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Prime number theorem 1

Prime number theorem
In number theory, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers.
The prime number theorem gives a rough description of how the primes are distributed.
Roughly speaking, the prime number theorem states that if a random number nearby some large number N is
selected, the chance of it being prime is about 1 / ln(N), where ln(N) denotes the natural logarithm of N. For example,
near N = 10,000, about one in nine numbers is prime, whereas near N = 1,000,000,000, only one in every 21 numbers
is prime. In other words, the average gap between prime numbers near N is roughly ln(N).[1]

Statement of the theorem

Graph comparing π(x) (red), x / ln x (green) and Li(x) (blue)

Let π(x) be the prime-counting function that gives the
number of primes less than or equal to x, for any real
number x. For example, π(10) = 4 because there are
four prime numbers (2, 3, 5 and 7) less than or equal to
10. The prime number theorem then states that the limit
of the quotient of the two functions π(x) and x / ln(x) as
x approaches infinity is 1, which is expressed by the
formula

known as the asymptotic law of distribution of prime numbers. Using asymptotic notation this result can be
restated as

This notation (and the theorem) does not say anything about the limit of the difference of the two functions as x
approaches infinity. (Indeed, the behavior of this difference is very complicated and related to the Riemann
hypothesis.) Instead, the theorem states that x/ln(x) approximates π(x) in the sense that the relative error of this
approximation approaches 0 as x approaches infinity.
The prime number theorem is equivalent to the statement that the nth prime number pn is approximately equal to
n ln(n), again with the relative error of this approximation approaching 0 as n approaches infinity.
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History of the asymptotic law of distribution of prime numbers and its proof

Distribution of primes up to
19# (9699690).

Based on the tables by Anton Felkel and Jurij Vega, Adrien-Marie Legendre conjectured
in 1796 that π(x) is approximated by the function x/(ln(x)-B), where B=1.08... is a
constant close to 1. Carl Friedrich Gauss considered the same question and, based on the
computational evidence available to him and on some heuristic reasoning, he came up
with his own approximating function, the logarithmic integral li(x), although he did not
publish his results. Both Legendre's and Gauss's formulas imply the same conjectured
asymptotic equivalence of π(x) and x / ln(x) stated above, although it turned out that
Gauss's approximation is considerably better if one considers the differences instead of
quotients.

In two papers from 1848 and 1850, the Russian mathematician Pafnuty L'vovich
Chebyshev attempted to prove the asymptotic law of distribution of prime numbers. His
work is notable for the use of the zeta function ζ(s) predating Riemann's celebrated
memoir of 1859, and he succeeded in proving a slightly weaker form of the asymptotic
law, namely, that if the limit of π(x)/(x/ln(x)) as x goes to infinity exists at all, then it is
necessarily equal to one.[2] He was able to prove unconditionally that this ratio is
bounded above and below by two explicitly given constants near to 1 for all x.[3]

Although Chebyshev's paper did not prove the Prime Number Theorem, his estimates for
π(x) were strong enough for him to prove Bertrand's postulate that there exists a prime
number between n and 2n for any integer n ≥ 2.

Without doubt, the single most significant paper concerning the distribution of prime
numbers was Riemann's 1859 memoir On the Number of Primes Less Than a Given
Magnitude, the only paper he ever wrote on the subject. Riemann introduced
revolutionary ideas into the subject, the chief of them being that the distribution of prime
numbers is intimately connected with the zeros of the analytically extended Riemann
zeta function of a complex variable. In particular, it is in this paper of Riemann that the
idea to apply methods of complex analysis to the study of the real function π(x) originates. Extending these deep
ideas of Riemann, two proofs of the asymptotic law of the distribution of prime numbers were obtained
independently by Hadamard and de la Vallée Poussin and appeared in the same year (1896). Both proofs used
methods from complex analysis, establishing as a main step of the proof that the Riemann zeta function ζ(s) is
non-zero for all complex values of the variable s that have the form s = 1 + it with t > 0.[4]

During the 20th century, the theorem of Hadamard and de la Vallée-Poussin also became known as the Prime
Number Theorem. Several different proofs of it were found, including the "elementary" proofs of Atle Selberg and
Paul Erdős (1949). While the original proofs of Hadamard and de la Vallée-Poussin are long and elaborate, and later
proofs have introduced various simplifications through the use of Tauberian theorems but remained difficult to
digest, a surprisingly short proof [5] [6] was discovered in 1980 by American mathematician Donald J. Newman.
Newman's proof is arguably the simplest known proof of the theorem, although it is non-elementary in the sense that
it uses Cauchy's integral theorem from complex analysis.

Proof methodology
In a lecture on prime numbers for a general audience, Fields medalist Terence Tao described one approach to 
proving the prime number theorem in poetic terms: listening to the "music" of the primes. We start with a "sound 
wave" that is "noisy" at the prime numbers and silent at other numbers; this is the von Mangoldt function. Then we 
analyze its notes or frequencies by subjecting it to a process akin to Fourier transform; this is the Mellin transform. 
Then we prove, and this is the hard part, that certain "notes" cannot occur in this music. This exclusion of certain
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notes leads to the statement of the prime number theorem. According to Tao, this proof yields much deeper insights
into the distribution of the primes than the "elementary" proofs discussed below.[7]

Proof sketch
Here is a sketch of the proof referred to in Tao's lecture mentioned above. Like most proofs of the PNT, it starts out
by reformulating the problem in terms of a less intuitive, but better-behaved, prime-counting function. The idea is to
count the primes (or a related set such as the set of prime powers) with weights to arrive at a function with smoother
asymptotic behavior. The most common such generalized counting function is the Chebyshev function ,
defined by

Here the summation is over all prime powers up to x. This is sometimes written as , where

is the von Mangoldt function, namely

It is now relatively easy to check that the PNT is equivalent to the claim that . Indeed, this

follows from the easy estimates

and (using big O notation) for any ε > 0,

The next step is to find a useful representation for . Let be the Riemann zeta function. It can be shown
that is related to the von Mangoldt function , and hence to , via the relation

A delicate analysis of this equation and related properties of the zeta function, using the Mellin transform and
Perron's formula, shows that for non-integer x the equation

holds, where the sum is over all zeros (trivial and non-trivial) of the zeta function. This striking formula is one of the
so-called explicit formulas of number theory, and is already suggestive of the result we wish to prove, since the term
x (claimed to be the correct asymptotic order of ) appears on the right-hand side, followed by (presumably)
lower-order asymptotic terms.
The next step in the proof involves a study of the zeros of the zeta function. The trivial zeros −2, −4, −6, −8, ... can
be handled separately:

which vanishes for a large x. The nontrivial zeros, namely those on the critical strip , can
potentially be of an asymptotic order comparable to the main term x if , so a crucial fact that needs to be
shown is that all zeros have real part strictly less than 1. See Zagier's paper in the references for a short proof of this
fact.
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Finally, we can conclude that the PNT is "morally" true. To rigorously complete the proof there are still serious
technicalities to overcome, due to the fact that the summation over zeta zeros in the explicit formula for does
not converge absolutely but only conditionally and in a "principal value" sense. There are several ways around this
problem but all of them require rather delicate complex-analytic estimates that are beyond the scope of this article.
Edwards's book[8] provides the details.

The prime-counting function in terms of the logarithmic integral
Carl Friedrich Gauss conjectured that an even better approximation to π(x) is given by the offset logarithmic integral
function Li(x), defined by

Indeed, this integral is strongly suggestive of the notion that the 'density' of primes around t should be 1/lnt. This
function is related to the logarithm by the asymptotic expansion

So, the prime number theorem can also be written as π(x) ~ Li(x). In fact, it follows from the proof of Hadamard and
de la Vallée Poussin that

for some positive constant a, where O(…) is the big O notation. This has been improved to

Because of the connection between the Riemann zeta function and π(x), the Riemann hypothesis has considerable
importance in number theory: if established, it would yield a far better estimate of the error involved in the prime
number theorem than is available today. More specifically, Helge von Koch showed in 1901[9] that, if and only if the
Riemann hypothesis is true, the error term in the above relation can be improved to

The constant involved in the big O notation was estimated in 1976 by Lowell Schoenfeld:[10] assuming the Riemann
hypothesis,

for all x ≥ 2657. He also derived a similar bound for the Chebyshev prime-counting function ψ:

for all x ≥ 73.2.
The logarithmic integral Li(x) is larger than π(x) for "small" values of x. This is because it is (in some sense)
counting not primes, but prime powers, where a power pn of a prime p is counted as 1/n of a prime. This suggests
that Li(x) should usually be larger than π(x) by roughly Li(x1/2)/2, and in particular should usually be larger than
π(x). However, in 1914, J. E. Littlewood proved that this is not always the case. The first value of x where π(x)
exceeds Li(x) is probably around x = 10316; see the article on Skewes' number for more details.
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Elementary proofs
In the first half of the twentieth century, some mathematicians (notably G. H. Hardy) believed that there exists a
hierarchy of proof methods in mathematics depending on what sorts of numbers (integers, reals, complex) a proof
requires, and that the prime number theorem (PNT) is a "deep" theorem by virtue of requiring complex analysis.[11]

This belief was somewhat shaken by a proof of the PNT based on Wiener's tauberian theorem, though this could be
set aside if Wiener's theorem were deemed to have a "depth" equivalent to that of complex variable methods. There
is no rigorous and widely accepted definition of the notion of elementary proof in number theory. One definition is
"a proof that can be carried out in first order Peano arithmetic." There are theorems of Peano arithmetic (for
example, the Paris-Harrington theorem) provable using second order but not first order methods, but such theorems
are rare to date.
In 1949, Atle Selberg proved the PNT using only standard number-theoretic techniques.[12] At about the same time,
Paul Erdős produced a slightly different elementary proof of the same theorem.[11] These proofs effectively laid to
rest the notion that the PNT was "deep," and showed that technically "elementary" methods (in other words Peano
arithmetic) were more powerful than had been believed to be the case. In 1994, Charalambos Cornaros and Costas
Dimitracopoulos proved the PNT using only ,[13] a formal system far weaker than Peano arithmetic.
On the history of the elementary proofs of the PNT, including the Erdős–Selberg priority dispute, see Dorian
Goldfeld.[11]

Computer proofs
In 2005, Avigad et al. employed the Isabelle theorem prover to devise a computer-verified variant of Selberg's proof
of the PNT.[14] This was the first machine-verified proof of the PNT. Avigad chose to formalize Selberg's proof
rather than an analytic one because while Isabelle's library at the time could implement the notions of limit,
derivative, and transcendental function, it had almost no theory of integration to speak of (Avigad et al. p. 19).
In 2009, John Harrison employed HOL Light to formalize a proof employing complex analysis.[15] By developing
the necessary analytic machinery, including the Cauchy integral formula, Harrison was able to formalize "a direct,
modern and elegant proof instead of the more involved ‘elementary’ Erdös-Selberg argument."

The prime number theorem for arithmetic progressions
Let denote the number of primes in the arithmetic progression a, a + n, a + 2n, a + 3n, … less than x.
Dirichlet and Legendre conjectured, and Vallée-Poussin proved, that, if a and n are coprime, then

where φ(·) is the Euler's totient function. In other words, the primes are distributed evenly among the residue classes
[a] modulo n with gcd(a, n) = 1. This can be proved using similar methods used by Newman for his proof of the
prime number theorem.[16]

Although we have in particular

empirically the primes congruent to 3 are more numerous and are nearly always ahead in this "prime number race";
the first reversal occurs at x = 26,861.[17] :1–2 However Littlewood showed in 1914[17] :2 that there are infinitely
many sign changes for the function

so the lead in the race switches back and forth infinitely many times. The prime number race generalizes to other
moduli and is the subject of much research; Granville and Martin give a thorough exposition and survey.[17]
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Bounds on the prime-counting function
The prime number theorem is an asymptotic result. Hence, it cannot be used to bound π(x).
However, some bounds on π(x) are known, for instance Pierre Dusart's

The first inequality holds for all x ≥ 599 and the second one for x ≥ 355991.[18]

A weaker but sometimes useful bound is

for x ≥ 55.[19] In Dusart's thesis there are stronger versions of this type of inequality that are valid for larger x.
The proof by de la Vallée-Poussin implies the following. For every ε > 0, there is an S such that for all x > S,

Approximations for the nth prime number
As a consequence of the prime number theorem, one gets an asymptotic expression for the nth prime number,
denoted by pn:

A better approximation is

[20]

Rosser's theorem states that pn is larger than n ln n. This can be improved by the following pair of bounds:[21] [22]

Table of π(x), x / ln x, and li(x)
The table compares exact values of π(x) to the two approximations x / ln x and li(x). The last column, x / π(x), is the
average prime gap below x.

x π(x)
[23]

π(x) − x / ln x
[24] π(x) / (x / ln x) li(x) − π(x)

[25] x / π(x)

10 4 −0.3 0.921 2.2 2.500

102 25 3.3 1.151 5.1 4.000

103 168 23 1.161 10 5.952

104 1,229 143 1.132 17 8.137

105 9,592 906 1.104 38 10.425

106 78,498 6,116 1.084 130 12.740

107 664,579 44,158 1.071 339 15.047

108 5,761,455 332,774 1.061 754 17.357

109 50,847,534 2,592,592 1.054 1,701 19.667

1010 455,052,511 20,758,029 1.048 3,104 21.975
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1011 4,118,054,813 169,923,159 1.043 11,588 24.283

1012 37,607,912,018 1,416,705,193 1.039 38,263 26.590

1013 346,065,536,839 11,992,858,452 1.034 108,971 28.896

1014 3,204,941,750,802 102,838,308,636 1.033 314,890 31.202

1015 29,844,570,422,669 891,604,962,452 1.031 1,052,619 33.507

1016 279,238,341,033,925 7,804,289,844,393 1.029 3,214,632 35.812

1017 2,623,557,157,654,233 68,883,734,693,281 1.027 7,956,589 38.116

1018 24,739,954,287,740,860 612,483,070,893,536 1.025 21,949,555 40.420

1019 234,057,667,276,344,607 5,481,624,169,369,960 1.024 99,877,775 42.725

1020 2,220,819,602,560,918,840 49,347,193,044,659,701 1.023 222,744,644 45.028

1021 21,127,269,486,018,731,928 446,579,871,578,168,707 1.022 597,394,254 47.332

1022 201,467,286,689,315,906,290 4,060,704,006,019,620,994 1.021 1,932,355,208 49.636

1023 1,925,320,391,606,803,968,923 37,083,513,766,578,631,309 1.020 7,250,186,216 51.939

Analogue for irreducible polynomials over a finite field
There is an analogue of the prime number theorem that describes the "distribution" of irreducible polynomials over a
finite field; the form it takes is strikingly similar to the case of the classical prime number theorem.
To state it precisely, let F = GF(q) be the finite field with q elements, for some fixed q, and let Nn be the number of
monic irreducible polynomials over F whose degree is equal to n. That is, we are looking at polynomials with
coefficients chosen from F, which cannot be written as products of polynomials of smaller degree. In this setting,
these polynomials play the role of the prime numbers, since all other monic polynomials are built up of products of
them. One can then prove that

If we make the substitution x = qn, then the right hand side is just

which makes the analogy clearer. Since there are precisely qn monic polynomials of degree n (including the
reducible ones), this can be rephrased as follows: if a monic polynomial of degree n is selected randomly, then the
probability of it being irreducible is about 1/n.
One can even prove an analogue of the Riemann hypothesis, namely that

The proofs of these statements are far simpler than in the classical case. It involves a short combinatorial argument,
summarised as follows. Every element of the degree n extension of F is a root of some irreducible polynomial whose
degree d divides n; by counting these roots in two different ways one establishes that

where the sum is over all divisors d of n. Möbius inversion then yields
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where μ(k) is the Möbius function. (This formula was known to Gauss.) The main term occurs for d = n, and it is not
difficult to bound the remaining terms. The "Riemann hypothesis" statement depends on the fact that the largest
proper divisor of n can be no larger than n/2.

See also
• Abstract analytic number theory for information about generalizations of the theorem.
• Landau prime ideal theorem for a generalization to prime ideals in algebraic number fields.
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Re(s) = 1/2. The first non-trivial zeros can be
seen at Im(s) = ±14.135, ±21.022 and ±25.011.
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In mathematics, the Riemann hypothesis, proposed by Bernhard Riemann (1859), is a conjecture about the
distribution of the zeros of the Riemann zeta function which states that all non-trivial zeros have real part 1/2. The
name is also used for some closely related analogues, such as the Riemann hypothesis for curves over finite fields.

http://en.wikipedia.org/wiki/Oeis%3Aa057752
http://www.dartmouth.edu/~chance/chance_news/for_chance_news/Riemann/cramer.pdf
http://www.dartmouth.edu/~chance/chance_news/for_chance_news/Riemann/cramer.pdf
http://www.scs.uiuc.edu/~mainzv/exhibitmath/exhibit/felkel.htm
http://mathworld.wolfram.com/PrimeFormulas.html
http://mathworld.wolfram.com/PrimeNumberTheorem.html
http://mathworld.wolfram.com/PrimeNumberTheorem.html
http://en.wikipedia.org/w/index.php?title=MathWorld
http://planetmath.org/?op=getobj&amp;from=objects&amp;id=199
http://en.wikipedia.org/w/index.php?title=PlanetMath
http://primes.utm.edu/howmany.shtml
http://primes.utm.edu/notes/gaps.html
http://primes.utm.edu/notes/gaps.html
http://en.wikipedia.org/w/index.php?title=University_of_Tennessee_at_Martin
http://www.ieeta.pt/~tos/primes.html
http://en.wikipedia.org/w/index.php?title=File:RiemannCriticalLine.svg
http://en.wikipedia.org/w/index.php?title=Millennium_Prize_Problems
http://en.wikipedia.org/w/index.php?title=P_versus_NP_problem
http://en.wikipedia.org/w/index.php?title=Hodge_conjecture
http://en.wikipedia.org/w/index.php?title=Poincar%C3%A9_conjecture
http://en.wikipedia.org/w/index.php?title=Solution_of_the_Poincar%C3%A9_conjecture
http://en.wikipedia.org/w/index.php?title=Yang%E2%80%93Mills_existence_and_mass_gap
http://en.wikipedia.org/w/index.php?title=Navier%E2%80%93Stokes_existence_and_smoothness
http://en.wikipedia.org/w/index.php?title=Birch_and_Swinnerton-Dyer_conjecture
http://en.wikipedia.org/w/index.php?title=Bernhard_Riemann
http://en.wikipedia.org/w/index.php?title=Conjecture
http://en.wikipedia.org/w/index.php?title=Root_of_a_function
http://en.wikipedia.org/w/index.php?title=Non-trivial
http://en.wikipedia.org/w/index.php?title=Riemann_hypothesis_for_curves_over_finite_fields


Riemann hypothesis 10

The Riemann hypothesis implies results about the distribution of prime numbers that are in some ways as good as
possible. Along with suitable generalizations, it is considered by some mathematicians to be the most important
unresolved problem in pure mathematics (Bombieri 2000).
The Riemann zeta function ζ(s) is defined for all complex numbers s ≠ 1. It has zeros at the negative even integers
(i.e. at s = −2, −4, −6, ...). These are called the trivial zeros. The Riemann hypothesis is concerned with the
non-trivial zeros, and states that:

The real part of any non-trivial zero of the Riemann zeta function is 1/2.
Thus the non-trivial zeros should lie on the critical line, 1/2 + it, where t is a real number and i is the imaginary unit.
The Riemann hypothesis is part of Problem 8, along with the Goldbach conjecture, in Hilbert's list of 23 unsolved
problems, and is also one of the Clay Mathematics Institute Millennium Prize Problems. Since it was formulated, it
has withstood concentrated efforts from many outstanding mathematicians. In 1973, Pierre Deligne proved that the
Riemann hypothesis held true over finite fields. The full version of the hypothesis remains unsolved, although
modern computer calculations have shown that the first 10 trillion zeros lie on the critical line.
There are several popular books on the Riemann hypothesis, such as Derbyshire (2003), Rockmore (2005), Sabbagh
(2003), du Sautoy (2003). The books Edwards (1974), Patterson (1988) and Borwein et al. (2008) give mathematical
introductions, while Titchmarsh (1986), Ivić (1985) and Karatsuba & Voronin (1992) are advanced monographs.

The Riemann zeta function
The Riemann zeta function is given for complex s with real part greater than 1 by

Leonhard Euler showed that it is given by the Euler product

where the infinite product extends over all prime numbers p, and again converges for complex s with real part
greater than 1. The convergence of the Euler product shows that ζ(s) has no zeros in this region, as none of the
factors have zeros.
The Riemann hypothesis discusses zeros outside the region of convergence of this series, so it needs to be
analytically continued to all complex s. This can be done by expressing it in terms of the Dirichlet eta function as
follows. If s has positive real part, then the zeta function satisfies

where the series on the right converges whenever s has positive real part. Thus, this alternative series extends the
zeta function from Re(s) > 1 to the larger domain Re(s) > 0.
In the strip 0 < Re(s) < 1 the zeta function satisfies the functional equation

One may then define ζ(s) for all remaining nonzero complex numbers s by assuming that this equation holds outside 
the strip as well, and letting ζ(s) equal the right-hand side of the equation whenever s has non-positive real part. If s 
is a negative even integer then ζ(s) = 0 because the factor sin(πs/2) vanishes; these are the trivial zeros of the zeta 
function. (If s is a positive even integer this argument does not apply because the zeros of sin are cancelled by the 
poles of the gamma function.) The value ζ(0) = −1/2 is not determined by the functional equation, but is the limiting 
value of ζ(s) as s approaches zero. The functional equation also implies that the zeta function has no zeros with 
negative real part other than the trivial zeros, so all non-trivial zeros lie in the critical strip where s has real part
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between 0 and 1.

History
"…es ist sehr wahrscheinlich, dass alle Wurzeln reell sind. Hiervon wäre allerdings ein strenger Beweis zu wünschen; ich habe
indess die Aufsuchung desselben nach einigen flüchtigen vergeblichen Versuchen vorläufig bei Seite gelassen, da er für den
nächsten Zweck meiner Untersuchung entbehrlich schien."
"…it is very probable that all roots are real. Of course one would wish for a rigorous proof here; I have for the time being, after some
fleeting vain attempts, provisionally put aside the search for this, as it appears dispensable for the next objective of my
investigation."

 Riemann's statement of the Riemann hypothesis, from (Riemann 1859). (He was discussing a version of the zeta function, modified
so that its roots are real rather than on the critical line.) 

In his 1859 paper On the Number of Primes Less Than a Given Magnitude Riemann found an explicit formula for the
number of primes π(x) less than a given number x. His formula was given in terms of the related function

which counts primes where a prime power pn counts as 1/n of a prime. The number of primes can be recovered from
this function by

where μ is the Möbius function. Riemann's formula is then

where the sum is over the nontrivial zeros of the zeta function and where Π0 is a slightly modified version of Π that
replaces its value at its points of discontinuity by the average of its upper and lower limits:

The summation in Riemann's formula is not absolutely convergent, but may be evaluated by taking the zeros ρ in
order of the absolute value of their imaginary part. The function Li occurring in the first term is the (unoffset)
logarithmic integral function given by the Cauchy principal value of the divergent integral

The terms Li(xρ) involving the zeros of the zeta function need some care in their definition as Li has branch points at
0 and 1, and are defined (for x > 1) by analytic continuation in the complex variable ρ in the region Re(ρ) > 0, i.e.
they should be considered as Ei(ρ ln x). The other terms also correspond to zeros: the dominant term Li(x) comes
from the pole at s = 1, considered as a zero of multiplicity −1, and the remaining small terms come from the trivial
zeros. For some graphs of the sums of the first few terms of this series see Riesel & Göhl (1970) or Zagier (1977).
This formula says that the zeros of the Riemann zeta function control the oscillations of primes around their
"expected" positions. Riemann knew that the non-trivial zeros of the zeta function were symmetrically distributed
about the line s = 1/2 + it, and he knew that all of its non-trivial zeros must lie in the range 0 ≤ Re(s) ≤ 1. He checked
that a few of the zeros lay on the critical line with real part 1/2 and suggested that they all do; this is the Riemann
hypothesis.
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Consequences of the Riemann hypothesis
The practical uses of the Riemann hypothesis include many propositions which are known to be true under the
Riemann hypothesis, and some which can be shown to be equivalent to the Riemann hypothesis.

Distribution of prime numbers
Riemann's explicit formula for the number of primes less than a given number in terms of a sum over the zeros of the
Riemann zeta function says that the magnitude of the oscillations of primes around their expected position is
controlled by the real parts of the zeros of the zeta function. In particular the error term in the prime number theorem
is closely related to the position of the zeros: for example, the supremum of real parts of the zeros is the infimum of
numbers β such that the error is O(xβ) (Ingham 1932).
Von Koch (1901) proved that the Riemann hypothesis is equivalent to the "best possible" bound for the error of the
prime number theorem.
A precise version of Koch's result, due to Schoenfeld (1976), says that the Riemann hypothesis is equivalent to

Growth of arithmetic functions
The Riemann hypothesis implies strong bounds on the growth of many other arithmetic functions, in addition to the
primes counting function above.
One example involves the Möbius function μ. The statement that the equation

is valid for every s with real part greater than 1/2, with the sum on the right hand side converging, is equivalent to the
Riemann hypothesis. From this we can also conclude that if the Mertens function is defined by

then the claim that

for every positive ε is equivalent to the Riemann hypothesis (Titchmarsh 1986). (For the meaning of these symbols,
see Big O notation.) The determinant of the order n Redheffer matrix is equal to M(n), so the Riemann hypothesis
can also be stated as a condition on the growth of these determinants. The Riemann hypothesis puts a rather tight
bound on the growth of M, since Odlyzko & te Riele (1985) disproved the slightly stronger Mertens conjecture

The Riemann hypothesis is equivalent to many other conjectures about the rate of growth of other arithmetic
functions aside from μ(n). A typical example is Robin's theorem (Robin 1984), which states that if σ(n) is the divisor
function, given by

then

for all n > 5040 if and only if the Riemann hypothesis is true, where γ is the Euler–Mascheroni constant.
Another example was found by Franel & Landau (1924) showing that the Riemann hypothesis is equivalent to a 
statement that the terms of the Farey sequence are fairly regular. More precisely, if Fn is the Farey sequence of order
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n, beginning with 1/n and up to 1/1, then the claim that for all ε > 0

is equivalent to the Riemann hypothesis. Here is the number of terms in the Farey sequence of order

n.
For an example from group theory, if g(n) is Landau's function given by the maximal order of elements of the
symmetric group Sn of degree n, then Massias, Nicolas & Robin (1988) showed that the Riemann hypothesis is
equivalent to the bound

for all sufficiently large n.

Lindelöf hypothesis and growth of the zeta function
The Riemann hypothesis has various weaker consequences as well; one is the Lindelöf hypothesis on the rate of
growth of the zeta function on the critical line, which says that, for any ε > 0,

as t tends to infinity.
The Riemann hypothesis also implies quite sharp bounds for the growth rate of the zeta function in other regions of
the critical strip. For example, it implies that

so the growth rate of ζ(1+it) and its inverse would be known up to a factor of 2 (Titchmarsh 1986).

Large prime gap conjecture
The prime number theorem implies that on average, the gap between the prime p and its successor is log p. However,
some gaps between primes may be much larger than the average. Cramér proved that, assuming the Riemann
hypothesis, every gap is O(√p log p). This is a case when even the best bound that can currently be proved using the
Riemann hypothesis is far weaker than what seems to be true: Cramér's conjecture implies that every gap is
O((log p)2) which, while larger than the average gap, is far smaller than the bound implied by the Riemann
hypothesis. Numerical evidence supports Cramér's conjecture (Nicely 1999).

Criteria equivalent to the Riemann hypothesis
Many statements equivalent to the Riemann hypothesis have been found, though so far none of them have led to
much progress in solving it. Some typical examples are as follows.
The Riesz criterion was given by Riesz (1916), to the effect that the bound

holds for all if and only if the Riemann hypothesis holds.
Nyman (1950) proved that the Riemann Hypothesis is true if and only if the space of functions of the form
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where ρ(z) is the fractional part of z, 0 ≤ θν ≤ 1, and

,

is dense in the Hilbert space L2(0,1) of square-integrable functions on the unit interval. Beurling (1955) extended this
by showing that the zeta function has no zeros with real part greater than 1/p if and only if this function space is
dense in Lp(0,1)
Salem (1953) showed that the Riemann hypothesis is true if and only if the integral equation

has no non-trivial bounded solutions φ for 1/2<σ<1.
Weil's criterion is the statement that the positivity of a certain function is equivalent to the Riemann hypothesis.
Related is Li's criterion, a statement that the positivity of a certain sequence of numbers is equivalent to the Riemann
hypothesis.

Speiser (1934) proved that the Riemann hypothesis is equivalent to the statement that , the derivative of 
, has no zeros in the strip

That ζ has only simple zeros on the critical line is equivalent to its derivative having no zeros on the critical line.

Consequences of the generalized Riemann hypothesis
Several applications use the generalized Riemann hypothesis for Dirichlet L-series or zeta functions of number fields
rather than just the Riemann hypothesis. Many basic properties of the Riemann zeta function can easily be
generalized to all Dirichlet L-series, so it is plausible that a method that proves the Riemann hypothesis for the
Riemann zeta function would also work for the generalized Riemann hypothesis for Dirichlet L-functions. Several
results first proved using the generalized Riemann hypothesis were later given unconditional proofs without using it,
though these were usually much harder. Many of the consequences on the following list are taken from Conrad
(2010).
• In 1913, Gronwall showed that the generalized Riemann hypothesis implies that Gauss's list of imaginary

quadratic fields with class number 1 is complete, though Baker, Stark and Heegner later gave unconditional
proofs of this without using the generalized Riemann hypothesis.

• In 1917, Hardy and Littlewood showed that the generalized Riemann hypothesis implies a conjecture of
Chebyshev that

which says that in some sense primes 3 mod 4 are more common than primes 1 mod 4.
• In 1923 Hardy and Littlewood showed that the generalized Riemann hypothesis implies a weak form of the

Goldbach conjecture for odd numbers: that every sufficiently large odd number is the sum of 3 primes, though in
1937 Vinogradov gave an unconditional proof. In 1997 Deshouillers, Effinger, te Riele, and Zinoviev showed that
the generalized Riemann hypothesis implies that every odd number greater than 5 is the sum of 3 primes.

• In 1934, Chowla showed that the generalized Riemann hypothesis implies that the first prime in the arithmetic
progression a mod m is at most Km2log(m)2 for some fixed constant K.

• In 1967, Hooley showed that the generalized Riemann hypothesis implies Artin's conjecture on primitive roots.
• In 1973, Weinberger showed that the generalized Riemann hypothesis implies that Euler's list of idoneal numbers

is complete.
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• Weinberger (1973) showed that the generalized Riemann hypothesis for the zeta functions of all algebraic number
fields implies that any number field with class number 1 is either Euclidean or an imaginary quadratic number
field of discriminant −19, −43, −67, or −163.

• In 1976, G. Miller showed that the generalized Riemann hypothesis implies that one can test if a number is prime
in polynomial times. In 2002, Manindra Agrawal, Neeraj Kayal and Nitin Saxena proved this result
unconditionally using the AKS primality test.

• Odlyzko (1990) discussed how the generalized Riemann hypothesis can be used to give sharper estimates for
discriminants and class numbers of number fields.

• In 1997 Ono and Soundararajan showed that the generalized Riemann hypothesis implies that Ramanujan's
integral quadratic form x2 +y2 + 10z2 represents all integers that it represents locally, with exactly 18 exceptions.

Generalizations and analogues of the Riemann hypothesis

Dirichlet L-series and other number fields
The Riemann hypothesis can be generalized by replacing the Riemann zeta function by the formally similar, but
much more general, global L-functions. In this broader setting, one expects the non-trivial zeros of the global
L-functions to have real part 1/2. It is these conjectures, rather than the classical Riemann hypothesis only for the
single Riemann zeta function, which accounts for the true importance of the Riemann hypothesis in mathematics.
The generalized Riemann hypothesis extends the Riemann hypothesis to all Dirichlet L-functions. In particular it
implies the conjecture that Siegel zeros (zeros of L functions between 1/2 and 1) do not exist.
The extended Riemann hypothesis extends the Riemann hypothesis to all Dedekind zeta functions of algebraic
number fields. The extended Riemann hypothesis for abelian extension of the rationals is equivalent to the
generalized Riemann hypothesis. The Riemann hypothesis can also be extended to the L-functions of Hecke
characters of number fields.
The grand Riemann hypothesis extends it to all automorphic zeta functions, such as Mellin transforms of Hecke
eigenforms.

Function fields and zeta functions of varieties over finite fields
Artin (1924) introduced global zeta functions of (quadratic) function fields and conjectured an analogue of the
Riemann hypothesis for them, which has been proven by Hasse in the genus 1 case and by Weil (1948) in general.
For instance, the fact that the Gauss sum, of the quadratic character of a finite field of size q (with q odd), has
absolute value

is actually an instance of the Riemann hypothesis in the function field setting. This led Weil (1949) to conjecture a
similar statement for all algebraic varieties; the resulting Weil conjectures were proven by Pierre Deligne (1974,
1980).

Selberg zeta functions
Selberg (1956) introduced the Selberg zeta function of a Riemann surface. These are similar to the Riemann zeta
function: they have a functional equation, and an infinite product similar to the Euler product but taken over closed
geodesics rather than primes. The Selberg trace formula is the analogue for these functions of the explicit formulas in
prime number theory. Selberg proved that the Selberg zeta functions satisfy the analogue of the Riemann hypothesis,
with the imaginary parts of their zeros related to the eigenvalues of the Laplacian operator of the Riemann surface.
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Ihara zeta functions
The Ihara zeta function of a finite graph is an analogue of the Selberg zeta function introduced by Yasutaka Ihara. A
regular finite graph is a Ramanujan graph, a mathematical model of efficient communication networks, if and only if
its Ihara zeta function satisfies the analogue of the Riemann hypothesis as was pointed out by T. Sunada.

Montgomery's pair correlation conjecture
Montgomery (1973) suggested the pair correlation conjecture that the correlation functions of the (suitably
normalized) zeros of the zeta function should be the same as those of the eigenvalues of a random hermitian matrix.
Odlyzko (1987) showed that this is supported by large scale numerical calculations of these correlation functions.
Montgomery showed that (assuming the Riemann hypothesis) at least 2/3 of all zeros are simple, and a related
conjecture is that all zeros of the zeta function are simple (or more generally have no non-trivial integer linear
relations between their imaginary parts). Dedekind zeta functions of algebraic number fields, which generalize the
Riemann zeta function, often do have multiple complex zeros. This is because the Dedekind zeta functions factorize
as a product of powers of Artin L-functions, so zeros of Artin L-functions sometimes give rise to multiple zeros of
Dedekind zeta functions. Other examples of zeta functions with multiple zeros are the L-functions of some elliptic
curves: these can have multiple zeros at the real point of their critical line; the Birch-Swinnerton-Dyer conjecture
predicts that the multiplicity of this zero is the rank of the elliptic curve.

Other zeta functions
There are many other examples of zeta functions with analogues of the Riemann hypothesis, some of which have
been proved. Goss zeta functions of function fields have a Riemann hypothesis, proved by Sheats (1998). The main
conjecture of Iwasawa theory, proved by Barry Mazur and Andrew Wiles for cyclotomic fields, and Wiles for totally
real fields, identifies the zeros of a p-adic L-function with the eigenvalues of an operator, so can be thought of as an
analogue of the Hilbert–Pólya conjecture for p-adic L-functions (Wiles 2000).

Attempts to prove the Riemann hypothesis
Several mathematicians have addressed the Riemann hypothesis, but none of their attempts have yet been accepted
as correct solutions. Watkins (2007) lists some incorrect solutions, and more are frequently announced [1].

Operator theory
Hilbert and Polya suggested that one way to derive the Riemann hypothesis would be to find a self-adjoint operator,
from the existence of which the statement on the real parts of the zeros of ζ(s) would follow when one applies the
criterion on real eigenvalues. Some support for this idea comes from several analogues of the Riemann zeta
functions whose zeros correspond to eigenvalues of some operator: the zeros of a zeta function of a variety over a
finite field correspond to eigenvalues of a Frobenius element on an etale cohomology group, the zeros of a Selberg
zeta function are eigenvalues of a Laplacian operator of a Riemann surface, and the zeros of a p-adic zeta function
correspond to eigenvectors of a Galois action on ideal class groups.
Odlyzko (1987) showed that the distribution of the zeros of the Riemann zeta function shares some statistical
properties with the eigenvalues of random matrices drawn from the Gaussian unitary ensemble. This gives some
support to the Hilbert–Pólya conjecture.

In 1999, Michael Berry and Jon Keating conjectured that there is some unknown quantization of the classical
Hamiltonian so that
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and even more strongly, that the Riemann zeros coincide with the spectrum of the operator . This is to
be contrasted to canonical quantization which leads to the Heisenberg uncertainty principle and the
natural numbers as spectrum of the quantum harmonic oscillator. The crucial point is that the Hamiltonian should be
a self-adjoint operator so that the quantization would be a realization of the Hilbert–Pólya program. In a connection
with this Quantum mechanical problem Berry and Connes had proposed that the inverse of the potential of the
Hamiltonian is connected to the half-derivative of the function then, in

Berry-Connes approach (Connes 1999).

The analogy with the Riemann hypothesis over finite fields suggests that the Hilbert space containing eigenvectors
corresponding to the zeros might be some sort of first cohomology group of the spectrum Spec(Z) of the integers.
Deninger (1998) described some of the attempts to find such a cohomology theory.
Zagier (1983) constructed a natural space of invariant functions on the upper half plane which has eigenvalues under
the Laplacian operator corresponding to zeros of the Riemann zeta function, and remarked that in the unlikely event
that one could show the existence of a suitable positive definite inner product on this space the Riemann hypothesis
would follow. Cartier (1982) discussed a related example, where due to a bizarre bug a computer program listed
zeros of the Riemann zeta function as eigenvalues of the same Laplacian operator.

Lee–Yang theorem
The Lee–Yang theorem states that the zeros of certain partition functions in statistical mechanics all lie on a "critical
line" with real part 0, and this has led to some speculation about a relationship with the Riemann hypothesis (Knauf
1999).

Turán's result
Pál Turán (1948) showed that if the functions

have no zeros when the real part of s is greater than one then

for all x > 0,

where λ(n) is the Liouville function given by (−1)r if n has r prime factors. He showed that this in turn would imply
that the Riemann hypothesis is true. However Haselgrove (1958) proved that T(x) is negative for infinitely many x
(and also disproved the closely related Polya conjecture), and Borwein, Ferguson & Mossinghoff (2008) showed that
the smallest such x is 72185376951205. Spira (1968) showed by numerical calculation that the finite Dirichlet series
above for N=19 has a zero with real part greater than 1. Turán also showed that a somewhat weaker assumption, the
nonexistence of zeros with real part greater than 1+N−1/2+ε for large N in the finite Dirichlet series above, would also
imply the Riemann hypothesis, but Montgomery (1983) showed that for all sufficiently large N these series have
zeros with real part greater than 1 + (log log N)/(4 log N). Therefore, Turán's result is vacuously true and cannot be
used to help prove the Riemann hypothesis.
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Noncommutative geometry
Connes (1999, 2000) has described a relationship between the Riemann hypothesis and noncommutative geometry,
and shows that a suitable analogue of the Selberg trace formula for the action of the idèle class group on the adèle
class space would imply the Riemann hypothesis. Some of these ideas are elaborated in Lapidus (2008).

Hilbert spaces of entire functions
Louis de Branges (1992) showed that the Riemann hypothesis would follow from a positivity condition on a certain
Hilbert space of entire functions. However Conrey & Li (2000) showed that the necessary positivity conditions are
not satisfied.

Quasicrystals
The Riemann hypothesis implies that the zeros of the zeta function form a quasicrystal, meaning a distribution with
discrete support whose Fourier transform also has discrete support. Dyson (2009) suggested trying to prove the
Riemann hypothesis by classifying, or at least studying, 1-dimensional quasicrystals.

Multiple zeta functions
Deligne's proof of the Riemann hypothesis over finite fields used the zeta functions of product varieties, whose zeros
and poles correspond to sums of zeros and poles of the original zeta function, in order to bound the real parts of the
zeros of the original zeta function. By analogy, Kurokawa (1992) introduced multiple zeta functions whose zeros and
poles correspond to sums of zeros and poles of the Riemann zeta function. To make the series converge he restricted
to sums of zeros or poles all with non-negative imaginary part. So far, the known bounds on the zeros and poles of
the multiple zeta functions are not strong enough to give useful estimates for the zeros of the Riemann zeta function.

Location of the zeros

Number of zeros
The functional equation combined with the argument principle implies that the number of zeros of the zeta function
with imaginary part between 0 and T is given by

for s=1/2+iT, where the argument is defined by varying it continuously along the line with Im(s)=T, starting with
argument 0 at ∞+iT. This is the sum of a large but well understood term

and a small but rather mysterious term

So the density of zeros with imaginary part near T is about log(T)/2π, and the function S describes the small
deviations from this. The function S(t) jumps by 1 at each zero of the zeta function, and for t ≥ 8 it decreases
monotonically between zeros with derivative close to −log t.
Selberg (1946) showed that the average moments of even powers of S are given by

This suggests that S(T)/(log log T)1/2 resembles a Gaussian random variable with mean 0 and variance 2π2 (Ghosh 
(1983) proved this fact). In particular |S(T)| is usually somewhere around (log log T)1/2, but occasionally much
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larger. The exact order of growth of S(T) is not known. There has been no unconditional improvement to Riemann's
original bound S(T)=O(log T), though the Riemann hypothesis implies the slightly smaller bound S(T)=O(log T/log
log T) (Titchmarsh 1985). The true order of magnitude may be somewhat less than this, as random functions with the
same distribution as S(T) tend to have growth of order about log(T)1/2. In the other direction it cannot be too small:
Selberg (1946) showed that S(T) ≠ o((log T)1/3/(log log T)7/3), and assuming the Riemann hypothesis Montgomery
showed that S(T) ≠ o((log T)1/2/(log log T)1/2).
Numerical calculations confirm that S grows very slowly: |S(T)| < 1 for T < 280, |S(T)| < 2 for T < 6800000, and the
largest value of |S(T)| found so far is not much larger than 3 (Odlyzko 2002).
Riemann's estimate S(T) = O(log T) implies that the gaps between zeros are bounded, and Littlewood improved this
slightly, showing that the gaps between their imaginary parts tends to 0.

The theorem of Hadamard and de la Vallée-Poussin
Hadamard (1896) and de la Vallée-Poussin (1896) independently proved that no zeros could lie on the line Re(s) = 1.
Together with the functional equation and the fact that there are no zeros with real part greater than 1, this showed
that all non-trivial zeros must lie in the interior of the critical strip 0 < Re(s) < 1. This was a key step in their first
proofs of the prime number theorem.
Both the original proofs that the zeta function has no zeros with real part 1 are similar, and depend on showing that if
ζ(1+it) vanishes, then ζ(1+2it) is singular, which is not possible. One way of doing this is by using the inequality

for σ>1, t real,
and looking at the limit as σ tends to 1. This inequality follows by taking the real part of the log of the Euler product
to see that

(where the sum is over all prime powers pn) so that

which is at least 1 because all the terms in the sum are positive, due to the inequality

Zero-free regions
De la Vallée-Poussin (1899-1900) proved that if σ+it is a zero of the Riemann zeta function, then 1-σ ≥ C/log(t) for
some positive constant C. In other words zeros cannot be too close to the line σ=1: there is a zero-free region close to
this line. This zero-free region has been enlarged by several authors. Ford (2002) gave a version with explicit
numerical constants: ζ(σ + it) ≠ 0 whenever |t| ≥ 3 and
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Zeros on the critical line
Hardy (1914) and Hardy & Littlewood (1921) showed there are infinitely many zeros on the critical line, by
considering moments of certain functions related to the zeta function. Selberg (1942) proved that at least a (small)
positive proportion of zeros lie on the line. Levinson (1974) improved this to one-third of the zeros by relating the
zeros of the zeta function to those of its derivative, and Conrey (1989) improved this further to two-fifths.
Most zeros lie close to the critical line. More precisely, Bohr & Landau (1914) showed that for any positive ε, all but
an infinitely small proportion of zeros lie within a distance ε of the critical line. Ivić (1985) gives several more
precise versions of this result, called zero density estimates, which bound the number of zeros in regions with
imaginary part at most T and real part at least 1/2+ε.

Numerical calculations

Absolute value of the ζ-function

The function

has the same zeros as the zeta function in the critical strip, and is real on the critical line because of the functional
equation, so one can prove the existence of zeros exactly on the real line between two points by checking
numerically that the function has opposite signs at these points. Usually one writes

where Hardy's function Z and the Riemann-Siegel theta function θ are uniquely defined by this and the condition that
they are smooth real functions with θ(0)=0. By finding many intervals where the function Z changes sign one can
show that there are many zeros on the critical line. To verify the Riemann hypothesis up to a given imaginary part T
of the zeros, one also has to check that there are no further zeros off the line in this region. This can be done by
calculating the total number of zeros in the region and checking that it is the same as the number of zeros found on
the line. This allows one to verify the Riemann hypothesis computationally up to any desired value of T (provided all
the zeros of the zeta function in this region are simple and on the critical line).
Some calculations of zeros of the zeta function are listed below. So far all zeros that have been checked are on the
critical line and are simple. (A multiple zero would cause problems for the zero finding algorithms, which depend on
finding sign changes between zeros.) For tables of the zeros, see Haselgrove & Miller (1960) or Odlyzko.
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Year Number of zeros  Author 

1859? 3 B. Riemann used the Riemann-Siegel formula (unpublished, but reported in Siegel 1932).

1903 15 J. P. Gram (1903) used Euler-Maclaurin summation and discovered Gram's law. He showed that all 10 zeros with
imaginary part at most 50 range lie on the critical line with real part 1/2 by computing the sum of the inverse 10th
powers of the roots he found.

1914 79 (γn ≤ 200) R. J. Backlund (1914) introduced a better method of checking all the zeros up to that point are on the line, by studying
the argument S(T) of the zeta function.

1925 138 (γn ≤ 300) J. I. Hutchinson (1925) found the first failure of Gram's law, at the Gram point g126.

1935 195 E. C. Titchmarsh (1935) used the recently rediscovered Riemann-Siegel formula, which is much faster than
Euler-Maclaurin summation.It takes about O(T3/2+ε) steps to check zeros with imaginary part less than T, while the
Euler-Maclaurin method takes about O(T2+ε) steps.

1936 1041 E. C. Titchmarsh (1936) and L. J. Comrie were the last to find zeros by hand.

1953 1104 A. M. Turing (1953) found a more efficient way to check that all zeros up to some point are accounted for by the zeros
on the line, by checking that Z has the correct sign at several consecutive Gram points and using the fact that S(T) has
average value 0. This requires almost no extra work because the sign of Z at Gram points is already known from finding
the zeros, and is still the usual method used. This was the first use of a digital computer to calculate the zeros.

1956 15000 D. H. Lehmer (1956) discovered a few cases where the zeta function has zeros that are "only just" on the line: two zeros
of the zeta function are so close together that it is unusually difficult to find a sign change between them. This is called
"Lehmer's phenomenon", and first occurs at the zeros with imaginary parts 7005.063 and 7005.101, which differ by
only .04 while the average gap between other zeros near this point is about 1.

1956 25000 D. H. Lehmer

1958 35337 N. A. Meller

1966 250000 R. S. Lehman

1968 3500000 Rosser, Yohe & Schoenfeld (1969) stated Rosser's rule (described below).

1977 40000000 R. P. Brent

1979 81000001 R. P. Brent

1982 200000001 R. P. Brent, J. van de Lune, H. J. J. te Riele, D. T. Winter

1983 300000001 J. van de Lune, H. J. J. te Riele

1986 1500000001 van de Lune, te Riele & Winter (1986) gave some statistical data about the zeros and give several graphs of Z at places
where it has unusual behavior.

1987 A few of large
height

A. M. Odlyzko (1987) computed smaller numbers of zeros of much larger height, around 1012, to high precision to
check Montgomery's pair correlation conjecture.

1992 A few of large
height

A. M. Odlyzko (1992) computed a few zeros of heights up to 1020, and gave an extensive discussion of the results.

2001 10000000000 J. van de Lune (unpublished)

2004 900000000000 S. Wedeniwski (ZetaGrid distributed computing)

2004 10000000000000 X. Gourdon (2004) and Patrick Demichel used the Odlyzko–Schönhage algorithm. They also checked a few zeros of
much larger height.
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Gram points
A Gram point is a value of t such that ζ(1/2 + it) = Z(t)e − iθ(t) is a non-zero real; these are easy to find because they
are the points where the Euler factor at infinity π−s/2Γ(s/2) is real at s = 1/2 + it, or equivalently θ(t) is a multiple nπ
of π. They are usually numbered as gn for n = −1, 0, 1, ..., where gn is the unique solution of θ(t) = nπ with t ≥ 8 (θ is
increasing beyond this point; there is a second point with θ(t) = −π near 3.4, and θ(0) = 0). Gram observed that there
was often exactly one zero of the zeta function between any two Gram points; Hutchinson called this observation
Gram's law. There are several other closely related statements that are also sometimes called Gram's law: for
example, (−1)nZ(gn) is usually positive, or Z(t) usually has opposite sign at consecutive Gram points. The imaginary
parts γn of the first few zeros (in blue) and the first few Gram points gn are given in the following table

g−1 γ1 g0 γ2 g1 γ3 g2 γ4 g3 γ5 g4 γ6 g5

0 3.4 9.667 14.135 17.846 21.022 23.170 25.011 27.670 30.425 31.718 32.935 35.467 37.586 38.999

This shows the values of ζ(1/2+it) in the complex
plane for 0 ≤ t ≤ 34. (For t=0, ζ(1/2) ≈ -1.460

corresponds to the leftmost point of the red
curve.) Gram's law states that the curve usually

crosses the real axis once between zeros.

The first failure of Gram's law occurs at the 127'th zero and the Gram
point g126, which are in the "wrong" order.

g124 γ126 g125 g126 γ
127

γ128 g127 γ129 g128

279.148 279.229 280.802 282.455 282.465 283.211 284.104 284.836 285.752

A Gram point t is called good if the zeta function is positive at 1/2 + it. The indices of the "bad" Gram points where
Z has the "wrong" sign are 126, 134, 195, 211,... (sequence A114856 [2] in OEIS). A Gram block is an interval
bounded by two good Gram points such that all the Gram points between them are bad. A refinement of Gram's law
called Rosser's rule due to Rosser, Yohe & Schoenfeld (1969) says that Gram blocks often have the expected number
of zeros in them (the same as the number of Gram intervals), even though some of the individual Gram intervals in
the block may not have exactly one zero in them. For example, the interval bounded by g125 and g127 is a Gram
block containing a unique bad Gram point g126, and contains the expected number 2 of zeros although neither of its
two Gram intervals contains a unique zero. Rosser et al. checked that there were no exceptions to Rosser's rule in the
first 3 million zeros, though there are infinitely many exceptions for larger imaginary part.
Gram's rule and Rosser's rule both say that in some sense zeros do not stray too far from their expected positions.
The distance of a zero from its expected position is controlled by the function S defined above, which grows
extremely slowly: its average value is of the order of (log log T)1/2, which only reaches 2 for T around 1024. This
means that both rules hold most of the time for small T but eventually break down often.
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Arguments for and against the Riemann hypothesis
Mathematical papers about the Riemann hypothesis tend to be cautiously noncommittal about its truth. Of authors
who express an opinion, most of them, such as Riemann (1859) or Bombieri (2000), imply that they expect (or at
least hope) that it is true. The few authors who express serious doubt about it include Ivić (2008) who lists some
reasons for being skeptical, and Littlewood (1962) who flatly states that he believes it to be false, and that there is no
evidence whatever for it and no imaginable reason for it to be true. The consensus of the survey articles (Bombieri
2000, Conrey 2003, and Sarnak 2008) is that the evidence for it is strong but not overwhelming, so that while it is
probably true there is some reasonable doubt about it.
Some of the arguments for (or against) the Riemann hypothesis are listed by Sarnak (2008), Conrey (2003), and Ivić
(2008), and include the following reasons.
• Several analogues of the Riemann hypothesis have already been proved. The proof of the Riemann hypothesis for

varieties over finite fields by Deligne (1974) is possibly the single strongest theoretical reason in favor of the
Riemann hypothesis. This provides some evidence for the more general conjecture that all zeta functions
associated with automorphic forms satisfy a Riemann hypothesis, which includes the classical Riemann
hypothesis as a special case. Similarly Selberg zeta functions satisfy the analogue of the Riemann hypothesis, and
are in some ways similar to the Riemann zeta function, having a functional equation and an infinite product
expansion analogous to the Euler product expansion. However there are also some major differences; for example
they are not given by Dirichlet series. The Riemann hypothesis for the Goss zeta function was proved by Sheats
(1998). In contrast to these positive examples, however, some Epstein zeta functions do not satisfy the Riemann
hypothesis, even though they have an infinite number of zeros on the critical line (Titchmarsh 1986). These
functions are quite similar to the Riemann zeta function, and have a Dirichlet series expansion and a functional
equation, but the ones known to fail the Riemann hypothesis do not have an Euler product and are not directly
related to automorphic representations.

• The numerical verification that many zeros lie on the line seems at first sight to be strong evidence for it.
However analytic number theory has had many conjectures supported by large amounts of numerical evidence
that turn out to be false. See Skewes number for a notorious example, where the first exception to a plausible
conjecture related to the Riemann hypothesis probably occurs around 10316; a counterexample to the Riemann
hypothesis with imaginary part this size would be far beyond anything that can currently be computed. The
problem is that the behavior is often influenced by very slowly increasing functions such as log log T, that tend to
infinity, but do so so slowly that this cannot be detected by computation. Such functions occur in the theory of the
zeta function controlling the behavior of its zeros; for example the function S(T) above has average size around
(log log T)1/2 . As S(T) jumps by at least 2 at any counterexample to the Riemann hypothesis, one might expect
any counterexamples to the Riemann hypothesis to start appearing only when S(T) becomes large. It is never
much more than 3 as far as it has been calculated, but is known to be unbounded, suggesting that calculations may
not have yet reached the region of typical behavior of the zeta function.

• Denjoy's probabilistic argument for the Riemann hypothesis (Edwards 1974): If μ(x) is a random sequence of "1"s
and "−1"s then, for every ε > 0, the function

(the values of which are positions in a simple random walk) satisfies the bound

with probability 1. The Riemann hypothesis is equivalent to this bound for the Möbius function μ and the 
Mertens function M derived in the same way from it. In other words, the Riemann hypothesis is in some sense 
equivalent to saying that μ(x) behaves like a random sequence of coin tosses. When μ(x) is non-zero its sign 
gives the parity of the number of prime factors of x, so informally the Riemann hypothesis says that the parity 
of the number of prime factors of an integer behaves randomly. Such probabilistic arguments in number theory
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often give the right answer, but tend to be very hard to make rigorous, and occasionally give the wrong answer
for some results, such as Maier's theorem.

• The calculations in Odlyzko (1987) show that the zeros of the zeta function behave very much like the
eigenvalues of a random Hermitian matrix, suggesting that they are the eigenvalues of some self-adjoint operator,
which would imply the Riemann hypothesis. However all attempts to find such an operator have failed.

