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Mathematical Constants

Famous mathematical constants include the ratio of circular circumference to diameter,
m = 3.14..., and the natural logarithmic base, e = 2.178 .. .. Students and professionals
usually can name at most a few others, but there are many more buried in the literature and
awaiting discovery.

How do such constants arise, and why are they important? Here Steven Finch provides
136 essays, each devoted to a mathematical constant or a class of constants, from the well
known to the highly exotic. Topics covered include the statistics of continued fractions,
chaos in nonlinear systems, prime numbers, sum-free sets, isoperimetric problems, approxi-
mation theory, self-avoiding walks and the Ising model (from statistical physics), binary and
digital search trees (from theoretical computer science), the Prouhet-Thue—Morse sequence,
complex analysis, geometric probability, and the traveling salesman problem. This book
will be helpful both to readers seeking information about a specific constant and to readers
who desire a panoramic view of all constants coming from a particular field, for example,
combinatorial enumeration or geometric optimization. Unsolved problems appear virtually
everywhere as well. This is an outstanding scholarly attempt to bring together all significant
mathematical constants in one place.

Steven R. Finch studied at Oberlin College and the University of Illinois in Urbana-
Champaign, and held positions at TASC, MIT Lincoln Laboratory, and MathSoft Inc. He
is presently a freelance mathematician in the Boston area. He is also a composer and has
released a CD entitled “An Apple Gathering” devoted to his vocal and choral music.
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Preface

All numbers are not created equal. The fact that certain constants appear at all and
then echo throughout mathematics, in seemingly independent ways, is a source of
fascination. Formulas involving ¢, e, , or y understandably fill a considerable portion
of this book.

There are also many constants whose purposes are more specialized. Often such
exotic quantities have been buried in the literature, known only to the experts of a
narrow field, and invisible to the wider public. In some cases, the constants are easily
computable; in other cases, they may be known to only one decimal digit of precision
(or worse, none at all). Even rigorous proofs of existence might be unavailable.

My belief is that these latter constants are not as isolated as they may seem. The
associated branches of research (unlike those involving ¢, e, m, or y) might simply
require more time to develop the languages, functions, symmetries, etc., to express the
constants more naturally. That is, if we work and listen hard enough, the echoes will
become audible.

An elaborate taxonomy of mathematical constants has not yet been achieved; hence
the organization of this book (by discipline) is necessarily subjective. A table of decimal
approximations at the end gives an alternative organizational strategy (if ascending
numerical order is helpful). The emphasis for me is not on the decimal expansions,
but rather on the mathematical origins of the constants and their interrelationships. In
short, the stories, not the table, tie the book together.

Material about well-known constants appears early and carefully, for the sake of
readers without much mathematical background. Deeper into the text, however, I nec-
essarily become more terse. My intended audience is advanced undergraduates and
beyond (so I may assume readers have had calculus, matrix theory, differential equa-
tions, probability, some abstract algebra, and analysis). My aim is always to be clear
and complete, to motivate why a particular constant or idea is important, and to in-
dicate exactly where in the literature one should look for rigorous proofs and further
elaboration.

I have incorporated Richard Guy’s use of the ampersand (&) to denote joint work.
For example, phrases like ... follows from the work of Hardy & Ramanujan and

Xvil



Xviil Preface

Rademacher” are unambiguous when presented as here. The notation [3, 7] means
references 3 and 7, whereas [3.7] refers to Section 3.7 of this book. The presence of a
comma or decimal point is clearly crucial.

Many people have speculated on the role of the Internet in education and research.
I have no question about the longstanding impact of the Web as a whole, but I remain
skeptical that any specific Web address I might give here will exist in a mere five years.
Of all mathematical Web sites available today, I expect that at least the following three
will survive the passage of time:

» the ArXiv preprint server at Los Alamos National Laboratory (the meaning of a
pointer to “math.CA/9910045” or to “solv-int/9801008” should be apparent to all
ArXiv visitors),

* MathSciNet, established by the American Mathematical Society (subscribers to
this service will be acquainted with Mathematical Reviews and the meaning of
“MR 3,270e,” “MR 33 #3320,” or “MR 87h:51043”), and

» the On-Line Encyclopedia of Integer Sequences, created by Neil Sloane (a sequence
identifier such as “A000688” will likewise suffice),

but not many more will outlive us. Even those that persist will be moved to various
new locations and the old addresses will eventually fail. I have therefore chosen not
to include Web URLs in this book. When I cite a Web site (e.g., “Numbers, Constants
and Computation,” “Prime Pages,” “MathPages,” “Plouffe’s Tables,” or “Geometry
Junkyard”), the reference will be by name only.

A project of this magnitude cannot possibly be the work of one person. These pages
are filled with innumerable acts of kindness by friends. To express my appreciation
to all would considerably lengthen this preface; hence I will not attempt this. Special
thanks are due to Philippe Flajolet, my mentor, who provided valuable encouragement
from the very beginning. I am grateful to Victor Adamchik, Christian Bower, Anthony
Guttmann, Joe Keane, Pieter Moree, Gerhard Niklasch, Simon Plouffe, Pascal Sebah,
Craig Tracy, John Wetzel, and Paul Zimmermann. [ am also indebted to MathSoft Inc.,*
the Algorithms Group at INRIA, and CECM at Simon Fraser University for providing
Web sites for my online research notes — my window to the world! — and to Cambridge
University Press for undertaking this publishing venture with me.

Comments, corrections, and suggestions from readers are always welcome. Please
send electronic mail to Steven. Finch@jinria.fr. Thank you.

* Portions of this book are © 20002003 MathSoft Engineering & Education, Inc. and are reprinted with
permission.



Notation

S(x) = 0(gx))
J(x) = o(g(x))
Jx) ~ glx)

floor function: largest integer < x
ceiling function: smallest integer > x
fractional part: x — |x]

natural logarithm: log, x

!
binomial coefficient: W+W

ai
a
as

by+---
big O: | f(x)/g(x)| is bounded from above as x — xg

continued fraction: by +
by +
by, +

little 0: f(x)/g(x) > 0asx — xg

asymptotic equivalence: f(x)/g(x) — lasx — xg

summation over all prime numbers p =2,3,5,7,11, ...

(only when the letter p is used)

same as y_ ,» With addition replaced by multiplication

power: (f(x))", where n is an integer
iterate: f(f(---f (x)...)) where n > 0 is an integer
————

n times
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Well-Known Constants

1.1 Pythagoras’ Constant, v/2

The diagonal of a unit square has length /2 = 1.4142135623 . . . . A theory, proposed
by the Pythagorean school of philosophy, maintained that all geometric magnitudes
could be expressed by rational numbers. The sides of a square were expected to be
commensurable with its diagonals, in the sense that certain integer multiples of one
would be equivalent to integer multiples of the other. This theory was shattered by the
discovery that /2 is irrational [1-4].

Here are two proofs of the irrationality of +/2, the first based on divisibility properties
of the integers and the second using well ordering.

« If /2 were rational, then the equation p?> = 2¢> would be solvable in integers p and
g, which are assumed to be in lowest terms. Since p? is even, p itself must be even
and so has the form p = 2r. This leads to 2¢? = 472 and thus ¢ must also be even.
But this contradicts the assumption that p and g were in lowest terms.

« If /2 were rational, then there would be a least positive integer s such that s+/2 is an
integer. Since 1 < 2, it follows that 1 < +/2 and thus # = s - (+/2 — 1) is a positive
integer. Also tN2=s" (ﬁ — 1)ﬁ =25 —s4/2 isan integer and clearly # < s.
But this contradicts the assumption that s was the smallest such integer.

Newton’s method for solving equations gives rise to the following first-order recur-
rence, which is very fast and often implemented:

_ 1
xo=1, xk=)£+— fork > 1, limxkz\/i.
2 Xk—1 k— 00

Another first-order recurrence [5] yields the reciprocal of v/2:

1 3 . 1
Y= Yk = Yk-1 <§—y,f_1> fork > 1, klgl;oyk=ﬁ.
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The binomial series, also due to Newton, provides two interesting summations [6]:

o0 n—1
(—1) 2 11 1.3
+y° i ts-ratr et V2,

oo
(=D" 2n 1 1-3 1-3.5 1
1 =] -+ - _ = —
+Z 22\ n 2+2- 2~4-6+ V2
The latter is extended in [1.5.4]. We mention two beautiful infinite products [5,7, 8]

0-520)- () 3) 0 (-3 -

n=I
ﬁ 1-3 5.7 9-11 13-15 1
4(2;1—1)2 2 6-6 10-10 14-14 2

n=1

and the regular continued fraction [9]

1 TR

PP SR SE ] S S SR SR SR SV
24

2+

24 ...

which is related to Pell’s sequence
ap =0, a =1, a, =2a,_1+a,—, forn>2
via the limiting formula

lim & — 1+ V2,

n—oo @,

This is completely analogous to the famous connection between the Golden mean ¢
and Fibonacci’s sequence [1.2]. See also Figure 1.1.

Viéte’s remarkable product for Archimedes’ constant 7 [1.4.2] involves only the
number 2 and repeated square-root extractions. Another expression connecting 7w and
radicals appears in [1.4.5].

4
—_

1

Figure 1.1. The diagonal of a regular unit pentagon, connecting any two nonadjacent corners,
has length given by the Golden mean ¢ (rather than by Pythagoras’ constant).
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We return finally to irrationality issues: There obviously exist rationals x and y such
that x” is irrational (just take x = 2 and y = 1/2). Do there exist irrationals x and y
such that x” is rational? The answer to this is very striking. Let

=2

If z is rational, then take x = y = V2. If z is irrational, then take x = z and y = ﬁ,
and clearly x” = 2. Thus we have answered the question (“yes”) without addressing the
actual arithmetical nature of z. In fact, z is transcendental by the Gel’fond—Schneider
theorem [10], proved in 1934, and hence is irrational. There are many unsolved prob-
lems in this area of mathematics; for example, we do not know whether

V2
NN A

is irrational (let alone transcendental).

1.1.1 Generalized Continued Fractions

It is well known that any quadratic irrational possesses a periodic regular continued
fraction expansion and vice versa. Comparatively few people have examined the gen-
eralized continued fraction [11-17]

T+

which exhibits a fractal-like construction. Each new term in a particular generation
(i.e., in a partial convergent) is replaced according to the rules

1 P
p—>p+—, q9—>q+t—
q q
in the next generation. Clearly
1
p+—
w=q+ . thatis, w3 —qw?—pw —1=0.
w

In the special case p = g = 3, the higher-order continued fraction converges to (—1 +

V/2)~!.1tis conjectured that regular continued fractions for cubic irrationals behave like
those for almost all real numbers [18-21], and no patterns are evident. The ordinary
replacement rule

r—>r+ -
r
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is sufficient for the study of quadratic irrationals, but requires extension for broader
classes of algebraic numbers.
Two alternative representations of +/2 are as follows [22]:

1 301 10 3
€/§=1+7, where a=3+ -+ —, b=124+ —+ —
3.1 a b a b
34>+ -
a b
and [23]
2 7 10] 11
N S S B B LI . AL B

B3 12 19 12 |15 |12 |21 |2

Other usages of the phrase “generalized continued fractions” include those in [24], with
application to simultaneous Diophantine approximation, and in [25], with a geometric
interpretation involving the boundaries of convex hulls.

1.1.2 Radical Denestings

We mention two striking radical denestings due to Ramanujan:
1 2 /4
WA= 5= 5y VT (08 -).
Such simplifications are an important part of computer algebra systems [26].
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1.2 The Golden Mean, ¢

Consider a line segment:

What is the most “pleasing” division of this line segment into two parts? Some people
might say at the halfway point:

Others might say at the one-quarter or three-quarters point. The “correct answer” is,
however, none of these, and is supposedly found in Western art from the ancient Greeks
onward (aestheticians speak of it as the principle of “dynamic symmetry”):

If the right-hand portion is of length v = 1, then the left-hand portion is of length
u =1.618.... A line segment partitioned as such is said to be divided in Golden or
Divine section. What is the justification for endowing this particular division with such
elevated status? The length u, as drawn, is to the whole length u + v, as the length v is
to u:

u v

u+v u
Letting ¢ = u/v, solve for ¢ via the observation that
1 v o ou+v u

17 u u v
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The positive root of the resulting quadratic equation 9> — ¢ — 1 = 0 is

1++/5
2
which is called the Golden mean or Divine proportion [1,2].
The constant g is intricately related to Fibonacci’s sequence

fo=0, h=1, Jo= fuo1+ fu—a forn>2.

This sequence models (in a naive way) the growth of a rabbit population. Rabbits are
assumed to start having bunnies once a month after they are two months old; they
always give birth to twins (one male bunny and one female bunny), they never die, and
they never stop propagating. The number of rabbit pairs after » months is f,.

What can ¢ possibly have in common with { f,,}? This is one of the most remarkable
ideas in all of mathematics. The partial convergents leading up to the regular continued
fraction representation of ¢,

= 1.6180339887...,

=1+ ! —1+1|+1|+1|+
= ] I TETRRATI ’
14 — 1
1
+ 14---
are all ratios of successive Fibonacci numbers; hence
li fn+1 _
im =g
n—0Q

n
This result is also true for arbitrary sequences satisfying the same recursion f, =
fnu—1 + fu_2, assuming that the initial terms f; and f; are distinct[3,4].

The rich geometric connection between the Golden mean and Fibonacci’s sequence
is seen in Figure 1.2. Starting with a single Golden rectangle (of length ¢ and width
1), there is a natural sequence of nested Golden rectangles obtained by removing the
leftmost square from the first rectangle, the topmost square from the second rectangle,
etc. The length and width of the n™ Golden rectangle can be written as linear expres-
sions a + by, where the coefficients ¢ and b are always Fibonacci numbers. These
Golden rectangles can be inscribed in a logarithmic spiral as pictured. Assume that
the lower left corner of the first rectangle is the origin of an xy-coordinate system.

¢ —1

Figure 1.2. The Golden spiral circumscribes the sequence of Golden rectangles.
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The accumulation point for the spiral can be proved to be (é(l + 3¢), %(3 — ¢)). Such
logarithmic spirals are “equiangular” in the sense that every line through (xo0, Yoo)
cuts across the spiral at a constant angle &. In this way, logarithmic spirals generalize
ordinary circles (for which & = 90°). The logarithmic spiral pictured gives rise to the
constant angle & = arccot(% In(p)) = 72.968 .. .° . Logarithmic spirals are evidently
found throughout nature; for example, the shell of a chambered nautilus, the tusks of
an elephant, and patterns in sunflowers and pine cones [4—6].

Another geometric application of the Golden mean arises when inscribing a regular
pentagon within a given circle by ruler and compass. This is related to the fact that

2 cos (%) =g, 2sin (%) =.3—9¢.

The Golden mean, just as it has a simple regular continued fraction expansion, also has
a simple radical expansion [7]

0= 1+/1+\/1+\/1+m.

The manner in which this expansion converges to ¢ is discussed in [1.2.1]. Like Pythago-
ras’ constant [1.1], the Golden mean is irrational and simple proofs are given in [8,9].
Here is a series [10] involving ¢:

24/5 11 1 1 1 1 1
N S T W IO Z
5 @) ( 2 3+4>+<6 7 8+9)

which reminds us of certain series connected with Archimedes’ constant [1.4.1]. A
direct expression for ¢ as a sum can be obtained from the Taylor series for the square
root function, expanded about 4. The Fibonacci numbers appear in yet another repre-
sentation [11] of ¢:

4 i 1 1 n 1 n 1 n 1 +
—@ = p— J— J— J— e,
= h o S

Among many other possible formulas involving ¢, we mention the four Rogers—
Ramanujan continued fractions

1 27 e—ZJr ’ e—4n ’ e 67 | e—8ﬂ ‘
(pexp(——)zl—i— + + + + -

a— 5 |1 1 1 11
1 o7 e—ZTr\fS‘ 6_47“6‘ e—6n«/§‘ e—87‘[x/§‘
B soexp(_ﬁ>=1+ [T TR TR
1 P e 7 ‘ e 27 ‘ e 37 | e ’
me"p<_§>:1_ TR T TR A TR
1 - e—rr\/g‘ e—2n«/§‘ e—3n\f5‘ e—4rr\/§‘
=g —1D) Xp(_%>=1_ T T TR TR
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where
a=(¢ﬂ)%, a’=%((w—1)ﬁ)g, ﬂ=w%,
% / J5
K:<(¢_1)\/§) ) K :%((ﬂﬁ) ) AZTKS/j‘

The fourth evaluation is due to Ramanathan [9, 12—-16].

1.2.1 Analysis of a Radical Expansion

The radical expansion [1.2] for ¢ can be rewritten as a sequence {¢,}:

o1 =1, on=~T+@,1 forn=>2.
Paris [17] proved that the rate in which ¢, approaches the limit ¢ is given by
- 2C
2oy
where C = 1.0986419643 . .. is a new constant. Here is an exact characterization of
C. Let F(x) be the analytic solution of the functional equation

F(x) =2¢F(¢ —/¢* —x), Ix| < ¢,

subject to the initial conditions F(0) = O and F’(0) = 1. Then C = ¢ F(1/¢). A power-
series technique can be used to evaluate C numerically from these formulas. It is simpler,
however, to use the following product:

O — @y asn — 00,

o0

2¢

C = ,
w2 @t On

which is stable and converges quickly [18].
Another interesting constant is defined via the radical expression [7,19]

l+\/2+\/3+\/4+«/5+...=1_7579327566...,

but no expression of this in terms of other constants is known.

1.2.2 Cubic Variations of the Golden Mean
Perrin’s sequence is defined by
8o =3, g1 =0, & =2, 8n =8n-2+&g-3 forn=3

and has the property that n > 1 divides g, if n is prime [20,21]. The limit of ratios of
successive Perrin numbers

¥ = lim &

n—00 gl’l
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satisfies 9> — ¢ — 1 = 0 and is given by
1 1
(1 V60N L1 (1, Vo) 3 _ 23 1 33
Y= (5 + W) +3 (5 + 1—8) = 3= cos (5 arccos (T))
= 1.3247179572.....

This also has the radical expansion

3 3
V= 1+\/1+\%1+\3/1+\/31+-~-.

An amusing account of v is given in [20], where it is referred to as the Plastic constant
(to contrast against the Golden constant). See also [2.30].
The so-called Tribonacci sequence [22,23]

hy =0, h =0, hy =1, hy=h,_1+h,_o+h,3 forn>3
has an analogous limiting ratio
1
_ (19 33\ 4(19 V3
X—(z—7+T> +6(ﬁ+T)
= 1.8392867552.. .,

1
Ty % = %cos (% arccos (£)) +

W=

that is, the real solution of x> — x? — x — 1 = 0. See [1.2.3]. Consider also the four-
numbers game: Start with a 4-vector (a, b, ¢, d) of nonnegative real numbers and
determine the cyclic absolute differences (|6 — al, |c — b|, |d — c|, |a — d|). Iterate
indefinitely. Under most circumstances (e.g., if @, b, ¢, d are each positive integers),
the process terminates with the zero 4-vector after only a finite number of steps. Is this
always true? No. It is known [24] that v = (1, x, x2, x?) is a counterexample, as well
as any positive scalar multiple of v, or linear combination with the 4-vector (1, 1, 1, 1).
Also, w = (x>, x> + x, x%,0) is a counterexample, as well as any positive scalar
multiple of w, or linear combination with the 4-vector (1, 1, 1, 1). These encompass
all the possible exceptions. Note that, starting with w, one obtains v after one step.

1.2.3 Generalized Continued Fractions

Recall from [1.1.1] that generalized continued fractions are constructed via the replace-
ment rule

1 p
p—>p+-—, q—>q+=
q q

applied to each new term in a particular generation. In particular, if p = g = 1, the
partial convergents are equal to ratios of successive terms of the Tribonacci sequence,
and hence converge to x. By way of contrast, the replacement rule [25,26]

1

r—r+4+—-

1
r+ -
r
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2

is associated with a root of x> — rx? —r = 0. If r = 1, the limiting value is

1 1
29 933 1 (29 93\ 3 1 2 1 29 1
(§+%) +§(5—4+%) + 5 = cos (3arccos (3)) + 3
= 1.4655712318....

Other higher-order analogs of the Golden mean are offered in [27-29].

1.2.4 Random Fibonacci Sequences
Consider the sequence of random variables
xo =1, x1 =1, X, = £x,_1 £ x,_, forn>2,

where the signs are equiprobable and independent. Viswanath [30-32] proved the sur-
prising result that

lim /Jx,| = 1.13198824 . ..,
n—oo

with probability 1. Embree & Trefethen [33] proved that generalized random linear
recurrences of the form

Xn = Xn—1 + ﬁxn—Z

decay exponentially with probability 1if 0 < 8 < 0.70258 . .. and grow exponentially
with probability 1 if 8 > 0.70258....

1.2.5 Fibonacci Factorials

We mention the asymptotic result [[}_, fi ~c-@""TV/2.57"/2 as n — oo,
where [34,35]

o (-1
c=l_[<1— - ):1.2267420107....
n=1 % 8

See the related expression in [5.14].
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1.3 The Natural Logarithmic Base, ¢

It is not known who first determined
1
ling)(l +x)r =e=2.7182818284....

We see in this limit the outcome of a fierce tug-of-war. On the one side, the exponent
explodes to infinity. On the other side, 1 + x rushes toward the multiplicative identity
1. It is interesting that the additive equivalent of this limit

limx-— =1
x—0 X
is trivial. A geometric characterization of e is as follows: e is the unique positive root
x of the equation
X

1
/—du:l,
u

1

which is responsible for e being employed as the natural logarithmic base. In words, e
is the unique positive number exceeding 1 for which the planar region bounded by the
curves v = 1/u, v =0, u = 1, and u = e has unit area.

The definition of e implies that

—(c-e)=c-¢€

dx
and, further, that any solution of the first-order differential equation
dy
I »(x)

must be of this form. Applications include problems in population growth and radioac-
tive decay. Solutions of the second-order differential equation

d*y

dx?
are necessarily of the form y(x) = a - e* + b - e™. The special case y(x) = cosh(x)
(i.e.,a = b = 1/2) is called a catenary and is the shape assumed by a certain uniform
flexible cable hanging under its own weight. Moreover, if one revolves part of a catenary
around the x-axis, the resulting surface area is smaller than that of any other curve with

the same endpoints[1,2].
The series

= y(x)

is rapidly convergent — ordinary summation of the terms as listed is very quick for
all practical purposes — so it may be surprising to learn that a more efficient means
for computing the #™ partial sum is possible [3,4]. Define two functions p(a, b) and
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q(a, b) recursively as follows:

1 .
<p(a,b))_ <b> 1fb=a+l,
qla, b)) <p(a, m)q(m, b) + p(m, b)> otherwise, where
q(a, m)q(m,b) m=|4"].

Then it is not difficult to show that 1 4 p(0, n)/q(0, n) gives the desired partial sum.
Such a binary splitting approach to computing e has fewer single-digit arithmetic
operations (i.e., reduced bit complexity) than the usual approach. Accelerated methods
like this grew out of [5—7]. When coupled with FFT-based integer multiplication, this
algorithm is asymptotically as fast as any known.

The factorial series gives the following matching problem solution [8]. Let P(n) de-
note the probability that a randomly chosen one-to-one function f : {1,2,3,...,n} —
{1,2,3,...,n} has at least one fixed point; that is, at least one integer k& for which
f(k)y=k,1 <k <n.Then

n—00 k!

. >N (=1 1
lim P(n) = Z =1-—-=0.6321205588....
=1 €

See Figure 1.3; a generalization appears in [5.4]. Also, let X, X5, X3, ... be inde-
pendent random variables, each uniformly distributed on the interval [0, 1]. Define an
integer N by
N:min{n: Xk>l};
k=1

then the expected value E(N) = e. In the language of stochastics, a renewal process
with uniform interarrival times X; has a mean renewal count involving the natural
logarithmic base [9].

0.5
0.4
0.3
0.2

0.1

'...y,'-:
0 0 1 2 3 4 5

Figure 1.3. Distribution of the number of fixed points of a random permutation f on #n symbols,
tending to Poisson(1) as n — oo.
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Break a stick of length r into m equal parts [10]. The integer m such that the product
ofthe lengths of the parts is maximized is |#/e] or |#/e] + 1. See [5.15] for information
on a related application known as the secretary problem.

There are several Wallis-like infinite products [4, 11]

2 (4\' (6-8\F (10-12.14-16)F
=1\ 5.7 9.11-13-15 ’
e (2\' (2-4\F (4.6-6-8)F

2 - \1 3.3 5.5.7.7

and continued fractions [1.3.2] as well as the following fascinating connection to prime
number theory [12]. If we define

1
n? = l_[ s then lim (n?)n =e,
p<l’l n—o00
ppﬁme

which is a consequence of the Prime Number Theorem. Equally fascinating is the fact
that

1
. (mhHn 1
lim =

n—oo n e

by Stirling’s formula; thus the growth of n! exceeds that of n? by an order of magnitude.
We also have [13-15]

1 1 n
lim (n)n — ((n — HH»—1 = —, lim [ [ + @ — kb~ =e.
n—o00 e n—00 i

The irrationality of e was proved by Euler and its transcendence by Hermite; that
is, the natural logarithmic base e cannot be a zero of a polynomial with integer coeffi-
cients [4,16-18].

An unusual procedure for calculating e, known as the spigot algorithm, was first
publicized in [19]. Here the intrigue lies not in the speed of the algorithm (it is slow)
but in other characteristics: It is entirely based on integer arithmetic, for example.

Some people call e Euler’s constant, but the same phrase is so often used to refer to
the Euler—Mascheroni constant y that confusion would be inevitable. Napier came very
close to discovering e in 1614; consequently, some people call e Napier's constant

[1].

1.3.1 Analysis of a Limit

The Maclaurin series

1 1 1 11 7 2447 959
(1 4x)x =1— x4+ —x?— —x> + 4
e

5 6
A 2 540
2 T4 16" T5760° " 2304° T O



1.3 The Natural Logarithmic Base, e 15

describes more fully what happens in the limiting definition of e; for example,

1
| (I+x)x —e 1
1+x)x — 1 — 1tz 11
lim w = ——e, lim X 2 _ —e.
x—0 X 2 x—0 X 24

Quicker convergence is obtained by the formulas [20-24]:

1
. (24 x\~x . (4 1y n"
lim =e, lim — =e.
x—»0\2 —x n—00 n" (n — 1)”*1

To illustrate, the first terms in the corresponding asymptotic expansions are 1 + x2/12
and 1 + 1/(24n?). Further improvements are possible.

1.3.2 Continued Fractions

The regular continued fraction for e,
e=2+ﬂ+H+H+H+H+ﬂ+ﬂ+ﬂ+ﬂ+...,
2 1 [ 4 1 1 J6 |
is (after suitable transformation) one of a family of continued fractions [25-28]:
coth<l>=ez/mi+1=m+i+i+i+i+...
m e2/m — 1 Bm  |Sm  |7m  |9m ’
where m is any positive integer. Davison [29] obtained an algorithm for computing
quotients of coth(3/2) and coth(2), for example, but no patterns can be found. Other

continued fractions include [1,26,30,31]
1 1+2|+3|+4|+5|+ ! 1+1|+2|+3|+4|+
e — = a— — — — SN = — — — — CIIN
2 3 14 15 e—2 2 13 14 |5

and still more can be found in[32,33].

1.3.3 The Logarithm of Two
Finally, let us say a few words [34] about the closely related constant In(2),

n

1
1 . 1
In(2) = / I—_Hdt = nll{lgo Z P 0.6931471805. .. .,
0

k=1

which has limiting expressions similar to that for e:
~ @) =lim
n( ) Xl_I)l’(l) 2x
Well-known summations include the Maclaurin series for In(1 + x) evaluated at x = 1
andx = —1/2,

lim
x—0

S SLARIR N
ln(2)=k2:1: p =Zﬁ.

k=1
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A binary digit extraction algorithm can be based on the series

© o 1oy 1
m2) =S (— + * )L
n(2) ;<8k+8+4k+2>4k

which enables us to calculate the 4™ bit of In(2) without being forced to calculate all
the preceding d — 1 bits. See also [2.1], [6.2], and [7.2].
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1.4 Archimedes’ Constant,

Any brieftreatment of 77, the most famous of the transcendental constants, is necessarily
incomplete [1-5]. Its innumerable appearances throughout mathematics stagger the
mind.

The area enclosed by a circle of radius 1 is

1
_ =4/\/1—x2dx—hm—zx/n2 K2 =3.1415926535 ..
}’l—)oon
0

while its circumference is

The formula for A4 is based on the definition of area in terms of a Riemann integral, that
is, a limit of Riemann sums. The formula for C uses the definition of arclength, given a
continuously differentiable curve. How is it that the same mysterious 7 appears in both
formulas? A simple integration by parts provides the answer, with no trigonometry
required [6].

In the third century B.C., Archimedes considered inscribed and circumscribed reg-
ular polygons of 96 sides and deduced that 3 % <7m< 3%. The recursion

ag = 2\/5, by =3,

2a,b,
a , b1 = Jaui1by forn >0
a, + b,

apr1 =
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(often called the Borchardt—Pfaff algorithm) essentially gives Archimedes’ estimate
on the fourth iteration [7—11]. It is only linearly convergent (meaning that the number
of iterations is roughly proportional to the number of correct digits). It resembles the
arithmetic-geometric-mean (AGM) recursion discussed with regard to Gauss’ lemnis-
cate constant [6.1].

The utility of 7 is not restricted to planar geometry. The volume enclosed by a
sphere of radius 1 in n-dimensional Euclidean space is

JTk

v F ifn = Zk,
- k!
22k+lmﬂk lfn = 2k + 1,
while its surface area is
27k :
o m ifn = 2k,
22k+1£nk ifn=2k+1
(2k)! - '

These formulas are often expressed in terms of the gamma function, which we discuss
in [1.5.4]. The planar case (a circle) corresponds to n = 2.

Another connection between geometry and s arises in Buffon’s needle prob-
lem[1, 12—15]. Suppose a needle of length 1 is thrown at random on a plane marked by
parallel lines of distance 1 apart. What is the probability that the needle will intersect
one of the lines? The answer is 2/7 = 0.6366197723... .

Here is a completely different probabilistic interpretation [16, 17] of 7. Suppose two
integers are chosen at random. What is the probability that they are coprime, that is,
have no common factor exceeding 1? The answer is 6/7% = 0.6079271018.. . . (in the
limit over large intervals). Equivalently, let R(N) be the number of distinct rational
numbers a/b with integers a, b satisfying 0 < a, b < N. The total number of ordered
pairs (a, b) is N?, but R(N) is strictly less than this since many fractions are not in
lowest terms. More precisely, by preceding statements, R(N) ~ 6 N2 /w2,

Among the most famous limits in mathematics is Stirling’s formula [18]:

!
lim — - — /27 = 2.5066282746 . . ..

nooo e—Nph+1/2

Archimedes’ constant has many other representations too, some of which are given later.
It was proved to be irrational by Lambert and transcendental by Lindemann [2, 16, 19].
The first truly attractive formula for computing decimal digits of = was found by
Machin[1,13]:

T 1 1
— =4arctan| — | — arctan [ —
4 (5 ) (239>

P S L S G
£ 2k + 1) SHHT T £ 2k 1) - 2392+
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The advantage of this formula is that the second term converges very rapidly and the
first is nice for decimal arithmetic. In 1706, Machin became the first individual to
correctly compute 100 digits of .

We skip over many years of history and discuss one other significant algorithm due
to Salamin and Brent [2,20-23]. Define a recursion by

ap =1, by = 1/4/2, co = 1/2, so=1/2,
a, + b, &\ et
ay+1 = B bn+1 = \/anbna Cht+1 = y S+l = Sp — 2 Cn+1
2 4a,,+1

for n > 0. Then the ratio 2a2/s, converges quadratically to 7 (meaning that each
iteration approximately doubles the number of correct digits). Even faster cubic and
quartic algorithms were obtained by Borwein & Borwein [2,22,24,25]; these draw
upon Ramanujan’s work on modular equations. These are each a far cry computationally
from Archimedes’ approach. Using techniques like these, Kanada computed close to
a trillion digits of 7.

There is a spigot algorithm for calculating 7 just as for e¢[26]. Far more im-
portant, however, is the digit-extraction algorithm discovered by Bailey, Borwein &
Plouffe [27-29] based on the formula

21
T = —
2 1g
4+ 8r 8r 4r 2+ 8r 14 2r 1+2r+ r
X J— J— J— J— J—
8k+1 8k+2 8k+3 8k+4 8k+5 8k+6 8k+7

(for » = 0) and requiring virtually no memory. (The extension to complex » # 0 is due
to Adamchik & Wagon [30,31].) A consequence of this breakthrough is that we now
know the quadrillionth digit in the binary expansion for , thanks largely to Bellard
and Percival. An analogous base-3 formula was found by Broadhurst [32].

Some people call = Ludolph s constant after the mathematician Ludolph van Ceulen
who devoted most of his life to computing 7 to 35 decimal places.

The formulas in this essay have a qualitatively different character than those
for the natural logarithmic base e. Wimp [33] elaborated on this: What he called
“e-mathematics” is linear, explicit, and easily capable of abstraction, whereas
“m-mathematics” is nonlinear, mysterious, and generalized usually with difficulty.
Cloitre [34], however, gave formulas suggesting a certain symmetry between e and
m:Ifu;=vi=0,u, =v, =1and

Un+1

Up
Un+2=un+1+7, Upt2 = +v,, n>0,

then lim,,_, o, n/u, = e whereas lim,,_, , Zn/v,f =.
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1.4.1 Infinite Series

Over five hundred years ago, the Indian mathematician Madhava discovered the for-
mula [35-38]

_i(—l)" A U S U B
&=+l 305 7 9 1 ’

which was independently found by Gregory [39] and Leibniz [40]. This infinite series
is conditionally convergent; hence its terms may be rearranged to produce a series that
has any desired sum or even diverges to +00 or —oo. The same is also true for the
alternating harmonic series [1.3.3]. For example, we have

LN WPRELANS ST S S I N NS SN S SR
— In — = - — — — - - J— - - —
4 4 5737973 7T T

(two positive terms for each negative term). Generalization is possible.
Changing the pattern of plus and minus signs in the Gregory—Leibniz series, for
example, gives [41,42]

T 1 1 1
“V2=14-—- == - — - — -
+ 375 7 + -+ ++
or extracting a subseries gives [43]

b4 1 1 1 1 1 1 1
—(1 2 l--4+-—-——4—= =4 —= - — 4 -
8( +\/—) 7+9 15+17 23+ 31+
We defer discussion of Euler’s famous series
2 00 ( 1)n+1 3

<,
;7: ’ Z(2;1—1)3:3_2

until [1.6] and [1.7]. Among many other series of his, there is[1,44]

i on gl 2 23
T+ 37357357

We note that [2,45]

00 1 nz ( 1)n+]
DB Z = 2In(py

and wonder in what other ways 7 and the Golden mean ¢ [1.2] can be so intricately
linked.

Ramanujan [23,24,46] and Chudnovsky & Chudnovsky [47-50] discovered series
at the foundation of some of the fastest known algorithms for computing 7.
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1.4.2 Infinite Products

Viete [51] gave the first known analytical expression for 7:

2 3 VIT i reVreaE
=5 T 5 3 ~ 5

T

which he obtained by considering a limit of areas of Archimedean polygons, and
Wallis [52] derived the formula
T 22 446 6 8 8 24

I i  — e — e — e — s — eee _hmi
2 1 33 55 779 l’l—>OC(2n+1)(2n)

These products are, in fact, children of the same parent [53]. We might prove their
truth in many different ways [54]. One line of reasoning involves what some regard
as the definition of sine and cosine. The following infinite polynomial factorizations
hold [55]:

= 4x?
sin(x) = x l_[ < 27_[2) cos(x) = l—[ <1 - m) .

n=1

The sine and cosine functions form the basis for trigonometry and the study of periodic
phenomena in mathematics. Applications include the undamped simple oscillations of
a mechanical or electrical system, the orbital motion of planets around the sun, and
much more [56]. It is well known that

2
% (a - sin(x) + b - cos(x)) + (a - sin(x) + b - cos(x)) = 0

and, further, that any solution of the second-order differential equation
2y

dx2

must be of this form. The constant 7 plays the same role in determining sine and cosine

as the natural logarithmic base e plays in determining the exponential function. That

these two processes are interrelated is captured by Euler’s formula e’ + 1 = 0, where
i is the imaginary unit.

Famous products relating 7 and prime numbers appear in [1.6] and [1.7], as a

consequence of the theory of the zeta function. One such product, due to Euler, is [57]

_1_[ 35 7 11 13 17 19
p+(— 1)<p PH(—DP D226 6 10 14 18 18

+y(x) =0

p odd

where the numerators are the odd primes and the denominators are the closest integers
of the form 4n 4 2. See also [2.1]. A different appearance of 7 in number theory is the

asymptotic expression
1 2n
)~ — .=
p) n ( 3 )
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due to Hardy & Ramanujan[58], where p(n) is the number of unrestricted parti-
tions of the positive integer n (order being immaterial). Hardy & Ramanujan [58]
and Rademacher [59] proved an exact analytical formula for p(n)[60, 61], which is too
far afield for us to discuss here.

1.4.3 Definite Integrals

The most famous integrals include [62, 63]

—x? ﬁ . e L
e = T (Gaussian probability density integral),
1 b4
2 dx = — (limiting value of arctangent),
1 +x 2

o0
72

sin(xz)dx = /cos(xz)dx = T (Fresnel integrals),

0

In(sin(x))dx = [ In(cos(x))dx = —% In(2),

\NN 0\8 0\8 o\g

o\m\:ﬂ

0
1
/ 1
/ In (—)dx = ﬁ
X 2
0
It is curious that
o0 o0 )
/‘ cos(x) b4 / x sin(x) b4
dx = —, dx = —
14 x2 2e 1+ x2 2e
0 0

have simple expressions, but interchanging cos(x) and sin(x) give complicated results.

See [6.2] for details.
Also, consider the following sequence:

(o]

S =/<Sm(x)) dx. n=12.3 ...
X

0

The first several values are s; = s, = /2, s3 = 371/8, 54 = /3,55 = 1157/384, and
s¢ = 11w /40. An exact formula for s,,, valid for all #, is found in [64].
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1.4.4 Continued Fractions
Starting with Wallis’s formula, Brouncker [1,2,52] discovered the continued fraction

1+ 24 12}+32|+52’+72‘+92|+
T 12 12 12 12 12 ’
which was subsequently proved by Euler [41]. It is fascinating to compare this with
other related expansions, for example [65-67],

4 H_12\+22|+32|+42| 5

P I T T A TR TR
6 _1+12|+1.2|+22|+2.3|+32|+3.4|+42|
-6 |1 1 I 11 Il 1 I ’
2 _ L2023 3.4 4.5 5.6l 671
T—2 I I I I 1 1 ’

12_1+14y+z4\+34y+44|+54;+

2 B 05 719 Il ’

P NP PR U B
TEEEOT I T e e e T

1.4.5 Infinite Radical

Let S, denote the length of a side of a regular polygon of 2"*! sides inscribed in a
unit circle. Clearly S, = +/2 and, more generally, S, = 2sin(rr/2"+!). Hence, by the

half-angle formula,
Sy =4/2—/4-S,.

(A purely geometric argument for this recursion is given in [68, 69].) The circumference
of the 2"+!-gon is 2"*!S, and tends to 277 as n — oo. Therefore

7 = lim 2'S, = lim 2" |2 - 2+\/2+\/2+\/2+.-.\/§,

where the right-hand side has n square roots.

Although attractive, this radical expression for 7 is numerically sound only for a few
iterations. It is a classic illustration of the loss of floating-point precision that occurs
when subtracting two nearly equal quantities. There are many ways to approximate 7 :
This is not one of them!
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—4m -2m 0 2n 47
Figure 1.4. The circular function sin(x) has period 27 ~ 6.28, while the elliptic function
sn(x, 1/2) has (real) period 4K (1/2) ~ 6.74.

1.4.6 Elliptic Functions

Consider an ellipse with semimajor axis length 1 and semiminor axis length 0 < r < 1.
The area enclosed by the ellipse is 77 while its circumference is 4 F («/ 1— rz), where

) 1
1 1
Kx)= | ———do = d
@) [./l—xzsin(e)z [\/(1—12)(1—#:2) .

2 1
[1 _ 2t2
E(x):f‘/l—xzsin(e)deZ/ ﬁdl‘
0 0

are complete elliptic integrals of the first and second kind. (One’s first encounter with
K(x) is often with regard to computing the period of a physical pendulum [56].) The
analog of the sine function is the Jacobi elliptic function sn(x, y), defined by

sn(x,y)

1
d
VI =2)(1 = y22)

See Figure 1.4. Clearly we have sn(x, 0) = sin(x) for —7/2 < x < mw/2andsn(x, 1) =
tanh(x). An assortment of extended trigonometric identities involving sn and its coun-
terparts cn and dn can be proved. For fixed 0 < y < 1, the function sn(x, y) can
be analytically continued over the whole complex plane to a doubly periodic mero-
morphic function. Just as sin(z) = sin(z 4 2r) for all complex z, we have sn(z) =

sn (z +4K(y)+2iK (,/1 - y2)>. Hence the constants K (y) and K (N/ 1— yz) play
roles for elliptic functions analogous to the role 7 plays for circular functions [2,70].

X =

t for0<y<l.

1.4.7 Unexpected Appearances

A fascinating number-theoretic function f'(n) is described in [71-77]. Take any positive
integer n, round it up to the nearest multiple of » — 1, then round this result up to the
nearest multiple of # — 2, and then (more generally) round the k™ result up to the
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nearest multiple of n — k — 1. Stop when k = n — 1 and let f(n) be the final value.
For example, f(10) = 34 since

10— 18 > 24 — 28 — 30 — 30 — 32 — 33 — 34 — 34.

The ratio n?/f(n) approaches 7 as n increases without bound. In the same spirit,
Matiyasevich & Guy [78] obtained

/ 6-In(fi- fo fs fon)
In(em(fi, fo. fsr-nns fn)

where f1, f2, f3, . ..is Fibonacci’s sequence [1.2] and lcm denotes least common multi-
ple. It turns out that Fibonacci’s sequence may be replaced by many other second-order,
linear recurring sequences without changing the limiting value .

In[1.4.1]and [1.4.2], we saw expressions resembling (zn") /(n + 1). These are known
as Catalan numbers and are important in combinatorics, for example, when enumer-
ating strictly binary trees with 2n 4 1 vertices. The average height %, of such trees
satisfies

7 = lim

hy
lim —~ =2J7

n—oo /n

by a theorem of Flajolet & Odlyzko [79,80] (we introduce the language of trees in
[5.6]). This is yet another unexpected appearance of the constant 7.
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1.5 Euler-Mascheroni Constant, y

The Euler—Mascheroni constant, y, is defined by the limit [ 1-8]

"]
y = lim (Z i ln(n)) =0.5772156649 . ...

n—oo =1

In words, y measures the amount by which the partial sums of the harmonic se-
ries (the simplest divergent series) differ from the logarithmic function (its approx-
imating integral). It is an important constant, shadowed only by 7 and e in sig-
nificance. It appears naturally whenever estimates of ) ;_, 1/k are required. For
example, let X, X5,..., X, be a sequence of independent and identically dis-
tributed random variables with continuous distribution function. Define R, to be the
number of upper records in the sequence [9—12], that is, the count of times that
Xy > max{X,, Xy, ..., X;—1}. By convention, X is included. The random variable
R, has expectation E(R),) satisfying lim,— .« (E(R,) — In(n)) = y. As another exam-
ple, let the set C = {1,2,...,n} of coupons be sampled repeatedly with replace-
ment [13-15], and let S, denote the number of trials needed to collect all of C. Then
limy,, oo (E(S,) — nIn(n))/n) = y.

There are certain applications, however, where y appears quite mysteriously. Sup-
pose we wish to factor a random permutation 7 on n symbols into disjoint cycles. For
example, the permutation 7 on {0, 1, 2, ..., 8} defined by w(x) = 2x mod 9 has cycle
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structure m = (0)(124875)(36). What is the probability that no two cycles of = possess
the same length, as » — o00? The answer to the question is e™” = 0.5614594835 ... .
More about random permutations is found in [5.4]. Suppose instead that we wish to
factor a random integer polynomial F'(x) of degree n, modulo a prime p. What is the
probability that no two irreducible factors of F'(x) possess the same degree, as p — 00
and n — oo0? The same answer e™” applies [16-21], but proving this is complicated
by the double limit.

Euler’s constant appears frequently in number theory, for example, in connection
with the Euler totient function [2.7]. Here are more applications. If d(n) denotes the
number of distinct divisors of n, then the average value of the divisor function satis-
fies [22-24]

1 n
lim <— Zd(k) — 1n(n)) =2y —1=0.1544313298....
n—oo \ n —

We discuss this again in [2.10]. A surprising result, due to de la Vallée Poussin [25-28],
is

lim 3 {f} —1— 9y =04227843351 ...,
n—oop £ k
where {x} denotes the fractional part of x. In words, if a large integer # is divided by each
integer | < k < n, then the average fraction by which the quotient n/ k falls short of the
next integer is not 1/2, but ! One can also restrict # to being all terms of an arithmetic
sequence, or even to being all terms of the sequence of primes, and obtain the same mean
value. Also, let M(n) denote the number of primes p, not exceeding #, for which 27 — 1
is prime. It has been suggested [29-32] that M (n) — oo at approximately the same rate
as In(n) and, moreover, lim, ., M(n)/In(rn) = e’ /In(2) = 2.5695443449 . ... The
empirical data supporting this claim is quite thin: There are only 39 known Mersenne
primes [33]. Other number-theoretic applications include [34-37].

Calculating Euler’s constant has not attracted the same public intrigue as calculating
7, but it has still inspired the dedication of a few. The evaluation of y is difficult and
only several hundred million digits are known. For 7, we have the Borweins’ quartically
convergent algorithm: Each successive iteration approximately quadruples the number
of correct digits. By contrast, for y, not even a quadratically convergent algorithm is
known [38-40].

The definition of y converges too slowly to be numerically useful. This fact is
illustrated by the following inequality [41,42]:

n

1 1
- Z —
20+ 1) <;k nn)—y <

E )

which serves as a double-edged sword. On the one hand, if we wish K digits of accuracy
(after truncation), then n > 10X+! suffices in the summation. On the other hand, n <
10X will not be large enough. Some alternative estimates and inequalities were reported

in[43,44]. The best-known technique, called Euler—Maclaurin summation, gives an
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improved family of estimates, including

"1 1 1 1 1 1 1

=3 Cin(n) — — - =
4 ; k) T o T 20wt T 25206 24008 T 132410

691 0 1
“ 3276002 T <W) '

Euler correctly obtained y to 15 digits using n = 10 in this formula [45—48]. Fast algo-
rithms like Karatsuba’s FEE method [49, 50] and Brent’s binary splitting method [51]
were essential in the latest computations [52—55]. Papanikolaou calculated the first
475006 partial quotients in the regular continued fraction expansion for y (using re-
sults in[56]) and deduced that if y is a rational number, then its denominator must
exceed 10%#4963 This is compelling evidence that Euler’s constant is not rational. A
proof of irrationality (let alone transcendence) is still beyond our reach [57]. See two
invalid attempts in [58,59].

Here are two other unanswered questions, the first related to the harmonic series
and the second similar to the coupon collector problem. Given a positive integer k, let
n; be the unique integer n satisfying Z;’;i 1/j <k <37i_11/j. s ng equal to the
integer nearest ¢~ always [60—65]? Suppose instead we are given a binary sequence
B, generated by independent fair coin tosses, and a positive integer n. What is the
waiting time 7, for all 2" possible different patterns of length » to occur (as subwords
of B)? It might be conjectured (on the basis of[66,67]) that the mean waiting time
satisfies lim,_, - ((E(T,) — 2"n In(2))/2") = y, but this remains open. However, the
minimum possible waiting time is only 2" + n — 1, as a consequence of known results
concerning what are called de Bruijn sequences [68].

1.5.1 Series and Products

The following series is a trivial restatement of the definition of y:

=3 (Lom(i+1).

Other formulas involving y include two more due to Euler[1],

L IR L T I
Y'=3 2 T3 3 PEREE

1 1+1+1+ 2 1+1+1+
rEao\zTRTe 3 \23 733" 43



1.5 Euler-Mascheroni Constant, y 31

one due to Vacca [69-75],
11 4 1 1 N 1 1 43
Y=273 47576 7
+4 ! ! + : +
16 17 31 ’

one due to Polya [26,76],

2 3 4 5
+ l +-
16
and two due to Mertens [22,77],
1 p 6e” p+ 1
J/ == 1 B _— =
¢ = 1 27 T Am, ln(n) ID

n—00 ]n(n) p<n p

where both products are taken over all primes p not exceeding #. Mertens’ first formula

may be rewritten as [55]

y = lim (Z In <p ) ln(ln(n))>

p=n

If, in this series, the expression In(p/(p — 1)) is replaced by its asymptotic equivalent
1/ p, then a different constant arises [2.2]. Other series and products appear in [78-95].

1.5.2 Integrals

There are many integrals that involve Euler’s constant, including

/e”‘ In(x)dx = —y, /e”‘z In(x)dx = —g (y +21n(2)),
0 0
1
n? 1
e~ In(x)*dx = 3 +y2, /ln (ln (—)) dx = —y,
X
0

7

0

Ooe_’“"—e"‘b a—>b y X 1 1
/4”’)‘: ab " /m'm‘“:z@“”’
0 0

1

0

1 1 1 1 >
d =Y, 2 d :1_ )
<1n(x)+l—x> =Y /l—l—x (;x ) * 4
o -
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to mention a few [55,75,96,97]. It is assumed here that the two parameters a and b
satisfy a > 0 and b > 0. If {x} denotes the fractional part of x, then[22,24]

[ers [ [jor=1->

and similar integrals appear in [1.6.5], [1.8], and [2.21]. See also [98—-101].

1.5.3 Generalized Euler Constants

Boas [102—-104] wondered why the original Euler constant has attracted attention but
other types of constants of the form

yon )= tim | Y s [ reoax

k=m

have been comparatively neglected. The case f(x) = x~¢, where 0 < ¢ < 1, gives the
constant {(q) + 1/(1 — g) involving a zeta function value [1.6] and the case f(x) =
In(x)" /x, where r > 0, gives the Stieltjes constant y, [2.21]. We give some sample
numerical results in Table 1.1. Briggs [105] and Lehmer [106] studied the analog of y
corresponding to the arithmetic progression a, a + b, a + 2b, a +3b, . ..:

1 1
Yap = lim Z i In(n)

o0 O<k<n k
k=a mod b

For example, yo, = (¥ — In(b))/b, ¥0_¢ Vup = v, and

1 V3
Vis==y+—m+- 111(3), Yi4=

o1
Sy 4 -7+~ In().
3V TR y+gTmt @

4 8

See also [107, 108]. A two-dimensional version of Euler’s constant appears in [7.2] and
a (different) n-dimensional lattice sum version is discussed in [1.10].

Table 1.1. Generalized Euler Constants

m Sx) y(m, f)

1 1/x 0.5772156649 ... = y,

2 1/ In(x) 0.8019254372 . ..

2 1/(x - In(x)) 0.4281657248 . ..

1 1/Jx 0.5396454911 ... = ¢(1/2) +2
1 In(x)/x —0.0728158454 ... = y,
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1.5.4 Gamma Function
For complex z, the Euler gamma function I'(z) is often defined by

z

.
F(z) = lim ——"
[Jc+b
k=0

and is analytic over the whole complex plane except for simple poles at the nonpositive
integers. For real x > 0, this simplifies to the integral formula

) 1 o1
F(x):/s"fle*sds =/<ln <;>> dt
0 0

and, if » is a positive integer, I'(n) = (n — 1)! This is the reason we sometimes see the
expression

1
<_E)! = J7 = 17724538509 . ..

since I'(1/2) transforms, by change of variable, to the well-known Gaussian probability
density integral.

The Bohr—Mollerup theorem [109, 110] maintains that I'(z) is the most natural pos-
sible extension of the factorial function (among infinitely many possible extensions) to
the complex plane.

For what argument values is the gamma function known to be transcendental? Chud-
novsky [111-114] showed in 1975 that I"(1/6), I'(1/4), I'(1/3), T'(2/3), I'(3/4), and
['(5/6) are each transcendental and that each is algebraically independent from 7. (It is
curious [115, 116] that we have known I'(1/4)* /7 and T'(1/3)?/7 to be transcendental
for many more years.) Nesterenko [117-121] proved in 1996 that 7z, €™, and I'(1/4) =
3.6256099082 . . . are algebraically independent. The constant I"(1/4) appears in [3.2],
[6.1], and [7.2]. Nesterenko also proved that 7, e”‘/g, and I'(1/3) = 2.6789385347 . ..
are algebraically independent. A similarly strong result has not yet been proved for
I'(1/6) = 5.5663160017..., nor has I'(1/5) = 4.5908437119... even been demon-
strated to be irrational. The reflection formula provides that
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where

2
=2k ()= < i e"zﬂ) = 1.1803405990 ...,

=—00

n=—00

00 2
hy=2K (g(\/g_ 1)> = < > enzﬁ”) = 1.0174087975 ...,

and K (x) is the complete elliptic integral of the first kind [1.4.6].

When plotting the gamma function y = I'(x), the minimum point in the upper right
quadrant has x y-coordinates (Xmin, I (Xxmin)) = (1.4616321449 ..., 0.8856031944 .. .).
If 6 is the unique positive root of the equation

= In(7)

x=0

d
7y ()

thend; = 20 = 7.2569464048 .. .andd; = 2(0 — 1) = 5.2569464048 . . . are the frac-
tional dimensions at which d-dimensional spherical surface area and volume, respec-
tively, are maximized [124].

Several relevant series appear in [125—129]. Two series due to Ramanujan, for ex-
ample [130-132], are

%5 () =enire DN = () Z(—r(g)(§)<%))z’

n=0

which extend a series mentioned in [1.1]. Two products [96, 133] are

°°( 1 ) 4.6 8-10 12-14 16-18 1 <1>2
1_[ 1—— = — . . =—F — ,
n=l @n+1?2) 5.5 9.9 13-13 17-17 87 \4

ﬁ 1 1 (—l)n_ 32 52_1 72 92_1 B 1 - 1 4
n=1 @2n+1y -1 52 7P-1 9 Clen? \4)

A sample integral, with real parameters # > 0 and v > 0, is [96, 134, 135]

1

/sin(x)”_lcos(x)“_ldx =/y“_1(1 -y ldy =
0

0

1TEHrG)
2 F(M-HJ)

The significance of Euler’s constant to Euler’s gamma function is best summarized
by the formula ¥ (1) = —y, where [90]

1 1
Y(x) = —ln(F(X))—_V Z<x+n B n+1>

is the digamma function. Higher-order derivatives at x = 1 involve zeta function values
[1.6]. Information on such derivatives (polygamma functions) is found in [134, 136].
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1.6 Apéry’s Constant, {(3)

Apéry’s constant, £ (3), is defined to be the value of Riemann’s zeta function

o0

1
g“(x)zzn—x, x>1,

n=1

when x = 3. This designation of ¢(3) as Apéry’s constant is new but well deserved.
In 1979, Apéry stunned the mathematical world with a miraculous proof that ¢(3) =
1.2020569031 ... is irrational [1-10]. We will return to this after a brief discussion of
Riemann’s function.

The zeta function can be evaluated exactly [11-14] at positive even integer values
of x,

(=11 2m)* By
2(2k)! ’

where {B,} denotes the Bernoulli numbers [1.6.1]. For example,

.(2k) =

2 4 7.[6

T b4
72)= R {4 = 30" g(6) = TR

Clearly ¢(1) cannot be defined, at least by means of our definition of ¢ (x), since the
harmonic series diverges. The zeta function can be analytically continued over the
whole complex plane via the functional equation [15—-19]:

2 nz

— )T

P cos( : ) ()(2)
with just one singularity, a simple pole, at z = 1. Here ['(z) = (z — 1)! is the gamma
function [1.5.4]. The connection between ¢ (x) and prime number theory is best sum-
marized by the two formulas

—1 -1
o L))

X X
p prime P p prime p

((1-2)=

If the famous Riemann hypothesis [1.6.2] can someday be proved, more information
about the distribution of prime numbers will become available.
A closely associated function is [20-22]

X 1yl
n(x):Z( 11 , x>0,
n=1

n
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which equals (1 — 2' )¢ (x) for x # 1. For example,

w2 T
n(1) =1n@2). n@)=—15. n(4)=—.

The constant ¢(3) has a probabilistic interpretation [23,24]: Given three random
integers, the probability that no factor exceeding 1 divides them all is 1/¢(3) =
0.8319073725 ... (in the limit over large intervals). By way of contrast, the prob-
ability that the three integers are pairwise coprime is only 0.2867474284...; see
the formulation in [2.5]. If n is a power of 2, define c(n) to be the number of posi-
tive integer solutions (7, j, p) with p prime of the equation n = p + ij [25,26]. Then
lim,,_ o0 c(n)/n = 105¢(3)/(2*). Other occurrences of ¢(3) in number theory are
discussed in [2.7] and [27-30]. It also appears in random graph theory with regard to
minimum spanning tree lengths [8.5].

A generalization of Apéry’s work to ¢(2k + 1) for any £ > 1 remains, as van
der Poorten wrote, “a mystery wrapped in an enigma” [2]. It remains open whether
¢(3) is transcendental, or even whether ¢(3)/m3 is irrational. Rivoal [31,32] recently
proved that there are infinitely many integers & such that {(2k + 1) is irrational, and
Zudilin [33, 34] further showed that at least one of the numbers ¢(5), £(7), £(9), ¢(11)
is irrational. This is the most dramatic piece of relevant news since Apéry’s irrationality
proof of £(3).

1.6.1 Bernoulli Numbers

Define {B,}, the Bernoulli numbers, by the generating function [7,19-22]
x X xk
= Bi—.
e —1 ,; k!

From this, it follows that By =1, By = —1/2, B, = 1/6, B4 = —1/30, Bs = 1/42,
and By, =0 forn > 0.

(There is, unfortunately, an alternative definition of the Bernoulli numbers to confuse
matters. Under this alternative definition, the subscripting is somewhat different and
all the numbers are positive. One must be careful when reading any paper to establish
which definition has been used.)

The Bernoulli numbers also arise in certain other series expansions, such as

00 1\k+1n2k(n2k
tan(x) = Z D™ 2(2(;)! DBkazk*l.

k=1

1.6.2 The Riemann Hypothesis

With Wiles’ recent proof of Fermat’s Last Theorem now confirmed, the most noto-
rious unsolved problem in mathematics becomes the Riemann hypothesis. This con-
jecture states that all the zeros of ¢(z) in the strip 0 < Re(z) < 1 lie on the central line
Re(z) = 1/2.
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Here is a completely elementary restatement of the Riemann hypothesis [35]. Define
a positive square-free integer to be red if it is the product of an even number of distinct
primes, and blue if it is the product of an odd number of distinct primes. Let R(n) be
the number of red integers not exceeding 7, and let B(n) be the number of blue integers
not exceeding n. The Riemann hypothesis is equivalent to the following statement: For
any ¢ > 0, there exists an integer N such that foralln > N,

|R(n) — B(n)| < n2'.

This is usually stated in terms of the M6bius mu function [2.2]. It turns out that setting
& = 0 is impossible; what is known as the Mertens hypothesis is false!

Another restatement (among several [36,37]) is as follows. The Riemann hypothesis
is true if and only if [38]

3-v
//(1+4 e 1n|§(x+zy)|dxdy_3_2n’

where y is the Euler—Mascheroni constant [1.5]. It is interesting to compare this con-
ditional equality with formulas we know to be unconditionally true. For example, if Z
denotes the set of all zeros p in the critical strip, then [39—41]

1 1 1
Y- = 5v +1=1n(2) - 2 In(r) = 0.0230957089 ...
peZ

That is, although the zero locations remain a mystery, we know enough about them
to exactly compute their reciprocal sum. Care is needed: }_ | p|~! diverges, but
> o p~'converges provided that we group together conjugate terms.

One consequence of Riemann’s hypothesis (among many [17]) is mentioned in
[2.13]. Our knowledge of the distribution of prime numbers will be much deeper if a
successful proofis someday found. The essay on the de Bruijn—Newman constant [2.32]
has details of a computational approach. A deeper hypothesis, called the Gaussian uni-
tary ensemble hypothesis [2.15.3], governs the vertical spacing distribution between
the zeros.

1.6.3 Series

Summing over certain arithmetic progressions gives slight variations [42,43]:

o0

DK TETN DL
= (2k+ 1y 8§ = Gk+ 1P 813

3
A(3) = + 54(3),

i 1 _rr3+7(3)§: 1 _n3+91 3)
f— (4k+ 1) o4 16° L6k + 1P 3643 2160

We will discuss A(x) later in [1.7]. Two formulas involving central binomial sums
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are [42,44-47]

< 1)k+1 © 30k
é“( ) = 4¢(3),
;; 2(2k—1)k3( 5’

the former of which has become famous because of Apéry’s work.
What is the analog for ¢ (2n + 1) of the exact formula for £ (27)? No one knows, but
series obtained by Grosswald [48—51],

[e¢]

(3)_ln3_22; (7) = 19 7_2§:;
‘=150 = (k- 1) ¢ 56700 = k7 (k= 1)

and by Plouffe [52] and Borwein [26, 53],

(5)_L S_Bi;_ii;
T 35 &= 5 ek — 1) 35 &= kS (e27F 4 1)

might be regarded as leading candidates. The formulas were inspired by certain entries
in Ramanujan’s notebooks [54].
Some multiple series appearing in [5S5-62] include

0o 00 B ( 1)11 5
;;um ) =20 ;,Zu(zﬂ) 20,
2

i=1j

.

(G oy L
rr e Z“ ;;2— ¢(3).

—1

Mg

1

i—1

~.

29
= 3¢(3)%,
<732k sago” O

ie
T

i=3 j=2

and many more such evaluations (of arbitrary depth) are known [63—75].
If 0 < x < 1, then the following is true [19]:

) " nl—x B _ =1 B -1 o0 (_1)k—1
lim <k=1ﬁ—1_x)_§‘(x)_(l—2 ) ”(x)_zl—x_1z e

n—00
For example, when x = 1/2, the limiting value is [76]
: 1 1 — _ Ly
O 2 B (e [ SEREER
= —1.4603545088.. . .

as mentioned with regard to Euler’s constant [1.5.3]. Recall too from [1.5.1] that

R VN () R (O
y—;(nk,ly—; —

A notable family of series involving zeta function values is [77, 78]

L& e ~
S(")_;(szrn)zzk—l’ n=0,1,2,....
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For example [79-83],

5(0) = In() — In(2), S(1)=—In2)+1, SQ) = #;(3) —In(2) + %

9 1 93 9 1
S3) = ﬁ§(3) —In(2) + 3 SH4) = —FC(S) + PC(E}) —In(2) + vk

These can be combined in various ways (via partial fractions) to obtain more rapidly
convergent series, for example,

3 £(2k) 7 |
,Z:; 2k + 1)(2k +2)2% — —4—7T2§(3) +2

due to Euler [84-89] and

¢(2k)
k(k + 1)2k + 1)(2k + 3)2%

2
= 200) - 15 + 5 o)

M

18

due to Wilton [90-92]. Many more series exist [93—102].
Broadhurst [103] determined digit-extraction algorithms for ¢(3) and ¢(5) similar
to the Bailey—Borwein—Plouffe algorithm for 7. The corresponding series for ¢(3) is

o0
_ 48 1 7 1 10 1 7
£3) = T Z 2.16F ((8k+1)3 T ®k+2)° T 2(8k+3)° + 28k+4y T 22(8k+5y ~ 22(8k+6)
k=0

o0
4 ) Z 1 LI N 1 _ 2
23(8k+7)3 7 316% \ Bk+17° T 28k+2) ~ B@k+3P  23(8k+A)
k=0

1
- 26(8k+5)3 + 27(8k+6)3 + 29(8k+7)3) :

Amdeberhan, Zeilberger and Wilf[104—106] discovered extremely fast series for
computing ¢(3), which presently is known to several hundred million decimal digits.
See also[107—110]. We mention[111-114]

i DY §;(3) — 121n(2)
£ Bk + 1) 2 ’

/1 7 7t (1 1. /1\°

. 4 7?2 1 3
Liz(2—¢) = §§(3)+ Eln(Z —¢)— Eln(2 -,

where Li; denotes the trilogarithm function [1.6.8] and ¢ denotes the Golden mean
[1.2].
Finally, the generating function for ¢(4n + 3)[115,116]

Z§(4n+3)x = Z( I)IH ! l_[] o+ d , |x] <1,

l4j1‘]
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includes the Apéry series in the special case x = 0. If we differentiate both sides with
respect to x and then set x = 0, a fast series for £(7) emerges:

( 1)k+1 ( 1)k+1 k—1 1
L T e

and likewise for larger n. No analogous generating function is known for ¢(4n + 1).
How can the series [117]

( 1)k+1 53 (_l)kJrl k=1 1
5 =2 _2 —
é‘( ) ; k5( ) 2 kX:; i3 (Zkk) — m?2

be correspondingly extended?

1.6.4 Products

There is a striking family of matrix products due to Gosper [118]. The simplest case is

k 5
ﬁ (_2(2k+1) W) _ <0 5(3)> ’
i 0 1 0 1
which is equivalent to a central binomial sum given earlier. The general case involves
(n + 1) x (n + 1) upper-triangular matrices, where n > 2:

k1 0o ... 0 L
202k+1) 2k2k+1) w2 0-.-022n+1)
k 1 1
0 T 20k+1) 2k@k+D) T 0 =z 0---0¢z(2n—1)
ﬁ : : : : : : : :
k=1 0 0 U 2k(2}c+l) v 0---0 ¢(5)
0 0 -.—h 5 0---0 ¢
202k+1) 4k 0...0 1
0 0o .- 0 1

where the diagonal and superdiagonal are extended (by repetition) as indicated, the
rightmost column contains reciprocals of 4>, and all remaining entries are zero.

1.6.5 Integrals
Riemann’s zeta function has an alternative expression [17] for x > 1:
I 1
)= F(x)/ef—l
If {¢} denotes the fractional part of ¢, then[18,19]
= 0 L

if0<x<lorx > 1,
tx+1dt: x—1 X

. 1—y ifx = 1.
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For all remaining x the integral is divergent. A quick adjustment is, however, possible
over a subinterval:

1 1
oo{t_l ———@if—l<x<0,
YWoa, - x—ll 2x X
x+1
! 5 In2m) — 1 ifx =0.

