 ;  
(5) a = b = c ;  (6) a = b or at least one of them = 0 ;  (7) a = ±b . 
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Page 24 

1 17 

I. Equivalent to (a - b)2 � 0 .  Sign of equality if and only if a = b � 0 .  

2. By Theorem 2.7 and the fact that c and d are of the same sign, ac - b< 
and ad - bel are of the same sign. Multiply out. Sign of equality if and 
only if a =  b .  

3. a2 + b2 � 2ab, a +  b � 2 y'ali. 

4. The equivalence of these inequalities can be proved by multiplying the 
first by bd > 0 and the second by I I bd > 0 ; see Theorem 2.3. The 
equivalence of the corresponding equations is proved in the same way. 

5. Add I = I to the inequality. Equality alb = cld is equivalent to 
ad = bc .  

6. Apply Theorem 2. 7 with exponent - I ,  add I = I to resulting inequality, 
then apply Theorem 2.7 again with exponent - I .  Sign of equality as in 
Exercise 5. 

7. Intermediate steps: 
a + c _ g_ _ bc - ad >O £_ _ a + c _ be - ad > O b + d b - b(b + d) - ' d b + d - d(b + d) - . 

8. 30 < 33 ; 22 < 25 ; 1 8  < 2 1  ; 42 < 45 . 
9. If a < b and b < c, then a < c .  

If a < b  and c < d, then a + c < b + d. I f  a < b  and c is any real 
number, then a +  c < b + c . 
If a < b and c > 0 ,  then ac < be . If a < b and c < 0 , then 
ac > be . 
If a < b and c < d, then a - d < b - c .  If a < b and c is any real 
number, then a - c < b - c .  
If 0 < a < b and 0 < c < d, then ac < bd . 
If 0 < a <  b and 0 < c < d, then aid < blc . In particular, for 
a = b = I , if 0 < c < d, then I I d < I I c . 
If 0 < a <  b, if m and n are positive integers, and if all" and blln 

denote positive nth roots, then 
amln < bmln and 

Chapter 3 

Pages 28-29 

I. (a) - I (b) 'IT (c) 0 (d) 4 (e) 3 (f) 0 (g) 'IT (h) 0 (i) 4 (j) 3 

2. (a) - 7 (b) Vf (c) - 7  (d) O (e) - 3  (f) - 7  (g) O (h) - 7  (i) O (j) - 3  

3 .  ( - 1)(0) - (1)(0) = 0 .  

4. Consider representative cases along with the definition of max { } . 
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5. {a, b, c, d }  = { - 1 ,  - 1 , - 1 , - 1 } .  

6. One of {a, b }  + and { c, d }  + is equal to {a, b, c, d }  + ; the other is 
nonnegative. 

7. First and third inequalities: possibly an additional candidate, namely 0. 
Middle inequality: defirution of max { } and min { } . No; 
a1. a2, . . .  , an would all have to be negative for first strict inequality, and 
all positive for third. 

8. Multiply inequalities a :2:: b, a :2:: c by - 1  and apply Theorem 2.3. 

9. { - a, -b)- = min {0, - a, -b)  = - max {0, a, b} = - {a, b)+ . 

10. Consider representative cases along with definition of max { } . 

Pages 33-34 

I. For each real number a, - I a I � - a  � I a I · The first sign of equality 
holds if and only if a :2:: 0 ,  and the second if and only if a � 0 .  

2. 

(a) 

y 
3 

2 

2 3 

y 
3 

2 

-3 - 2  - 1  0 
- I 
-2  

-3  
(c) 

y 

X 
-3 -2  - I  0 I 2 3 

- I  

- 2  

- 3  
( b) 

3. (a) is also the graph of (d), (g); (b) is also the graph of (e), (h); (c) is also 
the graph of (f), (i). 
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4 y y 
3 / 
2 / 

"' / 
/ 

X "" X 2 3 

- 3  " 
- 4  " - 4  "" 

(a )  
- 5  " ( b) 

- 5 

y y 
3 / 
2 / 

/ 
" / 

X X 

- 3  "' 
- 4  "' 
- 5  "" 

( c )  (d) 

5. y 
(-3 , 4 )  (3 , 4) 

6. Fig. 3.3, odd; Fig. 3.4, odd; Fig. 3.5, even; Fig. 3.6, even. 
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I .  