• There are several theorems, such as Goldbach's conjecture for sufficiently large odd numbers, that were first
proved using the generalized Riemann hypothesis, and later shown to be true unconditionally. This could be
considered as weak evidence for the generalized Riemann hypothesis, as several of its "predictions" turned out to
be true.

• Lehmer's phenomenon (Lehmer 1956) where two zeros are sometimes very close is sometimes given as a reason
to disbelieve in the Riemann hypothesis. However one would expect this to happen occasionally just by chance
even if the Riemann hypothesis were true, and Odlyzko's calculations suggest that nearby pairs of zeros occur just
as often as predicted by Montgomery's conjecture.

• Patterson (1988) suggests that the most compelling reason for the Riemann hypothesis for most mathematicians is
the hope that primes are distributed as regularly as possible.
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Riemann zeta function

Riemann zeta function ζ(s) in the complex plane. The color of a point s encodes the
value of ζ(s): dark colors denote values close to zero and hue encodes the value's
argument. The white spot at s = 1 is the pole of the zeta function; the black spots
on the negative real axis and on the critical line Re(s) = 1/2 are its zeros. Positive

real values are presented in red.

The Riemann zeta function, ζ(s), is a
function of a complex variable s that
analytically continues the sum of the infinite
series

which converges when the real part of s is greater than 1. The Zeta function is represented above as an infinite
p-series. It plays a pivotal role in analytic number theory and has applications in physics, probability theory, and
applied statistics.
First results about this function were obtained by Leonhard Euler in the eighteenth century. It is named after
Bernhard Riemann, who in the memoir "On the Number of Primes Less Than a Given Magnitude", published in
1859, established a relation between its zeros and the distribution of prime numbers.[1]

The values of the Riemann zeta function at even positive integers were computed by Euler. The first of them, ζ(2),
provides a solution to the Basel problem. In 1979 Apéry proved the irrationality of ζ(3). The values at negative
integer points, also found by Euler, are rational numbers and play an important role in the theory of modular forms.
Many generalizations of the Riemann zeta function, such as Dirichlet series and L-functions, are known.
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Definition
The Riemann zeta function ζ(s) is a function of a complex variable s = σ + it (here, s, σ and t are traditional
notations associated to the study of the ζ-function). The following infinite series converges for all complex numbers
s with real part greater than 1, and defines ζ(s) in this case:

The Riemann zeta function is defined as the analytic continuation of the function defined for σ > 1 by the sum of the
preceding series.
Leonhard Euler considered the above series in 1740 for positive integer values of s, and later Chebyshev extended
the definition to real s > 1.[2]

The above series is a prototypical Dirichlet series that converges absolutely to an analytic function for s such that σ >
1 and diverges for all other values of s. Riemann showed that the function defined by the series on the half-plane of
convergence can be continued analytically to all complex values s ≠ 1. For s = 1 the series is the harmonic series
which diverges to +∞, and

Thus the Riemann zeta function is a meromorphic function on the whole complex s-plane, which is holomorphic
everywhere except for a simple pole at s = 1 with residue 1.

Specific values

Riemann zeta function for real s > 1

For any positive even number 2n,

where B2n is a Bernoulli number; for negative integers, one has

for n ≥ 1, so in particular ζ vanishes at the negative even integers because Bm = 0 for all odd m other than 1. No such
simple expression is known for odd positive integers.
The values of the zeta function obtained from integral arguments are called zeta constants. The following are the
most commonly used values of the Riemann zeta function.
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this is the harmonic series.

this is employed in calculating the critical temperature for a Bose–Einstein condensate in a box with
periodic boundary conditions, and for spin wave physics in magnetic systems.

the demonstration of this equality is known as the Basel problem. The reciprocal of this sum answers the
question: What is the probability that two numbers selected at random are relatively prime?[3]

this is called Apéry's constant.

Stefan–Boltzmann law and Wien approximation in physics.

Euler product formula
The connection between the zeta function and prime numbers was discovered by Leonhard Euler, who proved the
identity

where, by definition, the left hand side is ζ(s) and the infinite product on the right hand side extends over all prime
numbers p (such expressions are called Euler products):

Both sides of the Euler product formula converge for Re(s) > 1. The proof of Euler's identity uses only the formula
for the geometric series and the fundamental theorem of arithmetic. Since the harmonic series, obtained when s = 1,
diverges, Euler's formula (which becomes ) implies that there are infinitely many primes.[4]

The Euler product formula can be used to calculate the asymptotic probability that s randomly selected integers are
set-wise coprime. Intuitively, the probability that any single number is divisible by a prime (or any integer), p is 1/p.
Hence the probability that s numbers are all divisible by this prime is 1/ps, and the probability that at least one of
them is not is 1 − 1/ps. Now, for distinct primes, these divisibility events are mutually independent because the
candidate divisors are coprime (a number is divisible by coprime divisors n and m if and only if it is divisible by nm,
an event which occurs with probability 1/(nm).) Thus the asymptotic probability that s numbers are coprime is given
by a product over all primes,

(More work is required to derive this result formally.)[5]
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The functional equation
The Riemann zeta function satisfies the functional equation

where Γ(s) is the gamma function, which is an equality of meromorphic functions valid on the whole complex plane.
This equation relates values of the Riemann zeta function at the points s and 1 − s. The gamma function has a simple
pole at every non-positive integer, therefore, the functional equation implies that ζ(s) has a simple zero at each even
negative integer s = − 2n — these are the trivial zeros of ζ(s).[6]

The functional equation was established by Riemann in his 1859 paper On the Number of Primes Less Than a Given
Magnitude and used to construct the analytic continuation in the first place. An equivalent relationship had been
conjectured by Euler over a hundred years earlier, in 1749, for the Dirichlet eta function (alternating zeta function)

Incidentally, this relation is interesting also because it actually exhibits ζ(s) as a Dirichlet series (of the η-function)
which is convergent (albeit non-absolutely) in the larger half-plane σ > 0 (not just σ > 1), up to an elementary factor.
Riemann also found a symmetric version of the functional equation, given by first defining

The functional equation is then given by

(Riemann defined a similar but different function which he called ξ(t).)

Zeros, the critical line, and the Riemann hypothesis

This image shows a plot of the Riemann zeta function along the critical line for real
values of t running from 0 to 34. The first five zeros in the critical strip are clearly visible

as the place where the spirals pass through the origin.

The functional equation shows that the
Riemann zeta function has zeros at −2,
−4, ... . These are called the trivial
zeros. They are trivial in the sense that
their existence is relatively easy to
prove, for example, from sin(πs/2)
being 0 in the functional equation. The
non-trivial zeros have captured far
more attention because their
distribution not only is far less
understood but, more importantly, their
study yields impressive results
concerning prime numbers and related
objects in number theory. It is known
that any non-trivial zero lies in the
open strip {s ∈ C: 0 < Re(s) < 1},
which is called the critical strip. The
Riemann hypothesis, considered to be
one of the greatest unsolved problems
in mathematics, asserts that any
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non-trivial zero s has Re(s) = 1/2. In the theory of the Riemann zeta function, the set {s ∈ C: Re(s) = 1/2} is called
the critical line. For the Riemann zeta function on the critical line, see Z-function.
The location of the Riemann zeta function's zeros is of great importance in the theory of numbers. From the fact that
all non-trivial zeros lie in the critical strip one can deduce the prime number theorem. A better result[7] is that ζ(σ +
it) ≠ 0 whenever |t| ≥ 3 and

The strongest result of this kind one can hope for is the truth of the Riemann hypothesis, which would have many
profound consequences in the theory of numbers.
It is known that there are infinitely many zeros on the critical line. Littlewood showed that if the sequence (γn)
contains the imaginary parts of all zeros in the upper half-plane in ascending order, then

The critical line theorem asserts that a positive percentage of the nontrivial zeros lies on the critical line.
In the critical strip, the zero with smallest non-negative imaginary part is 1/2 + i14.13472514... Directly from the
functional equation one sees that the non-trivial zeros are symmetric about the axis Re(s) = 1/2. Furthermore, the fact
that ζ(s) = ζ(s*)* for all complex s ≠ 1 (* indicating complex conjugation) implies that the zeros of the Riemann zeta
function are symmetric about the real axis.
The statistics of the Riemann zeta zeros are a topic of interest to mathematicians because of their connection to big
problems like the Riemann hypothesis, distribution of prime numbers, etc. Through connections with random matrix
theory and quantum chaos, the appeal is even broader. The fractal structure of the Riemann zeta zero distribution has
been studied using rescaled range analysis.[8] The self-similarity of the zero distribution is quite remarkable, and is
characterized by a large fractal dimension of 1.9. This rather large fractal dimension is found over zeros covering at
least fifteen orders of magnitude, and also for the zeros of other L-functions.

Various properties
For sums involving the zeta-function at integer and half-integer values, see rational zeta series.

Reciprocal
The reciprocal of the zeta function may be expressed as a Dirichlet series over the Möbius function μ(n):

for every complex number s with real part > 1. There are a number of similar relations involving various well-known
multiplicative functions; these are given in the article on the Dirichlet series.
The Riemann hypothesis is equivalent to the claim that this expression is valid when the real part of s is greater than
1/2.
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Universality
The critical strip of the Riemann zeta function has the remarkable property of universality. This zeta-function
universality states that there exists some location on the critical strip that approximates any holomorphic function
arbitrarily well. Since holomorphic functions are very general, this property is quite remarkable.

Representations

Mellin transform
The Mellin transform of a function ƒ(x) is defined as

in the region where the integral is defined. There are various expressions for the zeta-function as a Mellin transform.
If the real part of s is greater than one, we have

where Γ denotes the Gamma function. By modifying the contour Riemann showed that

for all s, where the contour C starts and ends at +∞ and circles the origin once.
We can also find expressions which relate to prime numbers and the prime number theorem. If π(x) is the
prime-counting function, then

for values with Re(s) > 1.
A similar Mellin transform involves the Riemann prime-counting function J(x), which counts prime powers pn with a
weight of 1/n, so that

Now we have

These expressions can be used to prove the prime number theorem by means of the inverse Mellin transform.
Riemann's prime-counting function is easier to work with, and π(x) can be recovered from it by Möbius inversion.

Theta functions
The Riemann zeta function can be given formally by a divergent Mellin transform

in terms of Jacobi's theta function

However this integral does not converge for any value of s and so needs to be regularized: this gives the following
expression for the zeta function:
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Laurent series
The Riemann zeta function is meromorphic with a single pole of order one at s = 1. It can therefore be expanded as a
Laurent series about s = 1; the series development then is

The constants γn here are called the Stieltjes constants and can be defined by the limit

The constant term γ0 is the Euler–Mascheroni constant.

Rising factorial
Another series development using the rising factorial valid for the entire complex plane is

This can be used recursively to extend the Dirichlet series definition to all complex numbers.
The Riemann zeta function also appears in a form similar to the Mellin transform in an integral over the
Gauss–Kuzmin–Wirsing operator acting on xs−1; that context gives rise to a series expansion in terms of the falling
factorial.

Hadamard product
On the basis of Weierstrass's factorization theorem, Hadamard gave the infinite product expansion

where the product is over the non-trivial zeros ρ of ζ and the letter γ again denotes the Euler–Mascheroni constant. A
simpler infinite product expansion is

This form clearly displays the simple pole at s = 1, the trivial zeros at −2, −4, ... due to the gamma function term in
the denominator, and the non-trivial zeros at s = ρ.

Logarithmic derivative on the critical strip

where is the density of zeros of ζ on the critical strip 0 < Re(s) < 1 (δ is the Dirac delta

distribution, and the sum is over the nontrivial zeros ρ of ζ).
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Globally convergent series
A globally convergent series for the zeta function, valid for all complex numbers s except s = 1 + 2πin/log(2) for
some integer n, was conjectured by Konrad Knopp and proved by Helmut Hasse in 1930 (cf. Euler summation):

The series only appeared in an Appendix to Hasse's paper, and did not become generally known until it was
rediscovered more than 60 years later (see Sondow, 1994).
Peter Borwein has shown a very rapidly convergent series suitable for high precision numerical calculations. The
algorithm, making use of Chebyshev polynomials, is described in the article on the Dirichlet eta function.

Applications
The zeta function occurs in applied statistics (see Zipf's law and Zipf–Mandelbrot law).
Zeta function regularization is used as one possible means of regularization of divergent series in quantum field
theory. In one notable example, the Riemann zeta-function shows up explicitly in the calculation of the Casimir
effect.

Generalizations
There are a number of related zeta functions that can be considered to be generalizations of the Riemann zeta
function. These include the Hurwitz zeta function

which coincides with the Riemann zeta function when q = 1 (note that the lower limit of summation in the Hurwitz
zeta function is 0, not 1), the Dirichlet L-functions and the Dedekind zeta-function. For other related functions see
the articles Zeta function and L-function.
The polylogarithm is given by

which coincides with the Riemann zeta function when z = 1.
The Lerch transcendent is given by

which coincides with the Riemann zeta function when z = 1 and q = 1 (note that the lower limit of summation in the
Lerch transcendent is 0, not 1).
The Clausen function Cls(θ) that can be chosen as the real or imaginary part of Lis(e iθ).
The multiple zeta functions are defined by

One can analytically continue these functions to the n-dimensional complex space. The special values of these
functions are called multiple zeta values by number theorists and have been connected to many different branches in
mathematics and physics.
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Notes
[1] This paper also contained the Riemann hypothesis, a conjecture about the distribution of complex zeros of the Riemann zeta function that is

considered by many mathematicians to be the most important unsolved problem in pure mathematics.Bombieri, Enrico. "The Riemann
Hypothesis - official problem description" (http:/ / www. claymath. org/ millennium/ Riemann_Hypothesis/ riemann. pdf). Clay Mathematics
Institute. . Retrieved 2008-10-25.

[2] Devlin, Keith (2002). The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles of Our Time. New York: Barnes &
Noble. pp. 43–47. ISBN 978-0760786598.

[3] C. S. Ogilvy & J. T. Anderson Excursions in Number Theory, pp. 29–35, Dover Publications Inc., 1988 ISBN 0-486-25778-9
[4] Charles Edward Sandifer, How Euler did it, The Mathematical Association of America, 2007, p. 193. ISBN 978-0-88385-563-8
[5] J. E. Nymann (1972). "On the probability that k positive integers are relatively prime". Journal of Number Theory 4 (5): 469–473.

doi:10.1016/0022-314X(72)90038-8.
[6] For s an even positive integer, the product sin(πs/2)Γ(1−s) is regular and the functional equation relates the values of the Riemann zeta

function at odd negative integers and even positive integers.
[7] Ford, K. Vinogradov's integral and bounds for the Riemann zeta function, Proc. London Math. Soc. (3) 85 (2002), pp. 565–633
[8] O. Shanker (2006). "Random matrices, generalized zeta functions and self-similarity of zero distributions". J. Phys. A: Math. Gen. 39:

13983–13997. doi:10.1088/0305-4470/39/45/008.
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• Riemann Zeta Function and Other Sums of Reciprocal Powers (http:/ / www. math. sfu. ca/ ~cbm/ aands/

page_807. htm), section 23.2 of Abramowitz and Stegun
• The Riemann Hypothesis - A Visual Exploration (http:/ / www. youtube. com/ watch?v=MsBUTuYI62k) — a

visual exploration of the Riemann Hypothesis and Zeta Function

http://www.ams.org/proc/1997-125-09/S0002-9939-97-04102-6/home.html
http://en.wikipedia.org/w/index.php?title=Jonathan_Sondow
http://www.ams.org/journals/proc/1994-120-02/S0002-9939-1994-1172954-7/home.html
http://www.ams.org/journals/proc/1994-120-02/S0002-9939-1994-1172954-7/home.html
http://www.ams.org/journal-getitem?pii=S0002-9939-99-05398-8
http://www.ams.org/journal-getitem?pii=S0002-9939-99-05398-8
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6WKD-4XFXX96-3-5&_cdi=6904&_user=1390915&_orig=browse&_coverDate=02%2F28%2F2010&_sk=998699997&view=c&wchp=dGLzVzz-zSkWA&md5=95961c8b362bda898d6ef6896e9cd396&ie=/sdarticle.pdf
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6WKD-4XFXX96-3-5&_cdi=6904&_user=1390915&_orig=browse&_coverDate=02%2F28%2F2010&_sk=998699997&view=c&wchp=dGLzVzz-zSkWA&md5=95961c8b362bda898d6ef6896e9cd396&ie=/sdarticle.pdf
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6WKD-4XFXX96-3-5&_cdi=6904&_user=1390915&_orig=browse&_coverDate=02%2F28%2F2010&_sk=998699997&view=c&wchp=dGLzVzz-zSkWA&md5=95961c8b362bda898d6ef6896e9cd396&ie=/sdarticle.pdf
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6WKD-4XFXX96-3-5&_cdi=6904&_user=1390915&_orig=browse&_coverDate=02%2F28%2F2010&_sk=998699997&view=c&wchp=dGLzVzz-zSkWA&md5=95961c8b362bda898d6ef6896e9cd396&ie=/sdarticle.pdf
http://mathworld.wolfram.com/RiemannZetaFunction.html
http://dtc.umn.edu/~odlyzko/zeta_tables
http://seedmagazine.com/news/2006/03/prime_numbers_get_hitched.php
http://arxiv.org/abs/math/0309433v1
http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/Zeta/
http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/Zeta/
http://www.math.sfu.ca/~cbm/aands/page_807.htm
http://www.math.sfu.ca/~cbm/aands/page_807.htm
http://en.wikipedia.org/w/index.php?title=Abramowitz_and_Stegun
http://www.youtube.com/watch?v=MsBUTuYI62k


Balanced prime 40

Balanced prime
A balanced prime is a prime number that is equal to the arithmetic mean of the nearest primes above and below. Or
to put it algebraically, given a prime number , where n is its index in the ordered set of prime numbers,

The first few balanced primes are
5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103 (sequence A006562 [1] in OEIS).
For example, 53 is the sixteenth prime. The fifteenth and seventeenth primes, 47 and 59, add up to 106, half of which
is 53, thus 53 is a balanced prime.
When 1 was considered a prime number, 2 would have correspondingly been considered the first balanced prime
since

It is conjectured that there are infinitely many balanced primes.
Three consecutive primes in arithmetic progression is sometimes called a CPAP-3. A balanced prime is by definition
the second prime in a CPAP-3. As of 2009 the largest known CPAP-3 with proven primes has 7535 digits found by
David Broadhurst and François Morain:[2]

The value of n is not known.
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Bell number
In combinatorics, the nth Bell number, named after Eric Temple Bell, is the number of partitions of a set with n
members, or equivalently, the number of equivalence relations on it. Starting with B0 = B1 = 1, the first few Bell
numbers are:

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, … (sequence A000110 [1] in OEIS).
(See also breakdown by number of subsets/equivalence classes.)

Partitions of a set

The traditional Japanese symbols for the chapters
of the Tale of Genji are based on the 52 ways of

partitioning five elements.

In general, Bn is the number of partitions of a set of size n. A partition
of a set S is defined as a set of nonempty, pairwise disjoint subsets of S
whose union is S. For example, B3 = 5 because the 3-element set
{a, b, c} can be partitioned in 5 distinct ways:

{ {a}, {b}, {c} }
{ {a}, {b, c} }
{ {b}, {a, c} }
{ {c}, {a, b} }
{ {a, b, c} }.

B0 is 1 because there is exactly one partition of the empty set. Every
member of the empty set is a nonempty set (that is vacuously true), and
their union is the empty set. Therefore, the empty set is the only
partition of itself.

Note that, as suggested by the set notation above, we consider neither
the order of the partitions nor the order of elements within each
partition. This means the following partitionings are all considered
identical:

{ {b}, {a, c} }
{ {a, c}, {b} }
{ {b}, {c, a} }
{ {c, a}, {b} }.

Another view of Bell numbers
Bell numbers can also be viewed as the number of distinct possible ways of putting n distinguishable balls into one
or more indistinguishable boxes. For example, let us suppose n is 3. We have three balls, which we will label a, b,
and c, and three boxes. If the boxes can not be distinguished from each other, there are five ways of putting the balls
in the boxes:
• All three balls go in to one box. Since the boxes are anonymous, this is only considered one combination.
• a goes in to one box; b and c go in to another box.
• b goes in to one box; a and c go in to another box.
• c goes in to one box; a and b go in to another box.
• Each ball goes in to its own box.
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Properties of Bell numbers
The Bell numbers satisfy this recursion formula:

They also satisfy "Dobinski's formula":

= the nth moment of a Poisson distribution with expected value 1.
And they satisfy "Touchard's congruence": If p is any prime number then

or, generalizing

Each Bell number is a sum of Stirling numbers of the second kind

The Stirling number is the number of ways to partition a set of cardinality n into exactly k nonempty subsets.

More generally, the Bell numbers satisfy the following recurrence[2] :

The nth Bell number is also the sum of the coefficients in the polynomial that expresses the nth moment of any
probability distribution as a function of the first n cumulants; this way of enumerating partitions is not as coarse as
that given by the Stirling numbers.
The exponential generating function of the Bell numbers is

Asymptotic limit and bounds
Several asymptotic formulae for the Bell numbers are known. One such is

Here

where W is the Lambert W function.
(Lovász, 1993)
In (Berend, D. and Tassa, T., 2010), the following bounds were established:

moreover, if then for all ,
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where and 

Triangle scheme for calculating Bell numbers

The triangular array whose right-hand diagonal
sequence consists of Bell numbers

The Bell numbers can easily be calculated by creating the so-called
Bell triangle, also called Aitken's array or the Peirce triangle:

1. Start with the number one. Put this on a row by itself.
2. Start a new row with the rightmost element from the previous row

as the leftmost number
3. Determine the numbers not on the left column by taking the sum of

the number to the left and the number above the number to the left
(the number diagonally up and left of the number we are
calculating)

4. Repeat step three until there is a new row with one more number
than the previous row

5. The number on the left hand side of a given row is the Bell number for that row.
For example, the first row is made by placing one by itself. The next (second) row is made by taking the rightmost
number from the previous row (1), and placing it on a new row. We now have a structure like this:

 1

 1  ''x''

The value x here is determined by adding the number to the left of x (one) and the number above the number to the
left of x (also one).

 1

 1  2

 y

The value y is determined by copying over the number from the right of the previous row. Since the number on the
right hand side of the previous row has a value of 2, y is given a value of two.

 1

 1  2

 2  3  ''x''

Again, since x is not the leftmost element of a given row, its value is determined by taking the sum of the number to
x's left (three) and the number above the number to x's left (two). The sum is five.
Here is the first five rows of this triangle:

 1

 1  2

 2  3  5

 5  7 10 15

15 20 27 37 52

The fifth row is calculated thus:
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• Take 15 from the previous row
• 15 + 5 = 20
• 20 + 7 = 27
• 27 + 10 = 37
• 37 + 15 = 52

Computer program
The following is example code in the Ruby programming language that prints out all the Bell numbers from the 1st
to the 300th inclusive (the limits can be adjusted)

#!/usr/bin/env ruby

def print_bell_numbers(start, finish)

    # Initialize the Bell triangle as a two-dimensional array

    triangle = Array[Array[1]]

    # Make sure "start" is less than "finish", and both numbers are at 

least 1

    (finish, start = start, finish) if finish < start

    start = 1 if start < 1

    finish = 1 if finish < 1

    1.upto(finish-1) do |row_num|

        # Set the first element of the current row to be the last 

element

        # of the previous row

        current_row = [triangle[row_num-1][row_num-1]]

        # Calculate the rest of the elements in this row, then add the 

row

        # to the Bell triangle

        1.upto(row_num) do |col_num|

            sum = triangle[row_num-1][col_num-1] + 

current_row[col_num-1]

            current_row.push(sum)

        end

        triangle[row_num] = current_row

    end

    # Print out the Bell numbers

    start.upto(finish) do |num|

        puts triangle[num-1][0]

    end

end

http://en.wikipedia.org/w/index.php?title=Ruby_programming_language
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# Adjust the limits here

print_bell_numbers(1, 300)

The number in the nth row and kth column is the number of partitions of {1, ..., n} such that n is not together in one
class with any of the elements k, k + 1, ..., n − 1. For example, there are 7 partitions of {1, ..., 4} such that 4 is not
together in one class with either of the elements 2, 3, and there are 10 partitions of {1, ..., 4} such that 4 is not
together in one class with element 3. The difference is due to 3 partitions of {1, ..., 4} such that 4 is together in one
class with element 2, but not with element 3. This corresponds to the fact that there are 3 partitions of {1, ..., 3} such
that 3 is not together in one class with element 2: for counting partitions two elements which are always in one class
can be treated as just one element. The 3 appears in the previous row of the table.

Prime Bell numbers
The first few Bell numbers that are primes are:

2, 5, 877, 27644437, 35742549198872617291353508656626642567,
359334085968622831041960188598043661065388726959079837

corresponding to the indices 2, 3, 7, 13, 42 and 55 (sequence A051130 [3] in OEIS).
The next prime is B2841, which is approximately 9.30740105 × 106538. [4] As of 2006, it is the largest known prime
Bell number. Phil Carmody showed it was a probable prime in 2002. After 17 months of computation with Marcel
Martin's ECPP program Primo, Ignacio Larrosa Cañestro proved it to be prime in 2004. He ruled out any other
possible primes below B6000, later extended to B30447 by Eric Weisstein.
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Carol number
A Carol number is an integer of the form . An equivalent formula is . The first
few Carol numbers are: −1, 7, 47, 223, 959, 3967, 16127, 65023, 261119, 1046527 (sequence A093112 [1] in OEIS).
Carol numbers were first studied by Cletus Emmanuel, who named them after a friend, Carol G. Kirnon.[2] [3]

For n > 2, the binary representation of the n-th Carol number is n − 2 consecutive ones, a single zero in the middle,
and n + 1 more consecutive ones, or to put it algebraically,

So, for example, 47 is 101111 in binary, 223 is 11011111, etc. The difference between the 2n-th Mersenne number
and the n-th Carol number is . This gives yet another equivalent expression for Carol numbers,

. The difference between the n-th Kynea number and the n-th Carol number is the (n + 2)th
power of two.
Starting with 7, every third Carol number is a multiple of 7. Thus, for a Carol number to also be a prime number, its
index n cannot be of the form 3x + 2 for x > 0. The first few Carol numbers that are also prime are 7, 47, 223, 3967,
16127 (these are listed in Sloane's A091516 [4]). As of July 2007, the largest known Carol number that is also a
prime is the Carol number for n = 253987, which has 152916 digits.[5] [6] It was found by Cletus Emmanuel in May
2007, using the programs MultiSieve and PrimeFormGW. It is the 40th Carol prime.
The 7th Carol number and 5th Carol prime, 16127, is also a prime when its digits are reversed, so it is the smallest
Carol emirp.[7] The 12th Carol number and 7th Carol prime, 16769023, is also a Carol emirp.[8]
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Centered decagonal number
A centered decagonal number is a centered
figurate number that represents a decagon with a
dot in the center and all other dots surrounding
the center dot in successive decagonal layers.
The centered decagonal number for n is given by
the formula

Thus, the first few centered decagonal numbers
are
1, 11, 31, 61, 101, 151, 211, 281, 361, 451, 551,
661, 781, 911, 1051, ... (sequence A062786 [1] in
OEIS)

Like any other centered k-gonal number, the nth
centered decagonal number can reckoned by
multiplying the (n - 1)th triangular number by k,
10 in this case, then adding 1. As a consequence
of performing the calculation in base 10, the
centered decagonal numbers can be obtained by
simply adding a 1 to the right of each triangular number. Therefore, all centered decagonal numbers are odd and in
base 10 always end in 1.

Another consequence of this relation to triangular numbers is the simple recurrence relation for centered decagonal
numbers

where CD1 is 1.

Centered decagonal prime
A centered decagonal prime is a centered decagonal number that is prime. The first few centered decagonal primes
are
11, 31, 61, 101, 151, 211, 281, 661, 911, 1051, 1201, 1361, 1531, 1901, 2311, 2531, 3001, 3251, 3511, 4651, 5281,
....
See also regular decagonal number.
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Centered heptagonal number
A centered heptagonal number is a centered figurate
number that represents a heptagon with a dot in the center
and all other dots surrounding the center dot in successive
heptagonal layers. The centered heptagonal number for n
is given by the formula

.

This can also be calculated by multiplying the triangular number for (n - 1) by 7, then adding 1.
The first few centered heptagonal numbers are
1, 8, 22, 43, 71, 106, 148, 197, 253, 316, 386, 463, 547, 638, 736, 841, 953 (sequence A069099 [1] in OEIS)
Centered heptagonal numbers alternate parity in the pattern odd-even-even-odd.

Centered heptagonal prime
A centered heptagonal prime is a centered heptagonal number that is prime. The first few centered heptagonal
primes are

43, 71, 197, 463, 547, 953, 1471, 1933, 2647, 2843, 3697, ... (sequence A144974 [2] in OEIS)
and centered heptagonal twin prime numbers are

43, 71, 197, 463, 1933, 5741, 8233, 9283, 11173, 14561, 34651, ... (A144975 [3]).
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Centered square number
In elementary number theory, a centered square number is a centered figurate number that gives the number of
dots in a square with a dot in the center and all other dots surrounding the center dot in successive square layers. That
is, each centered square number equals the number of dots within a given city block distance of the center dot on a
regular square lattice. While centered square numbers, like figurate numbers in general, have few if any direct
practical applications, they are sometimes studied in recreational mathematics for their elegant geometric and
arithmetic properties.
The figures for the first four centered square numbers are shown below:

                                     

Relationships with other figurate numbers
The nth centered square number is given by the formula

In other words, a centered square number is the sum of two consecutive square numbers. The following pattern
demonstrates this formula:

                                     

The formula can also be expressed as

that is, n th centered square number is half of n th odd square number plus one, as illustrated below:

  
     

    
                   

      
                                         

Like all centered polygonal numbers, centered square numbers can also be expressed in terms of triangular numbers:

where

is the nth triangular number. This can be easily seen by removing the center dot and dividing the rest of the figure
into four triangles, as below:
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Properties
The first few centered square numbers are:

1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105,
1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281,
3445, 3613, 3785, 3961, 4141, 4325, … (sequence A001844 [1] in OEIS).

All centered square numbers are odd, and in base 10 one can notice the one's digits follows the pattern 1-5-3-5-1.
All centered square numbers and their divisors have a remainder of one when divided by four. Hence all centered
square numbers and their divisors end with digits 1 or 5 in base 6, 8 or 12.
All centered square numbers except 1 are the third term of a Leg-Hypotenuse Pythagorean triple (for example, 3-4-5,
5-12-13).

Centered square prime
A centered square prime is a centered square number that is prime. Unlike regular square numbers, which are never
prime, quite a few of the centered square numbers are prime. The first few centered square primes are:

5, 13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, …
(sequence A027862 [2] in OEIS).
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External links
• (n^2 + 1) / 2 as a special case of M(i,j) = (i^2 + j) / 2 [3]
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Centered triangular number
A centered triangular number is a centered figurate number that represents a triangle with a dot in the center and
all other dots surrounding the center in successive triangular layers. The centered triangular number for n is given by
the formula

The following image shows the building of the centered triangular numbers using the associated figures: at each step
the previous figure, shown in red, is surrounded by a triangle of new points, in blue.

The first few centered triangular numbers (sequence A005448 [1] in OEIS) are
1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, 409, 460, 514, 571, 631, 694, 760, 829, 901, 976,
1054, 1135, 1219, 1306, 1396, 1489, 1585, 1684, 1786, 1891, 1999, 2110, 2224, 2341, 2461, 2584, 2710, 2839,
2971
Each centered triangular number from 10 onwards is the sum of three consecutive regular triangular numbers. Also
each centred triangular number has a remainder of 1 when divided by three and the quotient (if positive) is the
previous regular triangular number.
The sum of the first n centered triangular numbers is the magic constant for an n by n normal magic square for n > 2.

Centered triangular prime
A centered triangular prime is a centered triangular number that is prime. The first few centered triangular primes
are (sequence A125602 [2] in OEIS)
19, 31, 109, 199, 409, ...
(corresponding to n: 3, 4, 8, 11, 16, ...)
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Chen prime

Publication year 1973[Note 1]

Author of publication Yuan, W.

Number of known cases  ?

OEIS index and link A109611 [1]

A prime number p is called a Chen prime if p + 2 is either a prime or a product of two primes. The even number 2p
+ 2 therefore satisfies Chen's theorem.
In 1966, Chen Jingrun proved that there are infinitely many such primes. This result would also follow from the truth
of the twin prime conjecture.
The first few Chen primes are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, … (sequence A109611 [1] in OEIS).
The first few Chen primes that are not the lower member of a pair of twin primes are

2, 7, 13, 19, 23, 31, 37, 47, 53, 67, 83, 89, 109, 113, 127, ... A063637 [2].
The first few non-Chen primes are

43, 61, 73, 79, 97, 103, 151, 163, 173, 193, 223, 229, 241, … A102540 [3].
All of the supersingular primes are Chen primes.
Rudolf Ondrejka discovered the following 3x3 magic square of nine Chen primes:[4]

17 89 71

113 59 5

47 29 101

The lower member of a pair of twin primes is a Chen prime, by definition. In August 2009 Twin Prime Search and
Primegrid found the largest known Chen prime, 65516468355 · 2333333 - 1 with 100355 digits.

Further results
Chen also proved the following generalization: For any even integer h, there exist infinitely many primes p such that
p + h is either a prime or a semiprime.
Terence Tao and Ben Green proved in 2005 that there are infinitely many three-term arithmetic progressions of Chen
primes. Recently, Binbin Zhou proved that the Chen primes contain arbitrarily long arithmetic progressions.

Notes
1.^ Chen primes were first described by Yuan, W. On the Representation of Large Even Integers as a Sum of a
Product of at Most 3 Primes and a Product of at Most 4 Primes [5], Scienca Sinica 16, 157-176, 1973.
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Circular prime
A circular prime is a prime number that remains prime on any cyclic rotation of its (base 10) digits.[1] [2] For
example 1193 is a circular prime, since 1931, 9311 and 3119 all are also prime.[3] A circular prime with at least two
digits can only consist of combinations of the digits 1, 3, 7 or 9, because having 0, 2, 4, 6 or 8 as the last digit makes
the number divisible by 2, and having 0 or 5 as the last digit makes it divisible by 5.[1] The known circular primes are
2, 3, 5, 7, R2, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933, R19, R23, R317 and
R1031, where Rn is a repunit prime with n digits, and there are no other circular primes up to 1023.[3] Note that this
list contains only the smallest prime of each "circle", thus omitting for example 31, as it belongs to the same circle as
13. Another type of primes related to the circular primes are the permutable primes, which are a subset of the circular
primes (every permutable prime is also a circular prime, but not necessarily vice versa).
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Cousin prime
In mathematics, cousin primes are prime numbers that differ by four; compare this with twin primes, pairs of prime
numbers that differ by two, and sexy primes, pairs of prime numbers that differ by six. The cousin primes (sequences
A023200 [1] and A046132 [2] in OEIS) below 1000 are:

(3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47), (67, 71), (79, 83), (97, 101), (103, 107), (109, 113), (127,
131), (163, 167), (193, 197), (223, 227), (229, 233), (277, 281), (307, 311), (313, 317), (349, 353), (379, 383),
(397, 401), (439, 443), (457, 461), (463,467), (487, 491), (499, 503), (613, 617), (643, 647), (673, 677), (739,
743), (757, 761), (769, 773), (823, 827), (853, 857), (859, 863), (877, 881), (883, 887), (907, 911), (937, 941),
(967, 971)

As of May 2009 the largest known cousin prime was (p, p+4) for
p = (311778476·587502·9001#·(587502·9001#+1)+210)·(587502·9001#−1)/35+1

where 9001# is a primorial. It was found by Ken Davis and has 11594 digits.[3]

The largest known cousin probable prime is
474435381 · 298394 − 1
474435381 · 298394 − 5.

It has 29629 digits and was found by Angel, Jobling and Augustin.[4] While the first of these numbers has been
proven prime, there is no known primality test to easily determine whether the second number is prime.
It follows from the first Hardy–Littlewood conjecture that cousin primes have the same asymptotic density as twin
primes. An analogy of Brun's constant for twin primes can be defined for cousin primes, with the initial term (3, 7)
omitted:

Using cousin primes up to 242, the value of B4 was estimated by Marek Wolf in 1996 as
B4 ≈ 1.1970449.[5]

This constant should not be confused with Brun's constant for prime quadruplets, which is also denoted B4.
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Cuban prime
A cuban prime is a prime number that is a solution to one of two different specific equations involving third powers
of x and y. The first of these equations is:

and the first few cuban primes from this equation are (sequence A002407 [1] in OEIS):
7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167,
5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497,
24571, 25117, 26227

The general cuban prime of this kind can be rewritten as , which simplifies to . This is

exactly the general form of a centered hexagonal number; that is, all of these cuban primes are centered hexagonal.
This kind of cuban primes has been researched by A. J. C. Cunningham, in a paper entitled On quasi-Mersennian
numbers.

As of January 2006 the largest known has 65537 digits with [2], found by Jens Kruse
Andersen.
The second of these equations is:

It simplifies to . The first few cuban primes on this form are (sequence A002648 [3] in OEIS):
13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169,
22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313

This kind of cuban primes have also been researched by Cunningham, in his book Binomial Factorisations.
The name "cuban prime" has to do with the role cubes (third powers) play in the equations, and has nothing to do
with Cuba.

See also
• Cubic function
• List of prime numbers
• Prime number
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Cullen number
In mathematics, a Cullen number is a natural number of the form n · 2n + 1 (written Cn). Cullen numbers were first
studied by Fr. James Cullen in 1905. Cullen numbers are special cases of Proth numbers.
In 1976 Christopher Hooley showed that the natural density of positive integers for which Cn is a prime is of
the order o(x) for . In that sense, almost all Cullen numbers are composite. Hooley's proof was reworked
by Hiromi Suyama to show that it works for any sequence of numbers n · 2n+a + b where a and b are integers, and in
particular also for Woodall numbers. The only known Cullen primes are those for n equal:

1, 141, 4713, 5795, 6611, 18496, 32292, 32469, 59656, 90825, 262419, 361275, 481899, 1354828, 6328548,
6679881 (sequence A005849 [1] in OEIS).

Still, it is conjectured that there are infinitely many Cullen primes.
As of August 2009, the largest known Cullen prime is 6679881 × 26679881 + 1. It is a megaprime with 2,010,852
digits and was discovered by a PrimeGrid participant from Japan.[2]

A Cullen number Cn is divisible by p = 2n − 1 if p is a prime number of the form 8k - 3; furthermore, it follows from
Fermat's little theorem that if p is an odd prime, then p divides Cm(k) for each m(k) = (2k − k)   (p − 1) − k (for k > 0).
It has also been shown that the prime number p divides C(p + 1) / 2 when the Jacobi symbol (2 | p) is −1, and that p
divides C(3p − 1) / 2 when the Jacobi symbol (2 | p) is +1.
It is unknown whether there exists a prime number p such that Cp is also prime.
Sometimes, a generalized Cullen number is defined to be a number of the form n · bn + 1, where n + 2 > b; if a
prime can be written in this form, it is then called a generalized Cullen prime. Woodall numbers are sometimes
called Cullen numbers of the second kind.

References
[1] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa005849
[2] "The Prime Database: 6679881*2^6679881+1" (http:/ / primes. utm. edu/ primes/ page. php?id=89536), Chris Caldwell's The Largest Known

Primes Database, , retrieved December 22, 2009

Further reading
• Cullen, James (December 1905), "Question 15897", Educ. Times: 534.
• Guy, Richard K. (2004), Unsolved Problems in Number Theory (3rd ed.), New York: Springer Verlag, pp. section

B20, ISBN 0387208607.
• Hooley, Christopher (1976), Applications of sieve methods, New York: Cambridge University Press,

pp. 115–119, ISBN 0521209153.
• Keller, Wilfrid (1995), "New Cullen Primes" (http:/ / www. ams. org/ mcom/ 1995-64-212/

S0025-5718-1995-1308456-3/ S0025-5718-1995-1308456-3. pdf), Mathematics of Computation 64 (212):
1733–1741.

http://en.wikipedia.org/w/index.php?title=Mathematics
http://en.wikipedia.org/w/index.php?title=Natural_number
http://en.wikipedia.org/w/index.php?title=James_Cullen_%28mathematician%29
http://en.wikipedia.org/w/index.php?title=Christopher_Hooley
http://en.wikipedia.org/w/index.php?title=Natural_density
http://en.wikipedia.org/w/index.php?title=Almost_all
http://en.wikipedia.org/w/index.php?title=Composite_number
http://en.wikipedia.org/w/index.php?title=Hiromi_Suyama
http://en.wikipedia.org/wiki/Oeis%3Aa005849
http://en.wikipedia.org/w/index.php?title=On-Line_Encyclopedia_of_Integer_Sequences
http://en.wikipedia.org/w/index.php?title=Megaprime
http://en.wikipedia.org/w/index.php?title=PrimeGrid
http://en.wikipedia.org/w/index.php?title=Prime_number
http://en.wikipedia.org/w/index.php?title=Fermat%27s_little_theorem
http://en.wikipedia.org/w/index.php?title=Jacobi_symbol
http://en.wikipedia.org/wiki/Oeis%3Aa005849
http://primes.utm.edu/primes/page.php?id=89536
http://en.wikipedia.org/w/index.php?title=Richard_K._Guy
http://en.wikipedia.org/w/index.php?title=Springer_Verlag
http://en.wikipedia.org/w/index.php?title=Christopher_Hooley
http://en.wikipedia.org/w/index.php?title=Cambridge_University_Press
http://www.ams.org/mcom/1995-64-212/S0025-5718-1995-1308456-3/S0025-5718-1995-1308456-3.pdf
http://www.ams.org/mcom/1995-64-212/S0025-5718-1995-1308456-3/S0025-5718-1995-1308456-3.pdf
http://en.wikipedia.org/w/index.php?title=Mathematics_of_Computation


Cullen number 57

External links
• Chris Caldwell, The Top Twenty: Cullen primes (http:/ / primes. utm. edu/ top20/ page. php?id=6) at The Prime

Pages.
• The Prime Glossary: Cullen number (http:/ / primes. utm. edu/ glossary/ page. php?sort=Cullens) at The Prime

Pages.
• Weisstein, Eric W., " Cullen number (http:/ / mathworld. wolfram. com/ CullenNumber. html)" from MathWorld.
• Cullen prime: definition and status (http:/ / www. prothsearch. net/ cullen. html) (outdated), Cullen Prime Search

is now hosted at PrimeGrid

Dihedral prime
A dihedral prime or dihedral calculator prime is a prime number that still reads like itself or another prime
number when read in a seven-segment display, regardless of orientation (normally or upside down), and surface
(actual display or reflection on a mirror). The first few decimal dihedral primes are

2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, 121021, 121151, 150151, 151051,
151121, 180181, 180811, 181081 (sequence A038136 [1] in OEIS).[2]

The smallest dihedral prime that reads differently with each orientation and surface combination is 120121 which
becomes 121021 (upside down), 151051 (mirrored), and 150151 (both upside down and mirrored).

LED-based 7-segment
display showing the 16

hex digits.

The digits 0, 1 and 8 remain the same regardless of orientation or surface (the fact that 1
moves from the right to the left of the seven-segment cell when reversed is ignored). 2 and 5
remain the same when viewed upside down, and turn into each other when reflected in a
mirror. In the display of a calculator that can handle hexadecimal, 3 would become E
reflected, but E being an even digit, the 3 can't be used as the first digit because the reflected
number will be even. Though 6 and 9 become each other upside down, they are not valid
digits when reflected, at least not in any of the numeral systems pocket calculators usually
operate in.

Strobogrammatic primes that don't use 6 or 9 are dihedral primes. This includes repunit
primes and all other palindromic primes which only contain digits 0, 1 and 8 (in binary, all
palindromic primes are dihedral). It appears to be unknown whether there exist infinitely many dihedral primes, but
this would follow from the conjecture that there are infinitely many repunit primes.

The palindromic prime 10180054 + 8×(1058567−1)/9×1060744 + 1, discovered in 2009 by Darren Bedwell, is 180055
digits long and may be the largest known dihedral prime as of 2009.[3]
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Dirichlet's theorem on arithmetic progressions
In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two
positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n ≥ 0. In other words,
there are infinitely many primes which are congruent to a modulo d. The numbers of the form a + nd form an
arithmetic progression

and Dirichlet's theorem states that this sequence contains infinitely many prime numbers. The theorem extends
Euclid's theorem that there are infinitely many prime numbers. Stronger forms of Dirichlet's theorem state that, for
any arithmetic progression, the sum of the reciprocals of the prime numbers in the progression diverges, and that
different arithmetic progressions with the same modulus have approximately the same proportions of primes.
Note that Dirichlet's theorem does not require the prime numbers in an arithmetic sequence to be consecutive. It is
also known that there exist arbitrarily long finite arithmetic progressions consisting only of primes, but this is a
different result, known as the Green–Tao theorem.

Examples
An integer is a prime for the Gaussian integers if it is a prime number (in the normal sense) that is congruent to 3
modulo 4. The primes of the type 4n + 3 are

3, 7, 11, 19, 23, 31, 43, 47, 59, 67, ….
They correspond to the following values of n:

0, 1, 2, 4, 5, 7, 10, 11, 14, 16, 17, 19, 20, 25, 26, 31, 32, 34, 37, 40, 41, 44, 47, 49, 52, 55, 56, 59, 62, 65, 67,
70, 76, 77, 82, 86, 89, 91, 94, 95, ….

The strong form of Dirichlet's theorem implies that

is a divergent series.
The following table lists several arithmetic progressions and the first few prime numbers in each of them.
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Arithmetic
progression

 First 10 of infinitely many primes OEIS id

2n + 1 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, … A065091 [1]

4n + 1 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, … A002144 [2]

4n + 3 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, … A002145 [3]

6n + 1 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, … A002476 [4]

6n + 5 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, … A007528 [5]

8n + 1 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, … A007519 [6]

8n + 3 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, … A007520 [7]

8n + 5 5, 13, 29, 37, 53, 61, 101, 109, 149, 157, … A007521 [8]

8n + 7 7, 23, 31, 47, 71, 79, 103, 127, 151, 167, … A007522 [9]

10n + 1 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, … A030430 [10]

10n + 3 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, … A030431 [11]

10n + 7 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, … A030432 [12]

10n + 9 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, … A030433 [13]

Distribution
Since the primes thin out, on average, in accordance with the prime number theorem, the same must be true for the
primes in arithmetic progressions. One naturally then asks about the way the primes are shared between the various
arithmetic progressions for a given value of d (there are d of those, essentially, if we don't distinguish two
progressions sharing almost all their terms). The answer is given in this form: the number of feasible progressions
modulo d — those where a and d do not have a common factor > 1 — is given by Euler's totient function

Further, the proportion of primes in each of those is

For example if d is a prime number q, each of the q − 1 progressions, other than

contains a proportion 1/(q − 1) of the primes.

History
Euler stated that every arithmetic progression beginning with 1 contains an infinite number of primes. The theorem
in the above form was first conjectured by Legendre in his attempted unsuccessful proofs of quadratic reciprocity
and proved by Dirichlet in (Dirichlet 1837) with Dirichlet L-series. The proof is modeled on Euler's earlier work
relating the Riemann zeta function to the distribution of primes. The theorem represents the beginning of rigorous
analytic number theory.
In algebraic number theory, Dirichlet's theorem generalizes to Chebotarev's density theorem.
Atle Selberg (1949) gave an elementary proof.
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Double factorial

n n!

0 1

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800

15 1307674368000

20 2432902008176640000

25 1.5511210043 × 1025

50 3.0414093202 × 1064

70 1.1978571670 × 10100

100 9.3326215444 × 10157

171 1.2410180702 × 10309

450 1.7333687331 × 101000

1000 4.0238726008 × 102567

3249 6.4123376883 × 1010000

10000 2.8462596809 × 1035659

25206 1.2057034382 × 10100000

100000 2.8242294080 × 10456573

205023 2.5038989317 × 101000004

1000000 8.2639316883 × 105565708

1.0248383838 × 1098 101.0000000000 × 10100

1.0000000000 × 10100 109.9565705518 × 10101

1.7976931349 × 10308 105.5336665775 × 10310

The first few and selected larger members of the sequence of factorials (sequence A000142 [1] in OEIS). The values specified in
scientific notation are rounded to the displayed precision.
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In mathematics, the factorial of a positive integer n,[2] denoted by n!, is the product of all positive integers less than
or equal to n. For example,

0! is a special case that is explicitly defined to be 1.[2]

The factorial operation is encountered in many different areas of mathematics, notably in combinatorics, algebra and
mathematical analysis. Its most basic occurrence is the fact that there are n! ways to arrange n distinct objects into a
sequence (i.e., permutations of the set of objects). This fact was known at least as early as the 12th century, to Hindu
scholars.[3] The notation n! was introduced by Christian Kramp in 1808.[4]

The definition of the factorial function can also be extended to non-integer arguments, while retaining its most
important properties; this involves more advanced mathematics, notably techniques from mathematical analysis.

Definition
The factorial function is formally defined by

or recursively defined by

Both of the above definitions incorporate the instance

in the first case by the convention that the product of no numbers at all is 1. This is useful because:
• There is exactly one permutation of zero objects (with nothing to permute, "everything" is left in place).
• The recurrence relation (n + 1)! = n! × (n + 1), valid for n > 0, extends to n = 0.
• It allows for the expression of many formulas, like the exponential function as a power series:

• It makes many identities in combinatorics valid for all applicable sizes. The number of ways to choose 0 elements
from the empty set is . More generally, the number of ways to choose (all) n elements among a
set of n is .

The factorial function can also be defined for non-integer values using more advanced mathematics, detailed in the
section below. This more generalized definition is used by advanced calculators and mathematical software such as
Maple or Mathematica.

Applications
Although the factorial function has its roots in combinatorics, formulas involving factorials occur in many areas of
mathematics.
• There are n! different ways of arranging n distinct objects into a sequence, the permutations of those objects.
• Often factorials appear in the denominator of a formula to account for the fact that ordering is to be ignored. A

classical example is counting k-combinations (subsets of k elements) from a set with n elements. One can obtain
such a combination by choosing a k-permutation: successively selecting and removing an element of the set, k
times, for a total of
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possibilities. This however produces the k-combinations in a particular order that one wishes to ignore; since
each k-combination is obtained in k! different ways, the correct number of k-combinations is

This number is known as the binomial coefficient , because it is also the coefficient of Xk in (1 + X)n.
• Factorials occur in algebra for various reasons, such as via the already mentioned coefficients of the binomial

formula, or through averaging over permutations for symmetrization of certain operations.
• Factorials also turn up in calculus; for example they occur in the denominators of the terms of Taylor's formula,

basically to compensate for the fact that the nth derivative of xn is n!.
• Factorials are also used extensively in probability theory.
• Factorials can be useful to facilitate expression manipulation. For instance the number of k-permutations of n can

be written as

while this is inefficient as a means to compute that number, it may serve to prove a symmetry property of
binomial coefficients:

Number theory
Factorials have many applications in number theory. In particular, n! is necessarily divisible by all prime numbers up
to and including n. As a consequence, n > 5 is a composite number if and only if

A stronger result is Wilson's theorem, which states that

if and only if p is prime.
Adrien-Marie Legendre found that the multiplicity of the prime p occurring in the prime factorization of n! can be
expressed exactly as

This fact is based on counting the number of factors p of the integers from 1 to n. The number of multiples of p in
the numbers 1 to n are given by ; however, this formula counts those numbers with two factors of p only once.

Hence another factors of p must be counted too. Similarly for three, four, five factors, to infinity. The sum is

finite since p i can only be less than or equal to n for finitely many values of i, and the floor function results in 0
when applied for p i > n.
The only factorial that is also a prime number is 2, but there are many primes of the form n! ± 1, called factorial
primes.
All factorials greater than 0! and 1! are even, as they are all multiples of 2. Also, all factorials greater than 5! are
multiples of 10 (and hence have a zero as their final digit), because they are multiples of 5 and 2.
Also note that the reciprocals of factorials produce a convergent series: (see e)
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Rate of growth

Plot of the natural logarithm of the factorial

As n grows, the factorial n! becomes larger
than all polynomials and exponential
functions (but slower than double
exponential functions) in n.

Most approximations for n! are based on
approximating its natural logarithm

The graph of the function f(n)=log n! is shown in the figure on the right. It looks approximately linear for all
reasonable values of n, but this intuition is false. We get one of the simplest approximations for log n! by bounding
the sum with an integral from above and below as follows:

which gives us the estimate

Hence log n! is Θ(n log n). This result plays a key role in the analysis of the computational complexity of sorting
algorithms (see comparison sort).
From the bounds on log n! deduced above we get that

It is sometimes practical to use weaker but simpler estimates. Using the above formula it is easily shown that for all
n we have , and for all we have .
For large n we get a better estimate for the number n! using Stirling's approximation:

In fact, it can be proved that for all n we have

A much better approximation for log n! was given by Srinivasa Ramanujan (Ramanujan 1988)
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Computation
Computing factorials is trivial from an algorithmic point of view: successively multiplying a variable initialized to 1
by the integers 2 up to n (if any) will compute n!, provided the result fits in the variable. Interestingly, the factorial is
often used as an example to illustrate recursive functions, while it is not intrinsically any more or less recursive
(from a mathematical or computational point of view) than for instance a function computing the sum of the first n
terms of a given sequence of numbers.
The main difficulty in computing factorials is the size of the result. To assure that the result will fit for all legal
values of even the smallest commonly used integral type (8-bit signed integers) would require more than 700 bits, so
no reasonable specification of a factorial function using fixed-size types can avoid questions of overflow. The values
12! and 20! are the largest factorials that can be stored in, respectively, the 32 bit and 64 bit integers commonly used
in personal computers. Although floating point representation of the result allows going a bit further, it remains quite
limited by possible overflow. The largest factorial that most calculators can handle is 69!, because 69! < 10100 < 70!.
Calculators that use 3-digit exponents can compute larger factorials, up to, for example, 253! ≈ 5.2×10499 on HP
calculators and 449! ≈ 3.9×10997 on the TI-86. The calculator seen in Mac OS X, Microsoft Excel and Google
Calculator, as well as the freeware Fox Calculator, can handle factorials up to 170!, which is the largest factorial that
can be represented as a 64-bit IEEE 754 floating-point value. The scientific calculator in Windows XP is able to
calculate factorials up to at least 100000!. Most software applications will compute small factorials by direct
multiplication or table lookup. Larger factorial values can be approximated using Stirling's formula.
Wolfram Alpha can calculate exact results for the ceiling function and floor function applied to the binary, natural
and common logarithm of n! for values of n up to 249999, and up to 20,000,000! for the Integers.
If very large exact factorials are needed, they can be computed using bignum arithmetic. In such computations speed
may be gained by not sequentially multiplying the numbers up to (or down from) n into a single accumulator, but by
partitioning the sequence so that the products for each of the two parts are approximately of the same size, compute
those products recursively and then multiply.
The asymptotically-best efficiency is obtained by computing n! from its prime factorization. As documented by Peter
Borwein, prime factorization allows n! to be computed in time O(n(log n log log n)2), provided that a fast
multiplication algorithm is used (for example, the Schönhage–Strassen algorithm).[5] Peter Luschny presents source
code and benchmarks for several efficient factorial algorithms, with or without the use of a prime sieve.[6]
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Extension of factorial to non-integer values of argument

The Gamma and Pi functions

The factorial function, generalized to all complex numbers except negative integers. For
example, 0! = 1! = 1, (−0.5)! = √π, (0.5)! = √π/2.

