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Mathematical Constants

Famous mathematical constants include the ratio of circular circumference to diameter,
π = 3.14 . . . , and the natural logarithmic base, e = 2.178 . . . . Students and professionals
usually can name at most a few others, but there are many more buried in the literature and
awaiting discovery.

How do such constants arise, and why are they important? Here Steven Finch provides
136 essays, each devoted to a mathematical constant or a class of constants, from the well
known to the highly exotic. Topics covered include the statistics of continued fractions,
chaos in nonlinear systems, prime numbers, sum-free sets, isoperimetric problems, approxi-
mation theory, self-avoiding walks and the Ising model (from statistical physics), binary and
digital search trees (from theoretical computer science), the Prouhet–Thue–Morse sequence,
complex analysis, geometric probability, and the traveling salesman problem. This book
will be helpful both to readers seeking information about a specific constant and to readers
who desire a panoramic view of all constants coming from a particular field, for example,
combinatorial enumeration or geometric optimization. Unsolved problems appear virtually
everywhere as well. This is an outstanding scholarly attempt to bring together all significant
mathematical constants in one place.

Steven R. Finch studied at Oberlin College and the University of Illinois in Urbana-
Champaign, and held positions at TASC, MIT Lincoln Laboratory, and MathSoft Inc. He
is presently a freelance mathematician in the Boston area. He is also a composer and has
released a CD entitled “An Apple Gathering” devoted to his vocal and choral music.

i



P1: IKB

CB503-FM CB503/Finch-v2.cls December 9, 2004 18:34 Char Count=

ii



P1: IKB

CB503-FM CB503/Finch-v2.cls December 9, 2004 18:34 Char Count=

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

FOUNDING EDITOR GIAN-CARLO ROTA
Editorial Board
R. Doran, P. Flajolet, M. Ismail, T.-Y. Lam, E. Lutwak,
Volume 94

27 N. H. Bingham, C. M. Goldie, and J. L. Teugels Regular Variation
29 N. White (ed.) Combinatorial Geometries
30 M. Pohst and H. Zassenhaus Algorithmic Algebraic Number Theory
31 J. Aczel and J. Dhombres Functional Equations in Several Variables
32 M. Kuczma, B. Choczewski, and R. Ger Iterative Functional Equations
33 R. V. Ambartzumian Factorization Calculus and Geometric Probability
34 G. Gripenberg, S.-O. Londen, and O. Staffans Volterra Integral and Functional

Equations
35 G. Gasper and M. Rahman Basic Hypergeometric Series
36 E. Torgersen Comparison of Statistical Experiments
38 N. Korneichuk Exact Constants in Approximation Theory
39 R. Brualdi and H. Ryser Combinatorial Matrix Theory
40 N. White (ed.) Matroid Applications
41 S. Sakai Operator Algebras in Dynamical Systems
42 W. Hodges Basic Model Theory
43 H. Stahl and V. Totik General Orthogonal Polynomials
45 G. Da Prato and J. Zabczyk Stochastic Equations in Infinite Dimensions
46 A. Björner et al. Oriented Matroids
47 G. Edgar and L. Sucheston Stopping Times and Directed Processes
48 C. Sims Computation with Finitely Presented Groups
49 T. Palmer Banach Algebras and the General Theory of *-Algebras I
50 F. Borceux Handbook of Categorical Algebra I
51 F. Borceux Handbook of Categorical Algebra II
52 F. Borceux Handbook of Categorical Algebra III
53 V. F. Kolchin Random Graphs
54 A. Katok and B. Hasselblatt Introduction to the Modern Theory of Dynamical Systems
55 V. N. Sachkov Combinatorial Methods in Discrete Mathematics
56 V. N. Sachkov Probabilistic Methods in Discrete Mathematics
57 P. M. Cohn Skew Fields
58 R. Gardner Geometric Tomography
59 G. A. Baker Jr. and P. Graves-Morris Pade Approximants, 2ed
60 J. Krajicek Bounded Arithmetic, Propositional Logic and Complexity Theory
61 H. Groemer Geometric Applications of Fourier Series and Spherical Harmonics
62 H. O. Fattorini Infinite Dimensional Optimization and Control Theory
63 A. C. Thompson Minkowski Geometry
64 R. B. Bapat and T. E. S. Raghavan Nonnegative Matrices with Applications
65 K. Engel Sperner Theory
66 D. Cvetkovic, P. Rowlinson, and S. Simic Eigenspaces of Graphs
67 F. Bergeron, G. Labelle, and P. Leroux Combinatorial Species and Tree-Like Structures
68 R. Goodman and N. Wallach Representations and Invariants of the Classical Groups
69 T. Beth, D. Jungnickel, and H. Lenz Design Theory I, 2ed
70 A. Pietsch and J. Wenzel Orthonormal Systems for Banach Space Geometry
71 G. E. Andrews, R. Askey, and R. Roy Special Functions
72 R. Ticciati Quantum Field Theory for Mathematicians
73 M. Stern Semimodular Lattices
74 I. Lasiecka and R. Triggiani Control Theory for Partial Differential Equations I
75 I. Lasiecka and R. Triggiani Control Theory for Partial Differential Equations II
76 A. A. Ivanov Geometry of Sporadic Groups 1
77 A. Schinzel Polynomials with Special Regard to Reducibility
78 H. Lenz, T. Beth, and D. Jungnickel Design Theory II, 2ed
79 T. Palmer Banach Algebras and the General Theory of *-Algebras II
80 O. Stormark Lie’s Structural Approach to PDE Systems
81 C. F. Dunkl and Y. Xu Orthogonal Polynomials of Several Variables
82 J. P. Mayberry The Foundations of Mathematics in the Theory of Sets
83 C. Foias et al. Navier–Stokes Equations and Turbulence
84 B. Polster and G. Steinke Geometries on Surfaces

iii



P1: IKB

CB503-FM CB503/Finch-v2.cls December 9, 2004 18:34 Char Count=

85 R. B. Paris and D. Karninski Asymptotics and Mellin–Barnes Integrals
86 R. McEliece The Theory of Information and Coding, 2ed
87 B. Magurn Algebraic Introduction to K-Theory
88 T. Mora Systems of Polynomial Equations I
89 K. Bichteler Stochastic Integration with Jumps
90 M. Lothaire Algebraic Combinatorics on Words
91 A. A. Ivanov and S. V. Shpectorov Geometry of Sporadic Groups II
92 P. McMullen and E. Schulte Abstract Regular Polytopes
93 G. Gierz et al. Continuous Lattices and Domains

iv



P1: IKB

CB503-FM CB503/Finch-v2.cls December 9, 2004 18:34 Char Count=

EN C Y C LO PED IA O F MATHEMATICS AND ITS APPLICATIONS

Mathematical Constants

STEVEN R. FINCH

v



P1: IKB

CB503-FM CB503/Finch-v2.cls December 9, 2004 18:34 Char Count=

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
40 West 20th Street, New York, NY 10011-4211, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521818056

C© Steven R. Finch 2003

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2003

Printed in the United States of America

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Finch, Steven R., 1959–

Mathematical constants / Steven R. Finch.

p. cm. – (Encyclopedia of mathematics and its applications; v. 94)

Includes bibliographical references and index.

ISBN 0-521-81805-2

I. Mathematical constants. I. Title. II. Series.

QA41 .F54 2003
513 – dc21 2002074058

ISBN-13 978-0-521-81805-6 hardback
ISBN-10 0-521-81805-2 hardback

Cambridge University Press has no responsibility for
the persistence or accuracy of URLs for external or

third-party Internet Web sites referred to in this book
and does not guarantee that any content on such

Web sites is, or will remain, accurate or appropriate.

vi



P1: IKB

CB503-FM CB503/Finch-v2.cls December 9, 2004 18:34 Char Count=

For Nancy Armstrong, the one constant
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7.8 Grötzsch Ring Constants 475

7.8.1 Formula for a(r ) 477

8 Constants Associated with Geometry 479
8.1 Geometric Probability Constants 479
8.2 Circular Coverage Constants 484
8.3 Universal Coverage Constants 489

8.3.1 Translation Covers 490
8.4 Moser’s Worm Constant 491

8.4.1 Broadest Curve of Unit Length 493
8.4.2 Closed Worms 493
8.4.3 Translation Covers 495

8.5 Traveling Salesman Constants 497
8.5.1 Random Links TSP 498
8.5.2 Minimum Spanning Trees 499
8.5.3 Minimum Matching 500

8.6 Steiner Tree Constants 503
8.7 Hermite’s Constants 506
8.8 Tammes’ Constants 508
8.9 Hyperbolic Volume Constants 511
8.10 Reuleaux Triangle Constants 513
8.11 Beam Detection Constant 515
8.12 Moving Sofa Constant 519
8.13 Calabi’s Triangle Constant 523
8.14 DeVicci’s Tesseract Constant 524
8.15 Graham’s Hexagon Constant 526
8.16 Heilbronn Triangle Constants 527
8.17 Kakeya–Besicovitch Constants 530
8.18 Rectilinear Crossing Constant 532
8.19 Circumradius–Inradius Constants 534
8.20 Apollonian Packing Constant 537
8.21 Rendezvous Constants 539

Table of Constants 543
Author Index 567
Subject Index 593
Added in Press 601



P1: IKB

CB503-FM CB503/Finch-v2.cls December 9, 2004 18:34 Char Count=

Preface

All numbers are not created equal. The fact that certain constants appear at all and
then echo throughout mathematics, in seemingly independent ways, is a source of
fascination. Formulas involving ϕ, e, π , or γ understandably fill a considerable portion
of this book.

There are also many constants whose purposes are more specialized. Often such
exotic quantities have been buried in the literature, known only to the experts of a
narrow field, and invisible to the wider public. In some cases, the constants are easily
computable; in other cases, they may be known to only one decimal digit of precision
(or worse, none at all). Even rigorous proofs of existence might be unavailable.

My belief is that these latter constants are not as isolated as they may seem. The
associated branches of research (unlike those involving ϕ, e, π , or γ ) might simply
require more time to develop the languages, functions, symmetries, etc., to express the
constants more naturally. That is, if we work and listen hard enough, the echoes will
become audible.

An elaborate taxonomy of mathematical constants has not yet been achieved; hence
the organization of this book (by discipline) is necessarily subjective. A table of decimal
approximations at the end gives an alternative organizational strategy (if ascending
numerical order is helpful). The emphasis for me is not on the decimal expansions,
but rather on the mathematical origins of the constants and their interrelationships. In
short, the stories, not the table, tie the book together.

Material about well-known constants appears early and carefully, for the sake of
readers without much mathematical background. Deeper into the text, however, I nec-
essarily become more terse. My intended audience is advanced undergraduates and
beyond (so I may assume readers have had calculus, matrix theory, differential equa-
tions, probability, some abstract algebra, and analysis). My aim is always to be clear
and complete, to motivate why a particular constant or idea is important, and to in-
dicate exactly where in the literature one should look for rigorous proofs and further
elaboration.

I have incorporated Richard Guy’s use of the ampersand (&) to denote joint work.
For example, phrases like “ . . . follows from the work of Hardy & Ramanujan and

xvii
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xviii Preface

Rademacher” are unambiguous when presented as here. The notation [3, 7] means
references 3 and 7, whereas [3.7] refers to Section 3.7 of this book. The presence of a
comma or decimal point is clearly crucial.

Many people have speculated on the role of the Internet in education and research.
I have no question about the longstanding impact of the Web as a whole, but I remain
skeptical that any specific Web address I might give here will exist in a mere five years.
Of all mathematical Web sites available today, I expect that at least the following three
will survive the passage of time:

• the ArXiv preprint server at Los Alamos National Laboratory (the meaning of a
pointer to “math.CA/9910045” or to “solv-int/9801008” should be apparent to all
ArXiv visitors),

• MathSciNet, established by the American Mathematical Society (subscribers to
this service will be acquainted with Mathematical Reviews and the meaning of
“MR 3,270e,” “MR 33 #3320,” or “MR 87h:51043”), and

• the On-Line Encyclopedia of Integer Sequences, created by Neil Sloane (a sequence
identifier such as “A000688” will likewise suffice),

but not many more will outlive us. Even those that persist will be moved to various
new locations and the old addresses will eventually fail. I have therefore chosen not
to include Web URLs in this book. When I cite a Web site (e.g., “Numbers, Constants
and Computation,” “Prime Pages,” “MathPages,” “Plouffe’s Tables,” or “Geometry
Junkyard”), the reference will be by name only.

A project of this magnitude cannot possibly be the work of one person. These pages
are filled with innumerable acts of kindness by friends. To express my appreciation
to all would considerably lengthen this preface; hence I will not attempt this. Special
thanks are due to Philippe Flajolet, my mentor, who provided valuable encouragement
from the very beginning. I am grateful to Victor Adamchik, Christian Bower, Anthony
Guttmann, Joe Keane, Pieter Moree, Gerhard Niklasch, Simon Plouffe, Pascal Sebah,
Craig Tracy, John Wetzel, and Paul Zimmermann. I am also indebted to MathSoft Inc.,∗

the Algorithms Group at INRIA, and CECM at Simon Fraser University for providing
Web sites for my online research notes – my window to the world! – and to Cambridge
University Press for undertaking this publishing venture with me.

Comments, corrections, and suggestions from readers are always welcome. Please
send electronic mail to Steven.Finch@inria.fr. Thank you.

∗ Portions of this book are C© 2000–2003 MathSoft Engineering & Education, Inc. and are reprinted with
permission.
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Notation

�x� floor function: largest integer ≤ x

�x	 ceiling function: smallest integer ≥ x

{x} fractional part: x − �x�
ln x natural logarithm: loge x(

n

k

)
binomial coefficient:

n!

k!(n − k)!

b0 + a1|
|b1

+ a2|
|b2

+ a3|
|b3

+ · · · continued fraction: b0 + a1

b1 + a2

b2 + a3

b3 + · · ·
f (x) = O(g(x)) big O: | f (x)/g(x)| is bounded from above as x → x0

f (x) = o(g(x)) little o: f (x)/g(x) → 0 as x → x0

f (x) ∼ g(x) asymptotic equivalence: f (x)/g(x) → 1 as x → x0∑
p

summation over all prime numbers p = 2, 3, 5, 7, 11, . . .
(only when the letter p is used)∏

p

same as
∑

p , with addition replaced by multiplication

f (x)n power: ( f (x))n , where n is an integer

f n(x) iterate: f ( f (· · · f︸ ︷︷ ︸
n times

(x) . . .)) where n ≥ 0 is an integer

xix
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1

Well-Known Constants

1.1 Pythagoras’ Constant,
√

2

The diagonal of a unit square has length
√

2 = 1.4142135623 . . . . A theory, proposed
by the Pythagorean school of philosophy, maintained that all geometric magnitudes
could be expressed by rational numbers. The sides of a square were expected to be
commensurable with its diagonals, in the sense that certain integer multiples of one
would be equivalent to integer multiples of the other. This theory was shattered by the
discovery that

√
2 is irrational [1–4].

Here are two proofs of the irrationality of
√

2, the first based on divisibility properties
of the integers and the second using well ordering.

• If
√

2 were rational, then the equation p2 = 2q2 would be solvable in integers p and
q, which are assumed to be in lowest terms. Since p2 is even, p itself must be even
and so has the form p = 2r . This leads to 2q2 = 4r2 and thus q must also be even.
But this contradicts the assumption that p and q were in lowest terms.

• If
√

2 were rational, then there would be a least positive integer s such that s
√

2 is an
integer. Since 1 < 2, it follows that 1 <

√
2 and thus t = s · (

√
2 − 1) is a positive

integer. Also t
√

2 = s · (
√

2 − 1)
√

2 = 2s − s
√

2 is an integer and clearly t < s.
But this contradicts the assumption that s was the smallest such integer.

Newton’s method for solving equations gives rise to the following first-order recur-
rence, which is very fast and often implemented:

x0 = 1, xk = xk−1

2
+ 1

xk−1
for k ≥ 1, lim

k→∞
xk = √

2.

Another first-order recurrence [5] yields the reciprocal of
√

2:

y0 = 1

2
, yk = yk−1

(
3

2
− y2

k−1

)
for k ≥ 1, lim

k→∞
yk = 1√

2
.

1
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2 1 Well-Known Constants

The binomial series, also due to Newton, provides two interesting summations [6]:

1 +
∞∑

n=1

(−1)n−1

22n(2n − 1)

(
2n

n

)
= 1 + 1

2
− 1

2 · 4
+ 1 · 3

2 · 4 · 6
− + · · · =

√
2,

1 +
∞∑

n=1

(−1)n

22n

(
2n

n

)
= 1 − 1

2
+ 1 · 3

2 · 4
− 1 · 3 · 5

2 · 4 · 6
+ − · · · = 1√

2
.

The latter is extended in [1.5.4]. We mention two beautiful infinite products [5, 7, 8]

∞∏
n=1

(
1 + (−1)n+1

2n − 1

)
=

(
1 + 1

1

) (
1 − 1

3

) (
1 + 1

5

) (
1 − 1

7

)
· · · =

√
2,

∞∏
n=1

(
1 − 1

4(2n − 1)2

)
= 1 · 3

2 · 2
· 5 · 7

6 · 6
· 9 · 11

10 · 10
· 13 · 15

14 · 14
· · · = 1√

2

and the regular continued fraction [9]

2 + 1

2 + 1

2 + 1

2 + · · ·

= 2 + 1|
|2 + 1|

|2 + 1|
|2 + · · · = 1 +

√
2 = (−1 +

√
2)−1,

which is related to Pell’s sequence

a0 = 0, a1 = 1, an = 2an−1 + an−2 for n ≥ 2

via the limiting formula

lim
n→∞

an+1

an
= 1 +

√
2.

This is completely analogous to the famous connection between the Golden mean ϕ

and Fibonacci’s sequence [1.2]. See also Figure 1.1.
Viète’s remarkable product for Archimedes’ constant π [1.4.2] involves only the

number 2 and repeated square-root extractions. Another expression connecting π and
radicals appears in [1.4.5].

1

1

√2

1

1

ϕ

Figure 1.1. The diagonal of a regular unit pentagon, connecting any two nonadjacent corners,
has length given by the Golden mean ϕ (rather than by Pythagoras’ constant).
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1.1 Pythagoras’ Constant,
√

2 3

We return finally to irrationality issues: There obviously exist rationals x and y such
that x y is irrational (just take x = 2 and y = 1/2). Do there exist irrationals x and y
such that x y is rational? The answer to this is very striking. Let

z =
√

2
√

2
.

If z is rational, then take x = y = √
2. If z is irrational, then take x = z and y = √

2,

and clearly x y = 2. Thus we have answered the question (“yes”) without addressing the
actual arithmetical nature of z. In fact, z is transcendental by the Gel’fond–Schneider
theorem [10], proved in 1934, and hence is irrational. There are many unsolved prob-
lems in this area of mathematics; for example, we do not know whether

√
2

z =
√

2
√

2
√

2

is irrational (let alone transcendental).