( - 3, - 2 )  

( b )  

2. 

A N  

y 
3 

- 3  

I N T R O D U C T I O N  T O  

Page 36 

y 
3 

2 

- 3  - 2  - I  0 2 

- I  

- 2  

( a )  
- 3  

( 3 , 2 )  

y 

( - 1 , 1 )�
)

- -

( - 1 ,  - I  

I 
I 

(0, - 1 )  

Part (d) i s  easy; there is nothing to do. 
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X 
3 

'I 

1 , 1 )  

( 1 ,0) 
I 

(e )  I 
(f)J - .. ( 1 , - 1 )  



3. y 

-2 

( a )  
- 3 

4. 

I .  

( a )  
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y 

4 

~  
3 

2 

X 
- 3  - 2  2 3 

(- 1 , - I )  
- 2  

- 3  
( b ) 

y 

2 

( - 3 ,  I )  

- 3  - 2  - I  0 I 2 
X 

3 
- I  

(3,  - I )  

- 2  

Page 39 

(a) x � O . y 2 0 ,  x + y �  1 :  

(b) X �  0 ,  J 2 0 ,  X +  J 2 1 ;  

-----+-----"1�----.... X (C) X 2 0 ,  J 2 0 ,  X + J 2 1 :  

( g )  (d) x 2 0 , y 2 0 , x + y � 1 ,  

(e) x � O , y � O , x + y � 1 ;  

(f) X 2 0 , J � 0 , X +  J � 1 ; 

(g) X 2 0 ,  J � 0 ,  X + J 2 1 . 
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2. 
y 

0 

· I  

(a)  

3. 

l - 2 ,  I )  

4. 

(3,5) 

l-3,- 4) 
Incomplete graph. 

y 5 
4 

3 

y 
5 

\ 
4 \ 

-3 
- 4  

T O  I N E Q U A L I T I E S  

X - I  

2,5) 

X 2 

\ ! 1 ,3) 
........ ....... / -...... .1(,!_3. 2) 

/ 
/ �2, 1) 

y 

(0, 1/2) 

(0,- 1 /2}  
- I  

( b) 

X 
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5. 

y 
6 

5 

/ -2 

Incomplete graph. 

I . 

,... 

,."' 
1/ 

I 

(-5 ,0 )  

\ 

', � 

Page 41  

y (0,5 )  

�..��..� 
1_,11 
(0 ,0) 

j.... 
(0, -5) 

"'r--"' 
� II fl. 

5 1..1 1\ 
�..�� 

IJ 
I.J 

�..-""' 
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X 
(5,0) 

v 
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y 

3. They-axis, x = 0 .  Geometrically, the problem is to determine the locus 
of points equidistant from ( - 1 ,  0) and ( 1 ,  0). Analytically, it is to solve 
the equation 

y(x + 1)2 + y2 = y(x - 1 )2 + y2 . 

Page 45 

I . (a) 1 - a l = � = P = l a l 
(b) l ab l = y'(aD}2 = P VF£ = l a l · l h l 
(c) ' * '  = j(ff = {!r = f*t· 

2. (a) = , (b) > ,  (c) = , (d) = , (e) > .  

3. (a) > ,  (b) = ,  (c) = ,  (d) = ,  (e) = . 
4. (a) > , (b) = , (c) = , (d) > . (e) = . 
5. (a) = ,  (b) > ,  (c) > ,  (d) = , (e) = . 

6. y(a - b)2 � V( ..jQ2 - ..jb2)2 , 
(a - b)2 � ( ya'£- VJ.i2)2 , 
a2 - 2ab + b2 � a2 - 2 yla'Illl + b2 , 
2 v'Q'2E'i � 2ab , 
l ab l � ab 

7. Suppose a2 s b2 and ab � 0 .  Then 

min {a2, b2 } = a2 = l a l · l a l S l a l · l b l = ab . 

8. If a �  0 ,  then VQ2 = a; if a < 0 ,  then yci2 = - a > 0 .  Sirmlarly, 
yci2 is 0 if a = 0 ,  and otherwise it is the positive member of the set 
{a, - a} ; VQ2 = max {a, -a} ; VQ2 = {a, -a}+ ; the graph of 
y = yx'I is shown in Fig. 3 6; and VQ2 = a sgn a . 
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Chapter 4 
Page 49 

I .  (a) 4, 5; (b) 6, 7.5; (c) 6, 6.5; (d) 0, 10. 