Besides nonnegative integers, the
factorial function can also be defined
for non-integer values, but this requires
more advanced tools from
mathematical analysis. One function
that "fills in" the values of the factorial
(but with a shift of 1 in the argument)
is called the Gamma function, denoted
Γ(z), defined for all complex numbers
z except the non-positive integers, and
given when the real part of z is positive
by

Its relation to the factorials is that for any natural number n

Euler's original formula for the Gamma function was

It is worth mentioning that there is an alternative notation that was originally introduced by Gauss which is
sometimes used. The Pi function, denoted Π(z) for real numbers z no less than 0, is defined by

In terms of the Gamma function it is

It truly extends the factorial in that

In addition to this, the Pi function satisfies the same recurrence as factorials do, but at every complex value z where it
is defined

In fact, this is no longer a recurrence relation but a functional equation. Expressed in terms of the Gamma function
this functional equation takes the form
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Since the factorial is extended by the Pi function, for every complex value z where it is defined, we can write:

The values of these functions at half-integer values is therefore determined by a single one of them; one has

from which it follows that for n ∈ N,

For example,

It also follows that for n ∈ N,

For example,

The Pi function is certainly not the only way to extend factorials to a function defined at almost all complex values,
and not even the only one that is analytic wherever it is defined. Nonetheless it is usually considered the most natural
way to extend the values of the factorials to a complex function. For instance, the Bohr–Mollerup theorem states that
the Gamma function is the only function that takes the value 1 at 1, satisfies the functional equation Γ(n + 1) = nΓ(n),
is meromorphic on the complex numbers, and is log-convex on the positive real axis. A similar statement holds for
the Pi function as well, using the Π(n) = nΠ(n − 1) functional equation.
However, there exist complex functions that are probably simpler in the sense of analytic function theory and which
interpolate the factorial values. For example, Hadamard's 'Gamma'-function (Hadamard 1894) which, unlike the
Gamma function, is an entire function.[7]

Euler also developed a convergent product approximation for the non-integer factorials, which can be seen to be
equivalent to the formula for the Gamma function above:

However, this formula does not provide a practical means of computing the Pi or Gamma function, as its rate of
convergence is slow.
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Applications of the gamma function
The volume of an n-dimensional hypersphere of radius R is

Factorial at the complex plane

Amplitude and phase of factorial of complex argument.

Representation through the Gamma-function allows evaluation of factorial of complex argument. Equilines of
amplitude and phase of factorial are shown in figure. Let .
Several levels of constant modulus (amplitude) and constant phase are shown. The grid
covers range , with unit step. The scratched line shows the level .
Thin lines show intermediate levels of constant modulus and constant phase. At poles

, phase and amplitude are not defined. Equilines are dense in vicinity of
singularities along negative integer values of the argument.
For , the Taylor expansions can be used:

The first coefficients of this expansion are
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approximation

0

1

2

3

where is the Euler constant and is the Riemann zeta function. Computer algebra systems such as Sage
(mathematics software) can generate many terms of this expansion.

Approximations of factorial
For the large values of the argument, factorial can be approximated through the integral of the digamma function,
using the continued fraction representation. This approach is due to T. J. Stieltjes (1894). Writing z! = exp(P(z))
where P(z) is

Stieltjes gave a continued fraction for p(z)

The first few coefficients an are [8]

n a
n

0 1 / 12

1 1 / 30

2 53 / 210

3 195 / 371

4 22999 / 22737

5 29944523 / 19773142

6 109535241009 / 48264275462

There is common misconception, that or for any complex z ≠ 0.
Indeed, the relation through the logarithm is valid only for specific range of values of z in vicinity of the real axis,
while . The larger is the real part of the argument, the smaller should be the imaginary part.
However, the inverse relation, z! = exp(P(z)), is valid for the whole complex plane apart from zero. The convergence
is poor in vicinity of the negative part of the real axis. (It is difficult to have good convergence of any approximation
in vicinity of the singularities). While or , the 6 coefficients above are sufficient for the
evaluation of the factorial with the complex<double> precision. For higher precision more coefficients can be
computed by a rational QD-scheme (H. Rutishauser's QD algorithm).[9]
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Non-extendability to negative integers
The relation n ! = (n − 1)! × n allows one to compute the factorial for an integer given the factorial for a smaller
integer. The relation can be inverted so that one can compute the factorial for an integer given the factorial for a
larger integer:

Note, however, that this recursion does not permit us to compute the factorial of a negative integer; use of the
formula to compute (−1)! would require a division by zero, and thus blocks us from computing a factorial value for
every negative integer. (Similarly, the Gamma function is not defined for non-positive integers, though it is defined
for all other complex numbers.)

Factorial-like products and functions
There are several other integer sequences similar to the factorial that are used in mathematics:

Primorial
The primorial (sequence A002110 [10] in OEIS) is similar to the factorial, but with the product taken only over the
prime numbers.

Double factorial
A function related to the factorial is the product of all odd values up to some odd positive integer n. It is often called
double factorial (even though it only involves about half the factors of the ordinary factorial, and its value is
therefore closer to the square root of the factorial), and denoted by n!!.
For an odd positive integer n = 2k - 1, k ≥ 1, it is

.

For example, 9!! = 1 × 3 × 5 × 7 × 9 = 945. This notation creates a notational ambiguity with the composition of the
factorial function with itself (which for n > 2 gives much larger numbers than the double factorial); this may be
justified by the fact that composition arises very seldom in practice, and could be denoted by (n!)! to circumvent the
ambiguity. The double factorial notation is not essential; it can be expressed in terms of the ordinary factorial by

,

since the denominator equals and cancels the unwanted even factors from the numerator. The introduction of

the double factorial is motivated by the fact that it occurs rather frequently in combinatorial and other settings, for
instance
• (2n − 1)!! is the number of permutations of 2n whose cycle type consists of n parts equal to 2; these are the

involutions without fixed points.
• (2n − 1)!! is the number of perfect matchings in a complete graph K(2n).
• (2n − 5)!! is the number of unrooted binary trees with n labeled leaves.
• The value is equal to (see above)
Sometimes n!! is defined for non-negative even numbers as well. One choice is a definition similar to the one for odd
values
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For example, with this definition, 8!! = 2 × 4 × 6 × 8 = 384. However, note that this definition does not match the
expression above, of the double factorial in terms of the ordinary factorial, and is also inconsistent with the extension
of the definition of to complex numbers that is achieved via the Gamma function as indicated below. Also,
for even numbers, the double factorial notation is hardly shorter than expressing the same value using ordinary
factorials. For combinatorial interpretations (the value gives, for instance, the size of the hyperoctahedral group), the
latter expression can be more informative (because the factor 2n is the order of the kernel of a projection to the
symmetric group). Even though the formulas for the odd and even double factorials can be easily combined into

the only known interpretation for the sequence of all these numbers (sequence A006882 [11] in OEIS) is somewhat
artificial: the number of down-up permutations of a set of n + 1 elements for which the entries in the even positions
are increasing.
The sequence of double factorials for n = 1, 3, 5, 7, ... (sequence A001147 [12] in OEIS) starts as

1, 3, 15, 105, 945, 10395, 135135, ....
Some identities involving double factorials are:

Alternative extension of the double factorial

Disregarding the above definition of n!! for even values of n, the double factorial for odd integers can be extended to
most real and complex numbers z by noting that when z is a positive odd integer then

The expressions obtained by taking one of the above formulas for and and expressing the
occurring factorials in terms of the gamma function can both be seen (using the multiplication theorem) to be
equivalent to the one given here.
The expression found for z!! is defined for all complex numbers except the negative even numbers. Using it as the
definition, the volume of an n-dimensional hypersphere of radius R can be expressed as

Multifactorials
A common related notation is to use multiple exclamation points to denote a multifactorial, the product of integers
in steps of two ( ), three ( ), or more. The double factorial is the most commonly used variant, but one can
similarly define the triple factorial ( ) and so on. One can define the kth factorial, denoted by , recursively
for non-negative integers as

though see the alternative definition below.
Some mathematicians have suggested an alternative notation of for the double factorial and similarly for
other multifactorials, but this has not come into general use.
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With the above definition, 
In the same way that is not defined for negative integers, and is not defined for negative even integers, 
is not defined for negative integers evenly divisible by .

Alternative extension of the multifactorial

Alternatively, the multifactorial z!(k) can be extended to most real and complex numbers z by noting that when z is
one more than a positive multiple of k then

This last expression is defined much more broadly than the original; with this definition, z!(k) is defined for all
complex numbers except the negative real numbers evenly divisible by k. This definition is consistent with the
earlier definition only for those integers z satisfying z ≡ 1 mod k.
In addition to extending z!(k) to most complex numbers z, this definition has the feature of working for all positive
real values of k. Furthermore, when k = 1, this definition is mathematically equivalent to the Π(z) function, described
above. Also, when k = 2, this definition is mathematically equivalent to the alternative extension of the double
factorial, described above.

Quadruple factorial
The so-called quadruple factorial, however, is not the multifactorial n!(4); it is a much larger number given
by (2n)!/n!, starting as

1, 2, 12, 120, 1680, 30240, 665280, ... (sequence A001813 [13] in OEIS).
It is also equal to

Superfactorial
Neil Sloane and Simon Plouffe defined the superfactorial in 1995 as the product of the first factorials. So the
superfactorial of 4 is

In general

Equivalently, the superfactorial is given by the formula

which is the determinant of a Vandermonde matrix.
The sequence of superfactorials starts (from ) as

1, 1, 2, 12, 288, 34560, 24883200, ... (sequence A000178 [14] in OEIS)
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Alternative definition

Clifford Pickover in his 1995 book Keys to Infinity used a new notation, n$, to define the superfactorial

or as,

where the (4) notation denotes the hyper4 operator, or using Knuth's up-arrow notation,

This sequence of superfactorials starts:

Here, as is usual for compound exponentiation, the grouping is understood to be from right to left:

Hyperfactorial
Occasionally the hyperfactorial of n is considered. It is written as H(n) and defined by

For n = 1, 2, 3, 4, ... the values H(n) are 1, 4, 108, 27648,... (sequence A002109 [15] in OEIS).
The asymptotic growth rate is

where A = 1.2824... is the Glaisher–Kinkelin constant.[16] H(14) = 1.8474...×1099 is already almost equal to a
googol, and H(15) = 8.0896...×10116 is almost of the same magnitude as the Shannon number, the theoretical number
of possible chess games. Compared to the Pickover definition of the superfactorial, the hyperfactorial grows
relatively slowly.
The hyperfactorial function can be generalized to complex numbers in a similar way as the factorial function. The
resulting function is called the K-function.
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Double Mersenne prime
In mathematics, a double Mersenne number is a Mersenne number of the form

where p is a Mersenne prime exponent.

The smallest double Mersenne numbers
The sequence of double Mersenne numbers begins [1]

(sequence A077586 [2] in OEIS).

Double Mersenne primes
A double Mersenne number that is prime is called a double Mersenne prime. Since a Mersenne number Mp can be
prime only if p is prime, (see Mersenne prime for a proof), a double Mersenne number can be prime only if
Mp is itself a Mersenne prime. The first values of p for which Mp is prime are p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89. Of
these, is known to be prime for p = 2, 3, 5, 7; for p = 13, 17, 19, and 31, explicit factors have been found
showing that the corresponding double Mersenne numbers are not prime. Thus, the smallest candidate for the next
double Mersenne prime is , or 22305843009213693951 − 1. Being approximately 1.695×10694127911065419641,
this number is far too large for any currently known primality test. It has no prime factor below 4×1033.[3]

Catalan-Mersenne number
Write instead of . A special case of the double Mersenne numbers, namely the recursively defined
sequence

2, M(2), M(M(2)), M(M(M(2))), M(M(M(M(2)))), ... (sequence A007013 [4] in OEIS)
is called the Catalan-Mersenne numbers.[5] It is said[1] that Catalan came up with this sequence after the discovery
of the primality of by Lucas in 1876.

Although the first five terms (up to ) are prime, no known methods can decide if any more of these
numbers are prime (in any reasonable time) simply because the numbers in question are too huge, unless a factor of
M(M(127)) is discovered.
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In popular culture
In the Futurama movie The Beast with a Billion Backs, the double Mersenne number is briefly seen in "an
elementary proof of the Goldbach conjecture". In the movie, this number is known as a "martian prime".
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Eisenstein prime

Small Eisenstein primes. Those on the green axes are associate to a natural prime of the
form 3n−1. All others have an absolute value squared equal to a natural prime.

In mathematics, an Eisenstein prime
is an Eisenstein integer
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that is irreducible (or equivalently prime) in the ring-theoretic sense: its only Eisenstein divisors are the units (±1,
±ω, ±ω2), a + bω itself and its associates.
The associates (unit multiples) and the complex conjugate of any Eisenstein prime are also prime.
An Eisenstein integer z = a + bω is an Eisenstein prime if and only if either of the following (mutually exclusive)
conditions hold:
1. z is equal to the product of a unit and a natural prime of the form 3n − 1,
2. |z|2 = a2 − ab + b2 is a natural prime (necessarily congruent to 0 or 1 modulo 3).
It follows that the absolute value squared of every Eisenstein prime is a natural prime or the square of a natural
prime.
The first few Eisenstein primes that equal a natural prime 3n − 1 are:

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101 (sequence A003627 [1] in OEIS)
Natural primes that are congruent to 0 or 1 modulo 3 are not Eisenstein primes: they admit nontrivial factorizations
in Z[ω]. For example:

3 = −(1+2ω)2

7 = (3+ω)(2−ω).
Some non-real Eisenstein primes are

2 + ω, 3 + ω, 4 + ω, 5 + 2ω, 6 + ω, 7 + ω, 7 + 3ω
Up to conjugacy and unit multiples, the primes listed above, together with 2 and 5, are all the Eisenstein primes of
absolute value not exceeding 7.
As of March 2010, the largest known (real) Eisenstein prime is 19249 × 213018586 + 1, which is the tenth largest
known prime, discovered by Konstantin Agafonov.[2] All larger known primes are Mersenne primes, discovered by
GIMPS. Real Eisenstein primes are congruent to 2 mod 3, and Mersenne primes (except the smallest, 3) are
congruent to 1 mod 3; thus no Mersenne prime is an Eisenstein prime.
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Emirp
An emirp (prime spelled backwards) is a prime number that results in a different prime when its digits are
reversed.[1] This definition excludes the related palindromic primes. Emirps are also called reversible primes.
The sequence of emirps begins 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157... (sequence A006567 [2] in
OEIS).[1]

All non-palindromic permutable primes are emirps.
As of November 2009, the largest known emirp is 1010006+941992101×104999+1, found by Jens Kruse Andersen in
October 2007.[3]
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Euclid number
In mathematics, Euclid numbers are integers of the form En = pn# + 1, where pn# is the primorial of pn which is the
nth prime. They are named after the ancient Greek mathematician Euclid.
It is sometimes falsely stated that Euclid's celebrated proof of the infinitude of prime numbers relied on these
numbers. In fact, Euclid did not begin with the assumption that the set of all primes is finite. Rather, he said:
consider any finite set of primes (he did not assume it contained just the first n primes, e.g. it could have been
{3, 41, 53}) and reasoned from there to the conclusion that at least one prime exists that is not in that set.[1]

The first few Euclid numbers are 3, 7, 31, 211, 2311, 30031, 510511 (sequence A006862 [2] in OEIS).
It is not known whether or not there are an infinite number of prime Euclid numbers.
E6 = 13# + 1 = 30031 = 59 x 509 is the first composite Euclid number, demonstrating that not all Euclid numbers are
prime.
A Euclid number can not be a square. This is because Euclid numbers are always congruent to 3 mod 4.
For all n ≥ 3 the last digit of En is 1, since En−1 is divisible by 2 and 5.
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See also
• Euclid–Mullin sequence
• Proof of the infinitude of the primes (Euclid's theorem)
• Primorial prime
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Even number
In mathematics, the parity of an object states whether it is even or odd.
This concept begins with integers. An even number is an integer that is "evenly divisible" by 2, i.e., divisible by 2
without remainder; an odd number is an integer that is not evenly divisible by 2. (The old-fashioned term "evenly
divisible" is now almost always shortened to "divisible".) A formal definition of an odd number is that it is an integer
of the form n = 2k + 1, where k is an integer. An even number has the form n = 2k where k is an integer.
Examples of even numbers are −4, 8, and 1728. Examples of odd numbers are −5, 9, 3, and 71. This classification
only applies to integers, i.e., a fractional number like 1/2 or 4.201 is neither even nor odd.
The sets of even and odd numbers can be defined as following:

• Even = 
• Odd = 
A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is
even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it's odd; otherwise it's even. The same idea will work
using any even base. In particular, a number expressed in the binary numeral system is odd if its last digit is 1 and
even if its last digit is 0. In an odd base, the number is even according to the sum of its digits – it is even if and only
if the sum of its digits is even.

Arithmetic on even and odd numbers
The following laws can be verified using the properties of divisibility. They are a special case of rules in modular
arithmetic, and are commonly used to check if an equality is likely to be correct by testing the parity of each side. As
with ordinary arithmetic, multiplication and addition are commutative and associative, and multiplication is
distibutive over addition. However, subtraction in parity is identical to addition, so subtraction also possesses these
properties (which are absent from ordinary arithmetic).

Addition and subtraction
• even ± even = even;
• even ± odd = odd;
• odd ± odd = even;
Rules analogous to these for divisibility by 9 are used in the method of casting out nines.

Division
The division of two whole numbers does not necessarily result in a whole number. For example, 1 divided by 4
equals 1/4, which isn't even or odd, since the concepts even and odd apply only to integers. But when the quotient is
an integer, it will be even if and only if the dividend has more factors of two than the divisor.
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History
The ancient Greeks considered 1 to be neither fully odd nor fully even. Some of this sentiment survived into the 19th
century: Friedrich Wilhelm August Fröbel's 1826 The Education of Man instructs the teacher to drill students with
the claim that 1 is neither even nor odd, to which Fröbel attaches the philosophical afterthought,

It is well to direct the pupil's attention here at once to a great far-reaching law of nature and of thought. It is
this, that between two relatively different things or ideas there stands always a third, in a sort of balance,
seeming to unite the two. Thus, there is here between odd and even numbers one number (one) which is
neither of the two. Similarly, in form, the right angle stands between the acute and obtuse angles; and in
language, the semi-vowels or aspirants between the mutes and vowels. A thoughtful teacher and a pupil taught
to think for himself can scarcely help noticing this and other important laws.

Music theory
In wind instruments which are cylindrical and in effect closed at one end, such as the clarinet at the mouthpiece, the
harmonics produced are odd multiples of the fundamental frequency. (With cylindrical pipes open at both ends, used
for example in some organ stops such as the open diapason, the harmonics are even multiples of the same frequency,
but this is the same as being all multiples of double the frequency and is usually perceived as such.) See harmonic
series (music).

Higher mathematics
The even numbers form an ideal in the ring of integers, but the odd numbers do not — this is clear from the fact that
the identity element for addition, zero, is an element of the even numbers only. An integer is even if it is congruent to
0 modulo this ideal, in other words if it is congruent to 0 modulo 2, and odd if it is congruent to 1 modulo 2.
All prime numbers are odd, with one exception: the prime number 2. All known perfect numbers are even; it is
unknown whether any odd perfect numbers exist.
The squares of all even numbers are even, and the squares of all odd numbers are odd. Since an even number can be
expressed as 2x, (2x)2 = 4x2 which is even. Since an odd number can be expressed as 2x + 1, (2x + 1)2 = 4x2 + 4x +
1. 4x2 and 4x are even, which means that 4x2 + 4x + 1 is odd (since even + odd = odd).
Goldbach's conjecture states that every even integer greater than 2 can be represented as a sum of two prime
numbers. Modern computer calculations have shown this conjecture to be true for integers up to at least 4 × 1014, but
still no general proof has been found.
The Feit–Thompson theorem states that a finite group is always solvable if its order is an odd number. This is an
example of odd numbers playing a role in an advanced mathematical theorem where the method of application of the
simple hypothesis of "odd order" is far from obvious.
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Parity for other objects

Rubik's Revenge in solved state

a b c d e f g h

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

a b c d e f g h

The two light bishops are confined to squares of opposite parity; the dark knight can only jump to squares of
alternating parity.

Parity is also used to refer to a number of other properties.
• The parity of a permutation (as defined in abstract algebra) is the parity of the number of transpositions into

which the permutation can be decomposed. For example (ABC) to (BCA) is even because it can be done by
swapping A and B then C and A (two transpositions). It can be shown that no permutation can be decomposed
both in an even and in an odd number of transpositions. Hence the above is a suitable definition. In Rubik's
Revenge, Square-1, and other twisty puzzles, the moves of the puzzle allow only even permutations of the puzzle
pieces, so parity is important in understanding the configuration space of these puzzles.

• The parity of a function describes how its values change when its arguments are exchanged with their negations.
An even function, such as an even power of a variable, gives the same result for any argument as for its negation.
An odd function, such as an odd power of a variable, gives for any argument the negation of its result when given
the negation of that argument. It is possible for a function to be neither odd nor even, and for the case f(x) = 0, to
be both odd and even.

• Integer coordinates of points in Euclidean spaces of two or more dimensions also have a parity, usually defined as
the parity of the sum of the coordinates. For instance, the checkerboard lattice contains all integer points of even
parity. This feature manifests itself in chess, as bishops are constrained to squares of the same parity; knights
alternate parity between moves. This form of parity was famously used to solve the Mutilated chessboard
problem.
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Factorial prime
A factorial prime is a prime number that is one less or one more than a factorial (all factorials above 1 are even).
The first few factorial primes are:

2 (0! + 1 or 1! + 1), 3 (2! + 1), 5 (3! − 1), 7 (3! + 1), 23 (4! − 1), 719 (6! − 1), 5039 (7! − 1), 39916801
(11! + 1), 479001599 (12! − 1), 87178291199 (14! − 1), ... (sequence A088054 [1] in OEIS)

n! − 1 is prime for (sequence A002982 [2] in OEIS):
n = 3, 4, 6, 7, 12, 14, 30, 32, 33, 38, 94, 166, 324, 379, 469, 546, 974, 1963, 3507, 3610, 6917, 21480, 34790,
... , 94550, 103040

n! + 1 is prime for (sequence A002981 [3] in OEIS):
n = 0, 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427, 872, 1477, 6380, 26951, ...

No other factorial primes are known as of 2010.
Absence of primes to both sides of a factorial n! implies a relatively lengthy run of consecutive composite numbers,
since n! ± k is divisible by k for 2 ≤ k ≤ n. For example, the next prime following 6227020777 = 13! − 23 is
6227020867 = 13! + 67 (a run of 89 consecutive composites); here the run is substantially longer than implied
merely by the absence of factorial primes. Note that this is not the most efficient way to find large prime gaps. E.g.,
there are 95 consecutive composites between the primes 360653 and 360749.

External links
• Weisstein, Eric W., "Factorial Prime [4]" from MathWorld.
• List of largest known factorial primes [5] from the Prime Pages
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Fermat number
In mathematics, a Fermat number, named after Pierre de Fermat who first studied them, is a positive integer of the
form

where n is a nonnegative integer. The first few Fermat numbers are:
3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, … (sequence A000215 [1] in OEIS).

If 2n + 1 is prime, and n > 0, it can be shown that n must be a power of two. (If n = ab where 1 ≤ a, b ≤ n and b is
odd, then 2n + 1 = (2a)b + 1 ≡ (−1)b + 1 = 0 (mod 2a + 1). See below for complete proof.) In other words, every
prime of the form 2n + 1 is a Fermat number, and such primes are called Fermat primes. The only known Fermat
primes are F0, F1, F2, F3, and F4.

Basic properties
The Fermat numbers satisfy the following recurrence relations

for n ≥ 2. Each of these relations can be proved by mathematical induction. From the last equation, we can deduce
Goldbach's theorem: no two Fermat numbers share a common factor. To see this, suppose that 0 ≤ i < j and Fi and
Fj have a common factor a > 1. Then a divides both

and Fj; hence a divides their difference, 2. Since a > 1, this forces a = 2. This is a contradiction, because each Fermat
number is clearly odd. As a corollary, we obtain another proof of the infinitude of the prime numbers: for each Fn,
choose a prime factor pn; then the sequence {pn} is an infinite sequence of distinct primes.
Further properties:
• The number of digits D(n,b) of Fn expressed in the base b is

(See floor function).

• No Fermat number can be expressed as the sum of two primes, with the exception of F1 = 2 + 3.
• No Fermat prime can be expressed as the difference of two pth powers, where p is an odd prime.
• With the exception of 3 and 5, the last digit of a Fermat number is 7.
• The sum of the reciprocals of all the Fermat numbers (sequence A051158 [2] in OEIS) is irrational. (Solomon W.

Golomb, 1963)
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Primality of Fermat numbers
Fermat numbers and Fermat primes were first studied by Pierre de Fermat, who conjectured (but admitted he could
not prove) that all Fermat numbers are prime. Indeed, the first five Fermat numbers F0,...,F4 are easily shown to be
prime. However, this conjecture was refuted by Leonhard Euler in 1732 when he showed that

Euler proved that every factor of Fn must have the form k2n+1 + 1.
It is widely believed that Fermat was aware of the form of the factors later proved by Euler, so it seems curious why
he failed to follow through on the straightforward calculation to find the factor.[3] One common explanation is that
Fermat made a computational mistake and was so convinced of the correctness of his claim that he failed to
double-check his work.
There are no other known Fermat primes Fn with n > 4. However, little is known about Fermat numbers with large
n.[4] In fact, each of the following is an open problem:
• Is Fn composite for all n > 4?
• Are there infinitely many Fermat primes? (Eisenstein 1844)[5]

• Are there infinitely many composite Fermat numbers?
The following heuristic argument suggests there are only finitely many Fermat primes: according to the prime
number theorem, the "probability" that a number n is prime is at most A/ln(n), where A is a fixed constant. Therefore,
the total expected number of Fermat primes is at most

It should be stressed that this argument is in no way a rigorous proof. For one thing, the argument assumes that
Fermat numbers behave "randomly", yet we have already seen that the factors of Fermat numbers have special
properties. If (more sophisticatedly) we regard the conditional probability that n is prime, given that we know all its
prime factors exceed B, as at most Aln(B)/ln(n), then using Euler's theorem that the least prime factor of Fn exceeds
2n+1, we would find instead

Although such arguments engender the belief that there are only finitely many Fermat primes, one can also produce
arguments for the opposite conclusion. Suppose we regard the conditional probability that n is prime, given that we
know all its prime factors are 1 modulo M, as at least CM/ln(n). Then using Euler's result that M=2n+1 we would find
that the expected total number of Fermat primes was at least

and indeed this argument predicts that an asymptotically constant fraction of Fermat numbers are prime!
As of 2010 it is known that Fn is composite for 5 ≤ n ≤ 32, although complete factorizations of Fn are known only
for 0 ≤ n ≤ 11, and there are no known factors for n in {20, 24}.[6] The largest Fermat number known to be
composite is F2478782, and its prime factor 3×22478785 + 1 was discovered by John B. Cosgrave and his Proth-Gallot
Group on October 10, 2003.
There are a number of conditions that are equivalent to the primality of Fn.
• Proth's theorem -- (1878) Let N = k2m + 1 with odd k < 2m. If there is an integer a such that

then N is prime. Conversely, if the above congruence does not hold, and in addition
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(See Jacobi symbol)

then N is composite. If N = Fn > 3, then the above Jacobi symbol is always equal to −1 for a = 3, and this
special case of Proth's theorem is known as Pépin's test. Although Pépin's test and Proth's theorem have been
implemented on computers to prove the compositeness of many Fermat numbers, neither test gives a specific
nontrivial factor. In fact, no specific prime factors are known for n = 20 and 24.

• Let n ≥ 3 be a positive odd integer. Then n is a Fermat prime if and only if for every a co-prime to n, a is a
primitive root mod n if and only if a is a quadratic nonresidue mod n.

• The Fermat number Fn > 3 is prime if and only if it can be written uniquely as a sum of two nonzero squares,
namely

When not of the form shown above, a proper factor is:

Example 1: F5 = 622642 + 204492, so a proper factor is

Example 2: F6 = 40468032562 + 14387937592, so a proper factor is

Factorization of Fermat numbers
Because of the size of Fermat numbers, it is difficult to factorize or to prove primality of those. Pépin's test gives a
necessary and sufficient condition for primality of Fermat numbers, and can be implemented by modern computers.
The elliptic curve method is a fast method for finding small prime divisors of numbers. Distributed computing
project Fermatsearch has successfully found some factors of Fermat numbers. Yves Gallot's proth.exe has been used
to find factors of large Fermat numbers. Edouard Lucas, improving the above mentioned result by Euler, proved in
1878 that every factor of Fermat number , with n at least 2, is of the form (see Proth number),
where k is a positive integer; this is in itself almost sufficient to prove the primality of the known Fermat primes.
Factorizations of the first ten Fermat numbers are:

F
0

= 21 + 1 = 3 is prime

F
1

= 22 + 1 = 5 is prime

F
2

= 24 + 1 = 17 is prime

F
3

= 28 + 1 = 257 is prime

F
4

= 216 + 1 = 65,537 is the largest known Fermat prime

F
5

= 232 + 1 = 4,294,967,297

= 641 × 6,700,417 

F
6

= 264 + 1 = 18,446,744,073,709,551,617

= 274,177 × 67,280,421,310,721 
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F
7

= 2128 + 1 = 340,282,366,920,938,463,463,374,607,431,768,211,457

= 59,649,589,127,497,217 × 5,704,689,200,685,129,054,721 

F
8

= 2256 + 1 = 115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457,584,007,913,129,639,937

= 1,238,926,361,552,897 × 93,461,639,715,357,977,769,163,558,199,606,896,584,051,237,541,638,188,580,280,321 

F
9

= 2512 + 1 = 13,407,807,929,942,597,099,574,024,998,205,846,127,479,365,820,592,393,377,723,561,443,721,764,030,073,546,976,801,874,298,166,903,427,690,031,858,186,486,050,853,753,882,811,946,569,946,433,649,006,084,097

=  2,424,833 × 7,455,602,825,647,884,208,337,395,736,200,454,918,783,366,342,657 ×

741,640,062,627,530,801,524,787,141,901,937,474,059,940,781,097,519,023,905,821,316,144,415,759,504,705,008,092,818,711,693,940,737 

As of March 2010, only F0 to F11 have been completely factored.[6] The distributed computing project Fermat
Search is searching for new factors of Fermat numbers.[7] The set of all Fermat factors is A050922 (or, sorted,
A023394) in OEIS.

Pseudoprimes and Fermat numbers
Like composite numbers of the form 2p − 1, every composite Fermat number is a strong pseudoprime to base 2.
Because all strong pseudoprimes to base 2 are also Fermat pseudoprimes - i.e.

for all Fermat numbers.
Because it is generally believed that all but the first few Fermat numbers are composite, this makes it possible to
generate infinitely many strong pseudoprimes to base 2 from the Fermat numbers.
In fact, Rotkiewicz showed in 1964 that the product of any number of prime or composite Fermat numbers will be a
Fermat pseudoprime to base 2.

Other theorems about Fermat numbers
Lemma: If n is a positive integer,

proof:

Theorem: If is an odd prime, then is a power of 2.

proof:

If is a positive integer but not a power of 2, then where , and is odd.
By the preceding lemma, for positive integer ,
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where means "evenly divides". Substituting , , and and using that is odd,

and thus

Because , it follows that is not prime. Therefore, by contraposition must be a
power of 2.
Theorem: A Fermat prime cannot be a Wieferich prime.

Proof: We show if is a Fermat prime, then the congruence does not satisfy.
It is easy to show . Now write, . If the given congruence satisfies, then 
, therefore

Hence ,and therefore . This leads to
, which is impossible since .

A theorem of Édouard Lucas: Any prime divisor p of F
n 

= is of the form whenever n is

greater than one.
Sketch of proof:

Let Gp denote the group of non-zero elements of the integers (mod p) under multiplication, which has order p-1.
Notice that 2 (strictly speaking, its image (mod p)) has multiplicative order in Gp, so that, by Lagrange's
theorem, p-1 is divisible by and p has the form for some integer k, as Euler knew. Édouard Lucas
went further. Since n is greater than 1, the prime p above is congruent to 1 (mod 8). Hence (as was known to Carl
Friedrich Gauss), 2 is a quadratic residue (mod p), that is, there in integer a such that a2 -2 is divisible by p. Then the
image of a has order in the group Gp and (using Lagrange's theorem again), p-1 is divisible by and p has
the form for some integer s.
In fact, it can be seen directly that 2 is a quadratic residue (mod p), since (mod p). Since
an odd power of 2 is a quadratic residue (mod p), so is 2 itself.

Relationship to constructible polygons
An n-sided regular polygon can be constructed with compass and straightedge if and only if n is the product of a
power of 2 and distinct Fermat primes. In other words, if and only if n is of the form n = 2kp1p2…ps, where k is a
nonnegative integer and the pi are distinct Fermat primes.
A positive integer n is of the above form if and only if its totient φ(n) is a power of 2.

Applications of Fermat numbers

Pseudorandom Number Generation
Fermat primes are particularly useful in generating pseudo-random sequences of numbers in the range 1 … N, where
N is a power of 2. The most common method used is to take any seed value between 1 and P − 1, where P is a
Fermat prime. Now multiply this by a number A, which is greater than the square root of P and is a primitive root
modulo P (i.e., it is not a quadratic residue). Then take the result modulo P. The result is the new value for the RNG.

(see Linear congruential generator, RANDU)
This is useful in computer science since most data structures have members with 2X possible values. For example, a 
byte has 256 (28) possible values (0–255). Therefore to fill a byte or bytes with random values a random number 
generator which produces values 1–256 can be used, the byte taking the output value − 1. Very large Fermat primes
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are of particular interest in data encryption for this reason. This method produces only pseudorandom values as, after
P − 1 repetitions, the sequence repeats. A poorly chosen multiplier can result in the sequence repeating sooner than
P − 1.

Other interesting facts
A Fermat number cannot be a perfect number or part of a pair of amicable numbers.(Luca 2000)
The series of reciprocals of all prime divisors of Fermat numbers is convergent.(Krizek, Luca, Somer 2002)
If nn + 1 is prime, there exists an integer m such that n = 22m. The equation nn + 1 = F(2m+m) holds at that time.[8]

Let the largest prime factor of Fermat number Fn be P(Fn). Then,

(Grytczuk, Luca and Wojtowicz, 2001）

Generalized Fermat numbers
Numbers of the form , where a > 1 are called generalized Fermat numbers. By analogy with the
ordinary Fermat numbers, it is common to write generalized Fermat numbers of the form as Fn(a). In this
notation, for instance, the number 100,000,001 would be written as F3(10).
An odd prime p is a generalized Fermat number if and only if p is congruent to 1 (mod 4) (with the exception of 3 =

).

Generalized Fermat primes
Because of the ease of proving their primality, generalized Fermat primes have become in recent years a hot topic for
research within the field of number theory. Many of the largest known primes today are generalized Fermat primes.
Generalized Fermat numbers can be prime only for even a, because if a is odd then every generalized Fermat number
will be divisible by 2. By analogy with the heuristic argument for the finite number of primes among the base-2
Fermat numbers, it is to be expected that there will be only finitely many generalized Fermat primes for each even
base. The smallest prime number Fn(a) with n > 4 is F5(30), or 3032+1.
A more elaborate theory can be used to predict the number of bases for which Fn(a) will be prime for a fixed n. The
number of generalized Fermat primes can be roughly expected to halve as n is increased by 1.

Notes
[1] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa000215
[2] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa051158
[3] Křížek, Luca, Somer 2001, p. 38, Remark 4.15
[4] Chris Caldwell, "Prime Links++: special forms" (http:/ / primes. utm. edu/ links/ theory/ special_forms/ ) at The Prime Pages.
[5] Ribenboim, Paulo (1996), The New Book of Prime Number Records, New York: Springer, p. 88, ISBN 0387944575.
[6] Keller, Wilfrid (March 27, 2010), "Prime Factors of Fermat Numbers" (http:/ / www. prothsearch. net/ fermat. html#Summary),

ProthSearch.net,
[7] FermatSearch.org (http:/ / www. fermatsearch. org/ )
[8] Jeppe Stig Nielsen, "S(n) = n^n + 1" (http:/ / jeppesn. dk/ nton. html).

http://en.wikipedia.org/w/index.php?title=Pseudorandom
http://en.wikipedia.org/w/index.php?title=Amicable_numbers
http://en.wikipedia.org/w/index.php?title=Convergent_series
http://en.wikipedia.org/w/index.php?title=Even_and_odd_numbers
http://en.wikipedia.org/w/index.php?title=Heuristic_argument
http://en.wikipedia.org/wiki/Oeis%3Aa000215
http://en.wikipedia.org/wiki/Oeis%3Aa051158
http://primes.utm.edu/links/theory/special_forms/
http://en.wikipedia.org/w/index.php?title=Prime_Pages
http://www.prothsearch.net/fermat.html#Summary
http://www.fermatsearch.org/
http://jeppesn.dk/nton.html


Fermat number 89

References
• Golomb, S. W. (1963), "On the sum of the reciprocals of the Fermat numbers and related irrationalities", Canad.

J. Math. 15: 475–478
• Grytczuk, A.; Luca, F. & Wojtowicz, M. (2001), "Another note on the greatest prime factors of Fermat numbers",

Southeast Asian Bulletin of Mathematics 25 (1): 111–115, doi:10.1007/s10012-001-0111-4
• Guy, Richard K. (2004), Unsolved Problems in Number Theory (3rd ed.), New York: Springer Verlag, pp. A3,

A12, B21, ISBN 0387208607
• Křížek, Michal; Luca, Florian & Somer, Lawrence (2001), 17 Lectures on Fermat Numbers: From Number

Theory to Geometry, CMS books in mathematics, 10, New York: Springer, ISBN 0387953329 (This book contains an

extensive list of references.)

• Křížek, Michal; Luca, Florian & Somer, Lawrence (2002), "On the convergence of series of reciprocals of primes
related to the Fermat numbers", Journal of Number Theory 97 (1): 95–112, doi:10.1006/jnth.2002.2782

• Luca, Florian (2000), "The anti-social Fermat number", American Mathematical Monthly 107 (2): 171–173,
doi:10.2307/2589441

• Robinson, Raphael M. (1954), "Mersenne and Fermat Numbers", Proceedings of the American Mathematical
Society 5 (5): 842–846, doi:10.2307/2031878.

External links
• Chris Caldwell, The Prime Glossary: Fermat number (http:/ / primes. utm. edu/ glossary/ page.

php?sort=FermatNumber) at The Prime Pages.
• Luigi Morelli, History of Fermat Numbers (http:/ / www. fermatsearch. org/ history. html)
• John Cosgrave, Unification of Mersenne and Fermat Numbers (http:/ / www. spd. dcu. ie/ johnbcos/ fermat6.

htm)
• Wilfrid Keller, Prime Factors of Fermat Numbers (http:/ / www. prothsearch. net/ fermat. html)
• Weisstein, Eric W., " Fermat Number (http:/ / mathworld. wolfram. com/ FermatNumber. html)" from

MathWorld.
• Yves Gallot, Generalized Fermat Prime Search (http:/ / pagesperso-orange. fr/ yves. gallot/ primes/ index. html)
• Mark S. Manasse, Complete factorization of the ninth Fermat number (http:/ / www. google. com/

groups?selm=1990Jun15. 190100. 8505@src. dec. com& oe=UTF-8& output=gplain) (original announcement)

http://en.wikipedia.org/w/index.php?title=Richard_K._Guy
http://en.wikipedia.org/w/index.php?title=Springer_Verlag
http://primes.utm.edu/glossary/page.php?sort=FermatNumber
http://primes.utm.edu/glossary/page.php?sort=FermatNumber
http://en.wikipedia.org/w/index.php?title=Prime_Pages
http://www.fermatsearch.org/history.html
http://www.spd.dcu.ie/johnbcos/fermat6.htm
http://www.spd.dcu.ie/johnbcos/fermat6.htm
http://www.prothsearch.net/fermat.html
http://en.wikipedia.org/w/index.php?title=Eric_W._Weisstein
http://mathworld.wolfram.com/FermatNumber.html
http://en.wikipedia.org/w/index.php?title=MathWorld
http://pagesperso-orange.fr/yves.gallot/primes/index.html
http://www.google.com/groups?selm=1990Jun15.190100.8505%40src.dec.com&oe=UTF-8&output=gplain
http://www.google.com/groups?selm=1990Jun15.190100.8505%40src.dec.com&oe=UTF-8&output=gplain


Fibonacci prime 90

Fibonacci prime
A Fibonacci prime is a Fibonacci number that is prime, a type of integer sequence prime.
The first Fibonacci primes are (sequence A005478 [1] in OEIS):

2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, ....

Known Fibonacci primes
It is not known if there are infinitely many Fibonacci primes. The first 33 are Fn for the n values (sequence A001605
[2] in OEIS):

3, 4, 5, 7, 11, 13, 17, 23, 29, 43, 47, 83, 131, 137, 359, 431, 433, 449, 509, 569, 571, 2971, 4723, 5387, 9311,
9677, 14431, 25561, 30757, 35999, 37511, 50833, 81839.

In addition to these proven Fibonacci primes, there have been found probable primes for
n = 104911, 130021, 148091, 201107, 397379, 433781, 590041, 593689, 604711, 931517, 1049897, 1285607,
1636007, 1803059, 1968721.[3]

Except for the case n = 4, all Fibonacci primes have a prime index, but not all prime indexes are a Fibonacci prime.
Fp is prime for 8 out of the first 10 primes p; the exceptions are F2 = 1 and F19 = 4181 = 37 × 113. However,
Fibonacci primes become rarer as the index increases. Fp is prime for only 25 of the 1,229 primes p below 10,000.[4]

As of November 2009, the largest known certain Fibonacci prime is F81839, with 17103 digits. It was proved prime
by David Broadhurst and Bouk de Water in 2001.[5] [6] The largest known probable Fibonacci prime is F1968721. It
has 411439 digits and was found by Henri Lifchitz in 2009.[3]

Divisibility of Fibonacci numbers
Fibonacci numbers that have a prime index p do not share any common divisors greater than 1 with the preceding
Fibonacci numbers, due to the identity
GCD(Fn, Fm) = FGCD(n,m).

[7]

For n≥3, Fn divides Fm iff n divides m.[8]

If we suppose that m, is a prime number p from the identity above, and n is less than p, then it is clear that Fp, cannot
share any common divisors with the preceding Fibonacci numbers.
GCD(Fp, Fn) = FGCD(p,n) = F1 = 1
Carmichael's theorem states that every Fibonacci number (except for 1, 8 and 144) has at least one unique prime
factor that has not been a factor of the preceding Fibonacci numbers.
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[7] Paulo Ribenboim, My Numbers, My Friends, Springer-Verlag 2000
[8] Wells 1986, p.65
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External links
• Weisstein, Eric W., " Fibonacci Prime (http:/ / mathworld. wolfram. com/ FibonacciPrime. html)" from

MathWorld.
• R. Knott Fibonacci primes (http:/ / www. mcs. surrey. ac. uk/ Personal/ R. Knott/ Fibonacci/ fibmaths.

html#fibprimes)
• Caldwell, Chris. Fibonacci number (http:/ / primes. utm. edu/ glossary/ page. php/ FibonacciNumber. html),

Fibonacci prime (http:/ / primes. utm. edu/ glossary/ page. php?sort=FibonacciPrime), and Record Fibonacci
primes (http:/ / primes. utm. edu/ top20/ page. php?id=39) at the Prime Pages

• Small parallel Haskell program to find probable Fibonacci primes at haskell.org (http:/ / www. haskell. org/
haskellwiki/ Fibonacci_primes_in_parallel)

Fortunate prime
A Fortunate number, named after Reo Fortune, for a given positive integer n is the smallest integer m > 1 such that
pn# + m is a prime number, where the primorial pn# is the product of the first n prime numbers.
For example, to find the seventh Fortunate number, one would first calculate the product of the first seven primes (2,
3, 5, 7, 11, 13 and 17), which is 510510. Adding 2 to that gives another even number, while adding 3 would give
another multiple of 3. One would similarly rule out the integers up to 18. Adding 19, however, gives 510529, which
is prime. Hence 19 is a Fortunate number. The Fortunate number for pn# is always above pn. This is because pn#,
and thus pn# + m, is divisible by the prime factors of m for m = 2 to pn.
The Fortunate numbers for the first primorials are:

3, 5, 7, 13, 23, 17, 19, 23, 37, 61, 67, 61, 71, 47, 107, 59, 61, 109, etc. (sequence A005235 [1] in OEIS).
The Fortunate numbers sorted in numerical order with duplicates removed:

3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 79, 89, 101, 103, 107, 109, 127, 151, 157, 163, 167, 191, 197,
199 (A046066 [2]).

Reo Fortune conjectured that no Fortunate number is composite. A Fortunate prime is a Fortunate number which is
also a prime number. As of 2009, all the known Fortunate numbers are also Fortunate primes.

References
• Chris Caldwell, "The Prime Glossary: Fortunate number" [3] at the Prime Pages.
• Weisstein, Eric W., "Fortunate Prime [4]" from MathWorld.
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Full reptend prime
In number theory, a full reptend prime or long prime in base b is a prime number p such that the formula

(where p does not divide b) gives a cyclic number. Therefore the digital expansion of in base b repeats the
digits of the corresponding cyclic number infinitely. Base 10 may be assumed if no base is specified.
The first few values of p for which this formula produces cyclic numbers in decimal are (sequence A001913 [1] in
OEIS)

7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313,
337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593, 619, 647, 659, 701, 709,
727, 743, 811, 821, 823, 857, 863, 887, 937, 941, 953, 971, 977, 983 …

For example, the case b = 10, p = 7 gives the cyclic number 142857, thus, 7 is a full reptend prime. Furthermore, 1
divided by 7 written out in base 10 is 0.142857142857142857142857...
Not all values of p will yield a cyclic number using this formula; for example p = 13 gives 076923076923. These
failed cases will always contain a repetition of digits (possibly several).
The known pattern to this sequence comes from algebraic number theory, specifically, this sequence is the set of
primes p such that 10 is a primitive root modulo p. Artin's conjecture on primitive roots is that this sequence contains
37.395..% of the primes.
The term "long prime" was used by John Conway and Richard Guy in their Book of Numbers. Confusingly, Sloane's
OEIS refers to these primes as "cyclic numbers."
The corresponding cyclic number to prime p will possess p - 1 digits if and only if p is a full reptend prime.

Patterns of occurrence of full reptend primes
Advanced modular arithmetic can show that any prime of the following forms:
1. 40k+1
2. 40k+3
3. 40k+9
4. 40k+13
5. 40k+27
6. 40k+31
7. 40k+37
8. 40k+39
can never be a full reptend prime in base-10. The first primes of these forms, with their periods, are:
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40k+1 40k+3 40k+9 40k+13 40k+27 40k+31 40k+37 40k+39

41
period 5

43
period 21

89
period 44

13
period 6

67
period 33

31
period 15

37
period 3

79
period 13

241
period 30

83
period 41

409
period 204

53
period 13

107
period 53

71
period 35

157
period 78

199
period 99

281
period 28

163
period 81

449
period 32

173
period 43

227
period 113

151
period 75

197
period 98

239
period 7

401
period 200

283
period 141

569
period 284

293
period 146

307
period 153

191
period 95

277
period 69

359
period 179

However, studies show that two-thirds of primes of the form 40k+n, where n ≠ {1,3,9,13,27,31,37,39} are full
reptend primes. For some sequences, the preponderance of full reptend primes is much greater. For instance, 285 of
the 295 primes of form 120k+23 below 100000 are full reptend primes, with 20903 being the first that is not full
reptend.
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Gaussian integer
In number theory, a Gaussian integer is a complex number whose real and imaginary part are both integers. The
Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually
written as Z[i]. The Gaussian integers are a special case of the quadratic integers. This domain does not have a total
ordering that respects arithmetic.

Gaussian integers as lattice points in the complex plane

Formally, Gaussian integers are the set

The norm of a Gaussian integer is the natural number defined as

(Where the overline over "a+bi" refers to the complex conjugate.)
The norm is multiplicative, i.e.

The units of Z[i] are therefore precisely those elements with norm 1, i.e. the elements
1, −1, i and −i.

As a unique factorization domain
The Gaussian integers form a unique factorization domain with units 1, −1, i, and −i. If x is a Gaussian integer, the
four numbers x, ix, −x, and −ix are called the associates of x.
The prime elements of Z[i] are also known as Gaussian primes. An associate of a Gaussian prime is also a Gaussian
prime. The Gaussian primes are symmetric about the real and imaginary axes. The positive integer Gaussian primes
are OEIS A002145. It is a common error to refer to only these positive integers as "the Gaussian primes" when in
fact this term refers to all the Gaussian primes. [1]
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Some of the Gaussian primes

A Gaussian integer is prime if and only if:
• one of a, b is zero and the other is a prime of the form or its

negative (where )
• or both are nonzero and is prime.
The following elaborates on these conditions.
2 is a special case (in the language of algebraic number theory, 2 is the
only ramified prime in Z[i]).

The integer 2 factors as when considered as a Gaussian
integer. It is the only prime integer divisible by the square of a Gaussian
prime.

The necessary conditions can be stated as following: a Gaussian integer is prime only when its norm is prime, or its
norm is a square of a prime. This is because for any Gaussian integer , notice . Now is an
integer, and so can be factored as a product of rational primes, that is, as prime numbers in by the
fundamental theorem of arithmetic. By definition of prime, if is prime then it divides for some . Also, 
divides , so . This gives only two options: either the norm of is prime, or the square of
a prime.
If in fact for some rational prime , then both and divide . Neither can be a unit, and so

and where is a unit. This is to say that either or , where 
However, not every rational prime is a Gaussian prime. 2 is not because . Neither are
primes of the form because Fermat's theorem on sums of two squares assures us they can be written

for integers and , and . The only type of primes remaining are of the
form .
Rational primes of the form are also Gaussian primes. For suppose for a
prime, and it can be factored . Then . If the factorization is non-trivial, then

. But no sum of squares—prime sum or not—can be written . So the factorization
must have been trivial and is a Gaussian prime.
Likewise times a rational prime of the form is a Gaussian prime, but times a prime of the form

is not.
If is a Gaussian integer with prime norm, then is a Gaussian prime. This is because if , then

and being prime one of , or must be 1, hence one of , must be a unit.

As an integral closure
The ring of Gaussian integers is the integral closure of Z in the field of Gaussian rationals Q(i) consisting of the
complex numbers whose real and imaginary part are both rational.

As a Euclidean domain

It is easy to see graphically that every complex number is within units of a Gaussian integer. Put another way,

every complex number (and hence every Gaussian integer) has a maximal distance of units to some

multiple of z, where z is any Gaussian integer; this turns Z[i] into a Euclidean domain, where .
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Historical background
The ring of Gaussian integers was introduced by Carl Friedrich Gauss in his second monograph on quartic
reciprocity (1832) (see [2]). The theorem of quadratic reciprocity (which he had first succeeded in proving in 1796)
relates the solvability of the congruence x2 ≡ q (mod p) to that of x2 ≡ p (mod q). Similarly, cubic reciprocity relates
the solvability of x3 ≡ q (mod p) to that of x3 ≡ p (mod q), and biquadratic (or quartic) reciprocity is a relation
between x4 ≡ q (mod p) and x4 ≡ p (mod q). Gauss discovered that the law of biquadratic reciprocity and its
supplements were more easily stated and proved as statements about "whole complex numbers" (i.e. the Gaussian
integers) than they are as statements about ordinary whole numbers (i.e. the integers).
In a footnote he notes that the Eisenstein integers are the natural domain for stating and proving results on cubic
reciprocity and indicates that similar extensions of the integers are the appropriate domains for studying higher
reciprocity laws.
This paper not only introduced the Gaussian integers and proved they are a unique factorization domain, it also
introduced the terms norm, unit, primary, and associate, which are now standard in algebraic number theory.

Unsolved problems
Gauss's circle problem does not deal with the Gaussian integers per se, but instead asks for the number of lattice
points inside a circle of a given radius centered at the origin. This is equivalent to determining the number of
Gaussian integers with norm less than a given value.
There are also conjectures and unsolved problems about the Gaussian primes. Two of them are:
The real and imaginary axes have the infinite set of Gaussian primes 3, 7, 11, 19, ... and their associates. Are there
any other lines that have infinitely many Gaussian primes on them? In particular, are there infinitely many Gaussian
primes of the form 1+ki?[3]

Is it possible to walk to infinity using the Gaussian primes as stepping stones and taking steps of bounded length?[4]

Notes
[1] (http:/ / www. research. att. com/ ~njas/ sequences/ A002145#COMMENT), OEIS sequence A002145 "COMMENT" section
[2] http:/ / www. ems-ph. org/ journals/ show_pdf. php?issn=0013-6018& vol=53& iss=1& rank=2
[3] Ribenboim, Ch.III.4.D Ch. 6.II, Ch. 6.IV (Hardy & Littlewood's conjecture E and F)
[4] See Moat-Crossing Problem in the external links
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External links
• www.alpertron.com.ar/GAUSSIAN.HTM (http:/ / www. alpertron. com. ar/ GAUSSIAN. HTM) is a Java applet

that evaluates expressions containing Gaussian integers and factors them into Gaussian primes.
• www.alpertron.com.ar/GAUSSPR.HTM (http:/ / www. alpertron. com. ar/ GAUSSPR. HTM) is a Java applet that

features a graphical view of Gaussian primes.
• Henry G. Baker (1993) Complex Gaussian Integers for 'Gaussian Graphics', ACM SIGPLAN Notices, Vol. 28,

Issue 11. DOI 10.1145/165564.165571 (http:/ / portal. acm. org/ citation. cfm?doid=165564. 165571) (html)
(http:/ / home. pipeline. com/ ~hbaker1/ Gaussian. html)

• IMO Compendium (http:/ / www. imocompendium. com/ index. php?options=mbb|tekstkut& page=0&
art=extensions_ddj|f& ttn=Dushan D;jukic1| Arithmetic in Quadratic Fields|N/ A& knj=& p=3nbbw45001) text
on quadratic extensions and Gaussian Integers in problem solving

• Weisstein, Eric W., " Moat-Crossing Problem (http:/ / mathworld. wolfram. com/ Moat-CrossingProblem. html)"
from MathWorld.

• Gethner, Ellen; Wagon, Stan; Wick, Brian (April 1998). "A Stroll Through the Gaussian Primes" (http:/ / www.
joma. org/ images/ upload_library/ 22/ Chauvenet/ GethnerWagonWick. pdf). American Mathematical Monthly
105 (4): 327–337. doi:10.2307/2589708.

• Weisstein, Eric W., " Landau's Problems (http:/ / mathworld. wolfram. com/ LandausProblems. html)" from
MathWorld.