1.1.1 Generalized Continued Fractions

It is well known that any quadratic irrational possesses a periodic regular continued
fraction expansion and vice versa. Comparatively few people have examined the gen-
eralized continued fraction [11–17]

w(p, q) = q +

p + 1

q + p + · · ·
q + · · ·

q +
p + 1 + · · ·

q + · · ·
q + p + · · ·

q + · · ·

,

which exhibits a fractal-like construction. Each new term in a particular generation
(i.e., in a partial convergent) is replaced according to the rules

p → p + 1

q
, q → q + p

q

in the next generation. Clearly

w = q +
p + 1

w

w
; that is, w3 − qw2 − pw − 1 = 0.

In the special case p = q = 3, the higher-order continued fraction converges to (−1 +
3
√

2)−1. It is conjectured that regular continued fractions for cubic irrationals behave like
those for almost all real numbers [18–21], and no patterns are evident. The ordinary
replacement rule

r → r + 1

r
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4 1 Well-Known Constants

is sufficient for the study of quadratic irrationals, but requires extension for broader
classes of algebraic numbers.

Two alternative representations of 3
√

2 are as follows [22]:

3
√

2 = 1 + 1

3 + 3

a
+ 1

b

, where a = 3 + 3

a
+ 1

b
, b = 12 + 10

a
+ 3

b

and [23]

3
√

2 = 1 + 1|
|3 + 2|

|2 + 4|
|9 + 5|

|2 + 7|
|15

+ 8|
|2 + 10|

|21
+ 11|

|2 + · · · .

Other usages of the phrase “generalized continued fractions” include those in [24], with
application to simultaneous Diophantine approximation, and in [25], with a geometric
interpretation involving the boundaries of convex hulls.

1.1.2 Radical Denestings

We mention two striking radical denestings due to Ramanujan:

3
√

3
√

2 − 1 = 3

√
1

9
− 3

√
2

9
+ 3

√
4

9
,

2
√

3
√

5 − 3
√

4 = 1
3

(
3
√

2 + 3
√

20 − 3
√

25
)

.

Such simplifications are an important part of computer algebra systems [26].
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1.2 The Golden Mean, ϕ

Consider a line segment:

What is the most “pleasing” division of this line segment into two parts? Some people
might say at the halfway point:

•
Others might say at the one-quarter or three-quarters point. The “correct answer” is,
however, none of these, and is supposedly found in Western art from the ancient Greeks
onward (aestheticians speak of it as the principle of “dynamic symmetry”):

•
If the right-hand portion is of length v = 1, then the left-hand portion is of length
u = 1.618 . . . . A line segment partitioned as such is said to be divided in Golden or
Divine section. What is the justification for endowing this particular division with such
elevated status? The length u, as drawn, is to the whole length u + v, as the length v is
to u:

u

u + v
= v

u
.

Letting ϕ = u/v, solve for ϕ via the observation that

1 + 1

ϕ
= 1 + v

u
= u + v

u
= u

v
= ϕ.
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6 1 Well-Known Constants

The positive root of the resulting quadratic equation ϕ2 − ϕ − 1 = 0 is

ϕ = 1 + √
5

2
= 1.6180339887 . . . ,

which is called the Golden mean or Divine proportion [1, 2].
The constant ϕ is intricately related to Fibonacci’s sequence

f0 = 0, f1 = 1, fn = fn−1 + fn−2 for n ≥ 2.

This sequence models (in a naive way) the growth of a rabbit population. Rabbits are
assumed to start having bunnies once a month after they are two months old; they
always give birth to twins (one male bunny and one female bunny), they never die, and
they never stop propagating. The number of rabbit pairs after n months is fn .

What can ϕ possibly have in common with { fn}? This is one of the most remarkable
ideas in all of mathematics. The partial convergents leading up to the regular continued
fraction representation of ϕ,

ϕ = 1 + 1

1 + 1

1 + 1

1 + · · ·

= 1 + 1|
|1 + 1|

|1 + 1|
|1 + · · · ,

are all ratios of successive Fibonacci numbers; hence

lim
n→∞

fn+1

fn
= ϕ.

This result is also true for arbitrary sequences satisfying the same recursion fn =
fn−1 + fn−2, assuming that the initial terms f0 and f1 are distinct [3, 4].

The rich geometric connection between the Golden mean and Fibonacci’s sequence
is seen in Figure 1.2. Starting with a single Golden rectangle (of length ϕ and width
1), there is a natural sequence of nested Golden rectangles obtained by removing the
leftmost square from the first rectangle, the topmost square from the second rectangle,
etc. The length and width of the nth Golden rectangle can be written as linear expres-
sions a + bϕ, where the coefficients a and b are always Fibonacci numbers. These
Golden rectangles can be inscribed in a logarithmic spiral as pictured. Assume that
the lower left corner of the first rectangle is the origin of an xy-coordinate system.

1

ϕ − 1

5 − 3ϕ
5ϕ − 8

2 − ϕ

2ϕ − 3

Figure 1.2. The Golden spiral circumscribes the sequence of Golden rectangles.
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The accumulation point for the spiral can be proved to be ( 1
5 (1 + 3ϕ), 1

5 (3 − ϕ)). Such
logarithmic spirals are “equiangular” in the sense that every line through (x∞, y∞)
cuts across the spiral at a constant angle ξ . In this way, logarithmic spirals generalize
ordinary circles (for which ξ = 90◦). The logarithmic spiral pictured gives rise to the
constant angle ξ = arccot( 2

π
ln(ϕ)) = 72.968 . . .◦ . Logarithmic spirals are evidently

found throughout nature; for example, the shell of a chambered nautilus, the tusks of
an elephant, and patterns in sunflowers and pine cones [4–6].

Another geometric application of the Golden mean arises when inscribing a regular
pentagon within a given circle by ruler and compass. This is related to the fact that

2 cos
(π

5

)
= ϕ, 2 sin

(π

5

)
= √

3 − ϕ.

The Golden mean, just as it has a simple regular continued fraction expansion, also has
a simple radical expansion [7]

ϕ =

√√√√
1 +

√
1 +

√
1 +

√
1 + √

1 + · · · .

The manner in which this expansion converges toϕ is discussed in [1.2.1]. Like Pythago-
ras’ constant [1.1], the Golden mean is irrational and simple proofs are given in [8, 9].

Here is a series [10] involving ϕ:

2
√

5

5
ln(ϕ) =

(
1 − 1

2
− 1

3
+ 1

4

)
+

(
1

6
− 1

7
− 1

8
+ 1

9

)

+
(

1

11
− 1

12
− 1

13
+ 1

14

)
+ · · · ,

which reminds us of certain series connected with Archimedes’ constant [1.4.1]. A
direct expression for ϕ as a sum can be obtained from the Taylor series for the square
root function, expanded about 4. The Fibonacci numbers appear in yet another repre-
sentation [11] of ϕ:

4 − ϕ =
∞∑

n=0

1

f2n
= 1

f1
+ 1

f2
+ 1

f4
+ 1

f8
+ · · · .

Among many other possible formulas involving ϕ, we mention the four Rogers–
Ramanujan continued fractions

1

α − ϕ
exp

(
−2π

5

)
= 1 + e−2π

∣∣
|1 + e−4π

∣∣
|1 + e−6π

∣∣
|1 + e−8π

∣∣
|1 + · · · ,

1

β − ϕ
exp

(
− 2π√

5

)
= 1 +

e−2π
√

5
∣∣∣

|1 +
e−4π

√
5
∣∣∣

|1 +
e−6π

√
5
∣∣∣

|1 +
e−8π

√
5
∣∣∣

|1 + · · · ,

1

κ − (ϕ − 1)
exp

(
−π

5

)
= 1 − e−π

∣∣
|1 + e−2π

∣∣
|1 − e−3π

∣∣
|1 + e−4π

∣∣
|1 − + · · · ,

1

λ − (ϕ − 1)
exp

(
− π√

5

)
= 1 −

e−π
√

5
∣∣∣

|1 +
e−2π

√
5
∣∣∣

|1 −
e−3π

√
5
∣∣∣

|1 +
e−4π

√
5
∣∣∣

|1 − + · · · ,
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where

α =
(
ϕ
√

5
) 1

2
, α′ = 1√

5

(
(ϕ − 1)

√
5
) 5

2
, β =

√
5

1 + 5
√

α′ − 1
,

κ =
(

(ϕ − 1)
√

5
) 1

2
, κ ′ = 1√

5

(
ϕ
√

5
) 5

2
, λ =

√
5

1 + 5
√

κ ′ − 1
.

The fourth evaluation is due to Ramanathan [9, 12–16].

1.2.1 Analysis of a Radical Expansion

The radical expansion [1.2] for ϕ can be rewritten as a sequence {ϕn}:
ϕ1 = 1, ϕn = √

1 + ϕn−1 for n ≥ 2.

Paris [17] proved that the rate in which ϕn approaches the limit ϕ is given by

ϕ − ϕn ∼ 2C

(2ϕ)n
as n → ∞,

where C = 1.0986419643 . . . is a new constant. Here is an exact characterization of
C . Let F(x) be the analytic solution of the functional equation

F(x) = 2ϕF(ϕ −
√

ϕ2 − x), |x | < ϕ2,

subject to the initial conditions F(0) = 0 and F ′(0) = 1. Then C = ϕF(1/ϕ). A power-
series technique can be used to evaluate C numerically from these formulas. It is simpler,
however, to use the following product:

C =
∞∏

n=2

2ϕ

ϕ + ϕn
,

which is stable and converges quickly [18].
Another interesting constant is defined via the radical expression [7, 19]√√√√

1 +

√
2 +

√
3 +

√
4 + √

5 + · · · = 1.7579327566 . . . ,

but no expression of this in terms of other constants is known.

1.2.2 Cubic Variations of the Golden Mean

Perrin’s sequence is defined by

g0 = 3, g1 = 0, g2 = 2, gn = gn−2 + gn−3 for n ≥ 3

and has the property that n > 1 divides gn if n is prime [20, 21]. The limit of ratios of
successive Perrin numbers

ψ = lim
n→∞

gn+1

gn
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satisfies ψ3 − ψ − 1 = 0 and is given by

ψ =
(

1
2 +

√
69

18

) 1
3 + 1

3

(
1
2 +

√
69

18

)− 1
3 = 2

√
3

3 cos
(

1
3 arccos

(
3
√

3
2

))
= 1.3247179572 . . . .

This also has the radical expansion

ψ =
3

√√√√
1 +

3

√
1 + 3

√
1 + 3

√
1 + 3

√
1 + · · · .

An amusing account of ψ is given in [20], where it is referred to as the Plastic constant
(to contrast against the Golden constant). See also [2.30].

The so-called Tribonacci sequence [22, 23]

h0 = 0, h1 = 0, h2 = 1, hn = hn−1 + hn−2 + hn−3 for n ≥ 3

has an analogous limiting ratio

χ =
(

19
27 +

√
33
9

) 1
3 + 4

9

(
19
27 +

√
33
9

)− 1
3 + 1

3 = 4
3 cos

(
1
3 arccos

(
19
8

)) + 1
3

= 1.8392867552 . . . ,

that is, the real solution of χ3 − χ2 − χ − 1 = 0. See [1.2.3]. Consider also the four-
numbers game: Start with a 4-vector (a, b, c, d) of nonnegative real numbers and
determine the cyclic absolute differences (|b − a|, |c − b|, |d − c|, |a − d|). Iterate
indefinitely. Under most circumstances (e.g., if a, b, c, d are each positive integers),
the process terminates with the zero 4-vector after only a finite number of steps. Is this
always true? No. It is known [24] that v = (1, χ, χ2, χ3) is a counterexample, as well
as any positive scalar multiple of v, or linear combination with the 4-vector (1, 1, 1, 1).
Also, w = (χ3, χ2 + χ, χ2, 0) is a counterexample, as well as any positive scalar
multiple of w, or linear combination with the 4-vector (1, 1, 1, 1). These encompass
all the possible exceptions. Note that, starting with w, one obtains v after one step.

1.2.3 Generalized Continued Fractions

Recall from [1.1.1] that generalized continued fractions are constructed via the replace-
ment rule

p → p + 1

q
, q → q + p

q

applied to each new term in a particular generation. In particular, if p = q = 1, the
partial convergents are equal to ratios of successive terms of the Tribonacci sequence,
and hence converge to χ . By way of contrast, the replacement rule [25, 26]

r → r + 1

r + 1

r
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is associated with a root of x3 − r x2 − r = 0. If r = 1, the limiting value is

(
29
54 +

√
93

18

) 1
3 + 1

9

(
29
54 +

√
93

18

)− 1
3 + 1

3 = 2
3 cos

(
1
3 arccos

(
29
2

)) + 1
3

= 1.4655712318 . . . .

Other higher-order analogs of the Golden mean are offered in [27–29].

1.2.4 Random Fibonacci Sequences

Consider the sequence of random variables

x0 = 1, x1 = 1, xn = ±xn−1 ± xn−2 for n ≥ 2,

where the signs are equiprobable and independent. Viswanath [30–32] proved the sur-
prising result that

lim
n→∞

n
√

|xn| = 1.13198824 . . .

with probability 1. Embree & Trefethen [33] proved that generalized random linear
recurrences of the form

xn = xn−1 ± βxn−2

decay exponentially with probability 1 if 0 < β < 0.70258 . . . and grow exponentially
with probability 1 if β > 0.70258 . . . .

1.2.5 Fibonacci Factorials

We mention the asymptotic result
∏n

k=1 fk ∼ c · ϕn(n+1)/2 · 5−n/2 as n → ∞,
where [34, 35]

c =
∞∏

n=1

(
1 − (−1)n

ϕ2n

)
= 1.2267420107 . . . .

See the related expression in [5.14].
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1.3 The Natural Logarithmic Base, e

It is not known who first determined

lim
x→0

(1 + x)
1
x = e = 2.7182818284 . . . .

We see in this limit the outcome of a fierce tug-of-war. On the one side, the exponent
explodes to infinity. On the other side, 1 + x rushes toward the multiplicative identity
1. It is interesting that the additive equivalent of this limit

lim
x→0

x · 1

x
= 1

is trivial. A geometric characterization of e is as follows: e is the unique positive root
x of the equation

x∫
1

1

u
du = 1,

which is responsible for e being employed as the natural logarithmic base. In words, e
is the unique positive number exceeding 1 for which the planar region bounded by the
curves v = 1/u, v = 0, u = 1, and u = e has unit area.

The definition of e implies that

d

dx
(c · ex ) = c · ex

and, further, that any solution of the first-order differential equation

dy

dx
= y(x)

must be of this form. Applications include problems in population growth and radioac-
tive decay. Solutions of the second-order differential equation

d2 y

dx2
= y(x)

are necessarily of the form y(x) = a · ex + b · e−x . The special case y(x) = cosh(x)
(i.e., a = b = 1/2) is called a catenary and is the shape assumed by a certain uniform
flexible cable hanging under its own weight. Moreover, if one revolves part of a catenary
around the x-axis, the resulting surface area is smaller than that of any other curve with
the same endpoints [1, 2].

The series

e =
∞∑

k=0

1

k!
= 1 + 1

1
+ 1

1 · 2
+ 1

1 · 2 · 3
+ · · ·

is rapidly convergent – ordinary summation of the terms as listed is very quick for
all practical purposes – so it may be surprising to learn that a more efficient means
for computing the nth partial sum is possible [3, 4]. Define two functions p(a, b) and
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q(a, b) recursively as follows:

(
p(a, b)
q(a, b)

)
=




(
1
b

)
if b = a + 1,(

p(a, m)q(m, b) + p(m, b)
q(a, m)q(m, b)

)
otherwise, where

m = ⌊
a+b

2

⌋
.

Then it is not difficult to show that 1 + p(0, n)/q(0, n) gives the desired partial sum.
Such a binary splitting approach to computing e has fewer single-digit arithmetic
operations (i.e., reduced bit complexity) than the usual approach. Accelerated methods
like this grew out of [5–7]. When coupled with FFT-based integer multiplication, this
algorithm is asymptotically as fast as any known.

The factorial series gives the following matching problem solution [8]. Let P(n) de-
note the probability that a randomly chosen one-to-one function f : {1, 2, 3, . . . , n} →
{1, 2, 3, . . . , n} has at least one fixed point; that is, at least one integer k for which
f (k) = k, 1 ≤ k ≤ n. Then

lim
n→∞ P(n) =

∞∑
k=1

(−1)k

k!
= 1 − 1

e
= 0.6321205588 . . . .

See Figure 1.3; a generalization appears in [5.4]. Also, let X1, X2, X3, . . . be inde-
pendent random variables, each uniformly distributed on the interval [0, 1]. Define an
integer N by

N = min

{
n :

n∑
k=1

Xk > 1

}
;

then the expected value E(N ) = e. In the language of stochastics, a renewal process
with uniform interarrival times Xk has a mean renewal count involving the natural
logarithmic base [9].

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5

Figure 1.3. Distribution of the number of fixed points of a random permutation f on n symbols,
tending to Poisson(1) as n → ∞.
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Break a stick of length r into m equal parts [10]. The integer m such that the product
of the lengths of the parts is maximized is 	r/e
 or 	r/e
 + 1. See [5.15] for information
on a related application known as the secretary problem.

There are several Wallis-like infinite products [4, 11]

e = 2

1
·
(

4

3

) 1
2

·
(

6 · 8

5 · 7

) 1
4

·
(

10 · 12 · 14 · 16

9 · 11 · 13 · 15

) 1
8

· · · ,

e

2
=

(
2

1

) 1
2

·
(

2 · 4

3 · 3

) 1
4

·
(

4 · 6 · 6 · 8

5 · 5 · 7 · 7

) 1
8

· · ·

and continued fractions [1.3.2] as well as the following fascinating connection to prime
number theory [12]. If we define

n? =
∏
p≤n

p prime

p, then lim
n→∞(n?)

1
n = e,

which is a consequence of the Prime Number Theorem. Equally fascinating is the fact
that

lim
n→∞

(n!)
1
n

n
= 1

e

by Stirling’s formula; thus the growth of n! exceeds that of n? by an order of magnitude.
We also have [13–15]

lim
n→∞(n!)

1
n − ((n − 1)!)

1
n−1 = 1

e
, lim

n→∞

n∏
k=1

(n2 + k)(n2 − k)−1 = e.

The irrationality of e was proved by Euler and its transcendence by Hermite; that
is, the natural logarithmic base e cannot be a zero of a polynomial with integer coeffi-
cients [4, 16–18].

An unusual procedure for calculating e, known as the spigot algorithm, was first
publicized in [19]. Here the intrigue lies not in the speed of the algorithm (it is slow)
but in other characteristics: It is entirely based on integer arithmetic, for example.

Some people call e Euler’s constant, but the same phrase is so often used to refer to
the Euler–Mascheroni constant γ that confusion would be inevitable. Napier came very
close to discovering e in 1614; consequently, some people call e Napier’s constant
[1].

1.3.1 Analysis of a Limit

The Maclaurin series

1

e
(1 + x)

1
x = 1 − 1

2
x + 11

24
x2 − 7

16
x3 + 2447

5760
x4 − 959

2304
x5 + O(x6)
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describes more fully what happens in the limiting definition of e; for example,

lim
x→0

(1 + x)
1
x − e

x
= −1

2
e, lim

x→0

(1 + x)
1
x − e

x
+ 1

2
e

x
= 11

24
e.

Quicker convergence is obtained by the formulas [20–24]:

lim
x→0

(
2 + x

2 − x

) 1
x = e, lim

n→∞
(n + 1)n+1

nn
− nn

(n − 1)n−1
= e.