Munthe Hjortnaes [119] proved that

In(p) 1
. h 2
() =10 / x2 coth(x)dx = 1O/Md
y
0 0

)

which, after integration by parts, gives [120]
21In(ep) 0
t(3)=-5 / 0In (2 sinh (5)) do.
0

Starting with an integral of Euler’s [84,121],

4 / 6 In <sin (g)) do = 7¢(3) — 2% In(2),
0

the same reasoning can be applied as before (but in reverse) to obtain [80, 81]

e

1 2

N2
—8/ @dy = —8/x2 cot(x)dx = 7¢(3) — 27* In(2).
0

1.6.6 Continued Fractions

Stieltjes [122] and Ramanujan [54] discovered the continued fraction expansion

3 1| 13 13‘ 23’ 23| 33| 33|
(@) = +|2-2+|_1+|6~2 o102 T 142

If we group terms together in a pairwise manner, we obtain

3oy 128 38 48] 56
3 = +|?_|z_1_|5_5_|119_|225_|385_""

4+

where the partial denominators are generated according to the polynomial 273 + 3n2 +
11n + 5. The convergence rate of this expansion is not fast enough to demonstrate the
irrationality of ¢(3). Apéry succeeded in accelerating the convergence to

6 15 28 36| 48| 59|

(3= - -
IS 117|535 [1463  |3105  |5665

where the partial denominators are generated according to the polynomial 34n° +
51n* 4+27n + 5.
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1.6.7 Stirling Cycle Numbers

Define s, ,, to be the number of permutations of n symbols that have exactly m cy-
cles [123]. The quantity s,_, is called the Stirling number of the first kind and satisfies
the recurrence

_[1ifn=0,
0=V 0 ifn > 1,

Sn,m = (l’l - 1)Snfl,m +sn71,m71 ifn >m = 1.

For example, s3.; = 2 since (123) and (321) are distinct permutations. More generally,
Sp1 =(m—1Dlands,, = (m —1)! Z;} 1/ k. Similar complicated formulas involving
higher-order harmonic sums apply for m > 3. Consequently [124],

o0

3 g m + 1)

n'n
n=1

for m > 1. The case for m = 2 follows from one of the earlier multiple series (due to
Euler [67]). The asymptotics of s, ,, as n — oo are found in[125].

1.6.8 Polylogarithms

Before defining the polylogarithm function Li,, let us ask a question. It is known that
1

(=Drk1z(k + 1) =/

0

In(x)*
I —x

dx, k=1,2,3,....

What happens if the interval of integration is changed from [0, 1] to [1,2]?
Ramanujan [42] showed that, if

2

1 k
ay :/ 1II(X) dX,

— X

1

thena; = ¢(2)/2 = n?/6 and a; = {(3)/4. We would expect the pattern to persist and
for a; to be a rational multiple of {(k 4 1) for all £ > 1. This does not appear to be
true, however, even for k = 3.

Define Lij(x) = —In(l — x) and[113,114]

Li,(x) = Z;—: = / Ll"_tl(t)dt for any integer n > 2, where |x| < 1.
k=1 o

Clearly Li,(1) = ¢(n). We mentioned special values, due to Landen, of the triloga-

rithm Liz earlier. Not much is known about the tetralogarithm Lis4, but Levin[126]

demonstrated that

azs = —

7t 7?In(2? In@2* 211n(2) . (1
15 4 4 4 “3)_6L14(§)
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and more. To fully answer our question, therefore, requires an understanding of the
arithmetic nature of Li,(1/2). Further details on polylogarithms are found in [127-131].
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1.7 Catalan’s Constant, G

Catalan’s constant, G, is defined by

_1 n
Z (2( +)1)2 = 0.9159655941 . . ..

Our discussion parallels that of Apéry’s constant [1.6] and a comparison of the two is
worthwhile. Here we work with Dirichlet’s beta function

. (=n"
A = Z(Zn—i—l)x x>0

(also referred to as Dirichlet’s L-series for the nonprincipal character modulo 4) and
observe that G = S(2).
The beta function can be evaluated exactly [1-3] at positive odd integer values of x:

(=1 Eo 7r\2k+!
2(2k)! (E) ’

where {E,} denote the Euler numbers [1.7.1]. For example,

Bk +1) =

3 5 5
B =T, BO)=T5. )= .

Like the zeta function [1.6], 8(x) can be analytically continued over the whole complex
plane via the functional equation [4—6]:

2 z
Bl —z) = (;) sm( =) r@BG).

where I'(z) = (z — 1)! is the gamma function [1.5.4]. Dirichlet’s function, unlike
Riemann’s function, is defined everywhere and has no singularities. Its connection
to prime number theory is best summarized by the formula [7]

—1 ~1 p=1\ —I
jo= T (-2) " T () =1 (1-527)
p prime

X X
p prime p p odd p
p=1mod 4 p=3 mod 4 prime

and the rearrangement of factors is justified by absolute convergence. A closely asso-
ciated function is [8—10]

> 1 1
A(X)Z;m=<l—2—x>§(x), X>1,
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with sample values

7.[2 4 6
MY = M) = ge MO =

Unlike Apéry’s constant, it is unknown whether G is irrational [11, 12]. We also know
nothing about the arithmetic character of G/m2. In statistical mechanics, G /7 arises
as part of the exact solution of the dimer problem [5.23]. Schmidt [13] pointed out a
curious coincidence:

S U NN S RS B O -
12In(2) 22 0 32 4 2 3 4 ’

4G (1 11 AR S N -
T 325 7 35 7 ’

where the former expression (Lévy’s constant) is important in continued fraction asymp-
totics [1.8]. A variation of this,

8G 11 11 -
U eta-at)Utstastat )
occurs as the best coefficient for which a certain conjugate function inequality [7.7] is

valid. The constant 2G /(7 In(2)) also appears as the average root bifurcation ratio of
binary trees [5.6].

1.7.1 Euler Numbers
Define { £}, the Euler numbers, by the generating function[1,8-10]

hix) — 2e” _ooExk
S€C (x)—ﬁ—kz(; kﬁ.

It can be shown that all Euler numbers are integers: Eg = 1, E; = —1, E4 =5, E¢ =
—61,...and E,,_; =0 forn > 0.

(There is, unfortunately, an alternative definition of the Euler numbers to confuse
matters. Under this alternative definition, the subscripting is somewhat different and
all the numbers are positive. One must be careful when reading any paper to establish
which definition has been used.)

The Euler numbers also arise in certain other series expansions, such as

sec(x) = Z ( (lz)kf 2 X2,
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1.7.2 Series

Summing over certain arithmetic progressions gives slight variations [14-16]:

< 1 1 &1 1 1
— = 22+-G, Y ——— =—72-_G.
; (4k+172 16 2 kzz(; (4k+3) 16 2

Four formulas involving central binomial sums are[1,17-19]

3 - 1 2% 1
STyt In
k; (2"+ 1)? Zkk) e ; k(2K + 1)2< ) w2 "R

o 8 T
_—G——ln2+\/§,
Z(2k+1)2 k3 3 )

k=0
o] 24k

7
=27G — =¢(3).

As Berndt [17] remarked, it is interesting that the first of these is reminiscent of the
famous Apéry series [1.6.3], yet it was discovered many years earlier. A family of
related series is [20,21,23]

R(n) i ! 2%’ 0,1,2
2 3 rm\k) 12,0,

which can be proved to satisfy the recurrence [1,22,24]

R(0) = 21n(2) — %, R(1) = g,

(n—1*R(n) = (n —2)’R(n —2) + % forn > 2.

What is the analog for 8(2n) of the exact formula for S(2n + 1)? No one knows,
but the series obtained by Ramanujan [16,25],

5 > (=1 sech(n k)
G=—_n*-2 ,
48" ; 2k + 12(er@+D — Z
might provide a starting point for research.
Some multiple series include [16,17,26-28]
( 1)n+1 n—l ( l)k 00 ( 1 T
=G — —In(2),
Z ; %1 Z 2; 2 @
2 (=1 =1 1 X (=1l 7
Z( ) e -2, Z( ) —7G - L¢03),
=2n+142k+1 8 2 — onr 2kt 4

i (=1y*! 2": 1 é‘( ) Z 2”: 1 e
n? k+n o (2n +1)2n)k02k+1 .

n=1
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Two series involving zeta function values are [29-31]

S ng@n+1) > en) 11
2w 10 Lamgrp T i@y

n=1

Broadhurst [32-34] determined a digit-extraction algorithm for G via the following
series:

o0
Z SRS WU S BN TER R

(8k+1)2 ®+27 T 2@k37  2@k+52 T Z@k167 | B@Ek+I7
k=0

o0
Z T 4 R D B
816 (8k+l)2 2(8k+2)2 23(8k+3)2 20@k+5)2 ~ 278k+6)?  22@k+7¢ )

1.7.3 Products

As with values of the zeta function at odd integers [1.6.4], Gosper [35] found an infinite
matrix product that gives beta function values at even integers. We exhibit the 4 x 4
case only:

4)2 —1 0 1
(4k—1)(4k+1) (4k—1)(4k+1) 2k—1y () 0 0 /3(6)
o 0 Ak = ! 000 B4
l_[ @k—D)@k+1) @Gk—D@k+1)  Qk—1) — B(4)
_ 0 0 4> 6k—1 000 B8(2)
= @k—1)(@k+1) 2Qk—1)([@k—1) 000 1
0 0 0 1

The extension to the (n + 1) x (n + 1) case and to B(2n) follows the same pattern as
before.

1.7.4 Integrals

The beta function has an alternative expression [4] for x > 0:

pl) = 200 (x) cosh(t)dt
0

There are many integrals involving Catalan’s constant[10,15,16,36,37], including

fid

1 1

2 1
¢ 1 1
2[ arctan(x) =f Y4y =26, —/K(x)dx — /E(x)dx ey
b sin(x) 2 2

0 0 0 0
1 %)
| |
/ ) gy = —/ ) = 6.
1+ x2 1+ x2
0 1

In(2 cos(x))dx = — [ In(2sin(x))dx = %G,

o\»\u
o\»\u
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z

1

2 T ox?
4 [ g = [ v =206 - oo,

X sin(x)
0

SIE]

/ arcsinh(sin(x))dx = / arcsinh(cos(x))dx = G,
0 0

where K (x) and E(x) are complete elliptic integrals [1.4.6]. See also [1.7.6].

1.7.5 Continued Fractions

The following expansions are due to Stieltjes [38], Rogers [39], and Ramanujan [40]:

e —n 22| 2 4 4 6] 6
BT A TR TEN TR TR

12l 1.2 22| 2. 32 4 42
26 =1+ _l|+_1|+—1|+—1|+ 13| 3 34 |
TR TR T

1.7.6 Inverse Tangent Integral
Define Ti;(x) = arctan(x) and [41]

1
Ti,(x) = 2(2(16—1-)1)" (2

Ti,—1(s .

= / L()ds, for any integer n > 2, where |x| < 1.

s
0

Clearly Ti,(1) = B(n). The special case n = 2 is called the inverse tangent integral.
It has alternative expressions

26 6 0
Tip(tan(9)) = ! / Wdt = 6 In(tan(0)) — / In(2 sin(¢))dt + / In(2 cos(t))dt
0 0

for 0 < 6 < 7/2, and sample values[21,41]

Ti(2 — V/3) = —G+—ln(2 V3), T2+ +/3)= —G+—1n(2+«/—)

In the latter formula, we use the integral expression (since the series diverges forx > 1,
but the integral converges). Very little is known about Ti,(x) forn > 2.

[1] J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory
and Computational Complexity, Wiley, 1987, pp. 198-199, 383—-386; MR 99h:11147.



[20]

[21]
[22]

[23]
[24]

[25]

[26]
[27]

(28]

[29]

1 Well-Known Constants

F. Beukers, J. A. C. Kolk, and E. Calabi, Sums of generalized harmonic series and volumes,
Nieuw Arch. Wisk. 4 (1993) 217-224; MR 94:11022.

N. D. Elkies, On the sums Y, __ (4k + 1)™", math.CA/0101168.

A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Func-
tions, v. 1, McGraw-Hill, 1953, pp. 27-35; MR 15,419i.

W. Ellison and F. Ellison, Prime Numbers, Wiley, 1985, p. 180; MR 87a:11082.

T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 249—
263; MR 55 #7892.

P. Moree and J. Cazaran, On a claim of Ramanujan in his first letter to Hardy, Expos. Math
17 (1999) 289-312; MR 2001¢:11103.

M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions, Dover, 1972,
pp. 807-808; MR 94b:00012.

J. Spanier and K. B. Oldham, 4An Atlas of Functions, Hemisphere, 1987, pp. 25-33.

I. S. Gradshteyn and I. M Ryzhik, Tables of Integrals, Series and Products, Academic
Press, 1980; MR 97¢:00014.

W. Zudilin, Apéry-like difference equation for Catalan’s constant, math.NT/0201024.

T. Rivoal and W. Zudilin, Diophantine properties of numbers related to Catalan’s constant,
UMR preprint 317 (2002), I’Institut de Mathématiques de Jussieu.

A. L. Schmidt, Ergodic theory of complex continued fractions, Number Theory with an
Emphasis on the Markoff Spectrum, Proc. 1991 Provo conf., ed. A. D. Pollington and
W. Moran, Dekker, 1993, pp. 215-226; MR 95£:11055.

K. S. Kélbig, The polygamma function v (x) for x = 1/4 and x = 3/4, J. Comput. Appl.
Math. 75 (1996) 43-46; MR 98d:33001.

V. S. Adamchik, 33 representations for the Catalan constant, unpublished note (1997).

D. M. Bradley, Representations of Catalan’s constant, unpublished note (2001).

B. C. Berndt, Ramanujan's Notebooks: Part I, Springer-Verlag, 1985, pp. 264-267, 289—
290, 293-294; MR 86¢:01062.

D. Bradley, A class of series acceleration formulae for Catalan’s constant, Ramanujan
J3(1999) 159-173; MR 2000f:11163.

R. W. Gosper, A calculus of series rearrangements, Algorithms and Complexity: New
Directions and Recent Results, Proc. 1976 Carnegie-Mellon conf., ed. J. F. Traub, Academic
Press, 1976, pp. 121-151; MR 56 #9899.

E.P. Adams and R. L. Hippisley, Smithsonian Mathematical Formulae and Tables of Elliptic
Functions, Smithsonian Institute, 1922, p. 142.

E. R. Hansen, 4 Table of Series and Products, Prentice-Hall, 1975.

J. Dutka, Two results of Ramanujan, SIAM J. Math. Anal. 12 (1981) 471; MR 83a:
05010.

S. Yang, Some properties of Catalan’s constant G, Int. J. Math. Educ. Sci. Technol. 23
(1992) 549-556; MR 93j:11058.

V. S. Adamchik, A certain series associated with Catalan’s constant, unpublished note
(2000).

S. Ramanujan, On the integral [ tan~'(¢)d?/t, J. Indian Math. Soc. 7 (1915) 93-96; also
in Collected Papers, ed. G. H. Hardy, P. V. Seshu Aiyar, and B. M. Wilson, Cambridge
Univ. Press, 1927, pp. 4043, 336-337.

O. Espinosa and V. H. Moll, On some definite integrals involving the Hurwitz zeta function,
Ramanujan J. 6 (2002) 159—-188; math.CA/0012078.

R. Sitaramachandrarao, A formula of S. Ramanujan, J. Number Theory 25 (1987) 1-19;
MR 88c:11048.

G. J. Fee, Computation of Catalan’s constant using Ramanujan’s formula, Proc. 1990 Int.
Symp. Symbolic and Algebraic Computation (ISSAC), ed. S. Watanabe and M. Nagata,
Tokyo, ACM, 1990, pp. 157-160.

J. W. L. Glaisher, Numerical values of the series 1 — 1/3" +1/5" — 1/7" +1/9" — - - -,
Messenger of Math. 42 (1913) 35-58.



1.8 Khintchine-Lévy Constants 59

[30] M.-P. Chen and H. M. Srivastava, Some familes of series representations for the Riemann
£(3), Resultate Math. 33 (1998) 179-197; MR 99b:11095.

[31] 1. Choi, The Catalan’s constant and series involving the zeta function, Commun. Korean
Math. Soc. 13 (1998) 435-443; MR 2000h:11091.

[32] D.J. Broadhurst, Polylogarithmic ladders, hypergeometric series and the ten millionth digits
of ¢(3) and ¢(5), math.CA/9803067.

[33] J. M. Borwein, Experimental mathematics: Insight from computation, presentation at
AMS/MAA Joint Meetings, San Antonio, 1999.

[34] J. M. Borwein and R. M. Corless, Emerging tools for experimental mathematics, Amer.
Math. Monthly 106 (1999) 889-909; MR 2000m:68186.

[35] R. W. Gosper, Analytic identities from path invariant matrix multiplication, unpublished
manuscript (1976).

[36] H.M. Srivastava and E. A. Miller, A simple reducible case of double hypergeometric series
involving Catalan’s constant and Riemann’s zeta function, Int. J. Math. Educ. Sci. Technol.
21 (1990) 375-377; MR 91d:33032.

[37]1 1. J. Zucker, G. S. Joyce, and R. T. Delves, On the evaluation of the integral
[5% In(cos™/" 0 + sin™/" 0)d0, Ramanujan J. 2 (1998) 317-326; MR 99g:26019.

[38] T.J. Stieltjes, Recherches sur les fractions continues, Annales Faculté Sciences Toulouse
8 (1894) J1-J122; 9 (1895) A1-A47; also in Oeuvres Compleétes, t. 2, ed. W. Kapteyn
and J. C. Kluyver, Noordhoff, 1918, pp. 402-566; Engl. transl. in Collected Papers, V. 2,
ed. G. van Dijk, Springer-Verlag, 1993, pp. 406-570, 609—745; MR 95g:01033.

[39] L. J. Rogers, Supplementary note on the representation of certain asymptotic series as
convergent continued fractions, Proc. London Math. Soc. 4 (1907) 393-395.

[40] B. C. Berndt, Ramanujan's Notebooks: Part II, Springer-Verlag, 1989, pp. 150-153; MR
90b:01039.

[41] L. Lewin, Polylogarithms and Associated Functions, North-Holland, 1981, pp. 38-45, 106,
166, 190; MR 83b:33019.

1.8 Khintchine-Lévy Constants
Let x be a real number. Expand x (uniquely) as a regular continued fraction:

1 1] 1]
X=qo+—+—+-—+-,
lgr  lg2  lgs

where ¢ is an integer and ¢1, q2, ¢3, . . . are positive integers. Unlike a decimal expan-
sion, the properties of a regular continued fraction do not depend on the choice of base.
Hence, to number theorists, terms of a continued fraction are more “natural” to look at
than decimal digits.

What can be said about the average behavior of ¢, where & > 0 is arbitrary? Con-
sider, for example, the geometric mean

1
M(n, x) =(q19293 - gn)"

in the limit as n — oo. One would expect this limiting value to depend on x in some
possibly complicated way. Since any sequence of gs determines a unique x, there
exist xs for which the gs obey any conceivable condition. To attempt to compute
lim,_, oo M(n, x) would thus seem to be impossibly difficult.
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Here occurs one of the most astonishing facts in mathematics. Khintchine [1-4]
proved that
In(k)
= 1 n(2)
lim M(n,x) = ]_[ <1 + 7> = K = 09878490568 — 9 6854520010 . .,
n—00 il k(k =+ 2)
a constant, for almost all real numbers x. This means that the set of exceptions x to
Khintchine’s result (e.g., all rationals, quadratic irrationals, and more) is of Lebesgue
measure zero. We can be probabilistically certain that a truly randomly selected x will
obey Khintchine’s law. This is a profound statement about the nature of real numbers.
Another proof, drawing upon ergodic theory and due to Ryll-Nardzewski [5], is found
in Kac[6].
The infinite product representation of K converges very slowly. Fast numerical
procedures for computing K appear in [7—13]. Among several different representations
of K are [8,11,13,14]

In(2) In(K) = — iln (1 — }) In (1 + ;) = i Hy(}ﬁ((}'),
i=2 Jj=2

< r(2k) — 1 11 1
In(2) In(K) = —<1__+__+...+_),
; k 273 %1

1

/ 1 In <sin(nx)> dx
x(1+x) X

0

In(2) In(K) =

2 @2 [ In|6cot(®
Ly R

12 2 )

’

0

where ¢ (x) denotes the Riemann zeta function [1.6] and ¢’(x) is its derivative.

Many questions arise. Is K irrational? What well-known irrational numbers are
among the meager exceptions to Khintchine’s result? Lehmer [7, 15] observed that e is
an exception; whether /2, 7, and K itself (1) are likewise remains unsolved.

Related ideas include the asymptotic behavior of the coprime positive integers P,
and Q,, where P,/Q, is the n™ partial convergent of x. That is, P,/Q, is the value
of the finite regular continued fraction expansion of x up through ¢,. Lévy[16,17]
determined that

1 7

2 =
1 P,\»
lim Q) = e2ln@) = 1865691104 _ 3 7758779187... = lim (—)

n— 00 n— 00 X
for almost all real x. Philipp [18, 19] provided improvements to error bounds associated
with both Khintchine and Lévy limits. A different perspective is given by [20-22]:

2
n T

0.|~ 6In(2)In(10)
which indicates that the information in a typical continued fraction term is approxi-
mately 1.03 decimal digits (valid for almost all real x). Equivalently, the metric entropy

1
— lim —log, = 1.0306408341 ...,

n—oo n

X —
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of the continued fraction map x +— {1/x} is[23,24]

2

7.[,2
lim Q”;‘ = ¢ =10.7310157948 ... = (0.0931878229...)""
n—0oQ

where {x} denotes the fractional part of x. That is, an additional term reduces the
uncertainty in x by a factor of 10.73. The corresponding entropy for the shift map
x + {10x} is 10.

Corless [13,25] pointed out the interesting contrasting formulas

ot _] In(4)

In(K) = / m2)(1 4+ 122 J )1 +x)
0 0

where |x ] is the largest integer < x.

Let us return to the original question: What can be said about the average behavior
of the k™ partial denominator g;, k > 0? We have examined the situation for only one
type of mean value, the geometric mean. A generalization [26] of mean value is

1
1 n s )
= (33)
k=1

which reduces to the harmonic mean, geometric mean, arithmetic mean, and root
mean square, respectively, when s = —1, 0, 1, and 2. Thus the well-known means
fit into a continuous hierarchy of mean values. It is known [3,27] that, if s > 1, then
lim,, 0o M(s, n, x) = oo for almost all real x. What can be said about the value of
M(s,n,x)fors < 1,s # 0 ? The analog of Khintchine’s formula here is

1
. 1 & 1 s
lim M(s, n, x) = [M;kﬂn <1 + k(k+2)>:| = K,

for almost all real x. It is known[13,28] that K_; = 1.7454056624 ..., K_, =
1.4503403284 ..., K_3 = 1.3135070786..., and clearly K, = 1+ O(1/s) as s —
—00.

Closely related topics are discussed in [2.17], [2.18], and [2.19].

1.8.1 Alternative Representations

There are alternative ways of representing real numbers, akin to regular continued
fractions, that have associated Khintchine-Lévy constants. For example, every real
number 0 < x < 1 can be uniquely expressed in the form

1 > [ 1 1
X = +
a;+1 Z_: 1:[1ak(ak+l) a, + 1

1 1 (—1y!
Wﬁ;( k(bk+1)> by

||:|T
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where ai, ay, as, ...and by, by, bs, . . . are positive integers. These are called the Liiroth
and alternating Liiroth representations of x, respectively. The limiting constants are
the same whether we use as or bs, and [29-31]

1 > 1
lim (ajaza3 - - -a,)n = ]_[kk<k+1> = 07885303639 — 9 2001610580... = U,
n—00 el

1

LI .

" H[k(k F 1)]FED = o 20402TT8.
k=1

n
X — —
n

lim
n—oo

where P,/Q, is the n'" partial sum. A variation of this [32],
- L
lim (@ + (@ + 1) (ay + 1) = [ [tk + DFED = ! 257168 =y,
n—00 el

also appears in [2.9]. Of course, UV W = 1 and
In(U) = =Y (=1'¢'G), In(V)y=2>_¢'2j), In(W)=—Y_ ¢'(k).
i=2 j=1 k=2

A second example [22] is the Bolyai—Rényi representation of 0 < x < 1,

x=—1+\/a1+\/az+\/m,

where each a; € {0, 1, 2}. Whereas an exact expression 772/(61n(2)) = 2.373138.. ..
arises for the entropy of continued fractions, only a numerical result 1.056313 . . . exists
for the entropy of radical expansions [33].

A third example [34—41] is the nearest integer continued fraction of —1/2 < x <
1/2,

Sy
ler e e

)

which is generated according to

1 1 1 1 1 1
a=|-+3s|, xi=-—ca, a=|—+5|, X2=——0C,....
x 2 x xp o 2 Xy

Some of the ¢s may be negative. The formulas for the Khintchine—Lévy constants in
this case are

n2) In(k)
5¢ + 3> In(p) ﬁ (8(k — Do + 2k —3)* + 4) In($)
S5 +2 i\ 8(k— Do + (2k —3)?

= ! O0OMTS. . — 5 4545172445 .. .,

1
lim |cicp---cp|n = (
n—o0

1 72

lim Q) = e2ln(0) = 7017983 — 55243079702 ..,

n—oo
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Table 1.2. Nonexplicit Constants Recursively Derived from K

y =2.3038421962... g, is the largest possible integer: [] qx < K"*!
k=0
y =3.3038421963... g, is the smallest possible integer: [] gx > K"*!
k=0

IT gx is just less than K"*! when # is even, and
y =2.2247514809... =0

n

IT g« is just greater than K"+! when 7 is odd
k=0

n

[T gx is just greater than K"*! when 7 is even,
y = 3.4493588902... *=°

n
and [] gy is just less than K" when 7 is odd
k=0

where P,/Q, is the n™ partial convergent and ¢ is the Golden mean [1.2]. Such
expansions are also called centered continued fractions [42].

1.8.2 Derived Constants

Although we know exceptions x (which all belong to a set of measure zero) to
Khintchine’s law, we do not know a single explicit y that provably satisfies it. This
is remarkable because one would expect y to be easy to find, being so much more
plentiful than x. The requirement that y be “explicit” is the difficult part. It means,
in particular, that the partial denominators ¢, in the regular continued fraction for y
should not depend on knowing K to arbitrary precision. Robinson [43] described four
nonexplicit constants that are recursively derived from K in a simple manner (see Table
1.2). Bailey, Borwein & Crandall [13] gave other, more sophisticated constructions in
which at least the listing go, 91, ¢2, . . . is explicit (although the constant y still is not).

1.8.3 Complex Analog

Schmidt [44—46] introduced what appears to be the most natural approach for general-
izing continued fraction theory to the complex field. For example [47-50], the complex
analog of Lévy’s constant is exp(G /), where G is Catalan’s constant [1.7]. Does
Khintchine’s constant possess a complex analog?
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1.9 Feigenbaum—Coullet—Tresser Constants

Let f(x) = ax(1 — x), where a is constant. The interval [0, 1] is mapped into itself by
f for each value of a € [0, 4]. This family of functions, parametrized by a, is known
as the family of logistic maps [1-8].

What are the 1-cycles (i.e., fixed points) of f? Solving x = f(x), we obtain

x = 0 (which attracts for a < 1 and repels fora > 1)
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and

a —

x = (which attracts for | < a < 3 and repels for a > 3).
What are the 2-cycles of f? That is, what are the fixed points of the iterate f2 that
are not fixed points of £? Solving x = f2(x), x # f(x), we obtain the 2-cycle

1++a?—2a-3
X = at a a (which attracts for3 <a < 1 +6

2a and repels fora > 1 + «/8).

For a > 1 4+ /6 =3.4495 ..., an attracting 4-cycle emerges. We can obtain the
4-cycle by numerically solving x = f*(x),x # f?(x). It can be shown that the 4-cycle
attracts for 3.4495... < a < 3.5441 ... and repels fora > 3.5441....

For a > 3.5441, an attracting 8-cycle emerges. We can obtain the 8-cycle by nu-
merically solving x = f3(x), x # f*(x). It can be shown that the 8-cycle attracts for
3.5441... <a < 3.5644 ... and repels fora > 3.5644 . ...

For how long does the sequence of period-doubling bifurcations continue? It is
interesting that this behavior stops far short of 4. Letting

ap=1, ay =3, a=3.4495..., a3 =3.5441..., as =3.5644...,
etc. denote the sequence of bifurcation points of f, it can be proved that
doo = lim a, =3.5699... < 4.
n—00

This limiting point marks the separation between the “periodic regime” and the
“chaotic regime” for this family of quadratic functions. Much research has been aimed
at developing a theory of chaos and applying it to the study of physical, chemical, and
biological systems. We will focus on only a small aspect of the theory: two “universal”
constants associated with the exponential accumulation described earlier. The bifur-
cation diagram in Figure 1.5 is helpful for defining the following additional symbols.
The sequence of superstable points of f is

a =14++5=32360..., d,=3.4985..., a3 =3.5546..., a4 =3.5666...,

where a, is the least parameter value at which a 2”-cycle contains the critical element
1/2. Call this cycle C(n). The sequence of superstable widths of f is

by = (V/5—1)/4=03090..., i, =0.1164..., 3 =0.0459.. .,

where W, is the distance between 1/2 and the element f° 2"_1(1/2) e C(n) nearest to
1/2. Also, the sequence of bifurcation widths of f is

w; = v2(v/6—1)/5=0.4099..., w, =0.1603..., w3 =0.0636...,

where w, is the corresponding cycle distance at a,1. The superstable variants a, and
W, are numerically easier to compute than a, and w,. Define the two Feigenbaum—
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x=1/2

X

a —a; a3— a
a

a4 —a; az—a

Figure 1.5. Horizontal and vertical characteristics of the bifurcation are quantified by @, and w,.

Coullet—Tresser constants to be [9-17]

5= lim 290 Jim LT 46692016091 ...
n—=00 dp41 — Ay n—=00 dp41 — dp
and
o= lim — lim —2 — 2.5029078750 . .. = (0.3995352805...)".
=00 Wy 41 =00 Wy 41

As indicated here, the tildes can be included or excluded without change to the limiting
ratios § and .

What qualifies these constants to be called “universal”? If we replace the logistic
maps f by, for example, g(x) = b sin(wx), 0 < b < 1, then interestingly the same
constants 6 and « occur. Both functions f and g have quadratic maximum points; we
extend this condition to obtain generalized Feigenbaum constants [1.9.1]. We mention
a two-dimensional example [1.9.2] as well. Rigorous proofs of universality for the
one-dimensional, quadratic maximum case were first given by Lanford [18-22] and
Campanino & Epstein [23-28]; the former apparently was the first computer-assisted
proof of its kind in mathematics.

Does there exist a simpler definition of the Feigenbaum constants? One would like
to see a more classical characterization in terms of a limit or an integral that would not
require quite so much explanation. The closest thing to this involves a certain functional
equation [1.9.3], which in fact appears to provide the most practical algorithm for
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calculating the constants to high precision [29-37]. We also mention maps on a circle
[1.9.4] and a different form of chaos.

The numbers 3.5441 ... and 3.5644 ... mentioned previously are known to be al-
gebraic of degrees 12 and 240, as discussed in [38,39].

Salamin [40] has speculated that the (unitless) fine structure constant
(137.0359...)~! from quantum electrodynamics will, in a better theory than we have
today, be related to a Feigenbaum-like constant.

1.9.1 Generalized Feigenbaum Constants

Consider the functions f and g defined earlier. Consider also the function 4(x) = 1 —
c|x|" defined on the interval [—1, 1], where 1 < ¢ < 2 and r > 1 are constants. Each
function is unimodal, concave, symmetric, and analytic everywhere with the possible
exception of 4 at x = 0. Further, each second derivative, evaluated at the maximum
point, is strictly negative if » = 2. That s, f, g, and 4 have quadratic maximum points.

In contrast, the order of the maximum of % is cubic if » = 3, quartic if » = 4, etc.
This is an important distinction with regard to the values of the Feigenbaum constants.

Many authors have used the word “universal” to describe § and «, and this is ap-
propriate if quadratic maximums are all one is concerned about. Vary r, however, and
different values of § and @ emerge. Numerical evidence indicates that § increases with 7,
and « decreases to a limiting value of 1 [36,41] (see Table 1.3). In fact, we have [42—48]

lim 8(r) =29.576303..., lim a(r)™ = 0.0333810598....

r—0o0 r—00

At the other extreme [15,31], lim,_, ;+ §(r) = 2 whereas lim,_, |+ a(r) = oo.

A somewhat different generalization involves period triplings rather than period dou-
blings [1,16,29,30,49-51]. For the logisticmap f,when3.8284... <a <3.8540...,
a cascade of trifurcations to 3"-cycles at parameter values a, occur with Feigenbaum
constants:

5= lim 2" %1 _ 55047, 4= lim —— = 927738 .. ..
n—>00 g, 1 — dy n—=>00 Wp41

Three-cycles are of special interest since they guarantee the existence of chaos[2].
We do not know precisely the minimum value of a for which f has points that are
not asymptotically periodic. The first 6-cycle appears [2] at 3.6265. .., and the first
odd-cycle appears[1] at 3.6786. ...

The constants 55.247 ... and 9.27738 ... have not been computed to the same
precision as the original Feigenbaum constants. Existing theory [27, 28] seems to apply

Table 1.3. Feigenbaum Constants as Functions of Order r

r 3 4 5 6

8(r) 5.9679687038... 7.2846862171... 8.3494991320... 9.2962468327...
a(r)  1.9276909638... 1.6903029714... 1.5557712501... 1.4677424503...
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only to period doublings. Our knowledge of period triplings is evidently based more
on numerical heuristics than on mathematical rigor at present.
Incidently, the bifurcation points of 4, when » = 2, are

cz=§=1.25, c3 =1.3680..., c4=13940..., ..., coeo = 1.4011...

and are related to @, via the transformation ¢, = a,(a, — 2)/4. The limit point ¢, =
1.4011551890. .. is due to Myrberg [52] but is not universal in any sense. Similarly,
we can find the successive superstable width ratios of #, when r = 2:

ap =3.2185..., ap =2.6265..., a3 =2.5281..., ... deo = =2.5029....,

in terms of symbols defined earlier: o, = W,(d,+1 — 2)W,,. Jll(&n —2)~!. Both se-
quences {c,} and {«,} are needed in [1.9.3].

1.9.2 Quadratic Planar Maps

The quadratic area-preserving (conservative) Hénon map [53, 54]

) R G

Yn+1 Xn

also leads to a cascade of period doublings, but with Feigenbaum constants o =
4.0180767046 ..., B =16.3638968792... (scaling for two directions), and § =
8.7210972 ... that are larger than those for the one-dimensional case. These are char-
acteristic for a certain subclass of the class of two-dimensional maps with quadratic

maxima [50,55,56]. There is a different subclass, however, for which the original
Feigenbaum constant § = 4.6692016091 . . . appears: the area-contracting (dissipative)

Hénon maps [49,57, 58]
Xnt1) 1— axﬁ + v
n+1 - bxn

(where the additional parameter b satisfies |b| < 1). It appears in higher dimensions
too. The extent of the universality of § is therefore larger than one may have expected!

Like period-tripling constants discussed in [1.9.1], the quantities 4.01808...,
16.36389..., and 8.72109... have not been computed to the same precision as the
original Feigenbaum constants. For two-dimensional conservative maps, Eckmann,
Koch & Wittwer [59, 60] proved that these are indeed universal. For N-dimensional
dissipative maps, Collet, Eckmann & Koch [61,62] sketched a proof that the constant
4.66920. .. is likewise universal.

1.9.3 Cvitanovic—Feigenbaum Functional Equation

Let D be an open, connected set in the complex plane containing the interval [0, 1].
Let X be the real Banach space of functions F satisfying F(0) = 0 that are complex-
analytic on D, continuous on the closure of D, and real on [0, 1], equipped with the
supremum norm.



70 1 Well-Known Constants

Fix a real number » > 1. Let 2, be the set of functions f : [—1,1] — (—1, 1] of
the form f(x) = 1 + F(|x|"), F € X, with F'(y) < 0 forall y € [0, 1]. In words, 2, is
the set of even, folding self-maps f of the interval [—1, 1] that can be written as power
series in |x|” and satisfy —1 < f2(0) < £(0) = 1. Define also €2, to be the subset of
Q, subject to the additional constraint 2(0) < 0 < f#(0) < — f2(0) < £3(0) < 1.

By using the correspondence between f and F, the sets €2, and €2, are naturally
identified with nested, open subsets of X. Hence €2, and €2, are Banach manifolds,
both based on X. We can thus perform differential calculus on what is called the period-
doubling operator 7, : 2, o — £2,, obtaining a linear operator L, : X — X that best
fits 7, in the vicinity of a certain function ¢. This will be done shortly and is necessary
to rigorously formulate the Feigenbaum constants [15,27,63].

Consider the function 4 defined earlier. Let us make its dependence on the parameter
c explicit and write /. from now on. Clearly /. € €2,. Recall the sequences {c, } and {«;,}
defined at the conclusion of [1.9.1] for » = 2; analogous sequences can be defined for
arbitrary » > 1. We are interested in the “universality” of iterates of /. as the parameter
¢ increases to ¢, and as the middle portion of the graph is magnified without bound.
The remarkable limit

timenr 37 () =00

n

exists [64—67] and satisfies the Cvitanovic—Feigenbaum functional equation

p(x) = (1)~ - p(p(e(1) - x)) = T,[p](x)

with¢ € Q. See Figure 1.6 for anice geometric interpretation. Moreover, the solution
¢ has been proven to be unique if 7 is an even integer [68—71]. Extending this uniqueness

1

0.5

P(p(x))

PPpp@)) O

_ I I
0’5—1 -0.5 0 0.5 1

Figure 1.6. Self-similarity of'iterates of ¢ are illustrated inside diminishing rectangular windows:
The condition ¢(1) < 0 reverses orientation.
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result to arbitrary » > 1 is an unsolved challenge [72]. As a consequence, for each 7,
we have a(r) = —p(1)"!.
Consider now the local linearization (Fréchet derivative) of 7, at the fixed point ¢:
Lo[¥]x) = ()" - {@'(@(e(1) - x)) - Y(p(1) - x) + P ((p(1) - x))
+y D) - [¢'(x) - x — )]}
Then, for each r, §(r) is the largest eigenvalue associated with L, and is, in fact, the
only eigenvalue that lies outside the unit disk. This is the basis for accurate estimates

of §(r). Fortunately, only the first two of the three terms in L, [v{](x) are needed for
computations [27,36]. Alternatively, §(r) = lim,_,  0,,+1/0,,, Where [45-47]

1 2"—1

k-1 -1
on=——» &0 [[[&E ©O)
O j=0

and £(x) = |p(x'/")|" for 0 < x < 1. This formula is attractive, but unfortunately it
is not numerically feasible for high-precision results. More formulas for § appear
in[73-75].

For period tripling [1.9.1], the analog of the Cvitanovic—Feigenbaum equation [29]

P(x) = (1)~ - p(p(p(e(1) - x)))

gives an estimate of &, and a linearization of the right-hand side gives 8. For planar
maps, a matrix analog applies. Other functional equations will appear shortly.

1.9.4 Golden and Silver Circle Maps
We briefly mention a different example [76-79]:

1
9n+1 = ka(en) = 9,,, +a— — Sil’l(277.’9n),
2

which can be thought of as a homeomorphic mapping of a circle of circumference 1
onto itself. For any such circle map /, the limit
"e)—o
p(l) = lim ) -9
n

n—00

exists and is independent of 6. The quantity p(/) is called the winding or rotation
number of /. Our interest here is not in period doubling but rather quasiperiodicity:
The subject offers an alternative transition into chaos and is rooted in the tension created
under conditions when p is irrational.

Let fi = fo =1, f3 =2,...denote the Fibonacci numbers [1.2], and define se-
quences {a,} and {w,} by [80, 81]

Ky ©) = foo1, wy = kl(0) = fua.

It can be proved that p(k, ) = (1 — V/5)/2; hence the family of circle maps kg, 1s
golden and the corresponding Feigenbaum constants are o = 1.2885745539... and
8 = 2.8336106558 . . .. Moreover, for all golden circle maps with a single cubic point
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of inflection, the constants & and § are universal. If we replace the Fibonacci numbers
by Pell numbers [1.1], then p(k, ) = V2 — 1; hence the family of circle maps ka,
is silver with @ = 1.5868266790... and § = 6.7992251609. ... Similar universality
holds for cubic silver circle maps; other irrational winding numbers have been studied
too [30]. If, instead, we examine golden circle maps with a single »"-order inflection
point, then functions «(r) and §(r) emerge, satisfying [47, 80, 82—-86]

lim a(r) =1, lim a(r) = 3.63600703...,
r—00 r—00

r

a (1) =a@) forallr > 0, lim 8(r) =4.121326......

It is conjectured, but not yet proven, that §(1/r) = 8(r) for all r.
As with interval maps, certain functional equations provide the numerical key to
precisely computing «(r) and §(r) associated with circle maps [81]:

@0) = o(1)™" - p(p(p(1)* - 0))

for the golden case and

9(0) = o(1)™" - p(p(1) - p(p(p(1)* - 0)))

for the silver case.
McCarthy [87] compared the two famous functional equations

P(x) - 0(») = @(x + ), @) =s"p(s ).

In the former, multiplication is simply a form of addition; in the latter, self-composition
is just a rescaling. He invoked the appropriate phrase “twentieth-century exponential
function” for a solution of the latter. Research in this area will, however, continue for
many more years.
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1.10 Madelung’s Constant

Consider the square lattice in the plane with unit charges located at integer lattice points
(i, J) # (0, 0) and of sign (—1)'*/. The electrostatic potential at the origin due to the
charge at (i, j)is (—1)"*//,/i2 + j2. The total electrostatic potential at the origin due
to all charges is hence [1]

-y
i,j=—o00 i2 + ]
where the prime indicates that we omit (0, 0) from the summation.

How is this infinite lattice sum to be interpreted? This is a delicate issue since the
subseries with i = j is divergent, so the alternating character of the full series needs to
be carefully exploited [2—7]. We may, nonetheless, work with either expanding circles
or with expanding squares and still obtain the same convergent sum [8—15]:

My = 4(v2 — 1)¢ (%) B (1> = —1.6155426267 . ..,

2
where ¢ (x) is Riemann’s zeta function [1.6] and B(x) is Dirichlet’s beta function [1.7].
The sum M, is called Madelung’s constant for a two-dimensional NaCl crystal. Rewrit-
ing lattice sums in terms of well-known functions as such is essential because conver-
gence rates otherwise are extraordinarily slow.
The three-dimensional analog
00 itk
o S D
e VIE+ jE K2

is trickier because, surprisingly, the expanding-spheres method for summation leads to
divergence! This remarkable fact was first noticed by Emersleben [16]. Using expanding
cubes instead, we obtain the Benson—Mackenzie formula [17, 18]

> 2
— —127 ) sech (%\/(2;71 "1+ (2n— 1)2) — —1.7475645946 . . .,

m,n=1

which is rapidly convergent. Of many possible reformulations, there is a formula due
to Hautot [19]

csch <7n/m2 + n2)
M:———ln2+12 n”
=G Y ) — e

that is not quite as fast but is formally consistent with other lattice sums we discuss later.
The quantity M3 is called Madelung’s constant for a three-dimensional NaCl crystal
or, more simply, Madelung’s constant. Note that, in their splendid survey, Glasser &
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Zucker [20] called +2 Mj; the same, so caution should be exercised when reviewing the
literature. Other representations of M3 appear in [21-23].
The four-, six-, and eight-dimensional analogs can also be found [24]:

o, (— 1)tk <1> < l>
My = =-8(5-3v2)¢ (= _2
) i,j,k.g::foo P24 j24+ k2412 ( )g 5 )63

= —1.8393990840.. .,

e 102 )¢ (3o (3) - (205 (3) ()]

= —1.9655570390.. .,

My = % (8f _ 1) ¢ G) ¢ G) — _2.0524668272. ...

A general result due to Borwein & Borwein [4] shows that the #-dimensional ana-
log of Madelung’s constant is convergent for any » > 1. Of course, M| = —2In(2).
Rapidly convergent series expressions for Ms = —1.9093378156... or M; =
—2.0124059897 . .. seem elusive [25]. It is known, however, that for all n,

1 °r > b —k2t ! dt
o= [ Zere) ) %

from which high-precision numerical computations are possible [26,27]. Using this
integral, it can be proved [28] that M), ~ —,/41n(n)/m as n — oo.

There are many possible variations on these lattice sums. One could, for example,
remove the square root in the denominator and obtain [15,20]

o0 i 2 0 i+
(=1 m (=D
Nl = _Zoo/ l'2 = _?7 NZ = ) Z/ l'2 _I_Jz =7 ln(z)v
i=— i,j=—00
0 , (_1)i+j+k
Ny = Z 2424k

i, j k=00

2

- - 00 ) csch (n«/W)
=5 —7hn@) - ﬁln (2(«/§+ 1)) + 87 m;f_l) m? 4 2n?

= —2.5193561520...,

00 (= 1)i+itht
Ny = Z 2+ 21kt

i,jk,l=—00

= —41n(2),

with asymptotics N, ~ — In(n) determined similarly. One could alternatively perform
the summation over a different lattice; for example, a regular hexagonal lattice in the
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plane rather than the square lattice [2, 7], with basis vectors (1, 0) and (1/2, +/3/2).
This yields the expression

H = i i/ sin((i + 1)0) sin((j + 1)0) — sin(i0) sin((j — 1)9)

3i,j:—oo Viz+ij+j?

where 6 = 27/3, which may be rewritten as

H2=—3<\/_—1)§<%)

1 1 1 1 1 1
X 1——+ -——t—="—=+—=-—"—=+—--
( V2 VA V5 VT B VI0 VT )
= 1.5422197217....
This is Madelung’s constant for the planar hexagonal lattice; the three-dimensional

analog Hj of this perhaps has a chemical significance akin to Mj3. If we remove the
square root in the denominator as well, then

K = i i, sin((i + 1)0) sin((ji:——:)iel) — 'szin(ie) sin((j — 1)0) _ fin In(3).
i j=——oo J+J
A lattice sum generalization of the Euler—Mascheroni constant [1.5] appears in
[1.10.1]. This, by the way, has no connection with different extensions due to Stieltjes
[2.21] or to Masser and Gramain [7.2].
Forrester & Glasser [29] discovered that

00 ( 1)z+j+k
g T B

which may be as close to an exact evaluation of M3 as possible (in the sense that no such
formula is known at any point closer to the origin). Some variations involving trigono-
metric functions were explored in [30,31]. There are many more relevant summations
available than we can possibly give here [20,32].

1.10.1 Lattice Sums and Euler’s Constant

For any integer p > 2, define

n+%
& 1 dx\dx; - - dx,
An, p) = E ! — .
. p) i T 2 424 42 / . 2
iniy,ip=—n [T + 15 4 -+ Iy xl —|—x2 X
X1,X2,. xp:—n——

The integral converges in spite of the singularity at the origin. In two dimensions, we
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have [33]

" 1 V241 1
e = 3 T (ﬁ) (n+3)

- (ﬁ T 1) M, = —3.9002649200 . .. = 5,

as n — oo. It is interesting that if we define a function
> 1
flz)= ""———— Re(z) > 1,
i,j:z—oc (12 + j2)z

then f can be analytically continued to a function F' over the whole complex plane
via the formula F(z) = 4¢(z)B(z) with just one singularity, a simple pole, atz = 1. So
although the lattice sum f(1/2) = oo, we have 8, = F(1/2) = —3.90026. . .; that is,
the integral “plays no role” in the final answer.

In the same way, by starting with the function

> 1 3
g)= Y ' ———>———. Re@x)> =,
=i (12 +]2+k2) 2

g can be analytically continued to a function G that is analytic everywhere except for a
simple pole at z = 3/2. Unlike the two-dimensional case, however, we here have [33]

4 1 341 1\?
o= £ (o) ()
=i A 6 V3-1 2

1 T
G(-= ol
- <2>+6

= —2.3136987039... =63

as n — oo; that is, here the integral does play a role and a “correction term” 77 /6 is
needed. A fast expression for evaluating G(1/2) is [20, 34]

1 7r 19 00 csch (71«/m2 + n2)
G(=)="Z - Zm@)+4 34 3(=1)" + (=)t
(2) &~ 5 @)+ m;1[+( e /i
= —2.8372974794 . . .,

which bears some similarity to Hautot’s formula for Aj.
Now define, for any integer p > 1,

. u 1 / dxydx; - - - dx,
Yp = lim -
i2

n— 00 Z . : ;
inindp=1 \JiT + 5 4+ 02 . x_l\/x%+x§+«--+x§
X2vee =

Everyone knows that y; = y is the Euler—Mascheroni constant [1.5], but comparatively
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few people know that [35-37]

1 V2+1
=16 21 —4 = —0.6709083078.. .,
V2 4{2+ n(ﬁ—l) Vl}

1 341
n= {53 +3 [_f +1n (*/_Jr )} 112y — 6)/1} = 0.5817480456. . ..

6 J3-1

No one has computed the value of y,, for any p > 4.
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1.11 Chaitin’s Constant

Here is a brief discussion of algorithmic information theory [1-4]. Our perspective is
number-theoretic and our treatment is informal: We will not attempt, for example, to
define “computer” (Turing machine) here.

A diophantine equation involves a polynomial p(x|, x5, ..., x,,) with integer co-
efficients. Hilbert’s tenth problem asked for a general algorithm that could ascertain
whether p(xy, x2, ..., x,) = 0 has positive integer solutions x, x, ..., x,, given ar-

bitrary p. The work of Matiyasevic, Davis, Putnam, and Robinson [5] culminated in
a proof that no such algorithm can exist. In fact, one can find a universal diophan-
tine equation P(N, x1, x3, ..., x,) = 0 such that, by varying the parameter N, the
corresponding set Dy of solutions x can be any recursively enumerable set of positive
integers. Equivalently, any set of positive integers x that could possibly be the output
of a deterministic computer program must be Dy for some N. The existence of P
is connected to Gddel’s incompleteness theorem in mathematical logic and Turing’s
negative solution of the halting problem in computability theory.
Now, define a real number A4 in terms of its binary expansion 0.4, 4,45 ... as
follows:
{ 1 if Dy # 0,
Ay = .
0 if DN = 0.
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There is no algorithm for deciding, given arbitrary N, whether 4y = 1 or 0, so 4 is an
uncomputable real number. Is it possible to say more about A?

There is an interesting interplay between computability and randomness. We say that
a real number z is random if the first NV bits of z cannot be compressed into a program
shorter than N bits. It follows that the successive bits of z cannot be distinguished
from the result of independent tosses of a fair coin. The thought that randomness might
occur in number theory staggers the imagination. No computable real number z is
random [6, 7]. It turns out that 4 is not random either! We must look a little harder to
find unpredictability in arithmetic.

An exponential diophantine equation involves a polynomial ¢ (x, x», . .., x,) with
integer coefficients as before, with the added freedom that there may be certain positive
integerscand 1 <i < j < nforwhichx; = ¢",and theremay be certainl <i < j <
k < nforwhichx, = xff . Thatis, exponents are allowed to be variables as well. Starting
with the work of Jones and Matiyasevic, Chaitin [6, 7] found an exponential diophantine
equation Q(N, x1, X2, ..., x,) = 0 with the following remarkable property. Let Ey
denote the set of positive integer solutions x of Q = 0 for each N. Define a real
number 2 in terms of 0.€2;2,25 . .. as follows:

Qv — 1 if Ey is infinite,
N=110 if Ey is finite.

Then 2 is not merely uncomputable, but it is random too! So although the equation
P = 0 gave us uncomputable A4, the equation O = 0 gives us random 2; this provides
our first glimpse of genuine uncertainity in mathematics [8—10].

Chaitin explicitly wrote down his equation O = 0, which has 17000 variables and
requires 200 pages for printing. The corresponding constant €2 is what we call Chaitin’s
constant. Other choices of the expression Q are possible and thus other random €2 exist.
The basis for Chaitin’s choice of Q is akin to Godel numbering - Chaitin’s modified
LISP implementations make this very concrete - but the details are too elaborate to
explain here.

Chaitin’s constant is the halting probability of a certain self-delimiting universal
computer. A different machine will, as before, usually give a different constant. So
whereas Turing’s fundamental result is that the halting problem is unsolvable, Chaitin’s
result is that the halting probability is random. We have a striking formula [2—4]:

Q=>) 27",

the infinite sum being over all self-delimiting programs 7 that cause Chaitin’s universal
computer to eventually halt. Here || denotes the length of 7 (thinking of programs as
strings of bits).

It turns out that the first several bits of Chaitin’s original €2 are known and all are ones
thus far. This observation gives rise to some interesting philosophical developments.
Assume that ZFC (Zermelo—Fraenkel set theory, coupled with the Axiom of Choice) is
arithmetically sound. That is, assume any theorem of arithmetic proved by ZFC is true.
Under this condition, there is an explicit finite bound on the number of bits of €2 that
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ZFC can determine. Solovay [11, 12] dramatically constructed a worst-case machine U
for which ZFC cannot calculate any bits of 2(U) at all! Further, ZFC cannot predict
more than the initial block of ones for any Chaitin constant €2; although the k™ bit may
be a zero in truth, this fact is unprovable in ZFC. As Calude [13] wrote, “As soon as
you get a 0, it’s all over”. Solovay’s Q2 starts with a zero; hence it is unknowable. More
recently, a procedure for computing the first 64 bits of such an €2 was implemented [14]
via the construction of a non-Solovay machine V' that satisfies (V) = Q(U) but is
more manageable than U.

It is also known that the set of computably enumerable, random reals coincides
with the set of all halting probabilities 2 of Chaitin universal computers [15-17].
Is it possible to define a “simpler” random 2 whose description would not be so
complicated as to strain credibility? The latter theorem states that all such numbers
have a Diophantine representation QO = 0; whether we can significantly reduce the size
of the equation remains an open question.

[1] G. J. Chaitin, Algorithmic Information Theory, Cambridge Univ. Press, 1987; MR
89g:68022.

[2] C.S. Calude, Information and Randomness, Springer-Verlag, 1994; MR 96d:68103.

[3] G.J. Chaitin, The Limits of Mathematics, Springer-Verlag, 1997; MR 98m:68056.

[4] G.J. Chaitin, The Unknowable, Springer-Verlag, 1999; MR 2000h:68071.

[5] M. Davis, Computability and Unsolvability, Dover, 1973; MR 23 #A1525 (Appendix 2,
“Hilbert’s tenth problem is unsolvable,” appeared originally in Amer. Math. Monthly 80
(1973) 233-269; MR 47 #6465).

[6] G. J. Chaitin, Randomness and Gddel’s theorem, Mondes en Développement, Proc. 1985
Brussels Symp. on Laws of Nature and Human Conduct, n. 54-55 (1986) 125-128; also
Information, Randomness and Incompleteness: Papers on Algorithmic Information Theory,
World Scientific, 1987, pp. 66—69; MR 89£:01089.

[7]1 G.J. Chaitin, Incompleteness theorems for random reals, Adv. Appl. Math. 8 (1987) 119—
146; MR 88h:68038.

[8] G.J. Chaitin, Randomness and mathematical proof, Sci. Amer., v. 232 (1975) n. 5, 47-52.

[9] C. H. Bennett, On random and hard-to-describe numbers: Chaitin’s €2, quoted by M.
Gardner, Fractal Music, Hypercards and More . .., W. H. Freeman, 1992; MR 92m:00005
(appeared originally in Sci. Amer., v. 241 (1979) n. 5, 20-34).

[10] G.J. Chaitin, Randomness in arithmetic, Sci. Amer:, v. 259 (1988) n. 1, 80-85.

[11] R. M. Solovay, A version of 2 for which ZFC cannot predict a single bit, Finite Versus
Infinite: Contributions to an Eternal Dilemma, ed. C. S. Calude and G. Paun, Springer-
Verlag, 2000, pp. 323-334; CDMTCS report 104.

[12] C.S. Calude and G. J. Chaitin, Randomness everywhere, Nature 400 (1999) 319-320.

[13] C.S. Calude, Chaitin 2 numbers, Solovay machines and Godel incompleteness, Theoret.
Comput. Sci. 284 (2002) 269-277; CDMTCS report 114.

[14] C.S.Calude, M. J. Dinneen, and C.-K. Shu, Computing a glimpse of randomness, Experim.
Math., to appear; CDMTCS report 167; nlin.CD/0112022.

[15] C.S. Calude, P. H. Hertling, B. Khoussainov, and Y. Wang, Recursively enumerable reals
and Chaitin  numbers, Theoret. Comput. Sci. 255 (2002) 125-149; also in Proc. 1998
Symp. on Theoretical Aspects of Computer Science (STACS), Paris, ed. M. Morvan, C.
Meinel, and D. Krob, Lect. Notes in Comp. Sci. 1373, Springer-Verlag, 1998, pp. 596—
606; CDMTCS report 59; MR 99h:68089 and MR 2002£:68065.

[16] A.Kucera and T. A. Slaman, Randomness and recursive enumerability, SIAM J. Comput.
31(2001) 199-211.

[17] C. S. Calude, A characterization of c.e. random reals, Theoret. Comput. Sci. 271 (2002)
3—-14; CDMTCS report 95.



2

Constants Associated with Number Theory

2.1 Hardy-Littlewood Constants

The sequence of prime numbers 2, 3, 5,7, 11, 13, 17, ... has fascinated mathemati-
cians for centuries. Consider, for example, the counting function

P, = Z 1 = the number of primes < n,

p=n

where the sum is over all primes p. We write P,(p) = P,, and the motivation behind this
unusual notation will become clear momentarily. It was not until 1896 that Hadamard
and de la Vallée Poussin (building upon the work of many) proved what is known as
the Prime Number Theorem:

n

Pu(p) ~ In(7)

as n — 00. For every problem that has been solved in prime number theory, however,
there are several that remain unsolved. Two of the most famous problems are the
following:

Goldbach’s Conjecture. Every even number > 2 can be expressed as a sum of two
primes.

Twin Prime Conjecture. There are infinitely many primes p such that p + 2 is also
prime.

The latter can be rewritten in the following way:

If Py(p, p+2) is the number of twin primes with the lesser of the two < n, then
lim,— o Py(p, p +2) = 00.

Striking theoretical progress has been achieved toward proving these conjectures,
but insurmountable gaps remain. We focus on certain heuristic formulas, developed
by Hardy & Littlewood [1]. These formulas attempt to answer the following question:
Putting aside the existence issue, what is the distribution of primes satisfying various

84
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additional constraints? In essence, one desires asymptotic distributional formulas anal-
ogous to that in the Prime Number Theorem.

Extended Twin Prime Conjecture [2-6].

n
P,(p, 2) ~ 2Ciwin——,
n(p p+ ) tw 111(11)2

1
where Ciyin = l_[ plp =2) = 0.6601618158... = 5(1.3203236316 Sl

pes (P =17
Conjectures involving two different kinds of prime triples [2].

n
Pn(p7p+27p+6)'\’Pn(p7p+47p+6)ND—,
In(n)?

3
where D = | | pi) — 2.8582485957 . ...
p>3 - 1)3

Conjectures involving two different kinds of prime quadruples [2].

1 n
Pip.p+2.p+6,p+8 ~ SP(p.p+4 p+6,p+10)~ E——0,
2 In(n)*
where E = = ]_[p(p . — 4.1511808632....
Pl S P

Conjecture involving primes of the form m?+1[3,4,7-9]. If O, is defined to be the
number of primes p < n satisfying p = m* + 1 for some integer m, then

i

Q 2Cquad1 ( )

1 (-5 1
where Cqua = > I1 (1 - ) =0.6864067314.... = S(1.3728134628 ...,

p>2 p—

Extended Goldbach Conjecture [3,4,10,11]. If R, is defined to be the number of
representations of an even integer n as a sum of two primes (order counts), then
r—1 1 n

b P — p—2 In(n)?’
pln

Rn ~ 2thin .

where the product is over all primes p dividing n.

It is intriguing that both the Extended Twin Prime Conjecture and the Extended Gold-
bach Conjecture involve the same constant Cyiy. It is often said that the Goldbach
conjecture is “conjugate” to the Twin Prime conjecture [12]. We talk about recent
progress in estimating Q, [2.1.1] and in estimating R, [2.1.2]. Shah & Wilson [13]
extensively tested the asymptotic formula for R,; thus Ci, is sometimes called the
Shah—Wilson constant [14]. A formula for computing Ciyiy is given in [2.4].
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The Hardy-Littlewood constants discussed here all involve infinite products over
primes. Other such products occur in our essays on the Landau—Ramanujan constant
[2.3], Artin’s constant [2.4], the Hafner—Sarnak—McCurley constant [2.5], Bateman—
Grosswald constants [2.6.1], Euler totient constants [2.7], and Pell-Stevenhagen con-
stants [2.8].

Riesel [2] discussed prime constellations, which generalize prime triples and quadru-
ples, and demonstrated how one computes the corresponding Hardy—Littlewood con-
stants. He emphasized the remarkable fact that, although we do not know the sequence
of primes in its entirety, we can compute Hardy—Littlewood constants to any decimal
accuracy due to a certain transformation in terms of Riemann’s zeta function ¢ (x) [1.6].

There is a cubic analog [2.1.3] of the conjecture for prime values taken by the pre-
ceding quadratic polynomial. Incidently, if we perturb the product 2Cyaq only slightly,
we obtain a closed-form expression:

(s D7\ 4 1
14 P N 0)
where B(x) is Dirichlet’s beta function [1.7].
Mertens’ well-known formula gives [2.2]
1

. 1 p
1 —— = —¢” =0.8905362089...,
Jm o 11 527 =5¢

<p<n

where y is the Euler—Mascheroni constant [1.5]. Here is a less famous result [15-17]:

1 1
]_[ e =12013035599 ... = ————
p— 2 ~ 4Cuin 0.8324290656. . .

n—>oo ln(n)z 2<p<n

Here also is an extension of Cyyiy, = C; introduced by Hardy & Littlewood [16-20]:

=NG5) =-10-5) (-3)

for which C3 = 0.6351663546 ... =2D/9, C4 = 0.3074948787 ... =2E /27, Cs =
0.4098748850. .., Ce = 0.1866142973 ..., and C7; = 0.3694375103 ... ..

In a study of Waring’s problem, Bateman & Stemmler [21-24] examined the con-
jecture

n
P.(p, p* N~ H——,
(p.p"+p+1) ()2
where
1 1\ 2 2
H:EI_[ (1——) (1—M> =1.5217315350... =2 - 0.7608657675 . ..
P P
P

and x(p) = —1, 0, 1 accordinglyas p = —1, 0, l mod 3, respectively. See also [25-28].
We give two problems vaguely related to Goldbach’s conjecture. Let f(r) denote
the number of representations of » as the sum of one or more consecutive primes.
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Forexample, f(41) = 3since4l = 11+ 13+ 17=2+3+5+7+ 11 + 13. Moser
[29] proved that

R

Jim ; f(n) = In(2) = 0.6931471805 .. ..

Let g(n) denote the number of integers not exceeding » that can be represented as a
sum of a prime and a power of 2. Romani [30] numerically investigated the ratio g(n)/n

and concluded that the asymptotic density of such integers is 0.434 .. ..

2.1.1 Primes Represented by Quadratics

We defined Q, earlier. Let Q~n be the number of positive integers k£ < n having <2
prime factors and satisfying k = m? + 1 for some integer m. Hardy & Littlewood’s
conjecture regarding the limiting behavior of Q,, remains unproven; some supporting
numerical work appeared long ago [31,32]. Iwaniec, however, recently demonstrated
the asymptotic inequality [4,33]
Q~n>i'2Cquad'ﬂ= 'ﬁ,
77 In(n) In(n)
which shows that there are infinitely many almost primes of the required form. His
results extend to any irreducible quadratic polynomial am? + bm + ¢ with a > 0 and
¢ odd. A good upper bound on O, does not seem to be known.
Shanks [32] mentioned a formula

3 .¢(6) 2 2
Cquad_ﬁ@ [ <1+p3—1><1_p(p—1)2>’

pEl mod 4

0.0178...

where G = B(2) is Catalan’s constant [1.7]. He added that more rapid convergence may
be obtained by multiplying through by the identity

17 ¢(@®) ( 2 )
l=———"— 1+ —).
ormpw 1L (15

2.1.2 Goldbach’s Conjecture

Some progress has been made recently in proving Goldbach’s conjecture, that is, in
turning someone’s guess into a theorem. Here are both binary and ternary versions:

Conjecture G. Every even integer > 2 can be expressed as a sum of two primes.
Conjecture G'. Every odd integer > 5 can be expressed as a sum of three primes.
Note that if G is true, then G’ is true. Here are the corresponding asymptotic versions:

Conjecture AG. There exists N so large that every even integer > N can be expressed
as a sum of two primes.

Conjecture AG'. There exists N' so large that every odd integer > N’ can be expressed
as a sum of three primes.
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The circle method of Hardy & Littlewood [1] led Vinogradov [34] to prove that AG' is
true; moreover, he showed that

1 1 n?
S”U(”(p—m)'E(l_p2—3p+3>'2ln<n)3’

pln

where S, is the number of representations of the large odd integer » as a sum of three
primes. Observe that this is not a conjecture, but a theorem. Further, Borodzkin [35]
showed that Vinogradov’s number N’ could be taken to be 33" & 10700000 3nd Chen
& Wang [36,37] improved this to 1071%4. It is not possible with today’s technology
to check all odd integers up to this threshold and hence deduce G'. But by assuming
the truth of a generalized Riemann hypothesis, the number N’ was reduced to 10%° by
Zinoviev [38], and Saouter [39] and Deshouillers et al. [40] successfully diminished
N’ to 5. Therefore G’ is true, subject to the truth of a generalized Riemann hypothesis.

We do not have any analogous conditional proof for AG or for G. Here are two
known weakenings of these:

Theorem (Ramaré¢ [41,42]). Every even integer can be expressed as a sum of six or
fewer primes (in other words, Schnirelmann’s number is < 6).

Theorem (Chen[11,12,43,44]). Every sufficiently large even integer can be expressed
as a sum of a prime and a positive integer having < 2 prime factors.

In fact, Chen proved the asymptotic inequality
p—1 n
R, > 0.67 - . — )
- 067 ] < ) L1572 Iy

p>2 >2 P 2
pln

where R, is the number of corresponding representations. Chen also proved that there
are infinitely many primes p such that p + 2 is an almost prime, a weakening of the
twin prime conjecture, and the same coefficient 0.67 appears.

Here are additional details on these results. Kaniecki [45] proved that every odd
integer can be expressed as a sum of at most five primes, under the condition that the
Riemann hypothesis is true. With a large amount of computation, this will eventually
be improved to at most four primes. By way of contrast, Ramaré’s result that every even
integer is a sum of at most six primes is unconditional (not dependent on the Riemann
hypothesis).