Genocchi number
The Genocchi numbers, named after Angelo Genocchi, are a sequence of integers, Gn that satisfy the relation

The first few Genocchi numbers are 1, −1, 0, 1, 0, −3, 0, 17 (sequence A001469 [1] in OEIS). Gn is 0 for odd n > 1.
It has been proven that −3 and 17 are the only prime Genocchi numbers.
They are related to Bernoulli numbers Bn by the formula
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• Weisstein, Eric W., "Genocchi Number [2]" from MathWorld.
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Goldbach's conjecture
Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:

Every even integer greater than 2 can be expressed as the sum of two primes.[1]

The number of ways an even number can be represented as the sum of two
primes[2]

Such a number is called a Goldbach
number. Expressing a given even number
as a sum of two primes is called a Goldbach
partition of the number. For example,

4 = 2 + 2
6 = 3 + 3
8 = 3 + 5
10 = 7 + 3 or 5 + 5
12 = 5 + 7
14 = 3 + 11 or 7 + 7

Origins

On 7 June 1742, the German mathematician
Christian Goldbach of originally
Brandenburg-Prussia wrote a letter to
Leonhard Euler (letter XLIII)[3] in which he
proposed the following conjecture:

Every integer which can be written as
the sum of two primes, can also be
written as the sum of as many primes as one wishes, until all terms are units.

He then proposed a second conjecture in the margin of his letter:
Every integer greater than 2 can be written as the sum of three primes.

He considered 1 to be a prime number, a convention subsequently abandoned.[4] The two conjectures are now known
to be equivalent, but this did not seem to be an issue at the time. A modern version of Goldbach's marginal
conjecture is:

Every integer greater than 5 can be written as the sum of three primes.
Euler replied in a letter dated 30 June 1742, and reminded Goldbach of an earlier conversation they had ("...so Ew
vormals mit mir communicirt haben.."), in which Goldbach remarked his original (and not marginal) conjecture
followed from the following statement

Every even integer greater than 2 can be written as the sum of two primes,
which is thus also a conjecture of Goldbach. In the letter dated 30 June 1742, Euler stated:

“Dass ... ein jeder numerus par eine summa duorum primorum sey, halte ich für ein ganz gewisses
theorema, ungeachtet ich dasselbe necht demonstriren kann.” ("every even integer is a sum of two
primes. I regard this as a completely certain theorem, although I cannot prove it.")[5] [6]

Goldbach's third version (equivalent to the two other versions) is the form in which the conjecture is usually 
expressed today. It is also known as the "strong", "even", or "binary" Goldbach conjecture, to distinguish it from a 
weaker corollary. The strong Goldbach conjecture implies the conjecture that all odd numbers greater than 7 are 
the sum of three odd primes, which is known today variously as the "weak" Goldbach conjecture, the "odd"
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Goldbach conjecture, or the "ternary" Goldbach conjecture. Both questions have remained unsolved ever since,
although the weak form of the conjecture appears to be much closer to resolution than the strong one. If the strong
Goldbach conjecture is true, the weak Goldbach conjecture will be true by implication.[6]

Verified results
For small values of n, the strong Goldbach conjecture (and hence the weak Goldbach conjecture) can be verified
directly. For instance, N. Pipping in 1938 laboriously verified the conjecture up to n ≤ 105.[7] With the advent of
computers, many more small values of n have been checked; T. Oliveira e Silva is running a distributed computer
search that has verified the conjecture for n ≤ 1.609*1018 and some higher small ranges up to 4*1018 (double
checked up to 1*1017).[8]

Heuristic justification
Statistical considerations which focus on the probabilistic distribution of prime numbers present informal evidence in
favour of the conjecture (in both the weak and strong forms) for sufficiently large integers: the greater the integer,
the more ways there are available for that number to be represented as the sum of two or three other numbers, and
the more "likely" it becomes that at least one of these representations consists entirely of primes.

Number of ways to write an even number n as the sum of two
primes (4 ≤ n ≤ 1,000)

Number of ways to write an even number n as the sum of two
primes (4 ≤ n ≤ 1,000,000)

Since this quantity goes to infinity as n increases, we expect that every large even integer has not just one
representation as the sum of two primes, but in fact has very many such representations.
The above heuristic argument is actually somewhat inaccurate, because it ignores some dependence between the
events of m and being prime. For instance, if m is odd then is also odd, and if m is even, then

is even, a non-trivial relation because (besides 2) only odd numbers can be prime. Similarly, if n is divisible
by 3, and m was already a prime distinct from 3, then would also be coprime to 3 and thus be slightly more
likely to be prime than a general number. Pursuing this type of analysis more carefully, Hardy and Littlewood in
1923 conjectured (as part of their famous Hardy-Littlewood prime tuple conjecture) that for any fixed c ≥ 2, the
number of representations of a large integer n as the sum of c primes with 
should be asymptotically equal to
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where the product is over all primes p, and is the number of solutions to the equation
in modular arithmetic, subject to the constraints . This

formula has been rigorously proven to be asymptotically valid for c ≥  3 from the work of Vinogradov, but is still
only a conjecture when . In the latter case, the above formula simplifies to 0 when n is odd, and to

when n is even, where is the twin prime constant

This asymptotic is sometimes known as the extended Goldbach conjecture. The strong Goldbach conjecture is in fact
very similar to the twin prime conjecture, and the two conjectures are believed to be of roughly comparable
difficulty.
The Goldbach partition functions shown here can be displayed as histograms which informatively illustrate the
above equations. See Goldbach's comet.[9]

Rigorous results
Considerable work has been done on the weak Goldbach conjecture.
The strong Goldbach conjecture is much more difficult. Using the method of Vinogradov, Chudakov,[10] van der
Corput,[11] and Estermann[12] showed that almost all even numbers can be written as the sum of two primes (in the
sense that the fraction of even numbers which can be so written tends towards 1). In 1930, Lev Schnirelmann proved
that every even number n ≥ 4 can be written as the sum of at most 20 primes. This result was subsequently improved
by many authors; currently, the best known result is due to Olivier Ramaré, who in 1995 showed that every even
number n  ≥ 4 is in fact the sum of at most six primes. In fact, resolving the weak Goldbach conjecture will also
directly imply that every even number n  ≥ 4 is the sum of at most four primes.[13]

Chen Jingrun showed in 1973 using the methods of sieve theory that every sufficiently large even number can be
written as the sum of either two primes, or a prime and a semiprime (the product of two primes)[14] —e.g.,
100 = 23 + 7·11.
In 1975, Hugh Montgomery and Robert Charles Vaughan showed that "most" even numbers were expressible as the
sum of two primes. More precisely, they showed that there existed positive constants c and C such that for all
sufficiently large numbers N, every even number less than N is the sum of two primes, with at most 
exceptions. In particular, the set of even integers which are not the sum of two primes has density zero.
Linnik proved in 1951 the existence of a constant K such that every sufficiently large even number is the sum of two
primes and at most K powers of 2. Roger Heath-Brown and Jan-Christoph Schlage-Puchta in 2002 found that K=13
works.[15] This was improved to K=8 by Pintz and Ruzsa.[16]

One can pose similar questions when primes are replaced by other special sets of numbers, such as the squares. For
instance, it was proven by Lagrange that every positive integer is the sum of four squares. See Waring's problem and
the related Waring–Goldbach problem on sums of powers of primes.
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Attempted proofs
As with many famous conjectures in mathematics, there are a number of purported proofs of the Goldbach
conjecture, none accepted by the mathematical community.

Similar conjectures
• Lemoine's conjecture (also called Levy's conjecture) - states that all odd integers greater than 5 can be represented

as the sum of an odd prime number and an even semiprime.
• Waring–Goldbach problem - asks whether large numbers can be expressed as a sum, with at most a constant

number of terms, of like powers of primes.

In popular culture
• To generate publicity for the novel Uncle Petros and Goldbach's Conjecture by Apostolos Doxiadis, British

publisher Tony Faber offered a $1,000,000 prize if a proof was submitted before April 2002. The prize was not
claimed.

• The television drama Lewis featured a mathematics professor who had won the Fields medal for his work on
Goldbach's conjecture.

• Isaac Asimov's short story "Sixty Million Trillion Combinations" featured a mathematician who suspected that his
work on Goldbach's conjecture had been stolen.

• In the Spanish movie La habitación de Fermat (2007), a young mathematician claims to have proved the
conjecture.

• A reference is made to the conjecture in the Futurama straight-to-DVD film The Beast with a Billion Backs, in
which multiple elementary proofs are found in a Heaven-like scenario.

• Frederik Pohl's novella "The Gold at the Starbow's End" (1972) featured a crew on an interstellar flight that
solved Goldbach's conjecture.

• Michelle Richmond's novel "No One You Know" (2008) features the murder of a mathematician who had been
working on solving Goldbach's conjecture.
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Further reading
• Deshouillers, J.-M.; Effinger, G.; te Riele, H. & Zinoviev, D. (1997), "A complete Vinogradov 3-primes theorem

under the Riemann hypothesis" (http:/ / www. ams. org/ era/ 1997-03-15/ S1079-6762-97-00031-0/
S1079-6762-97-00031-0. pdf), Electron. Res. Announc. Amer. Math. Soc. 3: 99–104,
doi:10.1090/S1079-6762-97-00031-0

• Doxiadis, Apostolos (2001), Uncle Petros and Goldbach's Conjecture, New York: Bloomsbury,
ISBN 1582341281

• Montgomery, H. L. & Vaughan, R. C. (1975), "The exceptional set in Goldbach's problem. Collection of articles
in memory of Jurii Vladimirovich Linnik", Acta arithmetica 27: pp. 353–370

External links
• Goldbach's original letter to Euler - PDF format (in German and Latin) (http:/ / www. math. dartmouth. edu/

~euler/ correspondence/ letters/ OO0765. pdf)
• Goldbach's conjecture (http:/ / primes. utm. edu/ glossary/ page. php?sort=GoldbachConjecture), part of Chris

Caldwell's Prime Pages.
• Goldbach conjecture verification (http:/ / www. ieeta. pt/ ~tos/ goldbach. html), Tomás Oliveira e Silva's

distributed computer search.
• Online tool (http:/ / wims. unice. fr/ wims/ wims. cgi?module=tool/ number/ goldbach. en) to test Goldbach's

conjecture on submitted integers.
• Goldbach Weave (http:/ / wardley. org/ misc/ goldbach. html) showing a graphical representation of Goldbach's

conjecture.

Good prime
A good prime is a prime number whose square is greater than the product of any two primes at the same number of
positions before and after it in the sequence of primes.
A good prime satisfies the inequality

for all 1 ≤ i ≤ n−1. pn is the nth prime.
There are infinitely many good primes.[1] The first good primes are

5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149 (sequence A028388 [2] in OEIS).

References
[1] Weisstein, Eric W., " Good Prime (http:/ / mathworld. wolfram. com/ GoodPrime. html)" from MathWorld.
[2] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa028388

http://www.ams.org/era/1997-03-15/S1079-6762-97-00031-0/S1079-6762-97-00031-0.pdf
http://www.ams.org/era/1997-03-15/S1079-6762-97-00031-0/S1079-6762-97-00031-0.pdf
http://en.wikipedia.org/w/index.php?title=Apostolos_Doxiadis
http://www.math.dartmouth.edu/~euler/correspondence/letters/OO0765.pdf
http://www.math.dartmouth.edu/~euler/correspondence/letters/OO0765.pdf
http://primes.utm.edu/glossary/page.php?sort=GoldbachConjecture
http://en.wikipedia.org/w/index.php?title=Prime_Pages
http://www.ieeta.pt/~tos/goldbach.html
http://wims.unice.fr/wims/wims.cgi?module=tool/number/goldbach.en
http://wardley.org/misc/goldbach.html
http://en.wikipedia.org/w/index.php?title=Prime_number
http://en.wikipedia.org/w/index.php?title=Square_%28algebra%29
http://en.wikipedia.org/w/index.php?title=5_%28number%29
http://en.wikipedia.org/w/index.php?title=11_%28number%29
http://en.wikipedia.org/w/index.php?title=17_%28number%29
http://en.wikipedia.org/w/index.php?title=29_%28number%29
http://en.wikipedia.org/w/index.php?title=37_%28number%29
http://en.wikipedia.org/w/index.php?title=41_%28number%29
http://en.wikipedia.org/w/index.php?title=53_%28number%29
http://en.wikipedia.org/w/index.php?title=59_%28number%29
http://en.wikipedia.org/w/index.php?title=67_%28number%29
http://en.wikipedia.org/w/index.php?title=71_%28number%29
http://en.wikipedia.org/w/index.php?title=97_%28number%29
http://en.wikipedia.org/w/index.php?title=101_%28number%29
http://en.wikipedia.org/w/index.php?title=127_%28number%29
http://en.wikipedia.org/w/index.php?title=149_%28number%29
http://en.wikipedia.org/wiki/Oeis%3Aa028388
http://en.wikipedia.org/w/index.php?title=On-Line_Encyclopedia_of_Integer_Sequences
http://en.wikipedia.org/w/index.php?title=Eric_W._Weisstein
http://mathworld.wolfram.com/GoodPrime.html
http://en.wikipedia.org/w/index.php?title=MathWorld
http://en.wikipedia.org/wiki/Oeis%3Aa028388


Happy number 103

Happy number
A happy number is defined by the following process. Starting with any positive integer, replace the number by the
sum of the squares of its digits, and repeat the process until the number equals 1 (where it will stay), or it loops
endlessly in a cycle which does not include 1. Those numbers for which this process ends in 1 are happy numbers,
while those that do not end in 1 are unhappy numbers (or sad numbers[1] ).

Overview
More formally, given a number , define a sequence , , ... where is the sum of the squares of
the digits of . Then n is happy if and only if there exists i such that .
If a number is happy, then all members of its sequence are happy; if a number is unhappy, all members of its
sequence are unhappy.
For example, 7 is happy, as the associated sequence is:

72 = 49
42 + 92 = 97
92 + 72 = 130
12 + 32 + 02 = 10
12 + 02 = 1.

The happy numbers below 500 are
1, 7, 10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100, 103, 109, 129, 130, 133, 139, 167,
176, 188, 190, 192, 193, 203, 208, 219, 226, 230, 236, 239, 262, 263, 280, 291, 293, 301, 302, 310, 313, 319,
320, 326, 329, 331, 338, 356, 362, 365, 367, 368, 376, 379, 383, 386, 391, 392, 397, 404, 409, 440, 446, 464,
469, 478, 487, 490, 496 (sequence A007770 [2] in OEIS).

The happiness of a number is preserved by rearranging the digits, and by inserting or removing any number of zeros
anywhere in the number.

Sequence behavior
If n is not happy, then its sequence does not go to 1. What happens instead is that it ends up in the cycle

4, 16, 37, 58, 89, 145, 42, 20, 4, ...
To see this fact, first note that if n has m digits, then the sum of the squares of its digits is at most , or .
For and above,

so any number over 1000 gets smaller under this process and in particular becomes a number with strictly fewer
digits. Once we are under 1000, the number for which the sum of squares of digits is largest is 999, and the result is 3
times 81, that is, 243.
• In the range 100 to 243, the number 199 produces the largest next value, of 163.
• In the range 100 to 163, the number 159 produces the largest next value, of 107.
• In the range 100 to 107, the number 107 produces the largest next value, of 50.
Considering more precisely the intervals [244,999], [164,243], [108,163] and [100,107], we see that every number
above 99 gets strictly smaller under this process. Thus, no matter what number we start with, we eventually drop
below 100. An exhaustive search then shows that every number in the interval [1,99] either is happy or goes to the
above cycle.
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The above work produces the interesting result that no positive integer other than 1 is the sum of the squares of its
own digits.
There are infinitely many happy numbers and infinitely many unhappy numbers. For example, if you wonder if any
number will produce 14308, say, the quick response is to write down the digit 1 14308 times and you have created
such a number. In fact, you have created infinitely many such numbers since there is nothing to stop you slotting in
as many zero digits as you fancy.
The first pair of consecutive happy numbers is 31, 32. The first set of triplets is 1880, 1881, and 1882.
An interesting question is to wonder about the density of happy numbers. In the interval [1,243] 15.6% (to 3
significant figures) are happy.

Happy primes
A happy prime is a number that is both happy and prime. The happy primes below 500 are

7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487
(sequence A035497 [3] in OEIS).

All numbers, and therefore all primes, of the form 10n + 3 and 10n + 9 for n greater than 0 are Happy (This of course
does not mean that these are the only happy primes, as evidenced by the sequence above). To see this, note that
• All such numbers will have at least 2 digits;
• The first digit will always be 1 due to the 10n

• The last digit will always be either 3 or 9.
• Any other digits will always be 0 (and therefore will not contribute to the sum of squares of the digits).

• The sequence for adding 3 is: 12 + 32 = 10 → 12 = 1
• The sequence for adding 9 is: 12 + 92 = 82 → 82 + 22 = 64 + 4 = 68 → 62 + 82 = 36 + 64 = 100 -> 1

The palindromic prime 10150006 + 7426247×1075000 + 1 is also a happy prime with 150,007 digits because the many
0's do not contribute to the sum of squared digits, and ,
which is a happy number. Paul Jobling discovered the prime in 2005.[4]

As of 2010, the largest known happy prime is (Mersenne prime). Its decimal expansion has
12,837,064 digits.[5]

Special happy numbers
• 986543210 : Greatest happy number with no redundant digits
• 1234456789 : Smallest zeroless pandigital happy number
• 10234456789 : Smallest pandigital happy number
• 13456789298765431 : Smallest zeroless pandigital palindromic happy number
• 1034567892987654301 : Smallest pandigital palindromic happy number

Happy pythagorean triplets
• All Pythagorean triplets with all integers happy and less than 10000
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( 700, 3465, 3535) ( 748, 8211, 8245) ( 910, 8256, 8306) ( 940, 2109, 2309)

( 940, 4653, 4747) (1092, 1881, 2175) (1323, 4536, 4725) (1527, 2036, 2545)

(1785, 3392, 3833) (1900, 1995, 2755) (1995, 4788, 5187) (2715, 3620, 4525)

(2751, 8360, 8801) (2784, 6440, 7016) (3132, 7245, 7893) (3135, 7524, 8151)

(3290, 7896, 8554) (3367, 3456, 4825) (3680, 5313, 6463) (4284, 5313, 6825)

(4633, 5544, 7225) (5178, 6904, 8630) (5286, 7048, 8810) (5445, 6308, 8333)

(5712, 7084, 9100) (6528, 7480, 9928)

Happy numbers in other bases
The definition of happy numbers depends on the decimal (i.e., base 10) representation of the numbers. The definition
can be extended to other bases.
To represent numbers in other bases, we may use a subscript to the right to indicate the base. For instance, 
represents the number 4, and

Then, it is easy to see that there are happy numbers in every base. For instance, the numbers

are all happy, for any base b.
By a similar argument to the one above for decimal happy numbers, unhappy numbers in base b lead to cycles of
numbers less than . If , then the sum of the squares of the base-b digits of n is less than or
equal to

which can be shown to be less than . This shows that once the sequence reaches a number less than , it
stays below , and hence must cycle or reach 1.
In base 2, all numbers are happy. All binary numbers larger than 10002 decay into a value equal to or less than
10002, and all such values are happy: The following four sequences contain all numbers less than :

Since all sequences end in 1, we conclude that all numbers are happy in base 2. This makes base 2 a happy base.
The only known happy bases are 2 and 4. There are no others less than 500,000,000.[6]
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Cubing the digits rather than squaring
An interesting extension to the Happy Numbers problem is to find the sum of the cubes of the digits rather than the
sum of the squares of the digits. For example, working in base 10, 1579 is happy, since:

13+53+73+93=1+125+343+729=1198
13+13+93+83=1+1+729+512=1243
13+23+43+33=1+8+64+27=100
13+03+03=1

In the same way that when summing the squares of the digits (and working in base 10) each number above
243(=3*81) produces a number which is strictly smaller, when summing the cubes of the digits each number above
2916(=4*729) produces a number which is strictly smaller.
By conducting an exhaustive search of [1,2916] one finds that for summing the cubes of digits base 10 there are
happy numbers and eight different types of unhappy number:
those that eventually reach which perpetually produces itself.
those that eventually reach which perpetually produces itself.
those that eventually reach the loop 
those that eventually reach which perpetually produces itself.
those that eventually reach the loop 
those that eventually reach which perpetually produces itself.
those that eventually reach the loop 
those that eventually reach the loop 
Starting with the happy numbers and then following with the unhappy numbers in the order given above, the density
of each type of number in the interval [1,2916] is 1.54%, 28.4%, 34.7%, 5.73%, 17.4%, 4.60%, 3.60%, 2.67% and
1.34% (all to 3 significant figures).
Intriguingly, the second type of unhappy number includes all multiples of three . This fact can be proved by the
exhaustive search up to 2916 and noting that a number is a multiple of three if and only if the sum of digits is a
multiple of three if and only if the sum of its cubed digits are a multiple of three. By similar reasoning, all happy
numbers of this type must have a remainder of 1 when dividing by 3.
One interesting result which comes from the above work is that the only positive whole numbers which are the sum
of the cubes of their digits are 1, 153, 370, 371 and 407.

Origin
The origin of happy numbers is not clear. Happy numbers were brought to the attention of Reg Allenby (a British
author and Senior Lecturer in pure mathematics at Leeds University) by his daughter, who had learned of them at
school. However they "may have originated in Russia" (Guy 2004:§E34).

Popular culture
In the Doctor Who episode "42", a sequence of happy primes (313, 331, 367, 379) is used as a code for unlocking a
sealed door on a spaceship about to collide with a sun.
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Programming examples
• Simple test in Python to check if a number is happy.

def is_Happy(k):

  s=set()

  while k != 1:

    digs=[int(i) for i in str(k)]

    k=sum([i**2 for i in digs])

    if k in s: return False

    s.add(k)

  return True
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Higgs prime
A Higgs prime is a prime number with a totient (one less than the prime) that evenly divides the square of the
product of the smaller Higgs primes. (This can be generalized to cubes, fourth powers, etc.) To put it algebraically,
given an exponent a, a Higgs prime Hpn satisfies

where Φ(x) is Euler's totient function.
For squares, the first few Higgs primes are 2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 43, 47, ... (sequence A007459 [1] in
OEIS). So, for example, 13 is a Higgs prime because the square of the product of the smaller Higgs primes is
5336100, and divided by 12 this is 444675. But 17 is not a Higgs prime because the square of the product of the
smaller primes is 901800900, which leaves a remainder of 4 when divided by 16.
From observation of the first few Higgs primes for squares through seventh powers, it would seem more compact to
list those primes that are not Higgs primes:

Exponent 75th
Higgs
prime 

Not Higgs prime below 75th Higgs prime 

2 827 17, 41, 73, 83, 89, 97, 103, 109, 113, 137, 163, 167, 179, 193, 227, 233, 239, 241, 251, 257, 271, 281, 293, 307, 313, 337,
353, 359, 379, 389, 401, 409, 433, 439, 443, 449, 457, 467, 479, 487, 499, 503, 521, 541, 563, 569, 577, 587, 593, 601,
613, 617, 619, 641, 647, 653, 673, 719, 739, 751, 757, 761, 769, 773, 809, 811, 821, 823

3 521 17, 97, 103, 113, 137, 163, 193, 227, 239, 241, 257, 307, 337, 353, 389, 401, 409, 433, 443, 449, 479, 487

4 419 97, 193, 257, 353, 389

5 397 193, 257

6 389 257

7 389 257

Observation further reveals that a Fermat prime can't be a Higgs prime for the ath power if a is less than
2n.
It's not known if there are infinitely many Higgs primes for any exponent a greater than 1. The situation is quite
different for a = 1. There are only four of them: 2, 3, 7 and 43 (a sequence suspiciously similar to Sylvester's
sequence). In 1993, Burris and Lee found that about a fifth of the primes below a million are Higgs prime, and they
concluded that even if the sequence of Higgs primes for squares is finite, "a computer enumeration is not feasible."
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Highly cototient number
In number theory, a branch of mathematics, a highly cototient number is a positive integer k which is above one
and has more solutions to the equation

x − φ(x) = k,
than any other integer below k and above one. Here, φ is Euler's totient function. There are infinitely many solutions
to the equation for k = 1 so this value is excluded in the definition. The first few highly cototient numbers are:

2, 4, 8, 23, 35, 47, 59, 63, 83, 89, 113, 119, 167, 209, 269, 299, 329, 389, 419, 509, 629, 659, 779, 839, 1049,
1169, 1259, 1469, 1649, 1679, 1889 (sequence A100827 [1] in OEIS).

There are many odd highly cototient numbers. In fact, after 8, all the numbers listed above are odd, and after 167 all
the numbers listed above are congruent to 9 modulo 10.
The concept is somewhat analogous to that of highly composite numbers. Just as there are infinitely many highly
composite numbers, there are also infinitely many highly cototient numbers. Computations become harder, since
integer factorization does, as the numbers get larger.

Primes
The first few highly cototient numbers which are primes (sequence A105440 [2] in OEIS) are

2, 23, 47, 59, 83, 89, 113, 167, 269, 389, 419, 509, 659, 839.
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Illegal prime
An illegal prime is a prime number that represents information forbidden to possess or distribute. One of the first
illegal primes was discovered in 2001. When interpreted a particular way, it describes a computer program which
bypasses the digital rights management scheme used on DVDs. Distribution of such a program in the United States is
illegal under the Digital Millennium Copyright Act.[1] Illegal primes are a subset of illegal numbers.

Background

The DeCSS code can be used by a computer to circumvent a DVD's
copy protection.

One of the earliest illegal prime numbers was generated
in March 2001 by Phil Carmody. Its binary
representation corresponds to a compressed version of
the C source code of a computer program implementing
the DeCSS decryption algorithm, which can be used by
a computer to circumvent a DVD's copy protection.[1]

Protests against the indictment of DeCSS author Jon
Johansen and legislation prohibiting publication of
DeCSS code took many forms. One of them was the
representation of the illegal code in a form that had an
intrinsically archivable quality. Since the bits making
up a computer program also represent a number, the
plan was for the number to have some special property
that would make it archivable and publishable (one
method was to print it on a t-shirt). The primality of a number is a fundamental property of number theory, and is
therefore not dependent on legal definitions of any particular jurisdiction.

The large prime database of The Prime Pages website records the top 20 primes of various special forms; one of
them is proof of primality using the elliptic curve primality proving (ECPP) algorithm. Thus, if the number were
large enough, and proved prime using ECPP, it would be published.

Discovery
By exploitation of the fact that the gzip compression program ignores bytes after the end of a null terminated
compressed file, a set of candidate primes was generated, each of which would result in the DeCSS C code when
unzipped. Of these, several were identified as probable prime using the open source program OpenPFGW, and one
of them was proved prime using the ECPP algorithm implemented by the Titanix software. Even at the time of
discovery in 2001, this 1401 digit number was too small to be mentioned, so Carmody created a 1905-digit prime
which was the tenth largest prime found using ECPP.
Following this, Carmody also discovered another prime, this one directly executable machine language for Linux
i386, implementing the same functionality.
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The first illegal prime number
The Register gives the 1401 digit number as:[2] [3]

4 85650 78965 73978 29309 84189 46942 86137 70744 20873 51357 92401 96520 73668 69851 34010 47237
44696 87974 39926 11751 09737 77701 02744 75280 49058 83138 40375 49709 98790 96539 55227 01171 21570
25974 66699 32402 26834 59661 96060 34851 74249 77358 46851 88556 74570 25712 54749 99648 21941 84655
71008 41190 86259 71694 79707 99152 00486 67099 75923 59606 13207 25973 79799 36188 60631 69144 73588
30024 53369 72781 81391 47979 55513 39994 93948 82899 84691 78361 00182 59789 01031 60196 18350 34344
89568 70538 45208 53804 58424 15654 82488 93338 04747 58711 28339 59896 85223 25446 08408 97111 97712
76941 20795 86244 05471 61321 00500 64598 20176 96177 18094 78113 62200 27234 48272 24932 32595 47234
68800 29277 76497 90614 81298 40428 34572 01463 48968 54716 90823 54737 83566 19721 86224 96943 16227
16663 93905 54302 41564 73292 48552 48991 22573 94665 48627 14048 21171 38124 38821 77176 02984 12552
44647 44505 58346 28144 88335 63190 27253 19590 43928 38737 64073 91689 12579 24055 01562 08897 87163
37599 91078 87084 90815 90975 48019 28576 84519 88596 30532 38234 90558 09203 29996 03234 47114 07760
19847 16353 11617 13078 57608 48622 36370 28357 01049 61259 56818 46785 96533 31007 70179 91614 67447
25492 72833 48691 60006 47585 91746 27812 12690 07351 83092 41530 10630 28932 95665 84366 20008 00476
77896 79843 82090 79761 98594 93646 30938 05863 36721 46969 59750 27968 77120 57249 96666 98056 14533
82074 12031 59337 70309 94915 27469 18356 59376 21022 20068 12679 82734 45760 93802 03044 79122 77498
09179 55938 38712 10005 88766 68925 84487 00470 77255 24970 60444 65212 71304 04321 18261 01035 91186
47666 29638 58495 08744 84973 73476 86142 08805 29443.

The first illegal executable prime number
The following 1811 digit prime number (discovered by Phil Carmody) can represent a non-compressed i386 ELF
executable that reads CSS-encrypted data and outputs the decrypted data.[4]

49310 83597 02850 19002 75777 67239 07649 57284 90777 21502 08632 08075 01840 97926 27885 09765 88645
57802 01366 00732 86795 44734 11283 17353 67831 20155 75359 81978 54505 48115 71939 34587 73300 38009
93261 95058 76452 50238 20408 11018 98850 42615 17657 99417 04250 88903 70291 19015 87003 04794 32826
07382 14695 41570 33022 79875 57681 89560 16240 30064 11151 69008 72879 83819 42582 71674 56477 48166
84347 92846 45809 29131 53186 00700 10043 35318 93631 93439 12948 60445 03709 91980 04770 94629 21558
18071 11691 53031 87628 84778 78354 15759 32891 09329 54473 50881 88246 54950 60005 01900 62747 05305
38116 42782 94267 47485 34965 25745 36815 11706 55028 19055 52656 22135 31463 10421 00866 28679 71144
46706 36692 19825 86158 11125 15556 50481 34207 68673 23407 65505 48591 08269 56266 69306 62367 99702
10481 23965 62518 00681 83236 53959 34839 56753 57557 53246 19023 48106 47009 87753 02795 61868 92925
38069 33052 04238 14996 99454 56945 77413 83356 89906 00587 08321 81270 48611 33682 02651 59051 66351
87402 90181 97693 93767 78529 28722 10955 04129 25792 57381 86605 84501 50552 50274 99477 18831 29310
45769 80909 15304 61335 94190 30258 81320 59322 77444 38525 50466 77902 45186 97062 62778 88919 79580
42306 57506 15669 83469 56177 97879 65920 16440 51939 96071 69811 12615 19561 02762 83233 98257 91423
32172 69614 43744 38105 64855 29348 87634 92103 09887 02878 74532 33132 53212 26786 33283 70279 25099
74996 94887 75936 91591 76445 88032 71838 47402 35933 02037 48885 06755 70658 79194 61134 19323 07814
85443 64543 75113 20709 86063 90746 41756 41216 35042 38800 29678 08558 67037 03875 09410 76982 11837
65499 20520 43682 55854 64228 85024 29963 32268 53691 24648 55000 75591 66402 47292 40716 45072 53196
74499 95294 48434 74190 21077 29606 82055 81309 23626 83798 79519 66199 79828 55258 87161 09613 65617
80745 66159 24886 60889 81645 68541 72136 29208 46656 27913 14784 66791 55096 51543 10113 53858 62081
96875 83688 35955 77893 91454 53935 68199 60988 08540 47659 07358 97289 89834 25047 12891 84162 65878
96821 85380 87956 27903 99786 29449 39760 54675 34821 25675 01215 17082 73710 76462 70712 46753 21024
83678 15940 00875 05452 54353 7.

http://en.wikipedia.org/w/index.php?title=The_Register
http://en.wikipedia.org/w/index.php?title=Intel_80386
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Using the numbers
Simply copying the decimal numbers from an electronic publication to a text file will typically result in a stream of
bytes where each character (decimal digit or space) is encoded in one byte using the ASCII encoding. The
particularity of these numbers is that when written in base 2, the resulting stream of bits can also be interpreted as the
content of a gzip or executable file. Converting such big numbers to base 2 and writing the resulting stream of bits to
a file is a nontrivial process. Below is the go source code of a program that takes a number on the command line and
writes a binary representation to the standard output.
<syntaxhighlight lang=javascript> package main
import ( . "os" . "strings" "fmt" "big" )
func main() {
if len(Args) != 2 { fmt.Fprintf(Stderr, "Usage: %s <number>\n", Args[0]) Exit(1) }
number_str := Replace(Args[1], " ", "", -1) number, ok := big.NewInt(0).SetString(number_str, 0)
if !ok { fmt.Printf("Failed to convert \"%s\" to big int.\n", number_str) Exit(1) }
Stdout.Write(number.Bytes()) } </syntaxhighlight>
Given the appropriate numbers, this program will output the gzip and executable files described above.
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Irregular prime
In number theory, a regular prime is a prime number p > 2 that does not divide the class number of the p-th
cyclotomic field. Ernst Kummer (Kummer 1850) showed that an equivalent criterion for regularity is that p does not
divide the numerator of any of the Bernoulli numbers Bk for k = 2, 4, 6, …, p − 3. This is called Kummer's
criterion. Kummer was able to prove that Fermat's last theorem holds true for regular prime exponents.

The first few regular primes are: 3, 5, 7, 11, 13, 17, 19, 23, 29, ... (sequence A007703 [1] in OEIS).
It has been conjectured that there are infinitely many regular primes. More precisely Siegel conjectured (1964) that
e−1/2, or about 61%, of all prime numbers are regular, in the asymptotic sense of natural density. Neither conjecture
has been proven as of 2010.
An odd prime that is not regular is an irregular prime. The number of Bernoulli numbers Bk with a numerator
divisible by p is called the irregularity index of p. K. L. Jensen has shown in 1915 that there are infinitely many
irregular primes.

The first few irregular primes are: 37, 59, 67, 101, 103, 131, 149, ... (sequence A000928 [2] in OEIS)
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Kynea number
A Kynea number is an integer of the form

.
An equivalent formula is

.
This indicates that a Kynea number is the nth power of 4 plus the (n + 1)th Mersenne number. The first few Kynea
numbers are
7, 23, 79, 287, 1087, 4223, 16639, 66047, 263167, 1050623, 4198399, 16785407 (sequence A093069 [1] in OEIS).
The binary representation of the nth Kynea number is a single leading one, followed by n - 1 consecutive zeroes,
followed by n + 1 consecutive ones, or to put it algebraically:

So, for example, 23 is 10111 in binary, 79 is 1001111, etc. The difference between the nth Kynea number and the
nth Carol number is the (n + 2)th power of two.
Starting with 7, every third Kynea number is a multiple of 7. Thus, for a Kynea number to also be a prime number,
its index n can not be of the form 3x + 1 for x > 0. The first few Kynea numbers that are also prime are 7, 23, 79,
1087, 66047, 263167, 16785407 (these are listed in Sloane's A091514 [2]). As of 2006, the largest known Kynea
number that is also a prime is the Kynea number for n = 281621, approximately 5.455289117190661 × 10169552. It
was found by Cletus Emmanuel in November 2005, using k-Sieve from Phil Carmody and OpenPFGW. This is the
46th Kynea prime. Kynea numbers were studied by Cletus Emmanuel who named them after a baby girl.[3]
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Leyland number
In number theory, a Leyland number is a number of the form xy + yx, where x and y are integers greater than 1.[1]

The first few Leyland numbers are
8, 17, 32, 54, 57, 100, 145, 177, 320, 368, 512, 593, 945, 1124 (sequence A076980 [2] in OEIS).

The requirement that x and y both be greater than 1 is important, since without it every positive integer would be a
Leyland number of the form x1 + 1x. Also, because of the commutative property of addition, the condition x ≥ y is
usually added to avoid double-covering the set of Leyland numbers (so we have 1 < y ≤ x).
The first prime Leyland numbers are

17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137,
43143988327398957279342419750374600193 (A094133 [3])

corresponding to
32+23, 92+29, 152+215, 212+221, 332+233, 245+524, 563+356, 3215+1532.[4]

As of June 2008, the largest Leyland number that has been proven to be prime is 26384405 + 44052638 with 15071
digits. From July 2004 to June 2006, it was the largest prime whose primality was proved by elliptic curve primality
proving.[5] There are many larger known probable primes such as 913829 + 991382,[6] but it is hard to prove primality
of large Leyland numbers. Paul Leyland writes on his website: "More recently still, it was realized that numbers of
this form are ideal test cases for general purpose primality proving programs. They have a simple algebraic
description but no obvious cyclotomic properties which special purpose algorithms can exploit."
There is a project called XYYXF to factor composite Leyland numbers.[7]
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List of prime numbers
There are infinitely many prime numbers. Prime numbers may be generated with various formulas for primes. The
first 500 primes are listed below, followed by lists of the first prime numbers of various types in alphabetical order.

The first 500 prime numbers
There are 20 consecutive primes in each of the 25 rows.

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20 

 1-20 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71

 21-40 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173

 41-60 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281

 61-80 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409

 81-100 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541

 101-120 547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659

 121-140 661 673 677 683 691 701 709 719 727 733 739 743 751 757 761 769 773 787 797 809

 141-160 811 821 823 827 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941

 161-180 947 953 967 971 977 983 991 997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069

 181-200 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193 1201 1213 1217 1223

 201-220 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373

 221-240 1381 1399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511

 241-260 1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637 1657

 261-280 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 1741 1747 1753 1759 1777 1783 1787 1789 1801 1811

 281-300 1823 1831 1847 1861 1867 1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987

 301-320 1993 1997 1999 2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113 2129

 321-340 2131 2137 2141 2143 2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281 2287

 341-360 2293 2297 2309 2311 2333 2339 2341 2347 2351 2357 2371 2377 2381 2383 2389 2393 2399 2411 2417 2423

 361-380 2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 2539 2543 2549 2551 2557 2579 2591 2593 2609 2617

 381-400 2621 2633 2647 2657 2659 2663 2671 2677 2683 2687 2689 2693 2699 2707 2711 2713 2719 2729 2731 2741

 401-420 2749 2753 2767 2777 2789 2791 2797 2801 2803 2819 2833 2837 2843 2851 2857 2861 2879 2887 2897 2903

 421-440 2909 2917 2927 2939 2953 2957 2963 2969 2971 2999 3001 3011 3019 3023 3037 3041 3049 3061 3067 3079

 441-460 3083 3089 3109 3119 3121 3137 3163 3167 3169 3181 3187 3191 3203 3209 3217 3221 3229 3251 3253 3257

 461-480 3259 3271 3299 3301 3307 3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413

 481-500 3433 3449 3457 3461 3463 3467 3469 3491 3499 3511 3517 3527 3529 3533 3539 3541 3547 3557 3559 3571

(sequence A000040 [1] in OEIS).
The Goldbach conjecture verification project reports that it has computed all primes below 1018.[2] That means
24,739,954,287,740,860 primes, but they were not stored. There are known formulas to evaluate the prime-counting
function (the number of primes below a given value) faster than computing the primes. This has been used to
compute that there are 1,925,320,391,606,803,968,923 primes (roughly 2×1021) below 1023.
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Lists of primes by type
Below are listed the first prime numbers of many named forms and types. More details are in the article for the
name. n is a natural number (including 0) in the definitions. A prime number is a number that cannot be divided by a
number other than 1 and itself.

Balanced primes
Primes which are the average of the previous prime and the following prime, meaning that the previous prime, the
prime itself, and the following prime are in arithmetic progression.
5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747,
1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993,
5107, 5113, 5303, 5387, 5393 (A006562 [1])

Bell number primes
Primes that are the number of partitions of a set with n members.
2, 5, 877, 27644437, 35742549198872617291353508656626642567,
359334085968622831041960188598043661065388726959079837. The next term has 6539 digits. (A051131 [3])

Carol primes

Of the form .
7, 47, 223, 3967, 16127, 1046527, 16769023, 1073676287, 68718952447, 274876858367, 4398042316799,
1125899839733759, 18014398241046527, 1298074214633706835075030044377087 (A091516 [4])

Centered decagonal primes

Of the form .
11, 31, 61, 101, 151, 211, 281, 661, 911, 1051, 1201, 1361, 1531, 1901, 2311, 2531, 3001, 3251, 3511, 4651, 5281,
6301, 6661, 7411, 9461, 9901, 12251, 13781, 14851, 15401, 18301, 18911, 19531, 20161, 22111, 24151, 24851,
25561, 27011, 27751 (A090562 [4])

Centered heptagonal primes
Of the form (7n2 − 7n + 2) / 2.
43, 71, 197, 463, 547, 953, 1471, 1933, 2647, 2843, 3697, 4663, 5741, 8233, 9283, 10781, 11173, 12391, 14561,
18397, 20483, 29303, 29947, 34651, 37493, 41203, 46691, 50821, 54251, 56897, 57793, 65213, 68111, 72073,
76147, 84631, 89041, 93563 (primes in A069099 [1])
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Centered square primes

Of the form .
5, 13, 41, 61, 113, 181, 313, 421, 613, 761, 1013, 1201, 1301, 1741, 1861, 2113, 2381, 2521, 3121, 3613, 4513,
5101, 7321, 8581, 9661, 9941, 10513, 12641, 13613, 14281, 14621, 15313, 16381, 19013, 19801, 20201, 21013,
21841, 23981, 24421, 26681 (A027862 [2])

Centered triangular primes
Of the form (3n2 + 3n + 2) / 2.
19, 31, 109, 199, 409, 571, 631, 829, 1489, 1999, 2341, 2971, 3529, 4621, 4789, 7039, 7669, 8779, 9721, 10459,
10711, 13681, 14851, 16069, 16381, 17659, 20011, 20359, 23251, 25939, 27541, 29191, 29611, 31321, 34429,
36739, 40099, 40591, 42589 (A125602 [2])

Chen primes
p is prime and p + 2 is either a prime or semiprime.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149,
157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353,
359, 379, 389, 401, 409 (A109611 [1])

Circular primes
A circular prime number is a number that remains prime on any cyclic rotation of its digits (in base 10).
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 197, 199, 311, 337, 373, 719, 733, 919, 971, 991, 1193, 1931,
3119, 3779, 7793, 7937, 9311, 9377, 11939, 19391, 19937, 37199, 39119, 71993, 91193, 93719, 93911, 99371,
193939, 199933, 319993, 331999, 391939, 393919, 919393, 933199, 939193, 939391, 993319, 999331 (A068652
[5])
Some sources only list the smallest prime in each cycle, for example listing 13 but omitting 31:
2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933,
1111111111111111111, 11111111111111111111111 (A016114 [6])
All repunit primes are circular.

Cousin primes
(p, p + 4) are both prime.
(3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47), (67, 71), (79, 83), (97, 101), (103, 107), (109, 113), (127, 131),
(163, 167), (193, 197), (223, 227), (229, 233), (277, 281) (A023200 [1], A046132 [2])

Cuban primes

Of the form 

7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167,
5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497,
24571, 25117, 26227, 27361, 33391, 35317 (A002407 [1])

Of the form 

13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189,
28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249
(A002648 [3])
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Cullen primes
Of the form n · 2n + 1.
3, 393050634124102232869567034555427371542904833 (A050920 [7])

Dihedral primes
Primes that remain prime when read upside down or mirrored in a seven-segment display.
2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, 121021, 121151, 150151, 151051, 151121,
180181, 180811, 181081 (A134996 [8])

Double factorial primes
Of the form . Values of n:
1, 2, 518, 33416, 37310, 52608 (A080778 [9])
Note that n = 0 and n = 1 produce the same prime, namely 2.
Of the form . Values of n:
3, 4, 6, 8, 16, 26, 64, 82, 90, 118, 194, 214, 728, 842, 888, 2328, 3326, 6404, 8670, 9682, 27056, 44318 (A007749
[10])

Double Mersenne primes

Of the form for prime p.
7, 127, 2147483647, 170141183460469231731687303715884105727 (primes in A077586 [2])
As of January 2008, these are the only known double Mersenne primes (subset of Mersenne primes.)

Eisenstein primes without imaginary part
Eisenstein integers that are irreducible and real numbers (primes of form 3n − 1).
2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239,
251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401 (A003627 [1])

Emirps
Primes which become a different prime when their decimal digits are reversed.
13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389, 701, 709, 733, 739, 743,
751, 761, 769, 907, 937, 941, 953, 967, 971, 983, 991 (A006567 [2])

Euclid primes
Of the form pn# + 1 (a subset of primorial primes).
3, 7, 31, 211, 2311, 200560490131 (A018239 [11][12] )
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Even prime
Of the form 2n; n = 1, 2, 3, 4, ...
2
The only even prime is 2.
2 is therefore sometimes called "the oddest prime" as a pun on the non-mathematical meaning of "odd".[13]

Factorial primes
Of the form n! − 1 or n! + 1.
2, 3, 5, 7,11, 23, 719, 5039, 39916801, 479001599, 87178291199, 10888869450418352160768000001,
265252859812191058636308479999999, 263130836933693530167218012159999999,
8683317618811886495518194401279999999 (A088054 [1])

Fermat primes

Of the form .
3, 5, 17, 257, 65537 (A019434 [14])
As of April 2009 these are the only known Fermat primes.

Fibonacci primes
Primes in the Fibonacci sequence F0 = 0, F1 = 1, Fn = Fn-1 + Fn-2.
2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497,
1066340417491710595814572169, 19134702400093278081449423917 (A005478 [1])

Fortunate primes
Fortunate numbers that are prime (it has been conjectured they all are).
3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 79, 89, 101, 103, 107, 109, 127, 151, 157, 163, 167, 191, 197, 199, 223,
229, 233, 239, 271, 277, 283, 293, 307, 311, 313, 331, 353, 373, 379, 383, 397 (A046066 [2])

Gaussian primes
Prime elements of the Gaussian integers (primes of form 4n + 3).
3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227,
239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499,
503 (A002145 [3])
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Genocchi number primes
17
The only positive prime Genocchi number is 17.[15]

Good primes
Primes pn for which pn

2 > pn−i × pn+i for all 1 ≤ i ≤ n−1, where pn is the nth prime.
5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149, 179, 191, 223, 227, 251, 257, 269, 307 (A028388 [2])

Happy primes
Happy numbers that are prime.
7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487, 563, 617,
653, 673, 683, 709, 739, 761, 863, 881, 907, 937, 1009, 1033, 1039, 1093 (A035497 [3])

Higgs primes for squares
Primes p for which p − 1 divides the square of the product of all earlier terms.
2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 67, 71, 79, 101, 107, 127, 131, 139, 149, 151, 157, 173, 181,
191, 197, 199, 211, 223, 229, 263, 269, 277, 283, 311, 317, 331, 347, 349 (A007459 [1])

Highly cototient number primes
Primes that are a cototient more often than any integer below it except 1.
2, 23, 47, 59, 83, 89, 113, 167, 269, 389, 419, 509, 659, 839, 1049, 1259, 1889 (A105440 [2])

Irregular primes
Odd primes p which divide the class number of the p-th cyclotomic field.
37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433,
461, 463, 467, 491, 523, 541, 547, 557, 577, 587, 593, 607, 613, 617, 619 (A000928 [2])

Kynea primes

Of the form .
7, 23, 79, 1087, 66047, 263167, 16785407, 1073807359, 17180131327, 68720001023, 4398050705407,
70368760954879, 18014398777917439, 18446744082299486207 (A091514 [2])

Left-truncatable primes
Primes that remain prime when the leading decimal digit is successively removed.
2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 113, 137, 167, 173, 197, 223, 283, 313, 317, 337, 347, 353, 367,
373, 383, 397, 443, 467, 523, 547, 613, 617, 643, 647, 653, 673, 683 (A024785 [16])

Leyland primes
Of the form xy + yx with 1 < x ≤ y.
17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137,
43143988327398957279342419750374600193 (A094133 [3])
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Long primes

Primes p for which, in a given base b, gives a cyclic number. They are also called full reptend primes.

Primes p for base 10:
7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367,
379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593 (A001913 [1])

Lucas primes
Primes in the Lucas number sequence L0 = 2, L1 = 1, Ln = Ln-1 + Ln-2.
2,[17] 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371,
5600748293801, 688846502588399, 32361122672259149 (A005479 [18])

Lucky primes
Lucky numbers that are prime.
3, 7, 13, 31, 37, 43, 67, 73, 79, 127, 151, 163, 193, 211, 223, 241, 283, 307, 331, 349, 367, 409, 421, 433, 463, 487,
541, 577, 601, 613, 619, 631, 643, 673, 727, 739, 769, 787, 823, 883, 937, 991, 997 (A031157 [19])

Markov primes

Primes p for which there exist integers x and y such that .
2, 5, 13, 29, 89, 233, 433, 1597, 2897, 5741, 7561, 28657, 33461, 43261, 96557, 426389, 514229, 1686049,
2922509, 3276509, 94418953, 321534781, 433494437, 780291637, 1405695061, 2971215073, 19577194573,
25209506681 (primes in A002559 [20])

Mersenne primes
Of the form 2n − 1.
3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111,
162259276829213363391578010288127, 170141183460469231731687303715884105727 (A000668 [21])
As of June 2009, there are 47 known Mersenne primes (The 47th discovered is actually the 46th in size). The 13th,
14th, and 47th (based upon size), respectively, have 157, 183, and 12,978,189 digits.

Mills primes

Of the form , where θ is Mills' constant. This form is prime for all positive integers n.
2, 11, 1361, 2521008887, 16022236204009818131831320183 (A051254 [22])

Minimal primes
Primes for which there is no shorter sub-sequence of the decimal digits that form a prime. There are exactly 26
minimal primes:
2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669,
60000049, 66000049, 66600049 (A071062 [23])
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Motzkin primes
Primes that are the number of different ways of drawing non-intersecting chords on a circle between n points.
2, 127, 15511, 953467954114363 (A092832 [24])

Newman–Shanks–Williams primes
Newman–Shanks–Williams numbers that are prime.
7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599 (A088165 [25])

Odd primes
Of the form 2n - 1.
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127,
131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199... (A065091 [1])
All prime numbers except the prime 2 are odd.

Padovan primes

Primes in the Padovan sequence , .
2, 3, 5, 7, 37, 151, 3329, 23833, 13091204281, 3093215881333057,
1363005552434666078217421284621279933627102780881053358473 (A100891 [26])

Palindromic primes
Primes that remain the same when their decimal digits are read backwards.
2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601,
11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741 (A002385 [27])

Partition primes
Partition numbers that are prime.
2, 3, 5, 7, 11, 101, 17977, 10619863, 6620830889, 80630964769, 228204732751, 1171432692373, 1398341745571,
10963707205259, 15285151248481, 10657331232548839, 790738119649411319, 18987964267331664557
(A049575 [28])

Pell primes
Primes in the Pell number sequence P0 = 0, P1 = 1, Pn = 2Pn-1 + Pn-2.
2, 5, 29, 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701,
4125636888562548868221559797461449 (A086383 [29])
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Permutable primes
Any permutation of the decimal digits is a prime.
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991, 1111111111111111111,
11111111111111111111111 (A003459 [30])
It seems likely that all further permutable primes are repunits, i.e. contain only the digit 1.

Perrin primes
Primes in the Perrin number sequence P(0) = 3, P(1) = 0, P(2) = 2, P(n) = P(n − 2) + P(n − 3).
2, 3, 5, 7, 17, 29, 277, 367, 853, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321,
66241160488780141071579864797 (A074788 [31])

Pierpont primes
Of the form for some integers u,v ≥ 0.
These are also class 1- primes.
2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889,
10369, 12289, 17497, 18433, 39367, 52489, 65537, 139969, 147457 (A005109 [32])

Pillai primes
Primes p for which there exist n > 0 such that p divides n! + 1 and n does not divide p − 1.
23, 29, 59, 61, 67, 71, 79, 83, 109, 137, 139, 149, 193, 227, 233, 239, 251, 257, 269, 271, 277, 293, 307, 311, 317,
359, 379, 383, 389, 397, 401, 419, 431, 449, 461, 463, 467, 479, 499 (A063980 [33])

Primeval primes
Primes for which there are more prime permutations of some or all the decimal digits than for any smaller number.
2, 13, 37, 107, 113, 137, 1013, 1237, 1367, 10079 (A119535 [34])

Primorial primes
Of the form pn# − 1 or pn# + 1.
3, 5, 7, 29, 31, 211, 2309, 2311, 30029, 200560490131, 304250263527209,
23768741896345550770650537601358309 (union of A057705 [35] and A018239 [11][12] )

Proth primes
Of the form k · 2n + 1 with odd k and k < 2n.
3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689,
2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857 (A080076 [36])

Pythagorean primes
Of the form 4n + 1.
5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269,
277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449 (A002144 [2])
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Prime quadruplets
(p, p+2, p+6, p+8) are all prime.
(5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109), (191, 193, 197, 199), (821, 823, 827, 829), (1481, 1483, 1487,
1489), (1871, 1873, 1877, 1879), (2081, 2083, 2087, 2089), (3251, 3253, 3257, 3259), (3461, 3463, 3467, 3469),
(5651, 5653, 5657, 5659), (9431, 9433, 9437, 9439) (A007530 [37], A136720 [38], A136721 [39], A090258 [40])

Ramanujan primes
Integers Rn that are the smallest to give at least n primes from x/2 to x for all x ≥ Rn (all such integers are primes).
2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, 179, 181, 227, 229, 233, 239, 241, 263, 269, 281,
307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491 (A104272 [41])

Regular primes
Primes p which do not divide the class number of the p-th cyclotomic field.
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163,
167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 269, 277, 281 (A007703 [1])

Repunit primes
Primes containing only the decimal digit 1.
11, 1111111111111111111, 11111111111111111111111 (A004022 [42])
The next have 317 and 1031 digits.

Primes in residue classes
Of form a · n + d for fixed a and d. Also called primes congruent to d modulo a.
Three cases have their own entry: 2n+1 are the odd primes, 4n+1 are Pythagorean primes, 4n+3 are the integer
Gaussian primes.
2n+1: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53 (A065091 [1])
4n+1: 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137 (A002144 [2])
4n+3: 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107 (A002145 [3])
6n+1: 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139 (A002476 [4])
6n+5: 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113 (A007528 [5])
8n+1: 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353 (A007519 [6])
8n+3: 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251 (A007520 [7])
8n+5: 5, 13, 29, 37, 53, 61, 101, 109, 149, 157, 173, 181, 197, 229, 269 (A007521 [8])
8n+7: 7, 23, 31, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263 (A007522 [9])
10n+1: 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281 (A030430 [10])
10n+3: 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263 (A030431 [11])
10n+7: 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277 (A030432 [12])
10n+9: 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 349, 359 (A030433 [13])
...
10n+d (d = 1, 3, 7, 9) are primes ending in the decimal digit d.
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Right-truncatable primes
Primes that remain prime when the last decimal digit is successively removed.
2, 3, 5, 7, 23, 29, 31, 37, 53, 59, 71, 73, 79, 233, 239, 293, 311, 313, 317, 373, 379, 593, 599, 719, 733, 739, 797,
2333, 2339, 2393, 2399, 2939, 3119, 3137, 3733, 3739, 3793, 3797 (A024770 [43])

Safe primes
p and (p-1) / 2 are both prime.
5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983,
1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907 (A005385 [44])

Self primes in base 10
Primes that cannot be generated by any integer added to the sum of its decimal digits.
3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389, 457, 479, 547, 569, 613, 659, 727, 839, 883, 929, 1021, 1087, 1109,
1223, 1289, 1447, 1559, 1627, 1693, 1783, 1873 (A006378 [45])

Sexy primes
(p, p + 6) are both prime.
(5, 11), (7, 13), (11, 17), (13, 19), (17, 23), (23, 29), (31, 37), (37, 43), (41, 47), (47, 53), (53, 59), (61, 67), (67, 73),
(73, 79), (83, 89), (97, 103), (101, 107), (103, 109), (107, 113), (131, 137), (151, 157), (157, 163), (167, 173), (173,
179), (191, 197), (193, 199) (A023201 [46], A046117 [47])

Smarandache–Wellin primes
Primes which are the concatenation of the first n primes written in decimal.
2, 23, 2357 (A069151 [48])
The fourth Smarandache-Wellin prime is the 355-digit concatenation of the first 128 primes which end with 719.