To illustrate, the first terms in the corresponding asymptotic expansions are 1 + x2/12
and 1 + 1/(24n2). Further improvements are possible.

1.3.2 Continued Fractions

The regular continued fraction for e,

e = 2 + 1|
|1 + 1|

|2 + 1|
|1 + 1|

|1 + 1|
|4 + 1|

|1 + 1|
|1 + 1|

|6 + 1|
|1 + · · · ,

is (after suitable transformation) one of a family of continued fractions [25–28]:

coth

(
1

m

)
= e2/m + 1

e2/m − 1
= m + 1|

|3m
+ 1|

|5m
+ 1|

|7m
+ 1|

|9m
+ · · · ,

where m is any positive integer. Davison [29] obtained an algorithm for computing
quotients of coth(3/2) and coth(2), for example, but no patterns can be found. Other
continued fractions include [1, 26, 30, 31]

e − 1 = 1 + 2|
|2 + 3|

|3 + 4|
|4 + 5|

|5 + · · · , 1

e − 2
= 1 + 1|

|2 + 2|
|3 + 3|

|4 + 4|
|5 + · · · ,

and still more can be found in [32, 33].

1.3.3 The Logarithm of Two

Finally, let us say a few words [34] about the closely related constant ln(2),

ln(2) =
1∫
0

1

1 + t
dt = lim

n→∞

n∑
k=1

1

n + k
= 0.6931471805 . . . ,

which has limiting expressions similar to that for e:

lim
x→0

2x − 1

x
= ln(2) = lim

x→0

2x − 2−x

2x
.

Well-known summations include the Maclaurin series for ln(1 + x) evaluated at x = 1
and x = −1/2,

ln(2) =
∞∑

k=1

(−1)k−1

k
=

∞∑
k=1

1

k2k
.
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A binary digit extraction algorithm can be based on the series

ln(2) =
∞∑

k=1

(
1

8k + 8
+ 1

4k + 2

)
1

4k
,

which enables us to calculate the d th bit of ln(2) without being forced to calculate all
the preceding d − 1 bits. See also [2.1], [6.2], and [7.2].
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1.4 Archimedes’ Constant, π

Any brief treatment of π , the most famous of the transcendental constants, is necessarily
incomplete [1–5]. Its innumerable appearances throughout mathematics stagger the
mind.

The area enclosed by a circle of radius 1 is

A = π = 4

1∫
0

√
1 − x2dx = lim

n→∞
4

n2

n∑
k=0

√
n2 − k2 = 3.1415926535 . . .

while its circumference is

C = 2π = 4

1∫
0

1√
1 − x2

dx = 4

1∫
0

√
1 +

(
d

dx

√
1 − x2

)2

dx .

The formula for A is based on the definition of area in terms of a Riemann integral, that
is, a limit of Riemann sums. The formula for C uses the definition of arclength, given a
continuously differentiable curve. How is it that the same mysterious π appears in both
formulas? A simple integration by parts provides the answer, with no trigonometry
required [6].

In the third century B.C., Archimedes considered inscribed and circumscribed reg-
ular polygons of 96 sides and deduced that 3 10

71 < π < 3 1
7 . The recursion

a0 = 2
√

3, b0 = 3,

an+1 = 2anbn

an + bn
, bn+1 = √

an+1bn for n ≥ 0



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-01 CB503/Finch-v2.cls December 9, 2004 13:35 Char Count=

18 1 Well-Known Constants

(often called the Borchardt–Pfaff algorithm) essentially gives Archimedes’ estimate
on the fourth iteration [7–11]. It is only linearly convergent (meaning that the number
of iterations is roughly proportional to the number of correct digits). It resembles the
arithmetic-geometric-mean (AGM) recursion discussed with regard to Gauss’ lemnis-
cate constant [6.1].

The utility of π is not restricted to planar geometry. The volume enclosed by a
sphere of radius 1 in n-dimensional Euclidean space is

V =




π k

k!
if n = 2k,

22k+1 k!

(2k + 1)!
π k if n = 2k + 1,

while its surface area is

S =




2π k

(k − 1)!
if n = 2k,

22k+1 k!

(2k)!
π k if n = 2k + 1.

These formulas are often expressed in terms of the gamma function, which we discuss
in [1.5.4]. The planar case (a circle) corresponds to n = 2.

Another connection between geometry and π arises in Buffon’s needle prob-
lem [1, 12–15]. Suppose a needle of length 1 is thrown at random on a plane marked by
parallel lines of distance 1 apart. What is the probability that the needle will intersect
one of the lines? The answer is 2/π = 0.6366197723. . . .

Here is a completely different probabilistic interpretation [16, 17] of π . Suppose two
integers are chosen at random. What is the probability that they are coprime, that is,
have no common factor exceeding 1? The answer is 6/π2 = 0.6079271018 . . . (in the
limit over large intervals). Equivalently, let R(N ) be the number of distinct rational
numbers a/b with integers a, b satisfying 0 < a, b < N . The total number of ordered
pairs (a, b) is N 2, but R(N ) is strictly less than this since many fractions are not in
lowest terms. More precisely, by preceding statements, R(N ) ∼ 6N 2/π2.

Among the most famous limits in mathematics is Stirling’s formula [18]:

lim
n→∞

n!

e−nnn+1/2
=

√
2π = 2.5066282746 . . . .

Archimedes’ constant has many other representations too, some of which are given later.
It was proved to be irrational by Lambert and transcendental by Lindemann [2, 16, 19].
The first truly attractive formula for computing decimal digits of π was found by
Machin [1, 13]:

π

4
= 4 arctan

(
1

5

)
− arctan

(
1

239

)

= 4
∞∑

k=0

(−1)k

(2k + 1) · 52k+1
−

∞∑
k=0

(−1)k

(2k + 1) · 2392k+1
.
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The advantage of this formula is that the second term converges very rapidly and the
first is nice for decimal arithmetic. In 1706, Machin became the first individual to
correctly compute 100 digits of π .

We skip over many years of history and discuss one other significant algorithm due
to Salamin and Brent [2, 20–23]. Define a recursion by

a0 = 1, b0 = 1/
√

2, c0 = 1/2, s0 = 1/2,

an+1 = an + bn

2
, bn+1 = √

anbn, cn+1 =
(

cn

4an+1

)2

, sn+1 = sn − 2n+1cn+1

for n ≥ 0. Then the ratio 2a2
n/sn converges quadratically to π (meaning that each

iteration approximately doubles the number of correct digits). Even faster cubic and
quartic algorithms were obtained by Borwein & Borwein [2, 22, 24, 25]; these draw
upon Ramanujan’s work on modular equations. These are each a far cry computationally
from Archimedes’ approach. Using techniques like these, Kanada computed close to
a trillion digits of π .

There is a spigot algorithm for calculating π just as for e [26]. Far more im-
portant, however, is the digit-extraction algorithm discovered by Bailey, Borwein &
Plouffe [27–29] based on the formula

π =
∞∑

k=0

1

16k

×
(

4 + 8r

8k + 1
− 8r

8k + 2
− 4r

8k + 3
− 2 + 8r

8k + 4
− 1 + 2r

8k + 5
− 1 + 2r

8k + 6
+ r

8k + 7

)

(for r = 0) and requiring virtually no memory. (The extension to complex r �= 0 is due
to Adamchik & Wagon [30, 31].) A consequence of this breakthrough is that we now
know the quadrillionth digit in the binary expansion for π , thanks largely to Bellard
and Percival. An analogous base-3 formula was found by Broadhurst [32].

Some people call π Ludolph’s constant after the mathematician Ludolph van Ceulen
who devoted most of his life to computing π to 35 decimal places.

The formulas in this essay have a qualitatively different character than those
for the natural logarithmic base e. Wimp [33] elaborated on this: What he called
“e-mathematics” is linear, explicit, and easily capable of abstraction, whereas
“π -mathematics” is nonlinear, mysterious, and generalized usually with difficulty.
Cloitre [34], however, gave formulas suggesting a certain symmetry between e and
π : If u1 = v1 = 0, u2 = v2 = 1 and

un+2 = un+1 + un

n
, vn+2 = vn+1

n
+ vn, n ≥ 0,

then limn→∞ n/un = e whereas limn→∞ 2n/v2
n = π .



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-01 CB503/Finch-v2.cls December 9, 2004 13:35 Char Count=

20 1 Well-Known Constants

1.4.1 Infinite Series

Over five hundred years ago, the Indian mathematician Madhava discovered the for-
mula [35–38]

π

4
=

∞∑
n=0

(−1)n

2n + 1
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− 1

11
+ − · · · ,

which was independently found by Gregory [39] and Leibniz [40]. This infinite series
is conditionally convergent; hence its terms may be rearranged to produce a series that
has any desired sum or even diverges to +∞ or −∞. The same is also true for the
alternating harmonic series [1.3.3]. For example, we have

1

4
ln(2) + π

4
= 1 + 1

5
− 1

3
+ 1

9
+ 1

13
− 1

7
+ 1

17
+ 1

21
− 1

11
+ + − · · ·

(two positive terms for each negative term). Generalization is possible.
Changing the pattern of plus and minus signs in the Gregory–Leibniz series, for

example, gives [41, 42]

π

4

√
2 = 1 + 1

3
− 1

5
− 1

7
+ 1

9
+ 1

11
− 1

13
− 1

15
+ + − − · · ·

or extracting a subseries gives [43]

π

8
(1 +

√
2) = 1 − 1

7
+ 1

9
− 1

15
+ 1

17
− 1

23
+ 1

25
− 1

31
+ − · · · .

We defer discussion of Euler’s famous series

∞∑
n=1

1

n2
= π2

6
,

∞∑
n=1

(−1)n+1

(2n − 1)3
= π3

32

until [1.6] and [1.7]. Among many other series of his, there is [1, 44]

π

2
=

∞∑
n=0

2n

(2n + 1)
(2n

n

) = 1 + 1

3
+ 1 · 2

3 · 5
+ 1 · 2 · 3

3 · 5 · 7
+ · · · .

We note that [2, 45]

∞∑
n=1

1

n2
(2n

n

) = π2

18
,

∞∑
n=1

(−1)n+1

n2
(2n

n

) = 2 ln(ϕ)2

and wonder in what other ways π and the Golden mean ϕ [1.2] can be so intricately
linked.

Ramanujan [23, 24, 46] and Chudnovsky & Chudnovsky [47–50] discovered series
at the foundation of some of the fastest known algorithms for computing π .
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1.4.2 Infinite Products

Viète [51] gave the first known analytical expression for π :

2

π
=

√
2

2
·
√

2 + √
2

2
·
√

2 +
√

2 + √
2

2
·

√
2 +

√
2 +

√
2 + √

2

2
· · · ,

which he obtained by considering a limit of areas of Archimedean polygons, and
Wallis [52] derived the formula

π

2
= 2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· 8

9
· · · = lim

n→∞
24n

(2n + 1)
(2n

n

)2 .

These products are, in fact, children of the same parent [53]. We might prove their
truth in many different ways [54]. One line of reasoning involves what some regard
as the definition of sine and cosine. The following infinite polynomial factorizations
hold [55]:

sin(x) = x
∞∏

n=1

(
1 − x2

n2π2

)
, cos(x) =

∞∏
n=1

(
1 − 4x2

(2n − 1)2π2

)
.

The sine and cosine functions form the basis for trigonometry and the study of periodic
phenomena in mathematics. Applications include the undamped simple oscillations of
a mechanical or electrical system, the orbital motion of planets around the sun, and
much more [56]. It is well known that

d2

dx2
(a · sin(x) + b · cos(x)) + (a · sin(x) + b · cos(x)) = 0

and, further, that any solution of the second-order differential equation

d2 y

dx2
+ y(x) = 0

must be of this form. The constant π plays the same role in determining sine and cosine
as the natural logarithmic base e plays in determining the exponential function. That
these two processes are interrelated is captured by Euler’s formula eiπ + 1 = 0, where
i is the imaginary unit.

Famous products relating π and prime numbers appear in [1.6] and [1.7], as a
consequence of the theory of the zeta function. One such product, due to Euler, is [57]

π

2
=

∏
p odd

p

p + (−1)(p−1)/2
= 3

2
· 5

6
· 7

6
· 11

10
· 13

14
· 17

18
· 19

18
· · · ,

where the numerators are the odd primes and the denominators are the closest integers
of the form 4n + 2. See also [2.1]. A different appearance of π in number theory is the
asymptotic expression

p(n) ∼ 1

4
√

3n
exp

(
π

√
2n

3

)
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due to Hardy & Ramanujan [58], where p(n) is the number of unrestricted parti-
tions of the positive integer n (order being immaterial). Hardy & Ramanujan [58]
and Rademacher [59] proved an exact analytical formula for p(n) [60, 61], which is too
far afield for us to discuss here.

1.4.3 Definite Integrals

The most famous integrals include [62, 63]

∞∫
0

e−x2
dx =

√
π

2
(Gaussian probability density integral),

∞∫
0

1

1 + x2
dx = π

2
(limiting value of arctangent),

∞∫
0

sin(x2)dx =
∞∫
0

cos(x2)dx = π
√

2

4
(Fresnel integrals),

π
2∫
0

ln(sin(x))dx =
π
2∫
0

ln(cos(x))dx = −π

2
ln(2),

1∫
0

√
ln

(
1

x

)
dx =

√
π

2
.

It is curious that

∞∫
0

cos(x)

1 + x2
dx = π

2e
,

∞∫
0

x sin(x)

1 + x2
dx = π

2e

have simple expressions, but interchanging cos(x) and sin(x) give complicated results.
See [6.2] for details.

Also, consider the following sequence:

sn =
∞∫
0

(
sin(x)

x

)n

dx, n = 1, 2, 3, . . . .

The first several values are s1 = s2 = π/2, s3 = 3π/8, s4 = π/3, s5 = 115π/384, and
s6 = 11π/40. An exact formula for sn , valid for all n, is found in [64].
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1.4.4 Continued Fractions

Starting with Wallis’s formula, Brouncker [1, 2, 52] discovered the continued fraction

1 + 4

π
= 2 + 12

∣∣
|2 + 32

∣∣
|2 + 52

∣∣
|2 + 72

∣∣
|2 + 92

∣∣
|2 + · · · ,

which was subsequently proved by Euler [41]. It is fascinating to compare this with
other related expansions, for example [65–67],

4

π
= 1 + 12

∣∣
|3 + 22

∣∣
|5 + 32

∣∣
|7 + 42

∣∣
|9 + 52

∣∣
|11

+ · · · ,

6

π2 − 6
= 1 + 12

∣∣
|1 + 1 · 2|

|1 + 22
∣∣

|1 + 2 · 3|
|1 + 32

∣∣
|1 + 3 · 4|

|1 + 42
∣∣

|1 + · · · ,

2

π − 2
= 1 + 1 · 2|

|1 + 2 · 3|
|1 + 3 · 4|

|1 + 4 · 5|
|1 + 5 · 6|

|1 + 6 · 7|
|1 + · · · ,

12

π2
= 1 + 14

∣∣
|3 + 24

∣∣
|5 + 34

∣∣
|7 + 44

∣∣
|9 + 54

∣∣
|11

+ · · · ,

π + 3 = 6 + 12
∣∣

|6 + 32
∣∣

|6 + 52
∣∣

|6 + 72
∣∣

|6 + 92
∣∣

|6 + · · · .

1.4.5 Infinite Radical

Let Sn denote the length of a side of a regular polygon of 2n+1 sides inscribed in a
unit circle. Clearly S1 = √

2 and, more generally, Sn = 2 sin(π/2n+1). Hence, by the
half-angle formula,

Sn =
√

2 −
√

4 − S2
n−1.

(A purely geometric argument for this recursion is given in [68, 69].) The circumference
of the 2n+1-gon is 2n+1Sn and tends to 2π as n → ∞. Therefore

π = lim
n→∞ 2n Sn = lim

n→∞ 2n

√√√√√
2 −

√√√√
2 +

√
2 +

√
2 +

√
2 + · · ·

√
2,

where the right-hand side has n square roots.
Although attractive, this radical expression for π is numerically sound only for a few

iterations. It is a classic illustration of the loss of floating-point precision that occurs
when subtracting two nearly equal quantities. There are many ways to approximate π :
This is not one of them!
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1

sin(x)

sn(x,   )

−1
−4π −2π 2π 4π0

1
2

x

Figure 1.4. The circular function sin(x) has period 2π ≈ 6.28, while the elliptic function
sn(x, 1/2) has (real) period 4K (1/2) ≈ 6.74.

1.4.6 Elliptic Functions

Consider an ellipse with semimajor axis length 1 and semiminor axis length 0 < r ≤ 1.

The area enclosed by the ellipse is πr while its circumference is 4E
(√

1 − r2
)

, where

K (x) =

π
2∫
0

1√
1 − x2 sin(θ )2

dθ =
1∫
0

1√
(1 − t2)(1 − x2t2)

dt,

E(x) =

π
2∫
0

√
1 − x2 sin(θ )2 dθ =

1∫
0

√
1 − x2t2

1 − t2
dt

are complete elliptic integrals of the first and second kind. (One’s first encounter with
K (x) is often with regard to computing the period of a physical pendulum [56].) The
analog of the sine function is the Jacobi elliptic function sn(x, y), defined by

x =
sn(x,y)∫

0

1√
(1 − t2)(1 − y2t2)

dt for 0 ≤ y ≤ 1.

See Figure 1.4. Clearly we have sn(x, 0) = sin(x) for −π/2 ≤ x ≤ π/2 and sn(x, 1) =
tanh(x). An assortment of extended trigonometric identities involving sn and its coun-
terparts cn and dn can be proved. For fixed 0 < y < 1, the function sn(x, y) can
be analytically continued over the whole complex plane to a doubly periodic mero-
morphic function. Just as sin(z) = sin(z + 2π ) for all complex z, we have sn(z) =
sn

(
z + 4K (y) + 2i K

(√
1 − y2

))
. Hence the constants K (y) and K

(√
1 − y2

)
play

roles for elliptic functions analogous to the role π plays for circular functions [2, 70].

1.4.7 Unexpected Appearances

A fascinating number-theoretic function f (n) is described in [71–77]. Take any positive
integer n, round it up to the nearest multiple of n − 1, then round this result up to the
nearest multiple of n − 2, and then (more generally) round the kth result up to the



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-01 CB503/Finch-v2.cls December 9, 2004 13:35 Char Count=

1.4 Archimedes’ Constant, π 25

nearest multiple of n − k − 1. Stop when k = n − 1 and let f (n) be the final value.
For example, f (10) = 34 since

10 → 18 → 24 → 28 → 30 → 30 → 32 → 33 → 34 → 34.

The ratio n2/ f (n) approaches π as n increases without bound. In the same spirit,
Matiyasevich & Guy [78] obtained

π = lim
m→∞

√
6 · ln( f1 · f2 · f3 · · · fm)

ln(lcm( f1, f2, f3, . . . , fm))
,

where f1, f2, f3, . . . is Fibonacci’s sequence [1.2] and lcm denotes least common multi-
ple. It turns out that Fibonacci’s sequence may be replaced by many other second-order,
linear recurring sequences without changing the limiting value π .