Vinogradov’s result may be rewritten as

. In(n)? 1 1 1

liminf—2-8, == [T(1+ —— ) - T](1- ————) = Cuwi

oo n? 21;[< +(p—l)3> ;17:[2( 2—3p+3) ovin
= 0.6601618158... .,

3 1
limsup (n) Sy == 1_[ (1 + —

= 1.1504807723....
n—00 2 » (p— 1)3
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That is, although S(n) is asymptotically misbehaved, its growth remains within the
same order of magnitude. This cannot be said for Chen’s result:

. In(n)? -
liminf R, > 0.67 - Ciyin = 0.44,
n—0oQ
1 ~ 1
imsup "0 R~ 0.67- Le? = 0,59,
n—00 n 2

Note that the limit superior bound grows at a logarithmic factor faster than the limit
inferior bound. We have made use of Mertens’ formulas in obtaining these expressions.
Chen’s coefficient 0.67 for the Goldbach conjecture [43] was replaced by 0.81 in
[46] and by 2 in [11]. His inequality for the twin prime conjecture can likewise be
improved; the sharpenings in this case include 1.42 in [47], 1.94 in [48], 2.03 in [49],
and 2.1 in [50].
Chen [51], building upon [52—54], proved the upper bound

1 —1
R, <7.8342- ] (1 - 1)2>. P -
e

p>2 p>2 p— 2 ln(n)z
pln

Pan [55] gave a simpler proof but a weaker result with coefficient 7.9880. Improvements
on the corresponding coefficient 7.8342 for twin primes include 7.8156 in [56], 7.5555
in [57], 7.5294 in [58], 7 in [59], 6.9075 in [47], 6.8354 in [50], and 6.8325 in [60]. (A
claimed upper bound of 6.26, mentioned in [3] and in the review of [50], was incorrect.)

Most of the sharpenings for twin primes are based on [59], which does not apply to
the Goldbach conjecture for complicated reasons.

There is also a sense in which the set of possible counterexamples to Goldbach’s
conjecture must be small [61-66]. The number e(n) of positive even integers < n that
are not sums of two primes provably satisfies e(n) = o (n0'914) as n — o0. Of course,
we expect e(n) = | for all » > 2. See also [67-69].

2.1.3 Primes Represented by Cubics
Hardy & Littlewood [1] conjectured that there exist infinitely many primes of the form
m?> + k, where the fixed integer k is not a cube. Further, if 7, is defined to be the number
of primes p < n satisfying p = m> + 2 for some integer m, then

1
lim MT,, =4= 1_[ pi(lp) = 1.2985395575. . .,

—«
p=lmod6 P~
where

3 if 2 is a cubic residue mod p (i.e., if x> = 2 mod p is solvable),
0 otherwise.

a(p) = {



90 2 Constants Associated with Number Theory

Likewise, if U, is defined to be the number of primes p < n satisfying p = m> + 3 for
some integer m, then

1 _
tim "y, - p = PP _ | 3905439387 ...
n—eo ‘/ﬁ p=1mod 6 p— 1
where
B(p) = if 3 is a cubic residue mod p (i.e., if x> = 3 mod p is solvable),
0 otherwise.

The constants 4 and B are known as Bateman’s constants and were first computed to
high precision by Shanks & Lal [3,22,70,71].

Here is an example involving a quartic [72]. If V,, is defined to be the number of
primes p < n satisfying p = m* + 1 for some integer m, then

In(n)
lim V, =41 = 2.6789638796 .
n—o0 \/_
where
n? 4\ (p+1)\°
S S— ]‘[ 1—— ) (5=——) =0.6697409699....
161n(1 4+ v/2) ,_1 moas p/\p—1

It seems appropriate to call this Shanks’ constant. Similar estimates for primes of the
form m®> + 2 or m*> + 3 evidently do not appear in the literature.

The Bateman—Horn conjecture [3,21,73] extends this theory to polynomials of
arbitrary degree. It also applies in circumstances when several such polynomials must
simultaneously be prime. For example [74-77], if F,, is defined to be the number of
prime pairs of the form (m — 1)> + 1 and (m + 1)?> 4+ 1 with the lesser of the two < n,
then

. In(n)?
lim

n—00 ﬁ

2 4 1\?
== 11 (1-2 PH1N 04876227781 . . .
8 1

p=lmod4 P/ \P—

F, =4J =1.9504911124 ...,

where

Note that F), is also the number of Gaussian twin primes (m — 1 + i, m + 1 + i) situated
on the line x + i in the complex plane; hence J might be called the Gaussian twin
prime constant. (These are not all Gaussian twin primes in the plane: On the line
x + 2i, consider m = 179984.)

As another example, if G, is defined to be the number of prime pairs of the form
(m — 1)* 4+ 1 and (m + 1)* 4 1 with the lesser of the two < 7, then
) ln(n)2
lim

n—0o0

G, = 16K =12.6753318106.
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where

k=21 [] PP — e ) _ 07922082381 ...
peimods (P~ )

The latter is known as Lal’s constant. Sebah [77] computed this and many of the
constants in this essay.
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2.2 Meissel-Mertens Constants

All of the infinite series discussed here and in [2.14] involve reciprocals of the prime
numbers 2, 3, 5,7, 11, 13, 17, ... . The sum of the reciprocals of all primes is divergent
and, in fact [1-6],

1 1 1
lim (Y ——In(n(n) | =M=y + > [111(1 - —) + —} =0.2614972128...,

p=n

where both sums are over all primes p and where y is Euler’s constant [1.5]. Accord-
ing to [7,8], the definition of M was confirmed to be valid by Meissel in 1866 and
independently by Mertens in 1874. The quantity M is sometimes called Kronecker’s
constant [9] or the prime reciprocal constant [10]. A rapidly convergent series for M
is [11-13]

) 0 inge ey,
k=

where ¢ (k) is the Riemann zeta function [1.6] and (k) is the Mobius mu function

1 ifk=1,
u(k) = { (=1)" if k is a product of r distinct primes,
0 if k is divisible by a square > 1.

If w(n) denotes the number of distinct prime factors of an arbitrary integer 7, then
interestingly the average value of (1), w(2), ..., w(n):

n

1
En(@) =~ o(k)

k=1

can be expressed asymptotically via the formula [2,9, 14—-16]
lim (E,(w) — In(In(n))) = M
n—00

A somewhat larger average value for the fofal number, Q(n), of prime factors of n
(repeated factors counted) is as follows:

D _ _
M= Jim (@)~ i) = M+ oy
1 1 o Pk
= T[m(1-5) + ]y e P ey
P k=2

= 1.0346538818.. .,

where ¢(k) is the Euler totient function [2.7]. A related limit [1,17] is

. In(p) _In(p)
1 —In =—-y— = —1.3325822757.
i, (Z , <”>> P =1

p=n
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and a fast way to compute M” uses the series [18]

§'(k)

(k)

Dirichlet’s famous theorem states that if @ and b are coprime positive integers then

there exist infinitely many prime numbers of the form a + bl. What can be said about
the sum of the reciprocals of all such primes? The limit

M=y +) k)
k=2

1 1
mgp = lim — — —— In(In(n))
@7 oo ,; P ob)
p=a mod b

can be shown to exist and is finite for each a and b. For example [19-23],

T y 1 1
=In|-— = In{1—— — | = —0.2867420562...,
mi 4 n(4K + 3 + Z n > + >

pEl mod 4
2K N1
myq = In (—) +2e ¥ [m (1 - —) n —] — 0.0482392690 .. .,
ﬁ 2 p=3mod 4 p p

where K is the Landau—Ramanujan constant [2.3]. Of course, m 4 + m34 + 1/2 = M.
The sum of the squared reciprocals of primes is

N = Z iz = i @ In(¢(2k)) = 0.4522474200.. .,
)4 p k=1 k
which is connected to the variance of w(1), w(2), ..., w(n):
Var, () = E, (@) — Ey(@)®
via the formula [9, 14]
nlirgo (Var,(w) — In(In(n))) = M — N — n%2/6 = —1.8356842740 . . ...

Likewise,

1
N = ——— = 1.3750649947 . ..
D s

appears in the following:

lim (Var,(Q) — In(In(n))) = M’ + N’ — 72/6 = 0.7647848097 . . ..
n—oo

See [15,24] for detailed accounts of evaluating N and N’ and [25-27] for the asymptotic
probability distributions of w and .

Given a positive integer 7, let D, = max{d : d*|n}. Define S to be the set of n such
that D, is prime, and define S to be the set of n € S such that D? Jn. The asymptotic
densities of S and S are, respectively [28-30],

6 1 6 1
— Z — =0.2749334633 ..., — Z — =10.2007557220....
m?~p = p(p+1)
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In words, S is the set of integers, each of whose prime factors are simple with exactly
one exception; in S, the exception must be a prime squared. See related discussions of
square-free sets [2.5] and square-full sets [2.6].

Bach [12] estimated the computational complexity of calculating M, as well as
Artin’s constant Cayn [2.4] and the twin prime constant Ciyin [2.1].

The alternating series

e 1
§ (—1)f— = —0.2696063519 . ..,
=1 Pk

where p; =2, pp =3, p3 =5, ..., is clearly convergent [31]. This is perhaps not so
interesting as the two non-alternating series [32—35]

> 1 > 1
D er— =03349813253..., ) e — = 0.6419448385 ...,
k=2 Pk k=1 Pk

where
—1 if p =1 mod 3,
g,=1 1 if py =2mod3,

{—1 if pr = 1 mod 4,
Er =
0 if p; = 0 mod 3.

1 if p =3 mod 4,
Of course, the following is also convergent [36]:
> 1
Y er— =0.0946198928 . ...
= Pk

Erdés [37,38] wondered if the same is true for the series Y o, (—1)*k/ px.
Merrifield [39] and Lienard [40] tabulated values of the series ) 2P for2 <n <
167,as wellas M and y — M = 0.3157184521....

2.2.1 Quadratic Residues

Let f(p) denote the smallest positive quadratic nonresidue modulo p, where p is prime.
The average value of f(p) is [41,42]

> f) o) N
lim 22— fjm =S Pk _ 36746439660 . ...
S T 2 Iw=3 %

p=<n

More generally, if m is odd, let f(mm) denote the least positive integer k& for which the
Jacobi symbol (k/m) < 1, where m is nonsquare, and f(m) = 0 if m is square. (If
(k/m) = —1, for example, then % is a quadratic nonresidue modulo m.) The average
value of f(m) is [41,43,44]

.2 > pi+ 145 1
lim = %" f(m) =1+ T (1 =) =3.1477551485 ...

n—oo n - 2]71 Pi

m<n j=2 i=1
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2.3 Landau-Ramanujan Constant

Let B(x) denote the number of positive integers not exceeding x that can be expressed
as a sum of two integer squares. Clearly B(x) — 0o as x — 00, but the rate at which
it does so is quite fascinating!

Landau [1-3] and Ramanujan [4, 5] independently proved that the following limit
exists:

fim Y2 gy — k.

X—00 X



2.3 Landau—Ramanujan Constant 99

where K is the remarkable constant

1 1

s T (-5) =5 TL.(-5)
K=+ ——) =z 1 —
\/Epzsl_[mu p’ 4 pzll_m[od4 P’

and the two products are restricted to primes p. An empirical confirmation of this limit
is found in [6]. Shanks [7, 8] discovered a rapidly convergent expression for K:

L ! :(2}‘)}#
K=— 1 - — = 0.7642236535 ...,
sl [( 2 ) e

where ¢ (x) is the Riemann zeta function [1.6] and S(x) is the Dirichlet beta function
[1.7]. A stronger conclusion, due to Landau, is that

. In(x)? Kx \
am = (B(x)_\/m)_c

where C is given by [7,9-12]

1 W@y B 1d 1
C—5*7‘2‘4,3(1)+ml“<p_ﬂmd4(l‘ﬁ>)

1 e 1 & /02N B2 In@)
2 (1 - (Z» ! ;(«w T Boh T 1)

0.5819486593 .. .,

y is Euler’s constant [1.5], and L = 2.6220575542 ... is Gauss’ lemniscate constant
[6.1]. These formulas were the basis for several recent high-precision computations by
Flajolet & Vardi, Zimmermann, Adamchik, Golden & Gosper, MacLeod, and Hare.

2.3.1 Variations

Here are some variations. Define K, to be the analog of K when counting positive
integers of the form a? + nb?. Clearly K = K. Define C, likewise. It can be proved
that [10, 13-16]

K ! ]_[ (1 1) © o 0.8728875581
)= — —_— = U. ceey
ﬁp550r7m0d8 p2

1
1 1) ?
Ky = —— <1 — —2) = 0.6389094054 . . .,
V243 p=2mod3 p

K, = %K = 0.5731677401..., C4 =C =0.5819486593 .. ..

Moree & te Riele [17] recently computed C; = 0.5767761224 . . ., but no one has yet
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found the value of C,, forn = 2 or n > 4. In the case n = 3, counting positive integers
of the form a? + 3b? is equivalent to counting those of the form a? + ab + b?.

Define instead K ,, to be the analog of K when counting positive integers simul-
taneously of the form a? + b* and /¢ + m, where [ and m are coprime. Here, K, is
simply a rational multiple of K depending on / only [18,19].

Here are more variations. Let Bys(x) be the number of positive square-free integers
not exceeding x that can be expressed as a sum of two squares. Also, let B.opr(x) be
the number of positive integers not exceeding x that can be expressed as a sum of two
coprime squares. It can be proved that [20-22]

lim @Bsqﬁ(x) = 9% =0.4645922709. ..,

X—>00

lim Y0 p () = & = 0.4906940504 . ..

o 8K —
A conclusion from the first limit is that being square-free and being a sum of two
squares are asymptotically independent properties. Of course, the two squares must be
coprime; otherwise the sum could not be square-free.
Dividing the first expression by the second expression, we obtain that the asymptotic
relative density of the first set as a subset of the second set is [22]

B 16K?2 |
lim Do) _ —= I (1 - —2> = 0.9468064072 . . ..
x—>00 Beopr(x) Y4 p

p=1 mod 4

This is a large density! On the one hand, if we randomly select two coprime integers,
square them, and then add them, the sum is very likely to be square-free. On the other
hand, there are infinitely many counterexamples: Consider, for example, the primitive
Pythagorean triples [5.2].

Let B;(x) be the number of positive integers up to x, all of whose prime factors are
congruent to j modulo 4, where j = 1 or 3. It can be shown that [20,21,23,24]

lim Y2 B, (x) = [ = 03271293669 ..,

X—>00 4K
lim Y2 By (x) = 2K = 0.4865198884 ...
X—>00 -

It is interesting that these are not equal! This is a manifestation of the Chebyshev effect
described by Rubenstein & Sarnak [25]. See [2.8] for a related discussion.
We mention two limits discovered by Uchiyama [26]:

. 1 4 y
lim in(v) [ (1 - ;> = " exp (—5) K = 1.2923041571 ...,

p=x
pEl mod 4

, 1 N vy |
lim in(r) [ (1 - ;) = YT exp (_E) = = 0.8689277682....

p=x 2
p53 mod 4

which when multiplied together give Mertens’ famous theorem [2.2]. Extensions of
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these results appear in [27-29]. As corollaries, we have

1 1 4 %
lim 1+ —) =—exp|=)K =0.7326498193. ..,
X—00 ln(x) g < p T[% P (2)

p=1mod 4

. 1 1 | w1
lim 1+ —) = ex (- — —0.9852475810. . ..
X—00 ln(x) ,Igc < P ﬁ p 2) K
p=3mod 4

Here are formulas that complement the expression for 16K /m? earlier:

1 1
1—— ) =—= =0.8561089817...,
p::!:’llod4( p2> 2K?

1 192K2G
[T (1+=)=—""—=10544399448 ..,
p=1 mod 4 p T

1 72
p531_[md4 1+? = Texig = 11153080s616....,

where G = (2) denotes Catalan’s constant [1.7]. A similar expression emerges when
dealing with the following situation. Let B(x) be the number of positive square-free
integers that belong to the sequence n? + 1 with 1 < n < x. Then [30,31]

B 2
fim 2% _ I1 (1 - —2> — 0.8948412245 . . ..
o0 X p=1mod 4 p

Vast generalizations of this result are described in [32-34].

Let B(x) denote the number of positive integers n not exceeding x for which n2
cannot be expressed as a sum of two distinct nonzero squares. Shanks [35,36] called
these non-hypotenuse numbers, proved that

£ = lim Vln(x)

4K
B(x) = — =0.9730397768... .,

X—>00
In(x)> [ ~ K 1 v
fim O (- KX Y _op by (—”ez> — 0.7047534517 . ..,
x—o0o Kx /In (x) 2 2L

and also mentioned that a third-order term is known to be positive (but did not compute
this).

Let A(x) denote the number of primes not exceeding x that can be expressed as a
sum of two squares. Since odd primes of the form a? + b? are precisely those that are
1 modulo 4, we have

lim Inx )A( )= =

x—o00 X
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Define U(x) to be the number of primes not exceeding x that can be expressed in the
form a® + b*. Friedlander & Iwaniec [37,38] proved that
1 4L
im 2 ) = S = 11128357889 ..
T

x—>00 x 3

By coincidence, the constant L appeared in the second-order approximation of B(x)
as well. Drawing inspiration from this achievement, Heath-Brown [39] recently proved
an analogous result for primes of the form a* + 2b°.

Let V' (x) be the number of positive integers not exceeding x that can be expressed
in the form a? 4 b*. It turns out that for almost all integers, the required representation
is unique; hence a formula in [38] is applicable and

lim x5V (x) = L 08740191847 ...
X—00 3

The corresponding asymptotics for positive integers of the form a3 4 2b* would be
good to see. Related material appears in [40,41].

Let O(x) be the number of positive integers not exceeding x that can be expressed
as a sum of three squares. Landau [1] proved that O(x)/x — 5/6 asx — oo. The error
term A(x) = Q(x) — 5x/6 is not well behaved asymptotically [42—44], in the sense
that

0= ljicrgioréfA(x) < lixrgsotip Alx) = 3nQ)°

The average value of A(x) can be precisely quantified in terms of a periodic, continuous,
nowhere-differentiable function. More about such formulation is found in [2.16]. The
asymptotics for counts of x of the form @ + b3 + ¢® ora* + b* + ¢* 4+ d* remain open
[45].
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2.4 Artin’s Constant

Fermat’s Little Theorem says that if p is a prime and # is an integer not divisible by p,
then n?~! — 1 is divisible by p.

Consider now the set of all positive integers e such that n° — 1 is divisible by p.
If e = p — 1 is the smallest such positive integer, then 7 is called a primitive root

modulo p.

For example, 6 is a primitive root mod 11 since none of the remainders of
6!, 6%, 6%, ...,6" upon division by 11 are equal to 1; thus e = 10 = 11 — 1. However,
6 is not a primitive root mod 19 since 6° — 1 is divisible by 19 ande =9 < 19 — 1.

Here is an alternative, more algebraic phrasing. The set Z, ={0,1,2,...,p —
1} with addition and multiplication mod p forms a field. Further, the subset U, =
{1,2, ..., p — 1} with multiplication mod p forms a cyclic group. Hence we see that

the integer n (more precisely, its residue class mod p) is a primitive root mod p if and
only if 7 is a generator of the group U),.

Here is another interpretation. Let p > 5 be a prime. The decimal expansion of the
fraction 1/p has maximal period (= p — 1) if and only if 10 is a primitive root modulo
p. Primes satisfying this condition are also known as long primes [1-4].

Artin [5] conjectured in 1927 that if n £ —1, 0, 1 is not an integer square, then the
set S(n) of all primes for which 7 is a primitive root must be infinite. Some remarkable
progress toward proving this conjecture is indicated in [6-9]. For example, it is known
that at least one of the sets S(2), S(3), or S(5) is infinite.

Suppose additionally that 7 is not an » integer power for any » > 1. Let n’ denote
the square-free part of »n, equivalently, the divisor of » that is the outcome after all
factors of the form d? have been eliminated. Artin further conjectured that the density
of the set S(n), relative to the primes, exists and equals

1
Carin =] | (1 - 7> = 0.3739558136. ..
» pp—1)

independently of the choice of n, if n’ £ 1 mod 4. A proof of this incredible conjecture
is still unknown. For other cases, a rational correction factor is needed — see [2.4.2] —but
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Artin’s constant remains the central feature of such formulas. Hooley [10, 11] proved
that such formulas are valid, subject to the truth of a generalized Riemann hypothesis.

A rapidly convergent expression for Artin’s constant is as follows [12—18]. Define
Lucas’ sequence as

ly =2, L =1, L=0L,_1+1,_, forn>2
and observe that [, = ¢" + (1 — ¢)", where ¢ is the Golden mean [1.2]. Then

CArtin = l_[ g(”)_% Z""’ 1]('#(%>

n>2
=273 @GO (D e ®) (9 -,

where ¢ (n) is Riemann’s zeta function [1.6] and w(7) is Mdbius’ mu function [2.2]. For
comparison’s sake, here is the analogous expression for the twin prime constant [2.1]:

cun=T1[(1-5) M}-% L 2u(3)

n>2

_ (3:(2))’1 (7:(3>)’2 ( 154(4))’3 (314(5)>’6 (63«6))’9 ( 127:(7))’18 .
4 8 16 32 64 128 :

We briefly examine two k-dimensional generalizations of Artin’s constant, omitting
technical details. First, let S(ny, n,, ..., n;) denote the set of all primes p for which the
integers ny, ny, ... , n; are simultaneously primitive roots mod p. Matthews [19,20]
deduced the analog of Ca, corresponding to the density of S(ny, ny, . .., ny), relative
to the primes [21]:

K K 0.1473494003 ... ifk =2,
il V) :

Chanews = [ [ (1= Ty ) = | 00608216553, . ifk =3,

» pip 0.0261074464 ... ifk =4,

which is valid up to a rational correction factor. Second, let N denote the sub-
group of the cyclic group U, generated by the set {n, ns, ..., n;} € U,, and define
S(ny, na, ..., ng) to be the set of all primes p for which N = U,. Pappalardi [22,23]
obtained the analog of Cai, corresponding to the density of S(n 1, 12, ..., n;), relative
to the primes [17]:

0.6975013584 ... ifk =2,

!
CPappalardi,k = 1_[ <1 - ki]) = 0.8565404448 ... ifk = 3,
» pPp—1) 0.9312651841 ... ifk = 4,

which again is valid up to a rational correction factor. Niklasch & Moree [17] computed
Cpappalardi,x and many of the constants in this essay.

In the context of quadratic number fields [24,25], a suitably extended Artin’s con-
jecture involves Cpappalardi2 s well as the constant

8C i 2
tzm - ]‘[ (1 - 7> = 0.5351070126. . ..
i p(p—1)

p>2



106 2 Constants Associated with Number Theory

A generalization to arbitrary algebraic number fields seems to be an open problem. See
[26-28] for a curious variation of Cp, involving Fibonacci primitive roots, and see
[29] likewise for pseudoprimes and Carmichael numbers.

We describe an unsolved problem. Define, for any odd prime p, g(p) to be the least
positive integer that is a primitive root mod p, and define G(p) to be the least prime
that is a primitive root mod p. What are the expected values of g(p) and G(p)? Murata
[21,30] argued heuristically that g(p) is never very far from

1
1+ Cvurats = 1+ [ | (1 + m) = 3.8264199970.. ..
V4

for almost all p. This estimate turns out to be too low. Empirical data[21,31,32] suggest
that E(g(p)) = 4.9264 ... and E(G(p)) = 5.9087 . ... There is a complicated infinite
series for E(g(p)) involving Matthews’ constants [21], but it is perhaps computationally
infeasible. See [2.7] for another occurrence of Cypurata.

2.4.1 Relatives

Here are some related constants from various parts of number theory. Let nonzero
integers @ and b be multiplicatively independent in the sense that a”b" £ 1 except
when m = n = 0. Let T(a, b) denote the set of all primes p for which p|(a* — b) for
some nonnegative integer k. Assuming a generalized Riemann hypothesis, Stephens
[33] proved that the density of T'(a, b) relative to the primes is

I1 (1 - %) — 0.5759599688. .
J2 p—1

up to a rational correction factor. Moree & Stevenhagen [34] extended Stephens’ work
and offered adjustments to the correction factors. They further proved uncondition-
ally that the density of T'(a, b) must be positive. A rapidly convergent expression for
Stephens’ constant is given in [16, 17].

The Feller—Tornier constant [35-37]

I 1 2 1 3 1
ST =2 =2+ 20711 = =) = 0.6613170494 . ..
2+2U< ) 2+n21;[< =),

is the density of integers that have an even number of powers of primes in their canonical
factorization. By power, we mean a power higher than the first. Thus 2 - 32 - 5° has two
powers of primes in it and contributes to the density, whereas 3 - 7 - 19 - 312 has one
power of a prime in it and does not contribute to the density.

Consider the set of integer vectors (xg, X1 X7, x3) satisfying the equation xg = X1X2X3
and the constraints 0 < x; < X for 1 < j <3 and gecd(x X2, x3) = 1. What are the
asymptotics of the cardinality, N(X), of this set as X — co? Heath-Brown & Moroz
[38] proved that

2880N(X) 1 7 1
[T - =) (1+ =+ = ) =0.0013176411 ... ..
e X In(X)8 U( p7>< +p+p2)

Counting problems such as these for arbitrary cubic surfaces are very difficult.
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Given a positive integer n, let D? = n/n’, the largest square divisor of n. De-
fine X to be the set of n such that D, and »n’ are coprime. Then ¥ has asymptotic
density [37]

1
x=]_[<1 20T )):0.8815138397....

P

Interestingly, the constant x appears in the following as well.

If d is the fundamental discriminant of an imaginary quadratic field (d < 0) and i(d)
is the associated class number, then the ratio 2 h(d)//—d is equal to x on average
[39,40]. This constant plays a role for real quadratic fields too (d > 0). In connection
with indefinite binary quadratic forms, Sarnak [41] obtained that the average value
of i(d), taken over the thin subset of discriminants 0 < d < D of the form ¢? — 4, is
asymptotically

T2 “

13 3 = 0.7439711933
p

In(D) " In(D)

as D — oo. The analogous constants for 0 < d < D of the form ¢* — 4, v > 2, do
not appear to possess similar formulation.
The 2k™ moment (over the critical line) of the Riemann zeta function

T
1 L2k
mo(T) = 7/|c(1/2+n)| dr
0

is known to satisfy m»(T) ~ In(T) and m4(T) ~ (1/2n?)) In(T)* as T — oo. It is
conjectured that m(T) ~ yx In(T)*" and further that [42—44]

9! ( 1)4( 4 1>
—ys = 1—— ) (1+=—+ =),
42 U p p P
16! 1\’ 9 9 1
= I——) (1+ 2+ 2+ —).
24024" U( p) ( +p+p2+p3>

This analysis can be extended to Dirichlet L-functions. Understanding the behavior of
moments such as these could have numerous benefits for number theory.

2.4.2 Correction Factors

We have assumed that n # —1, 0, 1 is not an i power for any » > 1 and that n’ is the
square-free part of n. If n’ = 1 mod 4, then the density of the set S(n) relative to the
primes is conjectured to be [8, 10, 14,45,46]

( M(|I’l |)l_[ ) : CArtin,

qln
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where the product is restricted to primes ¢. For example, if n’ = u is prime, then this
formula simplifies to

1
I+ ———) " Caxin.
<+u2—u—l> Art

If instead n’ = uv, where u = 1 mod 4 and v = 1 mod 4 are both primes, then the
formula instead simplifies to

1 1
(l_uz—u—lvz—v—1>.CAmn'

If n is an ™ power, a slightly more elaborate formula applies.
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2.5 Hafner-Sarnak—McCurley Constant

We start with a well-known theorem [1]. The probability that two randomly chosen
integers are coprime is 6/72 = 0.6079271018. .. (in the limit over large intervals).
Whathappens if we replace the integers by integer square matrices? Given two randomly
chosen integer n x n matrices, what is the probability, A(n), that the two corresponding
determinants are coprime?

Hafner, Sarnak & McCurley [2] showed that

Amy=]]|1- (1 —ﬁ(l —p_k)>2

p k=1

for each n, where the outermost product is restricted to primes p. It can be proved that
6
A)= = >A2)>AQB)>...> An—1) > An) >
b4

and Vardi [3,4] computed the limiting value

00 2
lim A(m) =]]|1- (1 -[T0- p_k)) = 0.3532363719....

n—00 D i

2.5.1 Carefree Couples

It is also well known that 6/72 is the probability that a randomly chosen integer x is
square-free [1], meaning x is divisible by no square exceeding 1. Schroeder [5] asked
the following question: Are the properties of being square-free and coprime statistically
independent? The answer is no: There appears to be a positive correlation between the
two properties. More precisely, define two randomly chosen integers x and y to be
carefree [5, 6] if x and y are coprime and x is square-free. The probability that x and
y are carefree is somewhat larger than 36 /T[4 = 0.3695 ... and is exactly equal to

P=2(1-

Moree [7] proved that Schroeder’s formula is correct. Further, he defined x and y to
be strongly carefree when x and y are coprime, and x and y are both square-free. The
probability in this case is [8]

36 1
— 21‘[ == 1 — ——— | =0.2867474284 .. ..
w p(p +b/) 7t (p+1)

Define finally x and y to be weakly carefree when x and y are coprime, and x or y is
square-free. As a corollary, the probability hereis2P — Q = 0.5697515829... ., using
the fact that P(4 U B) = P(4) + P(B) — P(4 N B). Do there exist matrix analogs of
these joint probabilities?

) = 0.4282495056. . . .
p(p 1)
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The constants P and Q appear elsewhere in number theory [7]. Let D, = max{d :
d?|n}. Define

k(n) =

D2 ,  the square-free part of n,

K(n) = H p, the square-free kernel of #;
pln

then [9-11]
N
Jim ZK(}'I) 30 = 03289, lim — le((n) ~ =03522...

(see [2.10] for the average of D, instead). Let w(#n) be the number of distinct prime
factors of n, as in [2.2]; then [11-13]

N

6
lim —— Y 2000 — — —0.6079...,
V=5 N In(N) ; 7
1 N
lim 72304") _2_ 0.1433....
N—oco N In(N)?* & 2

If w(n) is replaced by ©2(n), the total number of prime factors of #, then alternatively
[11,14,15]

1

1
lim ———— Z o — ___—__ _—(.2731707223.. .,
N—oo N In(N)? & 81n(2)Cowin

where Ciyin 1 the twin prime constant [2.1], which seems to be unrelated to P and Q.

We conclude with a generalization. The probability that £ randomly chosen integers
are coprime is 1/¢(k), as suggested in [1.6]. The probability that they are pairwise
coprime is known to be [5, 7]

ne-;) (5

for 2 < k < 3, but a proof for £ > 3 has not yet been found. The expression naturally
reduces to 6/ if k = 2. More surprisingly, if k = 3, it reduces to Q.
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2.6 Niven’s Constant

daz . as

Let m be a positive integer with prime factorization pi' p3* p5’ - - - p;*. We assume that

each exponent ¢; > 1 and each prime p; # p; for all i # j. Define two functions

1 ifm=1,
min{ay, ..., a;} ifm > 1,

1 ifm=1,
max{ay, ..., a;} ifm > 1,

h(m) = { H(m) = {

that is, the smallest and largest exponents for m. Niven [1, 2] proved that
li ! Xn: h(m) =1
im — m) =
n—-oo n el

and, moreover,

(;h(m)) L

lim = {(%) =2.1732543125.. .,
N 16)
where ¢ (x) denotes Riemann’s zeta function [1.6]. He also proved that
li ! i Hm)=C
im — =
n—oo n = n

and we call C Niven’s constant:

]

C=I+Z<l - %) — 1.7052111401 . . ..

k=2
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Subsequent authors discovered the following extended results [3,4]:

Y hm)=n +ean? + (cr+co3)nT + (er3 + coa)n® + (23 + c1a +cos)n® + O(nv),

m=1

—~ 1 cp 1 3cnndcpy 1 2ci34cos 1
— = - —pl—— Ty’ — ——= pi
“— h(m) 2 6 12
B 10cy3 + 562’)14 + 3(:05”% + 0(’1%)’

where the coefficients ¢;; are given in [2.6.1]; additionally, we have

1 1 > 1
lim — = = 0.7669444905 ... ..
A 2 T A K e

m=1

Averages for H are not as well understood asymptotically as averages for 4.

The constant cg, = ¢(3/2)/¢(3) also occurs when estimating the asymptotic
growth of the number of square-full integers [2.6.1], as does c1; = ¢(2/3)/¢(2) =
—1.4879506635 . . . In contrast, the constant 6 /72 arises in connection with the square-
free integers [2.5].

A generalization of Niven’s theorem to the setting of a free abelian normed semigroup
appears in [5].

Here is a problem that gives expressions similar to C. First, observe that [6, 7]

ZZ% =Y cOh-n=1, Y > nlp = (¢(p)—1) = 0.8928945714. ..,
=2 n=2 =2 P

p n=2
where the sum over p is restricted to primes. Both series involve reciprocal nontrivial
integer powers with duplication, for example, 2* = 4? and 4° = 82. Now, let S = {4,
8,9, 16,25,27,32, 36,49, 64, 81, ...} be the set of nontrivial integer powers without
duplication. It follows that [8]

3 L i (k)¢ (k) — 1) = 0.8744643684 . ..,

ses k=2

where (k) is Mobius’ mu function [2.2]; we also have [8, 9]
2

1 1 T 5
2= s it

ses seS

Given an arbitrary integer ¢ ¢ S, what can be said about )  _«(s — c)~'? By
Mihailescu’s recent proof of Catalan’s conjecture, the only two integers in S that differ
by 1 are 8 and 9.) See other expressions in [5.1].

2.6.1 Square-Full and Cube-Full Integers

Let £ > 2 be an integer. A positive integer m is k-full (or powerful of type k) if m = 1
or if, for any prime number p, p|m implies p¥|m.
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Let Ni(x) denote the number of k-full integers not exceeding x. For the case k = 2,
Erdos & Szekeres [10] showed that

Nz(x)—% +0( )

and Bateman & Grosswald [11-13] proved the more accurate result

TONIRION ,
M) = 55 1 Fro(at).

This is essentially as sharp an error estimate as possible without additional knowledge
concerning the unsolved Riemann hypothesis. A number of researchers have studied this
problem. The current best-known error term [14, 15], assuming Riemann’s hypothesis,
is O(x!/7*%) for any ¢ > 0, and several authors conjecture that 1/7 can be replaced by
1/10.

For the case £ = 3, Bateman & Grosswald [12] and Kritzel [16, 17] demonstrated
unconditionally that

N3(x) = 003)6% +cl3x% +Cz3x% +o (x%) .

By assuming Riemann’s hypothesis, the error term [15] can be improved to
O(x?7/894+¢) Formulas for the coefficients ¢;; include [3, 12, 18-20]

2j—1 ) 4.6592661225... ifj =3,

COAi—l_[(l‘f‘ D P = 96694754843 ... if j =4,
m=j+1 19.4455760839 ... if j =5,

2j-1 3
Clj=§<1+1)l—[<l+ Z piT — Z p/H)
m=j+2 m=2j+42
| —5.8726188208... if j =3,
—16.9787814834 ... if j = 4,

en=t ()] (1 oyt +p—%) —1.6824415102.. ..,
P

where all products are restricted to primes p. The decimal approximations for the
Bateman—Grosswald constants listed here are due to Niklasch & Moree [21] and
Sebah [22]. Higher-order coefficients appear in the expansions of Ny (x) for k > 4.

We observe that the Erdos—Szekeres paper [10] also plays a crucial role in the
asymptotics of abelian group enumeration [5.1]. The books by Ivi¢ [23] and Krétzel
[24] provide detailed analyses and background. See also [5.4] for discussion of the
smallest and largest prime factors of m.
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2.7 Euler Totient Constants

When 7 is a positive integer, Euler’s totient function, ¢(#n), is defined to be the number
of positive integers not greater than » and relatively prime to n. For example, if p and
q are distinct primes and » and s are positive integers, then

e =p""'(p -1,
o(p'g)=p""'¢" ' (p — (g — D).

In the language of group theory, ¢(») is the number of generators in a cyclic group of
order n. Landau [1-4] showed that

i p(n)
imsup — =1
n—00 n
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but

liminf

n—oo

In(1
plInnt) _ -~ _ ¢ 5614504835,
n
where y is the Euler—Mascheroni constant [1.5].
The average behavior of ¢(n) over all positive integers has been of interest to many
authors. Walfisz [5, 6], building on the work of Dirichlet and Mertens [2], proved that

N 2
Y o) = 3% +o0 (N In(N)3 1n(1n(N))%‘)
n=1

as N — oo, which is the sharpest such asymptotic formula known. (A claim in [7] that
the exponent 4/3 could be replaced by 1 + ¢, for any € > 0, is incorrect [8].) It is also
known [9, 10] that the error term is not o( N In(In(In(N)))).

Interesting constants emerge if we consider instead the series of reciprocals of ¢(n).
Landau [11-13] proved that

N (N))
—— =A-(In(N B [0 ,
;w() (In(N) + B) + ( ~

where

_8RXB) 315 | 0435064368 .
24

£(6)
In(p) —0.0605742294 . ..
= =y —0.6083817178... = )
=r- Z —p+1 A

and ¢(x) is Riemann’s zeta function [1.6]. Sums and products over p are restricted
to primes. The sum within B has inspired several accurate computations by Jameson
[14], Moree [15] and Sebah [16]. Landau’s error term O(In(N)/N) was improved to
O(In(N)*3/ N) by Sitaramachandrarao [17, 18].

Define K (x) to be the number of all positive integers » that satisfy ¢(n) < x. It is
known [19-22] that the following distributional result is true:

Kx)=Ax+ 0 (x exp (—c\/ln(x) ln(ln(x))))
for any 0 < ¢ < 1/+/2. Other relevant formulas are [18,23,24]

N
> A O 4 0 (nv)! inn(v)?).

n=1 n

N, . 1 %
;w(n) = AN =5 In(N) = 5C +0 (i)

il A In(N)
2 p-5+o (),

<p(n)
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where
= InQ7)+y + Z ) = In(27) + 1.3325822757 ... =3.1704593421 . . .,
which occurred in [2.2], and
p=" I1 <1 P ) — 22038565964
6 PAp—1) ' o

which came from a sharpening by Moree [24] of estimates in [25]. See [26] for numerical
evaluations of such prime products. The constant 4 occurs in [27,28] as the asymptotic
mean of a certain prime divisor function and elsewhere too [29]. The constant D also
occurs in a certain Hardy—Littlewood conjecture proved by Chowla [30].

We note the following alternative representation of 4:

- 1
A=1lq= —2>(1 )=H<1+ )

» pip—1

which bears a striking resemblance to Artin’s constant [2.4]. The only distinction is
that an addition is replaced by a subtraction. Curiously, Artin’s constant and Murata’s
constant [2.4] arise explicitly in the following asymptotic results [31,32]:

In(N) Z o(p —

N—>oo N

= Carin = 0.3739558136.. .,
pP—
P=N

. In(N) p—1
lim

= CMurata = 2.8264199970.. ...
Neooo N pSN (p(p _ 1) urata

Let L(x) denote the number of all positive integers n not exceeding x for which n
and ¢(n) are relatively prime. Erdés [33, 34] proved that

. L(n)In(In(In(n))) _
lim ———————>> =¢77,

n— 00 n

another interesting occurrence of the Euler—Mascheroni constant.
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2.8 Pell-Stevenhagen Constants
If an integer d > 1 is not a square, then the Pell equation
xP—dy’ =1

has a solution in integers (in fact, infinitely many). This fact was known long ago [1-5].
We are here concerned with a more difficult question. What can be said about the set
D of integers d > 1 for which the negative Pell equation

x?—dy? = -1

has a solution in integers? Only recently has progress been made in answering this.
First, define the Pell constant

1
P=1- l_[ <1 — 2—J> = 0.5805775582....,

Jjz1

j odd
which is needed in the following. The constant P is provably irrational [6] but only
conjectured to be transcendental. Define also a function

24 (142" p
v(p) = TS

where v, is the number of factors of 2 occurring in p — 1.

For any set S of positive integers, let fs(n) denote the number of elements in S not
exceeding n. Stevenhagen [6—8] developed several conjectures regarding the distribu-
tion of D. He hypothesized that the counting function fp(n) satisfies the following

[7]:
) 3p v (p) 1\:2
lim Y= fp(n) = 2 [1 <1+ )(1—?> —0.28136. ..,

n—00 n p2 —1

pEl mod 4

where the product is restricted to primes p.

Let U be the set of positive integers not divisible by 4, and let " be the set of positive
integers not divisible by any prime congruent to 3 module 4. Clearly D is a subset of
UNV,and UNV is the set of positive integers that can be written as a sum of two
coprime squares. By the conjectured limit mentioned here and by a coprimality result
given in [2.3.1] due to Rieger [9], the density of D inside U N V is [7]

_ foln) ( ¥(p) ) ( 1 > _
1 —P 1 1— — ) =057339....
"% Juav(n) p511:1[0d4 " pr-1 P’

Here is another conjecture. Let 7 be the set of square-free integers, that is, integers
that are divisible by no square exceeding 1. Stevenhagen [6] hypothesized that

lim Y20

n—00 n

6
forw(n) = — PK = 0.2697318462...,
T
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where K is the Landau—Ramanujan constant [2.3]. Clearly V' N W is the set of positive
square-free integers that can be written as a sum of two (coprime) squares. By the
second conjectured limit and by a square-free result given in [2.3.1] due to Moree [10],
the density of D N W inside V' N W is [8]

i Soow(n)
im

= P =0.5805775582....
n—00 anW(n)

A fascinating connection to continued fractions is as follows [7]: An integer d > 1
is in D if and only if +/d is irrational and has a regular continued fraction expansion
with odd period length.

A constant Q similar to P here appears in [5.14]; however, exponents in Q are not
constrained to be odd integers.
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2.9 Alladi-Grinstead Constant

Let n be a positive integer. The well-known formula
n=1:2-3.4..--.(n—1)-n

is only one of many available ways to decompose n! as a product of n positive integer
factors. Let us agree to disallow 1 as a factor and to further restrict each of the » factors
to be a prime power:

p,f", each pyisprimeand by > 1, k=1,2,...,n.

(Thus the previously stated natural decomposition of »! is inadmissible.) Let us also
write the factors in nondecreasing order from left to right. If » = 9, for example, all of
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the admissible decompositions are

91=2.2.2.2.2.22.5.7.3*
=2.2.2.2.3.5.7.23.3}
=2.2.2.2.5.7.23.32.32
—=2.2.2.3.22.22.5.7.33
=2.2.2.22.922.5.7.32.32
=2.2.2.3.3.5.7.32.2¢4
—2.2.3.3.22.5.7.23.32
=2.2.3.3.3.3.5.7.2°
=2.3.3.22.22.22.5.7.32
—2.3.3.3.3.22.5.7.04
=2.3.3.3.3.5.7.23.23
=3.3.3.3.22.22.5.7.23,

Note that eleven of the leftmost factors are 2 and one is 3. The maximum leftmost factor,
considering all admissible decompositions of 9! into 9 prime powers, is therefore 3.
We define

()

O = o)

In the same way, for arbitrary n, one determines the maximum leftmost factor p®
over all admissible decompositions of n! into » prime powers and defines

_In(p")
“m =1

Clearly a(n) < 1 for each n. What can be said about «(r) for large n?
Alladi & Grinstead [1,2] determined that the limit of «(n) as n — oo exists and

lim a(n) = ¢! = 0.8093940205 ... .,

n—00

where

> 1 o () — 1
c= _Z%IH(I_E> :;.71 = 0.7885305659.. ..
= —In(0.4545121805....)

and ¢(x) is Riemann’s zeta function [1.6].

How strongly does Alladi & Grinstead’s result depend on decomposing n! and not
some other function f(n)? It is assumed that f provides sufficiently many small and
varied prime factors for each n. See [3] for a related unsolved problem.
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Let d(m) denote the number of positive integer divisors of m. What can be said

about d(n!)? Erdos et al. [4] proved that

 In(In(n!))? ~

where

o0 1 oo
C = Z —In(k) = — Z £'(j) = 1.2577468869 . . .
 k(k—1) =

as mentioned in [1.8]. The similarity between ¢ and C is quite interesting.

Here are four related infinite products [5, 6]:

1

1\~ N
]_[ 14+ —) =1.7587436279.. ., ]_[ 1——) =0.4545121805...,
n n

n>2 n>2

1\7 1\7
]‘[(1+-) = 1.4681911223 ..., H(l——) = 0.5598656169 . . .,
P p P p

the latter two of which are restricted to primes p. The second product is e™¢, and the
fourth appears in [7,8]. A related problem, regarding the asymptotics of the smallest
and largest prime factors of #, is discussed in [5.4].
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2.10 Sierpinski’s Constant

In his 1908 dissertation, Sierpinski [1] studied certain series involving the function
r(n), defined to be the number of representations of the positive integer n as a sum
of two squares, counting order and sign. For example, »(1) = 4, r(p) = 0 for primes
p =3 mod 4, and r(q) = 8 for primes ¢ = 1 mod 4.

Certain results about () are not difficult to see; for example [2—4],

n

Zr(k) =nn+ 0O (n%>

k=1
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as n — 0o. More details on this estimate are in [2.10.1]. Sierpinski’s series include
[1,5,6]

Zr(kk)—n'(ln(n)+5)+0( )
k=1

n

Y R = <1n(n) + S) n+0 ( )

k=1

zn:r(k)z =4(in(n)+ S)n+ 0 (n% ln(n)) ,

k=1
where the constants S and S are defined in terms of S as

. In(2) . In(2)
S=y+8— 2;(2)+T—1 S_2S——§(2)+T—1

where y is the Euler—Mascheroni constant [1.5] and ¢(x) is Riemann’s zeta function
[1.6]. See [2.15] and [2.18] for other occurrences of ¢'(2).

The constant S, which we call Sierpinski’s constant, thus plays a role in the sum-
mation of all three series. It can be defined as

B _, <n2e2y) | <4n3ezy) 2.5849817595 . ..

= In = =
2 1\4

B(1) 2L T (Z) T

where B(x) is Dirichlet’s beta function [1.7], L = 2.6220575542 ... is Gauss’ lemnis-

cate constant [6.1], and I'(x) is the Euler gamma function [1.5.4]. It also appears in

our essays on the Landau—Ramanujan constant [2.3] and the Masser—Gramain constant
[7.2]. Sierpinski, in fact, defined S as a limit:

1
S=—lim (F(z) - L)
T z—1 1
and the function F'(z) = 4¢(z)B(z) is central to our discussion of lattice sums [1.10.1].
Other formulas for S include a definite integral representation:

00
4 [ e In(x)
S = 2)/ + — / mdx

0

Clearly this is a meeting place for many ideas, all coming together at once.

2.10.1 Circle and Divisor Problems

More precisely [7-12], the sum of the first n values of r provably satisfies

Xn:r(k) =7n+0 (n% Inm) ),

k=1
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and it is conjectured that

n

Zr(k) =nn+0 (n%”)
k=1
for all ¢ > 0. The problem of estimating the error term is known as the circle problem
since this is the same as counting the number of integer ordered pairs falling within the
disk of radius /7 centered at the origin.
Here is a related problem, known as the divisor problem, mentioned briefly in [1.5].
If d(n) is the number of distinct divisors of #, then

n

> d(k)=nln(n)+ 2y — Dn + O (n* 1n(n)%)

k=1
is the best-known estimate of the sum of the first » values of d. Again, the conjectured
exponent is 1/4 + ¢, but this remains unproven. The analog of Sierpinski’s third series,
for example, is [13—15]

and(k)2 = (4In(n)’ + BIn(n)* + Cln(n) + D)n + O (n%-&-a) ’
k=1

where

1 12y —3
AZP,B: nz

36
- Ff ),

and the constants C and D have more complicated expressions. The analog of
Sierpinski’s first series is [16]

S _ Ly 1 20 ) + 2 - 200 + 007 ),
~ k 2
where y; = —0.0728158454 . .. is the first Stieltjes constant [2.21].

In a variation of d(n), we might restrict attention to divisors of # that are square-free
[17]. Likewise, for r(n), we might count only representations n = u? 4 v for which
u, v are coprime, or examine differences rather than sums. Here is another variation:
Define r,,(n) to be the number of representations n = |u|” + |v|”, where u, v are
arbitrary integers. It is known that, if m > 3, then [12, 18, 19]

Sty = )

k=1 s (%)

and, further, the error term may be replaced by

nn + O (n%“*%))

o0
B mgamnl (1 + %) . Zk’“% sin <2nknn’li - %) (=)
k=1
+0 (n* 1n(n)%) .
A full asymptotic analysis of such circle or divisor sums will be exceedingly difficult
and cannot be expected soon.
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In a related 1908 paper, Sierpinski [20-22] discovered the following fact. Let D,, =
max{d : d*|n}; that is, D? is the largest square divisor of n. Then

1 & 3 9y 36,
—3 Dy = S In(n) + —5 — 28'@) + o(1)
n = b1 Tt om

as n — o0o. By way of contrast, the average square-free part of n appears in [2.5].
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2.11 Abundant Numbers Density Constant

If n is a positive integer, let o(n) denote the sum of all positive divisors of #. Then # is

said to be perfect if o(n) = 2n, deficient if 0 (n) < 2n, and abundant if o(n) > 2n.
The smallest examples of perfect numbers are 6 and 28. If the Mersenne number

2m+1 1 is prime, then 2 (2"+! — 1) is perfect. Here are two famous unanswered

questions [1]. Do there exist infinitely many even perfect numbers? Does there exist an

odd perfect number? (According to [2], a counterexample cannot be less than 10°%.)
For positive real x, define the density function

A(x) = lim (2o = xmil

—00 n

Behrend [3, 4], Davenport [5], and Chowla [6] independently proved that 4(x) exists
and is continuous for all x. Erdds [7, 8] gave a proof requiring only elementary consider-
ations. Clearly A(x) = 1 forx < 1,and 4(x) — 0asx — oo.Refining Behrend’s tech-
nique, Wall [9, 10] obtained the following bounds on the abundant numbers density
constant:

0.2441 < A(2) < 0.2909,
and Deléglise [11] improved this to

|4(2) — 0.2477| < 0.0003.

Further, it can be demonstrated [12] that A(x) is differentiable everywhere except on a
set of Lebesgue measure zero, and

7x°‘—'A(x)dx = l]_[ (1 — 1)_H1 i i (1 - L)
A s p L Pk ph+l

p

for complex s satisfying Re(s) > 1. The product is over all primes p. An inversion of
this identity (Mellin transform) is theoretically possible but not yet numerically feasible
[11].

As an aside, define an exponential divisor d of n = p{'--- p¥ to be a divisor of
the form d = p%' .. p, where b;|a; for each j. Let o)(n) denote the sum of all
exponential divisors of 7, with the convention ¢®)(1) = 1. Then [13-16]

1 X
hm — E a(n)_ — h_I}cl,oﬁ E c©(n) =B
n=1

where

10 e (D

p(p? —1) pr—1
0.5682854937 . . ..

A study of the corresponding density function 4©(x) was begun in [17].
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2.12 Linnik’s Constant

We first discuss prime values of a specific sequence. Dirichlet’s theorem states that any
arithmetic progression {an + b : n > 0}, for whicha > 1 and b > 1 are coprime, must
contain infinitely many primes. This raises a natural question: How large is the first
such prime p(a, b)?

Define p(a) to be the maximum of p(a, b) over all b satisfying 1 <b < a,
gcd(a, b) = 1 and let

_In(p(a)) _ In(p(a))
K= i‘g In(a) ’ L _alggo In(a)

That is, K is the infimum of « satisfying p(a) < a* foralla > 2, and L is the infimum
of A satisfying p(a) < a* for all sufficiently large a. Much research [1,2] has been
devoted to evaluating K and L, as well as to determining other forms of upper and
lower bounds on p(a, b).

Clearly K > 1.82 (witness the case p(5) = 19). Schinzel & Sierpinski [3] and
Kanold [4,5] conjectured that K < 2. If true, this would imply that there exists a
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prime somewhere in the following list:
b,a+b,2a+b,...,(a—a+b

if ged(a, b) = 1. Such a statement is beyond the reach of present-day mathematics.
Schinzel & Sierpinski that confessed they did not know what the fate of their hypoth-
esis (among several) might be. Ribenboim [2] wondered if such hypotheses might be
undecidable within the framework of Peano axiomatic arithmetic.

Linnik [6,7] proved that L exists and is finite. Clearly L < K. If we assume a
generalized Riemann hypothesis, it is known that [§-10]

pla) = O(p(ay’ In(a)?),

which would imply that L < 2. Here ¢(x) denotes the Euler totient function [2.7].
The search for an unconditional upper bound for Linnik’s constant L has occupied
many researchers [11-13]. A culmination of this work is Heath-Brown’s proof [14] that
L <55.

Partial evidence for L < 2 includes the following. For any fixed positive integers b
and k, Bombieri, Friedlander & Iwaniec [15] proved that

2

a
b)) < ——

pla,b) < @)y

for every a outside a set of density zero, as observed by Granville [16,17]. We may

therefore infer L < 2 for almost all integers a.

Chowla [18] believed that L = 1. Subsequent authors [19-23] conjectured that

p(a) = O(p(a)In(a)?),

which would imply that L = 1. An earlier theorem of Elliott & Halberstam [24] provides
partial support for this new estimate.

We now turn attention to prime solutions of a specific equation. Liu & Tsang [25-28],
among others, investigated existence issues of prime solutions p, ¢, r of the linear
equation ap + bg + cr = d, where a, b, ¢ are nonzero integers and where it is further
assumed that a + b + ¢ — d is even and that ged(a, b, ¢), ged(d, a, b), gcd(d, a, ¢),
ged(d, b, ¢) are each 1. (Note that, if we were to allow ¢ = 0, thenthe casea = b =1
would be equivalent to Goldbach’s conjecture and the casea = 1,6 = —1,d = 2 would
be equivalent to the twin prime conjecture.)

There are two cases, depending on whether a, b, c are all positive or not. We discuss
only one case here: Suppose a, b, ¢ are not all of the same sign. Then there exists a
constant . with the property that the equation ap + bg 4+ c¢r = d must have a solution
in primes p, ¢, r satisfying

max(p. q,r) < 3|d| + (max(3, |al, |b], [c]))" .

This result is a generalization of Linnik’s original theorem.
The infimum M of all such u is known as Baker’s constant [29] and it can be proved
that L < M. The best-known upper bound [30,31] for M is 45 (unconditional) and 4
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(assuming a generalized Riemann hypothesis). Liu & Tsang, like Chowla, conjectured
that M = 1.
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2.13 Mills’ Constant

Mills [1] demonstrated the surprising existence of a positive constant C such that the
expression LC 3NJ yields only prime numbers for all positive integers N. (Recall that
x| denotes the largest integer not exceeding x.) The proof is based on a difficult
theorem in prime number theory due to Hoheisel [2] and refined by Ingham [3]: If
p < p’ are consecutive primes, then given ¢ > 0,

P —p < pOIde
for sufficiently large p. This inequality is used to define the following recursive se-
quence. Let go = 2 and g, be the least prime exceeding g for each n > 0. For exam-
ple [4,5], q1 = 11, g, = 1361, and g3 = 2521008887. The Hoheisel-Ingham theorem
implies that

613 <gny1 <qur1t1< qs +6],§15/8)+35 +1 <(qn+ 1)3

for large n; hence

—n —(n+1)
4 <dpy < (@t 1)

3—(n+1)

<(g.+ 1.

We deduce that C = lim,_,«, ¢ "exists, which yields the desired prime-representing
result. For the particular sequence selected here [4,6,7], it is easily computed that
C =1.3063778838....

A different choice of starting value g or variation in the exponent 3 will provide
a different value of C. There are infinitely many such quantities C; that is, Mills’
constant 1.3063778838.. . . is not the unique value of C to give only prime numbers. A
generalization of Mills’ theorem (to arbitrary sequences of positive integers obeying a
growth restriction) is an exercise in [8].
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Another constant, c = 1.9287800 . . . , appears in Wright [9] as part of an alternative
prime-representing function:
VZ('

the iterated exponential with N 2s and ¢ at the top. Unlike Mills’ example, this example
does not require a deep theorem to work. All that is needed is the fact that p’ < 2p,
which is known as Bertrand’s postulate.

Several authors [6, 7, 10] wisely pointed out that formulas like that of Mills are not
very useful. One would need to know C correctly to many places to compute only a
few primes. To make matters worse, there does not seem to be any way of estimating
C except via the primes q1, g2, ¢3, - . . (i.e., the reasoning becomes circular). The only
manner in which Mills’ formula could be useful is if an exact value for C were to
somehow become available, which no one has conjectured might ever happen.

Nevertheless, the sheer existence of C is striking. It is not known whether C must
necessarily be irrational. A similar constant, 1.6222705028 ..., due to Odlyzko &
Wilf, arises in [2.30]. See [11] for a related problem concerning expressions of the
form |_C N J .

Huxley [12], among others, succeeded in replacing the exponent 5/8 by 7/12. Recent
work in sharpening the Hoheisel-Ingham theorem includes [13—16]. The best result
known to date is

p —p=0(p">).

Assuming the Riemann hypothesis to be true, Cramér [17, 18] proved that

P —p=0(/pn(p)),

which would be a dramatic improvement if the unproved assertion someday falls to
analysis. He subsequently conjectured that [19]

P —p=0(n(p))

and, moreover,

limsup P =1
p—oo In(p)?

Granville [20,21], building upon the work of Maier [22], revised this conjecture as
follows:
I pP—p
imsup

>2¢7 =1.122...,
poo In(p)?

where y is Euler’s constant [1.5]. It has been known for a long time [23] that

limsup pop = 00;
p—oo  In(p)
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thus Cramér’s bound In(p)? cannot be replaced by In(p). However, we have [24-26]

/ J—
liminf £— 2
p—>oo In(p

< 0.248.

Is further improvement possible? If the twin prime conjecture is true [2.1], then the
limit infimum is clearly 0.
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2.14 Brun’s Constant

Brun’s constant is defined to be the sum of the reciprocals of all twin primes [1, 2]:

B= (e D) (D) e (e D)o (o D)+ (2 l)
7375 577 11" 13 17 " 19 29 " 31 '

Note that the prime 5 is taken twice (some authors do not do this). If this series were
divergent, then a proof of the twin prime conjecture [2.1] would follow immediately.
Brun proved, however, that the series is convergent and thus B; is finite [3—8]. His result
demonstrates the scarcity of twin primes relative to all primes (whose reciprocal sum
is divergent [2.2]), but it does not shed any light on whether the number of twin primes
is finite or infinite.

Selmer [9], Froberg [10], Bohman [11], Shanks & Wrench [12], Brent [13, 14],
Nicely [15-18], Sebah [19], and others successively improved numerical estimates of
B;. The most recent calculations give

B, =1.9021605831 ...

using large datasets of twin primes and assuming the truth of the extended twin prime
conjecture [2.1]. Let us elaborate on the latter issue. Under Hardy & Littlewood’s
hypothesis, the raw summation of twin prime reciprocals converges very slowly:

1 1
2, B= 0<1n<n>>’

twin
p=n

but the following extrapolation helps to accelerate the process [10, 12, 15]:

1| 4Cuin ( 1 )
~ 4+ ~B=0(——].
g;p In(n) ? /' In(n)
p=n

where Ciyin = 0.6601618158 ... is the twin prime constant. Higher order extrapola-
tions exist but do not present practical advantages as yet. In the midst of his computa-
tions, Nicely [15] uncovered the infamous Intel Pentium error.

We discuss three relevant variations. Let 43 denote the reciprocal sum of prime
3-tuples of the form (p, p + 2, p + 6), A5 the reciprocal sum of prime 3-tuples of
the form (p, p + 4, p + 6), and A4 the reciprocal sum of prime 4-tuples of the form
(p.,p+2, p+6, p+8). Nicely [2,20] calculated

A3 =1.0978510391 ..., A5 =0.8371132125..., A4 = 0.8705883800....
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Define B, where & > 2 is an even integer, to be the reciprocal sum of primes separated
by h, and define B, to be the reciprocal sum of consecutive primes separated by /. Segal
proved that B, is finite for all 4 [5,21,22]; thus B, is finite as well. Clearly B, = B, and

Bi= (4 i)+ (24 m) (S S) (ot s )= Byt
T3 7 7711 1317 19" 23 AT
but highly precise computations of B, or B, h > 4, have not yet been performed.

Wolf [23] speculated that, for 2 > 6,

on the basis of a small dataset. Even if his conjecture is eventually shown to be false,
it should inspire more attempts to relate such generalized Brun’s constants to other
constants found in number theory.
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2.15 Glaisher—Kinkelin Constant

Stirling’s formula [1]

hmi—\/

n—00 o— nnn-‘r2

provides a well-known estimate for large factorials. If we replace n! = I'(n + 1) by
different expressions, for example,

n n n—1
K(n-l-l):l_[m’”orG(n-i-l):%:nm'

then the approximation takes different forms. Kinkelin [2], Jeffery [3], and Glaisher
[4-6] demonstrated that
G(n+1) et

. Kn+1) .
lim ——————— =4 and lim —; ; S = —.
n—00 o= panitanty n—=00 =" (2)2"n snt—i A

m=1 m=1

The constant A4, which plays the same role in these approximations as /27 plays in
Stirling’s formula, has the following closed-form expression:

A = exp (l — (= 1)) — exp <_;n(22) n 1n(2rg+y> — 1.2824271291 ...,

where ¢’(x) is the derivative of the Riemann zeta function [1.6] and y is the Euler—
Mascheroni constant [1.5]. See [2.10] and [2.18] for other occurrences of '(2).
Many beautiful formulas involving 4 exist, including two infinite products [6]:

5% L= ;
(ZneV)

5% 74% 9$ A36 %
. . . 24 e ,

and two definite integrals [4, 7]:

-

—
J

\]
e

w
ol

.41

i
ol—

7.3

oo

x In(x) 1
Rl ————1 4
/62”—1 Y (),
0

1/2
/ln(F(x + 1))dx = —% - % In(2) + % In() + %ln(A).
0

More formulas are found in [8-12].
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A generalization of the latter integral,
' 1 1
fln(F(t + 1))dt = 0 In(27)x — Ex(x + 1) +xIn(l"'(x + 1)) — In(G(x + 1)),
0
was obtained by Alexeiewsky [13], Holder [14], and Barnes [15—17] using an analytic

extension of G(n + 1). Just as the gamma function extends the factorial function I'(n +
1) to the complex z-plane, the Barnes G-function

(o]

G(Z + 1) — (zn)%ze—%z(z-&-l)—%zl 1_[ (1 n i)n e_z_"_%zz
n=1 n

extends G(n + 1). Just as the gamma function assumes a special value at z = 1/2:

() (e

G (;) = 2diein i,

A similar, natural extension of Kinkelin’s functionvia K(z + 1) = I'(z + 1)/ G(z +
1) has been comparatively neglected by researchers in favor of G. Here is a sample
application. Define

the Barnes function satisfies

2n+1 k41 2n s
. x\ D"k . X\ (D
D(x) = nlirglo ]!:[1 (l + %) = exp(x) nlgglog (l + %) .

Melzak [18] proved that D(2) = we/2. Borwein & Dykshoorn [19] extended this result

to
b = (FEXD) (KDKG o %)
re) K +1) ) TP

where x > 0. As a special case, D(1) = Aé/(Z%n%).

Apart from infrequent whispers [20—27], the Glaisher—Kinkelin constant seemed
largely forgotten until recently. Vignéras [28], Voros [29], Sarnak [30], Vardi [31], and
others revived interest in the Barnes G-function because of its connection to certain
spectral functions in mathematical physics and differential geometry. There is also a
connection with random matrix theory and the spacing of zeta function zeros [32-34].
See [2.15.3] and [5.22] as well. Thus generalizations of the formulas here for I"(1/2)
and G(1/2) possess a significance unanticipated by their original discoverers.

2.15.1 Generalized Glaisher Constants

Bendersky [35, 36] studied the product 1! - 22° . 33 . 44" ... p""  whichisn! fork = 0
and K (n + 1) for k = 1. More precisely, he examined the logarithm of the product and
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determined the value of the limit

In(4¢) = lim (Z " Ingm) — m(n)) ,
m=1

where

k+1

e = (55 + 5 + 22) Inn) — 2

+ k! Z (H/fll)' (/:l L (ln(n) + Z k— 1+1)

and B, is the n'" Bernoulli number [1.6.1]. Clearly 49 = +/27 and A; = A. Choudhury
[37] and Adamchik [38] obtained the following exact expression for all £ > 0:

k 10309167521 ... ifk =2,
(B & | 09795555269 ... itk =3,

i = exp (k Y 7 TP = 0.0920479745 . ik = 4,
10096803872 ... ifk = 5.

j=1

Zeta derivatives at negative integers can be transformed: If # > 0, then [12,39]

, o aw 2n)!
¢'(=2n) = (=1) 2(2ﬂ)2n4(2n+ 1),
) 1 e 202! ol
J=mt = o [(—1) * S @M+ (,,E_I: 7~ In@m) — y) an] :

It follows that In(4,) = ¢(3)/(4x?) and In(43) = 3¢'(4)/(4x*) — (In(27) + y)/120.

2.15.2 Multiple Barnes Functions

Barnes [40] defined a sequence of functions {G,(z)} on the complex plane satisfying

G, +1 (Z )
Gu(2)
The sequence is unique, by an argument akin to the Bohr—Mollerup theorem [41], if it
is further assumed that

Go(z) = z, G,(1)=1, Guri1(z+ 1) = forn > 0.

n+1

1

Clearly Gi(z) =1/T'(z) and G;,(z) = G(z). Properties of {G,(z)} are given in

[31,42,43]. Of special interest are the values of G, (1/2). Adamchik [42] determined
the simplest known formula for these:

n (G, (3) =ty [— 1““”l_[@k 3)+Z(ln<z>,,;";;+<2m“ e m))qm"],

In(G,(x)) >0 forx > 0.
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where g, , is the coefficient of x” in the expansion of the polynomial 2! =" ]_[;';}(2)6 +
2j — 1). We may hence write

1 11 3 3 7
In ((;3 (5» = 5+ 23 1) = == In(m) = S In(4)) — < In(u4o).
1 265 229 5 23
1 S)) = 224 22 ) — 2 intr) — 2 4
H(G“(z)) 2304 T 5760 M3 ~ 35 In0m) = 7 In(Ay)
21

5
——In(4,) — — In(4
T n(Az) T n(As3)

in terms of the generalized Glaisher constants Ay.

2.15.3 GUE Hypothesis
Assume that the Riemann hypothesis [1.6.2] is true. Let

y = 14.1347251417 ... < y» = 21.0220396387 ...
Y3 = 25.0108575801 ... <ys < ys < ...

IA

denote the imaginary parts of the nontrivial zeros of {(z) in the upper half-plane. If
N(T) denotes the number of such zeros with imaginary part < T, then the Riemann—
von Mongoldt formula [44] gives

T T
N(T)=—In{— )+ O(n(T))
2m 2me
as T — o0, and hence
2mn
In(n)

as n — oo. The mean spacing between y, and y,4; tends to zero as n — 00, so it is
useful to renormalize (or “unfold”) the consecutive differences to be

(Sn:Vnﬂ—ann(ﬁ)’
2w 2

Vn

and thus §,, has mean value 1.
What can be said about the probability distribution of §,? That is, what density
function p(s) satisfies

B
o1
—Hn:l<n< <3, < =
ngnooN|{n.l_n_N,a_8n_,B}| /p(s)ds
forall0 < @ < B?
Here is a fascinating conjectured answer. A random Hermitian N x N matrix X
is said to belong to the Gaussian unitary ensemble (GUE) if its (real) diagonal ele-

ments x ;; and (complex) upper triangular elements x j; = u j; + iv;; are independently
chosen from zero-mean Gaussian distributions with Var(x;;) =2 for 1 < j < N and
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Figure 2.1. In a small simulation, the eigenvalues of fifty 120 x 120 random GUE matrices were
generated. The resulting histogram plot of 5, compares well against p(s).