Solinas primes
Of the form 2a ± 2b ± 1, where 0 < b < a.
3, 5, 7, 11, 13 (A165255 [49])

Sophie Germain primes
p and 2p + 1 are both prime.
2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 454, 491,
509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953 (A005384 [50])

Star primes
Of the form 6n(n - 1) + 1.
13, 37, 73, 181, 337, 433, 541, 661, 937, 1093, 2053, 2281, 2521, 3037, 3313, 5581, 5953, 6337, 6733, 7561, 7993,
8893, 10333, 10837, 11353, 12421, 12973, 13537, 15913, 18481 (A083577 [51])
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Stern primes
Primes that are not the sum of a smaller prime and twice the square of a nonzero integer.
2, 3, 17, 137, 227, 977, 1187, 1493 (A042978 [52])
As of January 2008, these are the only known Stern primes, and possibly the only existing.

Super-primes
Primes with a prime index in the sequence of prime numbers (the 2nd, 3rd, 5th, ... prime).
3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547,
563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991 (A006450 [53])

Supersingular primes
There are exactly fifteen supersingular primes:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71 (A002267 [54])

Thabit number primes
Of the form 3 · 2n - 1.
2, 5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831, 26388279066623, 108086391056891903,
55340232221128654847, 226673591177742970257407 (A007505 [55])

Prime triplets
(p, p+2, p+6) or (p, p+4, p+6) are all prime.
(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103),
(101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), (193, 197, 199), (223, 227, 229), (227, 229, 233),
(277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353) (A007529 [56], A098414 [57], A098415 [58])

Twin primes
(p, p + 2) are both prime.
(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151),
(179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421),
(431, 433), (461, 463) (A001359 [59], A006512 [60])

Two-sided primes
Primes which are both left-truncatable and right-truncatable. There are exactly fifteen two-sided primes:
2, 3, 5, 7, 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397 (A020994 [61])

Ulam number primes
Ulam numbers that are prime.
2, 3, 11, 13, 47, 53, 97, 131, 197, 241, 409, 431, 607, 673, 739, 751, 983, 991, 1103, 1433, 1489, 1531, 1553, 1709,
1721, 2371, 2393, 2447, 2633, 2789, 2833, 2897 (A068820 [62])
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Unique primes
Primes p for which the period length of 1/p is unique (no other prime gives the same).
3, 11, 37, 101, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091,
1111111111111111111, 11111111111111111111111, 900900900900990990990991 (A040017 [63])

Wagstaff primes
Of the form (2n + 1) / 3.
3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651,
201487636602438195784363, 845100400152152934331135470251,
56713727820156410577229101238628035243 (A000979 [64])
n values:
3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501,
10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321
(A000978 [65])

Wall-Sun-Sun primes

A prime p > 5 is called a Wall-Sun-Sun prime if p² divides the Fibonacci number , where the Legendre

symbol is defined as

As of February 2010, no Wall-Sun-Sun primes are known.

Wedderburn-Etherington number primes
Wedderburn-Etherington numbers that are prime.
2, 3, 11, 23, 983, 2179, 24631, 3626149, 253450711, 596572387 (primes in A001190 [66])

Wieferich primes
Primes p for which p2 divides 2p − 1 − 1
1093, 3511 (A001220 [67])
As of January 2008, these are the only known Wieferich primes.

Wilson primes
Primes p for which p2 divides (p − 1)! + 1
5, 13, 563 (A007540 [68])
As of January 2008, these are the only known Wilson primes.

Wolstenholme primes

Primes p for which the binomial coefficient .

16843, 2124679 (A088164 [69])
As of January 2008, these are the only known Wolstenholme primes.
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Woodall primes
Of the form n · 2n − 1.
7, 23, 383, 32212254719, 2833419889721787128217599, 195845982777569926302400511,
4776913109852041418248056622882488319 (A050918 [70])

See also
• Illegal prime
• Largest known prime
• List of numbers
• Prime gap
• Probable prime
• Pseudoprime
• Strobogrammatic prime
• Strong prime
• Wall-Sun-Sun prime
• Wieferich pair

Notes
[1] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa000040
[2] Tomás Oliveira e Silva, Goldbach conjecture verification (http:/ / www. ieeta. pt/ ~tos/ goldbach. html).
[3] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa051131
[4] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa090562
[5] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa068652
[6] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa016114
[7] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa050920
[8] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa134996
[9] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa080778
[10] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa007749
[11] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa018239
[12] A018239 (http:/ / en. wikipedia. org/ wiki/ Oeis:a018239) includes 2 = empty product of first 0 primes plus 1, but 2 is excluded in this list.
[13] http:/ / mathworld. wolfram. com/ OddPrime. html
[14] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa019434
[15] Weisstein, Eric W., " Genocchi Number (http:/ / mathworld. wolfram. com/ GenocchiNumber. html)" from MathWorld.
[16] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa024785
[17] It varies whether L0 = 2 is included in the Lucas numbers.
[18] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa005479
[19] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa031157
[20] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa002559
[21] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa000668
[22] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa051254
[23] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa071062
[24] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa092832
[25] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa088165
[26] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa100891
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than 2,000,000,000)
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Lucas number
The Lucas numbers are an integer sequence named after the mathematician François Édouard Anatole Lucas
(1842–1891), who studied both that sequence and the closely related Fibonacci numbers. Lucas numbers and
Fibonacci numbers form complementary instances of Lucas sequences.

Definition
Like the Fibonacci numbers, each Lucas number is defined to be the sum of its two immediate previous terms, i.e. it
is a Fibonacci integer sequence. Consequently, the ratio between two consecutive Lucas numbers converges to the
golden ratio. However, the first two Lucas numbers are L0 = 2 and L1 = 1 instead of 0 and 1, and the properties of
Lucas numbers are therefore somewhat different from those of Fibonacci numbers.
A Lucas number may thus be defined as follows:

The sequence of Lucas numbers begins:
2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, ... (sequence A000032 [1] in OEIS)

Extension to negative integers
Using Ln-2 = Ln - Ln-1, one can extend the Lucas numbers to negative integers to obtain a doubly infinite sequence :

..., -11, 7, -4, 3, -1, 2, 1, 3, 4, 7, 11, ... (terms for are shown).
The formula for terms with negative indices in this sequence is

Relationship to Fibonacci numbers
The Lucas numbers are related to the Fibonacci numbers by the identities

•

• , and thus as approaches +∞, the ratio approaches 

•

•

Their closed formula is given as:

where is the Golden ratio. Alternatively, is the closest integer to .
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Congruence relation
Ln is congruent to 1 mod n if n is prime, but some composite values of n also have this property.

Lucas primes
A Lucas prime is a Lucas number that is prime. The first few Lucas primes are

2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, ... (sequence A005479 [18] in OEIS)
If Ln is prime then n is either 0, prime, or a power of 2.[2] L is prime for = 1, 2, 3, and 4 and no other known
values of .

Lucas polynomials
The Lucas polynomials Ln(x) are a polynomial sequence derived from the Lucas numbers in the same way as
Fibonacci polynomials are derived from the Fibonacci numbers. Lucas polynomials are defined by the following
recurrence relation:

Lucas polynomials can be expressed in terms of Lucas sequences as

The first few Lucas polynomials are:

The Lucas numbers are recovered by evaluating the polynomials at x = 1. The degree of Ln(x) is n. The ordinary
generating function for the sequence is
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External links
• Weisstein, Eric W., " Lucas Number (http:/ / mathworld. wolfram. com/ LucasNumber. html)" from MathWorld.
• Weisstein, Eric W., " Lucas Polynomial (http:/ / mathworld. wolfram. com/ LucasPolynomial. html)" from

MathWorld.
• Dr Ron Knott (http:/ / www. mcs. surrey. ac. uk/ Personal/ R. Knott/ Fibonacci/ lucasNbs. html)
• Lucas numbers and the Golden Section (http:/ / milan. milanovic. org/ math/ english/ lucas/ lucas. html)
• A Lucas Number Calculator can be found here. (http:/ / www. plenilune. pwp. blueyonder. co. uk/

fibonacci-calculator. asp)
• A Tutorial on Generalized Lucas Numbers (http:/ / nakedprogrammer. com/ LucasNumbers. aspx)

Lucky number
In number theory, a lucky number is a natural number in a set which is generated by a "sieve" similar to the Sieve
of Eratosthenes that generates the primes.
Begin with a list of integers starting with 1:

1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,

Every second number (all even numbers) is eliminated, leaving only the odd integers:

1,    3,    5,    7,    9,   11,   13,   15,   17,   19,   21,   23,   25,   

The second term in this sequence is 3. Every third number which remains in the list is eliminated:

1,    3,          7,    9,         13,   15,         19,   21,         25,

The third surviving number is now 7, so every seventh number that remains is eliminated:

1,    3,          7,    9,         13,   15,               21,         25,

As this procedure is repeated indefinitely, the survivors are the lucky numbers:
1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93, 99, ... (sequence A000959 [1] in
OEIS).
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An animation demonstrating the lucky number
sieve. The numbers in red are lucky numbers.

The term was introduced in 1955 in a paper by Gardiner, Lazarus,
Metropolis and Ulam. They suggest also calling its defining sieve the
sieve of Josephus Flavius.[2]

Lucky numbers share some properties with primes, such as asymptotic
behaviour according to the prime number theorem; also Goldbach's
conjecture has been extended to them. There are infinitely many lucky
numbers. Because of these apparent connections with the prime
numbers, some mathematicians have suggested that these properties
may be found in a larger class of sets of numbers generated by sieves
of a certain unknown form, although there is little theoretical basis for
this conjecture. Twin lucky numbers and twin primes also appear to
occur with similar frequency.

A lucky prime is a lucky number that is prime. It is not known
whether there are infinitely many lucky primes. The first few are

3, 7, 13, 31, 37, 43, 67, 73, 79, 127, 151, 163, 193 (sequence
A031157 [19] in OEIS).
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External links
• Peterson, Ivars. MathTrek: Martin Gardner's Lucky Number (http:/ / www. sciencenews. org/ sn_arc97/ 9_6_97/

mathland. htm)
• Weisstein, Eric W., " Lucky Number (http:/ / mathworld. wolfram. com/ LuckyNumber. html)" from MathWorld.
• Lucky Numbers (http:/ / demonstrations. wolfram. com/ LuckyNumbers/ ) by Enrique Zeleny, The Wolfram

Demonstrations Project.
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Markov number

The first levels of the Markov number tree

A Markov number or Markoff
number is a positive integer x, y or z
that is part of a solution to the Markov
Diophantine equation

The first few Markov numbers are
1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, ... (sequence A002559 [20] in OEIS)

appearing as coordinates of the Markov triples
(1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), (2, 5, 29), (1, 13, 34), (1, 34, 89), (2, 29, 169), (5, 13, 194), (1, 89, 233),
(5, 29, 433), (89, 233, 610), etc.

There are infinitely many Markov numbers and Markov triples.

Properties
The symmetry of the Markov equation allows us to rearrange the order of the coordinates, so a Markov triple

may be normalized, as above, by assuming that . Aside from the two smallest triples, every
Markov triple consists of three distinct integers. The unicity conjecture states that for a given Markov
number , there is exactly one normalized solution having as its largest element.
The Markov numbers can also be arranged in a binary tree. The largest number at any level is always about a third
from the bottom. All the Markov numbers on the regions adjacent to 2's region are odd-indexed Pell numbers (or
numbers n such that is a square, A001653 [1]), and all the Markov numbers on the regions adjacent to 1's
region are odd-indexed Fibonacci numbers (A001519 [2]). Thus, there are infinitely many Markov triples of the form

where Fx is the xth Fibonacci number. Likewise, there are infinitely many Markov triples of the form

where Px is the xth Pell number.[3]
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Odd Markov numbers are 1 more than multiples of 4, while even Markov numbers are 2 more than multiples of
32.[4] Markov numbers are not always prime but members of a Markov triple are always coprime.

Knowing one Markov triple (x, y, z) one can find another Markov triple, of the form .[5] It's not
necessary that in order for the to yield another triple.
If we start, as an example, with (1, 5, 13) we get its three neighbors (5, 13, 194), (1, 13, 34) and (1, 2, 5) in the
Markov tree if x is set to 1, 5 and 13, respectively. Applying twice returns the same
triple one started with, therefore a reordering is necessary to obtain new triples. For instance, starting with (1, 1, 2)
and trading y and z before each iteration of the transform lists Markov triples with Fibonacci numbers. Starting with
that same triplet and trading x and z before each iteration gives the triples with Pell numbers.
In his 1982 paper, Don Zagier conjectured that the nth Markov number is asymptotically given by

Moreover he pointed out that , an extremely good approximation of the original
Diophantine equation, is equivalent to with f(t) = arcosh(3t/2).[6]

The nth Lagrange number can be calculated from the nth Markov number with the formula

Markov numbers are named after the Russian mathematician Andrey Markov. Due to different methods of
transliterating Cyrillic, the term is written as "Markoff numbers" in some literature. But in this particular case,
"Markov" might be preferable because "Markoff number" might be misunderstood as "mark-off number."

Notes
[1] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa001653
[2] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa001519
[3] A030452 (http:/ / en. wikipedia. org/ wiki/ Oeis:a030452) lists Markov numbers that appear in solutions where one of the other two terms is

5.
[4] Zhang, Ying (2007). "Congruence and Uniqueness of Certain Markov Numbers" (http:/ / journals. impan. gov. pl/ aa/ Inf/ 128-3-7. html).

Acta Arithmetica 128 (3): 295–301. doi:10.4064/aa128-3-7. MR2313995. .

[5] Because .
[6] Zagier, Don B. (1982). "On the Number of Markoff Numbers Below a Given Bound" (http:/ / links. jstor. org/

sici?sici=0025-5718(198210)39:160<709:OTNOMN>2. 0. CO;2-U). Mathematics of Computation 160 (160): 709–723. doi:10.2307/2007348.
MR0669663. .
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Mersenne prime

Publication year 1536[Note 1]

Author of publication Regius, H.

Number of known cases  47

OEIS index and link A000668 [21]

In mathematics, a Mersenne number, named after Marin Mersenne, is a positive integer that is one less than a
power of two:

Some definitions of Mersenne numbers require that the exponent p be prime.
A Mersenne prime is a Mersenne number that is prime. It is known[1] that if 2p − 1 is prime then p is prime, so it
makes no difference which Mersenne number definition is used. As of October 2009, only 47 Mersenne primes are
known. The largest known prime number (243,112,609 − 1) is a Mersenne prime.[2] Since 1997, all newly-found
Mersenne primes have been discovered by the "Great Internet Mersenne Prime Search" (GIMPS), a distributed
computing project on the Internet.

About Mersenne primes
Many fundamental questions about Mersenne primes remain unresolved. It is not even known whether the set of
Mersenne primes is finite. The Lenstra–Pomerance–Wagstaff conjecture asserts that, on the contrary, there are
infinitely many Mersenne primes and predicts their order of growth. It is also not known whether infinitely many
Mersenne numbers with prime exponents are composite, although this would follow from widely believed
conjectures about prime numbers, for example, the infinitude of Sophie Germain primes.
A basic theorem about Mersenne numbers states that in order for Mp to be a Mersenne prime, the exponent p itself
must be a prime number. This rules out primality for numbers such as M4 = 24 − 1 = 15: since the exponent 4 = 2×2
is composite, the theorem predicts that 15 is also composite; indeed, 15 = 3×5. The three smallest Mersenne primes
are

M2 = 3, M3 = 7, M5 = 31.
While it is true that only Mersenne numbers Mp, where p = 2, 3, 5, … could be prime, often Mp is not prime even for
a prime exponent p. The smallest counterexample is the Mersenne number

M11 = 211 − 1 = 2047 = 23 × 89,
which is not prime, even though 11 is a prime number. The lack of an obvious rule to determine whether a given
Mersenne number is prime makes the search for Mersenne primes an interesting task, which becomes difficult very
quickly, since Mersenne numbers grow very rapidly. The Lucas–Lehmer primality test is an efficient primality test
that greatly aids this task. The search for the largest known prime has somewhat of a cult following. Consequently, a
lot of computer power has been expended searching for new Mersenne primes, much of which is now done using
distributed computing.
Mersenne primes are used in pseudorandom number generators such as the Mersenne twister, Park–Miller random
number generator, Generalized Shift Register and Fibonacci RNG.
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Searching for Mersenne primes
The identity

shows that Mp can be prime only if p itself is prime—that is, the primality of p is necessary but not sufficient for Mp
to be prime—which simplifies the search for Mersenne primes considerably. The converse statement, namely that Mp
is necessarily prime if p is prime, is false. The smallest counterexample is 211 − 1 = 2,047 = 23 × 89, a composite
number.
Fast algorithms for finding Mersenne primes are available, and the largest known prime numbers as of 2009 are
Mersenne primes.
The first four Mersenne primes M2 = 3, M3 = 7, M5 = 31 and M7 = 127 were known in antiquity. The fifth,
M13 = 8191, was discovered anonymously before 1461; the next two (M17 and M19) were found by Cataldi in 1588.
After nearly two centuries, M31 was verified to be prime by Euler in 1772. The next (in historical, not numerical
order) was M127, found by Lucas in 1876, then M61 by Pervushin in 1883. Two more (M89 and M107) were found
early in the 20th century, by Powers in 1911 and 1914, respectively.
The best method presently known for testing the primality of Mersenne numbers is the Lucas–Lehmer primality test.
Specifically, it can be shown that for prime p > 2, Mp = 2p − 1 is prime if and only if Mp divides Sp−2, where S0 = 4
and, for k > 0,

Graph of number of digits in largest known Mersenne prime by year - electronic era. Note
that the vertical scale, the number of digits, is a double logarithmic scale of the value of

the prime.

The search for Mersenne primes was
revolutionized by the introduction of
the electronic digital computer. Alan
Turing searched for them on the
Manchester Mark 1 in 1949.[3] But the
first successful identification of a
Mersenne prime, M521, by this means
was achieved at 10:00 P.M. on January
30, 1952 using the U.S. National
Bureau of Standards Western
Automatic Computer (SWAC) at the
Institute for Numerical Analysis at the
University of California, Los Angeles,
under the direction of Lehmer, with a
computer search program written and
run by Prof. R.M. Robinson. It was the
first Mersenne prime to be identified in
thirty-eight years; the next one, M607,
was found by the computer a little less than two hours later. Three more — M1279, M2203, M2281 — were found by
the same program in the next several months. M4253 is the first Mersenne prime that is titanic, M44497 is the first
gigantic, and M6,972,593 was the first megaprime to be discovered, being a prime with at least 1,000,000 digits.[4] All
three were the first known prime of any kind of that size.

In September 2008, mathematicians at UCLA participating in GIMPS won part of a $100,000 prize from the
Electronic Frontier Foundation for their discovery of a very nearly 13-million-digit Mersenne prime. The prize,
finally confirmed in October 2009, is for the first known prime with at least 10 million digits. The prime was found
on a Dell OptiPlex 745 on August 23, 2008. This is the eighth Mersenne prime discovered at UCLA.[5]
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On April 12, 2009, a GIMPS server log reported that a 47th Mersenne prime had possibly been found. This report
was apparently overlooked until June 4, 2009. The find was verified on June 12, 2009. The prime is 242,643,801 − 1.
Although it is chronologically the 47th Mersenne prime to be discovered, it is less than the largest known which was
the 45th to be discovered.

Theorems about Mersenne numbers
1. If a and p are natural numbers such that ap − 1 is prime, then a = 2 or p = 1.

• Proof: a ≡ 1 (mod a − 1). Then ap ≡ 1 (mod a − 1), so ap − 1 ≡ 0 (mod a − 1). Thus a − 1 | ap − 1. However,
ap − 1 is prime, so a − 1 = ap − 1 or a − 1 = ±1. In the former case, a = ap, hence a = 0,1 (which is a
contradiction, as neither −1 nor 0 is prime) or p = 1. In the latter case, a = 2 or a = 0. If a = 0, however, 0p − 1
= 0 − 1 = −1 which is not prime. Therefore, a = 2.

2. If 2p − 1 is prime, then p is prime.
• Proof: suppose that p is composite, hence can be written p = a⋅b with a and b > 1. Then (2a)b − 1 is prime, but

b > 1 and 2a > 2, contradicting statement 1.
3. If p is an odd prime, then any prime q that divides 2p − 1 must be 1 plus a multiple of 2p. This holds even when

2p − 1 is prime.
• Examples: Example I: 25 − 1 = 31 is prime, and 31 is 1 plus a multiple of 2×5. Example II: 211 − 1 = 23×89,

where 23 = 1 + 2×11, and 89 = 1 + 8×11.
• Proof: If q divides 2p − 1 then 2p ≡ 1 (mod q). By Fermat's Little Theorem, 2(q − 1) ≡ 1 (mod q). Assume p and

q − 1 are relatively prime, a similar application of Fermat's Little Theorem says that (q − 1)(p − 1) ≡ 1 (mod p).
Thus there is a number x ≡ (q − 1)(p − 2) for which (q − 1)·x ≡ 1 (mod p), and therefore a number k for which (q
− 1)·x − 1 = kp. Since 2(q − 1) ≡ 1 (mod q), raising both sides of the congruence to the power x gives 2(q − 1)x ≡
1, and since 2p ≡ 1 (mod q), raising both sides of the congruence to the power k gives 2kp ≡ 1. Thus 2(q − 1)x/2kp

= 2(q − 1)x − kp ≡ 1 (mod q). But by definition, (q − 1)x − kp = 1, implying that 21 ≡ 1 (mod q); in other words,
that q divides 1. Thus the initial assumption that p and q − 1 are relatively prime is untenable. Since p is prime
q − 1 must be a multiple of p.

• Note: This fact provides a proof of the infinitude of primes distinct from Euclid's Theorem: if there were
finitely many primes, with p being the largest, we reach an immediate contradiction since all primes dividing
2p − 1 must be larger than p.

4. If p is an odd prime, then any prime q that divides must be congruent to .
• Proof: , so is a square root of 2 modulo . By quadratic reciprocity, any

prime modulo which 2 has a square root is congruent to .
5. A Mersenne prime cannot be a Wieferich prime.

• Proof: We show if is a Mersenne prime, then the congruence does
not satisfy. By Fermat's Little theorem, . Now write, . If the given congruence
satisfies, then ,therefore

. Hence
,and therefore . This leads to , which is impossible since

.
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History
Mersenne primes were considered already by Euclid, who found a connection with the perfect numbers. They are
named after 17th-century French scholar Marin Mersenne, who compiled a list of Mersenne primes with exponents
up to 257. His list was only partially correct, as Mersenne mistakenly included M67 and M257 (which are composite),
and omitted M61, M89, and M107 (which are prime). Mersenne gave little indication how he came up with his list,[6]

and its rigorous verification was completed more than two centuries later.

List of known Mersenne primes
The table below lists all known Mersenne primes (sequence A000668 [21] in OEIS):

 # p M
p

Digits in M
p

 Date of discovery  Discoverer 

1 2 3 1 5th century BC[7] Ancient Greek mathematicians

2 3 7 1 5th century BC[7] Ancient Greek mathematicians

3 5 31 2 3rd century BC[7] Ancient Greek mathematicians

4 7 127 3 3rd century BC[7] Ancient Greek mathematicians

5 13 8191 4 1456 anonymous [1]

6 17 131071 6 1588 Cataldi

7 19 524287 6 1588 Cataldi

8 31 2147483647 10 1772 Euler

9 61 2305843009213693951 19 1883 Pervushin

10 89 618970019…449562111 27 1911 Powers

11 107 162259276…010288127 33 1914 Powers[8]

12 127 170141183…884105727 39 1876 Lucas

13 521 686479766…115057151 157 January 30, 1952 Robinson, using SWAC

14 607 531137992…031728127 183 January 30, 1952 Robinson

15 1,279 104079321…168729087 386 June 25, 1952 Robinson

16 2,203 147597991…697771007 664 October 7, 1952 Robinson

17 2,281 446087557…132836351 687 October 9, 1952 Robinson

18 3,217 259117086…909315071 969 September 8, 1957 Riesel, using BESK

19 4,253 190797007…350484991 1,281 November 3, 1961 Hurwitz, using IBM 7090

20 4,423 285542542…608580607 1,332 November 3, 1961 Hurwitz

21 9,689 478220278…225754111 2,917 May 11, 1963 Gillies, using ILLIAC II

22 9,941 346088282…789463551 2,993 May 16, 1963 Gillies

23 11,213 281411201…696392191 3,376 June 2, 1963 Gillies

24 19,937 431542479…968041471 6,002 March 4, 1971 Tuckerman, using IBM 360/91

25 21,701 448679166…511882751 6,533 October 30, 1978 Noll & Nickel, using CDC Cyber 174

26 23,209 402874115…779264511 6,987 February 9, 1979 Noll

27 44,497 854509824…011228671 13,395 April 8, 1979 Nelson & Slowinski

28 86,243 536927995…433438207 25,962 September 25, 1982 Slowinski
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29 110,503 521928313…465515007 33,265 January 28, 1988 Colquitt & Welsh

30 132,049 512740276…730061311 39,751 September 19, 1983[7] Slowinski

31 216,091 746093103…815528447 65,050 September 1, 1985[7] Slowinski

32 756,839 174135906…544677887 227,832 February 19, 1992 Slowinski & Gage on Harwell Lab Cray-2[9]

33 859,433 129498125…500142591 258,716 January 4, 1994[10] Slowinski & Gage

34 1,257,787 412245773…089366527 378,632 September 3, 1996 Slowinski & Gage[11]

35 1,398,269 814717564…451315711 420,921 November 13, 1996 GIMPS / Joel Armengaud[12]

36 2,976,221 623340076…729201151 895,932 August 24, 1997 GIMPS / Gordon Spence[13]

37 3,021,377 127411683…024694271 909,526 January 27, 1998 GIMPS / Roland Clarkson[14]

38 6,972,593 437075744…924193791 2,098,960 June 1, 1999 GIMPS / Nayan Hajratwala[15]

39 13,466,917 924947738…256259071 4,053,946 November 14, 2001 GIMPS / Michael Cameron[16]

40 20,996,011 125976895…855682047 6,320,430 November 17, 2003 GIMPS / Michael Shafer[17]

41[*] 24,036,583 299410429…733969407 7,235,733 May 15, 2004 GIMPS / Josh Findley[18]

42[*] 25,964,951 122164630…577077247 7,816,230 February 18, 2005 GIMPS / Martin Nowak[19]

43[*] 30,402,457 315416475…652943871 9,152,052 December 15, 2005 GIMPS / Curtis Cooper & Steven Boone[20]

44[*] 32,582,657 124575026…053967871 9,808,358 September 4, 2006 GIMPS / Curtis Cooper & Steven Boone[21]

45[*] 37,156,667 202254406…308220927 11,185,272 September 6, 2008 GIMPS / Hans-Michael Elvenich[22]

46[*] 42,643,801 169873516…562314751 12,837,064 April 12, 2009[**] GIMPS / Odd M. Strindmo

47[*] 43,112,609 316470269…697152511 12,978,189 August 23, 2008 GIMPS / Edson Smith[22]

* It is not known whether any undiscovered Mersenne primes exist between the 40th (M20,996,011) and the 47th (M43,112,609) on this chart; the

ranking is therefore provisional. Primes are not always discovered in increasing order. For example, the 29th Mersenne prime was discovered

after the 30th and the 31st. Similarly, the current record holder was followed by two smaller Mersenne primes, first 2 weeks later and then 8

months later.

** M42,643,801 was first found by a machine on April 12, 2009; however, no human took notice of this fact until June 4. Thus, either April 12 or

June 4 may be considered the 'discovery' date. The discoverer, Strindmo, apparently used the alias Stig M. Valstad.

To help visualize the size of the 47th known Mersenne prime, it would require 3,461 pages to display the number in
base 10 with 75 digits per line and 50 lines per page.[7]

The largest known Mersenne prime (243,112,609 − 1) is also the largest known prime number,[23] and was the first
discovered prime number with more than 10 million base-10 digits.
In modern times, the largest known prime has almost always been a Mersenne prime.[24]
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Factorization of Mersenne numbers
The factorization of a prime number is by definition the number itself. This section is about composite numbers.
Mersenne numbers are very good test cases for the special number field sieve algorithm, so often the largest number
factorized with this algorithm has been a Mersenne number. As of March 2007, 21039 − 1 is the record-holder,[25]

after a calculation taking about a year on a couple of hundred computers, mostly at NTT in Japan and at EPFL in
Switzerland. See integer factorization records for links to more information. The special number field sieve can
factorize numbers with more than one large factor. If a number has only one very large factor then other algorithms
can factorize larger numbers by first finding small factors and then making a primality test on the cofactor. As of
2010, the composite Mersenne number with largest proven prime factors is 220887 − 1, which is known to have a
factor p with 6229 digits that was proven prime with ECPP.[26] The largest with probable prime factors allowed is
2684127 − 1 = 23765203727 × q, where q is a probable prime.[27]

Perfect numbers
Mersenne primes are interesting to many for their connection to perfect numbers. In the 4th century BC, Euclid
demonstrated that if Mp is a Mersenne prime then

is an even perfect number (which is also the Mpth triangular number and the 2p−1th hexagonal number). In the 18th
century, Leonhard Euler proved that, conversely, all even perfect numbers have this form. It is unknown whether
there are any odd perfect numbers, but it appears unlikely that there is one.

Generalization
The binary representation of 2p − 1 is the digit 1 repeated p times, for example, 25 − 1 = 111112 in the binary
notation. A Mersenne number is therefore a repunit in base 2, and Mersenne primes are the base 2 repunit primes.
The base 2 representation of a Mersenne number shows the factorization pattern for composite exponent. For
example:

Mersenne numbers in nature and elsewhere
In computer science, unsigned p-bit integers can be used to express numbers up to Mp.
In the mathematical problem Tower of Hanoi, solving a puzzle with a p-disc tower requires at least Mp steps.
The asteroid with minor planet number 8191 is named 8191 Mersenne after Marin Mersenne, because 8191 is the
fifth Mersenne prime.[28] The asteroids with the previous four numbers corresponding to Mersenne primes (3 Juno, 7
Iris, 31 Euphrosyne, 127 Johanna) were already named after others.
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See also
• Repunit
• Fermat prime
• Erdős–Borwein constant
• Mersenne conjectures
• Mersenne Twister
• Prime95 / MPrime
• Largest known prime number
• Double Mersenne number
• Wieferich prime
• Wagstaff prime
• Solinas prime

Notes
1.^ Mersenne primes have already been described in Regius, H. (1536). Utrisque Arithmetices Epitome [29]
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Mills' constant
In number theory, Mills' constant is defined as the smallest positive real number A such that the floor of the double
exponential function

is a prime number, for all positive integers n. This constant is named after William H. Mills who proved in 1947 the
existence of A based on results of Guido Hoheisel and Albert Ingham on the prime gaps. Its value is unknown, but if
the Riemann hypothesis is true it is approximately

(sequence A051021 [1] in OEIS).

Mills primes
The primes generated by Mills' constant are known as Mills primes; if the Riemann hypothesis is true, the sequence
begins

2, 11, 1361, 2521008887... (sequence A051254 [22] in OEIS).
If a(i) denotes the ith prime in this sequence, then a(i) can be calculated as the smallest prime number larger than
a(i −1)3. In order to ensure that rounding A3n, for n = 1, 2, 3, ..., produces this sequence of primes, it must be the
case that a(i) < (a(i −1) + 1)3. The Hoheisel-Ingham results guarantee that there exists a prime between any two
sufficiently large cubic numbers, which is sufficient to prove this inequality if we start from a sufficiently large first
prime a(1). The Riemann hypothesis implies that there exists a prime between any two consecutive cubes, allowing
the sufficiently large condition to be removed, and allowing the sequence of Mills' primes to begin at a(1) = 2.
Currently, the largest known Mills prime (under the Riemann hypothesis) is

which is 20,562 digits long.

Numerical calculation
By calculating the sequence of Mills primes, one can approximate Mills' constant as

Caldwell & Cheng (2005) used this method to compute almost seven thousand base 10 digits of Mills' constant under
the assumption that the Riemann hypothesis is true. There is no closed-form formula known for Mills' constant, and
it is not even known whether this number is rational (Finch 2003).
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External links
• Weisstein, Eric W., "Mills' Constant [3]" from MathWorld.
• Who remembers the Mills number? [4], E. Kowalski.
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Minimal prime (recreational mathematics)
In recreational number theory, a minimal prime is a prime number for which there is no shorter subsequence of its
digits in a given base that form a prime. In base 10 there are exactly 26 minimal primes:

2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649,
946669, 60000049, 66000049, 66600049 (sequence A071062 [23] in OEIS).

For example, 409 is a minimal prime because there is no prime among the shorter subsequences of the digits: 4, 0, 9,
40, 49, 09. The subsequence does not have to consist of consecutive digits, so 109 is not a minimal prime (because
19 is prime). But it does have to be in the same order; so, for example, 991 is still a minimal prime even though a
subset of the digits can form the shorter prime 19 by changing the order.
Similarly, there are exactly 32 composite numbers which have no shorter composite subsequence:

4, 6, 8, 9, 10, 12, 15, 20, 21, 22, 25, 27, 30, 32, 33, 35, 50, 51, 52, 55, 57, 70, 72, 75, 77, 111, 117, 171, 371,
711, 713, 731 (sequence A071070 [1] in OEIS).
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Motzkin number
In mathematics, a Motzkin number for a given number n (named after Theodore Motzkin) is the number of
different ways of drawing non-intersecting chords on a circle between n points. The Motzkin numbers have very
diverse applications in geometry, combinatorics and number theory. The first few Motzkin numbers are (sequence
A001006 [1] in OEIS):
1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, 113634, 310572, 853467, 2356779, 6536382,
18199284, 50852019, 142547559, 400763223, 1129760415, 3192727797, 9043402501, 25669818476,
73007772802, 208023278209, 593742784829
The following figure shows the 9 ways to draw non-intersecting chords between 4 points on a circle.

The following figure shows the 21 ways to draw non-intersecting chords between 5 points on a circle.
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A Motzkin prime is a Motzkin number that is prime. As of October 2007, four such primes are known (sequence
A092832 [24] in OEIS):
2, 127, 15511, 953467954114363
The Motzkin number for n is also the number of positive integer sequences n−1 long in which the opening and
ending elements are either 1 or 2, and the difference between any two consecutive elements is −1, 0 or 1.
Also on the upper right quadrant of a grid, the Motzkin number for n gives the number of routes from coordinate (0,
0) to coordinate (n, 0) on n steps if one is allowed to move only to the right (up, down or straight) at each step but
forbidden from dipping below the y = 0 axis.
For example, the following figure shows the 9 valid Motzkin paths from (0, 0) to (4, 0):

There are at least fourteen different manifestations of Motzkin numbers in different branches of mathematics, as
enumerated by Donaghey and Shapiro in their 1977 survey of Motzkin numbers.
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Newman–Shanks–Williams prime
In mathematics, a Newman–Shanks–Williams prime (NSW prime) is a prime number p which can be written in
the form

NSW primes were first described by Morris Newman, Daniel Shanks and H. C. Williams in 1981 during the study of
finite groups with square order.
The first few NSW primes are 7, 41, 239, 9369319, 63018038201, … (sequence A088165 [25] in OEIS),
corresponding to the indices 3, 5, 7, 19, 29, … (A005850 [1]).
The sequence S alluded to in the formula can be described by the following recurrence relation:

The first few terms of the sequence are 1, 1, 3, 7, 17, 41, 99, … (sequence A001333 [2] in OEIS). Each term in this
sequence is half the corresponding term in the sequence of companion Pell numbers. These numbers also appear in
the continued fraction convergents to √2.

Further reading
• Newman, M.; Shanks, D. & Williams, H. C. (1980), "Simple groups of square order and an interesting sequence

of primes", Acta Arithmetica 38 (2): 129–140.

External links
• The Prime Glossary: NSW number [3]
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Odd number
In mathematics, the parity of an object states whether it is even or odd.
This concept begins with integers. An even number is an integer that is "evenly divisible" by 2, i.e., divisible by 2
without remainder; an odd number is an integer that is not evenly divisible by 2. (The old-fashioned term "evenly
divisible" is now almost always shortened to "divisible".) A formal definition of an odd number is that it is an integer
of the form n = 2k + 1, where k is an integer. An even number has the form n = 2k where k is an integer.
Examples of even numbers are −4, 8, and 1728. Examples of odd numbers are −5, 9, 3, and 71. This classification
only applies to integers, i.e., a fractional number like 1/2 or 4.201 is neither even nor odd.
The sets of even and odd numbers can be defined as following:

• Even = 
• Odd = 
A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is
even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it's odd; otherwise it's even. The same idea will work
using any even base. In particular, a number expressed in the binary numeral system is odd if its last digit is 1 and
even if its last digit is 0. In an odd base, the number is even according to the sum of its digits – it is even if and only
if the sum of its digits is even.

Arithmetic on even and odd numbers
The following laws can be verified using the properties of divisibility. They are a special case of rules in modular
arithmetic, and are commonly used to check if an equality is likely to be correct by testing the parity of each side. As
with ordinary arithmetic, multiplication and addition are commutative and associative, and multiplication is
distibutive over addition. However, subtraction in parity is identical to addition, so subtraction also possesses these
properties (which are absent from ordinary arithmetic).

Addition and subtraction
• even ± even = even;
• even ± odd = odd;
• odd ± odd = even;
Rules analogous to these for divisibility by 9 are used in the method of casting out nines.

Division
The division of two whole numbers does not necessarily result in a whole number. For example, 1 divided by 4
equals 1/4, which isn't even or odd, since the concepts even and odd apply only to integers. But when the quotient is
an integer, it will be even if and only if the dividend has more factors of two than the divisor.
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History
The ancient Greeks considered 1 to be neither fully odd nor fully even. Some of this sentiment survived into the 19th
century: Friedrich Wilhelm August Fröbel's 1826 The Education of Man instructs the teacher to drill students with
the claim that 1 is neither even nor odd, to which Fröbel attaches the philosophical afterthought,

It is well to direct the pupil's attention here at once to a great far-reaching law of nature and of thought. It is
this, that between two relatively different things or ideas there stands always a third, in a sort of balance,
seeming to unite the two. Thus, there is here between odd and even numbers one number (one) which is
neither of the two. Similarly, in form, the right angle stands between the acute and obtuse angles; and in
language, the semi-vowels or aspirants between the mutes and vowels. A thoughtful teacher and a pupil taught
to think for himself can scarcely help noticing this and other important laws.

Music theory
In wind instruments which are cylindrical and in effect closed at one end, such as the clarinet at the mouthpiece, the
harmonics produced are odd multiples of the fundamental frequency. (With cylindrical pipes open at both ends, used
for example in some organ stops such as the open diapason, the harmonics are even multiples of the same frequency,
but this is the same as being all multiples of double the frequency and is usually perceived as such.) See harmonic
series (music).

Higher mathematics
The even numbers form an ideal in the ring of integers, but the odd numbers do not — this is clear from the fact that
the identity element for addition, zero, is an element of the even numbers only. An integer is even if it is congruent to
0 modulo this ideal, in other words if it is congruent to 0 modulo 2, and odd if it is congruent to 1 modulo 2.
All prime numbers are odd, with one exception: the prime number 2. All known perfect numbers are even; it is
unknown whether any odd perfect numbers exist.
The squares of all even numbers are even, and the squares of all odd numbers are odd. Since an even number can be
expressed as 2x, (2x)2 = 4x2 which is even. Since an odd number can be expressed as 2x + 1, (2x + 1)2 = 4x2 + 4x +
1. 4x2 and 4x are even, which means that 4x2 + 4x + 1 is odd (since even + odd = odd).
Goldbach's conjecture states that every even integer greater than 2 can be represented as a sum of two prime
numbers. Modern computer calculations have shown this conjecture to be true for integers up to at least 4 × 1014, but
still no general proof has been found.
The Feit–Thompson theorem states that a finite group is always solvable if its order is an odd number. This is an
example of odd numbers playing a role in an advanced mathematical theorem where the method of application of the
simple hypothesis of "odd order" is far from obvious.
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Parity for other objects

Rubik's Revenge in solved state

a b c d e f g h

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

a b c d e f g h

The two light bishops are confined to squares of opposite parity; the dark knight can only jump to squares of
alternating parity.

Parity is also used to refer to a number of other properties.
• The parity of a permutation (as defined in abstract algebra) is the parity of the number of transpositions into

which the permutation can be decomposed. For example (ABC) to (BCA) is even because it can be done by
swapping A and B then C and A (two transpositions). It can be shown that no permutation can be decomposed
both in an even and in an odd number of transpositions. Hence the above is a suitable definition. In Rubik's
Revenge, Square-1, and other twisty puzzles, the moves of the puzzle allow only even permutations of the puzzle
pieces, so parity is important in understanding the configuration space of these puzzles.

• The parity of a function describes how its values change when its arguments are exchanged with their negations.
An even function, such as an even power of a variable, gives the same result for any argument as for its negation.
An odd function, such as an odd power of a variable, gives for any argument the negation of its result when given
the negation of that argument. It is possible for a function to be neither odd nor even, and for the case f(x) = 0, to
be both odd and even.

• Integer coordinates of points in Euclidean spaces of two or more dimensions also have a parity, usually defined as
the parity of the sum of the coordinates. For instance, the checkerboard lattice contains all integer points of even
parity. This feature manifests itself in chess, as bishops are constrained to squares of the same parity; knights
alternate parity between moves. This form of parity was famously used to solve the Mutilated chessboard
problem.

http://en.wikipedia.org/w/index.php?title=File:Rubiks_revenge_solved.jpg
http://en.wikipedia.org/w/index.php?title=File:Solid_white.svg
http://en.wikipedia.org/w/index.php?title=File:Solid_white.svg
http://en.wikipedia.org/w/index.php?title=File:Solid_white.svg
http://en.wikipedia.org/w/index.php?title=File:Solid_white.svg
http://en.wikipedia.org/w/index.php?title=Parity_of_a_permutation
http://en.wikipedia.org/w/index.php?title=Abstract_algebra
http://en.wikipedia.org/w/index.php?title=Transposition_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Rubik%27s_Revenge
http://en.wikipedia.org/w/index.php?title=Rubik%27s_Revenge
http://en.wikipedia.org/w/index.php?title=Square-1
http://en.wikipedia.org/w/index.php?title=Configuration_space
http://en.wikipedia.org/w/index.php?title=Even_and_odd_functions
http://en.wikipedia.org/w/index.php?title=Euclidean_space
http://en.wikipedia.org/w/index.php?title=Checkerboard_lattice
http://en.wikipedia.org/w/index.php?title=Chess
http://en.wikipedia.org/w/index.php?title=Bishop
http://en.wikipedia.org/w/index.php?title=Mutilated_chessboard_problem
http://en.wikipedia.org/w/index.php?title=Mutilated_chessboard_problem


Padovan sequence 153

Padovan sequence
The Padovan sequence is the sequence of integers P(n) defined by the initial values

and the recurrence relation

The first few values of P(n) are
1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, ... (sequence A000931 [1] in OEIS)

Spiral of equilateral triangles with side lengths which follow the Padovan sequence.

The Padovan sequence is named after
Richard Padovan who attributed its
discovery to Dutch architect Hans van
der Laan in his 1994 essay Dom. Hans
van der Laan : Modern Primitive. The
sequence was described by Ian Stewart
in his Scientific American column
Mathematical Recreations in June
1996.

The above definition is the one given
by Ian Stewart and by MathWorld.
Other sources may start the sequence
at a different place, in which case
some of the identities in this article
must be adjusted with appropriate
offsets.

Recurrence relations

In the spiral, each triangle shares a side with two others giving a visual proof that the Padovan sequence also satisfies
the recurrence relation

Starting from this, the defining recurrence and other recurrences as they are discovered, one can create an infinite
number of further recurrences by repeatedly replacing by 
The Perrin sequence satisfies the same recurrence relations as the Padovan sequence, although it has different initial
values. This is a property of recurrence relations.
The Perrin sequence can be obtained from the Padovan sequence by the following formula:
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Extension to negative parameters
As with any sequence defined by a recurrence relation, Padovan numers P(m) for m<0 can be defined by rewriting
the recurrence relation as

Starting with n=2 and working backwards. Extending P(m) to negative indices gives the values
..., −7, 4, 0, −3, 4, −3, 1, 1, −2, 2, −1, 0, 1, −1, 1, 0, 0, 1, 0, 1, 1, 1, ...

Sums of terms
The sum of the first n terms in the Padovan sequence is 2 less than P(n + 5) i.e.

Sums of alternate terms, sums of every third term and sums of every fifth term are also related to other terms in the
sequence:

Sums involving products of terms in the Padovan sequence satisfy the following identities:

Other identities
The Padovan sequence also satisfies the identity

The Padovan sequence is related to sums of binomial coefficients by the following identity:

For example, for k = 12, the values for the pair (m, n) with 2m + n = 12 which give non-zero binomial coefficients
are (6, 0), (5, 2) and (4, 4), and:
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Binet-like formula
The Padovan sequence numbers can be written in terms of powers of the roots of the equation

This equation has 3 roots; one real root p (known as the plastic number) and two complex conjugate roots q and r.
Given these three roots, the Padovan sequence can be expressed by a formula involving p,q and r:

where a, b and c are constants.
Since the magnitudes of the complex roots q and r are both less than 1 (and hence p is a Pisot–Vijayaraghavan
number), the powers of these roots approach 0 for large n, and tends to zero.

For all , P(n) is the integer closest to , where s = p/a = 1.0453567932525329623... is the only real root

of s3 − 2s2 + 23s − 23 = 0. The ratio of successive terms in the Padovan sequence approaches p, which has a value of
approximately 1.324718. This constant bears the same relationship to the Padovan sequence and the Perrin sequence
as the golden ratio does to the Fibonacci sequence.

Combinatorial interpretations
• P(n) is the number of ways of writing n + 2 as an ordered sum in which each term is either 2 or 3 (i.e. the number

of compositions of n + 2 in which each term is either 2 or 3). For example, P(6) = 4, and there are 4 ways to write
8 as an ordered sum of 2s and 3s:

2 + 2 + 2 + 2 ; 2 + 3 + 3 ; 3 + 2 + 3 ; 3 + 3 + 2
• The number of ways of writing n as an ordered sum in which no term is 2 is P(2n − 2). For example, P(6) = 4, and

there are 4 ways to write 4 as an ordered sum in which no term is 2:
4 ; 1 + 3 ; 3 + 1 ; 1 + 1 + 1 + 1

• The number of ways of writing n as a palindromic ordered sum in which no term is 2 is P(n). For example, P(6) =
4, and there are 4 ways to write 6 as a palindromic ordered sum in which no term is 2:

6 ; 3 + 3 ; 1 + 4 + 1 ; 1 + 1 + 1 + 1 + 1 + 1
• The number of ways of writing n as an ordered sum in which each term is congruent to 2 mod 3 is equal to

P(n − 4). For example, P(6) = 4, and there are 4 ways to write 10 as an ordered sum in which each term is
congruent to 2 mod 3:

8 + 2 ; 2 + 8 ; 5 + 5 ; 2 + 2 + 2 + 2 + 2

http://en.wikipedia.org/w/index.php?title=Plastic_number
http://en.wikipedia.org/w/index.php?title=Pisot%E2%80%93Vijayaraghavan_number
http://en.wikipedia.org/w/index.php?title=Pisot%E2%80%93Vijayaraghavan_number
http://en.wikipedia.org/w/index.php?title=Perrin_sequence
http://en.wikipedia.org/w/index.php?title=Golden_ratio
http://en.wikipedia.org/w/index.php?title=Composition_%28number_theory%29


Padovan sequence 156

Generating function
The generating function of the Padovan sequence is

This can be used to prove identities involving products of the Padovan sequence with geometric terms, such as:

Generalizations
In a similar way to the Fibonacci numbers that can be generalized to a set of polynomials called the Fibonacci
polynomials, the Padovan sequence numbers can be generalized to yield the Padovan polynomials.

Padovan prime
A Padovan prime is P(n) that is prime. The first few Padovan primes A100891 [26] are

2, 3, 5, 7, 37, 151, 3329, 23833, ....

Padovan L-system
If we define the following simple grammar:

variables : A B C
constants : none
start : A
rules : (A → B), (B → C), (C → AB)

then this Lindenmayer system or L-system produces the following sequence of strings:
n = 0 : A
n = 1 : B
n = 2 : C
n = 3 : AB
n = 4 : BC
n = 5 : CAB
n = 6 : ABBC
n = 7 : BCCAB
n = 8 : CABABBC

and if we count the length of each string, we obtain the Padovan sequence of numbers:
1 1 1 2 2 3 4 5 ...

Also, if you count the number of As, Bs and Cs in each string, then for the nth string, you have P(n − 5) As, P(n − 3)
Bs and P(n − 4) Cs. The count of BB pairs, AA pairs and CC pairs are also Padovan numbers.
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Padovan Cuboid Spiral
A spiral can be formed based on connecting the corners of a set of 3 dimensional cuboids. This is the Padovan
cuboid spiral. Successive sides of this spiral have lengths that are the Padovan sequence numbers multiplied by the
square root of 2.

External links
• Padovan sequence: A000931 [1] in the OEIS
• Weisstein, Eric W., "Padovan Sequence [2]" from MathWorld.
• Dom Hans Van Der Laan And The Plastic Number [3] by Richard Padovan
• Tales of a Neglected Number [4] by Ian Stewart
• A Padovan Sequence Calculator can be found here. [5]
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Palindromic prime
A palindromic prime (sometimes called a palprime) is a prime number that is also a palindromic number.
Palindromicity depends on the base of the numbering system and its writing conventions, while primality is
independent of such concerns. The first few decimal palindromic primes (sequence A002385 [27] in OEIS) are:

2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601,
11311, …

Except for 11, all palindromic primes have an odd number of digits, because the divisibility test for 11 tells us that
every palindromic number with an even number of digits is a multiple of 11. It is not known if there are infinitely
many palindromic primes in base 10. The largest known as of September 2010 is
10200000 + 47960506974×1099995 + 1, found by Bernardo Boncompagni.[1]

On the other hand, it is known that, for any base, almost all palindromic numbers are composite (Banks et al. [2]).
In binary, the palindromic primes include the Mersenne primes and the Fermat primes. All binary palindromic
primes except binary 11 (decimal 3) have an odd number of digits; those palindromes with an even number of digits
are divisible by 3. The sequence of binary palindromic primes (A117697 [3], A016041 [4]) begins:

binary: 11, 101, 111, 10001, 11111, 1001001, 1101011, 1111111, 100000001, 100111001, 110111011, 10010101001, … 

decimal: 3, 5, 7, 17, 31, 73, 107, 127, 257, 313, 443, 1193, … 

Ribenboim defines a triply palindromic prime as a prime p for which: p is a palindromic prime with q digits, where
q is a palindromic prime with r digits, where r is also a palindromic prime.[5] For example, p = 1011310 +
4661664×105652 + 1, which has q = 11311 digits, and 11311 has r = 5 digits. The first (base-10) triply-palindromic
prime is the 11-digit 10000500001. It's possible that a triply palindromic prime in base 10 may also be palindromic
in another base, such as base 2, but it would be highly remarkable if it were also a triply palindromic prime in that
base as well.
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Partition (number theory)

Ferrers diagrams showing the partitions of positive integers 1 through 8. They are
so arranged that images under the reflection about the main diagonal of the square

are conjugate partitions.

In number theory, a partition of a positive
integer n, also called an integer partition, is
a way of writing n as a sum of positive
integers. Two sums that differ only in the
order of their summands are considered to
be the same partition; if order matters then
the sum becomes a composition. A
summand in a partition is also called a part.
The number of partitions of n is given by the
partition function p(n).

Examples

The partitions of 4 are listed below:
1. 4
2. 3 + 1
3. 2 + 2
4. 2 + 1 + 1
5. 1 + 1 + 1 + 1
The partitions of 8 are listed below:
1. 8
2. 7 + 1
3. 6 + 2
4. 6 + 1 + 1
5. 5 + 3
6. 5 + 2 + 1
7. 5 + 1 + 1 + 1
8. 4 + 4
9. 4 + 3 + 1
10. 4 + 2 + 2
11. 4 + 2 + 1 + 1
12. 4 + 1 + 1 + 1 + 1
13. 3 + 3 + 2
14. 3 + 3 + 1 + 1
15. 3 + 2 + 2 + 1
16. 3 + 2 + 1 + 1 + 1
17. 3 + 1 + 1 + 1 + 1 + 1
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18. 2 + 2 + 2 + 2
19. 2 + 2 + 2 + 1 + 1
20. 2 + 2 + 1 + 1 + 1 + 1
21. 2 + 1 + 1 + 1 + 1 + 1 + 1
22. 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

Partition function
In number theory, the partition function p(n) represents the number of possible partitions of a natural number n,
which is to say the number of distinct (and order independent) ways of representing n as a sum of natural numbers.
For example, 4 can be partitioned in five distinct ways:

4,     3 + 1,     2 + 2,     2 + 1 + 1,     1 + 1 + 1 + 1.
The order dependent composition 1 + 3 is the same partition as 3 + 1, while 1 + 2 + 1 and 1 + 1 + 2 are the same
partition as 2 + 1 + 1.
So p(4) = 5. By convention p(0) = 1, p(n) = 0 for n negative. Partitions can be graphically visualized with Young
diagrams. They occur in a number of branches of mathematics and physics, including the study of symmetric
polynomials, the symmetric group and in group representation theory in general.