2. (a) 3p, 5p; (b) O,p/2; (c) 2p, p2 + I .  

Pages 5 1 -52 

1 25 

I .  a +  b = diameter = 2r, so r = (a + b)/2 ; by similar tnangles, alh = 
hlb , so h = vfab. 

2. To show that the harmonic mean is less than or equal to the geometric 
mean, an intermediate step is 

ab(a - b)2 ;:::: 0 ;  
or see Exercise I on page 2 1 .  The sign of equality holds if and only if 
a = b .  To show that the harmonic mean is less than or equal to the anth
metic mean, you can now use the arithmetic-mean-geometric-mean 
inequality or can proceed directly, with intermediate step 

(a - b)2 ;:::: o .  

3. (a) 3.2, 4, 5 ;  (b) 4.8, 6, 7.5 ; (c) 5.54-, 6, 6.5; (d) 5.83+, 5.91 +, 6; (e) 6, 6, 6. 

4. Half the distance at each rate: 

Half the time at each rate: 

d =  rt = 
r1t + !JL, r1 + r2 
2 2 r = -2- . 

By the result of Exercise 2, half the time at each rate would get you there 
sooner. 

5. Let b = ! Ia .  

Pages 6 1-62 

I. In the arithmetic-mean-geometric-mean inequality (4. 1 9) set the first m1 
of the numbers a; equal to the same value Yt. set the next m2 of the num
bers a1 equal to the same number y2, and set the last mk of the numbers 
a1 equal to the same value yk, and observe that 

m1 + m2 + • • • + mk = n . 
This gives the first inequality. For the second inequality, set 
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2. 8.5, 9. 1 +; 0.5, 0.7+; p, p. 
3. Intermediate step: (a - b)2 � 0 ;  or see Exercise l on page 24. Equality 

holds if and only if a = b . Since the root-mean-square is greater than 
or equal to the arithmetic mean, it is also greater than or equal to the 
geometric and harmonic means. 

4. (a) A diagonal divides GH into two segments, one oflength a/2, the other 
of length b/2. 
(b) If ABLK - KLDC, then ABI KL = KLI CD and KL2 = yao. 
(c) The harmonic mean is 

2ab = h a +  b · 

To show that EF = h ,  prove that EO = OF and use similar triangles: 

But 

EO = AE = AC - EC = l _ EC 
CD A C  A C  AC ' 

Hence 

thus 

and 

EO = l _ EO 
CD AB 

or Eo( A� + c�)= 1 ;  

EO = AB · CD = __!!l!_ = lh 
AB + CD a +  b 2 

EF = 2EO = h . 
(d) Set MN = r, let x and y be the altitudes of the constituent trape
zoids so that x + y is the altitude of ABDC. Then, by hypothesis, 

r + a .  x _ !  a +  b (x + y) r + b ·y _ ! a + b (x + y) 2 - 2 2 ' 2 - 2  2 . 

This system of simultaneous linear equations in x and y has a solution if 
and only if 

r2 = a2 + b2 . 
2 , 

hence r is the root-mean-square of a and b. 
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Chapter 5 

Page 87 

127 

I .  Add together ab + be + ca s a2 + b2 + c2 , from Exercise 3 on page 
22, and 2(ab + be +  ca) = 2(ab + be +  ca) , to get 3(ab + be +  ca) S 
(a + b + c)2 , whence 

A = 2(ab + be +  ca) s � (a +  b + c)2 = �(�Y = �:. 

Equality in Exercise 3 on page 22 if and only if a = b = c .  

2. If the surface area A o f  a rectangular box is a fixed value A, then the sum 
of the lengths of the twelve edges is at least 2 y'6A, and the box is a 
cube if and only if E = 2 y'6A .  The proof is immediate from the in
equality A s £2124 of Exercise I .  

3. Let A = area, P = perimeter, a and b = lengths of sides, c = length of 
diagonal. By inequality between arithmetic mean and root-mean-square 
(Exercise 3 on page 62), 

(a + b) ;'Q2+b2 
P = 2(a + b) = 4  -

2
- 5 \; �-2- = 2 Vfc . 