Var(u ;) = Var(vj;) = 1forl < j <k < N.LetA; <X < A3 <... < Aydenotethe
(real) eigenvalues of X and consider the normalized spacings

& )‘«n+l _)Ln

N
8,, = T\/SN—)\%, I’l%E
T

With this choice of scaling, §, has mean value 1. The probability density of §,, in the
limit as N — o0, tends to what is called the Gaudin density p(s). Inspired by some
theoretical work by Montgomery [45], Odlyzko [46—50] experimentally determined that
the distributions for 8, and &, are very close. The GUE hypothesis (or Montgomery—
Odlyzko law) is the astonishing conjecture that the two distributions are identical. See
Figure 2.1.

Furthermore, there are extensive results concerning the function p(s). Define

E(s) =exp /@dt ,
0

where o (¢) satisfies the Painlevé V differential equation (in “sigma form™)
(t-0"V+4(t-0' —0)t-0' —o+(c")?*]=0

with boundary conditions

t t\° N\ 1

o(t) ~—— — (—) ast — 0%, cr(t)~—(—> — —ast — oo;
T b4 2 4

then p(s) = d’E /ds>.

The Painlevé representation [51-56] above allows straightforward numerical calcu-
lation of p(s), although historically a Fredholm determinant representation [49,57, 58]
for E(s) came earlier. (Incidently, Painlevé II arises in our discussion of the longest
increasing subsequence problem [5.20], and Painlevé III arises in connection with the
Ising model [5.22].)
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Using p(s), one could compute the median, mode, and variance of §,,, as well as
higher moments.

Here is an interesting problem having to do with the tail of the Gaudin distribution
[59,60]. The function E(s) can be interpreted as the probability that the interval [0, s]
contains no (scaled) eigenvalues. If the specific interval [0, 5] is replaced by an arbitrary
interval of length s, then the probability remains the same. We know that [49, 61]

24

E(s)~1—s+ 360 857 0+, E(s)~ C-(ws) %exp (—5(s)?) ass — oo,

where C is a constant. Dyson [49, 62] nonrigorously identified
C = 24D — gt 2w
using a result of Widom [63], where
1 3
B=—mQ2)+ =¢'(-1) = —0.2192505830.....
7 n(2) + >¢ (=D
This, in turn, is related to Glaisher’s constant 4 via the formula [22]
2B —omei g3,

It is curious that a complete asymptotic expansion for £(s) is now known [60, 64—66],
all rigorously obtained except for the factor C'! Similar phenomena were reported in
[67-70] in connection with certain associated problems.

There is another way of looking at the GUE hypothesis. Let us return to the normal-
ized differences §,, of consecutive zeta function zeros and define

k
App = Z 8n+j-
=0

Earlier, £ was constrained to be 0. If now £ > 0 is allowed to vary, what is the “dis-
tribution” of A,,;? Montgomery [45] conjectured that the following simple formula is
true:

B . 5

lim (k) l<n <N, k>0, a<Ay<p)= / [1 - (Sm(’”)) :|dr.

N—oo N mr
In other words, 1 — (sin(r#)/(rr))? is the pair correlation function of zeros of the zeta
function, as predicted by Montgomery’s partial results. Incredibly, it has been proved
that GUE eigenvalues possess the same pair correlation function. Odlyzko [46—49]
again has accumulated extensive numerical evidence supporting this conjecture. The
implications of the pair correlation conjecture for prime number theory were explored
in [71]. Hejhal [72] studied a three-dimensional analog, known as the triple correlation
conjecture; higher level correlations were examined in [73].

Careful readers will note the restriction n &~ N/2 in the preceding definition of §,,.

In our small simulation, we took only the middle third of the eigenvalues, sampling
what is known as the “bulk” of the spectrum. If we sampled instead the “edges” of
the spectrum, a different density emerges [69,70]. The sine kernel in the Fredholm
determinant for the “bulk” is replaced by the Airy kernel for the “edges.”
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Rudnick & Sarnak [73,74] and Katz & Sarnak [75,76] generalized the GUE hy-
pothesis to a wider, more abstract setting. They gave proofs in certain important special
cases, but not in the original case discussed here.

There is interest in the limit superior and limit inferior of §,,, which are conjectured
to be 0o and 0, respectively [77-80].

A huge amount of research has been conducted in the area of random matrices (with
no symmetry assumed) and the related subject of random polynomials. We mention only
one sample result. Let ¢g(x) be a random polynomial of degree n, with real coefficients
independently chosen from a standard Gaussian distribution. Let z,, denote the expected
number of real zeros of ¢(x). Kac [81,82] proved that

Zn 2

im =—,
n—ooln(n) m

and it is known that [82—88]
) 2
lim z, — — In(n) = ¢,
n— o0 T

where
00
2 In(2) +/ (\/x_z “de (1 —e )2 — (x + 1)—1) dx
" 0
0.6257358072. ...

o
I

More terms of the asymptotic expansion are known; see [82, 87] for an overview.
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2.16 Stolarsky—Harborth Constant

Given a positive integer &, let b(k) denote the number of ones in the binary expansion
of k. Glaisher [1-6] showed that the number of odd binomial coefficients of the form
(j{), 0<j<k,is 260 As a consequence, the number of odd elements in the first
rows of Pascal’s triangle is

n—1

fy=") 2"®

k=0

and satisfies the recurrence
3f(m) ifn=2m

SO =0 sM=1Jm= {2f(m)+f(m+l) ifn=2m+1
The question is: Can a simple approximation for f(n) be found? The answer is yes. Let
0 = In(3)/In(2) = 1.5849625007 .. ., the fractal dimension [7,8] of Pascal’s triangle
modulo 2. It turns out that n? is a reasonable approximation for f(n).Italso turns out that
f(n) is not well behaved asymptotically. Stolarsky [9] and Harborth [10] determined
that

forn > 2.

0.812556 < A = liminf S < 0.812557 < limsup ) =
n—soo pnf n—00 n?
and we call A = 0.8125565590. .. the Stolarsky—Harborth constant.
Here is a generalization. Let p be a prime and f,(n) be the number of elements in

the first n rows of Pascal’s triangle that are not divisible by p. Define

la

(p+1)
B ln(pf”2 )
T In(p)
and note that lim 6, = 2. Of course, f>(n) = f(n)and 6, = 6.Itisknown that [11-14]
n—00
Ap = liminf@ < limsup @ =1,
n—oo pn% n—soo NP
_ (3 1—065 _ . _1
Mm=(3) T =07742..., Jlim 3, =5

and further conjectured that

rs=(3)""=07582..., & =(3)""=07491. ..,

i =2 (2)"=0.7364....

Curiously, no such exact formula for A, = X has been found. A broader generalization
involves multinomial coefficients [15-17].
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2.16.1 Digital Sums

The expression f>(n) is an exponential sum of digital sums. Another example is

n—1
mpy(n) =y (=1)""¥,
k=0

which, in the case p = 3, quantifies an empirical observation that multiples of 3 prefer
to have an even number of 1-digits. We will first discuss, however, a power sum of
digital sums:

n—1
sg(n) =" b(k)!
k=0

and set ¢ = 1 for the sake of concreteness.
Trollope [18] and Delange [19], building upon [20-26], proved that

nin(n)+nS GEEZ;)

s =510

exactly, where S(x) is a certain continuous nowhere-differentiable function of period 1,

In(3)
~0.2075...=
21n(2)

— 1 =infS(x) < sup S(x) =0,

and the Fourier coefficients of S(x) are all known. See Figure 2.2. The mean value of
S(x)is [19,27]

1

1 3
Sx)dx = ——(In2r) — 1) — = = —0.1455. ...
| s = 5o tnem -1 -3
0
Extensions of this remarkable result to arbitrary ¢ appear in [28-36].
Let w =6/2 and e(n) = (—=1)’®"~D if » is odd, 0 otherwise. Newman [37-39]
proved that m3(n) > 0 always and is O(n®). Coquet [40] strengthened this to

In(n) 1
= @ M —_ .
m(n) = n (2111(2)) +3e0)
where M(x) is a continuous nowhere-differentiable function of period 1,
23 55 (3"
1.1547... = 2V3 =infM(x) <supM(x)=—=— (=) =1.6019...
3 x x 3 \65

and, again, the Fourier coefficients of M(x) are all known. The mean value [27] of M(x)
is 1.4092203477 . . . but has a complicated integral expression. Extensions of this result
to p = 5 and 17 appear in [41-43]. The pattern in {(—1)*®} follows the well-known
Prouhet-Thue—Morse sequence [6.8], and associated sums of subsequences of the form
{(—=1)PP 411 are discussed in [44—46].
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§ <ln<z>>
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n

Figure 2.2. The Trollope-Delange function is pictured, as well as its mean value.

We return to binomial coefficients. Stein [47] proved that

o, (In(n)
fm) =n F(ln(z)),

where F(x) is a continuous function of period 1; by way of contrast, F(x) is dif-
ferentiable almost everywhere, but is nowhere monotonic [48]. This fact, however,
does not appear to give any insight concerning an exact formula for A, = inf, F(x).
The Fourier coefficients of F(x) are all known, and the mean value [27] of F(x) is
0.8636049963. .. . Again, the underlying integral is complicated.

This material plays arole in the analysis of algorithms, for example, in approximating
the register function for binary trees [49], and in studying mergesort [50], maxima
finding [51], and other divide-and-conquer recurrences [52,53].

2.16.2 Ulam I-Additive Sequences

There is an unexpected connection between digital sums and Ulam 1-additive se-
quences [54]. Let u < v be positive integers. The 1-additive sequence with base u, v
is the infinite sequence (u, v) = ai, az, as, ... with a; = u, a; = v and a,, is the least
integer exceeding a,_; and possessing a unique representation a, = a; +a;, i < j,
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n > 3. Ulam’s archetypal sequence
(1,2)=1,2,3,4,6, 8,11, 13, 16, 18, 26, 28, 36, 38,47, 48, 53, . ..

remains a mystery. No pattern in its successive differences has ever been observed.
Ulam conjectured that the density of (1, 2), relative to the positive integers, is 0. No
one has yet found a proof of this.

Substantially more is known about the cases (2, v), where v is odd, and (4, v), where
v additionally is congruent to 1 modulo 4. Cassaigne & Finch [55] proved that the
successive differences of the Ulam 1-additive sequence (4, v) are eventually periodic
and that the density of (4, v) is

1 (v=1)/2
dw) = —— 2-bH),
O =20+ 2

k=0

It can be shown that d(v) — 0as v — oo. The techniques giving rise to the Stolarsky—
Harborth constant A can be modified to give the following more precise asymptotic
estimate of the density:

1 L v\2-6 . v\ 26
Z — liminf (—) d(v) < 0.272190 < limsup (—) d(v) < 0.272191.
4 V=00 2 v—00 2

v=1 mod 4 v=1mod4

A certain family of ternary quadratic recurrences and its periodicity properties play
a crucial role in the proof in [55]. It is natural to ask how far this circle of ideas and
techniques can be extended.

2.16.3 Alternating Bit Sets

If n is a positive integer satisfying 24=! < n < 2%, clearly the binary expansion of n
has k bits. Define an alternating bit set in # to be a subset of the k bit positions of »
with the following properties [6,56—58]:

» The bits of n that lie in these positions are alternatively 1s and 0s.
* The leftmost (most significant) of these is a 1.
» The rightmost (least significant) of these is a 0.

Let ¢(n) be the cardinality of all alternating bit sets of n. For example, ¢(26) = 8 since
26 1s 11010 in binary and hence all alternating bit sets of 26 are

{}, {5, 3}, {5, 1}, {4, 3}, {4, 1}, {2, 1}, {5, 3, 2, 1}, and {4, 3, 2, 1}.

Although c¢(n) is not a digital sum like b(n), it has similarly interesting combinatorial
properties: c(n) is the number of ways of writing # as a sum of powers of 2, with each
power used at most twice. It satisfies the recurrence

cm)+c(m —1) ifn =2m

c(m) ifn=om1 ornzl

c(0)=1, c(n) = {
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It is also linked to the Fibonacci sequence in subtle ways and one can prove that [57]

: c(n)
0.9588 < llmsup W

n—oo N

< 1.1709,

where ¢ is the Golden mean [1.2]. What is the exact value of this limit supremum? Is
there a reason to doubt that its exact value is 1?
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2.17 Gauss—Kuzmin—Wirsing Constant

Let x( be arandom number drawn uniformly from the interval (0, 1). Write x, (uniquely)
as a regular continued fraction

1| 1| 1|
X=04 — 4 — + — 4
lay  laa a3

)

where each a; is a positive integer, and define for all n > 0,

1] 1 1]

|an+1 |an+2 |an+3

x, =0+

For each n, x, is also a number in (0, 1) since x, = {1/x,_}, where {y} denotes the
fractional part of y.
In 1812, Gauss examined the distribution function [1]

F,(x) = probability that x, < x
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and believed that he possessed a proof of a remarkable limiting result:
ln(l—i—x)’ <y <l
In(2) -

The first published proof is due to Kuzmin [2], with subsequent improvements in error
bounds by Lévy [3] and Sziisz [4]. Wirsing [5] went farther and gave a proof that

lim F,(x) =
n—0o0

In(14-x
i 7)™
n—00 (—c)”
where ¢ = 0.3036630028 . .. and W is an analytic function satisfying ¥(0) = ¥ (1) =
0. A graph in [6] suggests that ¥ is convex and —0.1 < W(x) < 0 for0 < x < 1. The
constant ¢ is apparently unrelated to more familiar constants and is computed as an
eigenvalue of a certain infinite-dimensional linear operator [2.17.1], with W(x) as the

corresponding eigenfunction. The key to this analysis is the identity

Frn() = TR =Y [Fn (z) — <k+x>]

k=1

= V(x),

Babenko & Jurev [7-9] went even farther in establishing that a certain eigen-
value/eigenfunction expansion,

In(1 4 x)

o0
e AW , 1= M| > A3 > ...,
D) D M W) 1> (Aol = 12s] =

k=2
is valid for all x and all n» > 0. Building upon the work of others [1, 5,6, 10, 11], Sebah
[12] computed the Gauss—Kuzmin—Wirsing constant ¢ to 100 digits, as well as the
eigenvalues A, for 3 < k£ < 50.

Some related paths of research are indicated in [13—19], but these are too far afield
for us to discuss.

Fu(x) —

2.17.1 Ruelle—Mayer Operators

The operators examined here first arose in dynamical systems [20,21]. Let A denote the
open disk of radius 3 /2 with center at 1, and lets > 1. Let X denote the Banach space of
functions f thatare analytic on A and continuous on the closure of A, equipped with the
supremum norm. Define a linear operator G, : X — X by the formula [10,11,22,23]

> 1 1
Gx[f](2)=z(k+z)sf<k+z>, en.

k=1

We will examine only the case s = 2 here; the case s = 4 is needed in [2.19].

Note that the derivative T[F]'(x) = G,[ f](x), where F = f, hence an understand-
ing of G, carries over to 7. The first six eigenvalues [1,6,10-12] of G, after A| = 1
are

Ay = —0.3036630028 ..., A3 = 0.1008845092..., X4 = —0.0354961590...,
As = 0.0128437903 ..., A¢ = —0.0047177775..., A7 = 0.0017486751 . ...
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On the one hand, it might be conjectured that

. )‘n+l
lim
n—oo

=—1—¢=-2.6180339887...,

n

where @ is the Golden mean [1.2]. On the other hand, it has been proved that the trace
of G, is exactly given by [11]

1

T ==

1 1 2k
_ 4 — 1! 2k) —1)=0.7711255236...,
3 2«/§+21§=1( ) (k)(é( )— 1)

where 7, = Zj‘;l A?. The connection between G and zeta function values [1.6] is not
surprising: Look at G, applied to f(z) = z"; then consider Maclaurin expansions of
arbitrary functions f and the linearity of Gj.

Other interesting trace formulas include the following. Let [24,25]

1 1
Sn20+_+_+_+’n:1,2,3,
|n |n |n
Then
J
T1 =/ ]( u)duZZ EpR)
et — 1 144
0
where

_ X (=1 X\ 2k+1
s ; KIGk+ D! (3)

is the Bessel function of first order. In the same way, if

$r7z,n:0+_+_+_+_+"'
m

| ln|m  |n
then
T ey 0, 0 !
1:2=//1—dudv=2 —————— =1.1038396536.... ...
A (e —1)e' — 1) = = (Emnnm) > — 1

Generalization of these is possible.

It can be proved that the dominant eigenvalue A(s) of G, (of largest modulus) is
positive and unique, that the function s — A;(s) is analytic and strictly decreasing, and
that [26]

lim (s = Dia(s) = 1. M) =1, Sl_i)noloéln(kl(s)) = —In(g).

A simple argument [22] shows that 1](2) = —7%/(121n(2)) is Lévy’s constant [1.8].
Later, we will see that both 1}(2) and A{(2) arise in connection with determining
precisely the efficiency of the Euclidean algorithm [2.18]. Likewise, A|(4) occurs in
the analysis of certain comparison and sorting algorithms [2.19]. It is known that all
eigenvalues A ;(s) are real, but questions of sign and uniqueness remain open for j > 1.
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Here is an alternative definition of A;(s). For any k-dimensional vector w =

(wy, ..., wy) of positive integers, let (w) denote the denominator of the continued
fraction
1] 1| 1| 1|
o+—+—+—+-+—
lwi  |wa  ws lwp

and let W (k) be the set of all such vectors. Then

k
Al(s)zklirgo< Z (w>s)
weW(k)

is true for all s > 1. This is the reason A;(s) is often called a pseudo-zeta function
associated with continued fractions.

2.17.2 Asymptotic Normality

We initially studied the denominator Q,(x) of the n'" continued fraction convergent to
x in [1.8]. With the machinery introduced in the previous section, more can now be
said.

If x is drawn uniformly from (0, 1), then the mean and variance of In(Q,,(x)) satisfy
[22,26]

E(In(Qn(x))) = An + B 4 O(c"), Var(In(Q,(x))) = Cn + D + O(c"),
wherec = — 2,(2) =0.3036630028 ..., 4 = — A}(2)=1.1865691104. .., and[2.18]
C = AJ(2) — 2}(2)* = 0.8621470373 ... = (0.9285187329...)%

The constants B and D await numerical evaluation. Further, the distribution of
In(Q,(x)) is asymptotically normal:

y
(@) —An N _ﬁ)
nll)n;oP( Jer §y)_m;{oexp< 7 dt.

This is the first of several appearances of the Central Limit Theorem in this book.

2.17.3 Bounded Partial Denominators

A consequence of the Gauss—Kuzmin density is that almost all real numbers have
unbounded partial denominators a;. What does the set of all real numbers with only
Is and 2s for partial denominators “look like”? It is known [27-31] that this set has
Hausdorff dimension between 0.53128049 and 0.53128051. Further discussion of this
parameter is deferred until [8.20].
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2.18 Porter—Hensley Constants

Given two nonnegative integers m and n, let L(m, n) denote the number of division
steps required to compute ged(m, n) by the classical Euclidean algorithm. By definition,
if m > n, then

1+ L(n,mmodn) ifn > 1,
L(’"’”)Z{ ( 0 )ifn=0

and if m < n, then L(m, n) = 1 + L(n, m). Equivalently, L(m, n) is the length of the
regular continued fraction representation of m/n. We are interested in determining
precisely the efficiency of the Euclidean algorithm and will do so by examining three
types of random variables:

X, = L(m,n), where 0 <m < n is chosen at random,
Y, = L(m,n), where 0 < m < n is chosen at random and m is coprime to #,
Zy = L(m,n), wherebothl <m < N and 1 <n < N are chosen at random.

Of these three, the expected value of Y, is best behaved and was the first to succumb to
analysis. It is interesting to follow the progress in understanding these average values.
In his first edition, Knuth [1] observed that, empirically, E(Y,) ~ 0.843 In(n) + 1.47
and gave compelling reasons for

121n(2) 121n(2)
2= In(n) + 1.47, E(Zy) ~ ——
T T

E(Y,) ~ In(N) + 0.06,
where the coefficient of In(n) is Lévy’s constant [1.8]. He decried the gaping theoretical
holes in proving these asymptotics, however, and wrote, “The world’s most famous
algorithm deserves a complete analysis!”

By the second edition [2], remarkable progress had been achieved by Heilbronn [3],
Dixon [4, 5], and Porter [6]. For any ¢ > 0, the following asymptotic formula is true:

121n(2 1
E(Y,) ~ 7;( ) In(n) + C + 0 <n_6+£>,
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and Porter’s constant C is defined by

o6 ln(2)

24 1
(31 2)+4y — 2§/(2) — 2) —3= 1.467078079%4 . ..,
where y is the Euler—Mascheroni constant [1.5],

In(k
- Z nK) _ 0.9375482543 . .

pn d
£(@2) = EC(X)

and ¢ (x) is the Riemann zeta function [1.6]. This expression for C was discovered by
Wrench [7], who also computed ¢’(2), and hence C, to 120 decimal places [8]. See
[2.10] for more occurrences of £'(2).

What can be said of the other two average values? Norton [9] proved that, for any
e >0,

21In(2
Bz ~ 02

1
In(N)+ B+ O (N‘E“) :

where
121n(2)

1 6 1
—=+ —=¢'2)) + C — = =0.0653514259 ... ..
2 w2 2

The asymptotic expression for E(X,) is similar to that for E(Y,) minus a correction
term [2,9] based on the divisors of n:

H&%vum®(ud §:j?>+0+ XMW)O< ﬂﬂ,

din d\n

where ¢ is Euler’s totient function [2.7] and A is von Mangoldt’s function:

Ald) = In(p) ifd = p" for p prime andr > 1,
10 otherwise.

In the midst of the proof in [9], Norton mentioned the Glaisher—Kinkelin constant A4,
which we discuss in [2.15]. Porter’s constant C' can be written in terms of 4 as

61n(2 1
C= n( ) (481n(4) — 41In(r) — In(2) — 2) — 5
Knuth [7] mentioned a long-forgotten paper [10] containing (1 —2B)/4 =
0.2173242870. .. and proposed that C instead be called the Lochs—Porter constant.
It is far more difficult to compute the corresponding variance of L(m, n). Let us
focus only on Zy. Hensley [11] proved that

Var(Zy) = H In(N) + o(In(N)),
where
M@ - Me)

TP = 0.0005367882 ... = (0.0231686908... .)2
A
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and A/ (2) and A{(2) are precisely as described in [2.17.1]. Numerical work by Flajolet
& Vallée [12] yielded the estimate 41 (2) = 9.0803731646 ... needed to evaluate H.
Furthermore, the distribution of Zy is asymptotically normal:

i p (BRI / ( ) "
Jm JHWN r P

A recent paper [13] contains several Porter-like constants in connection with the prob-
lem of sorting several real numbers via their continued fraction representations.

2.18.1 Binary Euclidean Algorithm

Assume m and n are positive odd integers. Let e(m, n) be the largest integer such that
2¢0m.m) divides m — n. The number of subtraction steps required to compute ged(m, 1)
by the binary Euclidean algorithm [14] is

n .
l—i—K(ze(mn),n) ifm > n,

0 ifm=n,
K(n, m) ifm < n.

K(m,n) =

Define the random variable
Wy = K(m,n), whereodd0 <m < N and 0 < n < N are chosen at random.

Computing the expected value of Wy is much more complicated than for Zy. As in
[2.17.1], study of a linear operator on function spaces [15, 16]

1 1
Vg[f](Z)ZZ Z (j+2kz)sf<j+2kz>’

k=1 1<j <2k
odd

isneeded. Fors = 2, let ¢ denote the unique fixed point of V; (up to scaling) and define
a constant

2
2Iﬂ(l) =

odd

then E(Wy) ~ « In(N). Further, if a certain conjecture by Vallée is true [15, 16], then
some heuristic formulas due to Brent [17—19] are applicable and

-5 / V(x)dx;

Kk = 1.0185012157... = In(2)~" - 0.7059712461 . . ..

A direct computation, based on the exact definition of «, has yet to be carried out.
Other performance parameters [15, 16] and alternative algorithms [17] have been
studied, giving more constants. There is a continued fraction interpretation of these
results. A general framework for investigating Euclidean-like algorithms [20, 21] pro-
vides analyses of methods for evaluating the Jacobi symbol from number theory [22].



2.18 Porter—Hensley Constants 159

Even more constants emerge if we examine average bit complexity rather than arith-
metical operation counts [23,24]. Many related questions remain unanswered.

2.18.2 Worst-Case Analysis

It is known [14,25,26] that the maximum value of Zy occurs when m and »n are
consecutive Fibonacci numbers f; and f;.1, and k is the largest integer with f;,; < N.
Therefore

1
In()

max(Zy) = k ~ In(N) = 2.0780869212 ... . - In(N),

where ¢ is the Golden mean [1.2]. In contrast [14],

1
max(Wy) ~ ) In(N) = 14426950408 . . . - In(N),

and this occurs when m and 7 are of the form 2~! — 1 and 2! + 1.
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2.19 Vallée’s Constant

Let x and y be random numbers drawn uniformly and independently from the interval
(0, 1). To compare x and y is to determine which of the following is true: x < y or
x > y. There is an obvious algorithm for comparing x and y: Search for where the
decimal or binary expansions of x and y first disagree. In base b, the number L of
iterations of this algorithm has mean value

b
B =3—7

and a probability distribution given by

pn=PL=n+1)=>b"", n=0,1,2....

Clearly

1
lim p) = —

n—00

is a simply a way of expressing the (asymptotic) rate at which digits in the two base-b
expansions coincide.
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Here is a less obvious algorithm, proposed in [1], for comparing x and y. Write x

and y (uniquely) as regular continued fractions:
x=0+ |-|—1—|+ |-|— o,y—0+—|+—|+i+~~,
lar  laz  las by by b3

where each a; and b; is a positive integer and search for where a; # by, first occurs.
If k is even, then x < y if and only if a; < by. If k is odd, then x < y if and only if
ar > by. (There are other necessary provisions if x or y are rational, i.e., where a; or
b; might be 0, which we do not discuss.)

The analysis of this algorithm is much more difficult and uses techniques and ideas
discussed in [2.17.1]. Daudé, Flajolet & Vallée [2—5] proved that the mean number of
iterations is

E(L)__ 180ZZ _7, 360 Z(1)

1111+ll] i=1 j=I

60 1

=17- — [24 Liy <2> —2In2)? +212(3) In(2) + ln(2)4:|
JT

= 1.3511315744 . . .,

where Liy(z) is the tetralogarithm function [1.6.8] and ¢(3) is Apéry’s constant [1.6].
This closed-form evaluation draws upon work in [6—8]. We also have

2

> 1 T
=y T 3_0.2898681336...,
P Ziz(i-f- 2~ 3

o0 o 1
= Z - — = 0.0484808014 ...
(ij + 1D +i+1)7°

i=1 j=1
2

-5+ 2% -2¢(3)+ 22(—1)"(11 +1De(n+4)[¢(n+2)—1],

[e¢] oo [e.¢] 1
= 0.0102781647...,
;;; (ijk +i+k)2(ijk+ij+i+k+1)?
but unlike earlier, a nice compact formula for p, is not known. The elaborate recurrence
giving rise to p, appears later [2.19.1]. It can be deduced that [2-5]

1
v= lim p; =0.1994588183...
n—0oQ

using the fact that this is the largest eigenvalue of the linear operator G4 defined in
[2.17.1]. As with G», the eigenvalues of G4 are real and seem to alternate in sign
(the next one is —0.0757395140. . .). A similar argument applies in the analysis of the
Gaussian algorithm for finding a short basis of a lattice in two-dimensional space, given
an initially skew basis. Vallée’s constant v also appears in connection with the problem
of sorting n > 2 real numbers via their continued fraction representations [9].
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If, when comparing x and y, we instead use centered continued fractions, then the
number L of iterations satisfy [2, 5]

360 oo L(p+1)i] 1

E(L)= — Z Z Py =1.0892214740 .
i=1 j=l¢il

1
9= lim p; =0.0773853773.

where ¢ is the Golden mean [1.2]. Since 1 /v = 5.01...and 1 /0 = 12.92... ., it follows
that continued fractions behave roughly like base-5 and base-13 representations in this
respect. Not much is known about the corresponding operator G, and its spectrum.
Flajolet & Vallée [5] also numerically computed values of the mock zeta function

(e¢]

1
Lo(z) = =, Re(z) > 1, 0 > 1,
9= T

where 6 > 1 is irrational. For example, £,(2) = 1.2910603681 . ...

2.19.1 Continuant Polynomials

Define functions recursively by the rule [3]

S, x2, oo X)) = X fim1 (61, X2, oo Xkm1) + fima (X1, X2, L, Xks2),

k=2,3,4,...,
where

So=1, filkx))=x1.

These are called continuant polynomials and can also be defined by taking the sum
of monomials obtained from xx; - - - x; by crossing out in all possible ways pairs of
adjacent variables x;x ;. For example,
Sax1, x2) = x1x2 + 1, f3(x1, x2, X3) = x1x0x3 + X1 + X3,
Ja(x1, X2, X3, X4) = X1X2X3X4 + X1 X2 + X1X4 + x3x4 + 1.

The probability of interest to us is

ZZ ka(fk+fk 0

ni=1np=1 ni=1

Each p; can be expressed in terms of complicated series involving Riemann zeta
function values and thus falls in the class of polynomial-time computable constants

[5].
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2.20 Erdos’ Reciprocal Sum Constants
2.20.1 A-Sequences

An infinite sequence of positive integers 1 < a; <a; <a3 < ... is called an 4-
sequence if no a; is the sum of two or more distinct earlier terms of the sequence
[1]. For example, the sequence of nonnegative powers of 2 is an 4-sequence. Erdos [2]
proved that

)
1

S(4)= sup E — < 103
A-sequences 1 Ak

and thus the largest reciprocal sum must be finite in particular. Levine & O’Sullivan
[3,4] proved that any 4-sequence must satisfy what we call the x-inequality:

(j+ l)aj —i—ai > (]+ l)i

for all i and j, and consequently S(A) < 3.9998. In the other direction, Abbott [5] and
Zhang [6] gave specific examples that demonstrate that S(A4) > 2.0649. These are the
best-known bounds on S(4) so far.

The x-inequality is itself interesting. Levine & O’Sullivan [3, 7] defined a specific
integer sequence by the greedy algorithm: x; = 1 and

Xi= max (j+ D0 = X))
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fori > 1,thatis, 1,2,4, 6,9, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 60, 65, . ...
They conjectured that

21
S(A) <) —=301...
k=1 Ak
and further that {x;} dominates the reciprocal sum of any other integer sequence sat-
isfying the x-inequality. Finch [8—10] wondered if this latter conjecture still holds for
arbitrary (not necessarily integer) real sequences.

The authors of [3—5] used the phrase “sum-free sequence” to refer to 4-sequences,
which is unfortunate terminology since the word “sum-free” usually refers to an entirely
different class of sequences [2.25]. We have adopted the phrase “A4-sequence” from
Guy [1]. See also [2.28] concerning sets with distinct subset sums.

2.20.2 B,-Sequences

An infinite sequence of positive integers 1 < b; < by < b3 < ... is called a B;-
sequence (or Sidon sequence) if all pairwise sums b; + b;, i < j, are distinct [1].
For example, the greedy algorithm gives the Mian—Chowla [7,11] sequence 1, 2, 4, 8,
13, 21, 31, 45, 66, 81, 97, 123, 148, 182, 204, 252, 290, ... , which is known to have
reciprocal sum [12] between 2.158435 and 2.158677. Zhang [13] proved that

[o¢]
S(B)= sup Y 1 21507
B,-sequences ;| Yk

and thus is larger than the Mian—Chowla sum. An observation by Levine [1, 13] shows
that S(B,) is necessarily finite; in fact, it is < 2.374. More recent work [12, 14] gives
the improved bounds 2.16086 < S(B,) < 2.247327.

Erdos & Turan [15-17] asked if a finite B,-sequence of positive integers b; < b, <

. < by, with b,, < n must satisfy m < n'/?> 4+ C for some constant C. Lindstrém [18]
demonstrated that m < n'/? 4 n'/* 4 1. Zhang [19] computed that if such a C exists, it
must be > 10.27. Lindstrdm [20] improved the lower bound for C to 13.71. In a more
recent paper [21], he concluded that C' probably does not exist and conjectured that
m < n'? + o(m'/*).

2.20.3 Nonaveraging Sequences

An infinite sequence of positive integers | < ¢| < ¢; < ¢3 < ...1is said to be nonaver-
aging if it contains no three terms in arithmetic progression. Equivalently, ¢ + d # 2e
for any three distinct terms ¢, d, e of the sequence [1]. For example, the greedy algo-
rithm gives the Szekeres [7,22] sequence 1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37,
38, 40, 41, 82, 83, ... ; that is, n is in the sequence if and only if the ternary expan-
sion of n — 1 contains only Os and 1s. This is known to have reciprocal sum between
3.00793 and 3.00794. Wroblewski [23], building upon [24,25], constructed a special
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nonaveraging sequence to demonstrate that

o0

1
S(C)=sup > — >3.00849.

nonaveraging —; Ck
sequences

A proof that S(C) is necessarily finite is not known; the best lower bound [26] for ¢ is
only O(k,/In(k)/ In(In(k))).

Some related studies of the density of {c;} N [1, n], constructed greedily with al-
ternative formation rules or different initial values, appear in [27-31]. Under certain
conditions, as n increases, the density oscillates with peaks and valleys (rather than
falling smoothly) in roughly geometric progression. The ratio between two consecutive
peaks seems, as N — 00, to approach a limit. This phenomenon deserves to be better
understood.
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2.21 Stieltjes Constants

The Riemann zeta function ¢(z), as defined in [1.6], has a Laurent expansion in a
neighborhood of its simple pole at z = 1:

& (=l
(0= g+ Y e

n:

The coefficients y, can be proved to satisfy [1-9]

0.5772156649 ... ifn =0,
—0.0728158454 ... ifn =1,
(Xm: Ink)" 1n(m)"+1> ] —0.0096903631 ... ifn =2,

¥, = lim
m—00

k n+1 0.0020538344 ... ifn =3,
0.0023253700... ifn =4,
0.0007933238 ... ifn =35,

k=1

and, in particular, yy = y, the Euler—Mascheroni constant [1.5].

Here is a sample application to number theory. Define a positive integer N to be
jagged if its largest prime factor is > +/N, and let j(N) be the number of such integers
not exceeding N. The first several jagged numbersare 2, 3, 5,6,7,10, 11, 13, 14, .. . and,
asymptotically [10, 11],

N N N
JN) =I@N = (1 =yo)pam = (L =y = y)ires + 0 <1n(N)3) ’
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where 1 — yp = 0.4227843351 ... and 1 — yp — y1 = 0.4956001805 . ... See the re-
lated discussion of smooth numbers in [5.4]. Other occurrences of y,, include [12-17].

The signs of the Stieltjes constants y, follow a seemingly random pattern. Briggs [18]
proved that infinitely many y,, are positive and infinitely many are negative. Mitrovic
[19] extended this result by demonstrating that each of the inequalities

Yo <0, v2, >0, v2-1 <0, y2,-1 >0

must hold for infinitely many #. In an elaborate analysis, Matsuoka [20,21] proved
that, for any ¢ > 0, there exist infinitely many integers » for which all of y,, V11,
Vn42s - -+ » Yntl(2—e) In(n)) have the same sign, and there exist only finitely many integers
n for which all of ¥, Vis1, Va2, -+ » Vatl@2+e)In(n)) have the same sign. Also, if

Jmy={0=k=n:y, >0}, g)={0<k<n:y, <0}

then f(n) =n/2 + o(n) and g(n) = n/2 + o(n).

The first few Stieltjes constants y,, are close to 0, but this is deceptive. In fact, their
magnitudes seem to — oo as n — 00, although a proof is not known. Upper bounds
for |y, | were successively obtained by several authors [18,22-26], culminating in

B+ (—1)"H2n)!
il = =22
"+ Q2

The last word again belongs to Matsuoka [20,21], who proved that the lower bound

exp(n In(In(n)) — en) < |yl

holds for infinitely many #, while the upper bound

¥al < exp(n In(In(n)))

~ 10000

holds for all » > 10.
We mentioned in [1.5] the following formula due to Vacca:

o (=% | In(k)
= k {@J

Yo
k=1

Hardy [27] gave an analog for y:

. (—1); In(j) Lln(j) J _ @) ¢ 1t {1n(2k) J Lln(k) J |
j=1

In(2) 2 &~ &k [ In@2) ][I

and Kluyver [28] presented more such series for higher-order constants. Also, if {x}
denotes the fractional part of x, then [29]

o]

(x} T W

X

/—dx:l—yo, //—yzdydeI—)/o—Vl.
1 1

x2 Xy
X

Additional formulas for y,, appear in [7,8,30-32].
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We now discuss certain associated constants. An alternating series variant,

6 =Yy

k=1
—In(2) = —0.6931471805.. .. ifn=0,

= { —3In(2)> + 9 In(2) = 0.1598689037 ... ifn=1,
—% In(2)* + yo In(2)?> + 2y In(2) = 0.0653725925 ... ifn =2,
can be related to the Stieltjes constants via the formulas [1,4,8,26]

n+1

n+1
== +Z ) In2)"* s, Vn=#z ") Bysi—i In(2)"
=0

where B; is the j th Bernoulli number [1.6.1]. Consider also the Laurent expansion for
¢(z) at the origin (rather than at unity):

1 & (=)
‘&= Z(n!) 52",

Sitaramachandrarao [33] proved that [3,34]

m

8, = lim_ Zm(k) - / In(x)"dx — %ln(m)" = (=1)"(¢™(0) + n!)

1
=0.5 ifn =0,

In(27) — 1 = —0.0810614667 . ... ifn=1,

2

—2 L)+ B 4y +2 = —0.0063564559 ... ifn =2,

and these, in turn, were helpful to Lehmer [35] in approximating sums of the form
[7,26]

1
2
1
2

—Lln(dm) + 2 + 1 = 0.0230957089 ... ifn=1,

1
anzzﬁ: T Ly 42y 1 = —0.0461543172 ... ifn =2,
’ ~ZO) 43 4 3y, + 22 1= —0.0001111582... ifn =3,

where each sum is over all nontrivial zeros p of £ (z). The constant o} also appearsin[1.6]
and [2.32]. Keiper [36] and Kreminski [37] vastly extended Lehmer’s computations.

The analog of y, corresponding to the arithmetic progression a, a + b, a + 2b,
a + 3b, ... was studied by Knopfmacher [38], Kanemitsu [39], and Dilcher [40]:

i In(ky* 1 1In(m)"*!
n,a,b = 1 I
Vn,a,b mgréo O;m k b n+1

k=a mod b
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For example, Zz;(l) Ynab = Vo and

4 n . n+1 2
Vo2 =3 [Z (a2 = =2 ] rios =4y +nin) - 27,

7=0

7 =127 = winG) + B9 — (22200 i[5 ]) 73]

Different extensions of y, are found in [23,26,41-46].
The reader should be warned that some authors define the Stieltjes constants to be
(—1)"y,/n! rather than y,, so care is needed when reviewing the literature.

2.21.1 Generalized Gamma Functions

For complex z, the generalized gamma function I',(z) is defined by [47,48]

(ln(m)’hLl )ﬁ (hl(k)”Jrl)
exXp| ———z exp

. n+1 el n+1
Iy(z) = lim

m—00 m ln(k—i—z)”H
l_[ exp 7’1 1

k=0

and is analytic over the complex plane slit along the negative x-axis. Clearly I'y(z) =
I'(z) and I', () satisfies

Fy()=1, Thz+1)=exp (ln(z)n+l> r,().

n+1
The connection between I',(z) and y,, is through the formula v,,(1) = —y,,, where
d 2 (In(x + k)" In(k+ 1)
n =—1 Fn = —Vn — -
¥nl®) dx n(a(x) v ;( x+k k+1 >

is the generalized digamma function. A generalized Stirling formula includes
Co(x) ~ /znxx—%e—x, Ti(x) ~ Cx 563 In()—x px

as special cases, where [48,49]

In(C) = In <rl G)) — l1n(2)2 — %m(z) In(27)

T Do+ 2 0031782279
= —— — — INZT — — = —1.
8 4 23

Many more formulas of this kind can be found.
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2.22 Liouville-Roth Constants

We may study constants by means of other constants. Given a real number £, let R
denote the set of all positive real numbers r for which the inequality

0<|E—~—

< —
»

has at most finitely many solutions (p, ¢), where p and ¢ > 0 are integers. Define the



172 2 Constants Associated with Number Theory

Liouville-Roth constant (or irrationality measure)
= inf
r(§) = infr,
that is, the critical rate threshold above which £ is not approximable by rational
numbers [1-3]. It is known that

& is rational =rE) =1,
& is algebraic irrational = r(&£) = 2 (Thue-Siegel-Roth theorem [4,5]),
& is transcendental =r)=>2.

If & is a Liouville number, for example,

= 1 1 1 1 1
22_ — +?+2ﬁ+2lzo - =0.7656250596 .

then r(§) = oo. Similarly, one can construct £ so that r(£) assumes any value,
2 < r(€) < oo (from series of rationals with appropriately fast convergence). Among
famous constants, it is known that [2]

r(e)=2

(in fact, much more precise inequalities are possible, but e is somewhat atypical), and

2 <r(r) < 8.016045. .. (Hata [6,7]),

2 < r(In(2)) < 3.89139978 ... (Rukhadze [8,9]),

2 <r(n?) < 5.441243 . .. (Hata [10], Rhin & Viola [11]),
2 <r(¢(3) <5.513891...  (Hata[12], Rhin & Viola [13]),

where £(3) is Apéry’s constant [1.6]. Upper bounds for » corresponding to Catalan’s
constant G [1.7] or Khintchine’s constant K [1.8] are not known. Whether G and K
are even irrational remains open.
A consequence of Hata’s work concerning r is that the two functions [14, 15]
C(x)= inf n|sin(n)], D(x)= sup »n *|tan(n)|
n>0 integer n>0 integer

satisfy C(7.02) > 0, D(7.02) = 0. If a conjecture [16] that r(w) =2 is true, then
C(1+4+¢)>0,D(1+¢)=0foralle > 0. Numerical evidence suggests that C(1) = 0,

D(1) =00
One can also examine multidimensional analogs of these constants. For example,
let1,&,&,...,&, be linearly independent over the rationals, where &, &, ... , &, are

real algebraic numbers. Let R denote the set of all positive real numbers 7 for which
the simultaneous system of inequalities

i 1
E,-—& <—,i=1,2,...,n,

q q’

0<

has at most finitely many solutions (pi, pa, ..., pn, q), where each p; and ¢ > 0 are
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integers. Define r(£y, &, ..., &,) exactly as before. Schmidt [5,17, 18] extended the
Thue—Siegel-Roth theorem to deduce that

n+1
b

ré, &, ..., &)=

Clearly the joint irrationality measure r(e, i) satisfies r(e, w) < max{r(e), r(;r)}, but
no one has improved on this bound. Of course, we do not even know whether e and 7
are linearly independent over the rationals!

A related subject, concerning the simultaneous Diophantine approximation con-
stants [2.23], is similar yet possesses a different focus than that here.
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2.23 Diophantine Approximation Constants

In our essay on Liouville—Roth constants [2.22], we discussed rational approximations
of a single irrational number £. Here we study the simultaneous rational approximation
of n real numbers &, &, ... , &,, of which at least one is irrational, by fractions all with
the same denominator. Dirichlet’s box principle [1,2] implies that, if ¢ > 1, then the
system of inequalities

1 n+1

g2

q
has infinitely many solutions (pi, pa, - .-, P, q¢), Where p1, pa, ..., p, and g > 0 are
integers. The focus of this essay is not on the exponent (n 4+ 1)/n of the right-hand
side, as it was earlier, but rather on the linear coefficient c.

As is traditional, rearrange the inequalities to

<cng n, i=1,2,...,nm,

q-lg& —pil" <c

and define ¢, to be the infimum of all 0 < ¢ <1 for which the solution set

(p1, p2, - -+, Pn,q) remains infinite. Then define the n-dimensional simultaneous
Diophantine approximation constant y, to be the supremum of ¢, over all such
&1, &, ..., &, So y, is not measuring the goodness of approximation of a single set of

n numbers, but instead it is defined across all possible sets and thus depends only on
the dimension 7.
Here is a summary of what is known about the approximation constants y,:

i = 7z = 0.4472135955.... (Hurwitz [17),
0.2857142857...=32 <y, < % =0.378... (Cassels [2], Nowak [3]),
0.120... = Szﬁ <y <&h=1-5=0437... (Cusick [4], Spohn [5]),
0.044 ... = wlfm <y <8 = %8@11727 = 0.408 ... (Krass [6], Spohn [5]),
0.010... = 207‘35 <ys <8=0390... [5-7],

0.004...= w% < ¥ <8 =0379... [5-71,

where the upper bounds [5] are computed via the definite integrals

1
l — fok+! / de.
Sk (I +xH)(1 +x)

0

There is a wealth of computational [8] and theoretical evidence [9, 10] that y, = 2/7
but this cannot yet be regarded as a theorem. Adams [9] proved that 2/7 is the correct
value if we impose the constraint that & = 1, &, & form a basis of a real cubic number
field. Cusick [10, 11] proved additional results under the hypothesis that the regular
continued fraction expansion of 2 cos(27/7) has certain finite partial denominator
patterns occurring infinitely often. See also [12, 13].

With regard to y;3, Szekeres [14] indicated that its true value might be as high as
0.170, substantially greater than the lower bound given here.
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-3 2 -1 0 1 2 3
Figure 2.3. A star body S along with an S-admissible lattice L.

Nowak [15] obtained an improvement to Spohn’s upper bounds, involving a function
of §;, but numerical estimates are not possible at this time.

There is a remarkable connection between the values of y, and the geometry of
numbers. We first illustrate this in the two-dimensional setting (see Figure 2.3). Consider
the unbounded region S in the plane determined by |xy| < 1 (which is an example of
what is called a star body). Consider as well the lattice L with basis vectors (1, 1) and
(1 4+ +/5)/2, (1 = v/5)/2). It can be proved that the only vertex of L that lies within
the interior of S is the origin (0,0). Consequently L is said to be S-admissible.

The area of any single parallelogram cell of L is clearly /5. This is called the
determinant of L, written det(L). It can be further proved that any other S-admissible
lattice L must satisfy det(L) > V5.

In the same way, consider the unbounded region S in (n + 1)-dimensional space
determined by

[Xpg1] - max{|x]”, [x2|", ..., [x,]") < 1

and considerall (n 4+ 1)-dimensional S-admissible lattices L. Davenport[16, 17] proved
that the volume, det(L), of any single parallelepiped cell of L satisfies det(L) > 1/y,
and, moreover, equality must occur for some choice of L. Therefore

1 .
— = min_ det(L)
VYn S-admissible

lattices L

is also known as the critical determinant or lattice constant for the star body S. This
geometric insight unfortunately offers only limited help in computing y,,. Some sample
computations are given in [18-24].

Here is a similar problem from the geometry of numbers (having nothing to do with
¥, as far as is known). Again, we illustrate this in the two-dimensional setting (see
Figure 2.4). Let Z denote the standard integer lattice in the plane, that is, with basis
vectors (1,0) and (0,1). Consider an arbitrary parallelogram P centered at the origin
(0,0). P is called Z-allowable if the interior of P contains no other vertices of Z. Now,
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-1 0 1
Figure 2.4. A Z-allowable parallelogram P.

given any basis v, w of the plane, there clearly exists a Z-allowable parallelogram P
with sides perpendicular to v and w (just take P to have suitably small area). Define
a(v, w) to be the supremum of the areas for all such P. Then define «; to be the infimum
of a(v, w)/4 for all such bases v, w. Szekeres [25] proved that

1 1
o =7 <1 + ﬁ) 0.7236067977 . . ..
The slopes of the “critical parallelogram,” in this case a square, are (1 4+ +/3)/2 and
(1 — +/5)/2. 1t is interesting that the Golden mean [1.2] occurs here as well as with the
computation of y, earlier.

For higher dimensions, let Z denote the standard n-dimensional integer lattice and
consider n-dimensional Z-allowable parallelepipeds P with faces normal to a given
basis vy, v, ... , v,. As before, 2"k, is the largest possible volume of P in the sense that
P can have volume 2"k, independent of the prescribed directions vy, v, ... , v,, but
this fails for P of volume 2"k, + ¢ for any ¢ > 0. It is known [26-28] that x3 > 1/4,
k4 > 1/16, and there is theoretical evidence [29] that possibly

8 /2 2
K3 = < cos [ X cos(z) = 0.5784167628 .. ..
7 7 7

Moreover, it has been proved that asymptotically [28,30]
n(n+1)

n 1 2 1 | 1 %
17 <5> <K"<[5( +ﬁ)]

One might call 3, k3, k4, ...the Mordell constants [31]; further discussion is found
in [32-34].

Here is one more problem. Let K be a bounded convex body in n-space of volume
V(K) and symmetric with respect to the origin. Let A(K) denote the critical determinant
of K and define

. V(K)
pn = inf .
K A(K)
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Forexample, ifn = 2 and K isa disk, then clearly V(K)/A(K) = 27//3 = 3.627. . ..
This is not optimal, for it is known [35-38] that

8 — 42 — In(2
3570624 .. < py < 457 AV2 = I0Q@)
22 -1

and further conjectured [39,40] that p; is equal to its upper bound (corresponding to
a smoothed octagon K obtained by rounding off each corner with a hyperbolic arc). It
is also known [35,41,42] that p3 > 4.216, ps > 4.721,and p, > r = 4.921553 ... for
n > 5, where r is the unique solution > 1 of the equation 7 In(») = 2(» — 1). Mahler
[35], however, believed that p, — oo as n — 00, so there is considerable room for
improvement. This theory is an outgrowth of the classical Minkowski—Hlawka theorem;
by letting o,, be the analog of p, corresponding to bounded star bodies S, a parallel
set of questions can be asked. For example [43], 0, < 3.5128... (corresponding to S
bounded by eight hyperbolic arcs), but no one appears to have conjectured an exact
value for o5.

= 3.6096567319...
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2.24 Self-Numbers Density Constant

Any nonnegative integer » has a unique binary representation:
o0
n= anZk, ng=0orl.
k=0

What happens if we slightly perturb this formula, for example, by replacing the expo-
nential 2% by 2% 4 1? Things become noticeably different: The integers 1, 4, and 6 have
no representations of the form

no- QU4+ 1D +n - QU4+ 1) +ny- 22+ 1) =2ng +3n; + 51y, np=0o0rl,

whereas 5 has two such representations, 5 and 2 + 3.
Let us focus solely on the existence issue. Define S to be the set of all n for which
a representation

o0
n=>Y m @ +1), ng=00rl
k=0

exists (including 0). Define T to be the complement of S relative to the nonnegative
integers [1],thus T’ = {1, 4, 6, 13, 15, 18, 21, 23, 30, 32, 37, 39, .. .}. These are known
as binary self numbers (Kaprekar [2,3]) or binary Columbian numbers (Recaman
[4D).
It can be proved that 7 is an infinite set. Let () denote the cardinality of binary
self numbers not exceeding N. Zannier [5] proved that the limit
N
0<n= tim “)
N—ooo N
exists and moreover T(N) = AN + O(In(N)?). The self-numbers density constant A
can be calculated by the formula

2
1 1
A= — — = 0.2526602590...
H(z)

neS

and was recently proved by Troi & Zannier [6, 7] to be a transcendental number.
We can extend this discussion to any base b > 1. Define S, to be the set of all # for
which a representation

o0
n=Y nb*+1), ng=0 1,....b—20rb—1,
k=0

exists. Define T}, and (V) similarly. We have 7,(N) = A, N 4+ O(In(N)?) as before [5]
and numerical approximations A4 = 0.209... and Ao = 0.097 ... but no fast infinite
series for A, (analogous to the formula for A,) has yet been established for any b > 2.
Likewise, no one has yet proved that A,, b > 3, is even irrational.
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There is also the issue of uniqueness. Let us focus on the binary case only. Define
U to be the set of all n for which the representation

o0
n=>Y m@+1), ng=0orl,
k=0

exists and is unique. Define V' to be the complement of U relative to S. The set V' is
trivially infinite because, for all k¥ > 2,

LR+ D+1-22+D)=1-Q+ D+1-Q°+D+1-2"+1)
and the set U is trivially infinite because, for each integer ¢ in T,

t+1
YR+ D=+ D+t
k=0

has no other admissible representations. What can be said about the densities of U and
V'? See also [8] for the density of self numbers within arithmetic progressions, and [9]
for related discussion of digitaddition series.
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2.25 Cameron’s Sum-Free Set Constants

A set S of positive integers is sum-free if the equation x + y = z has no solutions
x,y,z € S. Equivalently, S is sum-free if and only if (S + S) NS = @, where 4 + B
denotes the set of all sums a + b,a € A, b € B. For example, the set of all odd positive
integers is sum-free.

Consider now the collection of all sum-free sets. Cameron [1-3] defined a natural
probability measure on this collection, which can informally be thought of as a recipe
for constructing random sum-free sets S. The recipe is as follows:

» Set S = { initially and look at each positive integer #» one-by-one in order.
* Ifn =a+ bforsomea,b € S, then skip #» and move ahead to n + 1.
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* Ifn = x + yhasnosolutions x, y € S, thentoss a fair coin; ifheads, set S = S U {n}
and move ahead to n + 1; if tails, simply move ahead.

Observe, for example, that clearly
P(S consists entirely of even integers) = 0.
In contrast, Cameron [1] proved the remarkable fact that the constant
¢ = P(S consists entirely of odd integers)

is positive and, in fact, 0.21759 < ¢ < 0.21862. Equivalently [2],if N = {0, 1,...,n —
1} and

F(n) — 2—2}1 Z 2\()(4—)()(‘1N|7
XCN

then F'(n) is decreasing and lim,,_, .o F(n) = c¢. The summation is over all subsets X of
N and |E| denotes the cardinality of a set £. An alternative proof was given by Calkin
[4].

Cameron [2] proved a more general result, which bounds (from below) the probabil-
ity that S is contained entirely within certain sum-free unions of arithmetic progressions.
Rather than state his general theorem, we simply provide a sample application:

2
P(SC {2, 7, 12, 17, 22, 27,...}U{3, 8, 13, 18, 23, 28,...}) z% > 0.0066,

where 0.28295 < d = lim,_, o, G(n) < 0.29484 and the decreasing function G(n) is
defined by

Gny=27% 3 glersrmon

X, YCN

This, however, is not close to his estimate of approximately 0.022 (based on computer
simulation).

Calkin & Cameron [5] advanced our understanding of random sum-free sets even
farther. Again, we do not present their theorem in general form, but merely give an
example:

P(S contains 2 and S contains no other even integers) > 0.

Computer simulations provide an estimate for this probability of approximately
0.00016.

Let us now turn away from probability and consider instead the number s, of sum-
free subsets of {1, 2, ..., n}. The first several terms [6] of s, are 1, 2, 3, 6, 9, 16,
24, ... . Cameron & Erdds [7,8] conjectured that $,27"/% is bounded and, moreover,
the following two limits exist and are approximately

lim sp5412 %) = ¢, =6.8..., limsy2*=c. =60...,
k—o00 k— o0



182 2 Constants Associated with Number Theory

where

¢o =2+ lim HQk+1). cc=1+ lim H(2k).

H(n) = 2—n/2 Z 27I(X+X)mN/|7 N =1{0,1,...,n).

XCN'
Calkin [9], Alon [10], and Erdds & Granville independently demonstrated that

lim 5,2 G+)" =0

n—00
for every ¢ > 0. Additional evidence for boundedness appears in [11], and a general-
ization is found in [12—15].

We cannot resist presenting one more problem. A sum-free set S of positive integers
is complete if, for all sufficiently large integers n, either n € S or there exist s, f € S
such that s 4+ ¢ = n. Equivalently, S is complete if and only if it is constructed greedily
from a finite set. A sum-free set S is periodic if there exists a positive integer m such
that, for all sufficiently large integers n, n € S if and only if » + m € S. Equivalently,
S is periodic if and only if the elements of S, arranged in increasing order, give rise to
an (eventually) periodic sequence of successive differences.

Is an arbitrary complete sum-free set necessarily periodic [16]? Cameron [3] gave
the first potentially aperiodic example: the complete sum-free set starting with 3, 4,
13, 18, 24. Calkin & Finch [17] gave other potentially aperiodic examples, including
1,3,8,20,26,... and 2, 15, 16, 23,27, .. .. Calkin & Erdos [18] proved the existence
of incomplete aperiodic sum-free sets — in fact, they exhibited uncountably many such
sets, constructed in a natural way — but no one has yet established the existence of a
single complete aperiodic sum-free set.
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2.26 Triple-Free Set Constants

A set S of positive integers is called double-free if, for any integer x, the set {x, 2x} Z S.
Equivalently, S is double-free if x € S implies 2x ¢ S. Consider the function

r(n) = max{|S|: S C{1,2,...,n}is double-free},

that is, the maximum cardinality of double-free sets with no element exceeding . It is
not difficult to prove that

.or(n) 2
Iim — = —;
n—oo n 3

that is, the asymptotic maximal density of double-free sets is 2/3. Wang [1] obtained
both recursive and closed-form expressions for (n) and, moreover, demonstrated that
r(n) =2n/3 + O(In(n)) as n — oo.

Let us now discuss a much harder problem. Define a set S of positive integers to be

+ weakly triple-free (or triple-free) if, for any integer x, the set {x, 2x, 3x} Z S, and
+ strongly triple-free if x € S implies 2x ¢ S and 3x ¢ S.

Unlike the double-free case, the weak and strong senses of triple-free do not coincide.
Consider the functions

pn) =max{|S|: S S {1,2,...,n}is weakly triple-free} ,
q(n) =max {|S|: S € {1,2,...,n}is strongly triple-free} .

We wish to calculate the constants

_opm) o q(n)
A= lim —=, p= lim —=.
n—-oo n n—oo n

Define an infinite set
A={2i3j:i,j20}={a1 <a<az<...}
=1{1,2,3,4,6,8,9,12,16, 18,24,27, ...}
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81
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Figure 2.5. Grid graph associated with 4,9, for which g9 = 10, 4190 = {1, 4, 6, 9, 16, 24, 36,
54,64, 81}, fio =6 = hy9, Boo = {1, 6,8,27,36,48, 64}, and B9 = {64}.

and A4, to be the first n terms of A; then A and y can be written as

1 & 1 1 1 & 1 1
lzgé("‘ﬂ)(a—a >’M=§;gn(a—— >

n+1 n An+1

where the integer sequences

() =10,0,1,1,1,1,2,2,2,3,3,4,4,4,4,5,5,5,6,6,7,7,7,8,8,...},
{g.}=1{1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10, 11, .. .}

will be defined momentarily.

The constant 1 has not attracted as much attention as A. Eppstein [2] showed that
g 1s the size of the largest set of nonadjacent vertices in the grid graph A4,, (called an
independence number). Foreach k = 0, 1, define 4, ; € A, to consist of all elements
213/ satisfying i + j = k mod 2. Then {4, 0, A,.1} is a partition of 4, and at least
one of these is a maximal independent set, as found by Cassaigne [3]. (See Figure
2.5). From here, Zimmermann [3] computed the triple-free set constant to be u =
0.6134752692. ...

By way of contrast, the constant X has intrigued people for over twenty-five years [4].
Graham, Spencer & Witsenhausen [5] were concerned with general conditions on sets,
contained in {1, 2, ..., n}, that avoid the values of linear forms Z:f:l CuyXy. Among
many things, they asked whether A is irrational. Starting from a table of £, values in
[5], Cassaigne [6] proved that A > 4/5. Chung, Erdoés & Graham [7] showed that f,
is the size of the smallest set of vertices in A, that intersects every L-shaped vertex
configuration of the form {273/, 2/+13/ 213/+1} C 4, (called an L-hitting number).
Foreachk = 0, 1, 2, define B, ; C A, to consist of all elements 23/ satisfyingi — j =
k mod 3. Then {B,.0, By.1, Bn.2} is a partition of 4,. Define also B~,,,k C B,k to consist
of all elements 2/, 1 <i = k mod 3, for which 2'~'3 ¢ 4,,. It is known that

. ~ n
fn =< hn = 0211322|Bn,k| - |Bn,k| < {gJ s

and consequently 0.800319 < A < 0.800962. It is conjectured that f,, = &, for all n,
which if true would imply that A = 0.8003194838 ... =1 —0.1996805161....
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Given fixed s > 1, consider sets S of positive integers for which {x, 2x,
3x,...,sx} € S for all integers x. Denote the corresponding asymptotic maximal
density by A,. What can be said about the asymptotics of A; as s — 00? Spencer &
Erdos [8] proved that there exist constants ¢ and C for which

C
~ sln(s)

<Ay <1
s In(s)

for all suitably large s, although specific numerical values were not presented. Also,
consider sets 7 of positive integers for which {x, 2x, 3x, 6x} Z T for all integers x. The
corresponding asymptotic maximal density is exactly 11/12 [7], which is surprising
since the case s = 3 was so much more difficult.

More instances of the interplay between the numbers 2 and 3 occur in [2.30.1],
which is concerned with powers of 3/2 modulo 1.
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2.27 Erdos-Lebensold Constant

A strictly increasing sequence of positive integers a;, az, as, .. .1s primitive [1-3] if
a; fa;foranyi # j.Thatis, no term of the sequence divides any other. An example of
a finite primitive sequence is the set of all integers m in the interval [%1 <m<n,
where 7 is a positive integer. An example of an infinite primitive sequence consists of
all positive integers composed of exactly » prime factors, where r is fixed. We discuss
the finite and infinite cases separately. See also [5.5] for a related note.

2.27.1 Finite Case

For each positive integer n, define

M(n)=  sup 1
primitive Xl:
AC{1,2,...,n}
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as the maximum possible number of terms, and

1
L(n)= sup —
primitive lz a;
AC(1,2,...,n}
as the maximum possible reciprocal sum. Clearly M(n) = L”“J and thus
lim, oo M(n)/n = 1/2. It is more difficult to establish [4, 5] that

. In(In(n)) B 1
T 7

which is an unexpected appearance of Archimedes’ constant [1.4].

2.27.2 Infinite Case

Any infinite primitive sequence satisfies

0 = liminf — 1 < lims 1 7
it 321 <l 51 <

Besicovitch [1,6] proved that, for each ¢ > 0, there exists a primitive sequence such
that

1
limsup — Zl>——s

n
n—00 a;<n

In particular, a primitive sequence need not possess an asymptotic density! Maybe the
limiting value 1/2 is not so surprising, given the earlier result about M (n).
In contrast, Erdos, Sarkozy & Szemerédi [7] proved that

SO 1

neoo In(n) = ai

which is drastically different from the earlier result about L(n). The finite and infinite
cases behave independently in this respect.
Forging a new trail, Erdos [1, 8] proved that the series

1

ZZ a; In(a;)

is convergent (except for the trivial primitive sequence {1}) and is, moreover, bounded
by some absolute constant. He conjectured that

3 L 3 L 6366163233
— a;In(a;) — =~ p: In(p;) ' o

where the latter summation is over all primes. Several partial results are known. Zhang
[9, 10] proved that the inequality is true for all primitive sequences whose terms contain
at most four prime factors. Zhang [11] did likewise, hypothesizing a different, more
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technical set of conditions. Erdés & Zhang [12] proved that, for any primitive sequence,

1
> < 1.84
; a; ln(ai)

and Clark [13] strengthened this to

1
Z < e’ =1.7810724179.
a; In(a;)

where y is Euler’s constant [1.5].
Incidently, the estimate 1.6366163233... given here for the prime series is due to
Cohen [14].

2.27.3 Generalizations

Let k be a positive integer. A strictly increasing sequence of positive integers a;, as,
as, . ..1s k-primitive if no term of the sequence divides & others. (This phraseology is
new.) Let us consider only the finite case. Define M (n, k) and L(n, k) as before. An
example of a 2-primitive sequence is the set of all integers m in the interval [”T’L]] <
m < n; thus lim,_, ., M(n,2)/n > 2/3, but here improvement is possible. Lebensold
[15] proved that

M. 2
0.6725 < lim -2

n—00 n

< 0.6736

and observed that more accurate bounds could be achieved by additional computation
in exactly the same manner. Erdos asked if the limit is irrational [10]. No one has
examined L(n, 2) or the case k > 2, as far as is known.

A strictly increasing sequence of positive integers by, by, b3, ... 1is quasi-primitive
[16] if the equation gcd(b;, b;) = b, is not solvable with7 < i < j. An example of an
infinite quasi-primitive sequence consists of all prime powers

G1=2,02=3,q3=2",q4=5,qs=7,9 =2°,q7 = 3%, qs = 11,

Erdos & Zhang [16] conjectured that, for any quasi-primitive sequence,

me(b)—z 2.006. ...

qi ln(q,

Clark [17] corrected a false claim in [16] and proved that

1
Z — < 42022
; b,‘ ll'l(b,)

A more accurate estimate for the prime-power series is an unsolved problem.

The topics of k-primitive sequences and quasi-primitive sequences appear to be
wide open areas for research, as are the allied topics of triple-free set constants [2.26]
and Erd6s’ reciprocal sum constants [2.20].
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2.28 Erdos’ Sum-Distinct Set Constant

A seta; <ap; <az <...<a, of positive integers is called sum-distinct if the 2"
sums

Zskak (eachey =0o0rl,1 <k <n)
k=1

are all different. Equivalently, sum-distinctness holds if and only if any two subset sums
are never equal [1-4]. The set of nonnegative powers of 2 is clearly sum-distinct and
serves as a baseline for comparison. In 1931, Erd6s examined the ratio

an
A ?

oy = 12f o
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where the infimum is over all sum-distinct sets A of cardinality », and conjectured
that o« = inf,, «, is positive. No one knows whether this is true, but in 1955, Erdos and
Moser [2,5, 6] proved that, for all n > 2,

1 1
nZ a ) i
N

and Elkies [7] proved that, for sufficiently large n,

1

Oln 2 \/ﬁ .
Gleason & Elkies [8] subsequently removed the factor of 7 via a variance reduction
technique. See also [9]. It is probably true that « > 1/8 = 0.125. Significant progress
in resolving Erdds’ conjecture will almost certainly require a brand-new idea or as-yet-
unseen insight.

Several interesting constructions provide upper bounds on «. In 1986, Atkinson,
Negro & Santoro [10, 11] defined a sequence

ug =0, uy =1, gy =2up — e, m= |2k +1]

that gives rise to a sum-distinct set @y = u, — u,_x, 1 <k < n, for each n. Clearly
a, = uy. Lunnon [11] calculated that

n 1
lim Z— =0.3166841737... = -(0.6333683473 .. ).

n—o00 2N _2

A smaller ratio is obtained via a sequence due to Conway & Guy [2,11-13]:
V=0, vi=1, v =2V — Vi, M= L% + «/ZkJ .