Intermediate function
One way of getting a handle on the partition function involves an intermediate function p(k, n), which represents the
number of partitions of n using only natural numbers at least as large as k. For any given value of k, partitions
counted by p(k, n) fit into exactly one of the following categories:
1. smallest addend is k
2. smallest addend is strictly greater than k.
The number of partitions meeting the first condition is p(k, n − k). To see this, imagine a list of all the partitions of
the number n − k into numbers of size at least k, then imagine appending "+ k" to each partition in the list. Now what
is it a list of? As a side note, one can use this to define a sort of recursion relation for the partition function in term of
the intermediate function, namely

where is the floor function.
The number of partitions meeting the second condition is p(k + 1, n) since a partition into parts of at least k that
contains no parts of exactly k must have all parts at least k + 1.
Since the two conditions are mutually exclusive, the number of partitions meeting either condition is
p(k + 1, n) + p(k, n − k). The recursively defined function is thus:
• p(k, n) = 0 if k > n
• p(k, n) = 1 if k = n
• p(k, n) = p(k+1, n) + p(k, n − k) otherwise.
This function tends to exhibit deceptive behavior.

p(1, 4) = 5
p(2, 8) = 7
p(3, 12) = 9
p(4, 16) = 11
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p(5, 20) = 13
p(6, 24) = 16

Our original function p(n) is just p(1, n).
The values of this function:

 k 

 1  2  3  4  5  6  7  8  9  10 

 n  1 1 0 0 0 0 0 0 0 0 0

2 2 1 0 0 0 0 0 0 0 0

3 3 1 1 0 0 0 0 0 0 0

4 5 2 1 1 0 0 0 0 0 0

5 7 2 1 1 1 0 0 0 0 0

6 11 4 2 1 1 1 0 0 0 0

7 15 4 2 1 1 1 1 0 0 0

8 22 7 3 2 1 1 1 1 0 0

9 30 8 4 2 1 1 1 1 1 0

10 42 12 5 3 2 1 1 1 1 1

Generating function
A generating function for p(n) is given by the reciprocal of Euler's function:

Expanding each term on the right-hand side as a geometric series, we can rewrite it as
(1 + x + x2 + x3 + ...)(1 + x2 + x4 + x6 + ...)(1 + x3 + x6 + x9 + ...) ....

The xn term in this product counts the number of ways to write
n = a1 + 2a2 + 3a3 + ... = (1 + 1 + ... + 1) + (2 + 2 + ... + 2) + (3 + 3 + ... + 3) + ...,

where each number i appears ai times. This is precisely the definition of a partition of n, so our product is the desired
generating function. More generally, the generating function for the partitions of n into numbers from a set A can be
found by taking only those terms in the product where k is an element of A. This result is due to Euler.
The formulation of Euler's generating function is a special case of a q-Pochhammer symbol and is similar to the
product formulation of many modular forms, and specifically the Dedekind eta function. It can also be used in
conjunction with the pentagonal number theorem to derive a recurrence for the partition function stating that:

p(k) = p(k − 1) + p(k − 2) − p(k − 5) − p(k − 7) + p(k − 12) + p(k − 15) − p(k − 22) − ...
where the sum is taken over all generalized pentagonal numbers of the form ½n(3n − 1), for n running over positive
and negative integers: successively taking n = 1, −1, 2, −2, 3, −3, 4, −4 ..., generates the values 1, 2, 5, 7, 12, 15, 22,
26, 35, 40, 51, .... The signs in the summation continue to alternate +, +, −, −, +, +, ...
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Table of values
Some values of the partition function are as follows (sequence A000041 [1] in OEIS):
• p(1) = 1
• p(2) = 2
• p(3) = 3
• p(4) = 5
• p(5) = 7
• p(6) = 11
• p(7) = 15
• p(8) = 22
• p(9) = 30
• p(10) = 42
• p(100) = 190,569,292
• p(200) = 3,972,999,029,388
• p(1000) = 24,061,467,864,032,622,473,692,149,727,991 ≈ 2.4 × 1031.
As of February 2010, the largest known prime number of this kind is p(29099391), with 6002 decimal digits.[2]

Asymptotic behaviour
An asymptotic expression for p(n) is given by

This asymptotic formula was first obtained by G. H. Hardy and Ramanujan in 1918 and independently by J. V.
Uspensky in 1920. Considering p(1000), the asymptotic formula gives about 2.4402 × 1031, reasonably close to the
exact answer given above.
In 1937, Hans Rademacher was able to improve on Hardy and Ramanujan's results by providing a convergent series
expression for p(n). It is

where

Here, the notation (m, n) = 1 implies that the sum should occur only over the values of m that are relatively prime to
n. The function s(m, k) is a Dedekind sum. The proof of Rademacher's formula is interesting in that it involves Ford
circles, Farey sequences, modular symmetry and the Dedekind eta function in a central way.
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Congruences
Srinivasa Ramanujan is credited with discovering that "congruences" in the number of partitions exist for integers
ending in 4 and 9.

For instance, the number of partitions for the integer 4 is 5. For the integer 9, the number of partitions is 30; for 14
there are 135 partitions. He also discovered congruences related to 7 and 11:

Since 5, 7, and 11 are consecutive primes, one might think that there would be such a congruence for the next prime
13, for some a. This is, however, false. It can also be shown that there is no
congruence of the form for any prime b other than 5, 7, or 11.
In the 1960s, A. O. L. Atkin of the University of Illinois at Chicago discovered additional congruences for small
prime moduli. For example:

In 2000, Ken Ono of the University of Wisconsin–Madison proved that there are such congruences for every prime
modulus. A few years later Ono, together with Scott Ahlgren of the University of Illinois, proved that there are
partition congruences modulo every integer coprime to 6.[3]

Restricted partitions
Among the 22 partitions for the number 8, 6 contain only odd parts:
• 7 + 1
• 5 + 3
• 5 + 1 + 1 + 1
• 3 + 3 + 1 + 1
• 3 + 1 + 1 + 1 + 1 + 1
• 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
If we count the partitions of 8 with distinct parts, we also obtain the number 6:
• 8
• 7 + 1
• 6 + 2
• 5 + 3
• 5 + 2 + 1
• 4 + 3 + 1
It is true for all positive numbers that the number of partitions with odd parts always equals the number of partitions
with distinct parts. This result was proved by Leonard Euler in 1748.[4]

Some similar results about restricted partitions can be obtained by the aid of a visual tool, a Ferrers graph (also
called Ferrers diagram, since it is not a graph in the graph-theoretical sense, or sometimes Young diagram,
alluding to the Young tableau).
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Ferrers diagram
The partition 6 + 4 + 3 + 1 of the positive number 14 can be represented by the following diagram; these diagrams
are named in honor of Norman Macleod Ferrers:

   
  
  
 

6+4+3+1

The 14 circles are lined up in 4 columns, each having the size of a part of the partition. The diagrams for the 5
partitions of the number 4 are listed below:

  
 

     

4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1

If we now flip the diagram of the partition 6 + 4 + 3 + 1 along its main diagonal, we obtain another partition of 14:

   
  
  
 

↔ 

     
   
  

6+4+3+1 = 4+3+3+2+1+1

By turning the rows into columns, we obtain the partition 4 + 3 + 3 + 2 + 1 + 1 of the number 14. Such partitions are
said to be conjugate of one another. In the case of the number 4, partitions 4 and 1 + 1 + 1 + 1 are conjugate pairs,
and partitions 3 + 1 and 2 + 1 + 1 are conjugate of each other. Of particular interest is the partition 2 + 2, which has
itself as conjugate. Such a partition is said to be self-conjugate.
Claim: The number of self-conjugate partitions is the same as the number of partitions with distinct odd parts.
Proof (sketch): The crucial observation is that every odd part can be "folded" in the middle to form a self-conjugate
diagram:

↔   

One can then obtain a bijection between the set of partitions with distinct odd parts and the set of self-conjugate
partitions, as illustrated by the following example:
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↔ 

    
    
   
  
 

9+7+3 = 5+5+4+3+2

dist. odd self-conjugate

Similar techniques can be employed to establish, for example, the following equalities:
• The number of partitions of n into no more than k parts is the same as the number of partitions of n into parts no

larger than k.
• The number of partitions of n into no more than k parts is the same as the number of partitions of n + k into

exactly k parts.

See also
• Young's lattice
• Dominance order
• Partition of a set
• Plane partition
• Polite number, defined by partitions into consecutive integers
• Multiplicative partition
• Twelvefold way
• Ewens's sampling formula
• Faà di Bruno's formula
• Multiset
• Newton's identities
• Leibniz's distribution table for integer partitions
• Durfee square

Notes
[1] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa000041
[2] http:/ / primes. utm. edu/ top20/ page. php?id=54
[3] One, Ken; Ahlgren, Scott (2001). "Congruence properties for the partition function" (http:/ / www. math. wisc. edu/ ~ono/ reprints/ 061. pdf).

Proceedings of the National Academy of Sciences 98 (23): 12882–12884. doi:10.1073/pnas.191488598. .
[4] Andrews, George E. Number Theory. W. B. Saunders Company, Philadelphia, 1971. Dover edition, page 149–150.
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• Weisstein, Eric W., " Partition Function P (http:/ / mathworld. wolfram. com/ PartitionFunctionP. html)" from

MathWorld.
• Pieces of Number (http:/ / www. sciencenews. org/ articles/ 20050618/ bob9. asp) from Science News Online
• Lectures on Integer Partitions (http:/ / www. math. upenn. edu/ ~wilf/ PIMS/ PIMSLectures. pdf) by Herbert S.

Wilf
• Counting with partitions (http:/ / www. luschny. de/ math/ seq/ CountingWithPartitions. html) with reference

tables to the On-Line Encyclopedia of Integer Sequences
• Integer::Partition Perl module (http:/ / search. cpan. org/ perldoc?Integer::Partition) from CPAN
• Fast Algorithms For Generating Integer Partitions (http:/ / www. site. uottawa. ca/ ~ivan/ F49-int-part. pdf)
• Generating All Partitions: A Comparison Of Two Encodings (http:/ / arxiv. org/ abs/ 0909. 2331)
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Pell number
In mathematics, the Pell numbers are an infinite sequence of integers that have been known since ancient times, the
denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins
1/1, 3/2, 7/5, 17/12, and 41/29, so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of
the same sequence of approximations are half the companion Pell numbers or Pell-Lucas numbers; these numbers
form a second infinite sequence that begins with 2, 6, 14, 34, and 82.
Both the Pell numbers and the companion Pell numbers may be calculated by means of a recurrence relation similar
to that for the Fibonacci numbers, and both sequences of numbers grow exponentially, proportionally to powers of
the silver ratio 1 + √2. As well as being used to approximate the square root of two, Pell numbers can be used to find
square triangular numbers, to construct integer approximations to the right isosceles triangle, and to solve certain
combinatorial enumeration problems.[1]

As with Pell's equation, the name of the Pell numbers stems from Leonhard Euler's mistaken attribution of the
equation and the numbers derived from it to John Pell. The Pell-Lucas numbers are also named after Edouard Lucas,
who studied sequences defined by recurrences of this type; the Pell and companion Pell numbers are Lucas
sequences.

Pell numbers
The Pell numbers are defined by the recurrence relation

In words, the sequence of Pell numbers starts with 0 and 1, and then each Pell number is the sum of twice the
previous Pell number and the Pell number before that. The first few terms of the sequence are

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378... (sequence A000129 [2] in OEIS).
The Pell numbers can also be expressed by the closed form formula

For large values of n, the term dominates this expression, so the Pell numbers are approximately
proportional to powers of the silver ratio , analogous to the growth rate of Fibonacci numbers as powers of
the golden ratio.
A third definition is possible, from the matrix formula

Many identities can be derived or proven from these definitions; for instance an identity analogous to Cassini's
identity for Fibonacci numbers,

is an immediate consequence of the matrix formula (found by considering the determinants of the matrices on the
left and right sides of the matrix formula).[3]
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Approximation to the square root of two

Rational approximations to regular octagons, with coordinates derived from the
Pell numbers.

Pell numbers arise historically and most
notably in the rational approximation to the
square root of 2. If two large integers x and
y form a solution to the Pell equation

then their ratio provides a close approximation to . The sequence of approximations of this form is

where the denominator of each fraction is a Pell number and the numerator is the sum of a Pell number and its
predecessor in the sequence. That is, the solutions have the form . The approximation

of this type was known to Indian mathematicians in the third or fourth century B.C.[4] The Greek mathematicians of
the fifth century B.C. also knew of this sequence of approximations;[5] they called the denominators and numerators
of this sequence side and diameter numbers and the numerators were also known as rational diagonals or
rational diameters.[6]

These approximations can be derived from the continued fraction expansion of :

Truncating this expansion to any number of terms produces one of the Pell-number-based approximations in this
sequence; for instance,
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As Knuth (1994) describes, the fact that Pell numbers approximate allows them to be used for accurate rational
approximations to a regular octagon with vertex coordinates and . All vertices are
equally distant from the origin, and form nearly uniform angles around the origin. Alternatively, the points

, , and form approximate octagons in which the vertices
are nearly equally distant from the origin and form uniform angles.

Primes and squares
A Pell prime is a Pell number that is prime. The first few Pell primes are

2, 5, 29, 5741, ... (sequence A086383 [29] in OEIS).
As with the Fibonacci numbers, a Pell number can only be prime if n itself is prime.
The only Pell numbers that are squares, cubes, or any higher power of an integer are 0, 1, and 169 = 132.[7]

However, despite having so few squares or other powers, Pell numbers have a close connection to square triangular
numbers.[8] Specifically, these numbers arise from the following identity of Pell numbers:

The left side of this identity describes a square number, while the right side describes a triangular number, so the
result is a square triangular number.
Santana and Diaz-Barrero (2006) prove another identity relating Pell numbers to squares and showing that the sum
of the Pell numbers up to is always a square:

For instance, the sum of the Pell numbers up to , , is the square of
. The numbers forming the square roots of these sums,

1, 7, 41, 239, 1393, 8119, 47321, ... (sequence A002315 [9] in OEIS),
are known as the Newman–Shanks–Williams (NSW) numbers.
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Pythagorean triples

Integer right triangles with nearly equal legs, derived from the Pell numbers.

If a right triangle has integer side lengths a,
b, c (necessarily satisfying the Pythagorean
theorem a2+b2=c2), then (a,b,c) is known as
a Pythagorean triple. As Martin (1875)
describes, the Pell numbers can be used to
form Pythagorean triples in which a and b
are one unit apart, corresponding to right
triangles that are nearly isosceles. Each such
triple has the form

The sequence of Pythagorean triples formed in this way is
(4,3,5), (20,21,29), (120,119,169), (696,697,985), ....

Pell-Lucas numbers
The companion Pell numbers or Pell-Lucas numbers are defined by the recurrence relation

In words: the first two numbers in the sequence are both 2, and each successive number is formed by adding twice
the previous Pell-Lucas number to the Pell-Lucas number before that, or equivalently, by adding the next Pell
number to the previous Pell number: thus, 82 is the companion to 29, and 82 = 2 * 34 + 14 = 70 + 12. T he first few
terms of the sequence are (sequence A002203 [10] in OEIS): 2, 2, 6, 14, 34, 82, 198, 478...
The companion Pell numbers can be expressed by the closed form formula

These numbers are all even; each such number is twice the numerator in one of the rational approximations to 
discussed above.

http://en.wikipedia.org/w/index.php?title=File:Pell_right_triangles.svg
http://en.wikipedia.org/w/index.php?title=Right_triangle
http://en.wikipedia.org/w/index.php?title=Pythagorean_theorem
http://en.wikipedia.org/w/index.php?title=Pythagorean_theorem
http://en.wikipedia.org/w/index.php?title=Pythagorean_triple
http://en.wikipedia.org/w/index.php?title=Recurrence_relation
http://en.wikipedia.org/wiki/Oeis%3Aa002203
http://en.wikipedia.org/w/index.php?title=On-Line_Encyclopedia_of_Integer_Sequences
http://en.wikipedia.org/w/index.php?title=2_%28number%29
http://en.wikipedia.org/w/index.php?title=2_%28number%29
http://en.wikipedia.org/w/index.php?title=6_%28number%29
http://en.wikipedia.org/w/index.php?title=14_%28number%29
http://en.wikipedia.org/w/index.php?title=34_%28number%29
http://en.wikipedia.org/w/index.php?title=82_%28number%29
http://en.wikipedia.org/w/index.php?title=198_%28number%29
http://en.wikipedia.org/w/index.php?title=478_%28number%29


Pell number 170

Computations and connections
The following table gives the first few powers of the silver ratio and its conjugate

.

0

1

2

3

4

5

6

7

8

9

10

11

12

The coefficients are the Half companion Pell numbers and The Pell numbers which are the (non-negative)

solutions to . A Square triangular number is a number which is both the

th triangular number and the th square number. A near isosceles Pythagorean triple is an integer solution to
where .

The next table shows that splitting the odd number into nearly equal halves gives a square triangular number
when n is even and a near isosceles Pythagorean triple when n is odd. All solutions arise in this manner.

t t+1 s a b c

0 1 0 0 0 0

1 1 1 0 1 1

2 3 2 1 2 1

3 7 5 3 4 5

4 17 12 8 9 6

5 41 29 20 21 29

6 99 70 49 50 35

7 239 169 119 120 169

8 577 408 288 289 204

9 1393 985 696 697 985

10 3363 2378 1681 1682 1189

11 8119 5741 4059 4060 5741

12 19601 13860 9800 9801 6930

http://en.wikipedia.org/w/index.php?title=Silver_ratio
http://en.wikipedia.org/w/index.php?title=Square_triangular_number
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Definitions

The half companion Pell Numbers and the Pell numbers can be derived in a number of easily equivalent
ways:
Raising to powers:

From this it follows that there are closed forms:

and

Paired recurrences:

and matrix formulations:

So

Approximations

The difference between and is which goes rapidly to zero. So
is extremely close .

From this last observation it follows that the integer ratios rapidly approach while and 

rapidly approach .

H2 − 2P2 = ±1

Since is irrational, we can't have i.e. . The best we can achieve is either

or .

The (non-negative) solutions to are exactly the pairs even and the solutions to
are exactly the pairs odd. To see this, note first that

so that these differences, starting with are alternately . Then note that that every 
positive solution comes in this way from a solution with smaller integers since 

. The smaller solution also has positive integers with the one
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exception which comes from .

Square triangular numbers

The required equation is equivalent to which becomes

with the substitutions . Hence the nth solution is 

and 

Observe that and are relatively prime so that happens exactly when they are adjacent

integers, one a square and the other twice a square . Since we know all solutions of that equation, we also
have

and 
This alternate expression is seen in the next table.

t t+1 s a b c

0 1 0

1 1 1 1 2 1 1 0 1

2 3 2 8 9 6 3 4 5

3 7 5 49 50 35 21 20 29

4 17 12 288 289 204 119 120 169

5 41 29 1681 1682 1189 697 696 985

6 99 70 9800 9801 6930 4059 4060 5741

Pythagorean triples

The equality occurs exactly when which
becomes with the substitutions . Hence the nth solution is

and 

The table above shows that, in one order or the other, are while
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Notes
[1] For instance, Sellers (2002) proves that the number of perfect matchings in the Cartesian product of a path graph and the graph K4-e can be

calculated as the product of a Pell number with the corresponding Fibonacci number.
[2] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa000129
[3] For the matrix formula and its consequences see Ercolano (1979) and Kilic and Tasci (2005). Additional identities for the Pell numbers are

listed by Horadam (1971) and Bicknell (1975).
[4] As recorded in the Shulba Sutras; see e.g. Dutka (1986), who cites Thibaut (1875) for this information.
[5] See Knorr (1976) for the fifth century date, which matches Proclus' claim that the side and diameter numbers were discovered by the

Pythagoreans. For more detailed exploration of later Greek knowledge of these numbers see Thompson (1929), Vedova (1951), Ridenhour
(1986), Knorr (1998), and Filep (1999).

[6] For instance, as several of the references from the previous note observe, in Plato's Republic there is a reference to the "rational diameter of
5", by which Plato means 7, the numerator of the approximation 7/5 of which 5 is the denominator.

[7] Pethő (1992); Cohn (1996). Although the Fibonacci numbers are defined by a very similar recurrence to the Pell numbers, Cohn writes that an
analogous result for the Fibonacci numbers seems much more difficult to prove.

[8] Sesskin (1962). See the square triangular number article for a more detailed derivation.
[9] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa002315
[10] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa002203
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Permutable prime
A permutable prime is a prime number, which, in a given base, can have its digits switched to any possible
permutation and still spell a prime number. H. E. Richert, who supposedly first studied these primes, called them
permutable primes[1] , but later they were also called absolute primes[2] .
In base 10, all the permutable primes with less than 49081 digits are (sequence A003459 [30] in OEIS):

2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991,
1111111111111111111, 11111111111111111111111, R317, R1031

where Rn = is the number with n ones.
Any repunit prime is a permutable prime with the above definition, but some definitions require at least two distinct
digits.[3]

All permutable primes of two or more digits are composed from the digits 1, 3, 7, 9, because no prime number
except 2 is even, and no prime number besides 5 is divisible by 5. It is proved[4] that no permutable prime exists
which contains three different of the four digits 1, 3, 7, 9, as well as that there exists no permutable prime composed
of two or more of each of two digits selected from 1, 3, 7, 9.
There is no n-digit permutable prime for 3 < n < 6·10175 which is not a repunit[1] . It is conjectured that there are no
non-repunit permutable primes other than those listed above.
In base 2, only repunits can be permutable primes, because any 0 permuted to the one's place results in an even
number; unless we consider 1 a prime number and 10 permutable with 01. Therefore the base 2 permutable primes
are the Mersenne primes. The generalization can safely be made that for any positional number system, permutable
primes with more than one digit can only have digits that are coprime with the radix of the number system. One-digit
primes, meaning any prime below the radix, are always permutable.
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Perrin number
In mathematics, the Perrin numbers are defined by the recurrence relation

P(0) = 3, P(1) = 0, P(2) = 2,
and

P(n) = P(n − 2) + P(n − 3) for n > 2.
The sequence of Perrin numbers starts with

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39 ... (sequence A001608 [1] in OEIS)
The number of different maximal independent sets in an n-vertex cycle graph is counted by the nth Perrin number.[2]

History
This sequence was analyzed by Edouard Lucas (1878). In 1899, the same sequence was mentioned by R. Perrin. The
most extensive treatment of this sequence was given by Adams and Shanks (1982).

Properties

Generating function
The generating function of the Perrin sequence is

Matrix formula

Binet-like formula
The Perrin sequence numbers can be written in terms of powers of the roots of the equation

This equation has 3 roots; one real root p (known as the plastic number) and two complex conjugate roots q and r.
Given these three roots, the Perrin sequence analogue of the Fibonacci sequence Binet formula is

Since the magnitudes of the complex roots q and r are both less than 1, the powers of these roots approach 0 for large
n. For large n the formula reduces to

This formula can be used to quickly calculate values of the Perrin sequence for large n. The ratio of successive terms
in the Perrin sequence approaches p, a.k.a. the plastic number, which has a value of approximately 1.324718. This
constant bears the same relationship to the Perrin sequence and the Padovan sequence as the golden ratio does to the
Fibonacci sequence and the silver ratio does to the Pell numbers.
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Multiplication formula
From the Binet formula, we can obtain a formula for G(kn) in terms of G(n−1), G(n) and G(n+1); we know

which gives us three linear equations with coefficients over the splitting field of ; by inverting a matrix
we can solve for and then we can raise them to the kth power and compute the sum.
Example magma code:

P<x> := PolynomialRing(Rationals());

S<t> := SplittingField(x^3-x-1); 

P2<y> := PolynomialRing(S);

p,q,r := Explode([r[1] : r in Roots(y^3-y-1)]);

Mi:=Matrix([[1/p,1/q,1/r],[1,1,1],[p,q,r]])^(-1);

T<u,v,w> := PolynomialRing(S,3);

v1 := ChangeRing(Mi,T) *Matrix([[u],[v],[w]]);

[p^i*v1[1,1]^3 + q^i*v1[2,1]^3 + r^i*v1[3,1]^3 : i in [-1..1]];

with the result that, if we have , then

The number 23 here arises from the discriminant of the defining polynomial of the sequence.

This allows you to compute the nth Perrin number using integer arithmetic in multiplies.

Primes and divisibility

Perrin pseudoprimes
It has been proven that for all primes p, p divides P(p). However, the converse is not true: for some composite
numbers n, n may still divide P(n). If n has this property, it is called a Perrin pseudoprime.
The question of the existence of Perrin pseudoprimes was considered by Perrin himself, but it was not known
whether they existed until Adams and Shanks (1982) discovered the smallest one, 271441 = 5212; the next-smallest
is 904631 = 7 x 13 x 9941. There are seventeen of them less than a billion;[3] Jon Grantham has proved[4] that there
are infinitely many Perrin pseudoprimes.
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Perrin primes
A Perrin prime is a Perrin number that is prime. The first few Perrin primes are:

2, 3, 5, 7, 17, 29, 277, 367, 853, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321,
66241160488780141071579864797 (sequence A074788 [31] in OEIS)

E. W. Weisstein found a 32,147 digit probable Perrin prime P(263226) in May 2006.

Notes
[1] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa001608
[2] Füredi (1987)
[3] (sequence A013998 (http:/ / en. wikipedia. org/ wiki/ Oeis:a013998) in OEIS)
[4] Jon Grantham (2010). "There are infinitely many Perrin pseudoprimes" (http:/ / www. pseudoprime. com/ pseudo3. pdf). Journal of Number

Theory 130 (5): 1117–1128. doi:10.1016/j.jnt.2009.11.008. .
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Pierpont prime
A Pierpont prime is a prime number of the form

for some nonnegative integers u and v. They are named after the mathematician James Pierpont.
It is possible to prove that if v = 0 and u > 0, then u must be a power of 2, making the prime a Fermat prime. If v is
positive then u must also be positive, and the Pierpont prime is of the form 6k + 1 (because if u = 0 and v > 0 then
2u3v + 1 is an even number greater than 2 and therefore composite).
The first few Pierpont primes are:

2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769. (sequence A005109 [32] in OEIS)

Distribution of Pierpont primes

Distribution of the exponents for the smaller
Pierpont primes

Andrew Gleason conjectured there are infinitely many Pierpont primes.
They are not particularly rare and there are few restrictions from
algebraic factorisations, so there are no requirements like the Mersenne
prime condition that the exponent must be prime. There are 36
Pierpont primes less than 106, 59 less than 109, 151 less than 1020, and
789 less than 10100; conjecturally there are O(log N) Pierpont primes
smaller than N, as opposed to the conjectured O(log log N) Mersenne
primes in that range.

Pierpont primes found as factors of Fermat numbers
As part of the ongoing worldwide search for factors of Fermat numbers, some Pierpont primes have been announced
as factors. The following table[1] gives values of m, k, and n such that

The left-hand side is a Pierpont prime when k is a power of 3; the right-hand side is a Fermat number.

m k n  Year  Discoverer 

38 3 41 1903 Cullen, Cunningham & Western

63 9 67 1956 Robinson

207 3 209 1956 Robinson

452 27 455 1956 Robinson

9428 9 9431 1983 Keller

12185 81 12189 1993 Dubner

28281 81 28285 1996 Taura

157167 3 157169 1995 Young

213319 3 213321 1996 Young

303088 3 303093 1998 Young
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382447 3 382449 1999 Cosgrave & Gallot

461076 9 461081 2003 Nohara, Jobling, Woltman & Gallot

672005 27 672007 2005 Cooper, Jobling, Woltman & Gallot

2145351 3 2145353 2003 Cosgrave, Jobling, Woltman & Gallot

2478782 3 2478785 2003 Cosgrave, Jobling, Woltman & Gallot

As of 2008, the largest known Pierpont prime is 3 × 22478785 + 1,[2] whose primality was discovered by John B.
Cosgrave in 2003 with software by Paul Jobling, George Woltman, and Yves Gallot.[3]

In the mathematics of paper folding, the Huzita–Hatori axioms define six of the seven types of fold possible. It has
been shown that these folds are sufficient to allow any regular polygon of N sides to be formed, as long as N > 3 and
of the form 2m3nρ, where ρ is a product of distinct Pierpont primes. This is the same class of regular polygons as
those that can be constructed with a ruler, straightedge, and angle-trisector. Regular polygons which can be
constructed with only ruler and straightedge (constructible polygons) are the special case where n = 0 and ρ is a
product of distinct Fermat primes, themselves a subset of Pierpont primes.

Notes
[1] Wilfrid Keller, Fermat factoring status (http:/ / www. prothsearch. net/ fermat. html).
[2] Chris Caldwell, The largest known primes (http:/ / primes. utm. edu/ primes/ lists/ short. txt) at The Prime Pages.
[3] Proof-code: g245 (http:/ / primes. utm. edu/ bios/ code. php?code=g245) at The Prime Pages.
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Pillai prime
A Pillai prime is a prime number p for which there is an integer n > 0 such that the factorial of n is one less than a
multiple of the prime, but the prime is not one more than a multiple of n. To put it algebraically,

but . The first few Pillai primes are
23, 29, 59, 61, 67, 71, 79, 83, 109, 137, 139, 149, 193, ... (sequence A063980 [33] in OEIS)

Pillai primes are named after the mathematician Subbayya Sivasankaranarayana Pillai, who asked about these
numbers. Their infinitude has been proved several times, by Subbarao, Erdős, and Hardy & Subbarao.
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Prime gap
A prime gap is the difference between two successive prime numbers. The n-th prime gap, denoted gn, is the
difference between the (n + 1)-th and the n-th prime number, i.e.

We have g1 = 1, g2 = g3 = 2, and g4 = 4. The sequence (gn) of prime gaps has been extensively studied. One also
writes g(pn) for gn.
The first 30 prime gaps are:

1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14 (sequence A001223 [1] in OEIS).

Simple observations
For any prime number P, we write P# for P primorial, that is, the product of all prime numbers up to and including
P. If Q is the prime number following P, then the sequence

is a sequence of Q − 2 consecutive composite integers, so here there is a prime gap of at least length Q − 1.
Therefore, there exist gaps between primes which are arbitrarily large, i.e., for any prime number P, there is an
integer n with gn ≥ P. (This is seen by choosing n so that pn is the greatest prime number less than P# + 2.) Another
way to see that arbitrarily large prime gaps must exist is the fact that the density of primes approaches zero,
according to the Prime number theorem.
In reality, prime gaps of P numbers can occur at numbers much smaller than P#. For instance, the smallest sequence
of 71 consecutive composite numbers occurs between 31398 and 31468, whereas 71# has twenty-seven digits - its
full decimal expansion being 557940830126698960967415390.
Although the average gap between primes increases as the natural logarithm of the integer, the ratio of the maximum
prime gap to the integers involved also increases as larger and larger numbers and gaps are encountered.
In the opposite direction, the twin prime conjecture asserts that gn = 2 for infinitely many integers n.

Numerical results
As of 2009 the largest known prime gap with identified probable prime gap ends has length 2254930, with
86853-digit probable primes found by H. Rosenthal and J. K. Andersen. [2] The largest known prime gap with
identified proven primes as gap ends has length 337446, with 7996-digit primes found by T. Alm, J. K. Andersen
and François Morain. [3]
We say that gn is a maximal gap if gm < gn for all m < n. As of August 2009 the largest known maximal gap has
length 1476, found by Tomás Oliveira e Silva. It is the 75th maximal gap, and it occurs after the prime
1425172824437699411. [4]
The largest known value of gn / ln(pn) is 1476 / ln(1425172824437699411) = 35.31. Usually this number is called
the merit of the gap gn . [5]
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 Number 1 to 25

 # g
n

p
n

1 1 2

2 2 3

3 4 7

4 6 23

5 8 89

6 14 113

7 18 523

8 20 887

9 22 1129

10 34 1327

11 36 9551

12 44 15683

13 52 19609

14 72 31397

15 86 155921

16 96 360653

17 112 370261

18 114 492113

19 118 1349533

20 132 1357201

21 148 2010733

22 154 4652353

23 180 17051707

24 210 20831323

25 220 47326693

The first 75 maximal gaps

 Number 26 to 50

 # g
n

p
n

26 222 122164747

27 234 189695659

28 248 191912783

29 250 387096133

30 282 436273009

31 288 1294268491

32 292 1453168141

33 320 2300942549
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34 336 3842610773

35 354 4302407359

36 382 10726904659

37 384 20678048297

38 394 22367084959

39 456 25056082087

40 464 42652618343

41 468 127976334671

42 474 182226896239

43 486 241160624143

44 490 297501075799

45 500 303371455241

46 514 304599508537

47 516 416608695821

48 532 461690510011

49 534 614487453523

50 540 738832927927

 Number 51 to 75

 # g
n

p
n

51 582 1346294310749

52 588 1408695493609

53 602 1968188556461

54 652 2614941710599

55 674 7177162611713

56 716 13829048559701

57 766 19581334192423

58 778 42842283925351

59 804 90874329411493

60 806 171231342420521

61 906 218209405436543

62 916 1189459969825483

63 924 1686994940955803

64 1132 1693182318746371

65 1184 43841547845541059

66 1198 55350776431903243

67 1220 80873624627234849

68 1224 203986478517455989

69 1248 218034721194214273
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70 1272 305405826521087869

71 1328 352521223451364323

72 1356 401429925999153707

73 1370 418032645936712127

74 1442 804212830686677669

75 1476 1425172824437699411

n

Further results

Upper bounds
Bertrand's postulate states that there is always a prime number between k and 2k, so in particular pn+1 < 2pn, which
means gn < pn.
The prime number theorem says that the "average length" of the gap between a prime p and the next prime is ln p.
The actual length of the gap might be much more or less than this. However, from the prime number theorem one
can also deduce an upper bound on the length of prime gaps: for every ε > 0, there is a number N such that gn < εpn
for all n > N.
Hoheisel was the first to show[6] that there exists a constant θ < 1 such that

hence showing that

for sufficiently large n.
One can deduce that the gaps get arbitrarily smaller in proportion to the primes: the quotient gn/pn approaches zero as
n goes to infinity.
Hoheisel obtained the possible value 32999/33000 for θ. This was improved to 249/250 by Heilbronn,[7] and to θ =
3/4 + ε, for any ε > 0, by Chudakov.[8]

A major improvement is due to Ingham,[9] who showed that if

for some positive constant c, where O refers to the big O notation, then

for any θ > (1 + 4c)/(2 + 4c). Here, as usual, ζ denotes the Riemann zeta function and π the prime-counting function.
Knowing that any c > 1/6 is admissible, one obtains that θ may be any number greater than 5/8.
An immediate consequence of Ingham's result is that there is always a prime number between n3 and (n + 1)3 if n is
sufficiently large. Note however that not even the Lindelöf hypothesis, which assumes that we can take c to be any
positive number, implies that there is a prime number between n2 and (n + 1)2, if n is sufficiently large (see
Legendre's conjecture). To verify this, a stronger result such as Cramér's conjecture would be needed.
Huxley showed that one may choose θ = 7/12.[10]

A recent result, due to Baker, Harman and Pintz, shows that θ may be taken to be 0.525.[11]
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Lower bounds
Robert Rankin proved the existence of a constant c > 0 such that the inequality

holds for infinitely many values n. The best known value of the constant c is currently c = 2eγ, where γ is the
Euler–Mascheroni constant.[12] Paul Erdős offered a $5,000 prize for a proof or disproof that the constant c in the
above inequality may be taken arbitrarily large.[13]

Conjectures about gaps between primes
Even better results are possible if it is assumed that the Riemann hypothesis is true. Harald Cramér proved that,
under this assumption, the gap g(pn) satisfies

using the big O notation. Later, he conjectured that the gaps are even smaller. Roughly speaking he conjectured that

At the moment, the numerical evidence seems to point in this direction. See Cramér's conjecture for more details.
Andrica's conjecture states that

This is a slight strengthening of Legendre's conjecture that between successive square numbers there is always a
prime.

As an arithmetic function
The gap gn between the nth and (n + 1)st prime numbers is an example of an arithmetic function. In this context it is
usually denoted dn and called the prime difference function.[13] The function is neither multiplicative nor additive.

See also
• Bonse's inequality
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External links
• Thomas R. Nicely, Some Results of Computational Research in Prime Numbers -- Computational Number

Theory (http:/ / www. trnicely. net/ ). This reference web site includes a list of all first known occurrence prime
gaps.

• Weisstein, Eric W., " Prime Difference Function (http:/ / mathworld. wolfram. com/ PrimeDifferenceFunction.
html)" from MathWorld.

• Prime Difference Function (http:/ / planetmath. org/ ?op=getobj& amp;from=objects& amp;id=3143) on
PlanetMath

• Chris Caldwell, Gaps Between Primes (http:/ / primes. utm. edu/ notes/ gaps. html)

Prime quadruplet
A prime quadruplet (sometimes called prime quadruple) is a set of four primes of the form {p, p+2, p+6, p+8}.[1]

This represents the closest possible grouping of four primes larger than 3. The first prime quadruplets are
{5, 7, 11, 13}, {11, 13, 17, 19}, {101, 103, 107, 109}, {191, 193, 197, 199}, {821, 823, 827, 829}, {1481, 1483,
1487, 1489}, {1871, 1873, 1877, 1879}, {2081, 2083, 2087, 2089}, {3251, 3253, 3257, 3259}, {3461, 3463, 3467,
3469}, {5651, 5653, 5657, 5659}, {9431, 9433, 9437, 9439}, {13001, 13003, 13007, 13009}, {15641, 15643,
15647, 15649}, {15731, 15733, 15737, 15739}, {16061, 16063, 16067, 16069}, {18041, 18043, 18047, 18049},
{18911, 18913, 18917, 18919}, {19421, 19423, 19427, 19429}, {21011, 21013, 21017, 21019}, {22271, 22273,
22277, 22279}, {25301, 25303, 25307, 25309}, {31721, 31723, 31727, 31729}, {34841, 34843, 34847, 34849},
{43781, 43783, 43787, 43789}, {51341, 51343, 51347, 51349}, {55331, 55333, 55337, 55339}, {62981, 62983,
62987, 62989}, {67211, 67213, 67217, 67219}, {69491,69493, 69497, 69499}, {72221, 72223, 72227, 72229},
{77261, 77263, 77267, 77269}, {79691, 79693, 79697, 79699}, {81041, 81043, 81047, 81049}, {82721, 82723,
82727, 82729}, {88811, 88813, 88817, 88819}, {97841, 97843, 97847, 97849}, {99131,99133, 99137, 99139}
(sequence A007530 [37] in OEIS)
All prime quadruplets except {5, 7, 11, 13} are of the form {30n + 11, 30n + 13, 30n + 17, 30n + 19} for some
integer n. (This structure is necessary to ensure that none of the four primes is divisible by 2, 3 or 5). A prime
quadruplet of this form is also called a prime decade.
Some sources also call {2, 3, 5, 7} or {3, 5, 7, 11} prime quadruplets, while some other sources exclude {5, 7, 11,
13}. [2]
A prime quadruplet contains two pairs of twin primes and two overlapping prime triplets.
It is not known if there are infinitely many prime quadruplets. A proof that there are infinitely many would imply the
twin prime conjecture, but it is consistent with current knowledge that there may be infinitely many pairs of twin
primes and only finitely many prime quadruplets. The number of prime quadruplets with n digits in base 10 for n =
2, 3, 4, ... is 1, 3, 7, 26, 128, 733, 3869, 23620, 152141, 1028789, 7188960, 51672312, 381226246, 2873279651
(sequence A120120 [3] in OEIS).
As of 2007 the largest known prime quadruplet has 2058 digits.[4] It was found by Norman Luhn in 2005 and starts
with
p = 4104082046 × 4799# + 5651, where 4799# is a primorial
The constant representing the sum of the reciprocals of all prime quadruplets, Brun's constant for prime quadruplets,
denoted by B4, is the sum of the reciprocals of all prime quadruplets:

with value:
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B4 = 0.87058 83800 ± 0.00000 00005.
This constant should not be confused with the Brun's constant for cousin primes, prime pairs of the form (p, p +
4), which is also written as B4.
The prime quadruplet {11, 13, 17, 19} is alleged to appear on the Ishango bone although this is disputed.

Prime quintuplets
If {p, p+2, p+6, p+8} is a prime quadruplet and p−4 or p+12 is also prime, then the five primes form a prime
quintuplet which is the closest admissible constellation of five primes. The first few prime quintuplets with p+12
are (sequence A022006 [5] in OEIS):
{5, 7, 11, 13, 17}, {11, 13, 17, 19, 23}, {101, 103, 107, 109, 113}, {1481, 1483, 1487, 1489, 1493}, {16061, 16063,
16067, 16069, 16073}, {19421, 19423, 19427, 19429, 19433}, {21011, 21013, 21017, 21019, 21023}, {22271,
22273, 22277, 22279, 22283}, {43781, 43783, 43787, 43789, 43793}, {55331, 55333, 55337, 55339, 55343}
The first prime quintuplets with p−4 are (A022007 [6]):
{7, 11, 13, 17, 19}, {97, 101, 103, 107, 109}, {1867, 1871, 1873, 1877, 1879}, {3457, 3461, 3463, 3467, 3469},
{5647, 5651, 5653, 5657, 5659}, {15727, 15731, 15733, 15737, 15739}, {16057, 16061, 16063, 16067, 16069},
{19417, 19421, 19423, 19427, 19429}, {43777, 43781, 43783, 43787, 43789}, {79687, 79691, 79693, 79697,
79699}, {88807, 88811, 88813, 88817, 88819}
A prime quintuplet contains two close pairs of twin primes, a prime quadruplet, and three overlapping prime triplets.
It is not known if there are infinitely many prime quintuplets. Once again, proving the twin prime conjecture might
not necessarily prove that there are also infinitely many prime quintuplets. Also, proving that there are infinitely
many prime quadruplets might not necessarily prove that there are infinitely many prime quintuplets.
If both p−4 and p+12 are prime then it becomes a prime sextuplet. The first few:
{7, 11, 13, 17, 19, 23}, {97, 101, 103, 107, 109, 113}, {16057, 16061, 16063, 16067, 16069, 16073}, {19417,
19421, 19423, 19427, 19429, 19433}, {43777, 43781, 43783, 43787, 43789, 43793}
Some sources also call {5, 7, 11, 13, 17, 19} a prime sextuplet. Our definition, all cases of primes {p-4, p, p+2, p+6,
p+8, p+12}, follows from defining a prime sextuplet as the closest admissible constellation of six primes.
A prime sextuplet contains two close pairs of twin primes, a prime quadruplet, four overlapping prime triplets, and
two overlapping prime quintuplets.
It is not known if there are infinitely many prime sextuplets. Once again, proving the twin prime conjecture might
not necessarily prove that there are also infinitely many prime sextuplets. Also, proving that there are infinitely many
prime quintuplets might not necessarily prove that there are infinitely many prime sextuplets.
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Prime triplet
In mathematics, a prime triplet is a set of three prime numbers of the form (p, p + 2, p + 6) or (p, p + 4, p + 6).[1]

With the exceptions of (2, 3, 5) and (3, 5, 7), this is the closest possible grouping of three prime numbers, since every
third odd number greater than 3 is divisible by 3, and hence not prime.
The first prime triplets (sequence A098420 [2] in OEIS) are
(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103),
(101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), (193, 197, 199), (223, 227, 229), (227, 229, 233),
(277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353), (457, 461, 463), (461, 463, 467), (613, 617, 619),
(641, 643, 647), (821, 823, 827), (823, 827, 829), (853, 857, 859), (857, 859, 863), (877, 881, 883), (881, 883, 887)
A prime triplet contains a pair of twin primes (p and p + 2, or p + 4 and p + 6), a pair of cousin primes (p and p + 4,
or p + 2 and p + 6), and a pair of sexy primes (p and p + 6).
A prime can be a member of up to three prime triplets - for example, 103 is a member of (97, 101, 103),
(101, 103, 107) and (103, 107, 109). When this happens, the five involved primes form a prime quintuplet.
A prime quadruplet (p, p + 2, p + 6, p + 8) contains two overlapping prime triplets, (p, p + 2, p + 6) and (p + 2, p + 6,
p + 8).
Similarly to the twin prime conjecture, it is conjectured that there are infinitely many prime triplets. As of March
2010 the largest known prime triplet contains primes with 10047 digits.[3] It is the first known gigantic prime triplet
and was found in 2008 by Norman Luhn and François Morain. The primes are (p, p + 2, p + 6) with
p = 2072644824759 × 233333 − 1.
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Prime-counting function
In mathematics, the prime-counting function is the function counting the number of prime numbers less than or
equal to some real number x.[1] [2] It is denoted by (this does not refer to the number π).

The values of π(n) for the first 60 integers

History

Of great interest in number theory is
the growth rate of the prime-counting
function.[3] [4] It was conjectured in the
end of the 18th century by Gauss and
by Legendre to be approximately

in the sense that

This statement is the prime number theorem. An equivalent statement is

where li is the logarithmic integral function. The prime number theorem was first proved in 1896 by Jacques
Hadamard and by Charles de la Vallée Poussin independently, using properties of the Riemann zeta function
introduced by Riemann in 1859.

More precise estimates of are now known; for example

where the O is big O notation. Most of the time is greater than , but infinitely often the opposite is true.
For a discussion of this, see Skewes' number.
Proofs of the prime number theorem not using the zeta function or complex analysis were found around 1948 by Atle
Selberg and by Paul Erdős (for the most part independently).[5]

Table of π(x), x / ln x, and li(x)
The table shows how the three functions π(x), x / ln x and li(x) compare at powers of 10. See also [3] ,[6] ,[7] and [8] .
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x π(x) π(x) − x / ln x li(x) − π(x) x / π(x)

10 4 −0.3 2.2 2.500

102 25 3.3 5.1 4.000

103 168 23 10 5.952

104 1,229 143 17 8.137

105 9,592 906 38 10.425

106 78,498 6,116 130 12.740

107 664,579 44,158 339 15.047

108 5,761,455 332,774 754 17.357

109 50,847,534 2,592,592 1,701 19.667

1010 455,052,511 20,758,029 3,104 21.975

1011 4,118,054,813 169,923,159 11,588 24.283

1012 37,607,912,018 1,416,705,193 38,263 26.590

1013 346,065,536,839 11,992,858,452 108,971 28.896

1014 3,204,941,750,802 102,838,308,636 314,890 31.202

1015 29,844,570,422,669 891,604,962,452 1,052,619 33.507

1016 279,238,341,033,925 7,804,289,844,393 3,214,632 35.812

1017 2,623,557,157,654,233 68,883,734,693,281 7,956,589 38.116

1018 24,739,954,287,740,860 612,483,070,893,536 21,949,555 40.420

1019 234,057,667,276,344,607 5,481,624,169,369,960 99,877,775 42.725

1020 2,220,819,602,560,918,840 49,347,193,044,659,701 222,744,644 45.028

1021 21,127,269,486,018,731,928 446,579,871,578,168,707 597,394,254 47.332

1022 201,467,286,689,315,906,290 4,060,704,006,019,620,994 1,932,355,208 49.636

1023 1,925,320,391,606,803,968,923 37,083,513,766,578,631,309 7,250,186,216 51.939

1024 18,435,599,767,349,200,867,866 339,996,354,713,708,049,069 17,146,907,278 54.243

In the On-Line Encyclopedia of Integer Sequences, the π(x) column is sequence A006880 [9], π(x) - x / ln x is
sequence A057835 [10], and li(x) − π(x) is sequence A057752 [11]. The value for π(1024) is by J. Franke et al. and
assumes the Riemann hypothesis.[12]

http://en.wikipedia.org/w/index.php?title=On-Line_Encyclopedia_of_Integer_Sequences
http://en.wikipedia.org/wiki/Oeis%3Aa006880
http://en.wikipedia.org/wiki/Oeis%3Aa057835
http://en.wikipedia.org/wiki/Oeis%3Aa057752
http://en.wikipedia.org/w/index.php?title=Jens_Franke


Prime-counting function 190

Algorithms for evaluating π(x)
A simple way to find , if is not too large, is to use the sieve of Eratosthenes to produce the primes less than
or equal to and then to count them.
A more elaborate way of finding is due to Legendre: given , if ,  , …,  are distinct prime
numbers, then the number of integers less than or equal to which are divisible by no is

(where denotes the floor function). This number is therefore equal to

when the numbers are the prime numbers less than or equal to the square root of .
In a series of articles published between 1870 and 1885, Ernst Meissel described (and used) a practical combinatorial
way of evaluating . Let ,  , …,  be the first primes and denote by the number of
natural numbers not greater than which are divisible by no . Then

Given a natural number , if and if , then

Using this approach, Meissel computed , for equal to 5×105, 106, 107, and 108.
In 1959, Derrick Henry Lehmer extended and simplified Meissel's method. Define, for real and for natural
numbers , and , as the number of numbers not greater than m with exactly k prime factors, all
greater than . Furthermore, set . Then

where the sum actually has only finitely many nonzero terms. Let denote an integer such that
, and set . Then and when  ≥ 3.

Therefore

The computation of can be obtained this way:

On the other hand, the computation of can be done using the following rules:
1.

2.

Using his method and an IBM 701, Lehmer was able to compute .

Further improvements to this method were made by Lagarias, Miller, Odlyzko, Deléglise and Rivat [13] .
The Chinese mathematician Hwang Cheng, in a conference about prime number functions at the University of
Bordeaux[14] , used the following identities:
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and setting , Laplace-transforming both sides and applying a geometric sum on got the expression

Other prime-counting functions
Other prime-counting functions are also used because they are more convenient to work with. One is Riemann's
prime-counting function, usually denoted as or . This has jumps of 1/n for prime powers pn, with it
taking a value half-way between the two sides at discontinuities. That added detail is because then it may be defined
by an inverse Mellin transform. Formally, we may define by

where p is a prime.
We may also write

where Λ(n) is the von Mangoldt function and

Möbius inversion formula then gives

Knowing the relationship between log of the Riemann zeta function and the von Mangoldt function , and using
the Perron formula we have

The Chebyshev function weights primes or prime powers pn by ln(p):
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Formulas for prime-counting functions
These come in two kinds, arithmetic formulas and analytic formulas. The latter are what allow us to prove the prime
number theorem. They stem from the work of Riemann and von Mangoldt, and are generally known as explicit
formulas [15] .
We have the following expression for ψ:

where

Here ρ are the zeros of the Riemann zeta function in the critical strip, where the real part of ρ is between zero and
one. The formula is valid for values of x greater than one, which is the region of interest. The sum over the roots is
conditionally convergent, and should be taken in order of increasing absolute value of the imaginary part. Note that
the same sum over the trivial roots gives the last subtrahend in the formula.
For we have a more complicated formula

Again, the formula is valid for x > 1, while ρ are the nontrivial zeros of the zeta function ordered according to their
absolute value, and, again, the latter integral, taken with minus sign, is just the same sum, but over the trivial zeros.
The first term li(x) is the usual logarithmic integral function; the expression li(xρ) in the second term should be
considered as Ei(ρ ln x), where Ei is the analytic continuation of the exponential integral function from positive reals
to the complex plane with branch cut along the negative reals.
Thus, Möbius inversion formula gives us[16]

valid for x > 1, where

is so-called Riemann's R-function [17] . The latter series for it is known as Gram series [18] and converges for all
positive x.

Δ-function (red line) on log scale

The sum over non-trivial zeta zeros in the formula for describes the fluctuations of , while the remaining
terms give the "smooth" part of prime-counting function [19] , so one can use
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as the best estimator [20] of for x > 1.
The amplitude of the "noisy" part is heuristically about , so the fluctuations of the distribution of primes
may be clearly represented with the Δ-function:

An extensive table of the values of Δ(x) is available [7] .

Inequalities
Here are some useful inequalities for π(x).

for x > 1.

for x ≥ 55.

Here are some inequalities for the nth prime, pn.

for n ≥ 6.
The left inequality holds for n ≥ 1 and the right inequality holds for n ≥ 6.
An approximation for the nth prime number is

The Riemann hypothesis
The Riemann hypothesis is equivalent to a much tighter bound on the error in the estimate for , and hence to a
more regular distribution of prime numbers,

Specifically,[21]

See also
• Bertrand's postulate
• Opperman's conjecture
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Primeval prime
In mathematics, a primeval number is a natural number n for which the number of prime numbers which can be
obtained by permuting all or some of its digits (in base 10) is larger than the number of primes obtainable in the
same way for any smaller natural number. Primeval numbers were first described by Mike Keith.
The first few primeval numbers are

1, 2, 13, 37, 107, 113, 137, 1013, 1037, 1079, 1237, 1367, ... (sequence A072857 [1] in OEIS)
The number of primes that can be obtained from the primeval numbers is

0, 1, 3, 4, 5, 7, 11, 14, 19, 21, 26, 29, ... (A076497 [2])
The largest number of primes that can be obtained from a primeval number with n digits is

1, 4, 11, 31, 106, ... (A076730 [3])
The smallest n-digit prime to achieve this number of primes is

2, 37, 137, 1379, 13679, ... (A134596 [4])
Primeval numbers can be composite. The first is 1037 = 17×61. A Primeval prime is a primeval number which is
also a prime number:

2, 13, 37, 107, 113, 137, 1013, 1237, 1367, 10079, ... (A119535 [34])
The following table shows the first six primeval numbers with the obtainable primes and the number of them.
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 Primeval number  Primes obtained  Number of primes 

A072857 [1] (ordered permutations) A076497 [2]

1 none 0

2 2 1

13 3, 13, 31 3

37 3, 7, 37, 73 4

107 7, 17, 71, 107, 701 5

113 3, 11, 13, 31, 113, 131, 311 7

See also
• Permutable prime
• Truncatable prime

External links
• Chris Caldwell, The Prime Glossary: Primeval number [5] at The Prime Pages
• Mike Keith, Integers Containing Many Embedded Primes [6]
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Primorial prime
In mathematics, primorial primes are prime numbers of the form pn# ± 1, where:

pn# is the primorial of pn (that is, the product of the first n primes).
pn# − 1 is prime for n = 2, 3, 5, 6, 13, 24, ... (sequence A057704 [1] in OEIS)
pn# + 1 is prime for n = 1, 2, 3, 4, 5, 11, ... (A014545 [2])

The first few primorial primes are
3, 5, 7, 29, 31, 211, 2309, 2311, 30029, 200560490131, 304250263527209

As of 2010, the largest known primorial prime is 843301# - 1 with 365,851 digits, found in 2010 by the PrimeGrid
project.[3]

It is widely believed, but false, that the idea of primorial primes appears in Euclid's proof of the infinitude of the
prime numbers: First, assume that the first n primes are the only primes that exist. If either pn# + 1 or pn# − 1 is a
primorial prime, it means that there are larger primes than the nth prime (if neither is a prime, that also proves the
infinitude of primes, but less directly; note that each of these two numbers has a remainder of either p−1 or 1 when
divided by any of the first n primes, and hence cannot be a multiple of any of them).
In fact, Euclid's proof did not assume that a finite set contains all primes that exist. Rather, it said: consider any finite
set of primes (not necessarily the first n primes; e.g. it could have been the set {3, 11, 47}), and then went on from
there to the conclusion that at least one prime exists that is not in that set. [4]

See also
• Primorial
• Factorial prime
• Euclid number
• PrimeGrid
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Probable prime
In number theory, a probable prime (PRP) is an integer that satisfies a specific condition also satisfied by all prime
numbers. Different types of probable primes have different specific conditions. While there may be probable primes
that are composite (called pseudoprimes), the condition is generally chosen in order to make such exceptions rare.
Fermat's test for compositeness, which is based on Fermat's little theorem, works as follows: given an integer n,
choose some integer a coprime to n and calculate an − 1 modulo n. If the result is different from 1, n is composite. If
it is 1, n may or may not be prime; n is then called a (weak) probable prime to base a.

Properties
Probable primality is a basis for efficient primality testing algorithms, which find application in cryptography. These
algorithms are usually probabilistic in nature. The idea is that while there are composite probable primes to base a
for any fixed a, we may hope there exists some fixed P<1 such that for any given composite n, if we choose a
randomly the probability that n is pseudoprime to base a is at most P. If we repeat this test k times, choosing a new a
each time, the probability of n being pseudoprime to all the as tested is hence at most Pk, and as this decreases
exponentially, only moderate k is required to make this probability negligibly small (compared to, for example, the
probability of computer hardware error).
This is unfortunately false for weak probable primes, because there exist Carmichael numbers; but it is true for more
refined notions of probable primality, such as strong probable primes (P = 1/4, Miller–Rabin algorithm), or Euler
probable primes (P = 1/2, Solovay–Strassen algorithm).
Even when a deterministic primality proof is required, a useful first step is to test for probable primality. This can
quickly eliminate (with certainty) most composites.
A PRP test is sometimes combined with a table of small pseudoprimes to quickly establish the primality of a given
number smaller than some threshold.