In [1.4.1] and [1.4.2], we saw expressions resembling
(2n

n

)
/(n + 1). These are known

as Catalan numbers and are important in combinatorics, for example, when enumer-
ating strictly binary trees with 2n + 1 vertices. The average height hn of such trees
satisfies

lim
n→∞

hn√
n

= 2
√

π

by a theorem of Flajolet & Odlyzko [79, 80] (we introduce the language of trees in
[5.6]). This is yet another unexpected appearance of the constant π .
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1.5 Euler–Mascheroni Constant, γ

The Euler–Mascheroni constant, γ , is defined by the limit [1–8]

γ = lim
n→∞

(
n∑

k=1

1

k
− ln(n)

)
= 0.5772156649 . . . .

In words, γ measures the amount by which the partial sums of the harmonic se-
ries (the simplest divergent series) differ from the logarithmic function (its approx-
imating integral). It is an important constant, shadowed only by π and e in sig-
nificance. It appears naturally whenever estimates of

∑n
k=1 1/k are required. For

example, let X1, X2, . . . , Xn be a sequence of independent and identically dis-
tributed random variables with continuous distribution function. Define Rn to be the
number of upper records in the sequence [9–12], that is, the count of times that
Xk > max{X1, X2, . . . , Xk−1}. By convention, X1 is included. The random variable
Rn has expectation E(Rn) satisfying limn→∞(E(Rn) − ln(n)) = γ . As another exam-
ple, let the set C = {1, 2, . . . , n} of coupons be sampled repeatedly with replace-
ment [13–15], and let Sn denote the number of trials needed to collect all of C . Then
limn→∞((E(Sn) − n ln(n))/n) = γ .

There are certain applications, however, where γ appears quite mysteriously. Sup-
pose we wish to factor a random permutation π on n symbols into disjoint cycles. For
example, the permutation π on {0, 1, 2, . . . , 8} defined by π (x) = 2x mod 9 has cycle
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structure π = (0)(124875)(36). What is the probability that no two cycles of π possess
the same length, as n → ∞? The answer to the question is e−γ = 0.5614594835 . . . .

More about random permutations is found in [5.4]. Suppose instead that we wish to
factor a random integer polynomial F(x) of degree n, modulo a prime p. What is the
probability that no two irreducible factors of F(x) possess the same degree, as p → ∞
and n → ∞? The same answer e−γ applies [16–21], but proving this is complicated
by the double limit.

Euler’s constant appears frequently in number theory, for example, in connection
with the Euler totient function [2.7]. Here are more applications. If d(n) denotes the
number of distinct divisors of n, then the average value of the divisor function satis-
fies [22–24]

lim
n→∞

(
1

n

n∑
k=1

d(k) − ln(n)

)
= 2γ − 1 = 0.1544313298 . . . .

We discuss this again in [2.10]. A surprising result, due to de la Vallée Poussin [25–28],
is

lim
n→∞

1

n

n∑
k=1

{n

k

}
= 1 − γ = 0.4227843351 . . . ,

where {x} denotes the fractional part of x . In words, if a large integer n is divided by each
integer 1 ≤ k ≤ n, then the average fraction by which the quotient n/k falls short of the
next integer is not 1/2, but γ ! One can also restrict n to being all terms of an arithmetic
sequence, or even to being all terms of the sequence of primes, and obtain the same mean
value. Also, let M(n) denote the number of primes p, not exceeding n, for which 2p − 1
is prime. It has been suggested [29–32] that M(n) → ∞ at approximately the same rate
as ln(n) and, moreover, limn→∞ M(n)/ ln(n) = eγ / ln(2) = 2.5695443449 . . . . The
empirical data supporting this claim is quite thin: There are only 39 known Mersenne
primes [33]. Other number-theoretic applications include [34–37].

Calculating Euler’s constant has not attracted the same public intrigue as calculating
π , but it has still inspired the dedication of a few. The evaluation of γ is difficult and
only several hundred million digits are known. For π , we have the Borweins’ quartically
convergent algorithm: Each successive iteration approximately quadruples the number
of correct digits. By contrast, for γ , not even a quadratically convergent algorithm is
known [38–40].

The definition of γ converges too slowly to be numerically useful. This fact is
illustrated by the following inequality [41, 42]:

1

2(n + 1)
<

n∑
k=1

1

k
− ln(n) − γ <

1

2n
,

which serves as a double-edged sword. On the one hand, if we wish K digits of accuracy
(after truncation), then n ≥ 10K+1 suffices in the summation. On the other hand, n <

10K will not be large enough. Some alternative estimates and inequalities were reported
in [43, 44]. The best-known technique, called Euler–Maclaurin summation, gives an



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-01 CB503/Finch-v2.cls December 9, 2004 13:35 Char Count=

30 1 Well-Known Constants

improved family of estimates, including

γ =
n∑

k=1

1

k
− ln(n) − 1

2n
+ 1

12n2
− 1

120n4
+ 1

252n6
− 1

240n8
+ 1

132n10

− 691

32760n12
+ O

(
1

n14

)
.

Euler correctly obtained γ to 15 digits using n = 10 in this formula [45–48]. Fast algo-
rithms like Karatsuba’s FEE method [49, 50] and Brent’s binary splitting method [51]
were essential in the latest computations [52–55]. Papanikolaou calculated the first
475006 partial quotients in the regular continued fraction expansion for γ (using re-
sults in [56]) and deduced that if γ is a rational number, then its denominator must
exceed 10244663. This is compelling evidence that Euler’s constant is not rational. A
proof of irrationality (let alone transcendence) is still beyond our reach [57]. See two
invalid attempts in [58, 59].

Here are two other unanswered questions, the first related to the harmonic series
and the second similar to the coupon collector problem. Given a positive integer k, let
nk be the unique integer n satisfying

∑n−1
j=1 1/j < k <

∑n
j=1 1/j . Is nk equal to the

integer nearest ek−γ always [60–65]? Suppose instead we are given a binary sequence
B, generated by independent fair coin tosses, and a positive integer n. What is the
waiting time Tn for all 2n possible different patterns of length n to occur (as subwords
of B)? It might be conjectured (on the basis of [66, 67]) that the mean waiting time
satisfies limn→∞((E(Tn) − 2nn ln(2))/2n) = γ , but this remains open. However, the
minimum possible waiting time is only 2n + n − 1, as a consequence of known results
concerning what are called de Bruijn sequences [68].

1.5.1 Series and Products

The following series is a trivial restatement of the definition of γ :

γ =
∞∑

k=1

(
1

k
− ln

(
1 + 1

k

))
.

Other formulas involving γ include two more due to Euler [1],

γ = 1

2
·
(

1 + 1

22
+ 1

32
+ · · ·

)
− 1

3
·
(

1 + 1

23
+ 1

33
+ · · ·

)

+ 1

4
·
(

1 + 1

24
+ 1

34
+ · · ·

)
− + · · · ,

γ = 1

2
·
(

1

22
+ 1

32
+ 1

42
+ · · ·

)
+ 2

3
·
(

1

23
+ 1

33
+ 1

43
+ · · ·

)

+ 3

4
·
(

1

24
+ 1

34
+ 1

44
+ · · ·

)
+ · · · ,
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one due to Vacca [69–75],

γ = 1

2
− 1

3
+ 2 ·

(
1

4
− 1

5
+ 1

6
− 1

7

)
+ 3 ·

(
1

8
− 1

9
+ · · · − 1

15

)

+ 4 ·
(

1

16
− 1

17
+ · · · − 1

31

)
+ · · · ,

one due to Pólya [26, 76],

γ = 1 −
(

1

2
+ 1

3

)
+ 3

4
−

(
1

5
+ 1

6
+ 1

7
+ 1

8

)
+ 5

9
−

(
1

10
+ 1

11
+ · · · + 1

15

)

+ 7

16
− + · · · ,

and two due to Mertens [22, 77],

eγ = lim
n→∞

1

ln(n)
·
∏
p≤n

p

p − 1
,

6eγ

π2
= lim

n→∞
1

ln(n)
·
∏
p≤n

p + 1

p
,

where both products are taken over all primes p not exceeding n. Mertens’ first formula
may be rewritten as [55]

γ = lim
n→∞

(∑
p≤n

ln

(
p

p − 1

)
− ln(ln(n))

)
.

If, in this series, the expression ln(p/(p − 1)) is replaced by its asymptotic equivalent
1/p, then a different constant arises [2.2]. Other series and products appear in [78–95].

1.5.2 Integrals

There are many integrals that involve Euler’s constant, including

∞∫
0

e−x ln(x)dx = −γ,

∞∫
0

e−x2
ln(x)dx = −

√
π

4
(γ + 2 ln(2)) ,

∞∫
0

e−x ln(x)2dx = π2

6
+ γ 2,

1∫
0

ln

(
ln

(
1

x

))
dx = −γ,

∞∫
0

e−xa − e−xb

x
dx = a − b

ab
γ,

∞∫
0

x

1 + x2
· 1

e2πx − 1
dx = 1

4
(2γ − 1),

1∫
0

(
1

ln(x)
+ 1

1 − x

)
dx = γ,

1∫
0

1

1 + x

( ∞∑
k=1

x2k

)
dx = 1 − γ,
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to mention a few [55, 75, 96, 97]. It is assumed here that the two parameters a and b
satisfy a > 0 and b > 0. If {x} denotes the fractional part of x , then [22, 24]

∞∫
1

{x}
x2

dx =
1∫
0

{
1

y

}
dy = 1 − γ

and similar integrals appear in [1.6.5], [1.8], and [2.21]. See also [98–101].

1.5.3 Generalized Euler Constants

Boas [102–104] wondered why the original Euler constant has attracted attention but
other types of constants of the form

γ (m, f ) = lim
n→∞


 n∑

k=m

f (k) −
n∫
m

f (x)dx




have been comparatively neglected. The case f (x) = x−q , where 0 < q < 1, gives the
constant ζ (q) + 1/(1 − q) involving a zeta function value [1.6] and the case f (x) =
ln(x)r/x , where r ≥ 0, gives the Stieltjes constant γr [2.21]. We give some sample
numerical results in Table 1.1. Briggs [105] and Lehmer [106] studied the analog of γ

corresponding to the arithmetic progression a, a + b, a + 2b, a + 3b, . . . :

γa,b = lim
n→∞


 ∑

0<k≤n
k≡a mod b

1

k
− 1

b
ln(n)


 .

For example, γ0,b = (γ − ln(b))/b,
∑b−1

a=0 γa,b = γ , and

γ1,3 = 1

3
γ +

√
3

18
π + 1

6
ln(3), γ1,4 = 1

4
γ + 1

8
π + 1

4
ln(2).

See also [107, 108]. A two-dimensional version of Euler’s constant appears in [7.2] and
a (different) n-dimensional lattice sum version is discussed in [1.10].

Table 1.1. Generalized Euler Constants

m f (x) γ (m, f )

1 1/x 0.5772156649 . . . = γ0

2 1/ ln(x) 0.8019254372 . . .

2 1/(x · ln(x)) 0.4281657248 . . .

1 1/
√

x 0.5396454911 . . . = ζ (1/2) + 2
1 ln(x)/x −0.0728158454 . . . = γ1
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1.5.4 Gamma Function

For complex z, the Euler gamma function 
(z) is often defined by


(z) = lim
n→∞

n! · nz

n∏
k=0

(z + k)

and is analytic over the whole complex plane except for simple poles at the nonpositive
integers. For real x > 0, this simplifies to the integral formula


(x) =
∞∫
0

sx−1e−sds =
1∫
0

(
ln

(
1

t

))x−1

dt

and, if n is a positive integer, 
(n) = (n − 1)! This is the reason we sometimes see the
expression

(
−1

2

)
! = √

π = 1.7724538509 . . .

since 
(1/2) transforms, by change of variable, to the well-known Gaussian probability
density integral.

The Bohr–Mollerup theorem [109, 110] maintains that 
(z) is the most natural pos-
sible extension of the factorial function (among infinitely many possible extensions) to
the complex plane.

For what argument values is the gamma function known to be transcendental? Chud-
novsky [111–114] showed in 1975 that 
(1/6), 
(1/4), 
(1/3), 
(2/3), 
(3/4), and

(5/6) are each transcendental and that each is algebraically independent from π . (It is
curious [115, 116] that we have known 
(1/4)4/π and 
(1/3)2/π to be transcendental
for many more years.) Nesterenko [117–121] proved in 1996 that π , eπ , and 
(1/4) =
3.6256099082 . . . are algebraically independent. The constant 
(1/4) appears in [3.2],
[6.1], and [7.2]. Nesterenko also proved that π , eπ

√
3, and 
(1/3) = 2.6789385347 . . .

are algebraically independent. A similarly strong result has not yet been proved for

(1/6) = 5.5663160017 . . . , nor has 
(1/5) = 4.5908437119 . . . even been demon-
strated to be irrational. The reflection formula provides that



(

1
4

)



(
3
4

) = π
√

2, 

(

1
3

)



(
2
3

) = 2
3π

√
3,



(

1
6

)



(
5
6

) = 2π, 

(

1
5

)



(
4
5

) = 2
5π

√
5
√

2 + ϕ,

where ϕ is the Golden mean [1.2]. Furthermore [122, 123],



(

1
4

) = 2
1
2 π

3
4 h

1
2
1 , 


(
1
3

) = 2
4
9 3− 1

12 π
2
3 h

1
3
3 , 


(
1
6

) = 2
5
9 3

1
3 π

5
6 h

2
3
3 ,
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where

h1 = 2
π

K
(√

2
2

)
=

( ∞∑
n=−∞

e−n2π

)2

= 1.1803405990 . . . ,

h3 = 2
π

K
(√

2
4 (

√
3 − 1)

)
=

( ∞∑
n=−∞

e−n2
√

3π

)2

= 1.0174087975 . . . ,

and K (x) is the complete elliptic integral of the first kind [1.4.6].
When plotting the gamma function y = 
(x), the minimum point in the upper right

quadrant has xy-coordinates (xmin, 
(xmin)) = (1.4616321449 . . . , 0.8856031944 . . .).
If θ is the unique positive root of the equation

d

dx
ln(
(x))

∣∣∣∣
x=θ

= ln(π )

then ds = 2θ = 7.2569464048 . . . and ds = 2(θ − 1) = 5.2569464048 . . . are the frac-
tional dimensions at which d-dimensional spherical surface area and volume, respec-
tively, are maximized [124].

Several relevant series appear in [125–129]. Two series due to Ramanujan, for ex-
ample [130–132], are

∞∑
n=0

(−1)n

24n

(
2n

n

)2

= (2π )−
3
2 


(
1
4

)2
,

∞∑
n=0

(−1)n

26n

(
2n

n

)3

=
(



(

9
8

)



(
5
4

)



(
7
8

)
)2

,

which extend a series mentioned in [1.1]. Two products [96, 133] are

∞∏
n=1

(
1 − 1

(4n + 1)2

)
= 4 · 6

5 · 5
· 8 · 10

9 · 9
· 12 · 14

13 · 13
· 16 · 18

17 · 17
· · · = 1

8
√

π



(
1

4

)2

,

∞∏
n=1

(
1 − 1

(2n + 1)2

)(−1)n

= 32

32 − 1
· 52 − 1

52
· 72

72 − 1
· 92 − 1

92
· · · = 1

16π2



(
1

4

)4

.

A sample integral, with real parameters u > 0 and v > 0, is [96, 134, 135]
π
2∫
0

sin(x)u−1 cos(x)v−1dx =
1∫
0

yu−1(1 − y2)
v
2 −1dy = 1

2


( u
2 )
( v

2 )


( u+v
2 )

.

The significance of Euler’s constant to Euler’s gamma function is best summarized
by the formula ψ(1) = −γ , where [90]

ψ(x) = d

dx
ln(
(x)) = −γ −

∞∑
n=0

(
1

x + n
− 1

n + 1

)

is the digamma function. Higher-order derivatives at x = 1 involve zeta function values
[1.6]. Information on such derivatives (polygamma functions) is found in [134, 136].
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1.6 Apéry’s Constant, ζ (3)

Apéry’s constant, ζ (3), is defined to be the value of Riemann’s zeta function

ζ (x) =
∞∑

n=1

1

nx
, x > 1,

when x = 3. This designation of ζ (3) as Apéry’s constant is new but well deserved.
In 1979, Apéry stunned the mathematical world with a miraculous proof that ζ (3) =
1.2020569031 . . . is irrational [1–10]. We will return to this after a brief discussion of
Riemann’s function.

The zeta function can be evaluated exactly [11–14] at positive even integer values
of x ,

ζ (2k) = (−1)k−1(2π )2k B2k

2(2k)!
,

where {Bn} denotes the Bernoulli numbers [1.6.1]. For example,

ζ (2) = π2

6
, ζ (4) = π4

90
, ζ (6) = π6

945
.

Clearly ζ (1) cannot be defined, at least by means of our definition of ζ (x), since the
harmonic series diverges. The zeta function can be analytically continued over the
whole complex plane via the functional equation [15–19]:

ζ (1 − z) = 2

(2π )z
cos

(π z

2

)

(z)ζ (z)

with just one singularity, a simple pole, at z = 1. Here 
(z) = (z − 1)! is the gamma
function [1.5.4]. The connection between ζ (x) and prime number theory is best sum-
marized by the two formulas

ζ (x) =
∏

p prime

(
1 − 1

px

)−1

,
ζ (2x)

ζ (x)
=

∏
p prime

(
1 + 1

px

)−1

.

If the famous Riemann hypothesis [1.6.2] can someday be proved, more information
about the distribution of prime numbers will become available.

A closely associated function is [20–22]

η(x) =
∞∑

n=1

(−1)n−1

nx
, x > 0,
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which equals (1 − 21−x )ζ (x) for x �= 1. For example,

η(1) = ln(2), η(2) = π2

12
, η(4) = 7π4

720
.

The constant ζ (3) has a probabilistic interpretation [23, 24]: Given three random
integers, the probability that no factor exceeding 1 divides them all is 1/ζ (3) =
0.8319073725 . . . (in the limit over large intervals). By way of contrast, the prob-
ability that the three integers are pairwise coprime is only 0.2867474284 . . . ; see
the formulation in [2.5]. If n is a power of 2, define c(n) to be the number of posi-
tive integer solutions (i, j, p) with p prime of the equation n = p + i j [25, 26]. Then
limn→∞ c(n)/n = 105ζ (3)/(2π4). Other occurrences of ζ (3) in number theory are
discussed in [2.7] and [27–30]. It also appears in random graph theory with regard to
minimum spanning tree lengths [8.5].

A generalization of Apéry’s work to ζ (2k + 1) for any k > 1 remains, as van
der Poorten wrote, “a mystery wrapped in an enigma” [2]. It remains open whether
ζ (3) is transcendental, or even whether ζ (3)/π3 is irrational. Rivoal [31, 32] recently
proved that there are infinitely many integers k such that ζ (2k + 1) is irrational, and
Zudilin [33, 34] further showed that at least one of the numbers ζ (5), ζ (7), ζ (9), ζ (11)
is irrational. This is the most dramatic piece of relevant news since Apéry’s irrationality
proof of ζ (3).

1.6.1 Bernoulli Numbers

Define {Bn}, the Bernoulli numbers, by the generating function [7, 19–22]

x

ex − 1
=

∞∑
k=0

Bk
xk

k!
.