Only recently Bohman [14] proved that this sequence gives rise to a sum-distinct set
ay = v, — Vy_k, | <k < n, for each n. (Prior to 1996, we knew this claim to be true
for only n < 80.) Lunnon [11] calculated that

. 1
lim ’2’— = 02351252848 ... = -(0.470250569 ...

n—00

Although the Atkinson—Negro—Santoro and Conway—Guy limiting ratios are inter-
esting constants, they do not provide the best-known upper bounds on «. A frequently
used trick for doing so is as follows: If a; < ay < a3 < ... < a, is a sum-distinct set
with n elements, then clearly 1 < 2a; < 2a; < 2a;3 < ... < 2a, is a sum-distinct set
with n + 1 elements. Enlarging as such can be continued indefinitely, of course. Thus
if one has found a sum-distinct set with » elements and small ratio p, we immediately
have an upper bound @ < p. For example, Lunnon [11] found a sum-distinct set with
n = 67 and p = 0.22096 via computer search, which improves on the Conway—Guy
bound. Generalizing the work of Conway, Guy, and Lunnon, Bohman [15] established
the best-known upper bound o < 0.22002. Additionally, Maltby [16] has shown, given
a sum-distinct set, how to construct a larger sum-distinct set with a smaller ratio. Hence
Erdds’ constant « is not realized by any sum-distinct set; that is, the infimum is never
achieved!
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Bae [17] studied sum-distinct sets whose sums avoid » mod ¢, for given » and q.
Also, consider the inequality

| N
Z;<2=;F’

k=1 %k

which is true for all sum-distinct sets A4. It is curious that the upper bound 2 is sharp and
elementary proofs are possible [9, 18, 19]. (Actually much more is known!) Elsewhere
we discuss other such reciprocal sums [2.20], which are often exceedingly difficult to
evaluate.
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2.29 Fast Matrix Multiplication Constants

Everyone knows that multiplying two arbitrary #n x n matrices requires #°> multiplica-
tions, at least if we do it using standard formulas.

In the mid 1960s, Pan and Winograd [1] discovered a way to reduce this to approx-
imately #* /2 multiplications for large n, and for a few years people believed that this
might be the best possible reduction.

Define the exponent of matrix multiplication w as the infimum of all real numbers ©
such that multiplication of # x n matrices may be achieved with O(n") multiplications.
Clearly w < 3 and it can be proved that w > 2.

Strassen [2] discovered a surprising base algorithm to compute the product of 2 x 2
matrices with only seven multiplications. The technique can be recursively extended to
large matrices via a tensor product construction. In this case, the construction is very
simple: Large matrices are broken down recursively by partitioning the matrices into
quarters, sixteenths, etc. This gives w < In(7)/ In(2) < 2.808.

More sophisticated base algorithms and tensor product constructions permit further
improvements. Many researchers have contributed to this problem, including Pan [3, 4]
who found w < 2.781 and Strassen [5] who found w < 2.479. See [6, 7] for an overview
and history.

Coppersmith & Winograd [8] presented a new method, based on a combinatorial
theorem of Salem & Spencer [9], which gives dense sets of integers containing no three
terms in arithmetic progression. They consequently obtained w < 2.376, which is the
best-known upper bound today.

Is w = 2? Biirgisser [10] called this the central problem of algebraic complexity
theory. Here is a closely related combinatorial problem [8, 11].

Given an abelian additive group G of order n, find the least integer f(n, G) with
the following property. If a subset S of G has cardinality > f(n, G), then there exist
three subsets 4, B, C of S, pairwise disjoint and not all empty, such that

Z a= Z b= Z c.

acA beB ceC
(Clearly f(n, G) exists for n > 5, because if S = G, then consider 4 = {0}, B =
{g, —g}, C = {h, —h}, where nonzero elements g and / satisfy g # h and g # —h.)
Now define another function

F(n) = max f(n, G),

the maximum taken over all abelian groups G of order », and examine the ratio

In(n)

o = lim .

w0 F(n)
Coppersmith & Winograd [8] demonstrated that if p = 0, then w = 2. A proof that
p = 0, however, is still unknown. What (if any) numerical evidence exists in support

of p =0?

Coppersmith [12] further gave a constant > 0.294 and, forany ¢ > 0, an algorithm
for multiplying an 7 x n matrix by an n x n% matrix with complexity O(n>*¢). An
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improvement in the lower bound for o would provide more hope that w = 2. Research
in this area continues [13, 14].
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2.30 Pisot—Vijayaraghavan—Salem Constants

Given any positive real number x, let {x} = x mod 1 denote the fractional part of x. For
any positive integer n, clearly {n + x} = x for all x, and the sequence {rnx} is periodic
if x is rational. A consequence of Weyl’s criterion [1-4] is that the sequence {nx} is
dense in the interval [0, 1] if x is irrational. Moreover, it is uniformly distributed in
[0, 1], meaning that the probability of finding an arbitrary element in any subinterval
is proportional to the subinterval length.

Having discussed addition and multiplication, let us turn to exponentiation. It can
be proved [5,6] that the sequence {x"} is uniformly distributed for almost all real
numbers x > 1 (curiously, no specific such values x were known until recently [7, 8]).
It is believed that the sequence for x = 3/2 is a typical example [2.30.1]. The measure-
zero, uncountable set £ of exceptions x to this behavior [9-12] includes the numbers
2,3,4,...and 1 + /2. What else can be said about £?
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First, we review some terminology. A monic polynomial is a polynomial with a
leading coefficient equal to 1. An algebraic integer « is a zero of a monic polynomial
with integer coefficients. The conjugates of « are all zeros of the minimal polynomial
of «. Define the set U to be all real algebraic integers @ > 1 whose conjugates y # o
each satisfy |y| < 1. It is known that U C E and that U is countably infinite. Let us
study the exceptional behavior in more detail.

Define the set S of Pisot—Vijayaraghavan (P-V) numbers to be all real algebraic
integers 6 > 1 whose conjugates y # 6 each satisfy |y | < 1. Define the set 7 of Salem
numbers to be all real algebraic integers 7 > 1 whose conjugates y # 7 each satisfy
|| < 1 with at least one case of equality. Then clearly S and 7' determine a partition
of U. Moreover, if 6 is a P-V number, then

lim {#"} = 0mod 1,

n—00

whereas, if 7 is a Salem number, then {7"} is dense but not uniformly distributed in the
interval [0, 1]. There are many related results and we give an example [11]. Suppose we
are given an algebraic real @ > 1 and a real A > 0 for which {La"} has at most finitely
many limit points modulo one. Then o must be in S. Additionally, the limit points must
each be rational. It is unknown whether anyone has exhibited explicitly a number that
isin £ but not in U (e.g., a transcendental exceptional x).

We turn attention to the set S, which is known to be countably infinite and closed,
and which possesses an isolated minimum point 6y > 1. Salem [13] and Siegel [14]
proved that 8y = 1.3247179572 .. . is the real zero of the polynomial x> — x — 1, that
is,

1 _1
o= (14 48) +1 (34 48) " =5 cos (1arceos (35)).

This constant also appears in [1.2.2].

In fact, a complete listing of all P-V numbers up to ¢ + ¢ is possible [15], where
¢ = 1.6180339887 ... is the Golden mean [1.2] and 0 < & < 0.0004. Also, let S<!>
denote the set of all limit points of S, that is, the derived set of S. The minimum point
of S<'> is ¢ and is isolated. More generally, let S<¥> denote the derived set of S<¢~1>
for all k > 2. The minimum point of $<?> is 2, and the minimum point of S<¥> is
between +/k and k + 1, but no exact values of these points for k£ > 3 are known.

The set T is more difficult to study. We know that 7" is countably infinite and that
U is a proper subset of the closure of T'. The existence of a minimum Salem number
remains an open problem, but it is conjectured to be g = 1.1762808182 ..., which is
one of the zeros of Lehmer’s polynomial [16]

04 x? X7 =X X P x4+ 1L

It has been proved [17-20] that there are exactly forty-five Salem numbers less than
1.3 with degree at most 40. (There are only two known Salem numbers less than 1.3
with degree exceeding 40, but conceivably there may be more.) Is 8 the smallest limit
point of 7? The answer is not known to this question either.
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The constants 6y and t; appear in connection with a related conjecture, due to
Lehmer, about Mahler’s measure of anonzero algebraic integer .. If « is of degree n with
conjugates o] = o, ap, &3, ... , &y, define M(«) to be the absolute value of the product
of all o satisfying |er;| > 1. Kronecker [21,22] proved that if M(a) =1, then o is a
root of unity. Is it true that for every ¢ > 0, there exists & suchthat 1 < M(a) < 1+ &?

If @ is non-reciprocal, that is, if @ and 1/« are not conjugate, then Smyth [11,23]
proved that the answer is no. More precisely, either M(«) > 6y = 1.324...or is a
root of unity.

For arbitrary o, Lehmer [16] conjectured that the answer remains no. More precisely,
either M(a) > 19 = 1.176... or « is a root of unity. Despite extensive searches, no
counterexamples to this inequality have been found. The best-known relevant estimate,
if & is not a root of unity, is [24-30]

9 In(In(n))\*
M) > 1+ (Z - s> <71n(n) )

for sufficiently large n. For more about Mahler’s measure, see [3.10]. We mention a
related inequality [21,30-32] involving what is called the house of «:

_ 1 (/64 In(In(n))\*
|| = max |o| >1+—-| — —¢
1<k<n n \ 7?2 In(n)

and a corresponding conjecture [33]: || > 1 + %ln(@o)/n =14(0.4217993614...)/
n. See also [34,35].

2.30.1 Powers of 3/2 Modulo One

Pisot [9] and Vijayaraghavan [36] proved that {(3/2)"} has infinitely many accumula-
tion points, that is, infinitely many convergent subsequences with distinct limits. The
sequence is believed to be uniformly distributed, but no one has even proved that it is
dense in [0, 1].

Here is a somewhat less ambitious problem: Prove that {(3/2)"} has infinitely many
accumulation points in both [0, 1/2) and [1/2, 1]. In other words, prove that the se-
quence does not prefer one subinterval over the other. This problem remains unsolved,
but Flatto, Lagarias & Pollington [37] recently made some progress. They proved
that any subinterval of [0, 1] containing all but perhaps finitely many accumulation
points of {(3/2)"} must have length at least 1/3. Therefore, the sequence cannot prefer
[0,1/3 —¢&) over [1/3 — ¢, 1] for any & > 0. Likewise, it cannot prefer [2/3 + ¢, 1]
over [0, 2/3 + ¢). To extend the proof to [0, 1/2) and [1/2, 1] would be a significant
but formidable achievement.

Lagarias [38] mentioned the sequence {(3/2)"} and its loose connections with
ergodic-theoretic aspects of the famous 3x 4 1 problem. The details are too elabo-
rate to discuss here. What is fascinating is that the sequence is also fundamental to a
seemingly distant area of number theory: Waring’s problem on writing integers as sums
of n'™ powers.
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Let g(n) denote the smallest integer k& for which every positive integer can be ex-
pressed as the sum of k n'" powers of nonnegative integers. Hilbert [39] proved that
g(n) < oo for each n. For 2 < n < 6, it is known that [40—44]

o=+ () |2

Dickson [45,46] and Pillai [47] independently proved that this formula is true for all
n > 6, provided that the condition

(G)=-0)

is satisfied. Hence it is sufficient to study this inequality, the last remaining obstacle in
the solution of Waring’s problem.

Kubina & Wunderlich [48], extending the work of Stemmler [49], verified compu-
tationally that the inequality is met for all 2 < n < 471600000. Mahler [50] moreover
proved that it fails for at most finitely many », using the Thue—Siegel-Roth theorem
on rational approximations to algebraic numbers [2.22]. The proof is non-constructive
and thus a computer calculation that rules out failure altogether is still not possible.

It appears that the inequality can be strengthened to

() {016

for all n > 7 and generalized in certain ways [51,52]. Again, no proof is known apart
from Mabhler’s argument. (The best effective results are due to Beukers [53], Dubickas
[54], and Habsieger [55], with 3/4 replaced by 0.577.) The fact that so simple an
inequality can defy all attempts at analysis is remarkable.

The calculation of g(n) is sometimes called the “ideal” part of Waring’s problem.
Let G(n) denote the smallest integer k for which all sufficiently large integers can be
expressed as the sum of k n™ powers of nonnegative integers. Clearly G(n) < g(n),
and Hurwitz [56] and Maillet [57] proved that G(n) > n + 1. In other words, there are
arbitrarily large integers that are not the sum of n n' powers. It is known [43, 58-60]
that G2)=4,4<G3)<7,G4) =16, 6 < G(5) <17, and 9 < G(6) < 24. See
[61-63] for numerical evidence supporting a conjecture that G(3) = 4. See also [64, 65]
for the asymptotics of the number of representations of n as a sum of four cubes,
which interestingly turns out to involve I"(4/3), where I'(x) is Euler’s gamma function
[1.5.4].

Here are several unrelated facts. Infinitely many integers of the form [x" ] are com-
posite [66,67] when x = 3/2. This is also true when x = 4/3. Are infinitely many such
integers prime? What can be said for other values of x?

A conjecture is that, if # is a real number for which 2’ and 3' are both integers, then ¢
is rational. This would follow from the so-called four-exponentials conjecture [68, 69].
A weaker result, the six-exponentials theorem, is known to be true.
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Define an infinite sequence by xo = 1 andx, = [3x,_; | forn > 1. Odlyzko & Wilf

[70] proved that
<)
xm=|K-[=
2

for all n, where the constant K = 1.6222705028 ... (in fact, they proved much more).
Their work is connected to the solution of the ancient Josephus problem. The constant
K is analogous to Mills’ constant [2.13], in the sense that the formula is useless com-
putationally (unless an exact value for K somehow became available), but its mere
existence is remarkable.

A 3-smooth number is a positive integer whose only prime divisors are 2 or 3. A
positive integer n possesses a 3-smooth representation if n can be written as a sum of
3-smooth numbers, where no summand divides another. Let 7(7) denote the number of
3-smooth representations of n. Some recent papers [71—73] answer the question of the
maximal and average orders of 7(n). See also [5.4].

Let n be an integer larger than 8. Need the base-3 expansion of 2" possess a digit
equal to 2 somewhere? Erdds [74] conjectured that the answer is yes, and Vardi [75]
verified this up to n = 2 - 3%°. More instances of the interplay between the numbers 2
and 3 occur in [2.26].
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2.31 Freiman’s Constant
2.31.1 Lagrange Spectrum

In our essay on Diophantine approximation constants [2.23], we discussed Hurwitz’s
[1,2] theorem that, for any irrational number &, the inequality

1 1
-
V5 q?
has infinitely many solutions (p, ¢), where p and g are integers. Can this result be
improved? That is, can +/5 be replaced by a larger quantity? The answer is no for
certain special numbers &, but it is yes otherwise. We now elaborate.

For each number &, define A(£) to be the supremum of all quantities ¢ for which the
integer solution set (p, g) of

el
q

11
-
cq?

-
q

remains infinite. The set of values L taken by the function A(£) is called the Lagrange
spectrum [3]. Clearly the smallest value in L is +/5. It can be proved that the set
L N[2, 3] is countably infinite, with 3 as its only limit point, but [0, co) € L for some
point 6 > 4. Much more will be said about L shortly.

2.31.2 Markov Spectrum

A two-variable quadratic form with real coefficients f(x,y) = ax? + Bxy + y?
is indefinite if f assumes both positive and negative values. If the discriminant
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d(f) = B? — day is positive, then the plot of z = f(x, y) in real x yz-space is a saddle
surface, that is, with no maximum or minimum points.
For each such f, define

Vd(f)

inf m,n)|’
(m,n)#(0,0)|f( )]

u(f) =

where the infimum ranges over all nonzero integer pairs. The set of values M taken by
the function w( f) is called the Markov spectrum [3]. It can be proved that L € M
and further that M N[2,3] = L N[2,3] and [, o0) C M for the same point 6 > 4
mentioned for L. However, M N [3, 0] # L N[3, 6]; that s, L is a proper subset of M,
which gives rise to some interesting unresolved issues.

2.31.3 Markov—Hurwit; Equation

Let us return to Hurwitz’s theorem. First, define two numbers & and 7 to be equivalent
if there are integers a, b, ¢, d such that

_an+b

= ——, lad — bc| = 1.
3 J— la cl

This relation permits the partitioning of numbers into equivalence classes. Two irra-
tional numbers & and n are equivalent if and only if, after some point, their respective
sequences of continued fraction partial denominators are identical.

Now, it can be proved that A(£) = +/5 for all & equivalent to the Golden mean ¢
[1.2], that is, possessing partial denominators that are eventually all 1s. Such numbers
can be thought of as “simplest,” but from the point of view of rational approximations,
the simplest numbers are the “worst” [1,4]. If we leave these out, the next level of
approximation difficulty is given by A(£) = +/8 for all £ equivalent to Pythagoras’
constant 4/2 [1.1], that is, possessing partial denominators that are eventually all 2s. If
we leave these out as well, the next level is A(£) = +/221/5 and so on. See [3] for a table
of smallest numbers in the Lagrange spectrum, as well as an algorithm for computing
a corresponding representative quadratic form f(x, y).

The values /5, V38, M/S, V1517/13, 4/7565/29,...are all of the form

VOw? — 4/w, where u, v, w are positive integers satisfying the Diophantine equation
W+ v+ wr=3uww, 1<u<v<w.
The first several admissible triples are
(u,v,w)y=(1,1,1),(1,1,2),(1,2,5),(1,5,13), (2, 5,29), (1, 13, 34), ...
and the infinite sequence of ws
1, 2,5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, ...

are called Markov numbers [5]. It is unknown [6—12] whether every wy determines a
unique admissible triple (i, vg, wy). Note that, clearly, the limit of A(wy) as k — oo
is 3. This proves that L N [2, 3] accumulates at 3, as was to be shown.
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Here is a side topic. The number N(n) of admissible triples (u, v, w) with w <n
was proved by Zagier [7, 8] to be

N(n) = C - n(n)* + O [In(n) - In(In(n))] ,

where
31 1 2g(1) — g(2) 3 g(u) + g(v) — g(w)
~— 25 2 2 + = Z
22 \g(l) g(1)y’g(2) T e )gW)g(w)
@) it
= 0.1807171047...
and

3x ++4/9x2 — 4 3x 2
g(x)=In — = arccosh > ,ng.

He conjectured that this asymptotic result can be strengthened to
N(n) = C - In(3n)* + o (In(n)),

which, if the uniqueness conjecture is true, may be rewritten as

wp = (% +o(1)> exp (@) = (% + 0(1)> (10.5101504239 .. )V,

Here is a generalization of the side topic. Let m > 3. Consider the Markov—Hurwitz
equation

2 2
ui+ud -t ud =muguy oy, 1 <up Sy < <y,

and define N,,(n) to be the number of admissible m-tuples (u, uz, . .., u,) of positive
integers with u,, < n. Itis surprising that the growth rate of N,,(n) is not O(In(n)" 1),
but rather O(In(n)*"+¢) for any ¢ > 0, where the exponents «(m) satisfy [13—15]

a3) =2, 2.430 < a(4) <2.477, 2.730 < a(5) < 2.798, 2.963 < a(6) < 3.048

and lim,, o a(m)/ In(m) = 1/1n(2). The analog of Zagier’s constant C for m > 4 is
not known.

2.31.4 Hall’s Ray

Our knowledge of L N [3, oo) and M N [3, 0o) is much less complete than the afore-
mentioned information for L N [2, 3]. Each of L and M is a closed subset of the real
line; hence the complement of each spectrum is a countable union of open intervals, that
is, of gaps. A gap is maximal if its endpoints are in the spectrum under consideration.
Here are several maximal gaps (with regard to both L and M):

(m, «/B) = (3.464101 ...,3.605551...),

65+ 93
(JE, 272‘/_) = (3.605551...,3.663111...),

/480
(T’ m) = (3.129843...,3.162277....).
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The first two were discovered by Perron [16]; many others are listed in [3]. Evidently
there is no “first” gap with left-hand endpoint > 3.

Hall [17] proved that any real number in the interval [v/2 — 1, 4y/2 — 4] can be
written as a sum of two numbers whose continued fraction partial denominators never
exceed 4. It follows that L and M contain all sufficiently large real numbers; this portion
of these spectra is called Hall’s ray. Freiman [18] succeeded in computing the precise
point 6 at which Hall’s ray begins (which is the same for both L and M) and its exact
expression is [3, 6]

253589820 + 283748+/462

0 =4+ = 4.5278295661 . ...
491993569

In fact, the “last” gap with right-hand endpoint < co is (4.527829538...,
4.527829566. . .), true for both L and M.

By way of contrast, Bumby [3,19] determined that M N[3,3.33437...] has
Lebesgue measure zero! Can the endpoint 3.33437 ... be shifted any farther to the
right and yet preserve the measure-zero property? Can an exact expression for this
endpoint be found?

2.31.5 L and M Compared

This is perhaps the most mysterious area of this study, and we shall be very brief
[3]. Freiman [20] constructed a quadratic irrational & = 3.118120178... that is in
M but not in L. Freiman [21] later found another example: n = 3.293044265 . ...
Infinitely many more such examples are now known. Berstein [22,23] determined the
largest intervals containing Freiman’s points £ and 5 but not containing any elements
of L. The interval for & has approximate length 1.7 x 107! whereas that for 1 has
approximate length 2 x 1077, Freiman additionally showed that these intervals each
contain countably infinite elements of M.

Cusick & Flahive [3] conjectured that L and M coincide above v/12 = 3.464101 . .. .
The largest known number in M but not in L is 3.29304.... Much more on this
fascinating subject is found in [24].
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2.32 De Bruijn—Newman Constant

We discuss a constant here that is unlike any other in this collection: It is positive if

and only if the notorious Riemann hypothesis [1.6.2] is false. It is, moreover, defined

in a manner that permits the computer calculation of precise numerical bounds [1].
Starting with the Riemann zeta function ¢(z), define [2]

£(z) = 12(z — DT (A2)¢(2), E(z) = £(iz + 1), z complex.

It is trivial to prove that the Riemann hypothesis is true if and only if the zeros of E(z)
are all real. This restatement of the conjecture will be useful to us in what follows.
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Think of E(z/2)/8 as a complex frequency function, that is, as the Fourier cosine
transform of a time signal ®(7). The signal can be calculated to be

(1) = Z(2n2n4e9’ —3xn2e’) exp(—mnie*), treal,t > 0.

n=1

Given a real parameter A, consider the modified signal ®(¢) exp(A¢?) and then carry
it back into the frequency domain, that is, returning to where we were initially. The
resulting family of Fourier cosine transforms, H,(z), contains Hy(z) = E(z/2)/8 as a
special case.

What is known about the zeros of H,(z), for fixed A? De Bruijn [3] proved, among
other things, that H, has only real zeros for A > 1/2. Newman [4] established further
that there is a constant, A, such that A, has only real zeros if and only if A > A.
Of course, A < 1/2 follows immediately from de Bruijn’s result. The Riemann hy-
pothesis is equivalent to the conjecture that A < 0. Newman conjectured that A > 0,
emphasizing nicely that the Riemann hypothesis, if it is true, is just barely so.

Lower bounds on A are clearly of enormous interest to everybody concerned. Elab-
orate computations in [1,5-8] gave A > —0.0991. Csordas, Smith & Varga [9, 10]
proved a theorem, involving certain “close” consecutive zeros of the Riemann xi func-
tion (known as Lehmer pairs), that dramatically sharpened estimates of the de Bruijn—
Newman constant. The current best lower bound [11,12] is A > —2.7 x 10~°. No
progress has been made, as far as is known, on improving the upper bound 1/2 on A.

As an aside, we mention one other criterion equivalent to the Riemann hypothesis.
Define, for each positive integer n, the series

=[]

—1In(@m) + 2 +1 = 0.0230957089 . .. ifn =1,
=1 —In@n) + v — ¥ — 2y + 1 = 0.0923457352.... ifn =2,
0.2076389205 ... ifn =3,

where each sum is over all nontrivial zeros p of £(z) and y is the k™ Stieltjes constant
[2.21]. Li [13] proved that A, > O for all n if and only if the Riemann hypothesis is
true. See the related constants o, in [2.21] and insightful discussion in [14, 15].
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2.33 Hall-Montgomery Constant

A complex-valued function f defined on the positive integers is completely
multiplicative if f(mn) = f(m)f(n) for all m and n. Clearly such a function is de-
termined by its values on 1 U {primes}. Simple examples include f(n) =0, f(n) =1,
and f(n) = n" for some fixed » > 0. A more complicated example, for a fixed odd
prime p, is the Legendre symbol

n 0 if pln,
fpr(n) = (—) =1{1 if p fnandn is a quadratic residue modulo p,
P —1 otherwise;

for example, (6/19) = 1 since 52 = 6 mod 19, but (39/47) = —1 since the congruence
x2 = 39 mod 47 has no solution.

To illustrate, define g(V) to be the cardinality of the set {1 <n < N : f,(n) = 1}. It
is known [1] that, from the integers {1, 2, ..., p — 1}, (p — 1)/2 are quadratic residues
and (p — 1)/2 are nonresidues. Hence g(N)/N — 1/2 as N — oo through multiples
of p. It is natural to ask about other possible limiting values of g(N)/N for different
choices of N. We will return to this issue shortly.

Consider the class F of all completely multiplicative functions whose values are
constrained to the closed real interval [—1, 1]. What numbers arise as mean values of
functions in F'? More precisely, what is the set I" of limit points of

1 N
un(f) =5 D f)
n=1
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as f varies over F' and as N — oo? The set I is called the multiplicative spectrum
of [—1, 1], and an understanding of its structure has been reached only recently.

Granville & Soundararajan [2, 3], building upon independent work by Hall & Mont-
gomery [4], proved that I" is a closed interval and, in fact,

' =[8;,1] =[-0.6569990137..., 1],
where §; = 26¢ — 1,

7?2 e 1
So=1— " —In(l m(—C—) +2Li
0 6 "(+‘/E)“<1+¢Z>+ 12<1+¢2

and Liy(x) is the dilogarithm function [1.6.8]. By analytic continuation, the expression
for 8o can be simplified to 1 + 72/6 + 2 Liy(—+/e). This remarkable formula is only
the tip of a larger theory: Much can also be said about I'(S), where S is an arbitrary
subset of the unit disk D in the complex plane (rather than just the interval [—1, 1]).
An important role in the proofs is played by differential and integral equations with
delay [5.4].

Returning to the special case of f,,(n), by the aforementioned theorem,

g(N) = (N = g(N)) = (81 + o(1))N;

) = 0.1715004931 ...,

that is, g(N) > (8¢9 + o(1))N. In other words, the proportion of integers not exceeding
N that are quadratic residues mod p is at least &y, independent of the choice of p:
g(N) < 1

8o < liminf — < limsup
N—o0 N—o00

g(N)

<1.

This proves a 1994 conjecture of Heath-Brown [4]. Additionally, the constant § is the
best possible and, in fact, the limit inferior is equal to &, for infinitely many primes p.

Likewise, the limit superior is equal to 1 for infinitely many primes p. Here is a proof.
For fixed NV, select a prime p = 1 mod M, where M is 8 x the product of all odd primes
< N.This is possible by Dirichlet’s theorem on primes in arithmetic progressions. Thus
(2/p) =1 and, if g is an odd prime < N, then (¢/p) = (p/q) = (1/q) = 1 by the law
of quadratic reciprocity. Any # < N is the product of primes < N; hence (n/p) = 1.
Therefore, all » < N are quadratic residues mod p. Infinitely many choices of p are
possible, of course, so the result follows.

Let us examine a generalization. A complex-valued function f defined on the pos-
itive integers is multiplicative if f(mn) = f(m) f(n) whenever m and n are relatively
prime. (If /" is completely multiplicative, then clearly f is multiplicative.) Assume that
—1 < f(n) < 1 for all n (as before); then its mean value exists and is equal to [5-9]

00 k
lim uN(f)=1"[(1—l> (HZﬂi )),
—00 p —

P p
where the product is over all primes p. For example, if f(n) = ¢(n)/n, where ¢
is the Euler totient function [2.7], then limy_ o uy(f) = 6/7%. Note that, in this
example, f(p*) = f(p) for any k > 1. Complicated conditions for the existence of
limy o py(f) arise if we weaken our assumption to only f(n) € D for all n.
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Here is an (unrelated) asymptotic result corresponding to a rather artificial example
[10]. Define a multiplicative function f by the recursive formula

1 ifn=1,

fn) = {pf(k) if n = p* for any prime p;

then

— 1 1 o f(n)
A}gnMWZf(n)=5]_[(l—?+(p—l)2; =
n= V4 n=.

1
= —(0.8351076361 . ..).

: )

By way of contrast, the completely additive function Q2(n) introduced in [2.2] satisfies
Q(p*) = kQp) for any prime p and has quite dissimilar asymptotics.
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Constants Associated with Analytic Inequalities

3.1 Shapiro—Drinfeld Constant
Consider the cyclic sum
X1 X2 Xn—1 Xy

+ +o- ,
X2 + X3 X3+ X4 X, + X1 X1+ x»

fn(x19x29-"5xn) =

where each x; is nonnegative and each denominator is positive. Shapiro [1] asked if
fu(x1,x2,...,x,) > n/2 for all n. Lighthill [2] gave a counterexample for n = 20.
Other counterexamples were subsequently discovered for n = 14 [3,4] and for n = 25
[5,6]. See [7-9] for a history of progress in understanding cyclic sums. We will only
summarize: Shapiro’s inequality is true for even n < 12 and odd n < 23 (using a
computer-based proof [10]) and is false otherwise. This result has been analytically
proved in the even case [11] but not yet for odd 13 < n < 23.

It is interesting to examine the tools mathematicians used to unravel Shapiro’s in-
equality early on. We look at just one. Let

f(n) = iggfn(xhxz, ey Xp).
Rankin [12] studied the expression
fo) _ . fo)

A= lim inf ——
n—oo n n>l n

and proved that A < 0.49999993 < 1/2. From this he deduced immediately that
Shapiro’s inequality is false for all sufficiently large n. Others took interest in the
constant A and attempted to calculate it to increasing accuracy [7]. Note that such ef-
forts had no bearing on the truth of Shapiro’s inequality for finite n. As is often the
case, a tool for one person’s use becomes the object of study for another.

Drinfeld [13] discovered a geometric interpretation of A that also provides means
for computing A to arbitrary precision. Consider the two curves

1 2
exp(x)’ ©  exp(x) + exp(x/2)

208
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1.2

P(x) 0.9

I I I
0'—80.2 -0.1 0 0.1 0.2

X

Figure 3.1. In a neighborhood of x = 0, the graph of y = ¢(x) is a joint tangent to the other two
curves.

in the xy-plane. Let ¢(x) be the convex support of these two functions. That is, ¢(x) is
the largest concave up function not exceeding the others (see Figure 3.1). Then

0 1
A= ? = 0.4945668172 ... = 5(0.9891336344 ceo)e

Many modifications of Shapiro’s sum have been studied [7]. We mention only two.
Consider first the cyclic sum

X1+ x X2+ Xx Xn—1+x X, +x
1 3+ 2 4+“.+ 1 1_|_ 2

gn('x11 -x21 IR ] xn) =
X1+x2 x2+x3 Xp—1+Xn  Xp+ X

under the same conditions for x;. The inequality g,(xi,x2,...,x,) >n is, like
Shapiro’s inequality, false in general. Elbert [14] studied the expression

= lim @, where g(n) = inf g, (x1, X2, ..., Xp,).
n—oo n x>0

Using Drinfeld’s method, he found that © = ¥(0) = 0.9780124781 ..., where y =
¥ (x) is the convex support of the two functions

T +exp(x) I +exp(x)
T T2 T T e )2)

Recent computations of A and u include [15, 16]; generalizations are found in [17, 18].
Consider also the difference of cyclic sums A, = f, — h,, where f, is as before and

X1 X2 Xn—1 Xn

hp(x1, X2, ..., %) = + +--- .
X1+x2 X2+ Xx3 Xn—1+Xp Xy + X
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Gauchman [19,20] obtained that

Al’l 9 9 e n
infinf 2nOL X2 %) g 0519875018

n>1x>0 n

and the corresponding two curves are
_ 1 —exp(x/2) _exp(—x)—1
—exp(x) + exp(x/2)’ = 2 '

We mention one other (non-cyclic) sum, due to Shallit [15,21]:

n k
Sn(XI,Xz,...,xn): E xl._lr_ § 1—[
i=1

1<i<k<n j=i

1
Xk ’
which can be proved to satisfy

lim infs,(x1, x2,...,x,) —3n = —1.3694514039.. ..

n—00 x>0

by numerical (non-geometric) means. Many variations of these sums f,, A,, and s,
suggest themselves.

3.1.1 Djokovic’s Conjecture

Djokovic’s conjecture, like Shapiro’s, began as a Monthly problem and ultimately gave
rise to an interesting constant. Assuming x; < x; < ... < X, define

ﬁ(f — k)
k=1

Djokovic [22] conjectured that (—1)"*!=¥(3 P/dx;) > 0 for each k. It is now known
that this is not generally valid [23,24], even for n = 3. Let a; = 0.1824878875. ..
be the unique real zero of the cubic 12a> — 164> +8a —1 and ay =1 —a; =
0.8175121124.... Then Djokovic’s inequality is true if aj(x3 —x;) <x; —x; <
az(x3 — x1) and false otherwise. Similarly, for n > 4, the validity of the inequality
depends on the distribution of the xs. If the xs are uniformly spaced, then for n < 6,
the inequality is true, but for sufficiently large #, it is false.

N
P(xy,x2,...,x,) = Mf (H(r — xk)) dt, where M = mtax
k=1 X1 =t=Xp
X
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3.2 Carlson—Levin Constants

Let f be a nonnegative real-valued function on [0, c0). We wish to determine bounds
for the integral of f(x), given the existence of the integrals of x“ f(x)? and x® f(x)?.
In the special casea = 0, b = 2, p = g = 2, Carlson [1-3] determined that

/4 /oo 1/4

{ fOdx < /7 [ swrax| | [ 2 reras

0

and that the constant /7 is the best possible. By “best possible” we mean that /7 is the
smallest real coefficient for which the inequality is true. (If we attempt to sharpen the
inequality by making the coefficient less than /7, then there is an admissible function
f that will be a counterexample.)
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For the general case, with p > 1,¢ > 1, A > 0, and u > 0, Levin [2-4] discovered
that

/ fx)dx < C / xP7I f(x)Pdx / x4 £ (x)dx
0 0 0

and the best constant is

L g rerd Y
~(ps) (q) [(?» +M)F(Sri)} ’
where
jz . A
pr+qr  putgh
and I'(x) is Euler’s gamma function [1.5.4]. It is interesting that such a closed-form

expression for the best constant even exists: Many inequalities cannot be evaluated so
completely. See extensions in [5—8].

r=1—s—1t, s=
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MR 32 #5824.

3.3 Landau—Kolmogorov Constants

There is a vast literature on inequalities involving the norms of a function f and its
derivatives /). We state just enough here to define certain constants C(x, k) in four
separate cases. The constants correspond to the inequality (to be explained in each
case)

1f®1 < Co, BN, 1<k <n,

which is henceforth called “inequality /.”

3.3.1 L(0,00) Case

Let || f]| here denote the supremum of | f(x)|, where the real-valued function f is
defined on (0, o). Landau [1] proved that if f is twice-differentiable and both f and
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f"" are bounded, then
L1 < 201017112

and the constant 2 is the best possible. By this, we mean that replacing 2 by 2 — ¢ for
any positive number & would necessarily lead to a counterexample f.

Schoenberg & Cavaretta [2,3] extended this inequality to a setting where the n'"
derivative of f exists and both f and /™ are bounded. They determined best constants
C(n, k), 1 <k < n, for inequality / and characterized C(n, k) in terms of norms of
Euler splines. For example,

1
C3, 1= (%) =435622..., C(3,2)=247=2.88449...,
C(4,1)=4.288. .., C(4,2)=5.750. .., C(4,3)=3.708. ...

An explicit formula for all » and £ is not available [4, 5].

3.3.2 Ly(—00, 00) Case

Let || f]| here denote the supremum of | f(x)|, where the real-valued function f is
defined on (—o0, 00). Hadamard [6] proved that if f is twice-differentiable and both
f and f” are bounded, then

A1 < V2117112

and the constant /2 is the best possible.
Kolmogorov [7] determined best constants C(n, k), 1 < k < n, for inequality / in
terms of Favard constants [4.3]:

14k 4 > —lj ntl
C(n, k) =ay_ay, +“, where a, = ;]2:; |:2(]+)11| .

These formulas include special cases discovered by Shilov [8]:

cG.H=(2)°. C(3.2) =31,
C@é, 1= ()", C4.2)= (%), c@3)=(%)",

5
C. 1) = (1227, ¢(5,2)= ()"

Observe that this case, involving functions on the whole line, is easier than the previous
case involving functions on the half line [4, 5].

3.3.3 Ly(—00, 00) Case

Given a real-valued function f defined on (—o0, 00), define

1

2

I/l = /ﬂﬁm
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Hardy, Littlewood & Pélya [9] proved, assuming the n™ derivative of f exists and both
f and f™ are square-integrable, that C(n, k) = 1 is the best possible for 1 < k < n.

3.3.4 L,(0,00) Case
As before, the half-line case is more difficult than the corresponding whole-line case.

Given a real-valued function f defined on (0, 00), define
1

2

11l = / FYdx
0

Hardy & Littlewood [9] proved, assuming f is twice-differentiable and both f and f”
are square-integrable, that

/ 1 L

IO = V211117102

and the constant /2 is the best possible.

Ljubic [10] and Kupcov [11] extended this inequality to / and gave a remarkable
algorithm for finding best constants C(#, k) in terms of zeros of certain explicit poly-
nomials. For example [12, 13],

C(3,1) = C(3,2) = 31 [2 (2% — 1)]_

wl—

= 1.84420.. .,

1

1 /.1 3\ |2
C(4, l):C(4,3)=[— (34+3 4)} — 227432,
a

2\ 2
C(4,2) = <5) —2.97963.. .,
where a is the least positive root of x® — 6x* — 8x? 4+ 1 = 0 and b is the least positive

root of x* — 2x2 —4x +1 =0, and
C(5,1)=C(5,4)=2.70247..., C(5,2)=C(5,3)=4.37800....

In the special case k = 1, it can also be shown that

1
— i+ (=D |
Cn. 1) = |:(n Yo 4+ (n—1) ’
c
where c is the least positive root of

7.[2

c o0
1
dxdy = .
//(xz"—yx2+l)ﬁ xey 2n
00

A similar formula for £ > 1 is not known. A consequence of Ljubic and Kupcov’s work
is that all C(n, k) for this case must be algebraic numbers. This assertion appears to be

true for the L (0, co) case as well.
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Among the topics we have omitted are:

* best constants associated with the L ,(0, o0) and L ,(—00, 00) norms, where p # 2
and p # oo, or the same over a finite interval [14, 15];

* best constants in the discrete case, specifically, those associated with one-way and
two-way infinite real sequences with the /, norm and where derivatives are replaced
by differences [16, 17].

It turns out that p = 1, 2, oo are the only cases for which best constants have exact
formulas. For all other values of p, numerical approximation is evidently required.

Here is an unsolved problem, which concerns a slight variant of L,(0, 00). Assuming
f to be twice-differentiable and both f and f” to be square-integrable with respect to
a weighting function w(x) = x, Everitt & Guinand [5, 18] proved that

00 2

xf'(x)dx | <K- [ xfx)dx - | xf"(x)*dx,
Jorusa) < Joorr |

0 0

o0

where the best possible constant satisfies 2.35070 < K < 2.35075. An exact expression
for K remains undiscovered.
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3.4 Hilbert’s Constants

Letp > landg = p/(p — 1).If{a,}, {b,} are nonnegative sequences and f(x), g(x)
are nonnegative integrable functions, then Hilbert’s inequality [1-3] for series is

S5 ee(m) (Se2) (S)

m=1 n=1

unless all a, are zero or all b, are zero, and Hilbert’s inequality for integrals is

1

// fix_)i_g)(;y)dxdy < ncsc( ) ff(x)pdx /g(J’)qdy ;
00 ‘

unless f is identically zero or g is identically zero. The constant 7 csc(r/p) is the
best possible in the sense that, if one replaces it by a smaller constant, then there exist
counterexamples.

We are concerned with the following two-parameter extension of Hilbert’s inequality.
Letp > 1,9 > 1and

14159 sothat0 <A=2-—L1_1<1,
g P q

Levin [4], Steckin [5], and Bonsall [6] showed that

00 00 A 00 % ) 5
7a,,1b,, < |mcsc L(q —D al bl]
m + n)* Agq

m=1 n=1

o0 X0 _ 1 %
{/ (x(x—i)—g(;)d dy < [n csc <%>} /f(x)pdx {g(y)%ly .

t it is not known whether the indicated constant is the best possible.
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There appears to be some confusion on the last point. Boas [7] indicated in 1949 that
Steckin had proved the constant is the best possible in the discrete case; in 1950 Boas
corrected himself and wrote that the bound is nof exact. Mitrinovic, Pecaric & Fink [1]
wrote that Steckin had established the constant to be the best possible. However, both
Levin & Steckin [8] and Walker [9] wrote that the problem is still open.

As far as is known, no one has calculated the best constant even for the case . = 1/2
and p =g =4/3. Is a computation possible analogous to that discussed with the
Copson—de Bruijn constant [3.5]?

[1]1 D.S. Mitrinovic, J. E. Pecaric, and A. M. Fink, Inequalities Involving Functions and Their
Integrals and Derivatives, Kluwer, 1991; MR 93m:26036.

[2] G.H. Hardy, J. E. Littlewood, and G. Pdlya, Inequalities, Cambridge Univ. Press, 1934; MR
89d:26016.

[3] K. Oleszkiewicz, An elementary proof of Hilbert’s inequality, Amer. Math. Monthly 100
(1993) 276-280; MR 94a:51032.

[4] V.I. Levin, On the two-parameter extension and analogue of Hilbert’s inequality, J. London
Math. Soc. 11 (1936) 119-124.

[5] S. B. Steckin, On positive bilinear forms (in Russian), Dokl. Akad. Nauk SSSR 65 (1949)
17-20; MR 10,515e and MR 11,870 errata/addenda.

[6] E F Bonsall, Inequalities with non-conjugate parameters, Quart. J. Math. 2 (1951) 135-150;
MR 12,807e.

[71 R.P. Boas, Review of “On positive bilinear forms,” MR 10,515e, errata in MR 11,870.

[8] V.1 Levinand S. B. Steckin, Inequalities, Amer. Math. Soc. Transl. 14 (1960) 1-29; MR 22
#3771.
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Soc. 18 (1973) 293-294; MR 48 #8723.

3.5 Copson—de Bruijn Constant

The interplay between series and integrals is sometimes very natural, but sometimes
not. Let {a,} be a nonnegative sequence and f(x) a nonnegative integrable function.
Define

n 00
An = Zakv Bn = Zak’
k=1 k=n

Fx)= [ f(tydt, G(x)= [ f(t)dt.
o=

Assume throughout that all infinite series and improper integrals under consideration
are convergent and finite. We will examine two examples, the first for which all is as
expected and the second for which all is not. Given p > 1, Hardy’s inequality [1] is of

the form
0 P p o
An p P
Y (7)< (G5) pe

n=1
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which always holds unless all a,, are zero. The corresponding theorem for integrals is

/(@)pdx < (—p‘i l)p/f(x)!’dx,
0 0

which always holds unless f is identically zero. The constant (p/(p — 1))” is the best
possible in the sense that, if one replaces it by a smaller constant, then there exist {a,,}
and f(x) that are counterexamples.

Given 0 < p < 1, one of Copson’s integral inequalities [2,3] is of the form

/(G)(Cx)>pdx > (—1 fp)P/f(x)”dx,
0 0

unless f is identically zero. The corresponding theorem for series, curiously, is

() () 20 - (75) e

unless all a, are zero. The constant is the best possible, as found by Elliott. What is
surprising is the correction term (or “gloss” as described in [2]) required to achieve the
correspondence.

If one removes the correction term, the following inequality emerges [2,4]:

00 B, P 00
2 () =y
n=1

n=1

unless all a,, are zero. The constant p? is, however, not the best possible. Hence by
removing the “gloss” we have wrecked the precision of the inequality.

Levin & Steckin [5] proved, for 0 < p < 1/3, that the best constantis (p/(1 — p))?,
but they could not do likewise for p > 1/3.

Consider the special case when p = 1/2:

1

o (an t an + a2+ o~ 4
>C a;
Y (Frme) ek

n=1

and rearrange the inequality by replacing a, by a2:

00 00 2 2 2
a,t+a, +ta, . ,+---

E:anSCE :( n n+1 n+2

n=1 n=1 n

Steckin [6] proved that ¢ < 2/+/3 and Boas & de Bruijn [7] improved this to 1.08 <
¢ < 17/15. To estimate ¢ more accurately, de Bruijn [8] defined a sequence of complex
numbers via the recurrence

1
2

1 1
U =x, unzn’5x+(uﬁ_l—1)2 forn > 2.
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It can be proved that c = 1.1064957714 . . . is the smallest real number for whichx > ¢
implies u,, > 1 (in particular, Im(u, ) = 0) for all # > 1. Further, if x > ¢, then

1
lim n_%u,, _ x4+ (x2 — 1)2 ifx > c,

n—00 c—(cz—l)% ifx =c.

Whether de Bruijn’s procedure can be applied for other values of p > 1/3 is open.
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3.6 Sobolev Isoperimetric Constants

The area A enclosed by a simple closed curve C in the plane with perimeter P satisfies
4w A < P2, and equality holds if and only if C is a circle. We first generalize this
isoperimetric property from two to n dimensions and then relate it to a certain Sobolev
inequality.

Let © be the closure of a bounded, open, connected set in Euclidean space R”
with piecewise continuously differentiable boundary and surface area S. Let f be a
continuously differentiable function defined on R” with compact support, meaning that
f = 0 identically outside of a ball, and let 7 f* denote the gradient of f. Also define
w, = 7"?T'(n/2 + 1)~!, the volume enclosed by the unit sphere in R”. The following
two statements are equivalent [1-4]:

+ The volume ¥ of Q satisfies n”"w, V"~! < S" with equality if and only if € is a ball.
e The L,/u—1ynorm of f is related to the L; norm of its gradient via

n—1

n

n 1
[irwian) < = [ 1o e
Rr T R

1/

and the constant n~'w, /" is sharp.

The former is geometric in nature, whereas the latter falls within functional analysis.
As a consequence, there is an extended interpretation of the phrase “isoperimetric
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problem” to encompass Sobolev inequalities and hence eigenvalues of differential
equations with boundary conditions. We cannot even hope to summarize such a massive
field [5—7] but attempt only to introduce a few constants.

Several authors [8,9] have commented that Sobolev inequalities act as uncertainty
principles: The size of the gradient of a function /" is bounded from below in terms of
the size of f. Note that the constants w, are interesting in themselves; for example,
limy .00 n'2wy/" = /2re = 4.1327313541 . . . by Stirling’s formula. We turn to four
sample exercises from physics.

3.6.1 String Inequality

If smooth functions f are constrained to satisfy f(0) = f(1) = 0, then

1 1
1 df\’
/f(x)zdx < F/ (%) dx
0 0

and the constant 1/72 = 0.1013211836. . . is the best possible [10]. This corresponds,
via the calculus of variations, to the fact that the smallest eigenvalue of the ordinary
differential equation (ODE)
d’g
T2 T8 =0, g(0) =g(r) =0,
is A = 1. This ODE, in turn, arises from the study of a vibrating, homogeneous string
that is pulled taut on the x-axis and is fastened at the endpoints [11,12]. The value
VA =1 has the physical interpretation as the principal frequency of the sound one
hears when the string is plucked.

A generalization of this is due to Talenti [3]:

1 L i 1,1 1
q Ty’ q ﬁw
{V@WW 52@+@) @+r) FIrG) {

where f(0) = f(1)=0,p > 1,9 > 1,andr = p/(p — 1). The indicated constant is
sharp.

df|?

dx

3.6.2 Rod Inequality

A second-order version of the “string inequality” follows. If suitably smooth f are
constrained to satisfy

d d
f0) = %(0) =/()= %(1) =0,

1 1
21\’
/f@ﬁhfuf(zg>dm
0 0

then
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where i = 1/6* = 0.0019977469 . .. and 6 = 4.7300407448 . .. is the smallest posi-
tive root of the equation

cos(f) cosh(9) = 1.

Moreover, the constant u is the best possible [12—14]. This corresponds to the fact that
the smallest eigenvalue of the ODE

d*g dg dg
T rg(x) =10, g(0)= 5(0) =g(m) = E(ﬂ) =0,

is A =0*/m* = 5.1387801326. ... This ODE, in turn, arises from the study of a
vibrating, homogeneous rod or bar that is clamped at the endpoints.

3.6.3 Membrane Inequality

A two-dimensional version of the “string inequality” follows. If smooth f are con-
strained to vanish on the boundary C of the unit disk D, then

[ <] [(2) () oo

where 1 = 1/6? = 0.1729150690. .. and 6 = 2.4048255576. . . is the smallest posi-
tive zero of the zeroth Bessel function

Jo(z) = Z( e (‘)

Moreover, the constant u is the best possible [11,12,15]. This corresponds to the fact
that the smallest eigenvalue of the ODE

d2 dg
d - —I—rd— +a2gr) =0, g(0)=1, g(1)=0,
is A = 2 = 5.7831859629 . . .. This ODE, in turn, arises from the study of a vibrat-
ing, homogeneous membrane that is uniformly stretched across D and fastened at the
boundary C. The value +/A = 6 is the principal frequency of the sound one hears when
a kettledrum is struck.
Consider the Laplace partial differential equation (PDE)

for a vibrating membrane on an arbitrary region D of fixed area 4 with u = 0 on the
boundary C. Rayleigh [16, 17] conjectured in 1877 that the first eigenvalue A is least
when C is a circle. This conjecture was proved independently in 1923 by Faber [18]
and Krahn [19]: A > (/A)#? with equality if and only if C is a circle. Interestingly,
the same is not true for the second eigenvalue: The critical boundary is not a circle, but
a figure-eight [20-22].
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3.6.4 Plate Inequality

A two-dimensional, second-order version of the “string inequality” follows. Assume
that suitably smooth f and its outward normal derivative df/dn are both constrained
to vanish on the boundary C of the unit disk D. Then

Pf rf\’
/f%lxdyfu/(m—i—a—yz) dx dy
D D

where 1 = 1/6* = 0.0095819302..., 0 = 3.1962206165 .. . is the smallest positive
root of the equation

Jo(0)11(0) + 1o(6)J1(6) = 0,
and /y(z) is the zeroth modified Bessel function

|

z\% dIO dJ()
IO(Z):JX;W(E) ) II(Z):E, JI(Z):_E.

Moreover, the constant u is the best possible [12,14—16,23]. This is associated with
the study of a vibrating, homogeneous plate clamped at the boundary C.
As with the membrane case, we state a related isoperimetric inequality. Consider

the PDE

32 (3%u n 0%u n 32 [ 0%u n 0u A 0

—_— —_— _— —_— —_— _— — u =

ax2 \9xz = 9y? 9y2 \ 9x2 = 9y?
for a vibrating plate on an arbitrary region of fixed area 4 with u = du/dn = 0 on the
boundary. Rayleigh [16] conjectured that A > (72/A4%)6* and Szegd [24-26] proved

this to be true under a special hypothesis. The general conjecture was proved only
recently [27,28].

3.6.5 Other Variations

Let || f]| denote the supremum of | f(x, )|, where the function f is defined on all of
R? and is twice continuously differentiable. Then || f|| is related to the integral of the
sum of squares of all partial derivatives of f via

1

2
111 < s f(ﬂ LA ) dudy |
R2
where the best constant o, ; = 0.3187590609 . .. is given by [29]
1 1
2 3

o0 00 R

1/‘/ dxdy 1 / dt

w2 L2y +xt a2+t |\ 2n ) V2V 43
00 !

02 =
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Such formulation is naturally extended to m-times continuously differentiable functions
f defined on all of R”, with corresponding constant «,, ,. For example,

1

17 d : V2
a = _f il =2, ap3=0231522..., a3 =0.142892....
7] 1+x2 2 ’ ’
0

Ifinstead f is defined only on the unit cube in R”, then among the associated constants
G n, We have [30-32]

a = tanh(l)*% = 1.1458775176 ..., @, =1.247%....
In fact, for arbitrary m > 1,

1
_ 1 COS(2]:+2) ’ ~ _ 2
Um = | T a3y | 0 A= 1
m + 1 sin(5; 75 m +

NgE

1
sin(;2)? } :

¢ tanh(sin(Z5))

-
Il

These inequalities are useful in the study of the finite element method in numerical
analysis.

A related idea is Friedrichs’ inequality [33], which involves continuously differen-
tiable functions f on the closed interval [0, 1] C R:

1 2

1
/ (FeP+ 7o) dx | < | fOP+ 7017 + f £(cPdx
0

0

2

The best constant B = 1.0786902162... satisfies B = /1 +6~2, where 0 =
2.4725480752 . .. is the unique solution of the equation

cos(8) — 00> + 1)~ 'sin(®) = -1, 0 <6 < .

Many more examples are possible [34—45].

Let us return to geometry for one more problem. Consider a simple closed curve
C in R3 with perimeter P. Let ¥ denote the volume of its convex hull, that is, the
intersection of all convex sets in R® containing C. Then ¥ < y; P? and the best constant
is y3 = 0.0031816877 ... (obtained in [46,47] via numerical solution of a system of
ODEs). No closed-form expression for y; is known. If the setting is changed from R3
to R”, where the integer » is even, then curiously the best constant [48] is exactly given
by y, = [(wn)"/?>n!(n/2)!]7". The case for odd n > 5 remains open.

A deeper connection between Sobolev inequalities and isoperimetric properties
within Riemannian manifolds (R” being the simplest example) is beyond the scope of
this book.
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3.7 Korn Constants

Let u(x) be a smooth vector field defined on the closure of a bounded, open, connected
set Q in n-dimensional space. Then Vu(x) is the n x n matrix made up of partial
derivatives of u(x). By the norm | M| of a matrix M, we mean the Euclidean norm of
M, that is, the square root of the sum of squares of all entries. Let also MT denote the
transpose of M.

Consider the so-called second case of Korn’s inequality [1-3]

2
dx

/|Vu(x)|2dx < K/’M
Q Q
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with the side condition

/ (Vu(x) — Vu(x)T) dx =0.
Q

The best constants K(£2) for various domains 2 are important in linear elasticity
theory and in incompressible fluid dynamics. If B, is an n-dimensional ball [4, 5], then
K(B,) =4 and K(B3) = 56/13. The corresponding values for n > 4 are not known.
Let P, denote a two-dimensional m-sided regular polygonal region. For a square Px,
it can be proved that [2]

5 < K(Py) <42 +2),

and Horgan & Payne [6] conjectured that K (P4) = 7. For an equilateral triangle Ps,
we have

6 < K(P;) < 82+ +3)

using Laplacian eigenvalue formulas in [7-9]. For arbitrary m, we have the upper bound

(2]

K(Pm) f # )
1 — sin(r/m)
and a lower bound for K (Fs) is possible using eigenvalue numerical estimates in [9].
Korn constants for ellipses and limacons are given in [2, 10]; for circular rings and
spherical shells, see [11, 12].

Here is a related problem (for n = 2 only). Let z = x 4 iy, where i is the imaginary
unit, and let f(x, y) and g(x, y) denote the real and imaginary parts of an analytic
function w(z). In other words, f(x, y)and g(x, y) are harmonic conjugates. Consider
Friedrichs’ inequality [6, 10, 13—15]

/ fx, yPdxdy <T f g(x. yVdxdy
Q

Q

with the side condition

/f(x, y)dxdy = 0.
Q

The best constants I' for various simply-connected domains €2 are related to the Korn
constants K by K = 2(1 + I'), assuming €2 has a continuously differentiable boundary.
In the event 2 is a square region, Horgan & Payne [6] conjectured that the optimizing
functions are

fx,y)=2xy, glx,y)=y"—x*

and hence I' = 5/2. This would lead immediately to K = 7 if it were not for the
smoothness requirement.

Horgan’s survey [2] is a valuable starting point for research. Related topics appear
in[16,17].
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3.8 Whitney—Mikhlin Extension Constants

Let B, , denote the #n-dimensional closed ball of radius » centered at the origin. Assume
throughout that » > 1 is fixed. A function F' defined on all of n-dimensional space is
called an r-extension of a given function f defined on B, ; if F(x) = f(x) for all
|x| < 1land F(x) =0 for all |x| > r.

We are interested in procedures for building F, given f, and we want to do this in
such a way as to “minimize waste.” Here are two ways (among many) to interpret the
phrase “minimize waste”:

» To every continuous f', construct a continuous r-extension F such that

max |F(x)| < ¢ max | f(x)],
X€B,, xXeBy 1

where c is a constant (independent of /') and is the smallest possible.
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* To every continuously differentiable f, construct a continuously differentiable
r-extension F such that

1 1

n 2 ’ n 2
/(F(x)H;(%))dx <z f(f(x)“r;(;—)i))dx ,

By Bua
where (again) x is a constant and is the smallest possible.

Another way of phrasing this is as follows: Given two Banach spaces of functions
defined on B, ; and B, ,, determine the r-extension operator from one to the other
of minimal norm. In the first case, the Banach space norm is the L., or supremum
norm; in the second, it is the Sobolev W21 integral norm, which penalizes misbehaved
derivatives as well.

Whitney [1] proved that ¢ = 1 in the first case by a partition-of-unity argument. The
calculus of variations provides that [2, 3]

x = /1 + coth(1) coth(r — 1)

when n = 1 for the second case (note that this depends on r).

Mikhlin [4-6] determined best constants x = x(n,r) when n > 2 for the second
case. Earlier relevant work included Hestenes [7], Calderon [8], and Stein [9]. Define,
for convenience, v = (n — 2)/2 and modified Bessel functions

Ay > 1 r\2/ _zl_v(r)—lv(r)
]”(r)_(i) ;]‘!r(uﬂﬂ) (E) - Ko =3 sin(vr)

See [4] for a table of numerical estimates of x(n,r), based on algebraic formulas
involving /,(r) and K, (7). Our interest is solely in the asymptotic values

o ~ L) Kua(D)
Xn = lim x(n,r) = \/1 + Lina(l) K1)’

and clearly

] 2e — — e? — /2 e - L/ _e
KN=\a 1 X3=6 X5= a7 X1= \/;\/ 37752 X9 = 4/ 37V T8e2-133

for odd dimensions 7, an unexpected occurrence of the natural logarithmic base e.
Similar formulation, in terms not of e but of /y(1), 7;(1), K¢(1), and K;(1), can be
written for even dimensions #.
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3.9 Zolotarev—Schur Constant

Let n be a positive integer. Define S, to be the set of n' degree polynomials p(x) with
real coefficients satisfying |p(x)| < 1 forall -1 <x < 1.

Markov [1,2] proved that, if p € S, then |p/(x)| < n® for all —1 < x < 1, where
p’ is the derivative of p. Equality occurs if and only if x = 1 and p(x) = £7,(x),
the n'™ Chebyshev polynomial [4.9].

Let—1 <& < 1bearealnumberandn > 3 be aninteger. Define S, ¢ to be the subset
of S, characterized by the additional restriction p”(§) = 0. Note that 7, ¢ S, 11; hence
maximizing the quantity |p'(£1)| over the set S, 1 leads to quite different solutions
than before.

Schur [3,4] proved that, if p € S, ¢, then |p'(§)| < %nz. Further, letting

1p'(6)l .
S, = sup sup 5— and o = limsup s,
—l<¢<l peS,e M n—00

he obtained the bounds 0.217 < o < 0.465.

It turns out that identifying the constant o is an outcome of work performed by
Zolotarev [5—12]. Just as T,(x) arise as extremal polynomials in Markov’s theorem,
a new set of polynomials Z,(x) are required to fully understand Schur’s theorem.
Zolotarev determined in 1877 a number of exact solutions to various polynomial ap-
proximation problems using elliptic functions, in research that was far ahead of its
time.

Erdos & Szegd [4] established the connection between Schur’s theorem and
Zolotarev’s polynomials. They proved that

1 < E(c)
=—(1-
c? K(c)

2
) = 0.3110788667 ...,

where K (x) and E(x) are complete elliptic integrals of the first and second kind [1.4.6],
and c is the unique solution of the equation

[K()—E@P + (1 —=cA)K()—(1+HE(C)=0, 0 <c< 1.
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The extremum s,,n° is attained forn > 3at£ = l1and p(x) = +Z,(x),oraté = —l and
p(x) = x£Z,(—x). To discuss Zolotarev’s polynomials and the associated differential
equation would take us too far afield, so we stop here.

3.9.1 Sewell’s Problem on an Ellipse

Here is an extension of Markov’s problem. Let p(z) be a complex polynomial of degree
nin z = x + iy and assume that |p(z)| < 1 on the elliptical region E given by x> +
(y/g)* < 1, where 0 < g < 1. What is the smallest constant K (g), independent of n,
for which |p/(z)| < n - K(g) over all of E?

It is known [13-16] that K(1) = 1 and K(g) < 1/g. From the quadratic example
p(z) = (822 — 3)/5, van Delden [17] deduced that K(1/2) > 8/5. He further utilized
the generalized Chebyshev polynomial sequence [4.9]

CGHVE-1)+E-V2Z -1y z

Z=—,

2 ’ 1_g2

T,(z, g) = cos(n arccos(2)) =

to suggest that K(g) is equal to its upper bound 1/g.
Analogous constants can be defined over other boundary curves as well [18-20].
See also [21-25].
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3.10 Kneser—Mahler Polynomial Constants

Given a polynomial, what can be said about the size of its factors? Let || p|| denote the
supremum norm of an n™ degree polynomial p(x) with complex coefficients, defined
on the closed real interval [—1, 1]. Suppose p(x) = g(x)r(x), where g(x) is of degree
k and r(x) is of degree n — k. Then Kneser [1], building upon the work of Aumann [2],
proved that [3-5]

1
gl - 1lrll < Ecn.kcn,n—k -1lpll,

where

k .
Coi = 2k l_[ [1 + cos (%)] .

j=I1

Furthermore, for any » and £ < n, the constant is the best possible. Observe that here,
the right-hand “knows” the degree k of g(x).

Suppose information on the degree k£ of ¢(x) is not available. Borwein [4, 5] observed
as a corollary of Kneser’s result that £ = [n/2] maximizes C, ; and thus

lgll - 1171l < 8711 pl|
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asymptotically as n — 0o, where
2G
5 =exp (—) = 1.7916228120. ..
bid

is the dimer constant [5.23] and G is Catalan’s constant [1.7]. Moreover, the inequality
is sharp, meaning

1
timsup (J4 N _ 52— 52009123007 ...

where the supremum is over all polynomials p of degree n and factors ¢ and r.

The remarkable occurrence of § in this expression was anticipated several years
earlier by Boyd [6], working over a different domain. Henceforth, define || p|| to be the
supremum norm of p(z) defined on the unit disk D in the complex plane. Boyd proved,
if p(z) = q(z)r(z), then asymptotically

gl - 1rll < 8"[Ipll

and this is sharp. It is interesting that 8 occurs for [—1, 1] but § occurs for D.
Suppose we remove ||r|| from this inequality. To avoid frivolous multiplication of
q by a large constant, we assume that p and ¢ and hence r are monic. Boyd [6] proved
here that asymptotically
ligll < B"llpll

and this is sharp, where
1 2
B =exp (_1(5”)> = 1.3813564445 . ..
i

and
)

1(6) = / In (2 COS(%)) dx.
0

The integral is simply Cl(mw — 6), where CI(6) is Clausen’s integral [7,8]. We note a
similar representation [6,9]

2 1
8 =exp (—1(—71))
T 2
and also two series [10, 11]

me = (1-4+L L, 1 1 = 0.5831218080
W=\ ete nteg mto) =0
PO=\Tzte e te

The constant 8 has occurred in several places in the literature, the first in Mahler
[12] with regard to an apparently unrelated polynomial inequality. In[13, 14], it appears

343 1 1 1 1 1
V3 (l - +—-- ) = 0.3230659472.. . ..
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in the asymptotics of what are called binomial circulant determinants. In [15], In(B) is
the entropy of a simple two-dimensional shift and in [16], 7 In(8) = 1.0149416064 . . .
is the largest possible volume of a hyperbolic tetrahedron. See also [5.23] and [8.9].
An amusing recent account of 7 In(8) is found in [17], where it is called Gieseking’s
constant.

Likewise, 6 has occurred throughout the literature. We already mentioned the con-
nection to the dimer packing of a two-dimensional integer lattice. In [18, 19], In(8)
appears with regard to Schmidt’s Gaussian integer continued fractions. Other ways §
plays a role in mathematical physics include those described in [20,21].

Boyd [9] extended this discussion from two factors to m factors. If p(z) =
p1(2)pa(2) - - - pm(2), with m fixed, then asymptotically

ol Hp2ll - - lpmll < ¢, - 1Pl

and this is sharp, where

Cm = €Xp (%I(%n)) .

Observe that ¢, =8 and, since I(w/3)=(2/3)I(27/3), we have c¢; = %=
1.9081456268 . .. [8]. We also have ¢4 = 1.9484547890. .., cs = 1.9670449011. ...,
and ¢ = 1.9771268308.. . ..

Boyd [9] considered the case when p(z) and all p;(z) have real coefficients, but are
defined on D. Here the constant ¢, is simply replaced by § and this is sharp. That is,
in the real case, the best constant does not depend on m. Borwein [4, 5] considered the
case of complex p(x) and p;(x) defined on the interval [—1, 1]. Here the constant ¢,
is simply replaced by 82 and again this is sharp. Pritsker [22,23] obtained a general
formula for the analog, B(a), of 8 for Boyd’s inequality [6] on the interval [—a, a]. For
example, B(2) = 8% = 1.90815...and B(1) = /28 = 2.53373 .. .. See also [24,25].

In [2.30], we discuss Mahler’s measure M(«) for algebraic integers «. This is, in
essence, equivalent to Mahler’s measure M( /) for univariate polynomials [26]

f@O=a[]E-e,
j=1

which is given by
1

Men =exp | [ 107@)a0 | = joul [ Tmax(e . 1
j=l

0

as a consequence of Jensen’s formula [27].
An important generalization to multivariate functions f(zy, zz, . .., z,) is given by

1 1 1
M(f) = exp / / / In(| £ (¥, &% ..., ¥ 1))d6,db, - - - db,
0 0 0
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Some examples are
MA+x)=1, M(1+x+y)=8 = Mmax(l, |x + 1|)),
74“(3)>

272
M(A+x+y—xy)=38§=M@max(|x — 1|, |x + 1])),

M(l+x+y+z):exp<

where ¢(3) is Apéry’s constant [1.6]. Two asymptotic results are [10]
. M@z +z2++zy)
lim
m—00 Jm

involving the Euler—Mascheroni constant y [1.5], and

1
= exp (—5;/) = 0.7493060013 . . .,

. 1 T
Tim M (24 (1 22)(1 4 23) (14 2) =exp( ﬁ).