Variations
An Euler probable prime to base a is an integer that is indicated prime by the somewhat stronger theorem that for
any prime p, a(p − 1)/2 equals  modulo p, where is the Legendre symbol. An Euler probable prime which is

composite is called an Euler–Jacobi pseudoprime to base a.
This test may be improved by using the fact that the only square roots of 1 modulo a prime are 1 and −1. Write
n = d · 2s + 1, where d is odd. The number n is a strong probable prime (SPRP) to base a if one of the following
conditions holds:

A composite strong probable prime to base a is called a strong pseudoprime to base a. Every strong probable prime
to base a is also an Euler probable prime to the same base, but not vice versa.
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External links
• The prime glossary – Probable prime [1]

• The PRP Top 10000 (the largest known probable primes) [2]

• Generalized repunit probable primes [3]
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Proth number
In number theory, a Proth number, named after the mathematician François Proth, is a number of the form

where is an odd positive integer and is a positive integer such that . Without the latter condition, all
odd integers greater than 1 would be Proth numbers.[1]

The first Proth numbers are (sequence A080075 [2] in OEIS):
3, 5, 9, 13, 17, 25, 33, 41, 49, 57, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225

The Cullen numbers (n·2n+1) and Fermat numbers (22n+1) are special cases of Proth numbers.

Proth primes
A Proth prime is a Proth number which is prime. The first Proth primes are (A080076 [36]):

3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113,
2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857.

The primality of a Proth number can be tested with Proth's theorem which states[3] that a Proth number is prime if
and only if there exists an integer for which the following is true:

The largest known Proth prime as of 2010 is .[4] It was found by Konstantin Agafonov in
the Seventeen or Bust distributed computing project which announced it 5 May 2007.[5] It is also the largest known
non-Mersenne prime.[6]
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Pseudoprime
A pseudoprime is a probable prime (an integer that shares a property common to all prime numbers) which is not
actually prime. Pseudoprimes can be classified according to which property they satisfy.

Fermat pseudoprimes
Fermat's little theorem states that if p is prime and a is coprime to p, then ap−1 − 1 is divisible by p. If a composite
integer x is coprime to an integer a > 1 and x divides ax−1 − 1, then x is called a Fermat pseudoprime to base a. Some
sources use variations of this definition, for example to only allow odd numbers to be pseudoprimes.[1]

An integer x that is a Fermat pseudoprime to all values of a that are coprime to x is called a Carmichael number.

Classes
• Fermat pseudoprime
• Euler pseudoprime
• Euler–Jacobi pseudoprime
• Extra strong Lucas pseudoprime
• Fibonacci pseudoprime
• Lucas pseudoprime
• Perrin pseudoprime
• Somer–Lucas pseudoprime
• Strong Frobenius pseudoprime
• Strong Lucas pseudoprime
• Strong pseudoprime
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Pythagorean prime
A Pythagorean prime is prime number of the form 4n + 1. These are exactly the primes that can be the hypotenuse
of a Pythagorean triangle.
The first few Pythagorean primes are

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, … (sequence A002144 [2] in OEIS).
Fermat's theorem on sums of two squares states that these primes can be represented as sums of two squares uniquely
(up to order), and that no other primes can be represented this way, aside from 2=12+12. Thus these primes (and 2)
occur as norms of Gaussian integers, while other primes do not.
The law of quadratic reciprocity says that if p and q are odd primes, at least one of which is Pythagorean, then p is a
quadratic residue mod q if and only if q is a quadratic residue mod p; by contrast, if neither p nor q is Pythagorean,
then p is a quadratic residue mod q if and only if q is not a quadratic residue mod p. −1 is a quadratic residue mod p
if and only if p is a Pythagorean prime (or 2).
In the field Z/p with p a Pythagorean prime, the polynomial x^2 = -1 has two solutions.

Ramanujan prime
In mathematics, a Ramanujan prime is a prime number that satisfies a result proven by Srinivasa Ramanujan
relating to the prime-counting function.

Origins and definition
In 1919, Ramanujan published a new proof of Bertrand's postulate which, as he says, was first proved by
Chebyshev.[1] At the end of the two-page published paper, Ramanujan derived a generalized result, and that is:

 ≥ 1, 2, 3, 4, 5, ... for all x ≥ 2, 11, 17, 29, 41, ... (sequence A104272 [41] in OEIS)
respectively,

where (x) is the prime-counting function, that is, the number of primes less than or equal to x.
The converse of this result is the definition of Ramanujan primes, and the numbers 2, 11, 17, 29, 41 are the first few
such primes. In other words:

The nth Ramanujan prime is the integer Rn that is the smallest to satisfy the condition

 ≥ n, for all x ≥ Rn.[2]

Another way to put this is:
Ramanujan primes are the integers Rn that are the smallest to guarantee there are n primes between x and x/2
for all x ≥ Rn.

Since Rn is the smallest such number, it must be a prime: and, hence, must increase by
obtaining another prime at x = Rn. Since can increase by at most 1,

Rn Rn .
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Bounds and an asymptotic formula
For all n ≥ 1, the bounds

2n ln 2n < Rn < 4n ln 4n

hold. If n > 1, then also
p2n < Rn < p3n,

where pn is the nth prime number.
As n tends to infinity, Rn is asymptotic to the 2nth prime, i.e.,

Rn ~ p2n (n → ∞).
All these results were proved by Sondow (2009),[3] except for the upper bound Rn < p3n which was conjectured by
him and proved by Laishram (2010).[4]

Ramanujan prime corollary

i.e. pk is the kth prime and the nth Ramanujan prime.
This is very useful in showing the number of primes in the range [pk, 2*pi-n] is greater than or equal to 1. By taking
into account the size of the gaps between primes in [pi-n,pk], one can see that the average prime gap is about ln(pk)
using the following Rn / (2*n) ~ ln(Rn).
Proof of Corollary: If pi > Rn, then pi is odd and pi - 1 ≥ Rn, and hence π(pi - 1) - π( pi / 2) = π( pi - 1) - π( (pi - 1) / 2)
≥ n. Thus pi - 1 ≥ pi-1 > pi-2 > pi-3 > ... > pi-n > pi / 2, and so 2 pi-n > pi.
An example of this corollary:
With n = 1000, R_n = pk = 19403, and k = 2197, therefore i ≥ 2198 and i-n ≥ 1198. The smallest i-n prime is pi-n =
9719, therefore 2 * pi-n = 2 * 9719 = 19438. The 2198th prime, pi, is between pk = 19403 and 2 * pi-n = 19438 and is
19417.
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Regular prime
In number theory, a regular prime is a prime number p > 2 that does not divide the class number of the p-th
cyclotomic field. Ernst Kummer (Kummer 1850) showed that an equivalent criterion for regularity is that p does not
divide the numerator of any of the Bernoulli numbers Bk for k = 2, 4, 6, …, p − 3. This is called Kummer's
criterion. Kummer was able to prove that Fermat's last theorem holds true for regular prime exponents.

The first few regular primes are: 3, 5, 7, 11, 13, 17, 19, 23, 29, ... (sequence A007703 [1] in OEIS).
It has been conjectured that there are infinitely many regular primes. More precisely Siegel conjectured (1964) that
e−1/2, or about 61%, of all prime numbers are regular, in the asymptotic sense of natural density. Neither conjecture
has been proven as of 2010.
An odd prime that is not regular is an irregular prime. The number of Bernoulli numbers Bk with a numerator
divisible by p is called the irregularity index of p. K. L. Jensen has shown in 1915 that there are infinitely many
irregular primes.

The first few irregular primes are: 37, 59, 67, 101, 103, 131, 149, ... (sequence A000928 [2] in OEIS)
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Repunit
In recreational mathematics, a repunit is a number like 11, 111, or 1111 that contains only the digit 1. The term
stands for repeated unit and was coined in 1966 by Albert H. Beiler. A repunit prime is a repunit that is also a
prime number.

Definition
The base-b repunits are defined as

Thus, the number Rn
(b) consists of n copies of the digit 1 in base b representation. The first two repunits base b for

n=1 and n=2 are

In particular, the decimal (base-10) repunits that are often referred to as simply repunits are defined as

Thus, the number Rn = Rn
(10) consists of n copies of the digit 1 in base 10 representation. The sequence of repunits

base 10 starts with
1, 11, 111, 1111, ... (sequence A002275 [1] in OEIS).

Similarly, the repunits base 2 are defined as

Thus, the number Rn
(2) consists of n copies of the digit 1 in base 2 representation. In fact, the base-2 repunits are the

well-respected Mersenne numbers Mn = 2n − 1.

Properties
• Any repunit in any base having a composite number of digits is necessarily composite. Only repunits (in any

base) having a prime number of digits might be prime (necessary but not sufficient condition). For example,
R35

(b) = 11111111111111111111111111111111111 = 11111 × 1000010000100001000010000100001 =
1111111 × 10000001000000100000010000001,
since 35 = 7 × 5 = 5 × 7. This repunit factorization does not depend on the base b in which the repunit is
expressed.

• Any positive multiple of the repunit Rn
(b) contains at least n nonzero digits in base b.

• The only known numbers that are repunits with at least 3 digits in more than one base simultaneously are 31 (111
in base 5, 11111 in base 2) and 8191 (111 in base 90, 1111111111111 in base 2). The Goormaghtigh conjecture
says there are only these two cases.

• It is easy to prove[2] that given n, such that n is not exactly divisible by 2 or p, there exists a repunit in base 2p that
is a multiple of n.
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Factorization of decimal repunits

R1 = 1

R2 = 11

R3 = 3 · 37

R4 = 11 · 101

R5 = 41 · 271

R6 = 3 · 7 · 11 · 13 · 37

R7 = 239 · 4649

R8 = 11 · 73 · 101 · 137

R9 = 3 · 3 · 37 · 333667

R10 = 11 · 41 · 271 · 9091

R11 = 21649 · 513239

R12 = 3 · 7 · 11 · 13 · 37 · 101 · 9901

R13 = 53 · 79 · 265371653

R14 = 11 · 239 · 4649 · 909091

R15 = 3 · 31 · 37 · 41 · 271 · 2906161

R16 = 11 · 17 · 73 · 101 · 137 · 5882353

R17 = 2071723 · 5363222357

R18 = 3 · 3 · 7 · 11 · 13 · 19 · 37 · 52579 · 333667

R19 = 1111111111111111111

R20 = 11 · 41 · 101 · 271 · 3541 · 9091 · 27961

Repunit primes
The definition of repunits was motivated by recreational mathematicians looking for prime factors of such numbers.
It is easy to show that if n is divisible by a, then Rn

(b) is divisible by Ra
(b):

where is the  cyclotomic polynomial and d ranges over the divisors of n. For p prime, 

, which has the expected form of a repunit when x is substituted with b.
For example, 9 is divisible by 3, and thus R9 is divisible by R3—in fact, 111111111 = 111 · 1001001. The
corresponding cyclotomic polynomials and are and respectively. Thus,
for Rn to be prime n must necessarily be prime. But it is not sufficient for n to be prime; for example,
R3 = 111 = 3 · 37 is not prime. Except for this case of R3, p can only divide Rn for prime n if p = 2kn + 1 for some k.

http://en.wikipedia.org/w/index.php?title=Integer_factorization
http://en.wikipedia.org/w/index.php?title=Cyclotomic_polynomial
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Decimal repunit primes
Rn is prime for n = 2, 19, 23, 317, 1031,... (sequence A004023 in OEIS). R49081 and R86453 are probably prime. On
April 3, 2007 Harvey Dubner (who also found R49081) announced that R109297 is a probable prime.[3] He later
announced there are no others from R86453 to R200000.[4] On July 15, 2007 Maksym Voznyy announced R270343 to be
probably prime [5] , along with his intent to search to 400000. As of September 2010, all further candidates up to
R1300000 have been tested, but no new probable primes have been found so far.
It has been conjectured that there are infinitely many repunit primes[6] and they seem to occur roughly as often as the
prime number theorem would predict: the exponent of the Nth repunit prime is generally around a fixed multiple of
the exponent of the (N-1)th.
The prime repunits are a trivial subset of the permutable primes, i.e., primes that remain prime after any permutation
of their digits.

Base-2 repunit primes
See the article on Mersenne primes.

Base-3 repunit primes
The first few base-3 repunit primes are

13, 1093, 797161, 3754733257489862401973357979128773,
6957596529882152968992225251835887181478451547013, ... (sequence A076481 [7] in OEIS),

corresponding to of
3, 7, 13, 71, 103, ... (sequence A028491 [8] in OEIS).

Base-4 repunit primes

The only base-4 repunit prime is 5 ( ). , and 3 always divides when n
is odd and when n is even.
These repunits factor as follows: so no repunit after the second (

= 5) can be prime.

Base 5 repunit primes
The first few base-5 (quinary) repunit primes are

31, 19531, 12207031, 305175781, 177635683940025046467781066894531, (sequence A086122 [9] in OEIS)
corresponding to of

3, 7, 11, 13, 47, ... (sequence A004061 [10] in OEIS).

Base 6 repunit primes
The first few base-6 repunit primes are

7, 43, 55987, 7369130657357778596659,
3546245297457217493590449191748546458005595187661976371, ..., (sequence A165210 [11] in OEIS)

corresponding to of
2, 3, 7, 29, 71, ... (sequence A004062 [12] in OEIS)

http://www.research.att.com/~njas/sequences/A004023
http://en.wikipedia.org/w/index.php?title=OEIS
http://en.wikipedia.org/w/index.php?title=Harvey_Dubner
http://en.wikipedia.org/w/index.php?title=Permutation
http://en.wikipedia.org/wiki/Oeis%3Aa076481
http://en.wikipedia.org/w/index.php?title=On-Line_Encyclopedia_of_Integer_Sequences
http://en.wikipedia.org/wiki/Oeis%3Aa028491
http://en.wikipedia.org/w/index.php?title=On-Line_Encyclopedia_of_Integer_Sequences
http://en.wikipedia.org/w/index.php?title=Quinary
http://en.wikipedia.org/wiki/Oeis%3Aa086122
http://en.wikipedia.org/w/index.php?title=On-Line_Encyclopedia_of_Integer_Sequences
http://en.wikipedia.org/wiki/Oeis%3Aa004061
http://en.wikipedia.org/w/index.php?title=On-Line_Encyclopedia_of_Integer_Sequences
http://en.wikipedia.org/wiki/Oeis%3Aa165210
http://en.wikipedia.org/w/index.php?title=On-Line_Encyclopedia_of_Integer_Sequences
http://en.wikipedia.org/wiki/Oeis%3Aa004062
http://en.wikipedia.org/w/index.php?title=On-Line_Encyclopedia_of_Integer_Sequences
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Base 7 repunit primes
The first few base 7 repunit primes are

2801, 16148168401,
85053461164796801949539541639542805770666392330682673302530819774105141531698707146930307290253537320447270457,
138502212710103408700774381033135503926663324993317631729227790657325163310341833227775945426052637092067324133850503035623601

corresponding to of
5, 13, 131, 149, ... (sequence A004063 [13] in OEIS)

Base 8 and 9 repunit primes

The only base-8 or base-9 repunit prime is 73 ( ). , and 7 divides
when n is not divisible by 3 and when n is a multiple of 3. 

, and 2 always divides both and .

Factorization of base 8 and base 9 repunits

Base 8 repunits factor thus: so no repunit
except the third ( = 73) can be prime.
Base 9 repunits factor thus: 

Base 20 (vigesimal) repunit primes
The only known vigesimal (base 20) repunit primes or probable primes are for of

3, 11, 17, 1487, 31013, 48859, 61403 ((sequence A127995 [14] in OEIS))
The first three of these in decimal are

421, 10778947368421 and 689852631578947368421

History
Although they were not then known by that name, repunits in base 10 were studied by many mathematicians during
the nineteenth century in an effort to work out and predict the cyclic patterns of recurring decimals[15] .
It was found very early on that for any prime p greater than 5, the period of the decimal expansion of 1/p is equal to
the length of the smallest repunit number that is divisible by p. Tables of the period of reciprocal of primes up to
60,000 had been published by 1860 and permitted the factorization by such mathematicians as Reuschle of all
repunits up to R16 and many larger ones. By 1880, even R17 had been factored[16] and it is curious that, though
Edouard Lucas showed no prime below three million had period nineteen, there was no attempt to test any repunit
for primality until early in the twentieth century. The American mathematician Oscar Hoppe proved R19 to be prime
in 1916[17] and Lehmer and Kraitchik independently found R23 to be prime in 1929.
Further advances in the study of repunits did not occur until the 1960s, when computers allowed many new factors
of repunits to be found and the gaps in earlier tables of prime periods corrected. R317 was found to be a probable
prime circa 1966 and was proved prime eleven years later, when R1031 was shown to be the only further possible
prime repunit with fewer than ten thousand digits. It was proven prime in 1986, but searches for further prime
repunits in the following decade consistently failed. However, there was a major side-development in the field of
generalized repunits, which produced a large number of new primes and probable primes.
Since 1999, four further probably prime repunits have been found, but it is unlikely that any of them will be proven
prime in the foreseeable future because of their huge size.
The Cunningham project endeavours to document the integer factorizations of (among other numbers) the repunits to
base 2, 3, 5, 6, 7, 10, 11, and 12.

http://en.wikipedia.org/wiki/Oeis%3Aa004063
http://en.wikipedia.org/w/index.php?title=On-Line_Encyclopedia_of_Integer_Sequences
http://en.wikipedia.org/w/index.php?title=Octal
http://en.wikipedia.org/w/index.php?title=Nonary
http://en.wikipedia.org/w/index.php?title=73_%28number%29
http://en.wikipedia.org/w/index.php?title=Vigesimal
http://en.wikipedia.org/wiki/Oeis%3Aa127995
http://en.wikipedia.org/w/index.php?title=On-Line_Encyclopedia_of_Integer_Sequences
http://en.wikipedia.org/w/index.php?title=Recurring_decimal
http://en.wikipedia.org/w/index.php?title=Repeating_decimal
http://en.wikipedia.org/w/index.php?title=Integer_factorization
http://en.wikipedia.org/w/index.php?title=Edouard_Lucas
http://en.wikipedia.org/w/index.php?title=Oscar_Hoppe
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External links

Web sites
• Weisstein, Eric W., " Repunit (http:/ / mathworld. wolfram. com/ Repunit. html)" from MathWorld.
• The main tables (http:/ / www. cerias. purdue. edu/ homes/ ssw/ cun/ third/ pmain901) of the Cunningham project

(http:/ / www. cerias. purdue. edu/ homes/ ssw/ cun/ ).
• Repunit (http:/ / primes. utm. edu/ glossary/ page. php?sort=Repunit) at The Prime Pages (http:/ / primes. utm.

edu/ ) by Chris Caldwell.
• Repunits and their prime factors (http:/ / www. worldofnumbers. com/ repunits. htm) at World!Of Numbers (http:/

/ www. worldofnumbers. com).
• Prime generalized repunits (http:/ / www. primes. viner-steward. org/ andy/ titans. html) of at least 1000 decimal

digits by Andy Steward
• Repunit Primes Project (http:/ / www. gruppoeratostene. com/ ric-repunit/ repunit. htm) Giovanni Di Maria's

repunit primes page.
• The Repunit Primes Project (http:/ / www. repunit. org/ )
• Factorizations of 11...11 (Repunit) (http:/ / homepage2. nifty. com/ m_kamada/ math/ 11111. htm) by Makoto

Kamada

Books
• S. Yates, Repunits and repetends. ISBN 0-9608652-0-9.
• A. Beiler, Recreations in the theory of numbers. ISBN 0-486-21096-0. Chapter 11, of course.
• Paulo Ribenboim, The New Book Of Prime Number Records. ISBN 0-387-94457-5.
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Safe prime
A safe prime is a prime number of the form 2p + 1, where p is also a prime. (Conversely, the prime p is a Sophie
Germain prime.) The first few safe primes are
5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983,
1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907. (sequence A005385 [44] in OEIS)
With the exception of 7, a safe prime q is of the form 6k − 1 or, equivalently, q ≡ 5 (mod 6) — as is p > 3 (c.f.
Sophie Germain prime, second paragraph). Similarly, with the exception of 5, a safe prime q is of the form 4k − 1 or,
equivalently, q ≡ 3 (mod 4) — trivially true since (q − 1) / 2 must evaluate to an odd natural number. Combining
both forms using lcm(6,4) we determine that a safe prime q > 7 also must be of the form 12k−1 or, equivalently, q ≡
11 (mod 12).

Applications
These primes are called "safe" because of their relationship to strong primes. A prime number q is a strong prime if
q + 1 and q − 1 both have large prime factors. For a safe prime q = 2p + 1, the number q − 1 naturally has a large
prime factor, namely p, and so safe prime q meets part of the criteria for being a strong prime. The running times of
some methods of factoring a number with q as a prime factor depend partly on the size of the prime factors of q − 1.
This is true, for instance, of the Pollard rho +1 and −1 methods. Although the most efficient known integer
factorization methods do not depend on the size of the prime factors of q−1, this is nonetheless considered important
in cryptography: for instance, the ANSI X9.31 standard mandates that strong primes (not safe primes) be used for
RSA moduli.
Safe primes are also important in cryptography because of their use in discrete logarithm-based techniques like
Diffie-Hellman key exchange. If 2p + 1 is a safe prime, the multiplicative group of numbers modulo 2p + 1 has a
subgroup of large prime order. It is usually this prime-order subgroup that is desirable, and the reason for using safe
primes is so that the modulus is as small as possible relative to p.
Safe primes obeying certain congruences can be used to generate pseudo-random numbers of use in Monte Carlo
simulation.

Further properties
There is no special primality test for safe primes the way there is for Fermat primes and Mersenne primes. However,
Pocklington's criterion can be used to prove the primality of 2p+1 once one has proven the primality of p.
With the exception of 5, there are no Fermat primes that are also safe primes. Since Fermat primes are of the form F
= 2n + 1, it follows that (F − 1)/2 is a power of two.
With the exception of 7, there are no Mersenne primes that are also safe primes. This follows from the statement
above that all safe primes except 7 are of the form 6k − 1. Mersenne primes are of the form 2m − 1, but 2m − 1 =
6k − 1 would imply that 2m is divisible by 6, which is impossible.
Just as every term except the last one of a Cunningham chain of the first kind is a Sophie Germain prime, so every
term except the first of such a chain is a safe prime. Safe primes ending in 7, that is, of the form 10n + 7, are the last
terms in such chains when they occur, since 2(10n + 7) + 1 = 20n + 15 is divisible by 5.
If a safe prime q is congruent to 7 mod 8, then it is a divisor of the Mersenne number with its matching Sophie
Germain prime as exponent.
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Records
As of March 2010, the largest known safe prime is 183027·2265441−1. This prime, along with the corresponding
largest known Sophie Germain prime, was found by Tom Wu on March 22, 2010 using the programs sgsieve and
LLR.[1]

On June 18, 2005, Antoine Joux and Reynald Lercier announced that they computed a discrete logarithm modulo a
130-digit safe prime.[2]
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External links
• Safe prime (http:/ / planetmath. org/ encyclopedia/ SafePrime. html) at planetmath.org

Self number
A self number, Colombian number or Devlali number is an integer which, in a given base, cannot be generated by
any other integer added to the sum of that other integer's digits. For example, 21 is not a self number, since it can be
generated by the sum of 15 and the digits comprising 15, that is, 21 = 15 + 1 + 5. No such sum will generate the
integer 20, hence it is a self number. These numbers were first described in 1949 by the Indian mathematician D. R.
Kaprekar.
The first few base 10 self numbers are:

1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97, 108, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 211, 222,
233, 244, 255, 266, 277, 288, 299, 310, 312, 323, 334, 345, 356, 367, 378, 389, 400, 411, 413, 424, 435, 446,
457, 468, 479, 490, 501, 512, 514, 525 (sequence A003052 [1] in OEIS)

In general, for even bases, all odd numbers below the base number are self numbers, since any number below such
an odd number would have to also be a 1-digit number which when added to its digit would result in an even
number. For odd bases, all odd numbers are self numbers.
A search for self numbers can turn up self-descriptive numbers, which are similar to self numbers in being
base-dependent, but quite different in definition and much fewer in frequency.

Recurrent formula
The following recurrence relation generates some base 10 self numbers:

(with C1 = 9)
And for binary numbers:

(where j stands for the number of digits) we can generalize a recurrence relation to generate self numbers in any base
b:
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in which C1 = b − 1 for even bases and C1 = b − 2 for odd bases.
The existence of these recurrence relations shows that for any base there are infinitely many self numbers.

Self primes
A self prime is a self number that is prime. The first few self primes (sequence A006378 [45] in OEIS) are
3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389
In October 2006 Luke Pebody demonstrated that the largest known Mersenne prime that is at the same time a self
number is 224036583−1. This is then the largest known self prime as of 2006.

Selfness tests

Reduction tests
Luke Pebody showed (Oct 2006) that a link can be made between the self property of a large number n and a
low-order portion of that number, adjusted for digit sums:
a) In general, n is self if and only if m = R(n)+SOD(R(n))-SOD(n) is self
Where:
R(n) is the smallest rightmost digits of n, greater than 9.d(n)
d(n) is the number of digits in n
SOD(x) is the sum of digits of x, the function S10(x) from above.
b) If n = a.10^b+c, c<10^b, then n is self if and only if both {m1 & m2} are negative or self
Where:
m1 = c - SOD(a)
m2 = SOD(a-1)+9.b-(c+1)
c) For the simple case of a=1 & c=0 in the previous model (i.e. n=10^b), then n is self if and only if (9.b-1) is self

Effective test
Kaprekar demonstrated that:

Where:
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Excerpt from the table of bases where 2007 is self or Colombian
The following table was calculated in 2007.

Base Certificate Sum of digits

40 48

41 - -

42 40

43 - -

44 36

44 79

45 - -

46 81

47 - -

48 - -

49 - -

50 48

51 - -

52 60

53 - -

54 76

55 - -

56 41

57 - -

58 63

59 - -

60 89
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Sexy prime
In mathematics, a sexy prime is a prime number that differs from another prime number by six. For example, the
numbers 5 and 11 are both sexy primes, because they differ by 6. If p + 2 or p + 4 is also prime, then the sexy prime
is part of a prime triplet.
The term "sexy prime" stems from the Latin word for six: sex.

n# notation
As used in this article, n# stands for the product 2 · 3 · 5 · 7 · … of all the primes ≤ n.

Types of groupings

Sexy prime pairs
The sexy primes (sequences A023201 [46] and A046117 [47] in OEIS) below 500 are:

(5,11), (7,13), (11,17), (13,19), (17,23), (23,29), (31,37), (37,43), (41,47), (47,53), (53,59), (61,67), (67,73),
(73,79), (83,89), (97,103), (101,107), (103,109), (107,113), (131,137), (151,157), (157,163), (167,173),
(173,179), (191,197), (193,199), (223,229), (227,233), (233,239), (251,257), (257,263), (263,269), (271,277),
(277,283), (307,313), (311,317), (331,337), (347,353), (353,359), (367,373), (373,379), (383,389), (433,439),
(443,449), (457,463), (461,467).

As of May 2009 the largest known sexy prime was found by Ken Davis and has 11593 digits. The primes are (p,
p+6) for

p = (117924851×587502×9001#×(587502×9001#+1)+210)×(587502×9001#−1)/35+5.[1]

9001# = 2×3×5×...×9001 is a primorial, i.e. the product of primes ≤ 9001.

Sexy prime triplets
Sexy primes can be extended to larger constellations. Triplets of primes (p, p + 6, p + 12) such that p + 18 is
composite are called sexy prime triplets. Those below 1000 are (A046118 [2], A046119 [3], A046120 [4]):

(5,11,17), (7,13,19), (17,23,29), (31,37,43), (47,53,59), (67,73,79), (97,103,109), (101,107,113),
(151,157,163), (167,173,179), (227,233,239), (257,263,269), (271,277,283), (347,353,359), (367,373,379),
(557,563,569), (587,593,599), (607,613,619), (647,653,659), (727,733,739), (941,947,953), (971,977,983).

As of April 2006 the largest known sexy prime triplet, found by Ken Davis had 5132 digits:
p = (84055657369 · 205881 · 4001# · (205881 · 4001# + 1) + 210) · (205881 · 4001# - 1) / 35 + 1.[5]

Sexy prime quadruplets
Sexy prime quadruplets (p, p + 6, p + 12, p + 18) can only begin with primes ending in a 1 in their decimal
representation (except for the quadruplet with p = 5). The sexy prime quadruplets below 1000 are (A023271 [6],
A046122 [7], A046123 [8], A046124 [9]):

(5,11,17,23), (11,17,23,29), (41,47,53,59), (61,67,73,79), (251,257,263,269), (601,607,613,619),
(641,647,653,659).

In November 2005 the largest known sexy prime quadruplet, found by Jens Kruse Andersen had 1002 digits:
p = 411784973 · 2347# + 3301.[10]

In September 2010 Ken Davis announced a 1004-digit quadruplet with p = 23333 + 1582534968299.[11]
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Sexy prime quintuplets
In an arithmetic progression of five terms with common difference 6, because 6>5 and the two numbers are
relatively prime, one of the terms must be divisible by 5. Thus, the only sexy prime quintuplet is (5,11,17,23,29)
with no longer sequence of sexy primes possible.

See also
• Twin prime (two primes that differ by 2)
• Cousin prime (two primes that differ by 4)
• Prime k-tuple
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Smarandache–Wellin number
In mathematics, a Smarandache–Wellin number is an integer that in a given base is the concatenation of the first n
prime numbers written in that base. Smarandache–Wellin numbers are named after Florentin Smarandache and Paul
R. Wellin.
The first decimal Smarandache–Wellin numbers are:

2, 23, 235, 2357, 235711, ... (sequence A019518 [1] in OEIS).

Smarandache–Wellin primes
A Smarandache–Wellin number that is also prime is called a Smarandache–Wellin prime. The first three are 2, 23
and 2357 (A069151 [48]). The fourth has 355 digits and ends with the digits 719.[2]

The primes at the end of the concatenation in the Smarandache–Wellin primes are
2, 3, 7, 719, 1033, 2297, 3037, 11927?, ... (A046284 [3]).

The indices of the Smarandache–Wellin primes in the sequence of Smarandache–Wellin numbers are:
1, 2, 4, 128, 174, 342, 435, 1429?, ... (A046035 [4]).

The 1429th Smarandache–Wellin number is a probable prime with 5719 digits ending in 11927, discovered by Eric
W. Weisstein in 1998.[5] If it is proven prime, it will be the eighth Smarandache–Wellin prime. In July 2006
Weisstein's search showed the index of the next Smarandache–Wellin prime (if one exists) is greater than 18272.[6]
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Solinas prime
In mathematics, a Solinas prime, named after Jerome Solinas, is a prime number of the form 2a ± 2b ± 1, where 0 <
b < a.
For example, the first five pairs of twin primes are also Solinas primes.
The first few Solinas primes are

3, 5, 7, … (sequence A165255 [49] in OEIS).

External links
• Jerome A. Solinas, "Generalized Mersenne Numbers [1]" (pdf)
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Sophie Germain prime
In number theory, a prime number p is a Sophie Germain prime if 2p + 1 is also prime. For example, 23 is a Sophie
Germain prime because it is a prime and 2 × 23 + 1 = 47, also prime. These numbers are named after French
mathematician Marie-Sophie Germain.
A Sophie Germain prime p > 3 is of the form 6k−1 or, equivalently, p ≡ 5 (mod 6) — as is its matching safe prime
2p+1. We note that the other form for a prime p > 3 is 6k + 1 or, equivalently, p ≡ 1 (mod 6), and that 3|(2p + 1) —
thus excluding such p from the Sophie Germain prime domain. This is trivially proven using modular arithmetic.
It is conjectured that there are infinitely many Sophie Germain primes, but like the twin prime conjecture, this has
not been proven.
The first few Sophie Germain primes are:

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, …... (sequence A005384 [50] in OEIS).
The largest known Sophie Germain prime as of March 2010 is 183027 × 2265440−1. It has 79911 decimal digits and
was found in March 2010 by Tom Wu using the program LLR.[1] Before that the two largest were 648621027630345
× 2253824−1 and 620366307356565 × 2253824−1. They both have 76424 decimal digits and were found in November
2009 by Zoltán Járai, Gabor Farkas, Timea Csajbok, János Kasza and Antal Járai.[2] [3] The previous record was set 6
weeks earlier, 607095 × 2176311−1 with 53081 digits, found by Tom Wu.[4] Before that the record was 48047305725
× 2172403−1 with 51910 digits, found by David Underbakke in January 2007 using the programs TwinGen and
LLR.[5] And before that, the record was held by the same team as the November 2009 records, 137211941292195 ×
2171960−1 with 51780 digits, found in May 2006.[6] As of March 2010 the above are still the six largest known
Sophie Germain primes.
A heuristic estimate (due to G. H. Hardy and J. E. Littlewood) for the number of Sophie Germain primes less than n
is 2C2 n / (ln n)2 where C2 is the twin prime constant, approximately 0.660161. For n = 104, this estimate predicts
156 Sophie Germain primes, which has a 20% error compared to the exact value of 190. For n = 107, the estimate
predicts 50822, which is still 10% off from the exact value of 56032.
A sequence {p, 2p + 1, 2(2p + 1) + 1, ...} of 1 or more Sophie Germain primes, ending with a prime which does not
have to be a Sophie Germain, is called a Cunningham chain of the first kind. Every term of such a sequence except
the first and last is both a Sophie Germain prime and a safe prime.
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If a Sophie Germain prime p is congruent to 3 (mod 4), then its matching safe prime 2p + 1 will be a divisor of the
Mersenne number 2p − 1.
Sophie Germain primes were mentioned in the stage play Proof and the subsequent film.

Application in (pseudo-)random number generation
Sophie Germain primes have a practical application in the generation of pseudo-random numbers. The decimal
expansion of 1/q will produce a stream of q − 1 pseudo-random digits, if q is the safe prime of a Sophie Germain
prime p, with p congruent to 3, 9, or 11 (mod 20). Thus “suitable” prime numbers q are 7, 23, 47, 59, 167, 179, etc.
(corresponding to p =  3, 11, 23, 29, 83, 89, etc.). The result is a stream of length q − 1 digits (including leading
zeros); for more see OEIS sequence A000355 [7]. So, for example, using q = 23 generates the pseudo-random digits
0, 4, 3, 4, 7, 8, 2, 6, 0, 8, 6, 9, 5, 6, 5, 2, 1, 7, 3, 9, 1, 3. Note that these digits are not appropriate for cryptographic
purposes, as the value of each can be derived from its predecessor in the digit-stream.

See also
• PrimeGrid – search for Sophie Germain primes
• Twin Prime Search – includes search for Sophie Germain primes

References
[1] The Prime Database: 183027*2^265440-1 (http:/ / primes. utm. edu/ primes/ page. php?id=92222). From The Prime Pages.
[2] The Prime Database: 648621027630345*2^253824-1 (http:/ / primes. utm. edu/ primes/ page. php?id=90907).
[3] The Prime Database: 620366307356565*2^253824-1 (http:/ / primes. utm. edu/ primes/ page. php?id=90711)
[4] The Prime Database: 607095*2^176311-1 (http:/ / primes. utm. edu/ primes/ page. php?id=89999).
[5] The Prime Database: 48047305725*2^172403-1 (http:/ / primes. utm. edu/ primes/ page. php?id=79261).
[6] The Prime Database: 137211941292195*2^171960-1 (http:/ / primes. utm. edu/ primes/ page. php?id=77705).
[7] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa000355
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Star number
A star number is a centered figurate number that represents a centered hexagram, such as the one that Chinese
checkers is played on.
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The nth star number is given by the formula 6n(n - 1) + 1. The first 43 star numbers are
1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, 937, 1093, 1261, 1441, 1633, 1837, 2053, 2281, 2521, 2773,
3037, 3313, 3601, 3901, 4213, 4537, 4873, 5221, 5581, 5953, 6337, 6733, 7141, 7561, 7993, 8437, 8893, 9361,
9841, 10333, 10837 (sequence A003154 [1] in OEIS).
Geometrically, the nth star number is made up of a central point and 12 copies of the (n-1)th triangular number —
making it numerically equal to the nth centered dodecagonal number, but differently arranged.
The digital root of a star number is always 1 or 4. The last two digits of a star number in base 10 are always 01, 13,
21, 33, 37, 41, 53, 61, 73, 81, or 93.
Not many star numbers are also triangular numbers. 1 and 253 are the only two such numbers in the list given above,
corresponding to n=1 and n=7. There are infinitely many with the next two correspond to n=91 and n=1261
(sequence A003154 [1] in OEIS). These are the values n=(x+2)/4 with x an even solution of the Diophantine equation

Chinese checkers board has 121 holes.

Not many star numbers are also square. 1 and 121 are the only two such numbers in the list given above,
corresponding to n=1 and n=5. There are infinitely many with the next two being n=45 and n=441 (sequence
A054318 [2] in OEIS). These n values are n=(y+1)/2 from the Diophantine equation 
The term "star number" or "stellate number" is occasionally used to refer to octagonal numbers.
A star prime is a star number that is prime. The first few star primes (sequence A083577 [51] in OEIS) are
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13, 37, 73, 181, 337, 433, 541, 661, 937.
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Stern prime
A Stern prime, named for Moritz Abraham Stern, is a prime number that is not the sum of a smaller prime and
twice the square of a nonzero integer. Or, to put it algebraically, if for a prime q there is no smaller prime p and
nonzero integer b such that q = p + 2b², then q is a Stern prime. The known Stern primes are

2, 3, 17, 137, 227, 977, 1187, 1493 (sequence A042978 [52] in OEIS).
So, for example, if we try subtracting from 137 the first few squares doubled in order, we get {135, 129, 119, 105,
87, 65, 39, 9}, none of which are prime. That means that 137 is a Stern prime. On the other hand, 139 is not a Stern
prime, since we can express it as 137 + 2(1²), or 131 + 2(2²), etc.
In fact, many primes have more than one representation of this sort. Given a twin prime, the larger prime of the pair
has, if nothing else, a Goldbach representation of p + 2(1²). And if that prime is the largest of a prime quadruplet, p +
8, then p + 2(2²) is also available. Sloane's A007697 [1] lists odd numbers with at least n Goldbach representations.
Leonhard Euler observed that as the numbers get larger, they get more representations of the form ,
suggesting that there might be a largest number with zero such representations.
Therefore, the above list of Stern primes might be not only finite, but also complete. According to Jud McCranie,
these are the only Stern primes from among the first 100000 primes. All the known Stern primes have more efficient
Waring representations than their Goldbach representations would suggest.
Christian Goldbach conjectured in a letter to Leonhard Euler that every odd integer is of the form p + 2b² with b
allowed to be any integer, including zero. Laurent Hodges believes that Stern became interested in the problem after
reading a book of Goldbach's correspondence. Because in Stern's time, 1 was considered a prime, 3 was not a Stern
prime because it could be represented as 1 + 2(1²). The rest of the list remains the same.

References
• Laurent Hodges, A lesser-known Goldbach conjecture [2]
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Strobogrammatic prime
A strobogrammatic prime is a prime number that, given a base and given a set of glyphs, appears the same whether
viewed normally or upside down. In base 10, given a set of glyphs where 0, 1 and 8 are symmetrical around the
horizontal axis, and 6 and 9 are the same as each other upside down, (such as the digit characters in ASCII using the
font Stylus BT, or on the seven-segment display of a calculator), the first few strobogrammatic primes are:

11, 101, 181, 619, 16091, 18181 (sequence A007597 [1] in OEIS)
Although amateur aficionados of mathematics are quite interested in this concept, professional mathematicians
generally are not. Like the concept of repunit primes and palindromic primes, the concept of strobogrammatic primes
is base-dependent. But the concept of strobogrammatic primes is not neatly expressible algebraically, the way that
the concept of repunit primes is, or even the concept of palindromic primes.
There are sets of glyphs for writing numbers in base 10, such as the Devanagari and Gurmukhi of India in which the
primes listed above are not strobogrammatic at all.
In binary, given a glyph for 1 consisting of a single line without hooks or serifs, all Mersenne primes are
strobogrammatic. Palindromic primes in binary are also strobogrammatic.
Dihedral primes that don't use 2 or 5 are also strobogrammatic primes.

See also
• Strobogrammatic number

External links
• The Prime Glossary: Strobogrammatic [2]
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Strong prime
In mathematics, a strong prime is a prime number with certain special properties. The definitions of strong primes
are different in cryptography and number theory.

Definition in cryptography
In cryptography, a prime number is strong if the following conditions are satisfied[1] .
1. is large.
2. has large prime factors. That is, for some integer and large prime .
3. has large prime factors. That is, for some integer and large prime .
4. has large prime factors. That is, for some integer and large prime .
Sometimes a prime that satisfies a subset of the above conditions is also called strong. In some cases, some
additional conditions may be included. For example, , or , etc.

Definition in number theory
In number theory, a strong prime is a prime number that is greater than the arithmetic mean of the nearest prime
above and below (in other words, it's closer to the following than to the preceding prime). Or to put it algebraically,
given a prime number , where n is its index in the ordered set of prime numbers, . The

first few strong primes are
11, 17, 29, 37, 41, 59, 67, 71, 79, 97, 101, 107, 127, 137, 149, 163, 179, 191, 197, 223, 227, 239, 251, 269,
277, 281, 307, 311, 331, 347, 367, 379, 397, 419, 431, 439, 457, 461, 479, 487, 499 (sequence A051634 [2] in
OEIS).

For example, 17 is the seventh prime. The sixth and eighth primes, 13 and 19, add up to 32, and half that is 16. That
is less than 17, thus 17 is a strong prime.
In a twin prime pair (p, p + 2) with p > 5, p is always a strong prime, since 3 must divide p − 2 which cannot be
prime.
It is possible for a prime to be a strong prime both in the cryptographic sense and the number theoretic sense. For the
sake of illustration, 439351292910452432574786963588089477522344331 is a strong prime in the number theoretic
sense because the arithmetic mean of its two neighboring primes is 62 less. Without the aid of a computer, this
number would be a strong prime in the cryptographic sense because
439351292910452432574786963588089477522344330 has the large prime factor 1747822896920092227343 (and
in turn the number one less than that has the large prime factor 1683837087591611009),
439351292910452432574786963588089477522344332 has the large prime factor 864608136454559457049 (and in
turn the number one less than that has the large prime factor 105646155480762397). Even using algorithms more
advanced than trial by division, these numbers would be difficult to factor by hand. For a modern computer algebra
system, these numbers can be factored almost instantaneously. A cryptographically strong prime has to be much
larger than this example.
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Application of strong primes in cryptography

Factoring-based cryptosystems
Some people suggest that in the key generation process in RSA cryptosystems, the modulus should be chosen as
the product of two strong primes. This makes the factorization of using Pollard's p − 1 algorithm
computationally infeasible. For this reason, strong primes are required by the ANSI X9.31 standard for use in
generating RSA keys for digital signatures. However, strong primes do not protect against modulus factorisation
using newer algorithms such as Lenstra elliptic curve factorization and Number Field Sieve algorithm. Given the
additional cost of generating strong primes RSA Security do not currently recommend their use in key generation.
Similar (and more technical) argument is also given by Rivest and Silverman [1] .

Discrete-logarithm-based cryptosystems

It is shown by Stephen Pohlig and Martin Hellman in 1978 that if all the factors of p-1 are less than , then the
problem of solving discrete logarithm modulo p is in P. Therefore, for cryptosystems based on discrete logarithm,
such as DSA, it is required that p-1 has at least one large prime factor.
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Super-prime
Super-prime numbers are the subsequence of prime numbers that occupy prime-numbered positions within the
sequence of all prime numbers. The subsequence begins

3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, … (sequence A006450 [53] in OEIS).
That is, if p(i) denotes the ith prime number, the numbers in this sequence are those of the form p(p(i)). Dressler &
Parker (1975) used a computer-aided proof (based on calculations involving the subset sum problem) to show that
every integer greater than 96 may be represented as a sum of distinct super-prime numbers. Their proof relies on a
result resembling Bertrand's postulate, stating that (after the larger gap between super-primes 5 and 11) each
super-prime number is less than twice its predecessor in the sequence.
Broughan and Barnett[1] show that there are

super-primes up to x.
One can also define "higher-order" primeness much the same way, and obtain analogous sequences of primes.
Fernandez (1999)
A variation on this theme is the sequence of prime numbers with palindromic indices, beginning with

3, 5, 11, 17, 31, 547, 739, 877, 1087, 1153, 2081, 2381, … (sequence A124173 [2] in OEIS).

References
[1] Kevin A. Broughan and A. Ross Barnett, On the Subsequence of Primes Having Prime Subscripts (http:/ / www. cs. uwaterloo. ca/ journals/

JIS/ VOL12/ Broughan/ broughan16. html), Journal of Integer Sequences 12 (2009), article 09.2.3.
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380–381, doi:10.1145/321892.321900, MR0376599.

• Fernandez, Neil (1999), An order of primeness, F(p) (http:/ / borve. org/ primeness/ FOP. html).
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Supersingular prime (moonshine theory)
In the mathematical branch of moonshine theory, a supersingular prime is a certain type of prime number. Namely,
a supersingular prime is a prime divisor of the order of the Monster group M, the largest of the sporadic simple
groups. There are precisely 15 supersingular primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, and 71.
This definition is related to the notion of supersingular elliptic curves as follows. For a prime number p, the
following are equivalent:
1. The modular curve X0

+(p) = X0(p) / wp, where wp is the Fricke involution of X0(p), has genus zero.
2. Every supersingular elliptic curve in characteristic p can be defined over the prime subfield Fp.
3. The order of the Monster group is divisible by p.
The equivalence is due to Andrew Ogg. More precisely, in 1975 Ogg showed that the primes satisfying the first
condition are exactly the 15 primes 2,...,71 listed above and shortly thereafter learned of the (then conjectural)
existence of a sporadic simple group having exactly these primes as prime divisors. This strange coincidence was the
beginning of the theory of Monstrous Moonshine.
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Thabit number
In number theory, a Thabit number, Thâbit ibn Kurrah number, or 321 number is an integer of the form 3·2n−1
for a non-negative integer n. The first few Thabit numbers are:

2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431,
1572863, ... (sequence A055010 [1] in OEIS)

The binary representation of the Thabit number 3·2n−1 is n+2 digits long, consisting of "10" followed by n 1s.
The first few Thabit numbers that are prime (also known as 321 primes):

2, 5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831, ... (sequence A007505 [55] in OEIS)
As of April 2008, the known n values which give prime Thabit numbers are:[2] [3]

0, 1, 2, 3, 4, 6, 7, 11, 18, 34, 38, 43, 55, 64, 76, 94, 103, 143, 206, 216, 306, 324, 391, 458, 470, 827, 1274,
3276, 4204, 5134, 7559, 12676, 14898, 18123, 18819, 25690, 26459, 41628, 51387, 71783, 80330, 85687,
88171, 97063, 123630, 155930, 164987, 234760, 414840, 584995, 702038, 727699, 992700, 1201046,
1232255, 2312734, 3136255, 4235414 (sequence A002235 [4] in OEIS)

The primes for n≥234760 were found by the distributed computing project 321 search.[5] The largest of these,
3·24235414−1, has 1274988 digits and was found by Dylan Bennett in April 2008. The former record was
3·23136255−1 with 944108 digits, found by Paul Underwood in March 2007.

Amicable numbers
When both n and n-1 yield prime Thabit numbers, and is also prime, a pair of amicable numbers can
be calculated as follows:

and 
So, for example, n=2 gives the Thabit number 11, and n=1 gives the Thabit number 5, and our third term is 71. Then,
22=4, multiplied by 5 and 11 results in 220, whose divisors add up to 284, and 4 times 71 is 284, whose divisors add
up to 220.
The only known n satisfying these conditions are 2, 4 and 7, corresponding to the Thabit numbers 11, 47 and 383.
The 9th Century astronomer Thābit ibn Qurra is credited as the first to study these numbers and their relation to
amicable numbers.
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Truncatable prime
In number theory, a left-truncatable prime is a prime number which, in a given base, contains no 0, and if the
leading ("left") digit is successively removed, then all resulting numbers are prime. For example 9137, since 9137,
137, 37 and 7 are all prime. Decimal representation is often assumed and always used in this article.
A right-truncatable prime is a prime which remains prime when the last ("right") digit is successively removed.
For example 7393, since 7393, 739, 73, 7 are all prime.
There are exactly 4260 decimal left-truncatable primes:

2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 113, 137, 167, 173, 197, 223, 283, 313, 317, 337, 347, 353,
367, 373, 383, 397, 443, 467, 523, 547, 613, 617, 643, 647, 653, 673, 683, 743, 773, 797, 823, 853, 883, 937,
947, 953, 967, 983, 997, 1223, 1283, 1367 ... (sequence A024785 [16] in OEIS)

The largest is the 24-digit 357686312646216567629137.
There are 83 right-truncatable primes. The complete list:

2, 3, 5, 7, 23, 29, 31, 37, 53, 59, 71, 73, 79, 233, 239, 293, 311, 313, 317, 373, 379, 593, 599, 719, 733, 739,
797, 2333, 2339, 2393, 2399, 2939, 3119, 3137, 3733, 3739, 3793, 3797, 5939, 7193, 7331, 7333, 7393,
23333, 23339, 23399, 23993, 29399, 31193, 31379, 37337, 37339, 37397, 59393, 59399, 71933, 73331,
73939, 233993, 239933, 293999, 373379, 373393, 593933, 593993, 719333, 739391, 739393, 739397,
739399, 2339933, 2399333, 2939999, 3733799, 5939333, 7393913, 7393931, 7393933, 23399339, 29399999,
37337999, 59393339, 73939133 (sequence A024770 [43] in OEIS)

The largest is the 8-digit 73939133. All primes above 5 end with digit 1, 3, 7 or 9, so a right-truncatable prime can
only contain those digits after the leading digit.
There are 15 primes which are both left-truncatable and right-truncatable. They have been called two-sided primes.
The complete list:

2, 3, 5, 7, 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397 (A020994 [61])
While the primality of a number does not depend on the numeral system used, truncatable primes are defined only in
relation with a given base. A variation involves removing 2 or more decimal digits at a time. This is mathematically
equivalent to using base 100 or a larger power of 10, with the restriction that base 10n digits must be at least 10n−1, in
order to match a decimal n-digit number with no leading 0.
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Twin prime
A twin prime is a prime number that differs from another prime number by two. Except for the pair (2, 3), this is the
smallest possible difference between two primes. Some examples of twin prime pairs are (3, 5), (5, 7), (11, 13), (17,
19), (29, 31), (41, 43), ... (821, 823), etc. Sometimes the term twin prime is used for a pair of twin primes; an
alternative name for this is prime twin.

History
The question of whether there exist infinitely many twin primes has been one of the great open questions in number
theory for many years. This is the content of the twin prime conjecture, which states There are infinitely many
primes p such that p + 2 is also prime. In 1849 de Polignac made the more general conjecture that for every natural
number k, there are infinitely many prime pairs p and p′ such that p′ − p = 2k. The case k = 1 is the twin prime
conjecture.
A stronger form of the twin prime conjecture, the Hardy–Littlewood conjecture, postulates a distribution law for
twin primes akin to the prime number theorem.

Brun's theorem
In 1915, Viggo Brun showed that the sum of reciprocals of the twin primes was convergent. This famous result,
called Brun's theorem, was the first use of the Brun sieve and helped initiate the development of modern sieve
theory. The modern version of Brun's argument can be used to show that the number of twin primes less than N does
not exceed

for some absolute constant C > 0.
In 1940, Paul Erdős showed that there is a constant c < 1 and infinitely many primes p such that (p′ − p) < (c ln p)
where p′ denotes the next prime after p. This result was successively improved; in 1986 Helmut Maier showed that a
constant c < 0.25 can be used. In 2004 Daniel Goldston and Cem Yıldırım showed that the constant could be
improved further to c = 0.085786… In 2005, Goldston, János Pintz and Yıldırım established that c can be chosen to
be arbitrarily small[1] [2]

In fact, by assuming the Elliott–Halberstam conjecture or a slightly weaker version, they were able to show that
there are infinitely many n such that at least two of n, n + 2, n + 6, n + 8, n + 12, n + 18, or n + 20 are prime. Under a
stronger hypothesis they showed that at least two of n, n + 2, n + 4, and n + 6 are prime.
Every twin prime pair except (3, 5) is of the form (6n − 1, 6n + 1) for some natural number n, and with the exception
of n = 1, n must end in 0, 2, 3, 5, 7, or 8.
It has been proved that the pair (m, m+2) is a twin prime if and only if

If m − 4 or m + 6 is also prime then the 3 primes are called a prime triplet.
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Largest known twin prime
On January 15, 2007 two distributed computing projects, Twin Prime Search and PrimeGrid found the largest known
twin primes, 2003663613 · 2195000 ± 1. The numbers have 58711 decimal digits. Their discoverer was Eric Vautier
of France.
On August 6, 2009 those same two projects announced that a new record twin prime had been found.[3] It is
65516468355 · 2333333 ± 1.[4] The numbers have 100355 decimal digits.
An empirical analysis of all prime pairs up to 4.35 · 1015 shows that if the number of such pairs less than x is
f(x)·x/(log x)2 then f(x) is about 1.7 for small x and decreases towards about 1.3 as x tends to infinity.
There are 808,675,888,577,436 twin prime pairs below 1018.[5]

The limiting value of f(x) is conjectured to equal twice the twin prime constant (not to be confused with Brun's
constant)

(sequence A114907 [6] in OEIS) this conjecture would imply the twin prime conjecture, but remains unresolved.
The twin prime conjecture would give a better approximation, as with the prime counting function, by

The first 35 twin prime pairs
There are 35 twin prime pairs below 1000, given in the following list:

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149,
151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349),
(419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619), (641, 643), (659, 661), (809,
811), (821, 823), (827, 829), (857, 859), (881, 883).

Since every third odd number is divisible by 3, no three successive odd numbers can be prime unless one of them is
3, thus 5 is the only prime which is part of two pairs. Also, along the same lines, other than the first pair, the number
centered between the twin primes must always be divisible by 6. The lower member of a pair is by definition a Chen
prime.

First Hardy–Littlewood conjecture
The Hardy–Littlewood conjecture (after G. H. Hardy and John Littlewood) is a generalization of the twin prime
conjecture. It is concerned with the distribution of prime constellations, including twin primes, in analogy to the
prime number theorem. Let π2(x) denote the number of primes p ≤ x such that p + 2 is also prime. Define the twin
prime constant C2 as[7]

(sequence A005597 [8] in OEIS) (here the product extends over all prime numbers p ≥ 3). Then the conjecture is that

in the sense that the quotient of the two expressions tends to 1 as n approaches infinity. (The second ~ is not part of
the conjecture and is proved by integration by parts.)
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This conjecture can be justified (but not proven) by assuming that 1 / ln t describes the density function of the prime
distribution, an assumption suggested by the prime number theorem.