From this, it follows that B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, B6 = 1/42,
and B2n+1 = 0 for n > 0.

(There is, unfortunately, an alternative definition of the Bernoulli numbers to confuse
matters. Under this alternative definition, the subscripting is somewhat different and
all the numbers are positive. One must be careful when reading any paper to establish
which definition has been used.)

The Bernoulli numbers also arise in certain other series expansions, such as

tan(x) =
∞∑

k=1

(−1)k+122k(22k − 1)B2k

(2k)!
x2k−1.

1.6.2 The Riemann Hypothesis

With Wiles’ recent proof of Fermat’s Last Theorem now confirmed, the most noto-
rious unsolved problem in mathematics becomes the Riemann hypothesis. This con-
jecture states that all the zeros of ζ (z) in the strip 0 ≤ Re(z) ≤ 1 lie on the central line
Re(z) = 1/2.
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Here is a completely elementary restatement of the Riemann hypothesis [35]. Define
a positive square-free integer to be red if it is the product of an even number of distinct
primes, and blue if it is the product of an odd number of distinct primes. Let R(n) be
the number of red integers not exceeding n, and let B(n) be the number of blue integers
not exceeding n. The Riemann hypothesis is equivalent to the following statement: For
any ε > 0, there exists an integer N such that for all n > N ,

|R(n) − B(n)| < n
1
2 +ε.

This is usually stated in terms of the Möbius mu function [2.2]. It turns out that setting
ε = 0 is impossible; what is known as the Mertens hypothesis is false!

Another restatement (among several [36, 37]) is as follows. The Riemann hypothesis
is true if and only if [38]

∞∫
0

∞∫
1
2

1 − 12y2

(1 + 4y2)3
ln |ζ (x + iy)| dx dy = 3 − γ

32
π,

where γ is the Euler–Mascheroni constant [1.5]. It is interesting to compare this con-
ditional equality with formulas we know to be unconditionally true. For example, if Z
denotes the set of all zeros ρ in the critical strip, then [39–41]

∑
ρεZ

1

ρ
= 1

2
γ + 1 − ln(2) − 1

2
ln(π ) = 0.0230957089 . . . .

That is, although the zero locations remain a mystery, we know enough about them
to exactly compute their reciprocal sum. Care is needed:

∑
ρ |ρ|−1 diverges, but∑

ρ ρ−1converges provided that we group together conjugate terms.
One consequence of Riemann’s hypothesis (among many [17]) is mentioned in

[2.13]. Our knowledge of the distribution of prime numbers will be much deeper if a
successful proof is someday found. The essay on the de Bruijn–Newman constant [2.32]
has details of a computational approach. A deeper hypothesis, called the Gaussian uni-
tary ensemble hypothesis [2.15.3], governs the vertical spacing distribution between
the zeros.

1.6.3 Series

Summing over certain arithmetic progressions gives slight variations [42, 43]:

λ(3) =
∞∑

k=0

1

(2k + 1)3
= 7

8
ζ (3),

∞∑
k=0

1

(3k + 1)3
= 2π3

81
√

3
+ 13

27
ζ (3),

∞∑
k=0

1

(4k + 1)3
= π3

64
+ 7

16
ζ (3),

∞∑
k=0

1

(6k + 1)3
= π3

36
√

3
+ 91

216
ζ (3).

We will discuss λ(x) later in [1.7]. Two formulas involving central binomial sums
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are [42, 44–47]

∞∑
k=1

(−1)k+1

k3
(2k

k

) = 2

5
ζ (3),

∞∑
k=1

30k − 11

(2k − 1)k3
(2k

k

)2 = 4ζ (3),

the former of which has become famous because of Apéry’s work.
What is the analog for ζ (2n + 1) of the exact formula for ζ (2n)? No one knows, but

series obtained by Grosswald [48–51],

ζ (3) = 7

180
π3 − 2

∞∑
k=1

1

k3
(
e2πk − 1

) , ζ (7) = 19

56700
π7 − 2

∞∑
k=1

1

k7
(
e2πk − 1

) ,

and by Plouffe [52] and Borwein [26, 53],

ζ (5) = 1

294
π5 − 72

35

∞∑
k=1

1

k5
(
e2πk − 1

) − 2

35

∞∑
k=1

1

k5
(
e2πk + 1

) ,

might be regarded as leading candidates. The formulas were inspired by certain entries
in Ramanujan’s notebooks [54].

Some multiple series appearing in [55–62] include

∞∑
i=1

∞∑
j=1

1

i j(i + j)
= 2ζ (3),

∞∑
i=1

∞∑
j=1

(−1)i−1

i j(i + j)
= 5

8
ζ (3),

∞∑
i=1

∞∑
j=1

(−1)i+ j

i j(i + j)
= 1

4
ζ (3),

∞∑
i=2

i−1∑
j=1

1

i2 j
= ζ (3),

∞∑
i=3

i−1∑
j=2

j−1∑
k=1

1

i3 j2k
= − 29

6480
π6 + 3ζ (3)2,

and many more such evaluations (of arbitrary depth) are known [63–75].
If 0 < x < 1, then the following is true [19]:

lim
n→∞

(
n∑

k=1

1

kx
− n1−x

1 − x

)
= ζ (x) = (

1 − 21−x
)−1

η(x) = −1

21−x − 1

∞∑
k=1

(−1)k−1

kx
.

For example, when x = 1/2, the limiting value is [76]

lim
n→∞

(
1 + 1√

2
+ · · · + 1√

n
− 2

√
n
)

= −
(√

2 + 1
) (

1 − 1√
2

+ 1√
3

− + · · ·
)

= −1.4603545088 . . .

as mentioned with regard to Euler’s constant [1.5.3]. Recall too from [1.5.1] that

γ =
∞∑

k=2

(−1)k ζ (k)

k
, 1 − γ =

∞∑
k=2

ζ (k) − 1

k
.

A notable family of series involving zeta function values is [77, 78]

S(n) =
∞∑

k=1

ζ (2k)

(2k + n)22k−1
, n = 0, 1, 2, . . . .
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For example [79–83],

S(0) = ln(π ) − ln(2), S(1) = − ln(2) + 1, S(2) = 7

2π2
ζ (3) − ln(2) + 1

2
,

S(3) = 9

2π2
ζ (3) − ln(2) + 1

3
, S(4) = − 93

2π4
ζ (5) + 9

π2
ζ (3) − ln(2) + 1

4
.

These can be combined in various ways (via partial fractions) to obtain more rapidly
convergent series, for example,

∞∑
k=1

ζ (2k)

(2k + 1)(2k + 2)22k
= − 7

4π2
ζ (3) + 1

4

due to Euler [84–89] and

∞∑
k=1

ζ (2k)

k(k + 1)(2k + 1)(2k + 3)22k
= 2

π2
ζ (3) − 11

18
+ 1

3
ln(π )

due to Wilton [90–92]. Many more series exist [93–102].
Broadhurst [103] determined digit-extraction algorithms for ζ (3) and ζ (5) similar

to the Bailey–Borwein–Plouffe algorithm for π . The corresponding series for ζ (3) is

ζ (3) = 48
7

∞∑
k=0

1
2·16k

(
1

(8k+1)3 − 7
(8k+2)3 − 1

2(8k+3)3 + 10
2(8k+4)3 − 1

22(8k+5)3 − 7
22(8k+6)3

+ 1
23(8k+7)3

)
+ 32

7

∞∑
k=0

1
8·163k

(
1

(8k+1)3 + 1
2(8k+2)3 − 1

23(8k+3)3 − 2
24(8k+4)3

− 1
26(8k+5)3 + 1

27(8k+6)3 + 1
29(8k+7)3

)
.

Amdeberhan, Zeilberger and Wilf [104–106] discovered extremely fast series for
computing ζ (3), which presently is known to several hundred million decimal digits.
See also [107–110]. We mention [111–114]

∞∑
k=1

(−1)k

k3(k + 1)3
= 10 − 3

2
ζ (3) − 12 ln(2),

Li3

(
1

2

)
= 7

8
ζ (3) + π2

12
ln

(
1

2

)
− 1

6
ln

(
1

2

)3

,

Li3(2 − ϕ) = 4

5
ζ (3) + π2

15
ln(2 − ϕ) − 1

12
ln(2 − ϕ)3,

where Li3 denotes the trilogarithm function [1.6.8] and ϕ denotes the Golden mean
[1.2].

Finally, the generating function for ζ (4n + 3) [115, 116]

∞∑
n=0

ζ (4n + 3)xn = 5

2

∞∑
i=1

(−1)i+1

i3
(2i

i

) 1

1 − x
i4

i−1∏
j=1

j4 + 4x

j4 − x
, |x | < 1,
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includes the Apéry series in the special case x = 0. If we differentiate both sides with
respect to x and then set x = 0, a fast series for ζ (7) emerges:

ζ (7) = 5

2

∞∑
k=1

(−1)k+1

k7
(2k

k

) + 25

2

∞∑
k=1

(−1)k+1

k3
(2k

k

) k−1∑
m=1

1

m4

and likewise for larger n. No analogous generating function is known for ζ (4n + 1).
How can the series [117]

ζ (5) = 2
∞∑

k=1

(−1)k+1

k5
(2k

k

) − 5

2

∞∑
k=1

(−1)k+1

k3
(2k

k

) k−1∑
m=1

1

m2

be correspondingly extended?

1.6.4 Products

There is a striking family of matrix products due to Gosper [118]. The simplest case is

∞∏
k=1

(− k
2(2k+1)

5
4k2

0 1

)
=

(
0 ζ (3)
0 1

)
,

which is equivalent to a central binomial sum given earlier. The general case involves
(n + 1) × (n + 1) upper-triangular matrices, where n ≥ 2:

∞∏
k=1




− k
2(2k+1)

1
2k(2k+1) 0 · · · 0 1

k2n

0 − k
2(2k+1)

1
2k(2k+1) · · · 0 1

k2n−2

...
...

...
...

...
0 0 0 · · · 1

2k(2k+1)
1
k4

0 0 0 · · · − k
2(2k+1)

5
4k2

0 0 0 · · · 0 1




=




0 · · · 0 ζ (2n + 1)
0 · · · 0 ζ (2n − 1)
...

...
...

0 · · · 0 ζ (5)
0 · · · 0 ζ (3)
0 · · · 0 1




,

where the diagonal and superdiagonal are extended (by repetition) as indicated, the
rightmost column contains reciprocals of k2m , and all remaining entries are zero.

1.6.5 Integrals

Riemann’s zeta function has an alternative expression [17] for x > 1:

ζ (x) = 1


(x)

∞∫
0

t x−1

et − 1
dt.

If {t} denotes the fractional part of t , then [18, 19]

∞∫
1

{t}
t x+1

dt =



1

x − 1
− ζ (x)

x
if 0 < x < 1 or x > 1,

1 − γ if x = 1.
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For all remaining x the integral is divergent. A quick adjustment is, however, possible
over a subinterval:

∞∫
1

{t} − 1
2

t x+1
dt =




1

x − 1
− 1

2x
− ζ (x)

x
if − 1 < x < 0,

1

2
ln(2π ) − 1 if x = 0.

Munthe Hjortnaes [119] proved that

ζ (3) = 10

ln(ϕ)∫
0

x2 coth(x)dx = 10

1
2∫
0

arcsinh(y)2

y
dy,

which, after integration by parts, gives [120]

ζ (3) = −5

2 ln(ϕ)∫
0

θ ln

(
2 sinh

(
θ

2

))
dθ.

Starting with an integral of Euler’s [84, 121],

4

π∫
0

θ ln

(
sin

(
θ

2

))
dθ = 7ζ (3) − 2π2 ln(2),

the same reasoning can be applied as before (but in reverse) to obtain [80, 81]

−8

1∫
0

arcsin(y)2

y
dy = −8

π
2∫
0

x2 cot(x)dx = 7ζ (3) − 2π2 ln(2).

1.6.6 Continued Fractions

Stieltjes [122] and Ramanujan [54] discovered the continued fraction expansion

ζ (3) = 1 + 1|
|2 · 2

+ 13
∣∣

|1 + 13
∣∣

|6 · 2
+ 23

∣∣
|1 + 23

∣∣
|10 · 2

+ 33
∣∣

|1 + 33
∣∣

|14 · 2
+ · · · .

If we group terms together in a pairwise manner, we obtain

ζ (3) = 1 + 1|
|5 − 16

∣∣
|21

− 26
∣∣

|55
− 36

∣∣
|119

− 46
∣∣

|225
− 56

∣∣
|385

− · · · ,

where the partial denominators are generated according to the polynomial 2n3 + 3n2 +
11n + 5. The convergence rate of this expansion is not fast enough to demonstrate the
irrationality of ζ (3). Apéry succeeded in accelerating the convergence to

ζ (3) = 6|
|5 − 16

∣∣
|117

− 26
∣∣

|535
− 36

∣∣
|1463

− 46
∣∣

|3105
− 56

∣∣
|5665

− · · · ,

where the partial denominators are generated according to the polynomial 34n3 +
51n2 + 27n + 5.
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1.6.7 Stirling Cycle Numbers

Define sn,m to be the number of permutations of n symbols that have exactly m cy-
cles [123]. The quantity sn,m is called the Stirling number of the first kind and satisfies
the recurrence

sn,0 =
{

1 if n = 0,

0 if n ≥ 1,

sn,m = (n − 1)sn−1,m + sn−1,m−1 if n ≥ m ≥ 1.

For example, s3,1 = 2 since (123) and (321) are distinct permutations. More generally,
sn,1 = (n − 1)! and sn,2 = (n − 1)!

∑n−1
k=1 1/k. Similar complicated formulas involving

higher-order harmonic sums apply for m ≥ 3. Consequently [124],
∞∑

n=1

sn,m

n!n
= ζ (m + 1)

for m ≥ 1. The case for m = 2 follows from one of the earlier multiple series (due to
Euler [67]). The asymptotics of sn,m as n → ∞ are found in [125].

1.6.8 Polylogarithms

Before defining the polylogarithm function Lin , let us ask a question. It is known that

(−1)kk!ζ (k + 1) =
1∫
0

ln(x)k

1 − x
dx, k = 1, 2, 3, . . . .

What happens if the interval of integration is changed from [0, 1] to [1, 2]?
Ramanujan [42] showed that, if

ak =
2∫
1

ln(x)k

1 − x
dx,

then a1 = ζ (2)/2 = π2/6 and a2 = ζ (3)/4. We would expect the pattern to persist and
for ak to be a rational multiple of ζ (k + 1) for all k ≥ 1. This does not appear to be
true, however, even for k = 3.

Define Li1(x) = − ln(1 − x) and [113, 114]

Lin(x) =
∞∑

k=1

xk

kn
=

x∫
0

Lin−1(t)

t
dt for any integer n ≥ 2, where |x | ≤ 1.

Clearly Lin(1) = ζ (n). We mentioned special values, due to Landen, of the triloga-
rithm Li3 earlier. Not much is known about the tetralogarithm Li4, but Levin [126]
demonstrated that

a3 = π4

15
+ π2 ln(2)2

4
− ln(2)4

4
− 21 ln(2)

4
ζ (3) − 6 Li4

(
1

2

)
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and more. To fully answer our question, therefore, requires an understanding of the
arithmetic nature of Lin(1/2). Further details on polylogarithms are found in [127–131].
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1.7 Catalan’s Constant, G

Catalan’s constant, G, is defined by

G =
∞∑

n=0

(−1)n

(2n + 1)2
= 0.9159655941 . . . .

Our discussion parallels that of Apéry’s constant [1.6] and a comparison of the two is
worthwhile. Here we work with Dirichlet’s beta function

β(x) =
∞∑

n=0

(−1)n

(2n + 1)x
, x > 0

(also referred to as Dirichlet’s L-series for the nonprincipal character modulo 4) and
observe that G = β(2).

The beta function can be evaluated exactly [1–3] at positive odd integer values of x :

β(2k + 1) = (−1)k E2k

2(2k)!

(π

2

)2k+1
,

where {En} denote the Euler numbers [1.7.1]. For example,

β(1) = π

4
, β(3) = π3

32
, β(5) = 5π5

1536
.

Like the zeta function [1.6], β(x) can be analytically continued over the whole complex
plane via the functional equation [4–6]:

β(1 − z) =
(

2

π

)z

sin
(π z

2

)

(z)β(z),

where 
(z) = (z − 1)! is the gamma function [1.5.4]. Dirichlet’s function, unlike
Riemann’s function, is defined everywhere and has no singularities. Its connection
to prime number theory is best summarized by the formula [7]

β(x) =
∏

p prime
p≡1 mod 4

(
1 − 1

px

)−1

·
∏

p prime
p≡3 mod 4

(
1 + 1

px

)−1

=
∏
p odd
prime

(
1 − (−1)

p−1
2

px

)−1

,

and the rearrangement of factors is justified by absolute convergence. A closely asso-
ciated function is [8–10]

λ(x) =
∞∑

n=0

1

(2n + 1)x
=

(
1 − 1

2x

)
ζ (x), x > 1,
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with sample values

λ(2) = π2

8
, λ(4) = π4

96
, λ(6) = π6

960
.

Unlike Apéry’s constant, it is unknown whether G is irrational [11, 12]. We also know
nothing about the arithmetic character of G/π2. In statistical mechanics, G/π arises
as part of the exact solution of the dimer problem [5.23]. Schmidt [13] pointed out a
curious coincidence:

π2

12 ln(2)
=

(
1 − 1

22
+ 1

32
− 1

42
+ − · · ·

) (
1 − 1

2
+ 1

3
− 1

4
+ − · · ·

)−1

,

4G

π
=

(
1 − 1

32
+ 1

52
− 1

72
+ − · · ·

) (
1 − 1

3
+ 1

5
− 1

7
+ − · · ·

)−1

,

where the former expression (Lévy’s constant) is important in continued fraction asymp-
totics [1.8]. A variation of this,

8G

π2
=

(
1 − 1

32
+ 1

52
− 1

72
+ − · · ·

) (
1 + 1

32
+ 1

52
+ 1

72
+ · · ·

)−1

,

occurs as the best coefficient for which a certain conjugate function inequality [7.7] is
valid. The constant 2G/(π ln(2)) also appears as the average root bifurcation ratio of
binary trees [5.6].

1.7.1 Euler Numbers

Define {En}, the Euler numbers, by the generating function [1, 8–10]

sech(x) = 2ex

e2x + 1
=

∞∑
k=0

Ek
xk

k!
.

It can be shown that all Euler numbers are integers: E0 = 1, E2 = −1, E4 = 5, E6 =
−61, . . . and E2n−1 = 0 for n > 0.

(There is, unfortunately, an alternative definition of the Euler numbers to confuse
matters. Under this alternative definition, the subscripting is somewhat different and
all the numbers are positive. One must be careful when reading any paper to establish
which definition has been used.)