Finally, we discuss Bombieri’s supremum norm: If p(z) = Z'}zo a;z/, then
n!
L= mmax laj| e —
If p(z) and g(z) are complex monic polynomials on D, deg(p) = n, and q is a factor of
p, we are interested in the size of ||q|| relative to [p]. It is known that asymptotically
[28-31]

llgll = K" - [p],

where
K=M1+|x+1])=M((1+x+x*+y)’) =2.1760161352. ..,

but a proof that K is the best possible remains undiscovered.
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3.11 Grothendieck’s Constants

For any integer n > 2, there is a constant k(n) with the following property [1,2]: Let
A be any m x m matrix for which

m m
ZZaijsitj <1

i=1 j=1
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is satisfied for all scalars s1, 52, ..., S, t1, 2, .. ., ty With |s;] < 1, [¢;| < 1. Then
m m
> ai(xiy))| < k(n)
i=1 j=1
for all vectors xy, x2, ..., Xm, Y1, V2, - - -, Y in an n-dimensional Hilbert space with

[lx:1l <1, [ly;Il < 1. As usual, (x, y) is the inner product of x and y and [|x|| =
+/{x, x). The constant k(n) is taken to be the least possible.
This definition actually covers two possible cases:

» Scalars and matrices are real, and vectors are in a real Hilbert space.
» Scalars and matrices are complex, and vectors are in a complex Hilbert space.

We denote the two corresponding constants by kg(n) and k¢ (n). It is known [3—6] that
kr(2) = V2, kr(3) < 1.517, kg(4) < m/2
but
1.1526 < kc(2) < 1.2157, 1.2108 < kc(3) < 1.2744, 1.2413 < kc(4) < 1.3048.

Each sequence clearly increases with n. For both real and complex cases, define x =
lim,,_, o k(n). It is not hard to show that [2], in the limit,

FKR < kc < 2kp.

The best-known numerical bounds are [3,4,7-9]

T
1.67696 < kg < ——— —1.7822139781 ...,
= S (1 +v2)
8
133807 < ke < ————— = 1.40491 ...,
mT-(xo+1)

where x is the solution of a certain equation involving complete elliptic integrals K (x)
and E(x) of the first and second kind [1.4.6]:

Y(x)= %(x+1), —l<x<l,

where

2
ey =x [ SO % [E() — (1 —x)K(x)].
0

1 — x2sin(0)?

The upper estimate for «z was conjectured by Krivine [3, 4, 10] to be the exact value. In
contrast, Haagerup [7] doubted whether 1.40491 is the exact value for k¢ and thought
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that

1 cos(@)2

(@) \/1 + sin(9)?

is a more plausible candidate. His reasoning was by analogy: The function v (x) for
the complex case is like the function ¢(x) employed by Krivine for the real case,

do = 1.4045759346 . ..

2
o(x)=— arcsm(x)

and one sees that
1 _ T _ T
lp(i)]  2arcsinh(1)  21In(1 ++/2)’

A different approach for bounding « is given in [11].
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3.12 Du Bois Reymond’s Constants

Abel’s theorem from advanced calculus implies that if the series of real numbers
Y2 o an converges, then the corresponding power series satisfies

oo oo
lim E a,r" = E
r—1-

n=0 n=0

This is a consequence of uniform convergence on the interval [0, 1]. We start with a
question: What happens if Y - a, diverges?
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Define the sequence of partial sums s, = Y ,_, a; and assume

s = liminfs,, S = limsups,
n—00 n—00
are both finite. That is, the series is bounded and oscillates between two finite limits. It
is natural to believe here that

r—1-

o0
s < lim E a,r" < S
n=0

and this is indeed true [1].
In fact, much more is true. Let ¢(x) be a continuously differentiable function for
x > 0 that satisfies the conditions

Tld
lim p(x)=1, lim ¢(x)=0, [ = f ‘—(p(x) dx < oo
x—0+ x—00 dx

0

and

(o]
fx)= Z a,p(nx) is convergent for all x > 0.
n=0

Then it can be proved that [1,2]
! S ! S 1< < ! S ! S 1
78+ =2 =9I = lim f(x) < S(S+8)+5(S =) L.

Moreover, this truly extends what was discussed before: Set r = p(x) = exp(—x) to
see why.

Another important case arises if we instead set ¢(x) = (sin(x)/x)™ for an integer
m > 2. Define the m'™™ Du Bois Reymond constant by

d (sin(x)\"
— dx — 1.
dx ( X ) *

cn=1—-1=

o\“g

Watson [2—6] proved that
e = 3(€? — 7) = 0.1945280495 ..., ¢4 = g(e* — 4e* — 25) = 0.0052407047 .. .,
ce = 35(e° — 6e* + 3e* — 98) = 0.0002206747 . ..

and that cy; is expressible as a polynomial of degree k in e? with rational coefficients.
No such expression is known for c¢;;1, but there is an interesting series available for

all ¢,,. Let &1, &, &3, . . . denote all positive solutions of the equation tan(x) = x. Then
> 1

cm =2 Z (1 + ;/2)»7/2

J=1
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and, in particular, c; = 0.0282517642.... It is possible to numerically evaluate cs,
c7, ...as well. Watson also determined that

2 tanh(x)?
_;/ JxZ— 1dx (x — tanh(x)>
1

but there appears to be no further simplification of this integral.
The sequence &1, &;, &3, ... arose in a recent Monthly problem:

%E

and attracted much attention [7]. This formula parallels that just discussed and Watson’s
other results, namely,

:.\J|'—‘

1/+1
b —22(1(+; IR by = —1(e* — 3e — 12) = 0.0173271405 ... .,

and by s expressible as a polynomial of degree 2k + 1 in e with rational coefficients.
Note that similar expressions in e appear in [3.8].

Here are other constants involving equations with the tangent function. The maxi-
mum value M (n) of the function

(S2)e5ey

subject to the constraint Y ;_, x7 < 1, satisfies the following asymptotic result [8]:

n—0o0

2
lim M(n) = (g) — 23979455861 ... .,

where & = 2.0287578381 ... is the smallest positive solution of the equation x +
tan(x) = 0. Another example [9], described in [3.14], involves the equation 7 + x =
tan(x).

[11 E. W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier’s
Series, v. 2, Dover, 1957, pp. 221-225; MR 19,1166b.

[2] G. N. Watson, Du Bois Reymond’s constants, Quart. J. Math. 4 (1933) 140-146.

[3] A.Fletcher,J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An Index of Mathematical Tables,
2™ ed., v. 1, Addison-Wesley, 1962, p. 129; MR 26 #365a.

[4] H. P. Robinson and E. Potter, Mathematical Constants, UCRL-20418, Univ. of Calif. at

Berkeley, 1971; available through the National Technical Information Service, Springfield

VA 22151.

1 F. Le Lionnais, Les Nombres Remarquables, Hermann, 1983.

] S. Plouffe, 2" Du Bois Reymond constant (Plouffe’s Tables).

[71 R. M. Young, A Rayleigh popular problem, Amer. Math. Monthly 93 (1986) 660-664.

] G. Szegd, Uber das Maximum einer quadratischen Form von unendlich-vielen
Verdnderlichen, Jahresbericht Deutsch. Math.-Verein. 31 (1922) 85-88; also in Collected
Papers, v. 1, ed. R. Askey, Birkhaiiser, 1982; pp. 589-593.
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[9]1 G. Brown and K.-Y. Wang, An extension of the Fejér-Jackson inequality, J Austral. Math.
Soc. Ser. 4 62 (1997) 1-12; MR 98e:42003.

3.13 Steinitz Constants
3.13.1 Motivation

If Y x; is an absolutely convergent series of real numbers, then any rearrangement of
the terms x; of the series will have no impact on the sum.

By contrast, if Y x; is a conditionally convergent series of real numbers, then the
terms x; may be rearranged to produce a series that has any desired sum (even oo or
—00). This is a well-known theorem due to Riemann.

Suppose instead that the terms x; are elements of a finite-dimensional normed real
space; that is, the x; are real vectors but possibly with a different notion of length
(choice of metric). Assume nothing about the nature of Y x;. Let C denote the set of
all sums of convergent rearrangements of the terms x;. Steinitz [1-3] proved that C
is either empty or of the form y + L, for some vector y and some linear subspace L.
(Note that L = {0}, the zero subspace, is one possibility.)

To prove this theorem, Steinitz needed bounds on certain constants K (0, 0), defined
in the next section. For details on the precise connection, see [4—6].

3.13.2 Definitions

Leta and b be nonnegative real numbers. In an m-dimensional normed real space, define
aset S = {u, vy, v2,..., Vy_1, s, w} of n + 2 vectors satisfying |u| < a, |v;] <1 for
eachl < j <n,|w| <b,andu + 3 _; v; +w = 0 (see Figure 3.2).

Let 7 denote a permutation of the indices {1, 2, ..., n} and define a function

k
u+ Z Uz ()

F(m,n,S) = lmaxn
Jj=1

<k<

In words, F is the radius of the smallest sphere, with center at 0, circumscribing the

0

Figure 3.2. A set S of vectors satisfying v + Z;zl v, +w=0.
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polygon with sides u, v (1), Vx(2), - - - » Vz(). Of the vector orderings determined by all
possible 7, there is (at least) one that minimizes the spherical radius. Define
Ku(a, b) = max min F(xz, n, S);
n,S T

that is, K, (a, b) is the least number for which |u + Z’;zl Vel < Kyu(a, b) for some
permutation 7, for all integers » and sets S.

3.13.3 Results

In the general setting just described (with no restrictions on the norm), the best-known
upper bound on the m-dimensional Steinitz constant is

1
K,0,0)<m—-1+4 —
m

due to Banaszczyk [7], improving on the work in [8]. Further, Grinberg & Sevastyanov
[8] observed that, for m = 2, the upper bound 3/2 is the best possible. In other words,
there exists a norm for which equality holds. Whether this observation holds for larger
m is unknown.

Henceforth let us assume the norm is Euclidean. Banaszczyk [9] proved that

Ky(a, b) = /1 + max(a?, b2, 1/4),

which extends the results K»(1,0)=K,(1,1)=+2, K»(0,0)=+/5/2=
1.1180339887 ... known to earlier authors. Damsteeg & Halperin [4] demonstrated
that

1
Kn(0.0) = Zv/m+3

and, form > 2,

1 ——
Behrend [10] proved that

Kn(1,0) < Ku(1,1) < m, K3(1,0) < K3(1, 1) < v/5 +24/3 =2.9093129112.... .,

but an exact value for any m > 2 remains unknown. (Note: There seems to be some
confusion in [11] between K (0, 0) and K(1, 0), but not in the earlier reference [12].)
Behrend believed it to be likely that the true order of these constants is /m. See also
[13—18] for related ideas.
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(1913) 128-175; 144 (1914) 1-40.
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342-351; MR 88d:40005.

[3] M. I Kadets and V. M. Kadets, Series in Banach Spaces: Conditional and Unconditional
Convergence, Birkhduser, 1997; MR 98a:46016.
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3.14 Young-Fejér-Jackson Constants
3.14.1 Nonnegativity of Cosine Sums

In the following, 7 is a positive integer, 0 < 6 < m, and a is a parameter to be studied.
Young [1] proved that the cosine sum

1 " cos(kB)
Ces ) = 20
©.a,n) 1+a+; k+a

for —1 < a < 0.Rogosinski & Szegd [2] extended thisresultto —1 < a < 1 and proved
that there is a best upper limit 4, 1 < 4 <2(1 + \/f), in the sense that

e C,a,n)>0for—1 <a < A4, forall n and all 9,
* C(0,a,n) <0fora > A, for some n and some 6.

Gasper [3,4] proved that 4 = 4.5678018826. .. and has minimal polynomial

9x7 + 55x% — 14x> — 948x* — 3247x3 — 5013x% — 3780x — 1134.
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In fact, if a > A4, then C(6, a, 3) < 0 for some 8. This completes the story for cosine
sums.

3.14.2 Positivity of Sine Sums

Here, n is a positive integer, 0 < 6 < 7, and b is the parameter of interest. Fejér [5],
Gronwall [6, 7], and Jackson [8] obtained that the corresponding sine series

" sin(k0)
S@,b,n) = E >0
—~ k+b

for b = 0. See [9] for a quick proof; see also [10—13]. Brown & Wang [14] extended
this result to —1 < b < B for odd integers n, where B is the best upper limit. For even
integers n, the story is more complicated and we shall explain later.

Two intermediate constants need to be defined:

* A =0.4302966531 .. ., a solution of the equation (1 4+ 1)z = tan(Ax),
o 1 =0.8128252421.. ., a solution of the equation (1 4+ A) sin(ur) = w sin(Ax).

With these, define B = 2.1102339661 . . . to be a solution of the equation [14, 15]
(1+2)-7-(B=Dy(+ 21 = 2By (1+ £)+ (B + Hy(1 + £H)) = 2sin(am),

where ¥(x) is the digamma function [1.5.4]. Is B algebraic? The answer is unknown.
We now discuss the case of even n. Definec,(x) = 1 —2x/(4n + 1).If -1 <b < B
and n is even, then S(0, b, n) > 0 for 0 < 0 < 7c,(u). Further, the constant p is the
best possible, meaning that 0 < v < p implies S(wc,(v), b, n) < 0 for some b < B
and infinitely many #.
Wilson [16] indicated that S < 0 can be expected on the basis of Belov’s work [17].

3.14.3 Uniform Boundedness

Fix a parameter value 0 < r < 1. Consider the sequence of functions

F,0,7) =Y k" cos(k®), n=1,2,3,....

k=1
This sequence is said to be uniformly bounded below if there exists a constant m >
—oo suchthatm < F,(6, r) for all 6 and all n. Note that m depends on the choice of r.

Zygmund [11] proved that there is a best lower limit 0 < R < 1 for 7, in the sense
that

* F,(0,r) is uniformly bounded below for » > R and
*  F,(6,r) is not uniformly bounded below for » < R.
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The constant R = 0.3084437795 ... is the unique solution of the equation [15, 18-22]

3
2
/x’R cos(x)dx =0
0

and this plays a role in Belov’s papers [17,23] as well. Interestingly, the sequence of
functions

Gu(O.r) =Y k™sin(k0), n=1,2,3,...,
k=1

is uniformly bounded below for all » > 0; hence there is no analog of R for the sequence
G.(0,r).
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3.15 Van der Corput’s Constant

Let f be a real twice-continuously differentiable function on the interval [a, b] with
the property that | f”(x)| > r for all x. There exists a smallest constant m, independent
of @ and b as well as f, such that

b

/ exp(i - £ | =

a

where i is the imaginary unit [1-3]. This inequality was first proved by van der Corput
[1] and has several applications in analytic number theory. Kershner [4, 5], following a
suggestion of Wintner, proved that the maximizing function f is the parabola f(x) =
rx%/2 + ¢, with domain endpoints given by

T —2c

—a:b:
7

and coefficient c = —0.7266432468 . .. given as the only solution of the equation

7—c

Fig Fid

in(x? dx =0, —— <c¢ < —.

/sm(x + c)dx ; 2_0_2
0

From this, it follows that van der Corput’s constant m is

T_.
7—c¢

m =22 / cos(x? + ¢)dx = 3.3643175781 .....
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3.16 Turan’s Power Sum Constants

For fixed complex numbers zy, z5, .. ., z,, define [1]
_ k
S(z) = max Z:: zk

to be the maximum modulus of power sums of degree < n. Define also the (n — 1)-
dimensional complex region

Ky={zeC':zy=1land|z;| < 1for2 < j <n}.

Consider the problem of minimizing S(z) subject to z € K,,. The optimal value o,

of S(z) is [2-4]
V51
V2

where x has minimal polynomial [5]
x30 — 81x% 4+ 2613x%6 — 43629x%* + 417429x% — 2450985x%° 4+ 9516137x'®

—26203659x 6 +53016480x ' — 83714418x'% + 112601340x'° — 140002992x3

+ 156204288x° — 124361568x* + 55427328x2 — 10077696.

= 0.8740320488 ... ifn = 2, and x = 0.8247830309... ifn = 3,

Exact values of o, for n > 4 are not known, but we have bounds 0.3579 < 0, <
1 — (250n)"! forall sufficiently large n [1, 6, 7]. It is conjectured that lim,,_, o, 0, exists,
but no one has numerically explored this issue, as far as is known.

Define instead [1, 8]

n

k
sz

J=1

T(z) = max
2<k<n+1

and consider the problem of minimizing 7'(z) subject to z € K,,. The minimum value
7, of T'(z) surprisingly satisfies 7, < 1.3217" for all sufficiently large n. This is very
different behavior from that of o,,. If we replace the exponent range 2 < k < n + 1 by
3 <k < n + 2, then the constant 1.321 can be replaced by 1.473.

Turan’s book [1] is a gold mine of related theory and applications.
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Constants Associated with the Approximation
of Functions

4.1 Gibbs—Wilbraham Constant

Let f be a piecewise smooth function defined on the half-open interval [—r, 1), ex-
tended to the real line via periodicity, and possessing at most finitely many discontinu-
ities (all finite jumps). Let

=+ / F(t)cos(kt)dt, by = % / £(t)sin(kt) dt

T

denote the Fourier coefficients of f and let
ao

Su(f.x) = 2

4+ » (aj cos(kx) + by sin(kx))
k=1

be the n™ partial sum of the Fourier series of /. Let x = ¢ denote one of the disconti-
nuities. Define

8= (lim f(x)) — <lim+ f(x)) , U= % |:< lim f(x)) + ( lim+ f(x)>j|

and assume without loss of generality that § > 0. Let x, < ¢ denote the first local
maximum of S, ( f, x) to the left of ¢, and let £, > ¢ denote the first local minimum of
Su(f, x) to the right of c. Then

. 8 ) 8
lim S,(f,x,) =p+ =G, lim S,(f,§)=n— =G,
n— 00 g n—oo T

where
" sin() X (gt
G = o= T 18519370519...
/ 0 Z; Qn+ H2n + 1)!
A =
T
= 211789797444 ..)

is the Gibbs—Wilbraham constant [1-5].

248
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Figure 4.1. The Fourier series approximation of a square wave exhibits both overshooting and
undershooting.

Consider the graph in Figure 4.1, with f(x) =1 for —7 <x <0 and f(x) =0
for 0 < x < 7. The limiting crest of the highest oscillation converges not to 1 but
to 1/2+ G/m = 1.0894898722 . ... Similarly, the deepest trough converges not to
Obutto 1/2 — G/ = —0.0894898722 . ... In words, the Gibbs—Wilbraham constant
quantifies the degree to which the Fourier series of a function overshoots or undershoots
the function value at a jump discontinuity.

These phenomena were first observed by Wilbraham [6] and Gibbs [7]. Bocher [8]
generalized such observations to arbitrary functions f.

More generally, if x, »,—1 < ¢ denotes the ™ local maximum of S, (f; x) to the left
of ¢, if x, »» < c denotes the #™ local minimum to the left of ¢, and if likewise for Enor
and &, 5,1, then

sm(@)
0

Tim S,/ 500 =+ /S“;(e)de th(fs“)—u——/

0 0
The sine integral decreases to 7 /2 for increasing integer values of s = 2r — 1, but it
increases to /2 for s = 2r. For large enough r, the limiting values become p =+ /2,
which is consistent with intuition.

Fourier series are best L, (least-squares) trigonometric polynomial fits; Gibbs—
Wilbraham phenomena appear in connection with splines [5,9—11], wavelets [5,12],
and generalized Padé approximants [13] as well. Hence there are many Gibbs—
Wilbraham constants! Moskona, Petrushev & Saff [5, 14] studied best L trigonometric
polynomial fits and determined the analog of 2G /7 — 1 = 0.1789797444 ... in this
setting; its value is max,>; g(x) = 0.0657838882 ..., where

1

sm(rrx o sin(rx) & k!. 27k
gx) = / l+t T T ;(x—i-l)(x—l—Z)n-(x—l—k)
0
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for x > 0. The case of L, approximation, where 1 < p # 2, was investigated only
recently [15].
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4.2 Lebesgue Constants

4.2.1 Trigonometric Fourier Series

If a function f is integrable over the interval [—r, 7], let

ay = ! /f(t)cos(kt)dt, by = %ff(t)sin(kt)dt

T

denote the Fourier coefficients of f and let

Sy(f.x) = “2—0 + Xn:(ak cos(kx) + by sin(kx))
k=1
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be the n™ partial sum of the Fourier series of f. Assuming further that | /(x)| < 1 for
all x, it follows that

2n+19
IS(fX)|<—/%d9=L
2

for all x, where L, is the n'" Lebesgue constant [1,2]. The values of the first several
Lebesgue constants are

Lo=1, Ly =} + 22 = 14359911241 ..., L, = 1.6421884352... .,

S =
Ly =1.7783228615....

Several alternative formulas are due to Fejér [3,4] and Szego [5]:

oo (2n+1)k 1
Ln= 2n+1 Z <2n+1>_ Z Z 4k2

The latter expression demonstrates that {L,,} is monotonlcally increasing.

The Lebesgue constants are the best possible, in the sense that L, = sup  [S,(f. 0)]
and the supremum is taken over all continuous f satisfying | f(x)| < 1 for all x. It can
be easily shown [6, 7] that

4 4
—In(n) <L, <3+ = In(n).
bid

This implies that L,, — oo and, consequently, the Fourier series for f can be unbounded
even if f is continuous [8—10]. It also implies that if the modulus of continuity of

w(f.8) = sup [f(x) = fO)I.

[x—y|<s

satisfies lim;s_, o @( f, ) In(8) = 0, then the Fourier series for f converges uniformly to
f. This is known as the Dini—Lipschitz theorem [2, 7]. In words, while mere continuity is
not enough, continuity plus additional conditions (e.g., differentiability) ensure uniform
convergence.

Much greater precision in estimating the Lebesgue constants is possible. Watson
[11] proved that

. 4

lim (L,, - In(2n + 1)) =c

n—0o0o

where
8 2. In(k) 4 1
‘Tx (;41{2—1) 2V

> 27 +2)—1 4
(j;o W) + p(z 111(2) + ]/)

:|N| (o)

4
= 0.9894312738 ... = —2(2.4413238136 e
bid
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y is the Euler—Mascheroni constant [1.5], ¥(x) is the digamma function [1.5.4], and
A(x) appears in [1.7]. Higher-order coefficients in the asymptotic expansion of L, can
be written as finite combinations of Bernoulli numbers [1.6.1]. Galkin [12] further
proved that

4 4
L, — — In(2n + 1) decreases to ¢, whereas L, — — In(2n + 2) increases to ¢
T T

as n — 00. More asymptotics appear in [13,14]. We mention two integral formulas
discovered by Hardy [15]:

7 tanh((2n + 1)x) 1
L,=4
tanh(x) 2 + 4x?

o0
_ iz smh((.2n + l)x) ( th(z”“x)) dx
b4 A sinh(x)
See a related discussion in our essay on Favard constants [4.3].

There are many possible extensions of L,; it is interesting to ascertain which proper-
ties for Fourier series carry over to the case in question. For example, the monotonicity
of Lebesgue constants for Legendre series has been proved [16], confirming a conjec-
ture of Szego.

Here is a related idea. If f is complex analytic inside the unit disk, continuous on
the boundary, and | f(z)| < 1 for all |z| < 1, then [17]

>a

k=0

fl@) = Zakz implies that
k=0

Z - 1 2+ 1'32+ N 1-:3---2n—=1)\?
=24’" 2 2-4 2-4---(2n)
is the n'" Landau constant (note the similarity with [1.5.4]). The constant G, is the
best possible for each n. It is known that [11]

< G,

where

n— 00

1 1
lim (Gn — —ln(n + 1)> = —(41n(2) + y) = 1.0662758532... .,
T

4
G2n = Ln < _GZn’
T

and both sequences {G,} and {L,/G,,} are monotonically increasing. More refine-
ments are found in [18-21].
4.2.2 Lagrange Interpolation

Here is a different sense in which the same phrase “Lebesgue constants™ is used. Given
real-valueddata X = {x,x2,...,x,}, Y = {y1,y2,.. ., yupwith—1 <x; <x; < ... <
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Xxn < 1, there is a unique polynomial py y(x) of degree at most » — 1 such that

pxy(x) =y, i=12,...,n,
called the Lagrange interpolating polynomial, given X and Y. The formula for
px.y(x)is

& X —X;
pxy(x) = Z (yk . l_[ / ) .
=1 Gtk e T X

We wish to understand the approximating power of interpolating polynomials as the
spatial arrangement of {x,} varies or as n increases [6,22]. The expression

1—[ X — xj'

Xk — X
is useful for this purpose and is called the n'" Lebesgue constant corresponding to X.
Note that A, does not depend on Y. It can be easily shown that

4
Ay > —In(n) -1
bid

for all n and hence lim,, ., A, = 00, regardless of the choice of X. This means that,
given any X, there exists a continuous function f suchthat py rx)(x) doesnot converge
uniformly to f as n increases. In words, there is no “universal” set X guaranteeing
uniform convergence for all continuous functions f.

Erdos [23] further tightened the lower bound on the Lebesgue constants. He proved
that there must exist a constant C such that

2
Ay, > —In(n)—C
g

for all n, for arbitrary X. We will exhibit the smallest possible value of C shortly. Erdos’
result cannot be improved because, if 7' consists of the n zeros

2j—1
x_;:—cos<u> j=12,...,n,

2n
of the n'" Chebyshev polynomial [4.9], then
| & Qj—Dr\ 2
AN(T)=— t| ———— | < —1 1.
1) nZC()( 4n )_nn(n)+

=1

In fact, {A,(T) — % In(n)} is monotonically decreasing with [24-26]

nll)ngo (An(T) — %ln(n)) = %(3 In(2) — In(r) + y) = 0.9625228267 . ...
A complete asymptotic expansion (again involving Bernoulli numbers) was obtained
in [27-30].

What is the optimal set X* for which A, is smallest [22]? Certainly the Chebyshev
zeros are a good candidate for X* but it can be shown that other choices of X will do
even better. Kilgore [31] and de Boor & Pinkus [32] proved Bernstein’s equioscillatory
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conjecture [33] regarding such X*. A more precise, analytical description of X* is not
known.

A less hopeless problem is to estimate AF = A,(X*). Vértesi [34-36], building
upon the work of Erdds [23], proved that

n—00

2 2
lim (A; - = 1n(n)> = Z(@2InQ2) — In(r) + y) = 0.5212516264 ... ..
T T

This resolves the identity of C, but higher-order asymptotics and monotonicity issues
remain open.
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4.3 Achieser—Krein—Favard Constants

In this essay, we presuppose knowledge of the Lebesgue constants L, [4.2]. Assume a
function f to be integrable over the interval [—7, 7] and S, (£, x) to be the n™ partial
sum of the Fourier series of /. If | f(x)| < 1 for all x, then we know that

S, 001 = Ly =~ Inn) + O()

and, moreover, L, is best possible (it is a maximum). If we restrict attention to con-
tinuous functions £, that is, a subclass of the integrable functions, then L, is still best
possible (although it is only a supremum).
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This may be considered as an extreme case (r = 0) of the following result due to
Kolmogorov [1-3]. Fix an integer » > 1. If a function f is r-times differentiable and
satisfies | f*)(x)| < 1 for all x, then

4 In(n) 1
10) = Su )| < Ly = 5 +o<7)
2 n n
where
17| & sin(ks
—/ SIKO)| 1o ifr > 1is odd,
A e S
L,, = -
’ 1 ko
—/ COS(r ) do ifr > 2iseven
7 k=n+1 k

—1
is best possible.

All this is a somewhat roundabout way for introducing the Achieser—Krein—Favard
constants, which are often simply called Favard constants. In the preceding, we
focused solely on the quality of the Fourier estimate S,( f, x) of f. Suppose we replace
S, (f, x) by an arbitrary trigonometric polynomial
P,(x) = % + (@ cos(kx) + by sin(kx)),
k=1
where no conditions are placed on the coefficients (apart from being real). If, as before,
the ™ derivative of f is bounded between —1 and 1, then there exists a polynomial
P,(x) for which

I

(n+ 1y

Lf(x) = Pu(x)] <

for all x, where the »™ Favard constant [4—6]

4 &7 (=1 7
K = 23[ED
T 2j+1

is the smallest numerator possible. In other words, whereas Lebesgue constants are

connected to approximations that are best in a least-squares sense (Fourier series),

Favard constants are connected to approximations that are best in a pointwise sense.
Observe that

4
—A(r + 1) ifrisodd,
K, = Z
—pB( + 1) ifr is even,
b4

where both the lambda and beta functions are discussed in [1.7]. Each Favard constant
is hence a rational multiple of 7", for example,

Kol Ki= % k=% k=T
0o— 1, 1_27 2_87 3 =

andl=Ko< Ky <...<4/m<...< K3 <K =m/2.
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This is the first of many sharp results for various classes of functions and methods
of approximation that involve the constants K,. The theorems are rather technical and
so will not be discussed here. We mention, however, the Bohr—Favard inequality [7-9]
and the Landau—Kolmogorov constants [3.3]. See also [10, 11].

Here is an unsolved problem. For an arbitrary trigonometric polynomial P,(0), it is
known that [12, 13]

—mw<0<m

T
max_|Py(0)| scl/m(ende,
27
-7

and the best possible constant asymptotically satisfies 0.539 < C < 0.58 as n — oo.
An exact expression for C is not known.
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4.4 Bernstein’s Constant

For any real function f(x) with domain [—1, 1], let E,(f) denote the error of best
uniform approximation to f by real polynomials of degree at most n. That is,

Eu(f) :,}2}; sup_ [/ (x) = p(x)l,
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where P, = {ZZ:O ax® - a; real}. Consider the special case «(x) = |x|, for which
Jackson’s theorem [1,2] implies E,(«) < 6/n. Since |x| is an even continuous func-
tion on [—1, 1], then so is its (unique) best uniform approximation from P, on [—1, 1].
It follows that E,, () = E»,+1(), so we consider only the even-subscript case hence-
forth. Bernstein [3] strengthened the Jackson inequality

2nEsy(a) < 6

to

4 2
" 2 20.636...

2nEy(a) < ———
" 2(0[)_7'[(2n+1)<7'r

using Chebyshev polynomials [4.9]. He proved the existence of the following limit and
obtained the indicated bounds:

0.278... < B = lim 2nE,,(a) < 0.286.. ..
n— 00

Bernstein conjectured that 8 = 1/(24/) = 0.2821 .. .. This conjecture remained un-
resolved for seventy years, owing to the difficulty in computing E»,(«) for large n and
to the slow convergence of 2n E,,(«) to S.

Varga & Carpenter [4,5] computed 8 = 0.2801694990. .. to fifty decimal places,
disproving Bernstein’s conjecture. They required calculations of 2n E,(a) up ton = 52
with accuracies of nearly 95 places and a number of other techniques. At the end of
[4], they indicated that it is not implausible to believe that 8 might admit a closed-form
expression in terms of the classical hypergeometric function or other known constants.

Since we have just discussed the problem of the best uniform polynomial approxi-
mation to |x|, it is natural to consider the problem of the best uniform rational approx-
imation as well. Define, for arbitrary f on [—1, 1],

Ena(f)= inf sup 1/(0)=r(ol.

man —1<x<
where R, , = {p(x)/q(x): p € Py, q € P,, g # 0}. Newman [6] proved that
%679\/; =< En,n(a) =< 367\/;’ n >4,

equivalently, that £, , — 0 incomparably faster than E,. Newman’s work created a
sensation among researchers [5,7]. Bulanov [8], extending results of Gonchar [9],
proved that the lower bound could be improved to

e*ﬂ«/rH*l 5 En,n(a)
and Vjacheslavov [10] proved the existence of positive constants m and M such that
m<e™V"E, ,(a) < M.

(Petrushev & Popov [7] remarked on the interesting juxtaposition of the constants e
and r here in a seemingly unrelated setting.) As before, £, 2,() = E2p41.20+1(20), SO
we focus on the even-subscript case. Varga, Ruttan & Carpenter [11] conjectured, on
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the basis of careful computations, that

Jm ™2 Exy auler) = 8,

which Stahl [12, 13] recently proved. The contrast between the polynomial and rational
cases is fascinating!

Gonchar [9] pointed out the relevance of Zolotarev’s work [3.9] to this line of
research.
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4.5 The “One-Ninth” Constant

We are concerned here with the rational approximation of exp(—x) on the half-line
[0, 00). Let A, , denote the error of best uniform approximation:

Amn = inf sup [e™ —r(x)l,
TERy x>0
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where R,, , is the set of real rational functions p(x)/q(x) with deg(p) < m,deg(q) < n,
and g # 0, as defined in [4.4].
There are two cases of special interest, when m = 0 and m = n, since clearly

0< )\n,n < )"n—l,n < )\n—Z,n <...= )\2,n < )"l,n < )"O,n-
Many researchers [1-4] have studied these constants %, ,, referred to as Chebyshev
constants in [4]. We mention the work of only a few. Schonhage [5] proved that

lim AF = 1
m Ag, = =,
sn 3

n— 00
which led several people to conjecture that

1 1
lim A, = =
n—00
Numerical evidence uncovered by Schonhage [6] and Trefethen & Gutknecht [7]
suggested that the conjecture is false. Carpenter, Ruttan & Varga [8] calculated the

Chebyshev constants to an accuracy of 200 digits up to » = 30 and carefully obtained

1 1
lim A,y = ———————— = 0.1076539192. . .,
w00 ™" 92890254919 .
although a proof that the limit even existed was still to be found.
Building upon the work of Opitz & Scherer [9] and Magnus [10—-12], Gonchar &

Rakhmanov [4, 13] proved that the limit exists and that it equals

- K(v1—=c?)
A= exXp T N

where K (x) is the complete elliptic integral of the first kind [1.4.6] and the constant
c is defined as follows. Let E(x) be the complete elliptic integral of the second kind
[1.4.6]; then 0 < ¢ < 1 is the unique solution of the equation K (c¢) = 2E(c).

Gonchar and Rakhmanov’s exact disproof of the “one-ninth” conjecture utilized
ideas from complex potential theory, which seems far removed from the rational ap-
proximation of exp(—x)! They also obtained a number-theoretic characterization of the
“one-ninth” constant A. If

o0

fz) = Zajzj, where a; =

Jj=1

D (~1yld

d|j

)

then f is complex-analytic in the open unit disk. The unique positive root of the equation
f(z) = 1/8 is the constant A. Another way of writing a; is as follows [14]: If

]=2m my __my my

Py Py Dy

is the prime factorization of the integer j, where p; < p, < ... < p; are odd primes,
m > 0, and m; > 1, then

mi+1 mo+1 mi+1
a'=|2m+1_3|p11+ —1P22+ —1”.Pkk+ -1
’ pi—1 pp—1 pr—1

Carpenter [4] computed A to 101 digits using this equation.
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Here is another expression due to Magnus [10]. The one-ninth constant A is the
unique solution of the equation

00
k(k+1)

Qk+1)P?(=x)"2 =0, 0<x <1,
k=0

which turns out to have been studied one hundred years earlier by Halphen [15]. Halphen
was interested in theta functions and computed A to six digits, clearly unaware that
this constant would become prominent a century later! Varga [4] suggested that A be
renamed the Halphen constant. So many researchers have contributed to the solution
of this approximation problem, however, that retaining the amusingly inaccurate “one-
ninth” designation might be simplest.

The constant ¢ = 0.9089085575 ... defining A arises in a completely unrelated
field: the study of Euler elasticae [16—18]. A quotient of elliptic functions, similar to
that discussed here, occurs in [7.8].
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4.6 Fransén—Robinson Constant

For increasing x, the reciprocal gamma function 1/ I'(x) decreases more rapidly than
exp(—cx) for any constant ¢, and thus may be useful as a one-sided density function
for certain probability models. As a consequence, the value

I = / —dx = 2.8077702420.

is needed for the sake of normalization.
One way to compute this integral is via the limit of Riemann sums /,, as n — oo,
where [1]

e ¢ = 2.7182818284. ifn=1,
erg - %( +eerfc(—1))=2.7865848321... ifn =2,

erf(x) = % / exp(—t2)dt = 1 — erfe(x)
0

is the error function. This is, however, too slow a procedure for computing / to high
precision.

Fransén [2] computed / to 65 decimal digits, using Euler—-Maclaurin summation
and the formula

—yx

e
I'x)=

X a1 [ & (=D "]
1+—> en = —ex x|,
J:[l ( n X P |:k2_1: k
where s = y and s; = ¢(k), kK > 2. Background on the Euler—Mascheroni constant y
appears in [1.5] and that on the Riemann zeta function ¢(z) in [1.6].

Robinson [2] independently obtained an estimate of I to 36 digits using an 11-
point Newton—Coates approach. Fransén & Wrigge [3,4], via Taylor series and other
analytical tools, achieved 80 digits, and Johnson [5] subsequently achieved 300 decimal
places.

Sebah [6] utilized the Clenshaw—Curtis method (based on Chebyshev polynomials)
to compute the Fransén—Robinson constant to over 600 digits. He also noticed the
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elementary fact that

2
[ fx)
1_/ F(x)dx’
|

where f(x) is defined by the fast converging series

f(x)—x—i—i ﬁ ! —x—i—eii
N N — k(x + k)

=0 \j=o X T7

and f(1) = f(2) = e, f(3/2) = (1 + e /7 erf(1))/2. Using this, I is now known to
1025 digits.
Ramanujan [7, 8] observed that

o0 o0

/ de — ¥ — / Mdy,
(1 +x) y2 + 2

0 —00

which has value 2.2665345077 . . . when w = 1. Differentiating with respect to w gives
the analogous expression that generalizes /:

1 R X * )4
_/ w dx:e”/wdy
w /) Tx) Y2 4+ 72

0 —00

Such formulas play a role in the computation of moments for the reciprocal gamma
distribution [5,9].
The function x* grows even more quickly than I'(x) and we compute [10]

T T

‘/‘——dxzz L9954559575...,(/‘——dx:=(17041699604..”
x.x xx

0 1

More about iterated exponentials is found in [6.11]. Reciprocal distributions could be
based on the multiple Barnes functions [2.15] or generalized gamma functions [2.21]
as well.
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4.7 Berry—Esseen Constant
Let X1, X», ..., X, be independent random variables with moments
E(Xy) =0, E(Xp) =0} >0, E(X;*) =B < o0

for each 1 <k < n. Let ®, be the probability distribution function of the random
variable

1 n n
X==- ZXk, where o2 = Zakz.
o= =1
Define the Lyapunov ratio
A= %, where 8 = iﬂk'
o =1

Let ® denote the standard normal distribution function. Berry [1] and Esseen [2,3]
proved that there exists a constant C such that
sup sup sup | P, (x) — ®(x)| = CA,
n  F, x

where, for all k£, Fj, denotes the distribution function of X.. The smallest such constant
C has bounds [4—-12]

34+ 410
0.4097321837... = SR <C < 0.7915
621
under the conditions given here. If X, X,, ..., X, are identically distributed, then

the upper bound for C can be improved to 0.7655. Furthermore, there is asymptotic
evidence that C is equal to the indicated lower bound.

Related studies include [13-22]. In words, the Berry—Esseen inequality quantifies
the rate of convergence in the Central Limit Theorem, that is, how close the normal
distribution is to the distribution of a sum of independent random variables [23-26].
Hall & Barbour [27], by way of contrast, presented an inequality that describes how far
apart the two distributions must be. Another constant arises here too, but little seems
to be known about it.

[1] A. C. Berry, The accuracy of the Gaussian approximation to the sum of independent
variates, Trans. Amer. Math. Soc. 49 (1941) 122—-136; MR 2,228i.

[2] C.-G.Esseen, On the Liapounofflimit of error in the theory of probability, Ark. Mat. Astron.
Fysik, v. 28A (1942) n. 9, 1-19; MR 6,232k.



[11]
[12]

[13]

[14]

[13]

[16]

[17]

(23]

4.7 Berry—Esseen Constant 265

C.-G. Esseen, Fourier analysis of distribution functions: A mathematical study of the
Laplace-Gaussian law, Acta Math. 77 (1945) 1-125; MR 7,312a.

H. Bergstrom, On the central limit theorem, Skand. Aktuarietidskr. 27 (1944) 139-153; 28
(1945) 106-127; 32 (1949) 37-62; MR 7,458e, MR 7,459a, and MR 11,255b.

C.-G. Esseen, A moment inequality with an application to the central limit theorem, Skand.
Aktuarietidskr 39 (1956) 160-170; MR 19,777f.

S. Ikeda, A note on the normal approximation to the sum of independent random variables,
Annals Inst. Statist. Math. Tokyo 11 (1959) 121-130; MR 24 #A570.

S. Zahl, Bounds for the central limit theorem error, SIAM J. Appl. Math. 14 (1966) 1225—
1245; MR 35 #1077.

V.M. Zolotarev, Absolute estimate of the remainder in the central limit theorem (in Russian),
Teor. Verojatnost. i Primenen. 11 (1966) 108—119; Engl. transl. in Theory Probab. App!.
11 (1966) 95-105; MR 33 #6686.

V.M. Zolotarev, A sharpening of the inequality of Berry-Esseen, Z. Wahrsch. Verw. Gebiete
8 (1967) 332-342; MR 36 #4622.

V. M. Zolotarev, Some inequalities from probability theory and their application to a re-
finement of A. M. Ljapunov’s theorem (in Russian), Dokl. Akad. Nauk SSSR 177 (1967)
501-504; Engl. transl. in Soviet Math. Dokl. 8 (1967) 1427-1430; MR 36 #3398.

P. van Beek, An application of Fourier methods to the problem of sharpening the Berry-
Esseen inequality, Z. Wahrsch. Verw. Gebiete 23 (1972) 187-196; MR 48 #7342.

I. S. Shiganov, Refinement of the upper bound of a constant in the remainder term of
the central limit theorem (in Russian), Problemy Ustoi Chivosti Stokhasticheskikh Mod-
elei, Proc. 1982 Moscow seminar, ed. V. M. Zolotarev and V. V. Kalashnikov, Vsesoyuz.
Nauchno-Issled. Inst. Sistem. Issled., 1982, pp. 109—115; MR 85d:60008.

U. V. Linnik, On the accuracy of the approximation to a Gaussian distribution of sums
of independent random variables (in Russian), /zv. Akad. Nauk SSSR 11 (1947) 111—
138; Engl. transl. in Selected Transl. Math. Statist. and Probab., v. 2, Amer. Math. Soc.,
pp. 131-158; MR 8,591c.

A. N. Kolmogorov, Some recent work on limit theorems in probability theory (in Russian),
Vestn. Moskov. Gos. Univ. 10 (1953) 29-38; Engl. transl. in Selected Works, v. 2, ed. A. N.
Shiryayev, Kluwer, 1992, pp. 406—418; MR 92j:01071.

V. V. Petrov, On precise estimates in limit theorems (in Russian), Vestnik Leningrad. Uniyv.,
v. 10 (1955) n. 11, 57-58; MR 17,753g.

B. A. Rogozin, A remark on the paper “A moment inequality with an application to the
central limit theorem” by C. G. Esseen (in Russian), Teor. Verojatnost. i Primenen. 5 (1960)
125-128; Engl. transl. in Theory Probab. Appl. 5 (1960) 114-117; MR 24 #A3683.

H. Prawitz, On the remainder in the central limit theorem. I: One dimensional independent
variables with finite absolute moments of third order, Scand. Actuar. J., 1975, 145-156;
MR 53 #1695.

R. Michel, On the constant in the nonuniform version of the Berry-Esseen theorem, Z.
Wahrsch. Verw. Gebiete 55 (1981) 109-117; MR 82¢:60042.

L. Paditz, On the analytical structure of the constant in the nonuniform version of the
Esseen inequality, Statistics 20 (1989) 453-464; MR 90k:60046.

A. Mitalauskas, On the calculation of the constant in the Berry-Esseen inequality for a
class of distributions (in Russian), Liet. Mat. Rink. 32 (1992) 526-531; Engl. transl. in
Lithuanian Math. J. 32 (1992) 410—413; MR 94i:60031.

V. Bentkus, On the asymptotical behavior of the constant in the Berry-Esseen inequality,
J. Theoret. Probab. 7 (1994) 211-224; MR 95d:60042.

G. P. Chistyakov, Asymptotically proper constants in Lyapunov’s theorem (in Russian),
Probability and Statistics, 1, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov
(POMI) 228 (1996) 349-355, 363-364; Engl. transl. in J Math. Sci. 93 (1999) 480-483;
MR 98g:60038.

V. V. Petrov, Sums of Independent Random Variables, Springer-Verlag, 1975; MR 52
#9335.



266 4 Constants Associated with the Approximation of Functions

[24] V. V. Petrov, Limit Theorems of Probability Theory: Sequences of Independent Random
Variables, Oxford Univ. Press, 1995; MR 96h:60048.

[25] P. Hall, Rates of Convergence in the Central Limit Theorem, Pitman, 1982; MR 84k:60032.

[26] R.N.Bhattacharya and R. Ranga Rao, Normal Approximation and Asymptotic Expansions,
Wiley, 1976; MR 55 #9219.

[27] P. Hall and A. D. Barbour, Reversing the Berry-Esseen inequality, Proc. Amer. Math. Soc.
90 (1984) 107-110; MR 86a:60028.

4.8 Laplace Limit Constant
Given real numbers M and ¢, |¢| < 1, the accurate solution of Kepler’s equation
M = E —¢esin(E)

is critical in celestial mechanics [1-4]. It relates the mean anomaly M of a planet,
in elliptical orbit around the sun, to the planet’s eccentric anomaly £ and to the
eccentricity ¢ of the ellipse. It is a transcendental equation, that is, without an algebraic
solution in terms of M and . Computing £ is a commonly-used intermediate step to
the calculation of planetary position as a function of time. Therefore it is not hard to
see why hundreds of mathematicians from Newton to present have devoted thought
to this problem.

We will not give the orbital mechanics underlying Kepler’s equation but instead
give a simple geometric motivational example. Pick an arbitrary point ¥ inside the unit
circle. Let P be the point on the circle closest to F' and pick another point O elsewhere
on the circle. Define £ and ¢ as pictured in Figure 4.2. Let M be twice the area of the
shaded sector PFQ. Then

M 1 1
5 = (area of sector POQ) — (area of triangle FOQ) = EE — 58 sin(E).

So the solution of Kepler’s equation allows us to compute the angle E, given the area
M and the length ¢.

M2

Figure 4.2. Geometric motivational example for Kepler’s equation.
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Kepler’s equation has a unique solution, here given as a power series in ¢ (via the
inversion method of Lagrange):

o0
E = M+Zan8”,
n=1

where [1,5-7]
ln/2]

a, = e BT YN Z( 1)k< > _2k)n71 sin((n —2k)M)

Power series solutions as such were the preferred way to do calculations in the pre-
computer nineteenth century. So it perhaps came as a shock that this series diverges for
le] > 0.662 as evidently first discovered by Laplace. Arnold [8] wrote, “This plays an
important part in the history of mathematics ... The investigation of the origin of this
mysterious constant led Cauchy to the creation of complex analysis.”

In fact, the power series for E converges like a geometric series with ratio

fle)= +\/—exp(\/l—i-s)

The value A = 0.6627434193 ... for which f(X) =1 is called the Laplace limit. A
closed-form expression for X in terms of elementary functions is not known. An infinite
series or definite integral expression for A is likewise not known.

The story does not end here. A Bessel function series for E is as follows [5, 6,9]:

o0
2
E=M+)" ~Jy(ne) sin(nM),
n=1

where

(D ek
o) = ; K(p + k)| (E) '

This series is better than the power series since it converges like a geometric series with

ratio
8(e) = ——F—=exp(vV1 —¢?),

which satisfies |g(e)| < 1 forall |¢] < 1.
Iterative methods, however, outperform both of these series expansion methods.
Note that the function

T(E)= M + esin(E) (for fixed M and ¢)

is a contraction mapping; thus the method of successive approximations
Ey=0, Eiy1 =T(E;)) =M+ esin(E))

works well. Newton’s method

M+ ¢esin(E;)) — E

Ey=0, Eiy1 =E; +
0 * 1 —ecos(E;)
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converges even more quickly. Variations of these abound. Putting practicality aside,
there are some interesting definite integral expressions [10-13] that solve Kepler’s
equation. These cannot be regarded as competitive in the race for quick accuracy, as
far as is known.

Analternative representation of A isas follows [7, 14, 15]: Let u = 1.1996786402 . ..
be the unique positive solution of coth(i) = u, then A = /u? — 1.
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4.9 Integer Chebyshev Constant

Consider the class P, of all real, monic polynomials of degree n. Which nonzero
member of this class deviates least from zero in the interval [0, 1]? That is, what is the
solution of the following optimization problem:

min max |p(x)| = f(n)?
pEP, 0=x<I
p#0

The unique answer is p,(x) = 2!72"T,(2x — 1), where [1,2]

and

(x+A/x2—=1y" +(x —/x2=1)

T,(x) = cos(n arccos(x)) = .

. 1
Jim )= 7
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Table 4.1. Real Chebyshev Polynomials

n Pn(x) S(m) AR
1 x—3 =3 0.500
2 x?-x+1 Z=3 0.353
3 x3_%x2+%x_3l2 4% 3% 0.314
4 xt =20 4 3% — x + Z=m 0.297
5 X =t B B2y By =15 0.287

The first several polynomials p,(x), which we call real Chebyshev polynomials (de-
fying tradition), are listed in Table 4.1. (The phrase “Chebyshev polynomial” is more
customarily used to denote the polynomial 7,(x).) In the definition of f(n), note that
we could just as well replace the word “monic” by the phrase “leading coefficient at
least 1.”

Consider instead the class O, of all integer polynomials of degree n, with positive
leading coefficient. Again, which nonzero member of this class deviates least from zero
in the interval [0, 1]? That is, what is the solution of

min max lg(x)| = g(n)?

q#0
Clearly this is a more restrictive version of the earlier problem. Here we do not have
a complete solution nor do we have uniqueness. The first several polynomials g, (x),
which we call integer Chebyshev polynomials, are listed in Table 4.2 [3,4]. Define the
integer Chebyshev constant (or integer transfinite diameter or integer logarithmic
capacity [4.9.1]) to be

x = lim g(n).
n—00
What can be said about x ? On the one hand, we have a lower bound [3-5]

1

exp(—0.8657725922...) = Sz

= 0.4207263771 ... =a < g,

Table 4.2. Integer Chebyshev Polynomials

n qn(x) gn)  gm)'"
1 xorx—1lor2x—1 1 1.000
2 x(x—1) ! 0.500
3 x(x—D@2x—1) 3 0.458
4 x?(x —1)P2orx(x — 1)2x — )2 or x(x — )(5x> = 5x + 1) % 0.500
5 x2(x—12@2x—1) £ 0.447
6 x*(x —1)’Qx — 1) &= 0.458
7 P —1PCx—1) 2T 0.449
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where

1 1 & 1\ 77
oy =2, ak=oek_1+—,k21,a=§]_[<l+—2> .

o1 o

Jj=0 J

This recursion was obtained with the help of what are known as Gorshkov—Wirsing
polynomials [3,6]. It was conjectured [5] that x = « until Borwein & Erdélyi [4]
proved to everyone’s surprise that x > «. On the other hand, we have an upper
bound

X < B =0.42347945 = = exp(—0.85925028)

2.36138964

due to Habsieger & Salvy [7], who succeeded in computing an integer Chebyshev
polynomial for each degree up to 75. Better algorithms will be needed to find such
polynomials to significantly higher degree and to determine B in this manner. By a
different approach, however, Pritsker [8] recently obtained improved bounds 0.4213 <
x < 0.4232.

Thus far we have focused all attention on the interval [0, 1], that is, on the constant
x = x(0, 1). What can be said about other intervals [a, b]? It is known [4, 9] that

x(=1, 1) = x(0, 1)* = x(0, p);

hence the preceding bounds can be applied. The exact value of x(a, b) forany 0 < b —
a < 4 remains an open question [4]. However, x(a, b) = 1ifb —a > 4 and x(0,¢c) =
x(0, D) foralll —0.172 < ¢ < 1 4+ ¢ forsome & > 0, thatis, x (0, ¢) is locally constant
atc = 1. Also [10], we have

x(0,1) = x(1,2) > 0.42,
but, from elementary considerations,
x(0,2) < % < 0.71 < 0.84 = 2(0.42);

that is, x(0, 2) is not the same as either 2x(0, 1) or x(0, 1)+ x(1,2). The rela-
tion x(0,1) = x(d,d + 1) also fails for non-integer d. So scaling, additivity, and
translation-invariance do not hold for the integer Chebyshev case (unlike the real
case).

There is an interesting connection between calculating x (0, 1) and prime number
theory [3, 5] due to Gel’fond and Schnirelmann. Ifit were true that y = 1/e = 0.36.. .,
then one would have a new proof of the famous Prime Number Theorem. Unfortunately,
this is false (as our bounds clearly indicate).

Finally, on the interval [0, 1], Aparicio Bernardo [11] observed that integer
Chebyshev polynomials g,(x) always have factors

x(x — 1), 2x — 1, and 562 —5x 4+ 1

that tend to repeat and increase in power as n grows. The relative rates at which this
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occurs, that is, the asymptotic structure of the polynomial g,(x), gives rise to more
interesting constants [4, 6, 8].

4.9.1 Transfinite Diameter

We utilized some language earlier from potential theory that deserves elaboration. Let
E be a compact set in the complex plane. The (real) transfinite diameter or (real)
logarithmic capacity is defined to be

n(nz—l)
y(E) = lim max 1_[ |z — zgl ,
n—00 z1,z7,....2,€E

Jj<k

that is, the maximal geometric mean of pairwise distances for » points in £, in the limit
as n — oo. For example,

1 1
y(0.1) = § = lim f(n)".

and this equality is not an accidental coincidence. For arbitrary E, the phrases transfi-
nite diameter, logarithmic capacity, and (real) Chebyshev constant are interchangeable
[1,12]. See [13—15] for sample computations. Relevant discussions of what are known
as Robin constants appear in [16—18].
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Constants Associated with Enumerating
Discrete Structures

5.1 Abelian Group Enumeration Constants

Every finite abelian group is a direct sum of cyclic subgroups. A corollary of this
fundamental theorem is the following. Given a positive integer n, the number a(n) of
non-isomorphic abelian groups of order # is given by [1,2]

a(n) = P(a1)P(az)P(a3) - - - P(e,),

where n = p{' p3?p3* -+ - p® is the prime factorization of n, pi, pa, ps, ..., p, are
distinct primes, each oy is positive, and P(oy) denotes the number of unrestricted
partitions of . For example, a(p*) = 5 for any prime p since there are five partitions

of 4:
4=143=24+2=14+142=1+14+1+1.

As another example, a(p*q*) = 25 for any distinct primes p and ¢, but a(p®) = 22.
It is clear that

liminfa(n) = 1,
n— 00

but it is more difficult to see that [3—6]

limsup In(a(n)) lnl(:(l:;)) = @ .

A number of authors have examined the average behavior of a(r) over all positive
integers. The most precise known results are [7—10]

N

Y a(n) = AN + 4N} + A3NF + 0 (N—+) ,

n=I
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where ¢ > 0 is arbitrarily small,

2.2948565916... ifk=1,

oo
=[] <i> = | —14.6475663016... ifk =2,
=t 118.6924619727 ... ifk =3,
J

and ¢(x) is Riemann’s zeta function [1.6]. We cannot help but speculate about the
following estimate:

N 00
> am) ~ > AN+ AN,
n=1 k=1
but an understanding of the error A(N) has apparently not yet been achieved [11,12].
Similar enumeration results for finite semisimple associative rings appear in [5.1.1].
If, instead, focus is shifted to the sum of the reciprocals of a(n), then [13, 14]

N
1
Z ay = AN+ O (N% 1n(N)—%) ,
where 4 is an infinite product over all primes p:

> 1 1 1
Ay = 1-— ——— — —— | — | =0.7520107423.....
’ 1:[[ ,; (P(k— 1 P(k)) pk}
In summary, the average number of non-isomorphic abelian groups of any given order
is Ay = 2.2948 if “average” is understood in the sense of arithmetic mean, and 4, I =
1.3297 if “average” is understood in the sense of harmonic mean. We cannot even hope
to obtain analogous statistics for the general (not necessarily abelian) case at present.
Some interesting bounds are known [15—19] and are based on the classification theorem
of finite simple groups.

The constant 4, also appears in [20] in connection with the arithmetical properties
of class numbers of quadratic fields.

Erdos & Szekeres [21,22] examined a(n) and the following generalization: a(n, i)
is the number of representations of n as a product (of an arbitrary number of terms,
with order ignored) of factors of the form p/, where j > i. They proved that

N

Za(n,i):CiN% +O(Nﬁ), where C; =ﬁ§ (1—}—?),
k=1

n=I1

and surely someone has tightened this estimate by now. See also the discussion of
square-full and cube-full integers in [2.6.1].

5.1.1 Semisimple Associative Rings

A finite associative ring R with identity element 1 # 0 is said to be simple if R has no
proper (two-sided) ideals and is semisimple if R is a direct sum of simple ideals.
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Simple rings generalize fields. Semisimple rings, in turn, generalize simple rings.
Every (finite) semisimple ring is, in fact, a direct sum of full matrix rings over finite
fields. Consequently, given a positive integer », the number s(n) of non-isomorphic
semisimple rings of order # is given by

s(n) = Q1) Q(e2) O(e3) - - - Q)

where n = p{' p3*p3* - - p® is the prime factorization of n, pi, p, ps, ..., p, are
distinct primes, each «; is positive, and Q(«) denotes the number of (unordered) sets
of integer pairs (r;, m ;) for which

ay = ermi and rjm§ > 0 forall ;.
J
As an example, s(p>) = 8 for any prime p since

5=1-1°41-2>=5.1"=2-12+3-1 124412
=1->4+1-?4+3-1°=1-1>42. 12+2 1
=1-1241-241-242-2=1-241-1>41-1241- 124112

Asymptotically, there are extreme results [23,24]:

liminfs(n) = 1,
n— 00

. In(In(n))  In(6)

1 1 — = —

imsup n(s(n)) In(n) )
and average results [25-30]:

N
Y s(n) = A\BIN + A2BN? + A3 BN + 0 (N%ﬂ) ,

n=1

where ¢ > 0 is arbitrarily small, Ay, is as defined in the preceding, and

w =M ()

r=1m=

In particular, there are, on average,

A1Br = [ ¢(rm®) =2.4996161129. ..

rm?>1

non-isomorphic semisimple rings of any given order (“average” in the sense of arith-
metic mean).
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5.2 Pythagorean Triple Constants

The positive integers a, b, ¢ are said to form a primitive Pythagorean triple ifa < b,
ged(a, b, ¢) = 1, and a® + b* = ¢?. Clearly any such triple can be interpreted geomet-
rically as the side lengths of a right triangle with commensurable sides. Define P (),
Pp(n), and P,(n) respectively as the number of primitive Pythagorean triples whose
hypotenuses, perimeters, and areas do not exceed n. D. N. Lehmer [1] showed that

Py(n) 1 . P,(n) In(2)
lim = —, lim —= =
n—oo n 20 n—oo n 2
and Lambek & Moser [2] showed that
P, 1 1\?
lim 2 _ ¢ _ r (—) — 0.5313399499 . . .,
n— 00 ﬁ 275 4

where I'(x) is the Euler gamma function [1.5.4].
What can be said about the error terms? D. H. Lehmer [3] demonstrated that

In(2) 1
Pyn) = —5n+0 (n% ln(n)) ,
and Lambek & Moser [2] and Wild [4] further demonstrated that

Py(n) = %n + 0 (n% 1n(n)> , P,(n)= Cn: — Dns + O (n% ln(n)) ,

where
14275 ¢4
D=2 974615529,
1+473¢(3)
and ¢ (x) is the Riemann zeta function [1.6]. Sharper estimates for P,(n) were obtained
in [5-8].

It is obvious that the hypotenuse ¢ and the perimeter a + b + ¢ of a primitive
Pythagorean triple a, b, ¢ must both be integers. If ab was odd, then both a and b
would be odd and hence ¢? = 2 mod 4, which is impossible. Thus the area ab/2 must
also be an integer. If P, (n) is the number of primitive Pythagorean triples whose areas
< n are integers, then P/(n) = P,(n). Such an identity does not hold for non-right
triangles, of course.

A somewhat related matter is the ancient congruent number problem [9], the
solution of which Tunnell [10] has reduced to a weak form of the Birch—-Swinnerton—
Dyer conjecture from elliptic curve theory. In the congruent number problem, the right
triangles are permitted to have rational sides (rather than just integer sides). For a
prescribed integer #, does there exist a rational right triangle with area n?

There is also the problem of enumerating primitive Heronian triples, equivalently,
coprime integers a < b < c that are side lengths of an arbitrary triangle with com-
mensurable sides. What can be said asymptotically about the numbers Hy(n), H,(n),
H,(n), and H(n) (analogously defined)? A starting point for answering this question
might be [11,12].



278 5 Constants Associated with Enumerating Discrete Structures

[1] D. N. Lehmer, Asymptotic evaluation of certain totient sums, Amer. J. Math. 22 (1900)
293-335.

[2] J. Lambek and L. Moser, On the distribution of Pythagorean triples, Pacific J. Math. 5
(1955) 73-83; MR 16,796h.

[3] D.H.Lehmer, A conjecture of Krishnaswami, Bull. Amer. Math. Soc. 54 (1948) 1185-1190;
MR 10,431c.

[4] R.E.Wild, On the number of primitive Pythagorean triangles with area less than n, Pacific
J. Math. 5 (1955) 85-91; MR 16,797a.

[5] I Duttlinger and W. Schwarz, Uber die Verteilung der pythagoriischen Dreiecke, Collog.
Math. 43 (1980) 365-372; MR 83e:10018.

[6] H. Menzer, On the number of primitive Pythagorean triangles, Math. Nachr. 128 (1986)
129-133; MR 87m:11022.

[71 W.Miiller, W. G. Nowak, and H. Menzer, On the number of primitive Pythagorean triangles,
Annales Sci. Math. Québec 12 (1988) 263-273; MR 90b:11020.

[8] W. Miiller and W. G. Nowak, Lattice points in planar domains: Applications of Huxley’s
‘Discrete Hardy-Littlewood method,” Number-Theoretic Analysis: Vienna 1988-89, ed. E.
Hlawka and R. F. Tichy, Lect. Notes in Math. 1452, Springer-Verlag, 1990, pp. 139-164;
MR 92d:11113.

[91 N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984;
MR 94a:11078.

[10] J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent.
Math. 72 (1983) 323-334; MR 85d:11046.

[11] C. P. Popovici, Heronian triangles (in Russian), Rev. Math. Pures Appl. 7 (1962) 439-457;
MR 31 #121.

[12] D. Singmaster, Some corrections to Carlson’s “Determination of Heronian triangles,”
Fibonacci Quart. 11 (1973) 157-158; MR 45 #156 and MR 47 #4922.

5.3 Rényi’s Parking Constant

Consider the one-dimensional interval [0, x] with x > 1. Imagine it to be a street for
which parking is permitted on one side. Cars of unit length are one-by-one parked
completely at random on the street and obviously no overlap is allowed with cars
already in place. What is the mean number, M(x), of cars that can fit?

Rényi [1-3] determined that M (x) satisfies the following integrofunctional equation:

0 if0<x <1,
x—1
= 2
M(x) l—i——/M(t)dt ifx > 1.
x—1
0

By a Laplace transform technique, Rényi proved that the limiting mean density, m, of
cars in the interval [0, x] is

. M(x)
m = lim

x—00 X

o0
/ B(x)dx = 0.7475979202 ...,
0

where

x x
l—e™ .
B(x) =exp —2/ te dt | = e—Z(In(x)—El(—x)-H/)’ alx)=m — / B(t)dt,
0 0
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y is the Euler—Mascheroni constant [1.5], and Ei is the exponential integral [6.2.1].
Several alternative proofs appear in [4, 5].

What can be said about the variance, V' (x), of the number of cars that can fit on the
street? Mackenzie [6], Dvoretzky & Robbins [7], and Mannion [8,9] independently
addressed this question and deduced that

o0

2
v = Tim 2 _ 4/ [e‘x(l - e—x)@ Lo (x 4 et — 1y 2 } dx — m

x>0 X :B(x)xz

0
= 0.0381563991....

A central limit theorem holds [7], that is, the total number of cars is approximately
normally distributed with mean mx and variance vx for large enough x.

It is natural to consider the parking problem in a higher dimensional setting. Consider
the two-dimensional rectangle of length x > 1 and width y > 1 and imagine cars to be
unit squares with sides parallel to the sides of the parking rectangle. What is the mean
number, M(x, y), of cars that can fit? Palasti [10—12] conjectured that

. . M(x,y)
lim lim

X—>00 y—>00 Xy

= m? = (0.7475979202 .. .)* = 0.558902... ..

Despite some determined yet controversial attempts at analysis [13, 14], the conjecture
remains unproven. The mere existence of the limiting parking density was shown
only recently [15]. Intensive computer simulation [16—18] suggests, however, that the
conjecture is false and the true limiting value is 0.562009. . ..

Here is a variation in the one-dimensional setting. In Rényi’s problem, a car that lands
in a parking position overlapping with an earlier car is discarded. Solomon [14, 19-21]
studied a revised rule in which the car “rolls off” the earlier car immediately to the left
or to the right, whichever is closer. It is then parked if there exists space for it; otherwise
it is discarded. The mean car density is larger:

m= /(Zx + 1) exp [—2(x + e~ — 1)] B(x) dx = 0.8086525183 ...
0

since cars are permitted greater flexibility to park bumper to bumper. If Rényi’s prob-
lem is thought of as a model for sphere packing in a three-dimensional volume, then
Solomon’s variation corresponds to packing with “shaking” allowed for the spheres to
settle, hence creating more space for additional spheres.

Another variation involves random car lengths [22,23]. If the left and right endpoints
of the k™ arriving car are taken as the smaller and larger of two independent uniform
draws from [0, x], then the asymptotic expected number of cars successfully parked is
C - kVT=3/4 \where [24,25]

J1
c=(1- ! JT : (T> = 0.9848712825
- (JTT-1)/4 2 o
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and I is the gamma function [1.5.4]. Note that x is only a scale factor in this variation
and does not figure in the result.

Applications of the parking problem (or, more generally, the sequential packing or
space-filling problem) include such widely separated disciplines as:

» Physics: models of liquid structure [26-29];

* Chemistry: adsorption of a fluid film on a crystal surface [5.3.1];

* Monte Carlo methods: evaluation of definite integrals [30];

» Linguistics: frequency of one-syllable, length-n English words [31];

* Sociology: models of elections in Japan and lengths of gaps generated in parking
problems [32-35];

* Materials science: intercrack distance after multiple fracture of reinforced concrete
[36];

« Computer science: optimal data placement on a CD [37] and linear probing hashing
[38].