By inequality between geometric mean and arithmetic mean, 

Hence 
A = ab S (a 1 by = [;. 

A < c2 . 
- 2 

The signs of equality hold if and only if a = b .  Hence the square has 
the greatest perimeter (2 �c) and the greatest area (c2/2) . 

Pages 89-90 

I .  If y = z ,  then s - y = s - z = x/2 , so 
] 2  = s(s - x)(s - y)(s - z) = s(s - x) � �  = �x2(s - x) . 

If x = y = z ,  then s - x = s - y = s - z = s/3 , so 
s4 £2 = s(s - x)(s - yXs - z) = 
27

. 

2. Substitute for £2, J 2, and A 2 from Exercise I ,  then multiply out and com
pare terms. 

3. Each factor on the right is nonnegative, either because it is a square or 
because of its geometric meaning. Have E 2 = I 2 if and only if x = 2s/3, 
i.e., if and only if the isosceles triangle actually is equilateral. Have 
J 2  = A 2 if and only if either x = s or y = z ,  i.e., if and only if the 
general triangle actually is isosceles. 
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4. The second inequality. See the discussion of / 2 = A2 in the above 
solution of Exercise 3. 

5. The first inequality. See the discussion of E 2 = I 2 in the above solu
tion of Exercise 3. 

6. The formula shows that the square of the area of the triangle is equal to 
the square of the area of the equilateral triangle having the same perime
ter, diminished by a certain amount if the triangle is only isosceles, and 
diminished still more if the triangle is not even isosceles. 

7. Let a and b = lengths of sides, c = length of hypotenuse, t = length of 
altitude. Then by similar triangles, t = able . By the anthmetic-mean
geometnc-mean inequality, 

1 _ ab < a2 + b2 _ £ - c - 2c - 2 , 

with equality if and only if a = b ,  i.e., if and only if the right tnangle 
is isosceles. 

Pages 97-98 

I. (5, - 3) . 

2 -+- 3 . /iiZ . . - s y-.v ,  
-X l -3. w + 6 - l .  

4. If y is expressed in terms of x from the linear equation, and the resulting 
expression is substituted in the quadratic equation, then its discriminant 
is 4a2b2n2(a2m2 + b2n2 - k2) ;  this expression vanishes if 

I .  

k = ± ya2n(l + b2n2 . 

The corresponding double roots are given on page 96, eqs. 5.23. 

Chapter 6 

Page l l l  
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The city-block length of the diameter is 2 and that of each side is 
d1(P1, P2) = d1(0, Q) = 2 .  Hence the city-block length of the perimeter 
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1s (4)(2) = 8 , and the desired ratio is 

8 r = 2 = 4 .  
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The non-Euclidean length of the diameter is 2 and that of each side is 
dx(P1P2) = d'X>(OQ) = 2 . Thus, the non-Euclidean length of the perime
ter is 8 and 

8 r = 2 = 4 .  

3. Hint. Each regular polygon with an even number of sides and with 
center at the origin can be placed in two different positions, each sym
metric with respect to each coordinate axis. Try to prove that 
(a) if the number N of sides of the polygon is divisible by 4, then the 
non-Euclidean length of each side is 2 tan ( 1 80° IN ) [and hence the 
perimeter has non-Euclidean length 2N tan ( 1 80° IN)] , 
(b) if the number N of sides is even but not divisible by 4, then the 
length of each side is 2 sin ( 1 80° IN)  [and hence the perimeter is 
2N sin ( 1 80° IN)] , 
(c) the results (a) and (b) are valid for all possible positions of the 
polygon. 

Since N = 8 is divisible by 4, we have 

diameter = 2 , 
non-Euclidean length of perimeter = 1 6  tan ( 1 80° 18) 

= 16 tan 22.5° , 
r = 16 tan 22.SO = 8( y7 _ I ) 

2 
:::::::: 3.3 14 . 

4. Since N = 10 is not divisible by 4, we have 
diameter = 2 , 

non-Euclidean length of perimeter = 20 sin ( 1 80° I 10) , 
r = 20 sif l8o = 10 sin 1 8o :::::::: 3.090 . 
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