The Euler numbers also arise in certain other series expansions, such as

sec(x) =
∞∑

k=0

(−1)k E2k

(2k)!
x2k .
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1.7.2 Series

Summing over certain arithmetic progressions gives slight variations [14–16]:
∞∑

k=0

1

(4k + 1)2
= 1

16
π2 + 1

2
G,

∞∑
k=0

1

(4k + 3)2
= 1

16
π2 − 1

2
G.

Four formulas involving central binomial sums are [1, 17–19]

∞∑
k=0

22k

(2k + 1)2
(2k

k

) = 2G,

∞∑
k=0

1

23k(2k + 1)2

(
2k

k

)
= π

4
√

2
ln(2) + 1√

2
G,

∞∑
k=0

1

(2k + 1)2
(2k

k

) = 8

3
G − π

3
ln(2 +

√
3),

∞∑
k=0

24k

(k + 1)(2k + 1)2
(2k

k

)2 = 2πG − 7

2
ζ (3).

As Berndt [17] remarked, it is interesting that the first of these is reminiscent of the
famous Apéry series [1.6.3], yet it was discovered many years earlier. A family of
related series is [20, 21, 23]

R(n) =
∞∑

k=0

1

24k(2k + n)

(
2k

k

)2

, n = 0, 1, 2, . . . ,

which can be proved to satisfy the recurrence [1, 22, 24]

R(0) = 2 ln(2) − 4G

π
, R(1) = 4G

π
,

(n − 1)2 R(n) = (n − 2)2 R(n − 2) + 2

π
for n ≥ 2.

What is the analog for β(2n) of the exact formula for β(2n + 1)? No one knows,
but the series obtained by Ramanujan [16, 25],

G = 5

48
π2 − 2

∞∑
k=0

(−1)k

(2k + 1)2(eπ (2k+1) − 1)
− 1

4

∞∑
k=1

sech(πk)

k2
,

might provide a starting point for research.
Some multiple series include [16, 17, 26–28]

∞∑
n=1

(−1)n+1

n

n−1∑
k=0

(−1)k

2k + 1
= G,

∞∑
n=0

(−1)n

2n + 1

n∑
k=1

1

k
= G − π

2
ln(2),

∞∑
n=0

(−1)n

2n + 1

n−1∑
k=0

1

2k + 1
= π

8
ln(2) − 1

2
G,

∞∑
n=1

(−1)n+1

n2

n−1∑
k=0

1

2k + 1
= πG − 7

4
ζ (3),

∞∑
n=1

(−1)n+1

n2

n∑
k=1

1

k + n
= πG − 33

16
ζ (3),

∞∑
n=0

2n

(2n + 1)
(2n

n

) n∑
k=0

1

2k + 1
= 2G.
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Two series involving zeta function values are [29–31]
∞∑

n=1

nζ (2n + 1)

24n
= 1 − G,

∞∑
n=1

ζ (2n)

24n(2n + 1)
= 1

2
− 1

4
ln(2) − 1

π
G.

Broadhurst [32–34] determined a digit-extraction algorithm for G via the following
series:

G = 3
∞∑

k=0

1
2·16k

(
1

(8k+1)2 − 1
(8k+2)2 + 1

2(8k+3)2 − 1
22(8k+5)2 + 1

22(8k+6)2 − 1
23(8k+7)2

)

− 2
∞∑

k=0

1
8·163k

(
1

(8k+1)2 + 1
2(8k+2)2 + 1

23(8k+3)2 − 1
26(8k+5)2 − 1

27(8k+6)2 − 1
29(8k+7)2

)
.

1.7.3 Products

As with values of the zeta function at odd integers [1.6.4], Gosper [35] found an infinite
matrix product that gives beta function values at even integers. We exhibit the 4 × 4
case only:

∞∏
k=1




4k2

(4k−1)(4k+1)
−1

(4k−1)(4k+1) 0 1
(2k−1)5

0 4k2

(4k−1)(4k+1)
−1

(4k−1)(4k+1)
1

(2k−1)3

0 0 4k2

(4k−1)(4k+1)
6k−1

2(2k−1)(4k−1)

0 0 0 1


 =




0 0 0 β(6)
0 0 0 β(4)
0 0 0 β(2)
0 0 0 1


 .

The extension to the (n + 1) × (n + 1) case and to β(2n) follows the same pattern as
before.

1.7.4 Integrals

The beta function has an alternative expression [4] for x > 0:

β(x) = 1

2
(x)

∞∫
0

t x−1

cosh(t)
dt.

There are many integrals involving Catalan’s constant [10, 15, 16, 36, 37], including

2

1∫
0

arctan(x)

x
dx =

π
2∫
0

x

sin(x)
dx = 2G,

1

2

1∫
0

K (x)dx =
1∫
0

E(x)dx − 1

2
= G,

1∫
0

ln(x)

1 + x2
dx = −

∞∫
1

ln(x)

1 + x2
dx = −G,

π
4∫
0

ln(2 cos(x))dx = −
π
4∫
0

ln(2 sin(x))dx = 1

2
G,
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4

1∫
0

arctan(x)2

x
dx =

π
2∫
0

x2

sin(x)
dx = 2πG − 7

2
ζ (3),

π
2∫
0

arcsinh(sin(x))dx =
π
2∫
0

arcsinh(cos(x))dx = G,

where K (x) and E(x) are complete elliptic integrals [1.4.6]. See also [1.7.6].

1.7.5 Continued Fractions

The following expansions are due to Stieltjes [38], Rogers [39], and Ramanujan [40]:

2G = 2 − 1|
|3 + 22

∣∣
|1 + 22

∣∣
|3 + 42

∣∣
|1 + 42

∣∣
|3 + 62

∣∣
|1 + 62

∣∣
|3 + · · · ,

2G = 1 + 1|∣∣ 1
2

+ 12
∣∣∣∣ 1

2

+ 1 · 2|∣∣ 1
2

+ 22
∣∣∣∣ 1

2

+ 2 · 3|∣∣ 1
2

+ 32
∣∣∣∣ 1

2

+ 3 · 4|∣∣ 1
2

+ 42
∣∣∣∣ 1

2

+ · · · .

1.7.6 Inverse Tangent Integral

Define Ti1(x) = arctan(x) and [41]

Tin(x) =
∞∑

k=0

(−1)k

(2k + 1)n
x2k+1

=
x∫
0

Tin−1(s)

s
ds, for any integer n ≥ 2, where |x | ≤ 1.

Clearly Tin(1) = β(n). The special case n = 2 is called the inverse tangent integral.
It has alternative expressions

Ti2(tan(θ )) = 1

2

2θ∫
0

t

sin(t)
dt = θ ln(tan(θ )) −

θ∫
0

ln(2 sin(t))dt +
θ∫
0

ln(2 cos(t))dt

for 0 < θ < π/2, and sample values [21, 41]

Ti2(2 − √
3) = 2

3
G + π

12
ln(2 − √

3), Ti2(2 + √
3) = 2

3
G + 5π

12
ln(2 + √

3).

In the latter formula, we use the integral expression (since the series diverges for x > 1,
but the integral converges). Very little is known about Tin(x) for n > 2.
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1.8 Khintchine–Lévy Constants

Let x be a real number. Expand x (uniquely) as a regular continued fraction:

x = q0 + 1|
|q1

+ 1|
|q2

+ 1|
|q3

+ · · · ,

where q0 is an integer and q1, q2, q3, . . . are positive integers. Unlike a decimal expan-
sion, the properties of a regular continued fraction do not depend on the choice of base.
Hence, to number theorists, terms of a continued fraction are more “natural” to look at
than decimal digits.

What can be said about the average behavior of qk , where k > 0 is arbitrary? Con-
sider, for example, the geometric mean

M(n, x) = (q1q2q3 · · · qn)
1
n

in the limit as n → ∞. One would expect this limiting value to depend on x in some
possibly complicated way. Since any sequence of qs determines a unique x , there
exist xs for which the qs obey any conceivable condition. To attempt to compute
limn→∞ M(n, x) would thus seem to be impossibly difficult.
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Here occurs one of the most astonishing facts in mathematics. Khintchine [1–4]
proved that

lim
n→∞ M(n, x) =

∞∏
k=1

(
1 + 1

k(k + 2)

) ln(k)
ln(2) = K = e0.9878490568... = 2.6854520010 . . . ,

a constant, for almost all real numbers x . This means that the set of exceptions x to
Khintchine’s result (e.g., all rationals, quadratic irrationals, and more) is of Lebesgue
measure zero. We can be probabilistically certain that a truly randomly selected x will
obey Khintchine’s law. This is a profound statement about the nature of real numbers.
Another proof, drawing upon ergodic theory and due to Ryll-Nardzewski [5], is found
in Kac [6].

The infinite product representation of K converges very slowly. Fast numerical
procedures for computing K appear in [7–13]. Among several different representations
of K are [8, 11, 13, 14]

ln(2) ln(K ) = −
∞∑

i=2

ln

(
1 − 1

i

)
ln

(
1 + 1

i

)
=

∞∑
j=2

(−1) j (2 − 2 j )

j
ζ ′( j),

ln(2) ln(K ) =
∞∑

k=1

ζ (2k) − 1

k

(
1 − 1

2
+ 1

3
− + · · · + 1

2k − 1

)
,

ln(2) ln(K ) = −
1∫
0

1

x(1 + x)
ln

(
sin(πx)

πx

)
dx

= π2

12
+ ln(2)2

2
+

π∫
0

ln |θ cot(θ )|
θ

dθ,

where ζ (x) denotes the Riemann zeta function [1.6] and ζ ′(x) is its derivative.
Many questions arise. Is K irrational? What well-known irrational numbers are

among the meager exceptions to Khintchine’s result? Lehmer [7, 15] observed that e is
an exception; whether 3

√
2, π , and K itself (!) are likewise remains unsolved.

Related ideas include the asymptotic behavior of the coprime positive integers Pn

and Qn , where Pn/Qn is the nth partial convergent of x . That is, Pn/Qn is the value
of the finite regular continued fraction expansion of x up through qn . Lévy [16, 17]
determined that

lim
n→∞ Q

1
n
n = e

π2

12 ln(2) = e1.1865691104... = 3.2758229187 . . . = lim
n→∞

(
Pn

x

) 1
n

for almost all real x . Philipp [18, 19] provided improvements to error bounds associated
with both Khintchine and Lévy limits. A different perspective is given by [20–22]:

− lim
n→∞

1

n
log10

∣∣∣∣x − Pn

Qn

∣∣∣∣ = π2

6 ln(2) ln(10)
= 1.0306408341 . . . ,

which indicates that the information in a typical continued fraction term is approxi-
mately 1.03 decimal digits (valid for almost all real x). Equivalently, the metric entropy
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of the continued fraction map x �→ {1/x} is [23, 24]

lim
n→∞

Q2
n+1

Q2
n

= e
π2

6 ln(2) = 10.7310157948 . . . = (0.0931878229 . . .)−1,

where {x} denotes the fractional part of x . That is, an additional term reduces the
uncertainty in x by a factor of 10.73. The corresponding entropy for the shift map
x �→ {10x} is 10.

Corless [13, 25] pointed out the interesting contrasting formulas

ln(K ) =
1∫
0

ln
⌊

1
x

⌋
ln(2)(1 + x)

dx,
π2

12 ln(2)
=

1∫
0

ln
(

1
x

)
ln(2)(1 + x)

dx,

where 	x
 is the largest integer ≤ x .
Let us return to the original question: What can be said about the average behavior

of the k th partial denominator qk , k > 0? We have examined the situation for only one
type of mean value, the geometric mean. A generalization [26] of mean value is

M(s, n, x) =
(

1

n

n∑
k=1

qs
k

) 1
s

,

which reduces to the harmonic mean, geometric mean, arithmetic mean, and root
mean square, respectively, when s = −1, 0, 1, and 2. Thus the well-known means
fit into a continuous hierarchy of mean values. It is known [3, 27] that, if s ≥ 1, then
limn→∞ M(s, n, x) = ∞ for almost all real x . What can be said about the value of
M(s, n, x) for s < 1, s �= 0 ? The analog of Khintchine’s formula here is

lim
n→∞ M(s, n, x) =

[
1

ln(2)

∞∑
k=1

ks ln

(
1 + 1

k(k + 2)

)] 1
s

= Ks

for almost all real x . It is known [13, 28] that K−1 = 1.7454056624 . . . , K−2 =
1.4503403284 . . . , K−3 = 1.3135070786 . . . , and clearly Ks = 1 + O(1/s) as s →
−∞.

Closely related topics are discussed in [2.17], [2.18], and [2.19].

1.8.1 Alternative Representations

There are alternative ways of representing real numbers, akin to regular continued
fractions, that have associated Khintchine–Lévy constants. For example, every real
number 0 < x < 1 can be uniquely expressed in the form

x = 1

a1 + 1
+

∞∑
n=2

(
n−1∏
k=1

1

ak(ak + 1)

)
1

an + 1

= 1

b1
+

∞∑
n=2

(
n−1∏
k=1

1

bk(bk + 1)

)
(−1)n−1

bn
,
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where a1, a2, a3, . . . and b1, b2, b3, . . . are positive integers. These are called the Lüroth
and alternating Lüroth representations of x , respectively. The limiting constants are
the same whether we use as or bs, and [29–31]

lim
n→∞ (a1a2a3 · · · an)

1
n =

∞∏
k=1

k
1

k(k+1) = e0.7885305659... = 2.2001610580 . . . = U,

lim
n→∞

∣∣∣∣x − Pn

Qn

∣∣∣∣
1
n =

∞∏
k=1

[k(k + 1)]
−1

k(k+1) = e−2.0462774528... = V,

where Pn/Qn is the nth partial sum. A variation of this [32],

lim
n→∞ ((a1 + 1)(a2 + 1) · · · (an + 1))

1
n =

∞∏
k=1

(k + 1)
1

k(k+1) = e1.2577468869... = W,

also appears in [2.9]. Of course, U V W = 1 and

ln(U ) = −
∞∑

i=2

(−1)iζ ′(i), ln(V ) = 2
∞∑
j=1

ζ ′(2 j), ln(W ) = −
∞∑

k=2

ζ ′(k).

A second example [22] is the Bolyai–Rényi representation of 0 < x < 1,

x = −1 +
√

a1 +
√

a2 + √
a3 + · · ·,

where each ak ∈ {0, 1, 2}. Whereas an exact expression π2/(6 ln(2)) = 2.373138 . . .

arises for the entropy of continued fractions, only a numerical result 1.056313 . . . exists
for the entropy of radical expansions [33].

A third example [34–41] is the nearest integer continued fraction of −1/2 < x <

1/2,

x = 1|
|c1

+ 1|
|c2

+ 1|
|c3

+ · · · ,

which is generated according to

c1 =
⌊

1

x
+ 1

2

⌋
, x1 = 1

x
− c1, c2 =

⌊
1

x1
+ 1

2

⌋
, x2 = 1

x1
− c2, . . . .

Some of the cs may be negative. The formulas for the Khintchine–Lévy constants in
this case are

lim
n→∞ |c1c2 · · · cn|

1
n =

(
5ϕ + 3

5ϕ + 2

) ln(2)
ln(ϕ) ∞∏

k=3

(
8(k − 1)ϕ + (2k − 3)2 + 4

8(k − 1)ϕ + (2k − 3)2

) ln(k)
ln(φ)

= e1.6964441175... = 5.4545172445 . . . ,

lim
n→∞ Q

1
n
n = e

π2

12 ln(ϕ) = e1.7091579853... = 5.5243079702 . . . ,
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Table 1.2. Nonexplicit Constants Recursively Derived from K

y = 2.3038421962 . . . qn is the largest possible integer:
n∏

k=0
qk < K n+1

y = 3.3038421963 . . . qn is the smallest possible integer:
n∏

k=0
qk > K n+1

y = 2.2247514809 . . .

n∏
k=0

qk is just less than K n+1 when n is even, and

n∏
k=0

qk is just greater than K n+1 when n is odd

y = 3.4493588902 . . .

n∏
k=0

qk is just greater than K n+1 when n is even,

and
n∏

k=0
qk is just less than K n+1 when n is odd

where Pn/Qn is the nth partial convergent and ϕ is the Golden mean [1.2]. Such
expansions are also called centered continued fractions [42].

1.8.2 Derived Constants

Although we know exceptions x (which all belong to a set of measure zero) to
Khintchine’s law, we do not know a single explicit y that provably satisfies it. This
is remarkable because one would expect y to be easy to find, being so much more
plentiful than x . The requirement that y be “explicit” is the difficult part. It means,
in particular, that the partial denominators qn in the regular continued fraction for y
should not depend on knowing K to arbitrary precision. Robinson [43] described four
nonexplicit constants that are recursively derived from K in a simple manner (see Table
1.2). Bailey, Borwein & Crandall [13] gave other, more sophisticated constructions in
which at least the listing q0, q1, q2, . . . is explicit (although the constant y still is not).

1.8.3 Complex Analog

Schmidt [44–46] introduced what appears to be the most natural approach for general-
izing continued fraction theory to the complex field. For example [47–50], the complex
analog of Lévy’s constant is exp(G/π ), where G is Catalan’s constant [1.7]. Does
Khintchine’s constant possess a complex analog?
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conf., ed. M. Théra, Amer. Math. Soc., 2000, pp. 53–82; INRIA preprint RR4072; MR
2001h:11161.

[43] H. P. Robinson and E. Potter, Mathematical Constants, UCRL-20418 (1971), Univ. of Calif.
at Berkeley; available through the National Technical Information Service, Springfield VA
22151.

[44] A. L. Schmidt, Diophantine approximation of complex numbers, Acta Math. 134 (1975)
1–85; MR 54 #10160.

[45] A. L. Schmidt, Ergodic theory for complex continued fractions, Monatsh. Math. 93 (1982)
39–62; MR 83g:10036.

[46] A. L. Schmidt, Ergodic theory of complex continued fractions, Number Theory with an
Emphasis on the Markoff Spectrum, Proc. 1991 Provo conf., ed. A. D. Pollington and W.
Moran, Dekker, 1993, pp. 215–226; MR 95f:11055.

[47] H. Nakada, On ergodic theory of A. Schmidt’s complex continued fractions over Gaussian
field, Monatsh. Math. 105 (1988) 131–150; MR 89f:11113.

[48] H. Nakada, On metrical theory of diophantine approximation over imaginary quadratic
field, Acta Arith. 51 (1988) 393–403; MR 89m:11070.

[49] H. Nakada, The metrical theory of complex continued fractions, Acta Arith. 56 (1990)
279–289; MR 92e:11081.

[50] H. Nakada, Dynamics of complex continued fractions and geodesics over H 3, Dynamical
Systems and Chaos, v. 1, Proc. 1994 Tokyo conf., ed. N. Aoki, K. Shiraiwa, and Y. Takahashi,
World Scientific, 1995, pp. 192–199; MR 99c:11103.

1.9 Feigenbaum–Coullet–Tresser Constants

Let f (x) = ax(1 − x), where a is constant. The interval [0, 1] is mapped into itself by
f for each value of a ∈ [0, 4]. This family of functions, parametrized by a, is known
as the family of logistic maps [1–8].

What are the 1-cycles (i.e., fixed points) of f ? Solving x = f (x), we obtain

x = 0 (which attracts for a < 1 and repels for a > 1)
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and

x = a − 1

a
(which attracts for 1 < a < 3 and repels for a > 3).

What are the 2-cycles of f ? That is, what are the fixed points of the iterate f 2 that
are not fixed points of f ? Solving x = f 2(x), x �= f (x), we obtain the 2-cycle

x = a + 1 ± √
a2 − 2a − 3

2a
(which attracts for 3 < a < 1 +

√
6

and repels for a > 1 +
√

6).