Polignac's conjecture
Polignac's conjecture from 1849 states that for every even natural number k, there are infinitely many prime pairs p
and p′ such that p − p′ = k. The case k = 2 is the twin prime conjecture. The case k = 4 corresponds to cousin primes
and the case k = 6 to sexy primes. The conjecture has not been proved or disproved for any value of k.
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Two-sided prime
In number theory, a left-truncatable prime is a prime number which, in a given base, contains no 0, and if the
leading ("left") digit is successively removed, then all resulting numbers are prime. For example 9137, since 9137,
137, 37 and 7 are all prime. Decimal representation is often assumed and always used in this article.
A right-truncatable prime is a prime which remains prime when the last ("right") digit is successively removed.
For example 7393, since 7393, 739, 73, 7 are all prime.
There are exactly 4260 decimal left-truncatable primes:

2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 113, 137, 167, 173, 197, 223, 283, 313, 317, 337, 347, 353,
367, 373, 383, 397, 443, 467, 523, 547, 613, 617, 643, 647, 653, 673, 683, 743, 773, 797, 823, 853, 883, 937,
947, 953, 967, 983, 997, 1223, 1283, 1367 ... (sequence A024785 [16] in OEIS)

The largest is the 24-digit 357686312646216567629137.
There are 83 right-truncatable primes. The complete list:

2, 3, 5, 7, 23, 29, 31, 37, 53, 59, 71, 73, 79, 233, 239, 293, 311, 313, 317, 373, 379, 593, 599, 719, 733, 739,
797, 2333, 2339, 2393, 2399, 2939, 3119, 3137, 3733, 3739, 3793, 3797, 5939, 7193, 7331, 7333, 7393,
23333, 23339, 23399, 23993, 29399, 31193, 31379, 37337, 37339, 37397, 59393, 59399, 71933, 73331,
73939, 233993, 239933, 293999, 373379, 373393, 593933, 593993, 719333, 739391, 739393, 739397,
739399, 2339933, 2399333, 2939999, 3733799, 5939333, 7393913, 7393931, 7393933, 23399339, 29399999,
37337999, 59393339, 73939133 (sequence A024770 [43] in OEIS)

The largest is the 8-digit 73939133. All primes above 5 end with digit 1, 3, 7 or 9, so a right-truncatable prime can
only contain those digits after the leading digit.
There are 15 primes which are both left-truncatable and right-truncatable. They have been called two-sided primes.
The complete list:

2, 3, 5, 7, 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397 (A020994 [61])
While the primality of a number does not depend on the numeral system used, truncatable primes are defined only in
relation with a given base. A variation involves removing 2 or more decimal digits at a time. This is mathematically
equivalent to using base 100 or a larger power of 10, with the restriction that base 10n digits must be at least 10n−1, in
order to match a decimal n-digit number with no leading 0.
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Ulam number
An Ulam number is a member of an integer sequence devised by and named after Stanislaw Ulam, who introduced
it in 1964.[1] The standard Ulam sequence (the (1, 2)-Ulam sequence) starts with U1 = 1 and U2 = 2. Then for n > 2,
Un is defined to be the smallest integer that is the sum of two distinct earlier terms in exactly one way.

Examples
By the definition, 3 = 1 + 2 is an Ulam number; and 4 = 1 + 3 is an Ulam number (The sum 4 = 2 + 2 doesn't count
because the previous terms must be distinct.) The integer 5 is not an Ulam number because 5 = 1 + 4 = 2 + 3. The
first few terms are

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87, 97, 99 (sequence A002858
[2] in OEIS).

The first Ulam numbers that are also prime numbers are
2, 3, 11, 13, 47, 53, 97, 131, 197, 241, 409, 431, 607, 673, 739, 751, 983, 991, 1103, 1433, 1489 (A068820
[62]).

Infinite sequence
There are infinitely many Ulam numbers. For, after the first n numbers in the sequence have already been
determined, it is always possible to extend the sequence by one more element: Un − 1 + Un is uniquely represented as
a sum of two of the first n numbers, and there may be other smaller numbers that are also uniquely represented in
this way, so the next element can be chosen as the smallest of these uniquely representable numbers.[3]

Ulam is said to have conjectured that the numbers have zero density,[4] but they seem to have a density of
approximately 0.07396.[5]

Generalizations
The idea can be generalized as (u, v)-Ulam numbers by selecting different starting values (u, v). A sequence of
(u, v)-Ulam numbers is regular if the sequence of differences between consecutive numbers in the sequence is
eventually periodic. When v is an odd number greater than three, the (2, v)-Ulam numbers are regular. When v is
congruent to 1 (mod 4) and at least five, the (4, v)-Ulam numbers are again regular. However, the Ulam numbers
themselves do not appear to be regular.[6]

A sequence of numbers is said to be s-additive if each number in the sequence, after the initial 2s terms of the
sequence, has exactly s representations as a sum of two previous numbers. Thus, the Ulam numbers and the
(u, v)-Ulam numbers are 1-additive sequences.[7]

If one forms a sequence by appending the largest number with a unique representation as a sum of two earlier
numbers, instead of appending the smallest uniquely representable number, then the resulting sequence is the
sequence of Fibonacci numbers.[8]
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Notes
[1] Ulam (1964a, 1964b).
[2] http:/ / en. wikipedia. org/ wiki/ Oeis%3Aa002858
[3] Recaman (1973) gives a similar argument, phrased as a proof by contradiction. He states that, if there were finitely many Ulam numbers, then

the sum of the last two would also be an Ulam number, a contradiction. However, although the sum of the last two numbers would in this case
have a unique representation as a sum of two Ulam numbers, it would not necessarily be the smallest number with a unique representation.

[4] The statement that Ulam made this conjecture is in OEIS A002858 (http:/ / en. wikipedia. org/ wiki/ Oeis:a002858), but Ulam does not
address the density of this sequence in Ulam (1964a), and in Ulam (1964b) he poses the question of determining its density without
conjecturing a value for it. Recaman (1973) repeats the question from Ulam (1964b) of the density of this sequence, again without
conjecturing a value for it.

[5] OEIS A002858 (http:/ / en. wikipedia. org/ wiki/ Oeis:a002858)
[6] Queneau (1972) first observed the regularity of the sequences for u = 2 and v = 7 and v = 9. Finch (1992) conjectured the extension of this

result to all odd v greater than three, and this conjecture was proven by Schmerl & Spiegel (1994). The regularity of the (4, v)-Ulam numbers
was proven by Cassaigne & Finch (1995).

[7] Queneau (1972).
[8] Finch (1992).
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Unique prime
In number theory, a unique prime is a certain kind of prime number. A prime p ≠ 2, 5 is called unique if there is no
other prime q such that the period length of the decimal expansion of its reciprocal, 1 / p, is equivalent to the period
length of the reciprocal of q, 1 / q. Unique primes were first described by Samuel Yates in 1980.
It can be shown that a prime p is of unique period n if and only if there exists a natural number c such that

where Φn(x) is the n-th cyclotomic polynomial. At present, more than fifty unique primes or probable primes are
known. However, there are only twenty-three unique primes below 10100. The following table gives an overview of
all 23 unique primes below 10100 (sequence A040017 [63] in OEIS) and their periods (sequence A051627 [1] in
OEIS):

Period length Prime

1 3

2 11

3 37

4 101

10 9,091

12 9,901

9 333,667

14 909,091

24 99,990,001

36 999,999,000,001

48 9,999,999,900,000,001

38 909,090,909,090,909,091

19 1,111,111,111,111,111,111

23 11,111,111,111,111,111,111,111

39 900,900,900,900,990,990,990,991

62 909,090,909,090,909,090,909,090,909,091

120 100,009,999,999,899,989,999,000,000,010,001

150 10,000,099,999,999,989,999,899,999,000,000,000,100,001

106 9,090,909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,091

93 900,900,900,900,900,900,900,900,900,900,990,990,990,990,990,990,990,990,990,991

134 909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,091

294 142,857,157,142,857,142,856,999,999,985,714,285,714,285,857,142,857,142,855,714,285,571,428,571,428,572,857,143

196 999,999,999,999,990,000,000,000,000,099,999,999,999,999,000,000,000,000,009,999,999,999,999,900,000,000,000,001

The prime with period length 294 is similar to the reciprocal of 7 (0.142857142857142857...)
Just after the table, the twenty-fourth unique prime has 128 digits and period length 320. It can be written as
(932032)2 + 1, where a subscript number n indicates n consecutive copies of the digit or group of digits before the
subscript.
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Though they are rare, based on the occurrence of repunit primes and probable primes, it is conjectured strongly that
there are infinitely many unique primes. (Any repunit prime is unique.)
As of 2010 the repunit (10270343-1)/9 is the largest known probable unique prime.[2]

In 1996 the largest proven unique prime was (101132 + 1)/10001 or, using the notation above, (99990000)141+ 1. Its
reciprocal period is 2264. The record has been improved many times since then. As of 2010 the largest proven
unique prime has 10,081 digits.[3]
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Wagstaff prime

Publication year 1989[Note 1]

Author of publication Bateman, P. T., Selfridge, J. L., Wagstaff Jr., S. S.

Number of known cases  30

OEIS index and link A000979 [64]

In number theory, a Wagstaff prime is a prime number p of the form

where q is another prime. Wagstaff primes are named after the mathematician Samuel S. Wagstaff Jr.; the prime
pages credit François Morain for naming them in a lecture at the Eurocrypt 1990 conference. Wagstaff primes are
related to the New Mersenne conjecture and have applications in cryptology.
The first three Wagstaff primes are 3, 11, and 43 because

The first few Wagstaff primes are:
3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, … (sequence A000979 [64] in
OEIS)

The first exponents q which produce Wagstaff primes or probable primes are:
3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807,
10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017,
269987, 374321, 986191, 4031399, … (sequence A000978 [65] in OEIS)

These numbers are proven to be prime for the values of q up to 42737. Those with q > 42737 are probable primes as
of February 2010. The primality proof for q = 42737 was performed by François Morain in 2007 with a distributed
ECPP implementation running on several networks of workstations for 743 GHz-days on an Opteron processor.[1] It
is the fourth largest primality proof by ECPP as of 2010.[2]

The largest currently known probable Wagstaff prime

was found by Tony Reix in February 2010.[3] It has 1,213,572 digits and it is the 3rd biggest PRP ever found at this
date.
Currently, the fastest algorithm for proving the primality of Wagstaff numbers is ECPP.
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Notes
1.^ Wagstaff primes were first described in Bateman, P. T., Selfridge, J. L., Wagstaff Jr., S. S. (1989). The
New Mersenne Conjecture [4] Amer. Math. Monthly 96 125-128
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Wall-Sun-Sun prime
In number theory, a Wall–Sun–Sun prime or Fibonacci–Wieferich prime is a certain kind of prime number which
is conjectured to exist although none are known. A prime p > 5 is called a Wall–Sun–Sun prime if p² divides the
Fibonacci number , where the Legendre symbol is defined as

Wall–Sun–Sun primes are named after D. D. Wall,[1] Zhi Hong Sun and Zhi Wei Sun; Z. H. Sun and Z. W. Sun
showed in 1992 that if the first case of Fermat's last theorem was false for a certain prime p, then p would have to be
a Wall–Sun–Sun prime.[2] As a result, prior to Andrew Wiles' proof of Fermat's last theorem, the search for
Wall–Sun–Sun primes was also the search for a counterexample to this centuries-old conjecture.
No Wall–Sun–Sun primes are known as of October 2010. In 2007, Richard J. McIntosh and Eric L. Roettger showed
that if any exist, they must be > 2×1014.[3] It has been conjectured that there are infinitely many Wall–Sun–Sun
primes.[4] The search for Wall-Sun-Sun primes has since then been extended to 9.7×1014 without finding such a
prime.[5]
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See also
• Wieferich prime
• Wilson prime
• Wolstenholme prime
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Wedderburn-Etherington number
In graph theory, the Wedderburn–Etherington numbers, named for Ivor Malcolm Haddon Etherington and Joseph
Wedderburn, count how many weak binary trees can be constructed: that is, the number of trees for which each
graph vertex (not counting the root) is adjacent to no more than three other such vertices, for a given number of
nodes. The first few Wedderburn–Etherington numbers are

1, 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983, 2179, 4850, 10905, 24631, 56011, 127912, 293547, 676157,
1563372, 3626149, 8436379, 19680277, 46026618, 107890609, 253450711, 596572387, 1406818759,
3323236238, 7862958391,... (sequence A001190 [66] in OEIS)

References
• S. J. Cyvin et al., "Enumeration of constitutional isomers of polyenes," J. Molec. Structure (Theochem) 357

(1995): 255–261
• I. M. H. Etherington, "Non-associate powers and a functional equation," Math. Gaz. 21 (1937): 36–39, 153
• I. M. H. Etherington, "On non-associative combinations," Proc. Royal Soc. Edinburgh, 59 2 (1939): 153–162.
• S. R. Finch, Mathematical Constants. Cambridge: Cambridge University Press (2003): 295–316
• F. Murtagh, "Counting dendrograms: a survey," Discrete Applied Mathematics 7 (1984): 191–199
• J. H. M. Wedderburn, "The functional equation " Ann. Math. 24 (1923): 121–140

Wieferich pair
In mathematics, a Wieferich pair is a pair of prime numbers p and q that satisfy

pq − 1 ≡ 1 (mod q2) and qp − 1 ≡ 1 (mod p2)
Wieferich pairs are named after German mathematician Arthur Wieferich.
There are only six Wieferich pairs known:[1]

(2, 1093), (3, 1006003), (5, 1645333507), (83, 4871), (911, 318917), and (2903, 18787) (sequence A124121
[2] and A124122 [3] in OEIS)

Wieferich pairs play an important role in Preda Mihăilescu's 2002 proof[4] of Mihăilescu's theorem (formerly known
as Catalan's conjecture).[5]
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Wieferich prime

Publication year  1909

Author of publication Wieferich, A.

Number of known cases  2

OEIS index and link A001220 [67]

In number theory, a Wieferich prime is defined as a prime number p such that p2 divides 2p − 1 − 1,[1] therefore
connecting these primes with Fermat's little theorem, which states that every odd prime p divides 2p − 1  − 1.
Wieferich primes were first described by Arthur Wieferich in 1909 in works pertaining to Fermat's last theorem, at
which time both of Fermat's theorems had already been well known to mathematicians.[2] [3]

The search for Wieferich primes
The only known Wieferich primes are 1093 and 3511 (sequence A001220 [67] in OEIS), found by W. Meissner in
1913 and N. G. W. H. Beeger in 1922, respectively. If any other Wieferich primes exist, they must be greater than
6.7×1015.[4] It has been conjectured that only finitely many Wieferich primes exist.[1] It has also been conjectured (as
for Wilson primes) that infinitely many Wieferich primes exist, and that the number of Wieferich primes below x is
approximately , which is the heuristic result followed from a plausible assumption that for a prime p,
the (p-1)-th degree roots of unity modulo p2 are uniformly distributed in the multiplicative group of integers modulo
p2.
Although all available numerical evidence suggests that there are very few Wieferich primes, it is still an open
problem to prove that there are infinitely many primes that are not Wieferich primes.
The search for new Wieferich primes is currently performed by the distributed computing project Wieferich@Home.

Properties of Wieferich primes
• It is known that the nth Mersenne number is prime only if n is prime. Fermat's little theorem

implies that if p > 2 is prime, then Mp−1 (= 2p − 1 − 1) is always divisible by p. Since Mersenne numbers of prime
indices Mp and Mq are co-prime,

A prime divisor p of Mq, where q is prime, is a Wieferich prime if and only if p2 divides Mq.[5]

Thus, a Mersenne prime cannot also be a Wieferich prime. A notable open problem is to determine whether or
not all Mersenne numbers of prime index are square-free. If a Mersenne number Mq is not square-free, i.e.,
there exists a prime p for which p2 divides Mq, then p is a Wieferich prime. Therefore, if there are only finitely
many Wieferich primes, then there will be at most finitely many Mersenne numbers that are not square-free.

• Similarly, if p is prime and p2 divides some Fermat number , then p must be a Wieferich
prime.[6]

• Johnson observed[7] that the two known Wieferich primes are one greater than numbers with periodic binary
expansions ( ; ). The Wieferich@Home project
searches for Wieferich primes by testing numbers that are one greater than a number with a periodic binary
expansion, but up to a total binary expansion length of 3500 and up to a period length of 24 it has not found a new
Wieferich prime.[8]
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• If p is a Wieferich prime, then 2p² = 2 (mod p2).

Wieferich primes and Fermat's last theorem
The following theorem connecting Wieferich primes and Fermat's last theorem was proven by Wieferich in 1909:

Let p be prime, and let x, y, z be integers such that xp + yp + zp = 0. Furthermore, assume that p does not divide
the product xyz. Then p is a Wieferich prime.

In 1910, Mirimanoff was able to expand the theorem by showing that, if the preconditions of the theorem hold true
for some prime p, then p2 must also divide 3p − 1 − 1.

Generalizations
• A prime p satisfying the congruence 2(p-1)/2 ≡ ±1 + Ap (mod p2) with small |A| is commonly called a

near-Wieferich prime.[9] [10] Near-Wieferich primes with A = 0 represent Wieferich primes. Recent searches, in
addition to their primary search for Wieferich primes, also tried to find near-Wieferich primes.[4] [11] The
following table lists all near-Wieferich primes with |A| < 100 up to 3×1015.

• Dorais and Klyve came up with a new definition of a Near-Wieferich prime.[4] Let the Fermat quotient of n mod p

be . The following table lists all primes p with small up to 6.7×1015

• A Wieferich prime base a is a prime p that satisfies
ap − 1 ≡ 1 (mod p2).[12]

Such a prime cannot divide a, since then it would also divide 1. For the known Wieferich primes base a with
small prime values of a, see Fermat quotient.

• A Wieferich pair is a pair of primes p and q that satisfy
pq − 1 ≡ 1 (mod q2) and qp − 1 ≡ 1 (mod p2)
so that a Wieferich prime p which is ≡ 1 (mod 4) will form such a pair (p, 2): the only known instance in this
case is p = 1093. There are 6 known Wieferich pairs.[13]

• For a cyclotomic generalisation of the Wieferich property:(np − 1)/(n − 1) divisible by q2, there are solutions like
(35 − 1)/(3 − 1) = 112

and even with exponents higher than 2, like in
(196 − 1)/(19 − 1) ≡ 0 (mod 73).

See also
• Wilson prime
• Wall-Sun-Sun prime
• Wolstenholme prime
• Taro Morishima
• Double Mersenne number
• Fermat quotient
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Wilson prime

Publication year 1938[Note 1]

Author of publication Lehmer, E.

Number of known cases  3

OEIS index and link A007540 [68]

A Wilson prime, named after John Wilson, is a prime number p such that p² divides (p − 1)! + 1, where "!" denotes
the factorial function; compare this with Wilson's theorem, which states that every prime p divides (p − 1)! + 1.
The only known Wilson primes are 5, 13, and 563 (sequence A007540 [68] in OEIS); if any others exist, they must be
greater than 5×108.[1] It has been conjectured that infinitely many Wilson primes exist, and that the number of
Wilson primes in an interval [x, y] is about log(log(y) / log(x)).[2]

Generalizations
• A prime p satisfying the congruence (p − 1)! ≡ ±1 + Bp (mod p2) with small |B| can be called a near-Wilson

prime. Near-Wilson primes with B=0 represent Wilson primes. The following table lists all such primes with |B|
<= 100 up to 6 x 109 (Based on information by Richard Crandall, Karl Dilcher and Carl Pomerance as well as
Richard McIntosh and Mark Rodenkirch):

See also
• Wieferich prime
• Wall-Sun-Sun prime
• Wolstenholme prime

Notes
1.^ Wilson primes were first described by Lehmer, E. On congruences involving Bernoulli numbers and the
quotients of Fermat and Wilson [3], Ann. of. Math. 39(1938), 350-360.

[1] Status of the search for Wilson primes (http:/ / www. loria. fr/ ~zimmerma/ records/ Wieferich. status), also see Crandall et. al. 1997
[2] The Prime Glossary: Wilson prime (http:/ / primes. utm. edu/ glossary/ page. php?sort=WilsonPrime)
[3] http:/ / www. google. de/ url?sa=t& source=web& cd=10& ved=0CGgQFjAJ& url=http%3A%2F%2Fgradelle. educanet2. ch%2Fchristian.

aebi%2F. ws_gen%2F14%2FEmma_Lehmer_1938. pdf& rct=j&
q=lehmer%20on%20congruences%20involving%20bernoulli%20numbers%20and%20the%20quotients%20of%20fermat%20and%20wilson&
ei=QVHcTK2iAZDysgae9o2iBA& usg=AFQjCNGuZ93z06kDmxXutGU8S_ADA6FgZw& cad=rja
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Wolstenholme prime
In mathematics, Wolstenholme's theorem states that for a prime number p > 3, the congruence

holds, where the parentheses denote a binomial coefficient. For example, with p = 7, this says that 1716 is one more
than a multiple of 343. An equivalent formulation is the congruence

The theorem was first proved by Joseph Wolstenholme in 1862. In 1819, Charles Babbage showed the same
congruence modulo p2, which holds for all primes p (for p=2 only in the second formulation). The second
formulation of Wolstenholme's theorem is due to J. W. L. Glaisher and is inspired by Lucas' theorem.
No known composite numbers satisfy Wolstenholme's theorem and it is conjectured that there are none (see below).
A prime that satisfies the congruence modulo p4 is called a Wolstenholme prime (see below).
As Wolstenholme himself established, his theorem can also be expressed as a pair of congruences for (generalized)
harmonic numbers:

(Congruences with fractions make sense, provided that the denominators are coprime to the modulus.) For example, 
with p=7, the first of these says that the numerator of 49/20 is a multiple of 49, while the second says the numerator
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of 5369/3600 is a multiple of 7.

Wolstenholme primes
A prime p is called a Wolstenholme prime iff the following condition holds:

If p is a Wolstenholme prime, then Glaisher's theorem holds modulo p4. The only known Wolstenholme primes so
far are 16843 and 2124679 (sequence A088164 [69] in OEIS); any other Wolstenholme prime must be greater than
109.[1] This result is consistent with the heuristic argument that the residue modulo p4 is a pseudo-random multiple of
p3. This heuristic predicts that the number of Wolstenholme primes between K and N is roughly ln ln N - ln ln K. The
Wolstenholme condition has been checked up to 109, and the heuristic says that there should be roughly one
Wolstenholme prime between 109 and 1024. A similar heuristic predicts that there are no "doubly Wolstenholme"
primes, meaning that the congruence holds modulo p5.

A proof of the theorem
There is more than one way to prove Wolstenholme's theorem. Here is a proof that directly establishes Glaisher's
version using both combinatorics and algebra.
For the moment let p be any prime, and let a and b be any non-negative integers. Then a set A with ap elements can
be divided into a rings of length p, and the rings can be rotated separately. Thus, the group Cp

a acts on the set A, and
by extension it acts on the set of subsets of size bp. Every orbit of this group action has pk elements, where k is the
number of incomplete rings, i.e., if there are k rings that only partly intersect a subset B in the orbit. There are 

orbits of size 1 and there are no orbits of size p. Thus we first obtain Babbage's theorem

Examining the orbits of size p2, we also obtain

Among other consequences, this equation tells us that the case a=2 and b=1 implies the general case of the second
form of Wolstenholme's theorem.
Switching from combinatorics to algebra, both sides of this congruence are polynomials in a for each fixed value of
b. The congruence therefore holds when a is any integer, positive or negative, provided that b is a fixed positive
integer. In particular, if a=-1 and b=1, the congruence becomes

This congruence becomes an equation for using the relation

When p is odd, the relation is

When p≠3, we can divide both sides by 3 to complete the argument.
A similar derivation modulo p4 establishes that
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for all positive a and b if and only if it holds when a=2 and b=1, i.e., if and only if p is a Wolstenholme prime.

The converse as a conjecture
It is conjectured that if

when k=3, then n is prime. The conjecture can be understood by considering k = 1 and 2 as well as 3. When k = 1,
Babbage's theorem implies that it holds for n = p2 for p an odd prime, while Wolstenholme's theorem implies that it
holds for n = p3 for p > 3. When k = 2, it holds for n = p2 if p is a Wolstenholme prime. Only a few other composite
values of n are known when k = 1, and none are known when k = 2, much less k = 3. Thus the conjecture is
considered likely because Wolstenholme's congruence seems over-constrained and artificial for composite numbers.
Moreover, if the congruence does hold for any particular n other than a prime or prime power, and any particular k, it
does not imply that

See also
• Fermat's little theorem
• Wilson's theorem
• Wieferich prime
• Wilson prime
• Wall-Sun-Sun prime
• List of special classes of prime numbers
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Woodall number
In number theory, a Woodall number (Wn) is any natural number of the form

Wn = n × 2n − 1
for some natural number n. The first few Woodall numbers are:

1, 7, 23, 63, 159, 383, 895, … (sequence A003261 [1] in OEIS).
Woodall numbers were first studied by Allan J. C. Cunningham and H. J. Woodall in 1917, inspired by James
Cullen's earlier study of the similarly-defined Cullen numbers. Woodall numbers curiously arise in Goodstein's
theorem.
Woodall numbers that are also prime numbers are called Woodall primes; the first few exponents n for which the
corresponding Woodall numbers Wn are prime are 2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, … (sequence
A002234 [2] in OEIS); the Woodall primes themselves begin with 7, 23, 383, 32212254719, … (sequence A050918
[70] in OEIS).
In 1976 Christopher Hooley showed that almost all Cullen numbers are composite. Hooley's proof was reworked by
Hiromi Suyama to show that it works for any sequence of numbers n · 2n+a + b where a and b are integers, and in
particular also for Woodall numbers. Nonetheless, it is conjectured that there are infinitely many Woodall primes. As
of December 2007, the largest known Woodall prime is 3752948 × 23752948 − 1.[3] It has 1,129,757 digits and was
found by Matthew J. Thompson in 2007 in the distributed computing project PrimeGrid.
Like Cullen numbers, Woodall numbers have many divisibility properties. For example, if p is a prime number, then
p divides

W(p + 1) / 2 if the Jacobi symbol is +1 and

W(3p − 1) / 2 if the Jacobi symbol is −1.

A generalized Woodall number is defined to be a number of the form n × bn − 1, where n + 2 > b; if a prime can be
written in this form, it is then called a generalized Woodall prime.
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Borgx, CRGreathouse, Caleb Rookwood, Charles Matthews, Chinmin, Chocolateboy, Cngoulimis, Cole Kitchen, Conversion script, Corvus cornix, Cícero, DAJF, DJ Clayworth, DStoykov,
DYLAN LENNON, Daveblack, David Eppstein, David Haslam, DavidCary, DavidWBrooks, Dbenbenn, Dcoetzee, Derek Ross, Dfeuer, Digby Tantrum, DiscoStuMan, Doug, Drmies, Dtrebbien,
Duke Dudley, Dysprosia, EddEdmondson, Elektron, Epbr123, Esb, Excirial, Exteray, Eyebum, Fadereu, Funky Fantom, Furrykef, Gadoev, Gail, Gandalf61, Gareth Owen, GaryW, GeeZee, Gene
Ward Smith, Giftlite, Ginsengbomb, Goatasaur, GraemeMcRae, Graham87, GregorB, Gslin, Gulliveig, Gurch, Gzornenplatz, HaboFreakNumber2, Haham hanuka, Helohe, Herbee, Histrion,
Ianmacm, Ideyal, Imran, Indon, Isaacl, J.delanoy, JAF1970, JackSchmidt, JamesBWatson, Jamesedwardsmith, Jed 20012, Jeffq, Jkelly, JoshuaZ, Jrtayloriv, Jushi, Justin W Smith,
Karam.Anthony.K, Karl-Henner, Keenan Pepper, Keith Edkins, Kieff, Klaus, Kope, Korg, Lambiam, Lowellian, Luqui, Lykantrop, MSGJ, Magioladitis, Maniac18, MarkSweep, MarnetteD,
Marquez, MathMan64, Mcsee, Michael Hardy, Mintguy, Mon4, Motomuku, Mrityunjay tripathi, Mstftsm, Mwalimu59, NatusRoma, NewEnglandYankee, Nobrook, Noosfractal, NubKnacker,
Oboeboy, Oldiexian, Oleg Alexandrov, Olin, Olivier, Onorem, OwenX, PageWizard, Pakaran, Paul August, PaulTaylor, Peruvianllama, PhiEaglesfan712, Philip Trueman, Pigsonthewing,
Plaudite, Pleasantville, Pmanderson, Pony99CA, Porcher, Positronium, Pred, Premeditated Chaos, PrimeFan, PrimeHunter, Pt, Python eggs, Qdxinyu, Ravi12346, Rbarreira, Reddish, Reinyday,
Robertpadian, Rotem Dan, Roviury, Rydel, Sabbut, Sander123, Santyno, Sgeo, Shaunwhim2, Simplicityinstinct, Sir Isaac, Sligocki, Smurrayinchester, Snoyes, Someonefrommars, Soulouri,
Spireguy, Ssimsekler, StaticGull, Steamroller Assault, Stefan64, Stevenoostdijk, Superm401, Surv1v4l1st, Susvolans, Sverdrup, Swarm, Syndrome, THEN WHO WAS PHONE?, Tarquin,
Teorth, TeunSpaans, The Anome, The JPS, The Rogue Penguin, Thevelho, Tosha, Triksox, Uncia, Vcelloho, Victor Scientist, Viriditas, Vreddy92, Wapcaplet, Wclark, Wereon, Whodunit, Wile
E. Heresiarch, WriterHound, Wzhao553, XJamRastafire, Yacht, Youandme, Yulracso, Zander, 284 anonymous edits

Good prime  Source: http://en.wikipedia.org/w/index.php?oldid=375514347  Contributors: Evatutin, PrimeHunter, Reinyday, 2 anonymous edits

Happy number  Source: http://en.wikipedia.org/w/index.php?oldid=403522912  Contributors: 4meter4, A Real Kaiser, A.R., ACredibleLie, Acm, Adishem, Ahugenerd, Ajd, Alasdair, 
Angmering, AppleMacReporter, Basketballtim, Beano, BinaryFrog, Blotwell, Bubba73, CRGreathouse, ColinHorne, Cristiano Toàn, Darksun, DataWraith, DavidWBrooks, Dbenbenn, Dhartung, 
Doctormatt, Dogah, Dysprosia, Emurphy42, Er Komandante, Evatutin, Evilmoo, Fmansfeld, FrostyBytes, Gabrielbijleveld, Giftlite, Hohum, Hughcharlesparker, Hypnosadist, Ian Pitchford, 
Ismakefire, JYi, Justin W Smith, KeithS, Kelly Martin, LPH, Linas, Lucas Brown, MFH, MarkSweep, MathMan64, Matt.whitby, Melchoir, Mgenuth, Moe1234567890000, Mrmrbeaniepiece, 
Murkee, Mytchill, Nealmcb, Oleg Alexandrov, Oliphaunt, OwenX, Peak Freak, Pearle, PhiJ, Philip Trueman, Phoenix79, Pichu826, Pmanderson, PrimeHunter, R. S. Shaw, R27182818,
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Radon210, Rick21784, Rikimaru, Serein (renamed because of SUL), Silverfish, Smjg, Snorbaard, Squad51, Stephenb, TJ09, TWSummer, Telemath, Thehelpfulone, TonyW, Waldir,
Wikipeterproject, XJamRastafire, Zaslav, ZeroOne, 141 anonymous edits

Higgs prime  Source: http://en.wikipedia.org/w/index.php?oldid=195278181  Contributors: Alakniranjan, CRGreathouse, Michael Hardy, PrimeFan, PrimeHunter, XJamRastafire, 1 anonymous
edits

Highly cototient number  Source: http://en.wikipedia.org/w/index.php?oldid=277395549  Contributors: Am2t, Anonymous Dissident, Anton Mravcek, Bubba73, Charles Matthews, Frencheigh,
Giftlite, Gurch, Linas, Loud neighbors, NBS525, Oleg Alexandrov, Pne, PrimeFan, PrimeHunter, Reinyday, ST47, Silverfish, 2 anonymous edits

Illegal prime  Source: http://en.wikipedia.org/w/index.php?oldid=393621069  Contributors: .mau., 1812ahill, 4pq1injbok, Alansohn, Angela, Ansell, ArnoldReinhold, Arvindn, Bdesham,
Bobblewik, CBM, CRGreathouse, Cerejota, Chris Wood, Cyde, DMacks, Danski14, Dantheman531, David Gerard, DavidWBrooks, Denelson83, Dreftymac, Dtobias, Dweller, ESkog,
Easyas12c, Ed g2s, Eldacan, Eloquence, Epeefleche, Favonian, Frencheigh, Giftlite, GregorB, Head, Heron, Iffy, Imjustmatthew, JWSchmidt, Jdavidb, Jengod, Kylemcinnes, Lupin, MarSch,
Math1337, Matt Crypto, MeltBanana, Michiexile, Miserlou, Misza13, Moep, Natalie Erin, Pathoschild, Penwhale, Phlip, PrimeHunter, Psychonaut, Puckly, Quadell, Radagast83, Raggmopp614,
Realchallange, Reinyday, Rich Farmbrough, RobertG, Schneelocke, Sfacets, Shaddack, Shogun, SirSam972, Smyth, Snowynight, Thumperward, Tijfo098, Tingrin87, Tregoweth, TreyHarris,
Tripps, Tritium6, Trivialist, Unloud, VeryVerily, W guice, Wapcaplet, Washod, WikiSlasher, Ww, 69 anonymous edits

Irregular prime  Source: http://en.wikipedia.org/w/index.php?oldid=259751284  Contributors: Boemanneke, CRGreathouse, Charles Matthews, Cristiano Toàn, Cybercobra, DRLB, David
Shay, Fredrik, Giftlite, Gwaihir, Henrygb, Herbee, Iffy, LilHelpa, MathMartin, Peter Kwok, Pouya, PrimeFan, PrimeHunter, R.e.b., Reyk, RobHar, Safek, Schneelocke, Throwawayhack,
Vanish2, XJamRastafire, 10 anonymous edits

Kynea number  Source: http://en.wikipedia.org/w/index.php?oldid=364314597  Contributors: Anton Mravcek, Charles Matthews, David Eppstein, Giftlite, GregorB, Jitse Niesen, Nico92400,
PrimeFan, PrimeHunter, Reinyday, Rich Farmbrough, Rjwilmsi, Sjorford, 6 anonymous edits

Leyland number  Source: http://en.wikipedia.org/w/index.php?oldid=402685572  Contributors: Carl Turner, David Eppstein, Doctormatt, Droog Andrey, Giftlite, Infrangible, Insider,
Katharineamy, PrimeFan, PrimeHunter, Rich Farmbrough, WolfWings, 6 anonymous edits

List of prime numbers  Source: http://en.wikipedia.org/w/index.php?oldid=408702306  Contributors: 2D, 4pq1injbok, 97rs24, 99of9, AdjustShift, Alansohn, Alex12 3, Alexius08, Ali K, Alpha
Quadrant (alt), Amorim Parga, Anaxial, Andrushkkutza, Angela, AnthonyQBachler, Anton Mravcek, Arakunem, Arcfrk, ArglebargleIV, Arhughes, Asmeurer, Atif.t2, AtiwH, Banaticus, Barneca,
Bduke, Bender235, Bento00, Billymac00, Bizza4Prezident, Bobbu9876, Boing! said Zebedee, BoomerAB, Brighterorange, CBM, CRGreathouse, Calmypal, Calton, Calvin 1998, Chardish,
Chinni26, Christophenstein, Chuunen Baka, Cje, Closedmouth, CompositeFan, Connormah, Craig Mayhew, Cyclonenim, D8880, Daqu, Darkfelinanova, Darth Panda, Dawn Bard, Deadcorpse,
Delicious carbuncle, Deor, DerHexer, Dmitri Yuriev, Doctormatt, Docu, Download, DragonflySixtyseven, Drmies, Duncancumming, Easyas12c, Echuck215, Egmontaz, Ehheh, Elassint,
Epbr123, Evatutin, Favonian, Fennec, Flagboy, Frank Lofaro Jr., Fredrik, Fyyer, Garkbit, Gazimoff, Gfoley4, Giftlite, Gjd001, Glane23, Glass Sword, Goudzovski, Gowrb05, Gtstricky, HJ
Mitchell, HalfShadow, Happypal, Helder.wiki, HexaChord, Hubertsimson, Hv, Icarus3, Igoldste, Inferno, Lord of Penguins, Ixfd64, J-t-m, J.delanoy, JackofOz, JamesAM, Jamesday,
Jhalkompwdr, Jj137, JustUser, Jwissick, Jwoodger, Jwrosenzweig, K1Bond007, KFP, Kartano, KerryVeenstra, Kevinkor2, Kingturtle, Kiore, Kjoonlee, Kopaka649, Kotiwalo, Kristen Eriksen,
Leafyplant, Leatherbelly, LeaveSleaves, Linas, Ljr180, Lowellian, Luk, Luna Santin, M00npirate, MATThematical, Magister Mathematicae, Marek69, MarkSutton, Martin451,
Maxime.Debosschere, Melissa.holtcamp, Mets501, Michael Hardy, Mike Rosoft, MikeLynch, Mini-Geek, MrOllie, MrWikiMiki, My76Strat, Mygerardromance, NTK, Nakon, Nateguimondart,
Nico92400, NuclearWarfare, Numerao, Odie5533, Omerfc1, Onevalefan, Orange Suede Sofa, Oscarfan, Owen, OwenX, PL290, Paul-L, Pdcook, Petiatil, Phantomsteve, PhiEaglesfan712, Piano
non troppo, Pinethicket, Pizza1512, Portalian, Poulpy, PrimeFan, PrimeHunter, Psylocibe, Quirkasaurus, QuirkyQuark, Qxz, R. J. Mathar, RJaguar3, Radagast3, Radiant!, RadicalPi,
Recognizance, Reconsider the static, Redgolpe, Redrocketboy, Reinyday, Res2216firestar, RexNL, Rgrg, Rich.lewis, Rickterp, RobertG, Roentgenium111, Romanm, RoyBoy, RxS, Ryan
Postlethwaite, SC979, SGBailey, Salvio giuliano, SchfiftyThree, Seth Ilys, Shyam, Skalman, Skralg, Slord, Smjg, SpLoT, Spiritia, Splodgenry, Stay Dead, Stickee, Struds, Suffusion of Yellow,
Texas44, The Cave Troll, The Thing That Should Not Be, TheRealFennShysa, Tide rolls, Timrem, Tompagenet, Trusilver, Two2Naach, Tyomitch, Ulric1313, UnitedStatesian, Us441, UserDoe,
Veinor, Vlad4599, Waldir, WatermelonPotion, WikHead, WikiDao, Wroscel, Xmlizer, Zoicon5, Zzuuzz, 820 ,לוכי לכ anonymous edits

Lucas number  Source: http://en.wikipedia.org/w/index.php?oldid=405987823  Contributors: Andy M. Wang, Anton Mravcek, Arbol01, BL Lacertae, Blackskilled, CRGreathouse,
Carrionluggage, Charles Matthews, Danielklein, Dina, DiscX, Fantusta, Fredrik, Fropuff, Gaius Cornelius, Gandalf61, GatesPlusPlus, Giftlite, Insanity Incarnate, J04n, JRSpriggs, Jed 20012,
Kanguole, Maxal, Mikez23, Netsnipe, Nffy212, PV=nRT, Patrick, Plenilune, PrimeHunter, Razorflame, Sawbeit, Shadowx88, Sligocki, Stux, Vijilant, Wasell, Wik, Wild Lion,
Wutchamacallit27, Xiutwel, ZeroOne, 33 anonymous edits

Lucky number  Source: http://en.wikipedia.org/w/index.php?oldid=404494551  Contributors: Algebraist, Antonio Lopez, Arthur Rubin, Blotwell, Buck O'Nollege, CRGreathouse, CapitalSasha,
Carlosguitar, Cawas, Celtic Minstrel, Computer97, DXL, Dominus, Dysprosia, Enochlau, Fredrik, Giftlite, Haham hanuka, Isnow, JerryFriedman, Jshadias, King Mir, Linas, Message From Xenu,
Mr. Billion, Nakon, Ninetyone, Oleg Alexandrov, Olivier, Pleasantville, Pred, PrimeHunter, Rikimaru, Sbhuvans, Sottolacqua, Tanyakh, Tommy2010, Wtmitchell, XJamRastafire, 46 anonymous
edits

Markov number  Source: http://en.wikipedia.org/w/index.php?oldid=370861187  Contributors: Aaron Schulz, Anton Mravcek, Burn, Charles Matthews, Giftlite, Jitse Niesen, Knodeltheory,
KurtSchwitters, Maxal, Michael Hardy, Pmanderson, PrimeFan, Silverfish, The DQN,macbeth, Timrem, XJamRastafire, 15 anonymous edits

Mersenne prime  Source: http://en.wikipedia.org/w/index.php?oldid=402682917  Contributors: (, .:Ajvol:., 10metreh, Acroterion, Adamd1008, Alcuin, Alpha Beta Epsilon, Alpt, Andi47,
Anomalocaris, AnonMoos, Anonymouspp, AnteaterZot, Arcfrk, Arthena, Arthur Rubin, Arvindn, Ashwath.rabindranath, AxelBoldt, Bawolff, Bcnelson, Bedivere, Bender235, Bensin, Berteun,
Billymac00, Blackbird2150, Bobblewik, Borgx, Bryan Derksen, Bubba73, C.R.Selvakumar, CRGreathouse, CecilBlade, Chaosdruid, Christian List, Cimon Avaro, Ciphers, Cleroth, CobaltBlue,
Conversion script, Cordell, Cstaffa, Cxxl, Dantheox, Derlay, Dissident, DropDeadGorgias, Duncan, Ekrumme, EmilJ, Eplant, Eric119, FancyMouse, Favonian, Fivemack, Fredrik, Fresheneesz,
Fulvius, FvdP, Fæ, Gap9551, Gene Ward Smith, Georgia guy, Ghewgill, Giftlite, Glenn L, GngstrMNKY, Gowen, GraemeMcRae, Graham87, GregorB, Haham hanuka, Hakeem.gadi, Herbee,
Heryu, Hut 8.5, IanOsgood, Ideyal, Intelati, Isarl, Ixfd64, JackofOz, Jao, Jarekadam, Jeff8765, Jennavecia, Jeronimo, JerryLaGrou, Jiang, Jmalc, Joblack, Johantheghost, Johnblythedobson,
JoshuaZ, Jsvaidya, Jumbuck, Jushi, Karada, Kerry Lander, Kigali1, Kingoomieiii, Knutux, Lambiam, Landon Curt Noll, Laplacian, Linas, Loadmaster, Looxix, Lowellian, Lumidek, Lzur,
Majestic27, Malcolm Farmer, MartinGugino, Materialscientist, Matsonb, Matt Kurz, Maxal, Meredyth, Michael Hardy, Mikez, Mini-Geek, Minipie8, Mormegil, Motomuku, N.Nahber,
NickelKnowledge, NuclearWarfare, Numerao, Olivier, Optim, Otets, Pakaran, Pascal666, Pgan002, PhiEaglesfan712, Pilover819, Ponder, Pred, PrimeFan, PrimeHunter, PrometheusX303,
Prumpf, Pt, Qutezuce, R00723r0, Radagast3, Ranjithsutari, Raryel, Rbonvall, Rbraunwa, Remote009, Res2216firestar, Rhnet, Rhythm, Rich Farmbrough, Richard L. Peterson, Robo37,
Robomojo, Roentgenium111, Romanm, Ross Fraser, Rossami, Rziff, Sabbut, Salgueiro, Salix alba, Schneelocke, Shabda, Shanes, Shawnc, Shovonma17, Sohale, Sry85, SummerPhD,
Tambora1815, Tarandeep1983, Tengai, The Anome, Tim Starling, Tirkfl, Tjfulopp, Tommy2010, Tooto, Toshio Yamaguchi, UU, Uncwilly, UtherSRG, VHF, Vic93, Vobis132, Watsonwatt,
Wiwaxia, XJamRastafire, Yann, Zaphod Beeblebrox, Zigger, Zubaz, Zundark, 273 anonymous edits

Mills' constant  Source: http://en.wikipedia.org/w/index.php?oldid=395373952  Contributors: Andypar, Asmeurer, CBM, CRGreathouse, Carifio24, Charles Matthews, Cy1387, David Eppstein,
Dicklyon, Dogah, Gfis, Giftlite, Hannes Eder, Ixfd64, Kieff, Lowellian, Mike Rosoft, Oleg Alexandrov, Omnipaedista, PV=nRT, PrimeFan, PrimeHunter, RandomP, Reyk, Rich Farmbrough,
Robo37, Tamfang, TeunSpaans, 16 anonymous edits

Minimal prime (recreational mathematics)  Source: http://en.wikipedia.org/w/index.php?oldid=341529461  Contributors: 4pq1injbok, Arcfrk, CRGreathouse, CompositeFan, Giftlite,
PrimeFan, PrimeHunter, Supernumerator

Motzkin number  Source: http://en.wikipedia.org/w/index.php?oldid=358848883  Contributors: Bab dz, Cacycle, David Eppstein, Eequor, Fredrik, Giftlite, Holimion, JocK, Lantonov, Linas,
Mhym, Michael Hardy, Numerao, OwenX, PrimeFan, PrimeHunter, Robertd, Schneelocke, Stephen B Streater, 6 anonymous edits

Newman–Shanks–Williams prime  Source: http://en.wikipedia.org/w/index.php?oldid=378106260  Contributors: Anton Mravcek, Bender235, Burn, CRGreathouse, Dogah, Fredrik, FvdP,
Gandalf61, Giftlite, Herbee, Jotomicron, Linas, Michael Hardy, PrimeFan, Reinyday, Rikimaru, Schneelocke, Supernumerator, Uncia, 5 anonymous edits

Odd number  Source: http://en.wikipedia.org/w/index.php?oldid=161012912  Contributors: .:Ajvol:., Afed, Ahoerstemeier, Angela, Angr, Arthur Rubin, AxelBoldt, Beowulf7120, BiT,
Blotwell, Bm128, Brick Thrower, CRGreathouse, Calcyman, Charles Matthews, Cheeser1, ChemGardener, Chenxlee, Col tom, DGMorales, DRLB, David Eppstein, Demmy, Ellywa, Falsedef,
Fishnet37222, GeordieMcBain, Gesslein, Giftlite, Gregwmay, HeikoEvermann, Henrygb, Iseeaboar, IslandHopper973, Ixfd64, JForget, Jhinman, Jonathan Webley, Josh Parris, Jshadias,
Jumbuck, Justin W Smith, Kelisi, Kewp, Kpufferfish, LimoWreck, Linas, Logan, Lotans, Lucinos, MDCollins, MER-C, MK8, MacMed, Magister Mathematicae, Marc Venot, Maxal, Mcqxx,
Melchoir, Mellum, Mets501, Mfc, Michael Angelkovich, Michael Hardy, Minesweeper, Mormegil, N2e, Nuno Tavares, Nuttycoconut, Oddity-, Oleg Alexandrov, Oliver Pereira, Oxymoron83,
Paquitotrek, PhotoBox, PierreAbbat, Poor Yorick, Potatoswatter, Rhopkins8, Rhythm, Rodriguesds, Romanm, Rpresser, Ryulong, Salix alba, Snowdog, Starwiz, Stwalkerster, Synchronism,
TXiKi, TakuyaMurata, Thaurisil, The Anome, The enemies of god, Thetorpedodog, Toby Bartels, Trainman jaime, Twri, Usien6, Vegaswikian, VictorAnyakin, Wbrenna36, Xario, Xcentaur,
Zaslav, 175 anonymous edits
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Padovan sequence  Source: http://en.wikipedia.org/w/index.php?oldid=389040662  Contributors: Amber388, Burn, CRGreathouse, Charles Matthews, Fnorp, FvdP, Gandalf61, Gentlemath,
Gfis, Giftlite, Hyperdivision, Jtlien, Knodeltheory, Michael Hardy, Oleg Alexandrov, Plenilune, Pmanderson, PrimeFan, Txomin, 13 anonymous edits

Palindromic prime  Source: http://en.wikipedia.org/w/index.php?oldid=393495860  Contributors: Angela, Arthur Rubin, Blotwell, CBM, CRGreathouse, Chasingsol, Computician, Dfarmer,
Flamingantichimp, Gandalf61, Georgia guy, Giftlite, GraemeMcRae, GregorB, Herbee, Infovarius, Jayamohan, Johnmoyer, PV=nRT, PhiEaglesfan712, PrimeFan, PrimeHunter, Redgolpe,
Reinyday, Reyk, Ronhjones, Schneelocke, Shell Kinney, Teratornis, XJamRastafire, 12 anonymous edits

Partition (number theory)  Source: http://en.wikipedia.org/w/index.php?oldid=404257680  Contributors: 4pq1injbok, Almit39, Anomalocaris, Arch dude, Bluebusy, Burn, CRGreathouse,
Charles Matthews, David Eppstein, El C, Eliasen, FractalFusion, GTBacchus, Gandalf61, Giftlite, GromXXVII, Hannes Eder, Henrygb, Hillman, HorsePunchKid, Ilmari Karonen, Ixfd64, JNLII,
JRSpriggs, Jason Quinn, Jed 20012, JoaquinFerrero, Joriki, Justin W Smith, Jwmcleod, Kevin Forsyth, Khunglongcon, Kku, Krishnachandranvn, Lambiam, Lantonov, Linas, Loopology,
Macrakis, Marc van Leeuwen, Mathman99, Maxal, Merovingian, Mhym, Miaers, Michael Hardy, Michael Slone, Milogardner, Nonenmac, Oleg Alexandrov, Philip Trueman, Phys, Pwlfong,
Redgolpe, Richard L. Peterson, Robinh, Robo37, Shoeofdeath, Simetrical, Stevertigo, Tarquin, Tetracube, Thehebrewhammer, Timothy Clemans, Timrem, Wang ty87916, Wshun, Ylloh,
Zdaugherty, םעניבא, 白駒, 61 anonymous edits

Pell number  Source: http://en.wikipedia.org/w/index.php?oldid=404206001  Contributors: Amikake3, Ask123, CRGreathouse, David Eppstein, Dbg144, Fountainofignorance, Fredrik,
Gentlemath, Giftlite, Glenn L, Haseldon, Incnis Mrsi, Jacques Antoine, Jshadias, Michael Hardy, Mofo67, PV=nRT, Paul August, Pmanderson, Pomte, PrimeFan, PrimeHunter, Salvatore Ingala,
Silverfish, Uncia, Varnesavant, YixilTesiphon, 14 anonymous edits

Permutable prime  Source: http://en.wikipedia.org/w/index.php?oldid=399077043  Contributors: ABCD, Anban k, Anton Mravcek, Bojan Basic, CRGreathouse, Charles Matthews, Decagon,
Giftlite, Michael Hardy, Oleg Alexandrov, PrimeFan, PrimeHunter, Reyk, Shell Kinney, Sohale, Uncia, 11 anonymous edits

Perrin number  Source: http://en.wikipedia.org/w/index.php?oldid=402249507  Contributors: 4pq1injbok, Anton Mravcek, Burn, Charles Matthews, Daniel5Ko, David Eppstein, Eraserhead,
Fivemack, Giftlite, J1729, Johnbibby, MarSch, Maxal, Mu, Oxnard27, PrimeHunter, Sjorford, Splee, 19 anonymous edits

Pierpont prime  Source: http://en.wikipedia.org/w/index.php?oldid=349320580  Contributors: Anton Mravcek, Bender235, CRGreathouse, Charles Matthews, CompositeFan, Fivemack, Giftlite,
Hv, Jitse Niesen, Michael Hardy, Numerao, Oleg Alexandrov, PrimeFan, PrimeHunter, Quuxplusone, Reyk, Sohale, Supernumerator, Walter Nissen, 6 anonymous edits

Pillai prime  Source: http://en.wikipedia.org/w/index.php?oldid=388089162  Contributors: Anton Mravcek, Army1987, Bender235, CRGreathouse, CompositeFan, David Eppstein, Gandalf61,
Giftlite, Numerao, PrimeFan, PrimeHunter, Sohale

Prime gap  Source: http://en.wikipedia.org/w/index.php?oldid=396737746  Contributors: CRGreathouse, Charles Matthews, Chenxlee, DataWraith, EmilJ, Gap9551, Giftlite, Goldenart,
Graham87, GregorB, Hairhorn, Jitse Niesen, Jsondow, Kope, Luokehao, Madmath789, Michael Hardy, Mon4, Octahedron80, Oleg Alexandrov, Olivemountain, PrimeHunter, Terra Xin, Timothy
Clemans, XJamRastafire, 48 anonymous edits

Prime quadruplet  Source: http://en.wikipedia.org/w/index.php?oldid=403883780  Contributors: Almit39, AnonUser, Anton Mravcek, Bedivere, CRGreathouse, DYLAN LENNON,
Discospinster, Dougweller, DrScienceAstronaut, Epastore, Giftlite, Giggy, Gwaihir, Linas, Lzur, Matchups, Mwalimu59, Oleg Alexandrov, PhiEaglesfan712, PrimeFan, PrimeHunter, Rich
Farmbrough, Scythe33, Sicherlich, 13 anonymous edits

Prime triplet  Source: http://en.wikipedia.org/w/index.php?oldid=404665558  Contributors: Gandalf61, Giftlite, Lord of Illusions, MFH, Michael Hardy, PhiEaglesfan712, PrimeHunter, 白駒, 2
anonymous edits

Prime-counting function  Source: http://en.wikipedia.org/w/index.php?oldid=406099511  Contributors: Abc135246, AbcXyz, Almit39, Alodyne, Arthur Rubin, AxelBoldt, Ben-Arba,
Billymac00, Bubba73, CRGreathouse, Charles Matthews, Crisófilax, Dantheox, Dmharvey, Doshell, Droog Andrey, EmilJ, Eric119, EulerGamma, Gandalf61, Gene Ward Smith, Giftlite,
GregorB, Haseldon, Ixfd64, JCSantos, James Harris, JamesHoadley, Jimothy 46, Joerite, Karl-H, Katsushi, Madmath789, Magioladitis, Michael Hardy, Mikewarbz, Motomuku, Mwboyer,
Numerao, Oleg Alexandrov, PV=nRT, Paul August, Philip Trueman, PittBill, Portalian, PrimeHunter, R.e.b., Rich.lewis, RobertG, Salgueiro, Scythe33, Superm401, Tchoř, That Guy, From That
Show!, Tobias Bergemann, Tos, Werner D. Sand, XJamRastafire, Xario, Xenonice, 75 anonymous edits

Primeval prime  Source: http://en.wikipedia.org/w/index.php?oldid=193722064  Contributors: Anton Mravcek, CRGreathouse, Charles Matthews, Ekpyrotic Architect, Fredrik, Giftlite, Herbee,
Interlingua, Linas, Mysid, Oleg Alexandrov, PrimeHunter, Schneelocke, 3 anonymous edits

Primorial prime  Source: http://en.wikipedia.org/w/index.php?oldid=404048004  Contributors: Army1987, CRGreathouse, Giftlite, GregorB, Josh Cherry, Koppapa, Michael Hardy, Oleg
Alexandrov, Pakaran, PrimeFan, PrimeHunter, RJHall, Robo37, Silverfish, Superm401, Supernumerator, Thinking of England, Triona, 18 anonymous edits
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