See also [39—41]. Note the similarities in formulation between the Golomb—Dickman
constant [5.4] and the Rényi constant.

5.3.1 Random Sequential Adsorption

Consider the case in which the interval [0, x] is replaced by the discrete finite linear
lattice 1,2, 3, ..., n. Each car is a line segment of unit length and covers two lattice
points when it parks. No car is permitted to touch points that have already been covered.
The process stops when no adjacent pairs of lattice points are left uncovered. It can be
proved that, as n — oo [19,42-45],

1— -2
m= 26 — 04323323583 ..., v=ec"*=0.0183156388. ...

both of which are smaller than their continuous-case counterparts. The two-dimensional
discrete analog involves unit square cars covering four lattice points, and is analytically
intractable just like the continuous case. Palasti’s conjecture appears to be false here too:
The limiting mean density in the plane isnot m? = 0.186911 . . . but rather 0.186985 . . .
[46-48].

For simplicity’s sake, we refer to the infinite linear lattice 1,2, 3, ... asthe 1 x co
strip. The 2 x oo strip is the infinite ladder lattice with two parallel lines and crossbeams,
the 3 x oo strip is likewise with three parallel lines, and naturally the co x co strip
is the infinite square lattice. Thus we have closed-form expressions for m and v on
1 x oo, but only numerical corrections to Palasti’s estimate on oo x oo.

If a car is a unit line segment (dimer) on the 2 x oco strip, then the mean car density
is %(0.91556671 ...). If instead the car is on the co x oo strip, then the corresponding
mean density is %(0.90682 ...) [49-55]. Can exact formulas be found for these two
quantities?
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If the car is a line segment of length two (linear trimer) on the 1 x oo strip, then
the mean density of vacancies is u(3) = 0.1763470368 . . ., where [6,56—58]

1

u(r):l—r/exp( 2ZI_X>

0

More generally, () is the mean density of vacancies for linear »-mers on the 1 x oo
strip, for any integer » > 2. A corresponding formula for the variance is not known.

Now suppose that the car is a single particle and that no other cars are allowed to
park in any adjacent lattice points (monomer with nearest neighbor exclusion). The
mean car density for the 1 x oo strip is m; = %(1 — e7?) as before, of course. The
mean densities for the 2 x oo and 3 x oo strips are [59—61]

2—¢!

1
my = = 0.4080301397..., m3 = 3= 0.3333333333...,

and the corresponding density for the oo x oo strip is me = 0.364132. ..
[47,48,50,53,55,62]. Again, can exact formulas for m4 or m, be found?

The continuous case can be captured from the discrete case by appropriate limiting
arguments [6,58, 63]. Exhaustive surveys of random sequential adsorption models are
provided in [64—66].
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5.4 Golomb-Dickman Constant

Every permutation on » symbols can be uniquely expressed as a product of disjoint
cycles. For example, the permutation 7 on {0, 1, 2, ..., 9} defined by 7 (x) = 3x mod
10 has cycle structure

7 =(0)(1397)(2684)(5).

In this case, the permutation 7 has «;(r) = 2 cycles of length 1, a;(w) = 0 cycles of
length 2, a3(r) = 0 cycles of length 3, and w4(r) = 2 cycles of length 4. The total
number Zj‘;l a; of cycles in 7 is equal to 4 in the example.

Assume that # is fixed and that the n! permutationson {0, 1, 2, ..., n—1} are assigned
equal probability. Picking 7 at random, we have the classical results [1-4]:

E<iaj>=i%=ln(n)+y+0(%>,

j=1 i=1

> i—1 w? 1
Var(Zon-):Z 2 =1n(n)+y—z+0<;),

k
lim P(a; = k) = —exp <——,) (—) (asymptotic Poisson distribution),
n—00 J

1 t2>
=— exp | —— ) dt (asymptotic normal distribution),
m/ p( 7 ) (asyme )
—00

where y is the Euler—Mascheroni constant [1.5].
What can be said about the limiting distribution of the longest cycle and the shortest
cycle,

M(r)=max{j > 1:a; >0}, m(mw)=min{j > 1:a; > 0},

given a random permutation 7r? Goncharov [1,2] and Golomb [5-7] both considered
the average value of M (7). Golomb examined the constant [8—10]
o0
=1- / &;C)dx = 0.6243299885 ...,
X
1

5 = lim M)

n—o0 n
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where p(x) is the unique continuous solution of the following delay-differential
equation:

px)=1for0<x <1, x0'(x)+ p(x —1)=0 forx > 1.
(Actually, he worked with the function p(x — 1).) Shepp & Lloyd [11] and others [6]
discovered additional expressions:
o0 1
A= f e ¥ gy = / M gy = G(1, 1),
0 0

where

oo

Nk
G(a,r):%/( — exp(a Ei(— x))z( 9) Ei(— x)k)dx

0

Eiis the exponential integral [6.2.1], and Li is the logarithmic integral [6.2.2]. Gourdon
[12] determined the complete asymptotic expansion for E(M (r7)):

2 24n 48 8

2Q@n+ir 2n+2)7 -
n 17eV+(1)”+7+ef’ 1+0 1
3840 8 6 6 n3 nt)’
Note the periodic fluctuations involving roots of unity.

A similar integral formula for lim,_, ., Var(M(m))/n> = 0.0369078300... =
H(1, 1) holds, where [12]
k) xdx — G(a,r)*.

We will need values of G(a, r) and H(a,r), a # 1 # r, later in this essay. An analog
of A appears in [13, 14] in connection with polynomial factorization.

The arguments leading to asymptotic average values of m (7 ) are more complicated.
Shepp & Lloyd [11] proved that

_En(r) _

n—oo In(n)

AR SA N CANC U

2 o
H(a,r) = m/ (1 —exp(aEl(—x))kXZO: i
0

7 =10.5614594835.. ..

as well as formulas for higher moments. A complete asymptotic expansion for E(m (7)),
however, remains open.

The mean and variance of the r™ longest cycle (normalized by » and
n%, as n— oo) are given by G(1,r) and H(l,r). For example, G(1,2)=
0.2095808742 ..., H(1,2)=0.0125537906... and G(1,3) = 0.0883160988...,
H(1,3)=0.0044939231...[11,12].

There is a fascinating connection between A and prime factorization algorithms
[15,16]. Let f(n) denote the largest prime factor of n. By choosing a random integer
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n between 1 and N, Dickman [17-20] determined that
lim P(f(n) <n*) = p(3)
N—oo x

for 0 < x < 1. With this in mind, what is the average value of x such that f(n) = n*?
Dickman obtained numerically that

p= lim B0 = lim E(lnﬁ{z(’;))) ] xd,o 7y_y _
0 1

N—oo

which is indeed surprising! Dickman’s constant 2 and Golomb’s constant A are iden-
tical! Knuth & Trabb Pardo [15] described this result as follows: An is the asymptotic
average number of digits in the largest prime factor of an n-digit number. More gener-
ally, if we are factoring a random n-digit number, the distribution of digits in its prime
factors is approximately the same as the distribution of the cycle lengths in a random
permutation on z elements. This remarkable and unexpected fact is explored in greater
depth in [21,22].

Other asymptotic formulas involving the largest prime factor function f(n) include
[15,23,24]

c(k+1) N*
k+1 In(N)

where ¢ (x) is the zeta function [1.6]. See also [25-29]. Note the curious coincidence
[15] involving integral and sum:

E(f(n)) ~ E(In(f(n))) ~ A In(N) — A(1 = y),

o0

o0
/p(x)dx =e¥ = an(n).
n=1
0
Dickman’s function is important in the study of y-smooth numbers [24,30-32], that is,

integers whose prime divisors never exceed y. It appears in probability theory as the
density function (normalized by e”) of [33,34]

X1+ X1X2 + X1 X2X3 4+ - -+, X, independent uniform random variables on [0, 1].

See [35—40] for other applications of p(x). A closely-allied function, due to Buchstab,
satisfies [24,34,41-45]

1
ox)=—forl <x <2, x&(x)+wx)—wkx —1)=0 forx > 2,
x

which arises when estimating the frequency of integers n whose smallest prime factor
> n*. Both functions are positive everywhere, and special values include [46]
pCHE) =1 = In(HE) + (15572 — 75 lim p(x) =0,
5+«f (5+f) 1+ ln( 3+2\/§) + ln(l+2x/§)2 761(; , 11m w(x) — eV,
Whereas p(x) is nonincreasing, the difference w(x) — e~ changes sign (at most twice)
in every interval of length 1. Its oscillatory behavior plays a role in understanding
irregularities in the distribution of primes.
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Note the similarity in formulation between the Golomb—Dickman constant and
Rényi’s parking constant [5.3].

5.4.1 Symmetric Group

Here are several related questions. Given 77, a permutation on n symbols, define its order
0(7r) to be the least positive integer m such that 7™ = identity. Clearly 1 < 6(w) < n!.
What is its mean value, E(6(7r))? Goh & Schmutz [47], building upon the work of
Erd6s & Turan [48], proved that

IN(E(B(x))) = B.| —— + o(1),
In(n)

where B = 24/2b = 2.9904703993 ... and

o0
b:fmu—ma—aﬂmsznmmwu““
0

Stong [49] improved the o(1) estimate and gave alternative representations for b:

o0

~ 00 xe ¥ _ ln(x + 1) _ 00 ek .
°= / T—e( Il —e) " = / —— dx=-) L Ei-h.
0 0

k=1

A typical permutation 7 can be shown to satisfy In(6(w)) ~ %ln(n)z; hence a few
exceptional permutations contribute significantly to the mean. What can be said about
the variance of (rr)?

Also, define g(n) to be the maximum order 6(s) of all #n-permutations 7. Landau
[50,51] proved that In(g(n)) ~ /n In(n), and greatly refined estimates of g(n) appeared
in [52].

A natural equivalence relation can be defined on the symmetric group S, via con-
jugacy. In the limit as n — oo, for almost all conjugacy classes C, the elements of C
have order equal to exp(y/n(4 + o(1))), where [48,53, 54]

j+1
:5@ (=1)/ _4 6/6

.2 .
b4 #03] +j b4

A

Note that the summation involves reciprocals of nonzero pentagonal numbers.

Let s, denote the probability that two elements of the symmetric group, S, chosen
at random (with replacement) actually generate S,. The first several values are s, = 1,
sy =3/4,s3 =1/2,54 = 3/8, ... [55]. What can be said about the asymptotics of s,,?
Dixon [56] proved an 1892 conjecture by Netto [57] that s, — 3/4 as n — oo. Babai
[58] gave a more refined estimate.

5.4.2 Random Mapping Statistics

We now generalize the discussion from permutations (bijective functions) on n symbols
to arbitrary mappings on n symbols. For example, the function ¢ on {0, 1, 2, ..., 9}
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Figure 5.1. The functional graph for (x) = x? 4+ 2 mod 20 has two components, each containing
a cycle of length 2.

defined by ¢(x) = 2x mod 10 has cycles (0) and (2 4 8 6). The remaining symbols 1,
3,5,7,and 9 are transient in the sense that if one starts with 3, one is absorbed into the
cycle (2 4 8 6) and never returns to 3. We can nevertheless define cycle lengths «; as
before; in this simple example, «;(¢) = 1, a2(¢) = a3(p) = 0, and a4(p) = 1.

The lengths of the longest and shortest cycles, M(¢) and m(p), are clearly of interest
in pseudo-random number generation. Purdom & Williams [59-61] found that

E(M E 1
lim (7((0) =X /z = 0.7824816009..., lim M = —e7V.
n— 00 ﬁ 2 n—00 ]n(n) 2

Observe that E(M(g)) grows on the order of only /7 rather than n as earlier.

As another example, consider the function v on {0, 1,2, ..., 19} defined by y(x) =
x2 4 2 mod 20. From Figure 5.1, clearly oy (1) = 2. Here are other interesting quanti-
ties [62]. Note that the transient symbols 0, 5, 10, and 15 each require 2 steps to reach
a cycle, and this is the maximum such distance. Thus define the longest tail L (/) = 2.
Note also that 4 is the number of vertices in the nonrepeating trajectory for each of 0,
5, 10, and 15, and this is the maximum such length. Thus define the longest rho-path
R() = 4. Clearly, for the earlier example, L(¢) = 1 and R(p) = 5. It can be proved
that, for arbitrary n-mappings ¢ [61],

E(L
lim @) A i) = 17374623212
n—00 n
E(R °r
lim S2R@) _ T / (1 — FIED=10) g — 2 4149010237 .. .,
n—o00 ﬁ 2
0

where

x . )
0

Another quantity associated with a mapping ¢ is the largest tree P(¢). Each vertex
in each cycle of ¢ is the root of a unique maximal tree [5.6]. Select the tree with the
greatest number of vertices, and call this number P(g). For the two examples, clearly
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P(¢) =2 and P(y) = 6. It is known that, for arbitrary n-mappings ¢ [12,61],

(o]

= 2/ [1- (1 — F(x))"']dx = 0.4834983471 . ..,
0

.. E(P(p)
v=lim ——=

n—00 n

Var(Plp)) _ §f [1—(1 - F(x) "]xdx —v? =0.0494698522 . ...,

0

lim

n—00 n2 3

where

F(x) = % f et dt =1 — \/% exp(—x) — erf(v/x)

and erf is the error function [4.6]. Gourdon [63] mentioned a coin-tossing game, the
analysis of which yields the preceding two constants.

Finally, let us examine the connected component structure of a mapping. We have
come full circle, in a sense, because components relate to mappings as cycles relate
to permutations. For the two examples, the counting function is B>(¢) = 1, Bs(¢) = 1
while S19(¢) = 2. In the interest of analogy, here are more details. The total number
Z‘;il B; of components is equal to 2 in both cases. Picking ¢ at random, we have
[64-67]

E (Z ﬂ,-) = > enas = 3 I+ 3002+ )+ o),
=1 i=1
Var (Zﬂ/) = ch,o,i - (ch()l) + ch 0,i chl j

j=1 i=1 i=1

= % In(n) + o(In(n)),

1
hm P(B; =k)=— exp( d; )dk , (asymptotic Poisson distribution),

where

_<"—p>(q—1)' e‘“ i
cn,p,q - - IR

q !
q n =i

and a corresponding Gaussian limit also holds. Define the largest component Q(¢) =
max{j > 1: B8; > 0}; then [12,61,68]

E
tim 22O _ Gt 1y~ 0.7578230112... .
n—00 n
%
tim Y22@D) _ 1 1y = 0.0370072165 ...
n—00 n
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Such results answer questions raised in [69—71]. It seems fitting to call 0.75782. .. the
Flajolet—Odlyzko constant, owing to its importance. The mean and variance of the 7™
largest component (again normalized by # and n2, asn — 00) are given by G (%, r)and
H(%, r). For example, G(%, 2) = 0.1709096198 .. . and H(%, 2) = 0.0186202233....
A discussion of smallest components appears in [72].

(1]
(2]

(3]
(4]
(3]

(6]
(7]

(8]
[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]
[17]
(18]
[19]

[20]

(21]

[22]

W. Goncharov, Sur la distribution des cycles dans les permutations, C. R. (Dokl.) Acad.
Sci. URSS 35 (1942) 267-269; MR 4,102g.

W. Goncharov, On the field of combinatory analysis (in Russian), Izv. Akad. Nauk SSSR 8
(1944) 3-48; Engl. transl. in Amer. Math. Soc. Transl. 19 (1962) 1-46; MR 6,88b and MR
24 A1221.

R. E. Greenwood, The number of cycles associated with the elements of a permutation
group, Amer. Math. Monthly 60 (1953) 407—409; MR 14,939b.

H. S. Wilf, generatingfunctionology, Academic Press, 1990; MR 95a:05002.

S. W. Golomb, Random permutations, Bull. Amer. Math. Soc. 70 (1964) 747.

S. W. Golomb, Shift Register Sequences, Holden-Day, 1967; MR 39 #3906.

S. W. Golomb and P. Gaal, On the number of permutations on n objects with greatest
cycle length k, Adv. Appl. Math. 20 (1998) 98-107; Probabilistic Methods in Discrete
Mathematics, Proc. 1996 Petrozavodsk conf., ed. V. F. Kolchin, V. Ya. Kozlov, Yu. L.
Pavlov, and Yu. V. Prokhorov, VSP, 1997, pp. 211-218; MR 98k:05003 and MR 99j:05001.
W. C. Mitchell, An evaluation of Golomb’s constant, Math. Comp. 22 (1968) 411-415.
D. E. Knuth, The Art of Computer Programming, v. 1, Fundamental Algorithms, Addison-
Wesley, 1969, pp. 180—181, 519-520; MR 51 #14624.

A. MacLeod, Golomb’s constant to 250 decimal places, unpublished note (1997).

L. A. Shepp and S. P. Lloyd, Ordered cycle lengths in a random permutation, Trans. Amer.
Math. Soc. 121 (1966) 350-557; MR 33 #3320.

X. Gourdon, Combinatoire, Algorithmique et Géométrie des Polynémes, Ph.D. thesis, Ecole
Polytechnique, 1996.

P. Flajolet, X. Gourdon, and D. Panario, Random polynomials and polynomial factorization,
Proc. 1996 Int. Colloq. on Automata, Languages and Programming (ICALP), Paderborn,
ed. F. Meyer auf der Heide and B. Monien, Lect. Notes in Comp. Sci. 1099, Springer-Verlag,
pp. 232-243; MR 98e:68123.

P. Flajolet, X. Gourdon, and D. Panario, The complete analysis of a polynomial factorization
algorithm over finite fields, J. Algorithms 40 (2001) 37-81; INRIA report RR3370; MR
2002f:68193.

D. E. Knuth and L. Trabb Pardo, Analysis of a simple factorization algorithm, Theoret.
Comput. Sci. 3 (1976) 321-348; also in Selected Papers on Analysis of Algorithms, CSLI,
2000, pp. 303-339; MR 58 #16485.

D. E. Knuth, The Art of Computer Programming, v. 2, Seminumerical Algorithms, 2™ ed.,
Addison-Wesley, 1981, pp. 367-368, 395, 611; MR 83i:68003.

K. Dickman, On the frequency of numbers containing prime factors of a certain relative
magnitude, Ark. Mat. Astron. Fysik, v. 22A (1930) n. 10, 1-14.

S. D. Chowla and T. Vijayaraghavan, On the largest prime divisors of numbers, J. Indian
Math. Soc. 11 (1947) 31-37; MR 9,332d.

V. Ramaswami, On the number of positive integers less than x and free of prime divisors
greater than x°, Bull. Amer. Math. Soc. 55 (1949) 1122-1127; MR 11,233f.

N. G. de Bruijn, On the number of positive integers < x and free of prime factors > y,
Proc. Konink. Nederl. Acad. Wetensch. Ser. A 54 (1951) 50-60; Indag. Math. 13 (1951)
50-60; MR 13,724e.

R. Arratia, A. D. Barbour, and S. Tavaré, Random combinatorial structures and prime
factorizations, Notices Amer. Math. Soc. 44 (1997) 903-910; MR 98i:60007.

R. Arratia, A. D. Barbour, and S. Tavaré, Logarithmic Combinatorial Structures: A Prob-
abilistic Approach, unpublished manuscript (2001).



[23]
[24]

[25]

[26]

[27]

[41]
[42]

[43]

[44]
[45]

[46]
[47]

(48]

5.4 Golomb-Dickman Constant 291

K. Alladi and P. Erd6s, On an additive arithmetic function, Pacific J. Math. 71 (1977)
275-294; MR 56 #5401.

G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge
Univ. Press, 1995, pp. 365-366, 393, 399-400; MR 97¢:11005b.

P. Erd6s and A. Ivi¢, Estimates for sums involving the largest prime factor of an integer
and certain related additive functions, Studia Sci. Math. Hungar. 15 (1980) 183—-199; MR
84a:10046.

T. Z. Xuan, On a result of Erdos and Ivi¢, Arch. Math. (Basel) 62 (1994) 143-154; MR
94m:11109.

H. Z. Cao, Sums involving the smallest prime factor of an integer, Utilitas Math. 45 (1994)
245-251; MR 95d:11126.

S. R. Finch, Moments of the Smarandache function, Smarandache Notions J. 10 (1999)
95-96; 11 (2000) 140-141; MR 2000a:11129.

K. Ford, The normal behavior of the Smarandache function, Smarandache Notions J. 10
(1999) 81-86; MR 2000a:11130.

K. K. Norton, Numbers with small prime factors, and the least k™ power non-residue,
Memoirs Amer. Math. Soc. 106 (1971) 1-106; MR 44 #3948.

A. Hildebrand and G. Tenenbaum, Integers without large prime factors, J. Théorie Nombres
Bordeaux 5 (1993) 411-484; MR 95d:11116.

P. Moree, On the Psixyology of Diophantine Equations, Ph.D. thesis, Univ. of Leiden, 1993.
J.-M.-F. Chamayou, A probabilistic approach to a differential-difference equation arising
in analytic number theory, Math. Comp. 27 (1973) 197-203; MR 49 #1725.

G. Marsaglia, A. Zaman, and J. C. W. Marsaglia, Numerical solution of some classical
differential-difference equations, Math. Comp. 53 (1989) 191-201; MR 90h:65124.

H. Davenport and P. Erdos, The distribution of quadratic and higher residues, Publ. Math.
(Debrecen) 2 (1952) 252-265; MR 14,1063h.

L. I. Pal and G. Németh, A statistical theory of lattice damage in solids irradiated by
high-energy particles, Nuovo Cimento 12 (1959) 293-309; MR 21 #7630.

G. A. Watterson, The stationary distribution of the infinitely-many neutral alleles diffusion
model, J Appl. Probab. 13 (1976) 639-651; correction 14 (1977) 897; MR 58 #20594a
and b.

D. Hensley, The convolution powers of the Dickman function, J. London Math. Soc. 33
(1986) 395-406; MR 87k:11097.

D. Hensley, Distribution of sums of exponentials of random variables, Amer. Math. Monthly
94 (1987) 304-306.

C. J. Lloyd and E. J. Williams, Recursive splitting of an interval when the proportions are
identical and independent random variables, Stochastic Process. Appl. 28 (1988) 111-122;
MR 89¢:60025.

A. A. Buchstab, Asymptotic estimates of a general number theoretic function (in Russian),
Mat. Sbornik 2 (1937) 1239-1246.

S. Selberg, The number of cancelled elements in the sieve of Eratosthenes (in Norwegian),
Norsk Mat. Tidsskr. 26 (1944) 79-84; MR 8,317a.

N. G. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Proc.
Konink. Nederl. Acad. Wetensch. Sci. Sect. 53 (1950) 803—812; Indag. Math. 12 (1950)
247-256; MR 12,11d.

A.Y. Cheer and D. A. Goldston, A differential delay equation arising from the sieve of
Eratosthenes, Math. Comp. 55 (1990) 129-141; MR 90j:11091.

A. Hildebrand and G. Tenenbaum, On a class of differential-difference equations arising
in analytic number theory, J. d’Analyse Math. 61 (1993) 145-179; MR 94i:11069.

P. Moree, A special value of Dickman’s function, Math. Student 64 (1995) 47-50.
W.M.Y. Goh and E. Schmutz, The expected order of a random permutation, Bull. London
Math. Soc. 23 (1991) 34-42; MR 93a:11080.

P. Turan, Combinatorics, partitions, group theory, Colloquio Internazionale sulle Teorie
Combinatorie, t. 2, Proc. 1973 Rome conf., Accad. Naz. Lincei, 1976, pp. 181-200; also
in Collected Works, v. 3, ed. P. Erdos, Akadémiai Kiado, pp. 2302-2321; MR 58 #21978.



292 5 Constants Associated with Enumerating Discrete Structures

[49] R. Stong, The average order of a permutation, Elec. J. Combin. 5 (1998) R41; MR
99f:11122.

[50] W. Miller, The maximum order of an element of a finite symmetric group, Amer. Math.
Monthly 94 (1987) 497-506; MR 89k:20005.

[51] J.-L. Nicolas, On Landau’s function g(n), The Mathematics of Paul Erdés, v. 1, ed. R. L.
Graham and J. Nesetril, Springer-Verlag, 1997, pp. 228-240; MR 98b:11096.

[52] J.-P. Massias, J.-L. Nicolas, and G. Robin, Effective bounds for the maximal order of an
element in the symmetric group, Math. Comp. 53 (1989) 665-678; MR 90e:11139.

[53] D. H. Lehmer, On a constant of Turan and Erdds, Acta Arith. 37 (1980) 359-361; MR
82b:05014.

[54] W. Schwarz, Another evaluation of an Erdés-Turan constant, Analysis 5 (1985) 343-345;
MR 86m:40003.

[55] N. . A. Sloane, On-Line Encyclopedia of Integer Sequences, A040173 and A040174.

[56] J. D. Dixon, The probability of generating the symmetric group, Math. Z. 110 (1969)
199-205; MR 40 #4985.

[57]1 E. Netto, The Theory of Substitutions and Its Applications to Algebra, 2" ed., Chelsea,
1964; MR 31 #184.

[58] L. Babai, The probability of generating the symmetric group, J. Combin. Theory Ser. A 52
(1989) 148-153; MR 91a:20007.

[59] P. W. Purdom and J. H. Williams, Cycle length in a random function, Trans. Amer. Math.
Soc. 133 (1968) 547-551; MR 37 #3616.

[60] D.E.Knuth, The Art of Computer Programming, v. 2, Seminumerical Algorithms, 2™ ed.,
Addison-Wesley, 1981; pp. 7-8, 517-520; MR 831:68003.

[61] P. Flajolet and A. M. Odlyzko, Random mapping statistics, Advances in Cryptology —
EUROCRYPT 89, ed. J.-J. Quisquater and J. Vandewalle, Lect. Notes in Comp. Sci. 434,
Springer-Verlag, 1990, pp. 329-354; MR 91h:94003.

[62] R. Sedgewick and P. Flajolet, Introduction to the Analysis of Algorithms, Addison-Wesley,
1996, pp. 357-358, 454-465.

[63] X. Gourdon, Largest components in random combinatorial structures, Discrete Math. 180
(1998) 185-209; MR 99¢:60013.

[64] M. D. Kruskal, The expected number of components under a random mapping function,
Amer. Math. Monthly 61 (1954) 392-397; MR 16,52b.

[65] S.M. Ross, A random graph, J. Appl. Probab. 18 (1981) 309-315; MR 81m:05124.

[66] P. M. Higgins and E. J. Williams, Random functions on a finite set, 4rs Combin. 26 (1988)
A, 93-102; MR 90g:60008.

[67] V. F. Kolchin, Random Mappings, Optimization Software Inc., 1986, pp. 46, 79, 164; MR
882:60022.

[68] D. Panario and B. Richmond, Exact largest and smallest size of components, Algorithmica
31 (2001) 413-432; MR 2002j:68065.

[69] G. A. Watterson and H. A. Guess, Is the most frequent allele the oldest?, Theoret. Populat.
Biol. 11 (1977) 141-160.

[70] P.J. Donnelly, W. J. Ewens, and S. Padmadisastra, Functionals of random mappings: Exact
and asymptotic results, Adv. Appl. Probab. 23 (1991) 437-455; MR 92k:60017.

[71] P.M. Higgins, Techniques of Semigroup Theory, Oxford Univ. Press, 1992; MR 93d:20101.

[72] D. Panario and B. Richmond, Smallest components in decomposable structures: exp-log
class, Algorithmica 29 (2001) 205-226.

5.5 Kalmar’s Composition Constant
An additive composition of an integer » is a sequence x1, x», ..., x; of integers (for

some k > 1) such that

n=xi+x24+---+x;, x;>1foralll <j <k
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A multiplicative composition of # is the same except
n=xxy---x;, x; >2foralll <j <k

The number a(n) of additive compositions of 7 is trivially 2"~!. The number m(n) of
multiplicative compositions does not possess a closed-form expression, but asymptot-
ically satisfies

Z (n) ~ g_() = (0.3181736521...) - N*,

where p = 1.7286472389. .. is the unique solution of ¢(x) = 2 with x > 1 and ¢(x)
is Riemann’s zeta function [1.6]. This result was first deduced by Kalmar [1,2] and
refined in [3-8].

An additive partition of an integer » is a sequence x1, x», ..., x; of integers (for
some k > 1) such that

n=x1+x24+--+xp, 1 <x1<x =< <xp.

Partitions naturally represent equivalence classes of compositions under sorting. The
number A(n) of additive partitions of n is mentioned in [1.4.2], while the number M ()
of multiplicative partitions asymptotically satisfies [9, 10]

N
1
3 M(n) ~ ——=Nexp (2\/ln(N)) In(N)~3.
—~ 2w

Thus far we have dealt with unrestricted compositions and partitions. Of many
possible variations, let us focus on the case in which each x; is restricted to be a prime
number. For example, the number M () of prime multiplicative partitions is trivially
1 for n > 2. The number ap () of prime additive compositions is [11]

1
£/7(8)

where £ = 0.6774017761 . .. is the unique solution of the equation

fG)=)x"=1 x>0,
p

ap(n) ~

1 n
<E> = (0.3036552633...) - (1.4762287836...)",

and the sum is over all primes p. The number m,(n) of prime multiplicative compo-
sitions satisfies [12]

N —1
> mp(n) ~ = 04127732370...) - N7,

n=1

where n = —1.3994333287 . .. is the unique solution of the equation
gy =Y p'=1 y<o.
P

Not much is known about the number A,(n) of prime additive partitions [13-16]
except that 4,(n + 1) > A4,(n) forn > 8.
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Here is a related, somewhat artificial topic. Let p, be the nth prime, with p; = 2,
and define formal series
l o0

P()=1+)Y pu2", 0()= e > quz".
n=1

Some people may be surprised to learn that the coefficients ¢, obey the following
asymptotics [17]:

1 1\"
n~ —— | =) =(=0.6223065745...) - (—1.4560749485...)".

"~ ohE (9> ( ) ( )
where 6 = —0.6867778344 . .. is the unique zero of P(z) inside the disk |z| < 3/4.
By way of contrast, p, ~ nIn(n) by the Prime Number Theorem. In a similar spirit,
consider the coefficients c¢; of the (n — 1)* degree polynomial fit

cotealx—D+eax—-—Dx=-2)+ - +calx—Dx=2)(x =3)---(x —n+1)
to the dataset [18]

(1,2),(2,3),(3,5),(4,7), (5, 11), (6, 13), ..., (n, pn).

In the limit as » — oo, the sum ZZ;(I) ¢ converges to 3.4070691656. . ..

Let us return to the counting of compositions and partitions, and merely mention
variations in which each x; is restricted to be square-free [12] or where the xs must be
distinct [8]. Also, compositions/partitions xy, x, ..., x; and yy, 2, ..., y; of n are said
to be independent if proper subsequence sums/products of xs and ys never coincide.
How many such pairs are there (as a function of #n)? See [19] for an asymptotic answer.

Cameron & Erdos [20] pointed out that the number of sequences 1 <z} < z; <

- < zx = n for which z;|z; whenever i < j is 2m(n). The factor 2 arises because
we can choose whether or not to include 1 in the sequence. What can be said
about the number c(n) of sequences 1 < w; < wy < -+ < wi < n for which w; fw;
whenever i # j? It is conjectured that lim,_ . c(n)'/” exists, and it is known that
1.55967" < c(n) < 1.59" for sufficiently large n. For more about such sequences,
known as primitive sequences, see [2.27].

Finally, define /(n) to be the number of ways to express 1 as asum of # + 1 elements
of the set {277 : i > 0}, where repetitions are allowed and order is immaterial. Flajolet
& Prodinger [21] demonstrated that

h(n) ~ (0.2545055235 .. )",

where k = 1.7941471875. .. is the reciprocal of the smallest positive root x of the
equation

x2/+1_2_j

- EREYAR! L
;( 1)/ (1 —x)(1 —x3)(1 —x7)--- (1 —x¥-1) 1=0.

This is connected to enumerating level number sequences associated with binary trees
[5.6].
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5.6 Otter’s Tree Enumeration Constants

A graph of order n consists of a set of n vertices (points) together with a set of edges
(unordered pairs of distinct points). Note that loops and multiple parallel edges are
automatically disallowed. Two vertices joined by an edge are called adjacent.

A forest is a graph that is acyclic, meaning that there is no sequence of adjacent

vertices Vg, Vi, ... , Uy such that v; # v; foralli < j < m and vy = vy,.
A tree (or free tree) is a forest that is connected, meaning that for any two distinct
vertices u and w, there is a sequence of adjacent vertices vy, vy, ..., v, such that

vo = u and v,, = w.

Two trees o and t are isomorphic if there is a one-to-one map from the vertices
of o to the vertices of t that preserves adjacency (see Figure 5.2). Diagrams for all
non-isomorphic trees of order < 11 appear in [1]. Applications are given in [2].
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| |
| |

Figure 5.2. There exist three non-isomorphic trees of order 5.

What can be said about the asymptotics of #,, the number of non-isomorphic trees
of order n? Building upon the work of Cayley and Polya, Otter [3—6] determined that

(S

. thn
lim =B,
n—oo

where o = 2.9557652856 ... = (0.3383218568...)~! is the unique positive solution
of the equation 7'(x~!) = 1 involving a certain function T to be defined shortly, and

1 1 1 :
=—|1+) =T"|— = 0.5349496061 . ..
P V2 ( ;ak (“k>)

where 7’ denotes the derivative of 7. Although o and B can be calculated efficiently
to great accuracy, it is not known whether they are algebraic or transcendental [6, 7].

A rooted tree is a tree in which precisely one vertex, called the root, is distinguished
from the others (see Figure 5.3). We agree to draw the root as a tree’s topmost vertex
and that an isomorphism of rooted trees maps a root to a root. What can be said about
the asymptotics of 7,,, the number of non-isomorphic rooted trees of order n? Otter’s
corresponding result is

C Tond B\? 1
lim - (_) — 0.4399240125 ... = (4_) (2.6811281472...).
T

n—oo " 2

In fact, the generating functions

[o¢]
t(x) = Z tux"
n=1

=x 4+ x>+ +2x  +3x° +6x° + 11x7 +23x% +47x° + 106210 + ...,

o0
T(x)=Y Tx"
n=1

=x 4+ x> 4+2x> +4x* +9x° +20x° + 48x7 + 115x% +286x° + - - -

are related by the formula #(x) = T'(x) — %(T (x)? — T(x?)), the constant &~ is the
radius of convergence for both, and the coefficients 7, can be computed using

0 k
T(x) = xexp (Z T(;{C )) s Ty = Z (Zde) k1

k=1 dlk

There are many varieties of trees and the elaborate details of enumerating them are
best left to [4, 5]. Here is the first of many examples. A weakly binary tree is a rooted
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e

Figure 5.3. There exist nine non-isomorphic rooted trees of order 5.

tree for which the root is adjacent to at most two vertices and all non-root vertices are
adjacent to at most three vertices. For instance, there exist six non-isomorphic weakly
binary trees of order 5. The asymptotics of B,, the number of non-isomorphic weakly
binary trees of order n, were obtained by Otter [3,8—10]:

where £71 = 0.4026975036 ... = (2.4832535361...)"! is the radius of convergence
for

o0
B(x) =) Bux"
n=0

=14x+x24+2x3+3x*+6x° + 11x° +23x7 + 46x% +98x° + - -

_Jz ! :
”_\/;(”53(52”533(52)

= 0.7916031835 ... = (0.3187766258 .. )&.

and

The series coefficients arise from

B(x)=1+ 1x (B(x)* + B(x?)),

Bi(B; +1)
—— ZBM]B, ifk=2i+1,
Br=1 .. =
ZBk,j,lBj if k = 2i.

Otter showed, in this special case, that £ = lim,_, o, ¢2 ', where the sequence {c, } obeys
the quadratic recurrence

co =2, c,,:cﬁ_l—i—Z forn > 1,

and consequently

1 /& 1 1 1 1
n=—-.— 3+ -+ —++ + +
2V Cl €1y  ClCC3  C1CC3Cs
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Figure 5.4. There exist two non-isomorphic strongly binary trees of order 7.

Here is a slight specialization of the preceding. Define a strongly binary tree to
be a rooted tree for which the root is adjacent to either zero or two vertices, and all
non-root vertices are adjacent to either one or three vertices (see Figure 5.4). These
trees, also called binary trees, are discussed further in [5.6.9] and [5.13]. The number
of non-isomorphic strongly binary trees of order 2n + 1 turns out to be exactly B,.
The one-to-one correspondence is obtained, in the forward direction, by deleting all
the leaves (terminal nodes) of a strongly binary tree. To go in reverse, starting with a
weakly binary tree, add two leaves to any vertex of degree 1 (or to the root if it has
degree 0), and add one leaf to any vertex of degree 2 (or to the root if it has degree 1).
Hence the same asymptotics apply in both weak and strong cases.

Also, in a commutative non-associative algebra, the expression x* is ambiguous and
could be interpreted as xx> or x?x2. The expression x> likewise could mean xxx>,
xx2x2, or x>x3. Clearly B,_; is the number of possible interpretations of x”; thus { B, }
is sometimes called the Wedderburn-Etherington sequence [11-15].

5.6.1 Chemical Isomers

A weakly ternary tree is a rooted tree for which the root is adjacent to at most three
vertices and all non-root vertices are adjacent to at most four vertices. For instance,
there exist eight non-isomorphic weakly ternary trees of order 5. The asymptotics of
R,, the number of non-isomorphic weakly ternary trees of order n, were again obtained
by Otter [3, 15-17]:

i R,,n%
m —=— = 1R,
n—00 SR
where S;l =0.3551817423 ... = (2.8154600332...)"! is the radius of convergence

for
o0
R(x) =) Ryx"
n=0
=14x+x24+2x3 +4x* +8x° +17x% +39x7 + 89x% +211x° + - - -,

_ s_R(_H +LR,<1) +LR/<L))% -
"R =N 20 rrat\g)Tat\g))’

= 0.5178759064 . . .,

I—
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H OH H H H H

H—C—C—C—H H—C—C—C—OH

H H H H H H

Figure 5.5. The formula C;H;OH (propanol) has two isomers.

and p = R(Egl). The series coefficients arise from
1
R(x)=1+ e (R(x)* + 3R(x)R(x?) + 2R(xY)).

An application of this material involves organic chemistry [18-21]: R, is the number
of constitutional isomers of the molecular formula C, Hy, OH (alcohols —see Figure
5.5). Constitutional isomeric pairs differ in their atomic connectivity, but the relative
positioning of the OH group is immaterial.

Further, if we define [18,19,22,23]

r(x) = %x (R(x)* + 6R(x)*R(x*) + 8R(x)R(x*) + 3R(x*)* + 6R(x"))

— % (R(x)* — R(x?)) + R(x)

then

o0

r(x) = Z rpx”

n=0
=14+x4+x2+x3+2x* +3x° +5x° +9x7 + 18x% +35x° + 7510 + - ..
and r, is the number of constitutional isomers of the molecular formula C,Hy,,
(alkanes — see Figure 5.6). The series r(x) is related to R(x) as #(x) is related to 7'(x)

(in the sense that r, ¢ are free and R, T are rooted); its radius of convergence is likewise
Er land

3 3

lim 22— 0 TR 5 — 0.6563186958. ...
n—00 %‘1’% ER
H
L e
=L
o] H—C—C—C—H

H H H

Figure 5.6. The formula C4H;( (butane) has two isomers.
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A carbon atom is chiral or asymmetric if it is attached to four distinct substituents
(atoms or groups). If O, is the number of constitutional isomers of C, Hy,, - OH without
chiral C atoms, then [18,24]

lim _nn =19,
n— 00 %—Q

where éél = 0.5947539639 ... = (1.6813675244 ...)~! is the radius of convergence
for

0(x) =) 0"
n=0

= 1+4x+x2 +2x% 4+ 3x* + 5x° + 8x0 + 14x” +23x +39x% + .- ..
The coefficients arise from Q(x) = 1 + x Q(x)Q(x?), so that
| x| x2| x4| x8| x16|
e T T TR T T TR
which is an interesting continued fraction. From this, it easily follows that Q(x) =
Y (x?)/v(x) uniquely (assuming v is analytic and ¥(0) = 1) and hence

1 1\\ !
S — = —0.3607140971 . . ..
o=—tov () (v ()

Let S, denote the number of stereoisomers of C,H,, . OH. The relative position-
ing of the hydroxyl group now matters as well [18,19,25]; for instance, the illus-
trated stereoisomeric pair (represented by two tetrahedra — see Figure 5.7) are non-
superimposable. The generating function for S, is

oo
Sx) = Z S, x"
n=0

=14+x+x24+2x>+5x%+ 11x° +28x% + 74x7 + 199x% + 551x° + - - -,

1 3
Sx)=1+ gx (S(x)3 + 2S(x3)), Sy ~nsn”2 &g,

Figure 5.7. The simplest alcohol for which there are (nontrivial) stereoisomers is C4HoOH.
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with radius of convergence égl = 0.3042184090 ... = (3.2871120555...)"!. We
omit the value of ng for brevity’s sake.

5.6.2 More Tree Varieties

An identity tree is a tree for which the only automorphism is the identity map. There
clearly exist unique identity trees of orders 7 and 8 but no nontrivial cases of order < 6.
The generating function for identity trees is [4,26]

[e¢]

u(x) = Z upx"

n=I1

=x4+x" +x5+3x7 +6x0 + 15x" +29x2 +67x + 1394 + ...

A rooted identity tree is a rooted tree for which the identity map is the only automor-
phism that fixes the root. With this additional condition, rooted identity trees exist of
all orders, and the associated generating function is

o0
U(x):ZU,,x” =x+x2+ x>+ 2 4300+ 6xC + 12x7 + 25 + 5200 -

n=1

See the pictures of rooted identity trees in [6.11]. Such trees are also said to be asym-
metric, in the sense that every vertex and edge is unique, that is, isomorphic siblings
are forbidden. It can be proved that [5,27]

1
Uyn? 1 X (1) 1\\’
lim = =y = — (1 - U’(—) = 0.3625364234 ...,
i S == e (R (g

wn

lim 222° = 273, = 0.2993882877 ...,
n—oo U

where f;‘ljl = 0.3972130965 = (2.5175403550 . ..)"! is the radius of convergence for
both U(x) and u(x), and further

3 k
U(x) = x exp <Z(—1)k+1 @) , u(x) =Ux) — JUE) + U?)).
k=1

A tree is homeomorphically irreducible (or series-reduced) if no vertex is adjacent
to exactly two other vertices. Clearly no such tree of order 3 exists, and the generating
function is [4,26,28]

h(x) = i hpx"
n=1

=x4+x?+xt 2+ 2T+ 4 5 10k 4 14

A planted homeomorphically irreducible tree is a rooted tree that is homeomorphi-
cally irreducible and whose root is adjacent to exactly one other vertex. The associated
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generating function is

o8}
H(x) = Z H,x"

n=1

=x2+xt Fx0 +2x0 +3x7 + 6+ 10x° + 19x 10 +35x ! ... = x H(x).
It can be proved that [5,29]

1
. Hmn 1 | ( ) ’
lim — =y = +N F = 0.1924225474 . . .,
n—oo & Eu 2 <§H +1 ; £r £f

lim ~ = 272 (£ + D)nYy = 0.6844472720 .. .,
n—00 H
where 51;1 = 0.4567332095 ... = (2.1894619856...)"! is the radius of convergence

for both H(x) and /4 (x), and further

N . H(xF
H(x):xx?exp(z (Ij))

k=1

h(x) = (x + DHK) - "zillir(x)2 - %Fl(xz).

If we take into account the ordering (from left to right) of the subtrees of any vertex,
then ordered trees arise and different enumeration problems occur. For example, define
two ordered rooted trees o and t to be cyclically isomorphic if o and t are isomorphic
as rooted trees, and if T can be obtained from o by circularly rearranging all the subtrees
ofany vertex, or likewise for each of several vertices. The equivalence classes under this
relation are called mobiles. There exist fifty-one mobiles of order 7 but only forty-eight
rooted trees of order 7 (see Figure 5.8).

The generating function for mobiles is [22,26,30]

o0
M(x) =) M,x"
n=1

=x4+x24+2x> +4x* +9x° +20x° + 51x7 + 128x8+345x% + - - -,

. ok
M(x) =x —Z%ln(l—M(x’ﬂ)) o~ T ED
=1

e A

Figure 5.8. There exist three pairs of distinct mobiles (of order 7) that are identical as rooted
trees.

s
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where ¢ is the FEuler totient function [2.7] and é;,l = 0.3061875165... =
(3.2659724710.. )7L

If we label the vertices of a graph distinctly with the integers 1,2, ..., n, the cor-
responding enumeration problems often simplify; for example, there are exactly n"~2
labeled free trees and n"~! labeled rooted trees. For labeled mobiles, the problem
becomes quite interesting, with exponential generating function [31]

o
. ZM,, \
M()C) = Tx

n=1

2, 9 4 68, 730 5 10164 173838 ,
=X+ X"+ =x"+ —x + X + X"+ x'+

x P ,
2! 3! 41 5! 6! 7!
M(x)=x (1 —In(1 — M(x))), M, ~#H &n"",
where & =e '(1 —pu)"! =1.1574198038..., # = /(1 — ) = 0.4656386467

...,and u = 0.6821555671 ... is the unique solution of the equation (1 — u)~! =
1 —In(1 — ).

An increasing tree is a labeled rooted tree for which the labels along any branch
starting at the root are increasing. The root must be labeled 1. Again, for increasing
mobiles, enumeration provides interesting constants [32]:

[o¢]
N M,
M(x) = "
) ; —rx
1,24 7,365 245 (2076
T TR T R TR
Moy =1—In(l — MGy, b, ~Em (- -1 yo(—1
N o ‘\n?  n?ln(n) n?In(n)?
where &' = —eEi(—1) = 0.5963473623 ... = ¢~1(0.6168878482.. )" is the

Euler—Gompertz constant [6.2]. See a strengthening of these asymptotics in [31,33].

5.6.3 Attributes

Thus far, we have discussed only enumeration issues. Otter’s original constants « and 3,
however, appear in several asymptotic formulas governing other attributes of trees. By
the degree (or valency) of a vertex, we mean the number of vertices that are adjacent
to it. Given a random rooted tree with n vertices, the expected degree of the root is [34]

o

o0 o0
O=1+>T L)ooy — 51018374031
— ! Tai(@ —1) 7
i= j=1
as n — 00, and the variance of the degree of the root is

i'T ! —l+iT 20/ — 1 | 4741726868
=T o
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By the distance between two vertices, we mean the number of edges in the shortest
path connecting them. The average distance between a vertex and the root is

1 2 % 1 1
— (=) nz =(1.1365599187.. )n?
2\ B

as n — 00, and the variance of the distance is

2
4—x (27}
T () 0 = (0.3529622229 . . ).
4 B

Let v be an arbitrary vertex in a random free tree with n vertices and let p,, denote
the probability, in the limit as n — o0, that v is of degree m. Then [35]

= 0.4381562356...,

where Dy =1 and Dy, = Z_I;':l (Zd‘j Dd) Ti—jt1. Clearly p,, — 0 as m — oo.
More precisely, if

o 1\ T N N |
o=]] (1 - J) (Z; [aJT(J)— 1]) =7.7581602911 ...

i=1
then lim,,_, o, ™ p,, is given by [36,37]
(27‘[,32)_%60 = (1.2160045618. . .)_1a> = 6.3800420942 . ...

We will need both 6 and w later. See also [38,39].

Let G be a graph and let A(G) be the automorphism group of G. A vertex v of G is
a fixed point if p(v) = v for every ¢ € A(G). Let ¢ denote the probability, in the limit
as n — 00, that an arbitrary vertex in a random tree of order # is a fixed point. Harary
& Palmer [7,40] proved that

1
g =Qrp) s (1 - E <—2>> = 0.6995388700. .. ,
o

where E(x) = T(x)(1 + F(x) — F(x?)). Interestingly, the same value ¢ applies for
rooted trees as well.

For reasons of space, we omit discussion of constants associated with covering and
packing [41-43], as well as counting maximally independent sets of vertices [44—47],
games [48], and equicolorable trees [49].
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5.6.4 Forests

Let f, denote the number of non-isomorphic forests of order #; then the generating
function [26]

fe) =" fux"
n=1
= X +2x% +3x> +6x* 4+ 10x° +20x° +37x7 + 76x% +153x° +329x 10 + ...

satisfies

3 00 t(xk) _l n
T+ =exp| D == | fo==3 | D dta ) o
k=1

k=1 \dlk

and fy = 1 for the sake only of the latter formula. Palmer & Schwenk [50] showed that

1
fo~cty = (1 + f(—)) t, = (1.9126258077 .. )t,.
o

If a forest is chosen at random, then as n — oo, the expected number of trees in the
forest is

il 1 3 1 1 > 1
1 tl—)==-+-T|— ti———— = 1.7555101394 . . ..
3 (a) 272 (a2>+zfaf<af—1)

Jj=1

The corresponding number for rooted trees is 6 = 2.1918374031 ..., a constant that
unsurprisingly we encountered earlier [5.6.3]. The probability of exactly k rooted trees
in a random forest is asymptotically wa ™ = (7.7581602911 .. .)a~*. For free trees,
the analogous probability likewise drops off geometrically as o ~* with coefficient

. 1 A a
“TI (1 - —.) — % exp <Z - [a/t (—) - 1}) — 3.2907434386 . ...
c i o! c J o/

J=1

Also, the asymptotic probability that two rooted forests of order » have no tree in
common is [51]

]‘[(1_@> =exp<—z T(E))=0.8705112052....

=

5.6.5 Cacti and 2-Trees

We now examine graphs that are not trees but are nevertheless tree-like. A cactus is a
connected graph in which no edge lies on more than one (minimal) cycle [52—54]. See
Figure 5.9. If we further assume that every edge lies on exactly one cycle and that all
cycles are polygons with m sides for a fixed integer m, the cactus is called an m-cactus.
By convention, a 2-cactus is simply a tree. Discussions of 3-cacti appear in [4], 4-cacti
in [55], and m-cacti with vertex coloring in [56]; we will not talk about such special
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(VAN VAVARRVA
\/V

Figure 5.9. There exist nine non-isomorphic cacti of order 5.

cases. The generating functions for cacti and rooted cacti are [57]
o0
c(x) = Z cpx”
n=1
= x +x% +2x% +4x* +9x° +23x° +63x7 4 188x% +596x° +1979x 10 4 .-,
o8
Clx) =) Cpx"
n=1

= x +x2+3x> + 8x* +26x> + 84x® +297x7 4+ 1066x® +3976x° + - - -,
and these satisfy [58—60]

_ % 1/ C(kR =24 Cxh
cy=xew [_ 2% (seen-neam=1"* 1)} ’

(C(x) + (C(x)* —2C(x) + C(x?))
4HCH) = DCE) = 1) ’

c(x) = C(x) — % > @ In(1 — C(x*)) +
k=1

with radius of convergence 0.2221510651 ... . . For the labeled case, we have

. Cn
c(x):Z;x
_ 1, 4, 31, 362 5 5676 , 111982 ,

R TR T TR T T TR

Clx) = Z %x"

n=1
, 12 5 124, 1810 5 34056 , 783874 ,
=X+ X"+ X+ + + X+ X+

21 31 I T 6! 71
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and these satisfy

. C(x)2—C(x) n -
C(x) xexp( 2 1o C’(x)) , xc'(x) =C(x),
with radius of convergence 0.2387401436. . . .

A 2-tree is defined recursively as follows [4]. A 2-tree of rank 1 is a triangle (a graph
with three vertices and three edges), and a 2-tree of rank n > 2 is built from a 2-tree
of rank n — 1 by creating a new vertex of degree 2 adjacent to each of two existing
adjacent vertices. Hence a 2-tree of rank n has n + 2 vertices and 2n + 1 edges. The
generating function for 2-trees is [61]

o0
w(x) = Z w,x"
n=0

=1+4x+x>+2x03 +5x* 4+ 12x° +39x% + 136x7 + 529x% +2171x° + - -

(o)

w(x) = % |:W(x) + exp (Z ;—k(Zka(ka) + x2k W (x2hy? — x* W(x“k)))]

k=1
+ %x (W) — w(x)),

where W(x) is the generating function for 2-trees with a distinguished and oriented
edge:

W(x) = i W,x"
n=0

=1+ x +3x% + 10x> 4+ 39x* + 160x> + 702x° + 3177x7+ 14830x% + - - -

i X (xk)?

W(x) = exp ( .

5
—3 &n
)7 wn’\“nwn zgw‘

k=1

Further, w(x) has radius of convergence £&,'!=0.1770995223... =
(5.6465426162...)"! and

1 1y -\
w= T — 2wl =|w| - = 0.0948154165...,
TN (“ (5) (s) )

W(x) = e ™" w(x).

5.6.6 Mapping Patterns

We studied labeled functional graphs on n vertices in [5.4]. Let us remove the labels
and consider only graph isomorphism classes, called mapping patterns. Observe that
the original Otter constants « and B play a crucial role here. The generating function
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of mapping patterns is [57, 62]

P(x)=)_ Px"
n=1
= x +3x2 4+ 7x3 + 19x* + 47x° + 130x° + 343x7 + 951x® +2615x° + - - -,

o0
1+ P =[[(1=TGH) ™, P~ gpn o,
k=1

where

_ 1 (2 %ﬁ -7y T 04428767697
=5 ) =0

i=2
= (1.2241663491 .. )(4n2B)=.

From this, it follows that the expected length of an arbitrary cycle in a random mapping
pattern is

1 /27\% . \
163 nt = (1.1365599187 .. )nt, n — oo

(an expression that we saw in [5.6.3], by coincidence) and the asymptotic probability
that the mapping pattern is connected is

1
— 7 = (1.1289822228 .. )n 2.
2np

If we further restrict attention to connected mapping patterns, the associated generating
function is

o0
K(x)=)_ Kx"
n=1

=x +2x2 +4x3 + 9x* + 202 + 51x® + 125x7 +329x% + 862x°% + - -

x> j . 1
K(x)=— Z @ In(1 — T(x/)), K, ~ =n"'a".
= 2
It follows that the expected length of the (unique) cycle in a random connected mapping
pattern is

1 2 % 1 1

— | — ) n2=1(0.7235565167...)n2, n — oo,

T\ B

which is less than before. A comparison between such statistics for both unlabeled and
labeled cases (the numerical results are indeed slightly different) appears in [62]. See

[63, 64] for more recent work in this area.
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5.6.7 More Graph Varieties

A graph G is an interval graph if it can be represented as follows: Each vertex of G
corresponds to a subinterval of the real line in such a way that two vertices are adjacent
if and only if their corresponding intervals have nonempty intersection. It is a unit
interval graph if the intervals can all be chosen to be of length 1. The generating
function of unit interval graphs, for example, is [65, 66]

oo
I(x) =) Lx"
n=1

=x 4+ 2x2 4+ 4x3 +9x* +21x° + 550 + 151x7 + 447x% + 13892 + - - -,

> k 14+2x — /1 —4x+/1 — 4x2
1+1(x)=exp<zw(]:)>,w(x)= T 4@ x’

k=1

with asymptotics

1 3 (4
I, ~ N4, K = exp V3 exp —ZM = 0.6231198963....
8Kﬁ 4 j=2 J

Interval graphs have found applications in genetics and other fields [67, 68].

A graph is 2-regular if every vertex has degree two. The number J, of 2-regular
graphs on n vertices is equal to the number of partitions of # into parts > 3, whereas
the exponential generating function of 2-regular labeled graphs is [69]

. > J. 1, 3, 12, 70,

1 1 1,
exp|—=x —-x");
1—x 2 4

therefore

2 2n A 3 (A"
Jy ~ —,J~2”<—>.
; 12ﬁn2exp(n 3) ,, 2e i 5

The latter has an interesting geometric interpretation [14,70]. Given n planar lines in
general position with (;) intersecting points, a cloud of size » is a (maximal) set of n
intersecting points, no three of which are collinear. The number of clouds of size # is
clearly .

A directed graph or digraph is a graph for which the edges are ordered pairs
of distinct vertices (rather than unordered pairs). Note that loops are automatically
disallowed. An acyclic digraph further contains no directed cycles; in particular, it
has no multiple parallel edges. The (transformed) exponential generating function of
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labeled acyclic digraphs is [65,71-74]

N Ay 3 25 543 29281
A(x)—Z —x"=1+x+ x2+ x4+ x4+ X4,

a0 2027 T3t Tt T
12(3)
A(x) = AP AR, A, ~ 2
A

where £4 = 1.4880785456 . . . is the smallest positive zero of the function

3 o e, ¥ =~

2onm
and 04 = £4M(&4/2) = 0.5743623733 ... = (1.7410611252.. )~ It is curious that
the function A(—x) was earlier studied by Mahler [75] with regard to enumerating
partitions of integers into powers of 2. See [76,77] for discussion of the unlabeled
acyclic digraph analog.

5.6.8 Data Structures

To a combinatorialist, the phrase “(strongly) binary tree with 2n + 1 vertices” means an
isomorphism class of trees. To a computer scientist, however, the same phrase virtually
always includes the word “ordered,” whether stated explicitly or not. Hence the phrase
“random binary tree” is sometimes ambiguous in the literature: The sample space has
B, elements for the former person but ( ) /(n + 1) elements for the latter! We cannot
hope here to survey the role of trees in computer algorithms, only to provide a few
constants.
A leftist tree of size n is an ordered binary tree with n leaves such that, in any
subtree o, the leaf closest to the root of ¢ is in the right subtree of 0. The generating
function of leftist trees is [6, 65,78, 79]

o0
L(x) = Z L,x"
n=0

=x 4+ x>+ x>+ 20"+ 4x° + 8x° + 17x7 + 38x% + 87x% +203x'0 4 - ..

L) = L0 3 D Il = Y o)
m=1

m=1

where the auxiliary generating functions /,,(x) satisfy

m—1
Lhx)=x, L(x)=xL(x), Lynx)=1L,(x) (L(x) - ];1 lk(x)> , o m=>2.

It can be proved (with difficulty) that

L, ~ (0.2503634293 .. .) - (2.7494879027 . ..)'n"2

Leftist trees are useful in certain sorting and merging algorithms.
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A 2,3-tree of size n is a rooted ordered tree with » leaves satisfying the following:

» Each non-leaf vertex has either 2 or 3 successors.
» All of the root-to-leaf paths have the same length.

The generating function of 2,3-trees (no relation to 2-trees!) is [65,80,81]

o0
Z(x) =Y Zyx"
n=0
=x4 x4+ x4+ 20+ 20+ 3T+ 4 5 + 81O 14k 4.

ln/2]

Za)=x+Z(2 453, Zo= Y (;5,)Z ~¢"n7" f(In(n)),
k=[n/3]

where ¢ is the Golden mean [1.2] and f(x) is a nonconstant, positive, continuous func-
tion that is periodic with period In(4 — ¢) = 0.867. .., has mean (¢ In(4 — ¢))~! =
0.712..., and oscillates between 0.682 ... and 0.806. ... These are also a particular
type of B-trees. A similar analysis [82] uncovers the asymptotics of what are known as
AVL-trees (or height-balanced trees). Such trees support efficient database searches,
deletions, and insertions; other varieties are too numerous to mention.

If 7 is an ordered binary tree, then its height and register functions are recursively
defined by [83]

ht(z) = 0 if 7 is a point,
" | 1 +max(ht(z;), ht(rg)) otherwise,
0 if T is a point,

rg(t) =y 1 +rg(z) if rg(7,) = 1g(78),

max(rg(ty.), rg(tz)) otherwise,

where 7, and 7 are the left and right subtrees of the root. That is, ht(t) is the number
of edges along the longest branch from the root, whereas rg(r) is the minimum number
of registers needed to evaluate the tree (thought of as an arithmetic expression). If we
randomly select a binary tree t with 2n + 1 vertices, then the asymptotics of E(ht(7))
involve 2./ n as mentioned in [1.4], and those of E(rg(t)) involve In(n)/ In(4) plus a
zero mean oscillating function [2.16]. Also, define ym(t) to be the number of maximal
subtrees of T having register function exactly 1 less than rg(z). Prodinger [84], building
upon the work of Yekutiele & Mandelbrot [85], proved that E(ym(t)) is asymptotically
2G 5

— = 3.3412669407 . ..
7 In(2) + 2

plus a zero mean oscillating function, where G is Catalan’s constant [1.7]. This is also
known as the bifurcation ratio at the root, which quantifies the hierarchical complexity
of more general branching structures.
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5.6.9 Galton—Watson Branching Process

Thus far, by “random binary trees,” it is meant that we select binary trees with n vertices
from a population endowed with the uniform probability distribution. The integer # is
fixed.

It is also possible, however, to grow binary trees (rather than to merely select them).
Fix a probability 0 < p < 1 and define recursively a (strongly) binary tree t in terms of
left and right subtrees of the root as follows: Take r;, = @ with probability 1 — p, and
independently take Tz = (J with probability 1 — p. It can be shown [86—88] that this
process terminates, that is, 7 is a finite tree, with extinction probability 1 if p < 1/2
and1/p — 1if p > 1/2. Of course, the number of vertices N is here a random variable,
called the total progeny.

Much can be said about the Bienaymé—Galton—Watson process (which is actually
more general than described here). We focus on just one detail. Let NV, denote the
number of vertices at distance k from the root, that is, the size of the &t generation.
Consider the subcritical case p < 1/2. Let a; denote the probability that N = 0; then
the sequence ay, ai, as, ...obeys the quadratic recurrence [6.10]

ay =0, ar=(1—p)+pa;_, fork>1, klingoakzl.

What can be said about the convergence rate of {a;}? It can be proved that

o0
C(p): lim l—ak :1—[ l—|—a1’
k—oo (2p)k — 2
which has no closed-form expression in terms of p, as far as is known. This is over and
beyond the fact, of greatest interest to us here, that P(N;, > 0) ~ C(p)(2p)* for 0 <
p < 1/2. Other interesting parameters are the moment of extinction min{k : N, = 0}
or tree height, and the maximal generation size max{N; : k£ > 0} or tree width.

5.6.10 Erdos—Rényi Evolutionary Process

Starting with » initially disconnected vertices, define a random graph by successively
adding edges between pairs of distinct points, chosen uniformly from (’;) candidates
without replacement. Continue with this process until no candidate edges are left
[89-92].

At some stage of the evolution, a complex component emerges, that is, the first
component possessing more than one cycle. It is remarkable that this complex com-
ponent will usually remain unique throughout the entire process, and the probability
that this is true is 57 /18 = 0.8726. .. as n — o0. In other words, the first component
that acquires more edges than vertices is quite likely to become the giant component
of the random graph. The probability that exactly two complex components emerge
is 50r/1296 = 0.1212.. .., but the probability (> 0.9938...) that the evolving graph
never has more than two complex components at any time is not precisely known [93].

There are many related results, but we mention only one. Start with an m x n
rectangular grid of rooms, each with four walls. Successively remove interior walls in a
random manner such that, at some step in the procedure, the associated graph (with all
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mn rooms as vertices and all neighboring pairs of rooms with open passage as edges)
becomes a tree. Stop when this condition is met; the result is a random maze [94].
The difficulty lies in detecting whether the addition of a new edge creates an unwanted
cycle. An efficient way of doing this (maintaining equivalence classes that change over
time) is found in QF and QFW, two of a class of union-find algorithms in computer
science. Exact performance analyses of QF and QFW appear in [95-97], using random
graph theory and a variant of the Erd6s-Rényi process.
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5.7 Lengyel’s Constant

5.7.1 Stirling Partition Numbers

Let S be a set with n elements. The set of all subsets of S has 2” elements. By a partition
of S we mean a disjoint set of nonempty subsets (called blocks) whose union is S. The
set of partitions of S that possess exactly k blocks has S, s elements, where S, 4 is a
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Stirling number of the second kind. The set of a// partitions of S has B, elements,
where B,, is a Bell number:

d}’l
B, _ank_— - T

Jj= 0]’

x=0

For example, Sy =1, Sa2o =7, S43 =06, Ss4 =1, and Bs = 15. More generally,
Si1=1,8,=2"""—1,and S, 3 = (3"~ + 1) — 2"~!. The following recurrences
are helpful [1-4]:

S0 = { =0 Sk =kSp—1 6+ Sp—1 k-1 fn>k>1,

0 ifn>1,
n—1
Bo=1, B,=)Y_ (";")Bu
k=0

and corresponding asymptotics are discussed in [5-9].

5.7.2 Chains in the Subset Lattice of S

If U and V are subsets of S, write U C V if U is a proper subset of V. This endows
the set of all subsets of S with a partial ordering; in fact, it is a lattice with maximum
element S and minimum element . The number of chains #=U, C U, C--- C
Uir—1 C Uy = S of length k is k!S, x. Hence the number of all chains from ¥ to S is

[1,6,10]
Zkvs Liis, (L 1 m (L™
= —_— = — L1_ — = _— ~ — N

k= f+1 2 77"\2) T a2 —e |, In(2)

where Li, (x) is the polylogarithm function. Wilf [10] marveled at how accurate this
asymptotic approximation is.

If we further insist that the chains are maximal, equivalently, that additional proper
insertions are impossible, then the number of such chains is n! A general technique due
to Doubilet, Rota & Stanley [11], involving what are called incidence algebras, can be
used to obtain the two aforementioned results, as well as to enumerate chains within
more complicated posets [12].

As an aside, we give a deeper application of incidence algebras: to enumerating
chains of linear subspaces within finite vector spaces [6]. Define the g-binomial
coefficient and g-factorial by

[J@ -1

j=1
k n—k ?
[[@-»-T]@ -1
j=1 j=1

[y =1+ +q+¢") - (I+q++¢"),

(), =
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where ¢ > 1. Note the special case in the limitas ¢ — 17. Consider the n-dimensional
vector space I, over the finite field Fy, where g is a prime power [12-16]. The number
of k-dimensional linear subspaces of Fy is (Z)q and the total number of linear subspaces

/4 if 5 is even and c,,q"z/4 if n is odd, where [17, 18]

R IO RGE

k=—o00 k=—o0
Ce = y Co =

[Ja-4 [Ja-4
j=1 j=1

We give a recurrence for the number y,, of chains of proper subspaces (again, ordered
by inclusion):

of Iy is asymptotically c.q

xi=1 x»=1 +Z(Z)qu forn > 2.
=1

For the asymptotics, it follows that [6, 17]
1
S,(r)r

where ¢, (x) is the zeta function for the poset of subspaces:

Xn ™~ ( ) H(q D= —(q —1(¢* = D@ —1--(¢" — 1),

o k

X
D B i PERS  PER Sy L

and » > 0 is the unique solution of the equation ¢, () = 1. In particular, when g = 2,
we have ¢, = 7.3719688014 ..., c, = 7.3719494907 ..., and
#rt1)
XV! ~ — . . 2 s
rn

where r = 0.7759021363 ..., 4 = 0.8008134543 ..., and

0= ]_[ ( - —) = 0.2887880950 .

is one of the digital search tree constants [5.14]. If we further insist that the chains are
maximal, then the number of such chains is [n!],.