For a > 1 + √
6 = 3.4495 . . . , an attracting 4-cycle emerges. We can obtain the

4-cycle by numerically solving x = f 4(x), x �= f 2(x). It can be shown that the 4-cycle
attracts for 3.4495 . . . < a < 3.5441 . . . and repels for a > 3.5441 . . . .

For a > 3.5441, an attracting 8-cycle emerges. We can obtain the 8-cycle by nu-
merically solving x = f 8(x), x �= f 4(x). It can be shown that the 8-cycle attracts for
3.5441 . . . < a < 3.5644 . . . and repels for a > 3.5644 . . . .

For how long does the sequence of period-doubling bifurcations continue? It is
interesting that this behavior stops far short of 4. Letting

a0 = 1, a1 = 3, a2 = 3.4495 . . . , a3 = 3.5441 . . . , a4 = 3.5644 . . . ,

etc. denote the sequence of bifurcation points of f , it can be proved that

a∞ = lim
n→∞ an = 3.5699 . . . < 4.

This limiting point marks the separation between the “periodic regime” and the
“chaotic regime” for this family of quadratic functions. Much research has been aimed
at developing a theory of chaos and applying it to the study of physical, chemical, and
biological systems. We will focus on only a small aspect of the theory: two “universal”
constants associated with the exponential accumulation described earlier. The bifur-
cation diagram in Figure 1.5 is helpful for defining the following additional symbols.
The sequence of superstable points of f is

ã1 = 1 + √
5 = 3.2360 . . . , ã2 = 3.4985 . . . , ã3 = 3.5546 . . . , ã4 = 3.5666 . . . ,

where ãn is the least parameter value at which a 2n-cycle contains the critical element
1/2. Call this cycle C̃(n). The sequence of superstable widths of f is

w̃1 = (
√

5 − 1)/4 = 0.3090 . . . , w̃2 = 0.1164 . . . , w̃3 = 0.0459 . . . ,

where w̃n is the distance between 1/2 and the element f 2n−1
(1/2) ∈ C̃(n) nearest to

1/2. Also, the sequence of bifurcation widths of f is

w1 = √
2(

√
6 − 1)/5 = 0.4099 . . . , w2 = 0.1603 . . . , w3 = 0.0636 . . . ,

where wn is the corresponding cycle distance at an+1. The superstable variants ãn and
w̃n are numerically easier to compute than an and wn . Define the two Feigenbaum–
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x

x = 1/2

a
a2 − a1 a3 −  a2

w2
~

~ ~ ~ ~

~

w2

w1

w3

 ~w1

a2 − a1 a3 − a2

Figure 1.5. Horizontal and vertical characteristics of the bifurcation are quantified by an and wn .

Coullet–Tresser constants to be [9–17]

δ = lim
n→∞

an − an−1

an+1 − an
= lim

n→∞
ãn − ãn−1

ãn+1 − ãn
= 4.6692016091 . . .

and

α = lim
n→∞

wn

wn+1
= lim

n→∞
w̃n

w̃n+1
= 2.5029078750 . . . = (0.3995352805 . . .)−1.

As indicated here, the tildes can be included or excluded without change to the limiting
ratios δ and α.

What qualifies these constants to be called “universal”? If we replace the logistic
maps f by, for example, g(x) = b sin(πx), 0 ≤ b ≤ 1, then interestingly the same
constants δ and α occur. Both functions f and g have quadratic maximum points; we
extend this condition to obtain generalized Feigenbaum constants [1.9.1]. We mention
a two-dimensional example [1.9.2] as well. Rigorous proofs of universality for the
one-dimensional, quadratic maximum case were first given by Lanford [18–22] and
Campanino & Epstein [23–28]; the former apparently was the first computer-assisted
proof of its kind in mathematics.

Does there exist a simpler definition of the Feigenbaum constants? One would like
to see a more classical characterization in terms of a limit or an integral that would not
require quite so much explanation. The closest thing to this involves a certain functional
equation [1.9.3], which in fact appears to provide the most practical algorithm for
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calculating the constants to high precision [29–37]. We also mention maps on a circle
[1.9.4] and a different form of chaos.

The numbers 3.5441 . . . and 3.5644 . . . mentioned previously are known to be al-
gebraic of degrees 12 and 240, as discussed in [38, 39].

Salamin [40] has speculated that the (unitless) fine structure constant
(137.0359 . . .)−1 from quantum electrodynamics will, in a better theory than we have
today, be related to a Feigenbaum-like constant.

1.9.1 Generalized Feigenbaum Constants

Consider the functions f and g defined earlier. Consider also the function h(x) = 1 −
c|x |r defined on the interval [−1, 1], where 1 < c < 2 and r > 1 are constants. Each
function is unimodal, concave, symmetric, and analytic everywhere with the possible
exception of h at x = 0. Further, each second derivative, evaluated at the maximum
point, is strictly negative if r = 2. That is, f , g, and h have quadratic maximum points.

In contrast, the order of the maximum of h is cubic if r = 3, quartic if r = 4, etc.
This is an important distinction with regard to the values of the Feigenbaum constants.

Many authors have used the word “universal” to describe δ and α, and this is ap-
propriate if quadratic maximums are all one is concerned about. Vary r , however, and
different values of δ and α emerge. Numerical evidence indicates that δ increases with r ,
and α decreases to a limiting value of 1 [36, 41] (see Table 1.3). In fact, we have [42–48]

lim
r→∞ δ(r ) = 29.576303 . . . , lim

r→∞ α(r )−r = 0.0333810598 . . . .

At the other extreme [15, 31], limr→1+ δ(r ) = 2 whereas limr→1+ α(r ) = ∞.
A somewhat different generalization involves period triplings rather than period dou-

blings [1, 16, 29, 30, 49–51]. For the logistic map f , when 3.8284 . . . ≤ a ≤ 3.8540 . . . ,
a cascade of trifurcations to 3n-cycles at parameter values ân occur with Feigenbaum
constants:

δ̂ = lim
n→∞

ân − ân−1

ân+1 − ân
= 55.247 . . . , α̂ = lim

n→∞
ŵn

ŵn+1
= 9.27738 . . . .

Three-cycles are of special interest since they guarantee the existence of chaos [2].
We do not know precisely the minimum value of a for which f has points that are
not asymptotically periodic. The first 6-cycle appears [2] at 3.6265 . . . , and the first
odd-cycle appears [1] at 3.6786 . . . .

The constants 55.247 . . . and 9.27738 . . . have not been computed to the same
precision as the original Feigenbaum constants. Existing theory [27, 28] seems to apply

Table 1.3. Feigenbaum Constants as Functions of Order r

r 3 4 5 6

δ(r ) 5.9679687038 . . . 7.2846862171 . . . 8.3494991320 . . . 9.2962468327 . . .

α(r ) 1.9276909638 . . . 1.6903029714 . . . 1.5557712501 . . . 1.4677424503 . . .
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only to period doublings. Our knowledge of period triplings is evidently based more
on numerical heuristics than on mathematical rigor at present.

Incidently, the bifurcation points of h, when r = 2, are

c2 = 5
4 = 1.25, c3 = 1.3680 . . . , c4 = 1.3940 . . . , . . . , c∞ = 1.4011 . . .

and are related to an via the transformation cn = an(an − 2)/4. The limit point c∞ =
1.4011551890 . . . is due to Myrberg [52] but is not universal in any sense. Similarly,
we can find the successive superstable width ratios of h, when r = 2:

α1 = 3.2185 . . . , α2 = 2.6265 . . . , α3 = 2.5281 . . . , . . . α∞ = α = 2.5029 . . . . ,

in terms of symbols defined earlier: αn = w̃n(ãn+1 − 2)w̃−1
n+1(ãn − 2)−1. Both se-

quences {cn} and {αn} are needed in [1.9.3].

1.9.2 Quadratic Planar Maps

The quadratic area-preserving (conservative) Hénon map [53, 54](
xn+1

yn+1

)
=

(
1 − ax2

n + yn

xn

)

also leads to a cascade of period doublings, but with Feigenbaum constants α =
4.0180767046 . . . , β = 16.3638968792 . . . (scaling for two directions), and δ =
8.7210972 . . . that are larger than those for the one-dimensional case. These are char-
acteristic for a certain subclass of the class of two-dimensional maps with quadratic
maxima [50, 55, 56]. There is a different subclass, however, for which the original
Feigenbaum constant δ = 4.6692016091 . . . appears: the area-contracting (dissipative)
Hénon maps [49, 57, 58] (

xn+1

yn+1

)
=

(
1 − ax2

n + yn

bxn

)

(where the additional parameter b satisfies |b| < 1). It appears in higher dimensions
too. The extent of the universality of δ is therefore larger than one may have expected!

Like period-tripling constants discussed in [1.9.1], the quantities 4.01808 . . . ,
16.36389 . . . , and 8.72109 . . . have not been computed to the same precision as the
original Feigenbaum constants. For two-dimensional conservative maps, Eckmann,
Koch & Wittwer [59, 60] proved that these are indeed universal. For N -dimensional
dissipative maps, Collet, Eckmann & Koch [61, 62] sketched a proof that the constant
4.66920 . . . is likewise universal.

1.9.3 Cvitanovic–Feigenbaum Functional Equation

Let D be an open, connected set in the complex plane containing the interval [0, 1].
Let X be the real Banach space of functions F satisfying F(0) = 0 that are complex-
analytic on D, continuous on the closure of D, and real on [0, 1], equipped with the
supremum norm.
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Fix a real number r > 1. Let �r be the set of functions f : [−1, 1] → (−1, 1] of
the form f (x) = 1 + F(|x |r ), F ∈ X , with F ′(y) < 0 for all y ∈ [0, 1]. In words, �r is
the set of even, folding self-maps f of the interval [−1, 1] that can be written as power
series in |x |r and satisfy −1 < f 2(0) < f (0) = 1. Define also �r,0 to be the subset of
�r subject to the additional constraint f 2(0) < 0 < f 4(0) < − f 2(0) < f 3(0) < 1.

By using the correspondence between f and F , the sets �r,0 and �r are naturally
identified with nested, open subsets of X . Hence �r,0 and �r are Banach manifolds,
both based on X . We can thus perform differential calculus on what is called the period-
doubling operator Tr : �r,0 → �r , obtaining a linear operator Lr : X → X that best
fits Tr in the vicinity of a certain function ϕ. This will be done shortly and is necessary
to rigorously formulate the Feigenbaum constants [15, 27, 63].

Consider the function h defined earlier. Let us make its dependence on the parameter
c explicit and write hc from now on. Clearly hc ∈ �r . Recall the sequences {cn} and {αn}
defined at the conclusion of [1.9.1] for r = 2; analogous sequences can be defined for
arbitrary r > 1. We are interested in the “universality” of iterates of hc as the parameter
c increases to c∞ and as the middle portion of the graph is magnified without bound.
The remarkable limit

lim
n→∞(−αn)n · h2n

cn

(
x

αn
n

)
= ϕ(x)

exists [64–67] and satisfies the Cvitanovic–Feigenbaum functional equation

ϕ(x) = ϕ(1)−1 · ϕ(ϕ(ϕ(1) · x)) = Tr [ϕ](x)

with ϕ ∈ �r,0. See Figure 1.6 for a nice geometric interpretation. Moreover, the solution
ϕ has been proven to be unique if r is an even integer [68–71]. Extending this uniqueness

1

0.5
ϕ(x)

ϕ(ϕ(x))

ϕ(ϕ(ϕ(ϕ(x)))) 0

−0.5
−1 −0.5 0

x

0.5 1

Figure 1.6. Self-similarity of iterates of ϕ are illustrated inside diminishing rectangular windows:
The condition ϕ(1) < 0 reverses orientation.
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result to arbitrary r > 1 is an unsolved challenge [72]. As a consequence, for each r ,
we have α(r ) = −ϕ(1)−1.

Consider now the local linearization (Fréchet derivative) of Tr at the fixed point ϕ:

Lr [ψ](x) = ϕ(1)−1 · {
ϕ′(ϕ(ϕ(1) · x)) · ψ(ϕ(1) · x) + ψ(ϕ(ϕ(1) · x))

+ ψ(1) · [
ϕ′(x) · x − ϕ(x)

]}
.

Then, for each r , δ(r ) is the largest eigenvalue associated with Lr and is, in fact, the
only eigenvalue that lies outside the unit disk. This is the basis for accurate estimates
of δ(r ). Fortunately, only the first two of the three terms in Lr [ψ](x) are needed for
computations [27, 36]. Alternatively, δ(r ) = limn→∞ σn+1/σn , where [45–47]

σn = 1

ξ (1)n

2n−1∑
k=1

ξ k(0) ·
(

k−1∏
j=0

ξ ′(ξ j (0))

)−1

and ξ (x) = ∣∣ϕ(x1/r )
∣∣r

for 0 ≤ x ≤ 1. This formula is attractive, but unfortunately it
is not numerically feasible for high-precision results. More formulas for δ appear
in [73–75].

For period tripling [1.9.1], the analog of the Cvitanovic–Feigenbaum equation [29]

ϕ(x) = ϕ(1)−1 · ϕ(ϕ(ϕ(ϕ(1) · x)))

gives an estimate of α̂, and a linearization of the right-hand side gives δ̂. For planar
maps, a matrix analog applies. Other functional equations will appear shortly.

1.9.4 Golden and Silver Circle Maps

We briefly mention a different example [76–79]:

θn+1 = ka(θn) = θn + a − 1

2π
sin(2πθn),

which can be thought of as a homeomorphic mapping of a circle of circumference 1
onto itself. For any such circle map l, the limit

ρ(l) = lim
n→∞

ln(θ ) − θ

n

exists and is independent of θ . The quantity ρ(l) is called the winding or rotation
number of l. Our interest here is not in period doubling but rather quasiperiodicity:
The subject offers an alternative transition into chaos and is rooted in the tension created
under conditions when ρ is irrational.

Let f1 = f2 = 1, f3 = 2, . . . denote the Fibonacci numbers [1.2], and define se-
quences {an} and {wn} by [80, 81]

k fn
an (0) = fn−1, wn = k fn−1

an (0) − fn−2.

It can be proved that ρ(ka∞ ) = (1 − √
5)/2; hence the family of circle maps kan is

golden and the corresponding Feigenbaum constants are α = 1.2885745539 . . . and
δ = 2.8336106558 . . . . Moreover, for all golden circle maps with a single cubic point
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of inflection, the constants α and δ are universal. If we replace the Fibonacci numbers
by Pell numbers [1.1], then ρ(ka∞ ) = √

2 − 1; hence the family of circle maps kan

is silver with α = 1.5868266790 . . . and δ = 6.7992251609 . . . . Similar universality
holds for cubic silver circle maps; other irrational winding numbers have been studied
too [30]. If, instead, we examine golden circle maps with a single r th-order inflection
point, then functions α(r ) and δ(r ) emerge, satisfying [47, 80, 82–86]

lim
r→∞ α(r ) = 1, lim

r→∞ α(r )r = 3.63600703 . . . ,

α
(

1
r

) = α(r )r for all r > 0, lim
r→∞ δ(r ) = 4.121326 . . . .

It is conjectured, but not yet proven, that δ(1/r ) = δ(r ) for all r .
As with interval maps, certain functional equations provide the numerical key to

precisely computing α(r ) and δ(r ) associated with circle maps [81]:

ϕ(θ ) = ϕ(1)−1 · ϕ(ϕ(ϕ(1)2 · θ ))

for the golden case and

ϕ(θ ) = ϕ(1)−1 · ϕ(ϕ(1) · ϕ(ϕ(ϕ(1)2 · θ )))

for the silver case.
McCarthy [87] compared the two famous functional equations

ϕ(x) · ϕ(y) = ϕ(x + y), ϕ(ϕ(y)) = s−1ϕ(s y).

In the former, multiplication is simply a form of addition; in the latter, self-composition
is just a rescaling. He invoked the appropriate phrase “twentieth-century exponential
function” for a solution of the latter. Research in this area will, however, continue for
many more years.
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1.10 Madelung’s Constant

Consider the square lattice in the plane with unit charges located at integer lattice points
(i, j) �= (0, 0) and of sign (−1)i+ j . The electrostatic potential at the origin due to the
charge at (i, j) is (−1)i+ j/

√
i2 + j2. The total electrostatic potential at the origin due

to all charges is hence [1]

M2 =
∞∑

i, j=−∞
′ (−1)i+ j√

i2 + j2
,

where the prime indicates that we omit (0, 0) from the summation.
How is this infinite lattice sum to be interpreted? This is a delicate issue since the

subseries with i = j is divergent, so the alternating character of the full series needs to
be carefully exploited [2–7]. We may, nonetheless, work with either expanding circles
or with expanding squares and still obtain the same convergent sum [8–15]:

M2 = 4(
√

2 − 1)ζ

(
1

2

)
β

(
1

2

)
= −1.6155426267 . . . ,

where ζ (x) is Riemann’s zeta function [1.6] and β(x) is Dirichlet’s beta function [1.7].
The sum M2 is called Madelung’s constant for a two-dimensional NaCl crystal. Rewrit-
ing lattice sums in terms of well-known functions as such is essential because conver-
gence rates otherwise are extraordinarily slow.

The three-dimensional analog

M3 =
∞∑

i, j,k=−∞
′ (−1)i+ j+k√

i2 + j2 + k2

is trickier because, surprisingly, the expanding-spheres method for summation leads to
divergence! This remarkable fact was first noticed by Emersleben [16]. Using expanding
cubes instead, we obtain the Benson–Mackenzie formula [17, 18]

M3 = −12π

∞∑
m,n=1

sech
(π

2

√
(2m − 1)2 + (2n − 1)2

)2
= −1.7475645946 . . . ,

which is rapidly convergent. Of many possible reformulations, there is a formula due
to Hautot [19]

M3 = π

2
− 9

2
ln(2) + 12

∞∑
m,n=1

(−1)m
csch

(
π

√
m2 + n2

)
√

m2 + n2
,

that is not quite as fast but is formally consistent with other lattice sums we discuss later.
The quantity M3 is called Madelung’s constant for a three-dimensional NaCl crystal
or, more simply, Madelung’s constant. Note that, in their splendid survey, Glasser &



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-01 CB503/Finch-v2.cls December 9, 2004 13:35 Char Count=

1.10 Madelung’s Constant 77

Zucker [20] called ±2M3 the same, so caution should be exercised when reviewing the
literature. Other representations of M3 appear in [21–23].

The four-, six-, and eight-dimensional analogs can also be found [24]:

M4 =
∞∑

i, j,k,l=−∞
′ (−1)i+ j+k+l√

i2 + j2 + k2 + l2
= −8

(
5 − 3

√
2
)

ζ

(
1

2

)
ζ

(
−1

2

)

= −1.8393990840 . . . ,

M6 = 3

π2

[
4

(√
2 − 1

)
ζ

(
1

2

)
β

(
5

2

)
−

(
4
√

2 − 1
)

ζ

(
5

2

)
β

(
1

2

)]

= −1.9655570390 . . . ,

M8 = 15

4π3

(
8
√

2 − 1
)

ζ

(
1

2

)
ζ

(
7

2

)
= −2.0524668272 . . . .