5.7.3 Chains in the Partition Lattice of S

We have discussed chains in the poset of subsets of the set S. There is, however, another
poset associated naturally with S that is less familiar and more difficult to study: the
poset of partitions of S. Here is the partial ordering: Assuming P and Q are two
partitions of S, then P < Q if P # Q and if p € P implies that p is a subset of ¢ for
some g € Q. In other words, P is a refinement of Q in the sense that each of its blocks
fits within a block of Q. For arbitrary #n, the poset is, in fact, a lattice with minimum
element m = {{1}, {2}, ..., {n}} and maximum element M = {{1, 2, ..., n}}.
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{{1,2,3}}

{12}, {3}} ({1, 3}, {2}} {{2, 3}, {1}}

U1, {25, 1335

Figure 5.10. The number of chains m < P; < M in the partition lattice of the set {1, 2, 3} is
three.

What is the number of chains m = Ph < P < P, <--- < Py < Ph=M of
length k in the partition lattice of S? In the case n = 3, there is only one chain fork = 1,
specifically, m < M. For k = 2, there are three such chains as pictured in Figure 5.10.

Let Z, denote the number of all chains from m to M of any length; clearly Z; =
Z, = 1 and, by the foregoing, Z3 = 4. We have the recurrence

n—1
Zn = Z Sn,ka
k=1

and exponential generating function

o0
Z(x)=Y_ Z—:'x", 2Z(x) = x + Z(e* — 1),
—~ n!
but techniques of Doubilet, Rota & Stanley and Bender do not apply here to give
asymptotic estimates of Z,. The partition lattice is the first natural lattice without
the structure of a binomial lattice, which implies that well-known generating function
techniques are no longer helpful.

Lengyel [19] formulated a different approach to prove that the quotient
Zy
T WRQInQ)) @)

must be bounded between two positive constants as # — oco. He presented numerical
evidence suggesting thatr, tends to a unique value. Babai & Lengyel [20] then proved a
fairly general convergence criterion that enabled them to conclude that A = lim,,_, o, 7,
existsand A = 1.09.. ... The analysis in [19] involves intricate estimates of the Stirling
numbers; in [20], the focus is on nearly convex linear recurrences with finite retardation
and active predecessors.

In an ambitious undertaking, Flajolet & Salvy [21] computed A =
1.0986858055 . .. . Their approach is based on (complex fractional) analytic iterates of
exp(x) — 1 and much more, but unfortunately their paper is presently incomplete. See
[5.8] for related discussion of the Takeuchi-Prellberg constant.

By way of contrast, the number of maximal chains is given exactly by n!(n —
1)!/2"! and Lengyel [19] observed that Z, exceeds this by an exponentially large
factor.
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5.7.4 Random Chains

Van Cutsem & Ycart [22] examined random chains in both the subset and partition
lattices. It is remarkable that a common framework exists for studying these and that,
in a certain sense, the limiting distributions of both types of chains are identical. We
mention only one consequence: If k, = k/n is the normalized length of the random
chain, then

1
lim E(c,) = —— = 0.7213475204 . ..
Jm B = @)

and a corresponding Central Limit Theorem also holds.
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5.8 Takeuchi—Prellberg Constant

In 1978, Takeuchi defined a triply recursive function [1,2]
_ y ifx <y,
tx,y,2) = { Htx —1,,2), t(y — 1,2, %), 1(z — 1, x, ) otherwise

that is useful for benchmark testing of programming languages. The value of #(x, y, z)
is of no practical significance; in fact, McCarthy [1, 2] observed that the function can
be described more simply as

y ifx <y,
3, 2) = z ify=z, otherwise
x otherwise, ’

The interesting quantity is not #(x, y, z), but rather T'(x, y, z), defined to be the
number of times the otherwise clause is invoked in the recursion. We assume that the
program is memoryless in the sense that previously computed results are not available at
any time in the future. Knuth [1, 3] studied the Takeuchi numbers 7, = 7'(n, 0, n + 1):

To=0 Ti=1, Th=4 Ty=14, T, =53, Ts =223,...

and deduced that

" In(n)—n In(In(n))—n n In(n)—n-+In(n)

<T,<e

for all sufficiently large n. He asked for more precise asymptotic information about the
growth of 7,,.
Starting with Knuth’s recursive formula for the Takeuchi numbers

n . . n—1 1
T = 27 = D] e+ 2o Dy
k=0 k=1

and the somewhat related Bell numbers [5.7]

n

By =Z(Z)Bn_k, By=1, B =1, B,=2, By=5, By=15, Bs=52,...,
k=0

Prellberg [4] observed that the following limit exists:
T,
c= lim —————— =12.2394331040.. .,
n—00 B, exp (3 W2)

where W, exp(W,) = n are special values of the Lambert # function [6.11].
Since both the Bell numbers and the W function are well understood, this provides
an answer to Knuth’s question. The underlying theory is still under development, but
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Prellberg’s numerical evidence is persuasive. Recent theoretical work [5] relates the
constant ¢ to an associated functional equation,

N _TE-2) !
T(z)_;Tnz,T(Z)— . (-2(-z+22)

in a manner parallel to how Lengyel’s constant [5.7] is obtained.
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5.9 Pélya’s Random Walk Constants

Let L denote the d-dimensional cubic lattice whose vertices are precisely all integer
points in d-dimensional space. A walk w on L, beginning at the origin, is an infinite
sequence of vertices wy, wy, wy, w3, ... with wy = 0 and |w;4; — w;| =1 for all ;.
Assume that the walk is random and symmetric in the sense that, at each time step,
all 2d directions of possible travel have equal probability. What is the likelihood that
w, = 0 for some n > 0? That is, what is the return probability p,?

Polya [1-4] proved the remarkable fact that p; = p, = 1 but p; < 1ford > 2. Mc-
Crea & Whipple [5], Watson [6], Domb [7] and Glasser & Zucker [8] each contributed
facets of the following evaluations of p3 = 1 — 1/m3 = 0.3405373295 . .., where the
expected number m3 of returns to the origin, plus one, is

3 T e T 1
"= Gny / / / 3~ cos(8) — cos(e) —cos(p) 10NV

—T —T —TT

% (18 +12v2 - 10V3 - 7v6) K [(2 V3B — «/5)]2

50 4
3 (18 F12v2 - 1043 — NE) [1 ) k; exp(—«/grrkz):|

1 11
ﬁr NP (2 e (LY r (L) = 15163860501 ...
3273 \24 24 24 24

Hence the escape probability for a random walk on the three-dimensional cubic lattice
is 1 — p3 = 0.6594626704 . ... In these expressions, K denotes the complete elliptic
integral of the first kind [1.4.6] and I" denotes the gamma function [1.5.4]. Return and
escape probabilities can also be computed for the body-centered or face-centered cubic
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Table 5.1. Expected Number of Returns and Return

Probabilities
d my Pd
4 1.2394671218. .. 0.1932016732. ..
5 1.1563081248. .. 0.1351786098. ..
6 1.1169633732... 0.1047154956. ..
7 1.0939063155. .. 0.0858449341. ..
8 1.0786470120. .. 0.0729126499. ..

lattices (as opposed to the simple cubic lattice), but we will not discuss these or other
generalizations [9].

What can be said about p; for d > 3? Closed-form expressions do not appear to
exist here. Montroll [10—12] determined that p; = 1 — 1/m,, where

T ¥ d -1 ~ )
de%//.../GI—;COS(@k)) d@ldez...dgdzfeﬁ (10<§>> "
- = 0

—T -7

and Jy(x) denotes the zeroth modified Bessel function [3.6]. The corresponding nu-
merical approximations, as functions of d, are listed in Table 5.1 [10, 13—-17].

What is the length of travel required for a return? Let Uy, be the number of d-
dimensional n-step walks that start from the origin and end at a lattice point /. Let V;; ,
be the number of d-dimensional n-step walks that start from the origin and reach the
lattice point/ # 0 for the first time at the end (second time if/ = 0). Then the generating
functions

Uai(x) = i Ud'l’: x" Vaux) = i Vd’l'zx"
— (2d) = (2d)

satisfy Vg (x) = Uy i(x)/Ugo(x) if 1 #£0, Vayy(x)=1—1/Uz0(x) if [ =0, and
Uy.o(1) = my, Vy0(1) = p,. For example,

X1/ n > 1 n n
Uii(x) = Z 2_n(]+_n>xnv Uri(x) = Z 4_n<11+lz+n) (lllern)xn’
n=0 2 n=0 2 2

where we agree to set the binomial coefficients equal to 0 if / + n is odd ford = 1 or
i+ +nisodd ford =2.1fd = 3, then a, = Us ¢, satisfies [18]

L (2n\ & (02K N R X an s
an_<n>z(k> <k>_z(n—k)!2k!4’ Z(Zn)!y = L(2y),

k=0 k=0 n=0

(n+2)a, 42 —22n +3)(10n* + 301 +23)a, 4 1 + 36(n + )(2n + 1)2n +3)a, =0,
and if d = 4, then b, = Uy ¢ 2, satisfies [19]

(n +2)*b,2 — 4Q2n + 3)*(5n* 4+ 151 + 12)b, 4
+ 256(n 4 1)*(2n + 1)(2n + 3)b, = 0.
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For any d, the mean first-passage time to arrive at any lattice point/ is infinite (in spite
of the fact that the associated probability V; ;(1) = 1 ford = 1 or 2). There are several
alternative ways of quantifying the length of required travel. Using our formulas for
V4.1(x), the median first-passage times are 2-4, 1-3, 6-8, and 17-19 steps for/ = 0, 1,
2,and 3 whend = 1, and 2-4,25-27, and 520-522 steps for/ = (0, 0), (1, 0),and (1, 1)
when d = 2. Hughes [3,20] examined the conditional mean time to return to the origin
(conditional upon return eventually occurring). Also, for d = 1, the mean time for the
earliest of three independent random walkers to return to the origin is finite and has
value [6,21-23]

© 1 /2n\°
2> 5 ()

2 T T T 1
73 / // 1 — cos(6) cos(gp) cos(vr) dodgdy
00 0

8 1\? 1 n*
—K(—) =—T(-) =2(1.393203929...),
72 V2 23 4

whereas for d = 2, the mean time for the earliest of an arbitrary number of independent
random walkers is infinite. More on multiple random walkers, of both the friendly and
vicious kinds, is found in [24].

It is known that

Uy (o) = (;%)d]]]ﬂ (d—ka:cos(Gk)>_1

- =7

d
X €Xp <i 0k1k> d91 d@z s d@d,
k=1
which can be numerically evaluated for small d. Here are some sample probabilities
[11, 16] that a three-dimensional walk reaches a point /:

U1y 03405373295 if 1 =(1,0,0),
Vi) = =22 = 10.2183801414... ifl = (1, 1, 0),
m3 0.1724297877 ... ifl = (1,1, 1).

An asymptotic expansion for these probabilities is [11, 12]

3 [+ 1 (3 51 +13+13) )} 0.3148702313...

V(1) =
) = ] e e I

and is valid as |I|* = I} + I3 + [ — o.
Let W, , be the average number of distinct vertices visited during a d-dimensional
n-step walk. It can be shown that [25-28]

g
i ifd =1,
1 b1

1 1 s Wd, ~ n 1 —
(1- x)sz,o(x) ! In(n) ifd =2,

(1— py)n ifd =3

[e¢]
Wax) =) Wanx" =
n=0
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as n — oo. Higher-order asymptotics for W3, are possible using the expansion
[11,12,29-31]

33 33

3
Usp(x) = m3 — (1 —x3)7 4 ¢(1 —x?) — 22 (1 — x?)
’ 2 47

PSIpS

+...’
where x — 1~ and

c=3\"™m

5 >=0.5392381750....
T ms

Other parameters, for example, the average growth of distance from the origin [32],

n 12

m
n—o00 ln(}’l) =l 1 + |Cl)/|

= A1 with probability 1, ifd = 1,

1 1 1
i
Fae In(n)? ; 1+ |w;?

= )\, with probability 1, if d = 2,

|~ 1
li = Ag with probability 1, if d > 3,
ngrololn(n);l+|wj|2 4 Wwith probability 1, ifd >

are more difficult to analyze. The constants A, are known only to be finite and positive.

For a one-dimensional n-step walk w, define M’ to be the maximum value of @; and
M to be the maximum value of —w;. Then M, and M, each follow the half-normal
distribution [6.2] in the limit as » — o0, and [33,34]

. 1 /2 . 1
lim E(n zM;‘): Z = lim E(n 2Mn).
n—00 T n—00

Further, if 7 is the smallest value of j for which w; = M, and 7, is the smallest
value of k for which —w; = M, then the arcsine law applies:

lim P(n'T} <x) = 2 arcsin/x = lim P (n'T, <x),

n—00 T n— 00
which implies that a one-dimensional random walk tends to be either highly negative
or highly positive (not both). Such detailed information about d-dimensional walks is
not yet available. Define also 74, to be the smallest value of j for which |w;| > r, for
any positive integer . Then [35]

— 2 _9 _ 135 _ 11791
Ty =77 T22 =3, 23 = T3, 124 = ~4ag >

but a pattern is not evident. What precisely can be said about 7, as » — 0o0?
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As a computational aside, we mention a result of Odlyzko’s [36—-38]: Any algorithm
that determines M, (or M,) exactly must examine at least (4 + o(1))/n of the w;
values on average, where 4 = /8/m In(2) = 1.1061028674. . ..

On the one hand, the waiting time N, for a one-dimensional random walk to hit a
new vertex, not visited in the first n steps, satisfies [39]

li;r_l)solip m = % with probability 1.
On the other hand, if F;, denotes the set of vertices that are maximally visited by the
random walk up to step #, called favorite sites, then |F,| > 4 only finitely often, with
probability 1 [40].

For two-dimensional random walks, we may define F, analogously. The number of
visits to a selected point in F,, within the first # steps is ~ In(n)? /7 with probability 1,
as n — oo. This can be rephrased as the asymptotic number of times a drunkard drops
by his favorite watering hole [41,42]. Dually, the length of time C, required to totally
cover all vertices of the » x r torus (square with opposite sides identified) satisfies [43]

limP< <s>=1
rF—>0Q

for every ¢ > 0 (convergence in probability). This solves what is known as the “white
screen problem” [44].

If a three-dimensional random walk w is restricted to the region x > y > z, then the
analogous series coefficients are

C, 4

r2ln(r)? m

_ - 2n)!(2k)!
=D :

= (n—k)\(n+ 1 —k)k(k+ 1)1
and from this we have [45]

_ o dy . 1
ms = Z — = 1.0693411205..., p3=1— — =0.0648447153 ...
o 6211 3

characterizing the return. What can be said concerning other regions, for example, a
half-space, quarter-space, or octant?

Here is one variation. Let X, X, X3, ...be independent normally distributed ran-
dom variables with mean p and variance 1. Consider the partial sums §; = Zi:l Xk,
which constitute a random walk on the real line (rather than the one-dimensional lattice)
with Gaussian increments (rather than Bernoulli increments). There is an enormous
literature on {S;}, but we shall mention only one result. Let / be the first positive value
of §;, called the first ladder height of the process; then the moments of # when u = 0
are [46]

1 n Q)
—, Eo(H?) = —% = /2p = +/2(0.5825971579.....)
NEd

Eo(H) = 7
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and, for arbitrary p in a neighborhood of 0,

E.(H) = Lo Z 6G - _® k
" 2P 4/—2n k'(2k+1) 2 )
where ¢(x) is the Riemann zeta function [1.6]. Other occurrences of the interesting
constant p in the statistical literature are in [47-50].
Here is another variation. Let Y , 1o, Vs, .be independent Uniform [—1, 1] ran-

dom variables, So = 0, and §; = Zi:l Yk. Then the expected maximum value of {So,
St ..., S, is [51]

E<0max S) ,/—nz +o0 + ,/—n_? +O
<j<n

as n — 0o, where 0 = —0.2979521902 . .. is given by

N\w
N—"

_iQ), fQ) Nk K
_mUom*;(k Jor zom)

B 2(_1)k k k+1
tk_(k+1)!k/2 = DJ( )(]__> '

2<j<k

and

A deeper connection between ¢ (x) and random walks is discussed in [52].

5.9.1 Intersections and Trappings

A walk w on the lattice L is self-intersecting if w; = w; for some i < j, and the
self-intersection time is the smallest value of j for which this happens. Computing
self-intersection times is more difficult than first-passage times since the entire history
of the walk requires memorization. If d = 1, then clearly the mean self-intersection
time is 3. If d = 2, the mean self-intersection time is [53]

2-4 3.12 4-44 5-.116 2 n(dc,—1 — cp)
Tttt =

n=2

c >, ¢
= — = 4.5860790989...,
2 + ; 4n

where the sequence {c,} is defined in [5.10]. When # is large, no exact formula for
evaluating ¢, is known, unlike the sequences {a,}, {a,}, and {b,} discussed earlier.
We are, in this example, providing foreshadowing of difficulties to come later. See the
generalization in [54,55].

A walk o is self-trapping if, for some k, w; # w; foralli < j < k and wy is com-
pletely surrounded by previously visited vertices. If d = 2, there are eight self-trapping
walks when k£ = 7 and sixteen such walks when £ = 8. A Monte Carlo simulation in
[56,57] gave a mean self-trapping time of approximately 70.7.. ..
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Two walks w and o' intersect if w; = a)//. for some nonzero i and j. The probability
qn that two n-step independent random walks never intersect satisfies [58—61]

—2In(n)  ifd =2,
In(g,) ~ { —¢& In(n) ifd =3,
—1In(In(n)) ifd =4

as n — 00, where the exponent & is approximately 0.29 . .. (again obtained by simula-
tion). For each d > 5, it can be shown [62] that lim,,_, « g, lies strictly between 0 and
1. Further simulation [63] yields g5 = 0.708 ... and g¢ = 0.822 ..., and we shall refer
to these in [5.10].

5.9.2 Holonomicity

A holonomic function (in the sense of Zeilberger [45,64,65]) is a solution f(z) of a
linear homogeneous differential equation

7@ +r@ " V@) + A @) f(2) +ra2) f(2) = 0,

where each r(z) is a rational function with rational coefficients. Regular holonomic
constants are values of f at algebraic points zy where each r; is analytic; f can
be proved to be analytic at zy as well. Singular holonomic constants are values of
f at algebraic points z; where each r; has, at worst, a pole of order & at zy (called
Fuchsian or “regular” singularities [66—68]). The former include 7, In(2), and the
tetralogarithm Lis(1/2); the latter include Apéry’s constant ¢ (3), Catalan’s constant G,
and Pdlya’s constants p,, d > 2. Holonomic constants of either type fall into the class
of polynomial-time computable constants [69]. We merely mention a somewhat related
theory of EL numbers due to Chow [70].
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5.10 Self-Avoiding Walk Constants

Let L denote the d-dimensional cubic lattice whose vertices are precisely all integer
points in d-dimensional space. An n-step self-avoiding walk @ on L, beginning at
the origin, is a sequence of vertices wy, w1, W, ..., W, Withwg =0, |wj41 — w;| =1
for all j and w; # w; for all i # j. The number of such walks is denoted by c,.
For example, co = 1,¢1 = 2d,¢c; = 2d(2d — 1), c3 = 2d(2d — 1), and ¢4 = 2d(2d —
1)} — 2d(2d — 2). Self-avoiding walks are vastly more difficult to study than ordinary
walks [1-6], and historically arose as a model for linear polymers in chemistry [7, 8].
No exact combinatorial enumerations are possible for large n. The methods for analysis
hence include finite series expansions and Monte Carlo simulations.

For simplicity’s sake, we have suppressed the dependence of ¢, on d; we will do this
for associated constants too whenever possible.

What can be said about the asymptotics of ¢,? Since ¢,+,, < ¢,cy, On the basis of
Fekete’s submultiplicativity theorem [9-12], it is known that the connective constant
g = lim ¢} = inf el

n—o0o n
exists and is nonzero. Early attempts to estimate u = p4 included [13—15]; see [2] for
a detailed survey. The current best rigorous lower and upper bounds for p, plus the
best-known estimate, are given in Table 5.2 [16-24]. The extent of our ignorance is
fairly surprising: Although we know that w? = 1im,_ o0 Cuy2/cn and cp41 > ¢, for all
n and all d, proving that . = lim,,_, » ¢,,+1/c, for 2 < d < 4 remains an open problem
[25,26].

Table 5.2. Estimates for Connective Constant |

d Lower Bound Best Estimate for Upper Bound
2 2.6200 2.6381585303 2.6792
3 4.5721 4.68404 4.7114
4 6.7429 6.77404 6.8040
5 8.8285 8.83854 8.8602
6 10.8740 10.87809 10.8886
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It is believed that there exists a positive constant y = y; such that the following
limit exists and is nonzero:
. c
lim - ’; ;
n— 00 ny—
A - M CI’I

ifd # 4,

The critical exponent y is conjectured to be [27-29]
=32 =134375 3 =1.1575..., p=1
and has been proved [1,30] to equal 1 for d > 4. For small d, we have bounds [1,25,31]
. < w" exp (Cn'/?) ifd =2,
"7 | wexp (Cr¥ @D n(n)) if3 <d <4,

which do not come close to proving the existence of 4. It is known [32] that, ford = 5,
1 < A4 < 1.493 and, for sufficiently large d, 4 = 1 + (2d)"' +d =2 + O(d ™).
Another interesting object of study is the mean square end-to-end distance

1
rn=E(lonl’) = — ) lonl,

where the summation is over all n-step self-avoiding walks w on L. Like ¢,, it is
believed that there is a positive constant v = v, such that the following limit exists and
is nonzero:

lim 2 ifd + 4,
lim —— "
n—00 n2" In(n)1/4

As before, it is conjectured that [27,33,34]

ifd = 4.

v =2=075 13=05877..., u=1=05

and has been proved [1,30] that v = 1/2 for d > 4. This latter value is the same for
Polya walks, that is, the self-avoidance constraint has little effect in high dimensions.
It is known [32] that, ford = 5, 1.098 < B < 1.803 and, for sufficiently large d, B =
1 +d~' 4+2d? + O(d~3). Hence a self-avoiding walk moves away from the origin
faster than a Pdlya walk, but only at the level of the amplitude and not at the level of
the exponent.

If we accept the conjectured asymptotics ¢, ~ Au"n’ "' andr, ~ Bn®" as truth (for
d # 4), then the calculations shown in Table 5.3 become possible [23,24,33,35-37].

Table 5.3. Estimates for Amplitudes A and B

d Estimate for A Estimate for B d  Estimate for 4  Estimate for B

2 1.177043 0.77100 5 1.275 1.4767
3 1.205 1.21667 6 1.159 1.2940
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(The logarithmic correction for d = 4 renders any reliable estimation of 4 or B very
difficult.) Here is an application. Two walks @ and o’ intersect if w; = a); for some
nonzero i and j. The probability that two n-step independent random self-avoiding
walks never intersect is [1,38]

A2 50 if2<d <3,
D A () > 0 ifd =4,
C
o latso ifd > 5

as n — oo. This conjectured behavior is consistent with intuition: ¢y, /c? is (slightly)
larger than the corresponding probability ¢, for ordinary walks [5.9.1] since self-
avoiding walks tend to be more thinly dispersed in space.

Other interesting measures of the size of a walk include the mean square radius of
gyration,

1 n
Sn =E n—i—lZ

i=0

1 n
wi—mZa)j

=0

2
1 n n
“t(rrr o)

i=0 j=0

and the mean square distance of a monomer from the endpoints,

1 & il + o, —
t,=E .
(n—i—lZ 2

i=0

The radius of gyration, for example, can be experimentally measured for polymers
in a dilute solution via light scattering, but the end-to-end distance is preferred for
theoretical simplicity [33,39—41]. It is conjectured that s, ~ En®’ and t, ~ Fn?",
where v is the same exponent as for r,, and £/B = 0.14026..., F/B = 0.43961 . ..
ford =2and £/B = 0.1599... ford = 3.

One can generalize this discussion to arbitrary lattices L in d-dimensional space.
For example, in the case d = 2, there is a rigorous upper bound u < 4.278 and an
estimate u = 4.1507951 . .. for the equilateral triangular lattice [17,35,42—45], and it
is conjectured that u = v/2 + +/2 = 1.8477590650 . . . for the hexagonal (honeycomb)
lattice [46—48]. The critical exponents y, v and amplitude ratios £/ B, F'/ B, however,
are thought to be universal in the sense that they are lattice-independent (although
dimension-dependent). An important challenge, therefore, is to better understand the
nature of such exponents and ratios, and certainly to prove their existence in low
dimensions.

5.10.1 Polygons and Trails

The connective constant u values given previously apply not only to the asymptotic
growth of the number of self-avoiding walks, but also to the asymptotic growth of num-
bers of self-avoiding polygons and of self-avoiding walks with prescribed endpoints
[2,49]. See [5.19] for discussion of lattice animals or polyominoes, which are related
to self-avoiding polygons.
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No site or bond may be visited more than once in a self-avoiding walk. By way of
contrast, a self-avoiding trail may revisit sites, but not bonds. Thus walks are a proper
subset of trails [S0—55]. The number /,, of trails is conjectured to satisfy 4, ~ GA"n? !,
where y is the same exponent as for ¢,. The connective constant A provably exists as
before and, in fact, satisfies A > u. For the square lattice, there are rigorous bounds
2.634 < X < 2.851 and an estimate A = 2.72062. .. ; the amplitude is approximately
G = 1.272....For the cubic lattice, there is an upper bound & < 4.929 and an estimate
A = 4.8426. ... Many related questions can be asked.

5.10.2 Rook Paths on a Chessboard

How many self-avoiding walks can a rook take from a fixed corner of an m x n chess-
board to the opposite corner without ever leaving the chessboard? Denote the number
of such paths by p,,_1.,_1; clearly py.1 = 2¥, pr, = 12, and [56-58]

2k

4+ V13 [ [34+V13
+ + = 1.0547001962 . .. - (1.8173540210. . .)*

Pk2 /13 5

as k — oo. More broadly, the generating function for the sequence {py ;};2, is rational
forany integer/ > 1 and thus relevant asymptotic coefficients are all algebraic numbers.
What can be said about the asymptotics of py ; as k — oo? Whittington & Guttmann
[59] proved that

Pk ~ (1756 . )F

and conjectured the following [60,61]. If 7;; is the number of j-step paths with
generating function

o0
P(x) =Y mux!. Pu(l) = pra

Jj=1

then there is a phase transition in the sense that

0< klim Pk(x)% <1 exists for 0 < x < u~! = 0.3790522777 .. .,

— 00

lim Pe(u")i =1,

k—00 .

1< klim Pi(x)¥ < oo exists for x > pu~'.
—00

A proof was given by Madras [62]. This is an interesting occurrence of the connective
constant i = [,; an analogous theorem involving a d-dimensional chessboard also
holds and naturally makes use of 1.

5.10.3 Meanders and Stamp Foldings

A meander of order # is a planar self-avoiding loop (road) crossing an infinite line
(river) 2z times (2n bridges). Define two meanders as equivalent if one may be deformed
continuously into the other, keeping the bridges fixed. The number of inequivalent
meanders M, of order n satisty M| =1, M, =2, M3 = 8, My =42, M5 =262, ....
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Figure 5.11. There are eight meanders of order 3 and ten semi-meanders of order 5; reflections
across the river are omitted.

A semi-meander of order » is a planar self-avoiding loop (road) crossing a semi-
infinite line (river with a source) » times (n bridges). Equivalence of semi-meanders
is defined similarly. The number of inequivalent semi-meanders M, of order n satisfy
M =1,M,=1,M3=2,Ms=4,Ms=10,....

Counting meanders and semi-meanders has attracted much attention [63—73]. See
Figure 5.11. As before, we expect asymptotic behavior

R2n N . R"
, M n "~ C =
n“ n“
where R = 3.501838.. ., that is, R = 12.262874. ... No exact formula for the con-
nective constant R is known. In contrast, there is a conjecture [74—76] that the critical
exponents are given by

29 5
a:@%

M, ~C

=3.4201328816...,

V29 5
a=1 +\/11+\/_ = 2.0531987328...,

but doubt has been raised [77—79] about the semi-meander critical exponent value. The
sequences M, and M, are also related to enumerating the ways of folding a linear or
circular row of stamps onto one stamp [80-87].
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5.11 Feller’s Coin Tossing Constants

Let w, denote the probability that, in » independent tosses of an ideal coin, no

run of three consecutive heads appears. Clearly wy = wi = w, =1, w, = %wn_l +
%wn_z + %wn_g for n > 3, and lim,,_, o, w, = 0. Feller [1] proved the following more

precise asymptotic result:

lim w,a"" = B,
where
1 _1
(136 + 24«/33)’ —3 (136 + 24«/33) Yo
o = 3 = 1.0873780254 . ..

and

2—«

B = — 1.2368398446 . . ..
4 —3a

We first examine generalizations of these formulas. If runs of & consecutive heads,
k > 1, are disallowed, then the analogous constants are [1,2]

X k+1
«a is the smallest positive root of 1 — x + (§> =0

and
22—«
Tkl —ka
Equivalently, the generating function that enumerates coin toss sequences with no runs
of k consecutive heads is [3]
B(2Y
Ll

See [4-8] for more material of a combinatorial nature.
If the coin is non-ideal, that is, if P(H) = p, P(T) = ¢, p + ¢ = 1, but p and ¢ are
not equal, then the asymptotic behavior of w,, is governed by

B

1—z* 1 4"
Sk(z) = 7 Sk(2)

— 2z 4 K17 gz

« is the smallest positive root of 1 — x + gp*x**' =0
and
= 1 — pa
k41 —ka)g’

A further generalization involves time-homogeneous two-state Markov chains. It
makes little sense here to talk of coin tosses, so we turn attention to a different appli-
cation. Imagine that a ground-based sensor determines once per hour whether a fixed
line-of-sight through the atmosphere is cloud-obscured (0) or clear (1). Since meteo-
rological events often display persistence through time, the sensor observations are not
independent. A simple model for the time series X, X, X3, ... of observations might
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be a Markov chain with transition probability matrix

<P(X_;'+1 =01X; =0) P(X; 1 = 1]1X; = 0)) _ <7700 7T01>
P(X;11 =01X; =) P(X;;1 =1|X; =1) o T )’

where conditional probability parameters satisfy wog + 791 = 1 = 719 + 711. The spe-
cial case when 7oy = 7 and wy; = ) is equivalent to the Bernoulli trials scenario
discussed in connection with coin tossing. Let w, ; denote the probability that no
cloudy intervals of length & > 1 occur, and assume that initially P(Xy = 1) = 6.
The asymptotic behavior is similar to before, where « is the smallest positive root of
[9,10]

1 — (11 + mo0)x + (11 — 7o1)x? + momor ey X =0

and

_ [E1 4 @rn = o)) — (e — mo1)ma?][01 + (o1 — 61)er]
momor[—1 — k + (w11 + mwoo)kar + (7111 — 7wo1 )(1 — k)ar?]

See [11] for a general technique for analysis of pattern statistics, with applications in
molecular biology.

Of many possible variations on this problem, we discuss one. How many patterns
of n children in a row are there if every girl is next to at least one other girl? If we
denote the answer by YV,,,thenY; = 1,Y, =2, Y3 =4,and Y, =2Y,_ 1 — Y, 2+ Y, 3
for n > 4; hence

1 _1
Voo (1004+12v69) +4 (100 +12v/69) ~ +4
lim "Y+ = - = 1.7548776662. ...
n— 00 n

A generalization of this, in which the girls must appear in groups of at least &, is given
in [12, 13]. Similar cubic irrational numbers occur in [1.2.2].

Let us return to coin tossing. What is the expected length of the longest run of
consecutive heads in a sequence of 7 ideal coin tosses? The answer is surprisingly
complicated [14-21]:

4 _In(n) 3 y
];a — W) = o (5 —~ 1n(2)> +8(n) + o(1)

as n — oo, where y is the Euler-Mascheroni constant and

L& 2mik - In(n)
8(n) = @ 2 r <1n(2)) exp (—2nzk1n(2)> .
k50

That is, the expected length is In(n)/ In(2) — 0.6672538227 ... plus an oscillatory,
small-amplitude correction term. The function &(n) is periodic (§(n) = §(2n)), has
zero mean, and is “negligible” (|8(n)| < 1.574 x 107 for all n). The corresponding
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variance is C + ¢ + €(n) + o(1), where &(n) is another small-amplitude function and
1 n?

- = 3.5070480758.. . .,
2 T omey

p— [ < 2
c=——Y In|l—exp ——(2k+ 1))} =(—1.237412..) x 1072,
In(2) kZ(; In(2)
Functions similar to §(n) and e(n) appear in [2.3], [2.16], [5.6], and [5.14].
Also, if we toss n ideal coins, then toss those which show tails after the first toss,

then toss those which show tails after the second toss, etc., what is the probability that
the final toss involves exactly one coin? Again, the answer is complicated [22-25]:

—Zz =277y ~ o (2)+p(n)+0(1)

as n — 0o, where

1 o 2mik .. In(n)
P = Ty 2 " (1 B 1n<z)>e"p (2”"‘111(2))'

K20

That is, the probability of a unique survivor (no ties) at the end is 1/(21In(2)) =
0.7213475204 . .. plus an oscillatory function satisfying |o(n)| < 7.131 x 107¢ for
all n. The expected length of the longest of the n coin toss sequences is Z;’;O[l —(1—
277)"] and can be analyzed similarly [26]. Related discussion is found in [27-31].
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5.12 Hard Square Entropy Constant

Consider the set of all n x n binary matrices. What is the number F'(n) of such matrices
with no pairs of adjacent 1s? Two 1s are said to be adjacent if they lie in positions (Z, ;)
and (i + 1, j), orifthey lie in positions (i, j) and (i, j + 1), for some i, j. Equivalently,
F(n) is the number of configurations of non-attacking Princes on an n x n chessboard,
where a “Prince” attacks the four adjacent, non-diagonal places. Let N = n?; then[1-3]

k = lim F(n)¥ = 1.5030480824 ... = exp(0.4074951009 . . .)

n—00
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isthe hard square entropy constant. Earlier estimates were obtained by both physicists
[4-9] and mathematicians [10—13]. Some related combinatorial enumeration problems
appear in [14-16].

Instead of an # x n binary matrix, consider an n x n binary array that looks like

arn

any

asy

as

ans

asy

ag

asy

as;s

ass

as3

ass

azs

a4

asq

Aes

(here n = 4). What is the number G(n) of such arrays with no pairs of adjacent 1s?
Two 1s here are said to be adjacent if they lie in positions (i, j) and (i + 1, j), or in
(i,j)and (i, j + 1),0orin (i, j) and (i + 1, j 4+ 1), for some i, j. Equivalently, G(n)
is the number of configurations of non-attacking Kings on an n x n chessboard with
regular hexagonal cells. It is surprising that the hard hexagon entropy constant

k = lim G(n)% = 1.3954859724 ... = exp(0.3332427219...)

n—00

is algebraic (in fact, is solvable in radicals [17-22]) with minimal integer polynomial
(23]

25937424601x%* + 2013290651222784x%% + 2505062311720673792x%°
+797726698866658379776x'® + 7449488310131083100160x '
+2958015038376958230528x 14 — 72405670285649161617408x 2
+107155448150443388043264x 0 — 71220809441400405884928x°
—73347491183630103871488x° + 97143135277377575190528x*
—32751691810479015985152.

This is a consequence of Baxter’s exact solution of the hard hexagon model [24-27]
via theta elliptic functions and the Rogers—Ramanujan identities from number theory
[28-31]! The expression for «, in fact, comes out of a more general expression for

k(z) = lim Z,(2)¥,
n—oo

where Z,(z) is known as the partition function for the model and G(n) = Z,(1),x =
k(1). More on the physics of phase transitions in lattice gas models is found in [5.12.1].

McKay and Calkin independently calculated that, if we replace Princes by
Kings on the chessboard with square cells, then the corresponding constant « is
1.3426439511 ... see also [32—-34]. Note that the distinction between Princes and
Kings on a chessboard with regular hexagonal cells is immaterial. (Clarification: If a
Prince occupies cell ¢, then any cell sharing an edge with ¢ is vulnerable to attack. If a
King occupies cell ¢, by contrast, then any cell sharing either an edge or corner with ¢
is vulnerable.)
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If we examine instead a chessboard with equilateral triangular cells, then x =
1.5464407087 ... for Princes [3]. This may be called the hard triangle entropy
constant. The value of ¥ when replacing Princes by Kings here is not known.

What are the constants « for non-attacking Knights or Queens on chessboards with
square cells? The analysis for Knights should be similar to that for Princes and Kings,
but for Queens everything is different since interactions are no longer local [35].

The hard square entropy constant also appears in the form In(x)/In(2) =
0.5878911617... in several coding-theoretic papers [36—41], with applications in-
cluding holographic data storage and retrieval.

5.12.1 Phase Transitions in Lattice Gas Models

Statistical mechanics is concerned with the average properties of a large system of
particles. We consider here, for example, the phase transition from a disordered fluid
state to an ordered solid state, as temperature falls or density increases.

A simple model for this phenomenon is a lattice gas, in which particles are placed
on the sites of a regular lattice and only adjacent particles interact. This may appear
to be hopelessly idealized, as rigid molecules could not possibly satisfy such strict
symmetry requirements. The model is nevertheless useful in understanding the link
between microscopic and macroscopic descriptions of matter.

Two types of lattice gas models that have been studied extensively are the hard
square model and the hard hexagon model. Once a particle is placed on a lattice site,
no other particle is allowed to occupy the same site or any next to it, as pictured in
Figure 5.12. Equivalently, the indicated squares and hexagons cannot overlap, hence
giving rise to the adjective “hard.”

Given a (square or triangular) lattice of N sites, assign a variable o; = 1 if site i
is occupied and o; = 0 if it is vacant, for each 1 <i < N. We study the partition
function

Z2)=) (z"1+"2+"3+"'+‘w Jla- am)) :

@)

o

Figure 5.12. Hard squares and hard hexagons sit, respectively, on the square lattice and triangular
lattice.
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where the sum is over all 2V possible values of the vector o = (01, 03, 03, ..., Oy)
and the product is over all edges of the lattice (sites i and j are distinct and adjacent).
Observe that the product enforces the nearest neighbor exclusion: If a configuration
has two particles next to each other, then zero contribution is made to the partition
function.

It is customary to deal with boundary effects by wrapping the lattice around to form
a torus. More precisely, for the square lattice, 2n new edges are created to connect the n
rightmost and » topmost points to corresponding z leftmost and # bottommost points.
Hence there are a total of 2N edges in the square lattice, each site “looking like” every
other. For the triangular lattice, 4n — 1 new edges are created, implying a total of 3N
edges. In both cases, the number of boundary sites, relative to N, is vanishingly small
as n — 00, so this convention does not lead to any error.

Clearly the following combinatorial expressions are true [4,42,43]: For the square
lattice,

‘& 2 ifn =2
Zn= 2 Juatts fon =1 fin =N fon = { LNV = 5) ifn = 3,
k=0 2 -

)6 ifn =3,
fin= é(N(N—10)(N—13)+4N(N—9)+4N(N—8)) ifn >4,

where f} , denotes the number of allowable tilings of the N-site lattice with k squares,
and for the triangular lattice,

LN/3]
Zn = Z gk,nzk’ gon = 1: 810 = N’ g0 = %N(N - 7)7
k=0
{0 ifn =3,
831 = L(N(N = 14)(N — 19) + 6N(N — 13) + 6N(N — 12)) ifn > 4,

where g, denotes the corresponding number of hexagonal tilings.

Returning to physics, we remark that the partition function is important since it
acts as the “denominator” in probability calculations. For example, consider the two
sublattices 4 and B of the square lattice with sites as shown in Figure 5.13. The
probability that an arbitrary site « in the sublattice A is occupied is

pa(z) = nll)ngo Zin Z <Ua . ZO1totos oy 1_[(1 — O-l.o-j)> ,
o ()]
which is also called the local density at . We can define analogous probabilities for
the three sublattices A4, B, and C of the triangular lattice.
We are interested in the behavior of these models as a function of the positive variable
z, known as the activity. Figure 5.14, for example, exhibits a graph of the mean density
for the hard hexagon case:

p4(z) + pp(z) + pc(z)
3

d
p(2) = 2-(n((2)) =
z

using the exact formulation given in [18].
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AV

B A B A A A
A B A B C A

C A C
B A B A

B C A

A B A B

C N B

Figure 5.13. Two sublattices of the square lattice and three sublattices of the triangular lattice.

The existence of a phase transition is visually obvious. Let us look at the extreme
cases: closely-packed configurations (large z) and sparsely-distributed configurations
(small z). For infinite z, one of the possible sublattices is completely occupied, assumed
to be the 4 sublattice, and the others are completely vacant; that is,

p4 =1, pg =0 (for the square model)
and

ps =1, pg = pc =0 (forthe hexagon model).

2
I N
~
(=]
i
T

Figure 5.14. Graph of the mean density and sublattice densities, as functions of z, for the hexagon
model.
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For z close to zero, there is no preferential ordering on the sublattices; that is,
p4 = pp (for the square model) and p4 = pp = pc (for the hexagon model).

Low activity corresponds to homogeneity and high activity corresponds to heterogene-
ity; thus there is a critical value, z., at which a phase transition occurs. Define the order
parameter

R = p4 — pp (for squares) and R = py — pp = p4 — pc (for hexagons);

then R =0forz <z.and R > 0 forz > z..
Elaborate numerical computations [7,44,45] have shown that, in the limit as n —
00,

z. =3.7962 ... (for squares) and z. = 11.09... (for hexagons),

assuming site « to be infinitely deep within the lattice. The computations involved
highly-accurate series expansions for R and what are known as corner transfer matrices,
which we cannot discuss here for reasons of space.

In a beautiful development, Baxter [24,25] provided an exact solution of the hexagon
model. The full breadth of this accomplishment cannot be conveyed here, but one of
many corollaries is the exact formula

11455 (1+ﬁ
ZC: =
2 2

5
) = 11.0901699437 . ..

for the hexagon model. No similar theoretical breakthrough has occurred for the square
model and thus the identity of 3.7962 . . . remains masked from sight. The critical value
z. = 7.92... for the triangle model (on the hexagonal or honeycomb lattice) likewise
is not exactly known [46].

For hard hexagons, the behavior of p(z) and R(z) at criticality is important
[24,26,27]:

5—4/5
10

2/3
~po—532(1-Z = o, = = 0.2763932022
0~ Pe . asz —> z,, p.= =0. cees

3 1 [z 179
R~ | —(Z -1 asz — z+
ﬁ[Sﬁ(zc )} .

and it is conjectured that the exponents 1/3 and 1/9 are universal. For hard squares
and hard triangles, we have only numerical estimates p. = 0.368 ... and 0.422. ..,
respectively. Far away from criticality, computations at z = 1 are less difficult [3,47]:

0.1624329213 ... for hard hexagons,
p(1) = { 0.2265708154 ... for hard squares,
0.2424079763 ... for hard triangles,

and the first of these is algebraic of degree 12 [18,22]. A generalization of p(1) is the
probability that an arbitrary point o and a specified configuration of neighboring points
o’ are all occupied; sample computations can be found in [3].
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Needless to say, three-dimensional analogs of the models discussed here defy any
attempt at exact solution [44].
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5.13 Binary Search Tree Constants

We first define a certain function f. The formulation may seem a little abstruse, but
f has a natural interpretation as a path length along a type of weakly binary tree (an
application of which we will discuss subsequently) [5.6].

Given a vector V = (vy, vy, ..., v;) of k distinct integers, define two subvectors V7,
and Vy by

V=@ vj<vi, 2=j<k), Ve=(v;:v;>v, 2= <k).
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The subscripts L and R mean “left” and “right”’; we emphasize that the sublists V; and
Vg preserve the ordering of the elements as listed in V.
Now, over all integers x, define the recursive function

0 if V=9 (¥ is the empty vector),
f(x V)— 1 ifx:vl,
T 1+ f(x, V) ifx < vy, otherwise (v isthe first vector component),
1+ f(x, Vg) ifx > vy.
Clearly 0 < f(x, V) <k always and the ordering of vy, v2, ..., v; is crucial

in determining the value of f(x, V). For example, f(7,(3,9,5,1,7))=4 and
f4,(3,9,51,7)=3.

Let V' be a random permutation of (1, 3,5, ...,2n — 1). We are interested in the
probability distribution of f(x, V') in two regimes:

» random odd x satisfying 1 < x < 2n — 1 (successful search),
* random even x satisfying 0 < x < 2n (unsuccessful search).

Note that both 7 and x are random; it is assumed that they are drawn independently
with uniform sampling. The expected value of f(x, V) is, in the language of computer
science [1-3],

+ the average number of comparisons required to find an existing random record x in
a data structure with » records,

» the average number of comparisons required to insert a new random record x into
a data structure with » records,

where it is presumed the data structure follows that of a binary search tree. Figure
5.15 shows how such a tree is built starting with }" as prescribed. Define also g(I, V') =
Hx: f(x,V)=1,1<x <2n—1, x odd}|, the number of vertices occupying the Jth
level of the tree (/ = 1 is the root level). For example, g(2,(3,9,5,1,7)) =2 and
2(3,(3,9,5,1,7)=1.

~
I
9= Lo W

7

Figure 5.15. Binary search tree constructed using V.
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In addition to the two average-case parameters, we want the probability distribution
of

A(V)y=max{f(x,V):1 <x <2n-—1, xodd} — 1,

the height of the tree (which captures the worst-case scenario for finding the record x,
given V'), and

s(Vy=max{l:g(l, V)=2"1—1,

the saturation level of the tree (which provides the number of full levels of vertices
in the tree, minus one). Thus /(V) is the longest path length from the root of the tree
to a leaf whereas s(V) is the shortest such path. For example, #(3,9,5,1,7) = 3 and
5(3,9,5,1,7)= 1.
Define, as is customary, the harmonic numbers
= 1 1 1 @ 1 7?1 1
H,,—k;k—ln(n)erJrn +0<n2), Hy _;kz =% +O<n2)’

where y is the Euler—-Mascheroni constant [1.5]. Then the expected number of com-
parisons in a successful search (random, odd 1 < x < 2n — 1) of a random tree is
[2-4]

E(f(x. V) =2 (1 T %) H -3 — 200+ 2y 340 (ml(qn))’

and in an unsuccessful search (random, even 0 < x < 2n) the expected number is

n

B(f(x, V) = 2(Hpp1 — 1) = 2In(n) + 2y =2+ O (1) .

The corresponding variances are, for odd x,

2
Var(f(x, V) = <2+ E) H, —4(1 T l) (H,§2)+ ﬂ) 14
n n 4

73
~2(1n(n)+y — ?+2>
and, for even x,

7T3
Var(f(x, V)) = 2(Hyp1 — 2H', + 1) ~ 2 (ln(n) ty -5+ 1) .

A complete analysis of 2(}") and s(7') remained unresolved until 1985 when Devroye
[3,5-7], building upon work of Robson [8] and Pittel [9], proved that
h(V) s(V)

—

() " n(n)

—d,
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almost surely as n — oo, where ¢ = 4.3110704070. .. and d = 0.3733646177 ... are
the only two real solutions of the equation

2 1
—exp|ll——])=0.
X X

Observe that the rate of convergence for 4(V)/In(n) and s(V)/ In(n) is slow; hence a
numerical verification requires efficient simulation [10]. Considerable effort has been
devoted to making these asymptotics more precise [11-14]. Reed [15, 16] and Drmota
[17-19] recently proved that

3c
2(c—1)
E(s(V)) = dIn(n) + O(/In(n) In(In(n)))

and Var(k(V')) = O(1)asn — oo.Nonumerical estimates of the latter are yet available.
See also [20].

It is curious that for digital search trees [5.14], which are somewhat more complicated
than binary search trees, the analogous limits

vy 1 sy 1
() Q) In(r)  InQ)

do not involve new constants. The fact that limiting values for A(V)/In(n) and
s(V)/ In(n) are equal means that the trees are almost perfect (with only a small “fringe”
around log,(n)). This is a hint that search/insertion algorithms on digital search trees
are, on average, more efficient than on binary search trees.

Here is one related subject [21-23]. Break a stick of length r into two parts at
random. Independently, break each of the two substicks into two parts at random as
well. Continue inductively, so that at the end of the n™ step, we have 2" pieces. Let
P,(r) denote the probability that all of the pieces have length < 1. For fixed r, clearly
P,(r) - 1 asn — oo. More interestingly,

E(h(V)) = cIn(n) — In(In(n)) + O(1),

. n 0 ifr > elle,
nlggoP,,(r )= { 1 if0<r <elle,
where e!/¢ = 1.2610704868 . . . and c is as defined earlier. The techniques for proving
this are similar to those utilized in [5.3].

We merely mention a generalization of binary search trees called quadtrees [24-30],
which also possess intriguing asymptotic constants. Quadtrees are useful for storing and
retrieving multidimensional real data, for example, in cartography, computer graphics,
and image processing [31-33].
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5.14 Digital Search Tree Constants

Prior acquaintance with binary search trees [5.13] is recommended before reading this
essay. Given a binary k x n matrix M = (m; ;) = (m1, ma, ..., my) of k distinct rows,
define two submatrices My , and My , by

Mp,=0m;:mi,=0,2<i<k), Mp,=m;:m;,=1,2<i=<k)

for any integer 1 < p < n. That is, the p™ column of M; , is all zeros and the p™
column of My , is all ones. The subscripts L and R mean “left” and “right”; we
emphasize that the sublists M, , and My , preserve the ordering of the rows as listed
in M.

Now, over all binary n-vectors x, define the recursive function

0 if M =0,
1 if x =m,
M = . .
fx, M, p) 14+ f(x, M p,p+1) ifx #myand x, =0, otherwise,
1+ f(x, Mg ,,p+1) ifx #mjandx, = 1.
Clearly 0 < f(x, M, p) < k always and the ordering of m,, my, ..., my, as well as
the value of p, is crucial in determining the value of f(x, M, p).
Let M = (my, ms, ..., my) be a random binary n x n matrix with » distinct rows,

and let x denote a binary n-vector. We are interested in the probability distribution of
f(x, M, 1) in two regimes:

» random x satisfying x = m; for some i, | <i < n (successful search),
» random x satisfying x # m; foralli, | <i < n (unsuccessful search).

There is double randomness here as with binary search trees [5.13], but note that x
depends on M more intricately than before. The expected value of f(x, M, 1) is, in the
language of computer science, [1-6]

* the average number of comparisons required to find an existing random record x in
a data structure with z records,

* the average number of comparisons required to insert a new random record x into
a data structure with z records,

where it is presumed the data structure follows that of a digital search tree. Figure
5.16 shows how such a tree is built starting with M as prescribed.
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010000

010000
101011
010110
011011
110100
100011

010110 101011

011011 100011 110100

Figure 5.16. Digital search tree constructed using M.

Another parameter of some interest is the number 4,, of non-root vertices of degree
1, that is, nodes without children. For binary search trees [3, 7], it is known that E(4,,) =
(n 4+ 1)/3. For digital search trees, the corresponding result is more complicated, as we
shall soon see. Because digital search trees are usually better “balanced” than binary
search trees, one anticipates a linear coefficient closer to 1/2 than 1/3.

Let y denote the Euler—Mascheroni constant [1.5] and define a new constant

o0
1
o= ; S = 1-6066951524.....

Then the expected number of comparisons in a successful search (random, x = m; for
some i) of a random tree is [3-6, 8,9]

o 3 y—1 In(n)
E(f(x,M,l))_Mln(n)+§+M—a+a(n)+0< . )

~ log,(n) — 0.716644 . . . + 8(n),

and in an unsuccessful search (random x # m; for all i) the expected number is

1 1y In(n)
E(f(x,M,l))_Mln(n)-i-EvLm—a—f-S(n)—i-O( " )

~ log,(n) — 0.273948 ... . + 8(n),

where

L& 2rwik _In(n)
8(n) = M 2 r (—1 — 1n(2)> exp (2mkln(2)> .

k0

The function §(n) is oscillatory (8(n) = 6(2n)), has zero mean, and is “negligible”
(I86(n)| < 1.726 x 1077 for all n). Similar functions &(n), p(n), o(n) and T(n) will be
needed later. These arise in the analysis of many algorithms [3,4,6], as well as in
problems discussed in [2.3], [2.16], [5.6], and [5.11]. Although such functions can be
safely ignored for practical purposes, they need to be included in certain treatments for
the sake of theoretical rigor.
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The corresponding variances are, for searching,

6
Var(f(x, M, 1)) ~ o o o — B+ e(n) ~2.844383 ... + &(n)
61n(2)2
and, for inserting,
Var(f(x, M, 1)) l+ il B+ e(n) ~ 0.763014 ... + £(n)
ar( f(x, 6ln(2)2 e(n . ...+ &),

where the new constant § is given by

B= Z (2k = 1.1373387363.

Flajolet & Sedgewick [3, 8, 10] answered an open question of Knuth’s regarding the
parameter A4,,:

E(4,) = [9 1= (ﬁ fa?o a) +p<n)} n+ 0,

where the new constants O and 0 are given by

o0 1 )
Q= IH <1 - i) = 0.2887880950. .. = (3.4627466194 .. .)~!

2k(k 1)/2

k
Z = 7.7431319855 . . ..

o0
"=
The linear coefficient of E(A4,,) fluctuates around
1 1
c=0+1—— (n— + o? —a) = 0.3720486812.. .,

which is not as close to 1/2 as one might have anticipated! Here also [11] is an integral
representation for c:

m i [ () ) (D) (4 ) e
0

There are three main types of m-ary search trees: digital search trees, radix search
tries (tries), and Patricia tries. We have assumed that m = 2 throughout. What, for
example, is the variance for searching corresponding to Patricia tries? If we omit the
fluctuation term, the remaining coefficient

1 (—1)

I 61n(2)2 ln(2) Z k(2 — 1)

is interesting because, at first glance, it seems to be exactly 1! In fact, v > 1 4 10712
and this can be more carefully explained via the Dedekind eta function [12, 13].
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5.14.1 Other Connections

In number theory, the divisor function d(r) is the number of integers d, 1 <d < n,
that divide n. A special value of its generating function [4, 14,15]

o0 k
X_;d(n)q q Zq ‘(1445

1—g*

is @ when ¢ = 1/2. Erdos [16, 17] proved that « is irrational; forty years passed while
people wondered about constants such as
> 1

> 1
;211_ and;y_i_1

(the former appears in [18] whereas the latter is connected to tries [6] and mergesort
asymptotics [19,20]). Borwein [21,22] proved that, if |a| > 2 is an integer, b # 0 is a
rational number, and b # —a” for all n, then the series

S = (-1
and
; a*+b ; a"+b
are both irrational. Under the same conditions, the product

ﬁ(l-ﬁ-a%)

n=1

isirrational [23,24], and hence so is Q. See [25] for recent computer-aided irrationality
proofs.

On the one hand, from the combinatorics of integer partitions, we have Euler’s
pentagonal number theorem [14,26-28]

o0
1 n—1)n 1 n n
1—[(1 —g"y = Z (—1y" q2(3n+l)n — 1+ Z(_l)n (q2(3 D g 3Gn+D) )
n=—00 n=1

and

= 1— n—l=1 q”
[0 -a" +Z(1_q)(1_ D0 —g) (g7

_ q" B = .
_1+Z (1—¢)>(1 — g2 — 3)2,_,(1_qn)2_1+n2:1:17(”)q,

where p(n) denotes the number of unrestricted partitions of n. If ¢ = 1/2, these spe-
cialize to Q and 1/ Q. On the other hand, in the theory of finite vector spaces, Q appears
in the asymptotic formula [5.7] for the number of linear subspaces of I, , when g = 2.

A substantial theory has emerged involving g-analogs of various classical mathe-
matical objects. For example, the constant « is regarded as a 1/2-analog of the Euler—
Mascheroni constant [11]. Other constants (e.g., Apéry’s constant £(3) or Catalan’s
constant G) can be similarly generalized.
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Out of many more possible formulas, we mention three [4, 14,26,29]:

1 1 1 n
7 3.7-15 3.7-15.31

( in@n_u)

ln(2) w2 a2 —47%n
@ 1n(2 24 - 61n(2)> 1:[1 [1 N exP( In(2) )} '

The second makes one wonder if a simple relationship between Q and « exists. It can
be shown that Q is the asymptotic probability that the determinant of a random n x n
binary matrix is odd. A constant P similar to O appears in [2.8]; exponents in P are
constrained to be odd integers.

The reciprocal sum of repunits [30]

w|._‘

oy Ll L b L 009181908
10n—1 11111 1 '

is irrational by Borwein’s theorem. The reciprocal series of Fibonacci numbers can be
expressed as [31-33]

=D
Z f;wzm Iy = 33598856662,

where ¢ is the Golden mean, and this sum is known to be irrational [34-37]. Note that
the subseries of terms with even subscripts can similarly be evaluated [26,31]:

> (E -3

n:l'bLn_1

) = 1.5353705088.. . .,

where 21 = +/3+ 5 and 2 = 7 + 3+/5. A completely different connection to the
Fibonacci numbers (this time resembling the constant Q) is found in [1.2].
A certain normalizing constant [38—40]

o0

1
K = ]_!) (1 + 27) = 1.6467602581 . ..
n=

occurs in efficient binary cordic implementations of two-dimensional vector rotation.
Products such as Q and K, however, have no known closed-form expression except
when g = exp(—m &), where £ > 0 is an algebraic number [26,41].

Observe that 2"*! — 1 is the smallest positive integer not representable as a sum
of n integers of the form 2, i > 0. Define %, to be the smallest positive integer not
representable as a sum of n integers of the form 2/3/, i > 0, j > 0, that is, ko =
1, hy =5, hp =23, h; = 431,...[42,43]. What is the precise growth rate of 4, as
n — 0o? What is the numerical value of the reciprocal sum of %, (what might be
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called the 2-3 analog of the constant «)? This is vaguely related to our discussion in
[2.26] and [2.30.1].

5.14.2 Approximate Counting

Returning to computer science, we discuss approximate counting, an algorithm due
to Morris [44]. Approximate counting involves keeping track of a large number, N, of
events in only log,(log,(XN)) bit storage, where accuracy is not paramount. Consider
the integer time series Xy, X1, ..., Xy defined recursively by

1 ifn =0,
X, = 1+ X,_, with probability 2%, .
{ X,_1  with probability 1 — 2—%wr, Oherwise,

It is not hard to prove that
E(2* —2) = N and Var2*") = IN(N + 1);

hence probabilistic updates via this scheme give an unbiased estimator of N. Flajolet
[45-50] studied the distribution of X in much greater detail:

1 1 In(N
E(XN)=@1n(zv)+§+ln’(”—2)—a+o(n)+0<ngv)>

~ log,(N) — 0.273948 ... + o(N),

7.[2

Tt 61n(2)?
where o« and B are as before, the new constant y is given by

1 & 2
x=—=3 —esch( 22) = (1.237412..) x 1072,
In(2) &~ n In(2)

Var(Xy) ~ —a—B—x +t(n)~0.763014... + (N),

n=1

and o(n) and t(n) are oscillatory “negligible” functions. In particular, since y > 0,
the constant coefficient for Var(Xy) is (slightly) smaller than that for Var( f(x, M, 1))
given earlier. Similar ideas in probabilistic counting algorithms are found in [6.8].
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5.15 Optimal Stopping Constants

Consider the well-known secretary problem. An unordered sequence of applicants
(distinct real numbers) sy, 57, . . ., s, are interviewed by you one at a time. You have no
prior information about the ss. You know the value of , and as s;, is being interviewed,
you must either accept s; and end the process, or reject s; and interview si41. The
decision to accept or reject s must be based solely on whether sy > s; foralll < j <k
(that is, on whether s; is a candidate). An applicant once rejected cannot later be
recalled.

If your objective is to select the most highly qualified applicant (the largest s;), then
the optimal strategy is to reject the first m — 1 applicants and accept the next candidate,
where [1-4]

u 1
m=minik > 1: Z—gl}fvz
e

J=k+1 Jj—1
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as n — oo. The asymptotic probability of obtaining the best applicant via this strategy
ishence 1/e = 0.3678794411 ..., where e is the natural logarithmic base [1.3]. See a
generalization of this in [5-7].

If your objective is instead to minimize the expected rank R, of the chosen applicant
(the largest s; has rank 1, the second-largest has rank 2, etc.), then different formulation
applies. Lindley [8] and Chow et al. [9] derived the optimal strategy in this case and
proved that [10]

1

. RV N
lim R, =[] (1 + —> =3.8695192413... = C.
A variation might include you knowing in advance that sy, 53, ..., s, are indepen-

dent, uniformly distributed variables on the interval [0, 1]. This is known as a full-
information problem (as opposed to the no-information problems just discussed).
How does knowledge of the distribution improve your chances of success? For the
“nothing but the best” objective, Gilbert & Mosteller [11] calculated the asymptotic
probability of success to be [12,13]

~ _(¢* —a — 1)Ei(—a) = 0.5801642239 . . .,

where a = 0.8043522628 . .. is the unique real solution of the equation Ei(a) — y —
In(a) = 1, Ei is the exponential integral [6.2], and y is the Euler-Mascheroni constant
[1.5].

The full-information analog for lim,,_, », R, appears to be an open problem [14—16].
Yet another objective, however, might be to maximize the hiree’s expected quality O,
itself (the k™ applicant has quality s;). Clearly

00=0, 0,=31+0% ) ifn>1,
and O, — 1 asn — oo. Moser [11,17-19] deduced that

2
n+1In(n)+5b’

where the constant b is estimated [10] to be 1.76799378. . ..

Here is a closely related problem. Assume sy, 55, . . ., §, are independent, uniformly
distributed variables on the interval [0, N]. Your objective is to minimize the number
Tn of interviews necessary to select an applicant of expected quality > N — 1. Gum
[20] sketched a proof that Ty = 2N — O(In(N)) as N — oo. Alternatively, assume
everything as before except that s{, 55, . .., s, are drawn with replacement from the set
{1,2, ..., N}. It can be proved here that 7, = ¢ N + O(+/N), where [10]

anl_

2\ In(k) ln(Z)
= 22 o 3 = 13531302722, = In(C).

The secretary problem and its offshoots fall within the theory of optimal stopping
[19]. Here is a sample exercise: We observe a fair coin being tossed repeatedly and can
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stop observing at any time. When we stop, the payoff is the average number of heads
observed. What is the best strategy to maximize the expected payoff? Chow & Robbins
[21,22] described a strategy that achieves an expected payoff > 0.79 = (0.59 + 1)/2.
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5.16 Extreme Value Constants

Let X, X», ..., X, denote a random sample from a population with continuous prob-
ability density function f(x). Many interesting results exist concerning the distribution
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of the order statistics
XU < x@ << xi)
where X" = min{X|, X5, ..., X,} = m, and X" = max{X|, X», ..., X,} = M,.
We will focus only on the extreme values M,, for brevity’s sake.

If X1, X5,..., X, are taken from a Uniform [0, 1] distribution (i.e., f(x) is 1 for
0 < x <1 and is 0 otherwise), then the probability distribution of M, is prescribed by

0 ifx <O,
P(M, <x)=4x" if0<x <1,
1 ifx>1

and its moments are given by

n

_ __n 2 _ _ I
un = E(M,) = , 0, = Var(M,) EESICEE

n+1

These are all exact results [1-3]. Note that clearly

. . 1 e’ ify <0,
nlglgoP(n(Mn—l)<J/)—n11}ngoP<M" < 1+;y) —{1 ify > 0.

This asymptotic result is a special case of a far more general theorem due to Fisher &
Tippett [4] and Gnedenko [5]. Under broad circumstances, the asymptotic distribution
of M, (suitably normalized) must belong to one of just three possible families. We see
another, less trivial, example in the following.

If X1, X»,..., X, are from a Normal (0, 1) distribution, that is,

2

1 X | 1 x 1
f(X)ZEexp<—7), F(x)=_/f(€)d~§=ierf<7§>+5,

then the probability distribution of M,, is prescribed by

X

P(M, < x) = F(x)' = n f FEY™ £(€)de

—0o0
and its moments are given by

[ee] o0

Un =N / xF@)" ' f(x)dx, o} =n / X2F(x)" 7 f(x)dx — 2.

—00 —00
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For small n, exact expressions are possible [2,3,6-11]:

po = 7= = 0.564... 07=1-p3=0681...,
s = N_:os46 03—1+§—u3—0.559-..,
- (1—252)=1.029..., o2 =1+ 2 =0491.

ﬁ 4 4
ps=-=(1-3%)=1162..., —1+5f(1—2S3)—u5—0447
Mo = 52 (1 — 48, +215) = 1.267 ..., 66_1+5f(1—3s3)—u6=0415...,
wo=2E(1=5%+5T) =1352..., of=1+38 (1 -485+27) - 413

=0.391...,
where
ﬁ/ . k
—_— = — arcsin .
LA k—i—sec(x)2 4 2(1+k)

7 S(k)
Vi / / dx dy 1 / aresin 1 k(k+ 1) J
=7 - - .
n? Vk +sec(x)? + sec(y)?  7? A 2 k(k + 2) — tan(z)?

Similar expressions for ug = 1.423...and o = 0.372... remain to be found. Ruben

[12] demonstrated a connection between moments of order statistics and volumes of

certain hyperspherical simplices (generalized spherical triangles). Calkin [13] discov-

ered a binomial identity that, in a limiting case, yields the exact expression for 13.
We turn now to the asymptotic distribution of M,,. Let

~ l In(In(n)) + In(4m)
= vzin) V2 1n(n)

It can be proved [14—18] that
lim P (Jz n(n)(M, — a,) < y) — exp(—e™),
n—o0o

and the resulting doubly exponential density function g(y) = exp(—y — e™) is skewed
to the right (called the Gumbel density or Fisher—Tippett Type I extreme values density).
A random variable Y, distributed according to Gumbel’s expression, satisfies [4]

E[(Y —E(Y)’] 12[

E(Y) =y = 0.577215. .. kew(Y) =
(Y)=y =0577215...,  Skew(Y) T £3)
— 1.139547.. .,
2 E[(Y — E(Y))* 12
Var(Y) = 2= = 1.644934 ..., Kurt(Y) = E[(r —Boy] 12 2.4,
6 Var(Y)? 5

where y is the Euler—-Mascheroni constant [1.5] and ¢(3) is Apéry’s constant [1.6].
(Some authors report the square of skewness; this explains the estimate 1.2986 in [2]
and 1.3 in [19].) The constant ¢(3) also appears in [20]. Doubly exponential functions
like g(v) occur elsewhere (see [2.13], [5.7], and [6.10]).
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The well-known Central Limit Theorem implies an asymptotic normal distribution
for the sum of many independent, identically distributed random variables, whatever
their common original distribution. A similar situation holds in extreme value theory.
The asymptotic distribution of M,, (normalized) must belong to one of the following
families [2, 14-17]:

O ify S 0’ 13 A 99
Giray) = {exp(—y—"‘) ity >0 Fréchet” or Type 11,
_ fexp(=(=»)") ify =0, o
Garuly) = { ) ity >0, Weibull” or Type 111,
G3(y) = exp(—e™), “Gumbel” or Type I,

where o > 0 is an arbitrary shape parameter. Note that G, ;(y) arose in our discussion
of uniformly distributed X and G3(y) with regard to normally distributed X. It turns
out to be unnecessary