A general result due to Borwein & Borwein [4] shows that the n-dimensional ana-
log of Madelung’s constant is convergent for any n ≥ 1. Of course, M1 = −2 ln(2).
Rapidly convergent series expressions for M5 = −1.9093378156 . . . or M7 =
−2.0124059897 . . . seem elusive [25]. It is known, however, that for all n,

Mn = 1√
π

∞∫
0

{( ∞∑
k=−∞

(−1)ke−k2t

)n

− 1

}
dt√

t
,

from which high-precision numerical computations are possible [26, 27]. Using this
integral, it can be proved [28] that Mn ∼ −√

4 ln(n)/π as n → ∞.
There are many possible variations on these lattice sums. One could, for example,

remove the square root in the denominator and obtain [15, 20]

N1 =
∞∑

i=−∞
′ (−1)i

i2
= −π2

6
, N2 =

∞∑
i, j=−∞

′ (−1)i+ j

i2 + j2
= −π ln(2),

N3 =
∞∑

i, j,k=−∞
′ (−1)i+ j+k

i2 + j2 + k2

= π2

3
− π ln(2) − π√

2
ln

(
2(

√
2 + 1)

)
+ 8π

∞∑
m,n=1

(−1)n
csch

(
π

√
m2 + 2n2

)
√

m2 + 2n2

= −2.5193561520 . . . ,

N4 =
∞∑

i, j,k,l=−∞
′ (−1)i+ j+k+l

i2 + j2 + k2 + l2
= −4 ln(2),

with asymptotics Nn ∼ − ln(n) determined similarly. One could alternatively perform
the summation over a different lattice; for example, a regular hexagonal lattice in the
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plane rather than the square lattice [2, 7], with basis vectors (1, 0) and (1/2,
√

3/2).
This yields the expression

H2 = 4

3

∞∑
i, j=−∞

′ sin((i + 1)θ ) sin(( j + 1)θ ) − sin(iθ ) sin(( j − 1)θ )√
i2 + i j + j2

,

where θ = 2π/3, which may be rewritten as

H2 = −3
(√

3 − 1
)

ζ

(
1

2

)

×
(

1 − 1√
2

+ 1√
4

− 1√
5

+ 1√
7

− 1√
8

+ 1√
10

− 1√
11

+ − · · ·
)

= 1.5422197217 . . . .

This is Madelung’s constant for the planar hexagonal lattice; the three-dimensional
analog H3 of this perhaps has a chemical significance akin to M3. If we remove the
square root in the denominator as well, then

K2 = 4

3

∞∑
i, j=−∞

′ sin((i + 1)θ ) sin(( j + 1)θ ) − sin(iθ ) sin(( j − 1)θ )

i2 + i j + j2
=

√
3π ln(3).

A lattice sum generalization of the Euler–Mascheroni constant [1.5] appears in
[1.10.1]. This, by the way, has no connection with different extensions due to Stieltjes
[2.21] or to Masser and Gramain [7.2].

Forrester & Glasser [29] discovered that

∞∑
i, j,k=−∞

(−1)i+ j+k√(
i − 1

6

)2 + (
j − 1

6

)2 + (
k − 1

6

)2
=

√
3,

which may be as close to an exact evaluation of M3 as possible (in the sense that no such
formula is known at any point closer to the origin). Some variations involving trigono-
metric functions were explored in [30, 31]. There are many more relevant summations
available than we can possibly give here [20, 32].

1.10.1 Lattice Sums and Euler’s Constant

For any integer p ≥ 2, define

�(n, p) =
n∑

i1,i2,...,i p=−n

′ 1√
i2
1 + i2

2 + · · · + i2
p

−
n+ 1

2∫
x1,x2,...,x p=−n− 1

2

dx1dx2 · · · dx p√
x2

1 + x2
2 + · · · + x2

p

.

The integral converges in spite of the singularity at the origin. In two dimensions, we
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have [33]

�(n, 2) =
n∑

i, j=−n

′ 1√
i2 + j2

− 4 ln

(√
2 + 1√
2 − 1

) (
n + 1

2

)

→ 4ζ

(
1

2

)
β

(
1

2

)

=
(√

2 + 1
)

M2 = −3.9002649200 . . . = δ2

as n → ∞. It is interesting that if we define a function

f (z) =
∞∑

i, j=−∞
′ 1

(i2 + j2)z
, Re(z) > 1,

then f can be analytically continued to a function F over the whole complex plane
via the formula F(z) = 4ζ (z)β(z) with just one singularity, a simple pole, at z = 1. So
although the lattice sum f (1/2) = ∞, we have δ2 = F(1/2) = −3.90026 . . . ; that is,
the integral “plays no role” in the final answer.

In the same way, by starting with the function

g(z) =
∞∑

i, j,k=−∞
′ 1

(i2 + j2 + k2)z
, Re(z) >

3

2
,

g can be analytically continued to a function G that is analytic everywhere except for a
simple pole at z = 3/2. Unlike the two-dimensional case, however, we here have [33]

�(n, 3) =
n∑

i, j,k=−n

′ 1√
i2 + j2 + k2

− 12

(
−π

6
+ ln

(√
3 + 1√
3 − 1

)) (
n + 1

2

)2

→ G

(
1

2

)
+ π

6

= −2.3136987039 . . . = δ3

as n → ∞; that is, here the integral does play a role and a “correction term” π/6 is
needed. A fast expression for evaluating G(1/2) is [20, 34]

G

(
1

2

)
= 7π

6
− 19

2
ln(2) + 4

∞∑
m,n=1

[
3 + 3(−1)m + (−1)m+n

] csch
(
π

√
m2 + n2

)
√

m2 + n2

= −2.8372974794 . . . ,

which bears some similarity to Hautot’s formula for M3.
Now define, for any integer p ≥ 1,

γp = lim
n→∞


 n∑

i1,i2,...,i p=1

1√
i2
1 + i2

2 + · · · + i2
p

−
n∫

x1,x2,...,x p=1

dx1dx2 · · · dx p√
x2

1 + x2
2 + · · · + x2

p


 .

Everyone knows that γ1 = γ is the Euler–Mascheroni constant [1.5], but comparatively
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few people know that [35–37]

γ2 = 1

4

{
δ2 + 2 ln

(√
2 + 1√
2 − 1

)
− 4γ1

}
= −0.6709083078 . . . ,

γ3 = 1

8

{
δ3 + 3

[
−π

6
+ ln

(√
3 + 1√
3 − 1

)]
+ 12γ2 − 6γ1

}
= 0.5817480456 . . . .

No one has computed the value of γp for any p ≥ 4.
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1.11 Chaitin’s Constant

Here is a brief discussion of algorithmic information theory [1–4]. Our perspective is
number-theoretic and our treatment is informal: We will not attempt, for example, to
define “computer” (Turing machine) here.

A diophantine equation involves a polynomial p(x1, x2, . . . , xn) with integer co-
efficients. Hilbert’s tenth problem asked for a general algorithm that could ascertain
whether p(x1, x2, . . . , xn) = 0 has positive integer solutions x1, x2, . . . , xn , given ar-
bitrary p. The work of Matiyasevic, Davis, Putnam, and Robinson [5] culminated in
a proof that no such algorithm can exist. In fact, one can find a universal diophan-
tine equation P(N , x1, x2, . . . , xn) = 0 such that, by varying the parameter N , the
corresponding set DN of solutions x can be any recursively enumerable set of positive
integers. Equivalently, any set of positive integers x that could possibly be the output
of a deterministic computer program must be DN for some N . The existence of P
is connected to Gödel’s incompleteness theorem in mathematical logic and Turing’s
negative solution of the halting problem in computability theory.

Now, define a real number A in terms of its binary expansion 0.A1 A2 A3 . . . as
follows:

AN =
{

1 if DN �= ∅,

0 if DN = ∅.
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There is no algorithm for deciding, given arbitrary N , whether AN = 1 or 0, so A is an
uncomputable real number. Is it possible to say more about A?

There is an interesting interplay between computability and randomness. We say that
a real number z is random if the first N bits of z cannot be compressed into a program
shorter than N bits. It follows that the successive bits of z cannot be distinguished
from the result of independent tosses of a fair coin. The thought that randomness might
occur in number theory staggers the imagination. No computable real number z is
random [6, 7]. It turns out that A is not random either! We must look a little harder to
find unpredictability in arithmetic.

An exponential diophantine equation involves a polynomial q(x1, x2, . . . , xn) with
integer coefficients as before, with the added freedom that there may be certain positive
integers c and 1 ≤ i < j ≤ n for which x j = cxi , and there may be certain 1 ≤ i ≤ j <

k ≤ n for which xk = x
x j

i . That is, exponents are allowed to be variables as well. Starting
with the work of Jones and Matiyasevic, Chaitin [6, 7] found an exponential diophantine
equation Q(N , x1, x2, . . . , xn) = 0 with the following remarkable property. Let EN

denote the set of positive integer solutions x of Q = 0 for each N . Define a real
number � in terms of 0.�1�2�3 . . . as follows:

�N =
{

1 if EN is infinite,
0 if EN is finite.

Then � is not merely uncomputable, but it is random too! So although the equation
P = 0 gave us uncomputable A, the equation Q = 0 gives us random �; this provides
our first glimpse of genuine uncertainity in mathematics [8–10].

Chaitin explicitly wrote down his equation Q = 0, which has 17000 variables and
requires 200 pages for printing. The corresponding constant � is what we call Chaitin’s
constant. Other choices of the expression Q are possible and thus other random � exist.
The basis for Chaitin’s choice of Q is akin to Gödel numbering - Chaitin’s modified
LISP implementations make this very concrete - but the details are too elaborate to
explain here.

Chaitin’s constant is the halting probability of a certain self-delimiting universal
computer. A different machine will, as before, usually give a different constant. So
whereas Turing’s fundamental result is that the halting problem is unsolvable, Chaitin’s
result is that the halting probability is random. We have a striking formula [2–4]:

� =
∑
π

2−|π |,

the infinite sum being over all self-delimiting programs π that cause Chaitin’s universal
computer to eventually halt. Here |π | denotes the length of π (thinking of programs as
strings of bits).

It turns out that the first several bits of Chaitin’s original � are known and all are ones
thus far. This observation gives rise to some interesting philosophical developments.
Assume that ZFC (Zermelo–Fraenkel set theory, coupled with the Axiom of Choice) is
arithmetically sound. That is, assume any theorem of arithmetic proved by ZFC is true.
Under this condition, there is an explicit finite bound on the number of bits of � that
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ZFC can determine. Solovay [11, 12] dramatically constructed a worst-case machine U
for which ZFC cannot calculate any bits of �(U ) at all! Further, ZFC cannot predict
more than the initial block of ones for any Chaitin constant �; although the k th bit may
be a zero in truth, this fact is unprovable in ZFC. As Calude [13] wrote, “As soon as
you get a 0, it’s all over”. Solovay’s � starts with a zero; hence it is unknowable. More
recently, a procedure for computing the first 64 bits of such an � was implemented [14]
via the construction of a non-Solovay machine V that satisfies �(V ) = �(U ) but is
more manageable than U .

It is also known that the set of computably enumerable, random reals coincides
with the set of all halting probabilities � of Chaitin universal computers [15–17].
Is it possible to define a “simpler” random � whose description would not be so
complicated as to strain credibility? The latter theorem states that all such numbers
have a Diophantine representation Q = 0; whether we can significantly reduce the size
of the equation remains an open question.
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2

Constants Associated with Number Theory

2.1 Hardy–Littlewood Constants

The sequence of prime numbers 2, 3, 5, 7, 11, 13, 17, . . . has fascinated mathemati-
cians for centuries. Consider, for example, the counting function

Pn =
∑
p≤n

1 = the number of primes ≤ n,

where the sum is over all primes p. We write Pn(p) = Pn , and the motivation behind this
unusual notation will become clear momentarily. It was not until 1896 that Hadamard
and de la Vallée Poussin (building upon the work of many) proved what is known as
the Prime Number Theorem:

Pn(p) ∼ n

ln(n)

as n → ∞. For every problem that has been solved in prime number theory, however,
there are several that remain unsolved. Two of the most famous problems are the
following:

Goldbach’s Conjecture. Every even number > 2 can be expressed as a sum of two
primes.

Twin Prime Conjecture. There are infinitely many primes p such that p + 2 is also
prime.

The latter can be rewritten in the following way:

If Pn(p, p + 2) is the number of twin primes with the lesser of the two ≤ n, then
limn→∞ Pn(p, p + 2) = ∞.

Striking theoretical progress has been achieved toward proving these conjectures,
but insurmountable gaps remain. We focus on certain heuristic formulas, developed
by Hardy & Littlewood [1]. These formulas attempt to answer the following question:
Putting aside the existence issue, what is the distribution of primes satisfying various

84
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additional constraints? In essence, one desires asymptotic distributional formulas anal-
ogous to that in the Prime Number Theorem.

Extended Twin Prime Conjecture [2–6].

Pn(p, p + 2) ∼ 2Ctwin
n

ln(n)2
,

where Ctwin =
∏
p>2

p(p − 2)

(p − 1)2
= 0.6601618158 . . . = 1

2
(1.3203236316 . . .).

Conjectures involving two different kinds of prime triples [2].

Pn(p, p + 2, p + 6) ∼ Pn(p, p + 4, p + 6) ∼ D
n

ln(n)3
,

where D = 9

2

∏
p>3

p2(p − 3)

(p − 1)3
= 2.8582485957 . . . .

Conjectures involving two different kinds of prime quadruples [2].

Pn(p, p + 2, p + 6, p + 8) ∼ 1

2
Pn(p, p + 4, p + 6, p + 10) ∼ E

n

ln(n)4
,

where E = 27

2

∏
p>3

p3(p − 4)

(p − 1)4
= 4.1511808632 . . . .

Conjecture involving primes of the form m2+1 [3, 4, 7–9]. If Qn is defined to be the
number of primes p ≤ n satisfying p = m2 + 1 for some integer m, then

Qn ∼ 2Cquad

√
n

ln(n)
,

where Cquad = 1

2

∏
p>2

(
1 − (−1)

p−1
2

p − 1

)
= 0.6864067314 . . . = 1

2
(1.3728134628 . . .).

Extended Goldbach Conjecture [3, 4, 10, 11]. If Rn is defined to be the number of
representations of an even integer n as a sum of two primes (order counts), then

Rn ∼ 2Ctwin ·
∏
p>2
p|n

p − 1

p − 2
· n

ln(n)2
,

where the product is over all primes p dividing n.

It is intriguing that both the Extended Twin Prime Conjecture and the Extended Gold-
bach Conjecture involve the same constant Ctwin. It is often said that the Goldbach
conjecture is “conjugate” to the Twin Prime conjecture [12]. We talk about recent
progress in estimating Qn [2.1.1] and in estimating Rn [2.1.2]. Shah & Wilson [13]
extensively tested the asymptotic formula for Rn; thus Ctwin is sometimes called the
Shah–Wilson constant [14]. A formula for computing Ctwin is given in [2.4].
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The Hardy–Littlewood constants discussed here all involve infinite products over
primes. Other such products occur in our essays on the Landau–Ramanujan constant
[2.3], Artin’s constant [2.4], the Hafner–Sarnak–McCurley constant [2.5], Bateman–
Grosswald constants [2.6.1], Euler totient constants [2.7], and Pell–Stevenhagen con-
stants [2.8].

Riesel [2] discussed prime constellations, which generalize prime triples and quadru-
ples, and demonstrated how one computes the corresponding Hardy–Littlewood con-
stants. He emphasized the remarkable fact that, although we do not know the sequence
of primes in its entirety, we can compute Hardy–Littlewood constants to any decimal
accuracy due to a certain transformation in terms of Riemann’s zeta function ζ (x) [1.6].

There is a cubic analog [2.1.3] of the conjecture for prime values taken by the pre-
ceding quadratic polynomial. Incidently, if we perturb the product 2Cquad only slightly,
we obtain a closed-form expression:

∏
p>2

(
1 − (−1)

p−1
2

p

)
= 4

π
= 1

β(1)
,

where β(x) is Dirichlet’s beta function [1.7].
Mertens’ well-known formula gives [2.2]

lim
n→∞

1

ln(n)

∏
2<p<n

p

p − 1
= 1

2
eγ = 0.8905362089 . . . ,

where γ is the Euler–Mascheroni constant [1.5]. Here is a less famous result [15–17]:

lim
n→∞

1

ln(n)2

∏
2<p<n

p

p − 2
= 1

4Ctwin
e2γ = 1.2013035599 . . . = 1

0.8324290656 . . .
.

Here also is an extension of Ctwin = C2 introduced by Hardy & Littlewood [16–20]:

Cn =
∏
p>n

(
p

p − 1

)n−1 p − n

p − 1
=

∏
p>n

(
1 − 1

p

)−n (
1 − n

p

)
,

for which C3 = 0.6351663546 . . . = 2D/9, C4 = 0.3074948787 . . . = 2E/27, C5 =
0.4098748850 . . . , C6 = 0.1866142973 . . . , and C7 = 0.3694375103 . . . .

In a study of Waring’s problem, Bateman & Stemmler [21–24] examined the con-
jecture

Pn(p, p2 + p + 1) ∼ H
n

ln(n)2
,

where

H = 1

2

∏
p

(
1 − 1

p

)−2 (
1 − 2 + χ (p)

p

)
= 1.5217315350 . . . = 2 · 0.7608657675 . . .

andχ (p) = −1, 0, 1 accordingly as p ≡ −1, 0, 1 mod 3, respectively. See also [25–28].
We give two problems vaguely related to Goldbach’s conjecture. Let f (n) denote

the number of representations of n as the sum of one or more consecutive primes.
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For example, f (41) = 3 since 41 = 11 + 13 + 17 = 2 + 3 + 5 + 7 + 11 + 13. Moser
[29] proved that

lim
N→∞

1

N

N∑
n=1

f (n) = ln(2) = 0.6931471805 . . . .

Let g(n) denote the number of integers not exceeding n that can be represented as a
sum of a prime and a power of 2. Romani [30] numerically investigated the ratio g(n)/n
and concluded that the asymptotic density of such integers is 0.434 . . . .

2.1.1 Primes Represented by Quadratics

We defined Qn earlier. Let Q̃n be the number of positive integers k ≤ n having ≤2
prime factors and satisfying k = m2 + 1 for some integer m. Hardy & Littlewood’s
conjecture regarding the limiting behavior of Qn remains unproven; some supporting
numerical work appeared long ago [31, 32]. Iwaniec, however, recently demonstrated
the asymptotic inequality [4, 33]

Q̃n >
1

77
· 2Cquad ·

√
n

ln(n)
= 0.0178 . . . ·

√
n

ln(n)
,

which shows that there are infinitely many almost primes of the required form. His
results extend to any irreducible quadratic polynomial am2 + bm + c with a > 0 and
c odd. A good upper bound on Qn does not seem to be known.

Shanks [32] mentioned a formula

Cquad = 3

4G

ζ (6)

ζ (3)

∏
p≡1 mod 4

(
1 + 2

p3 − 1

) (
1 − 2

p(p − 1)2

)
,

where G = β(2) is Catalan’s constant [1.7]. He added that more rapid convergence may
be obtained by multiplying through by the identity

1 = 17

16

ζ (8)

ζ (4)β(4)

∏
p≡1 mod 4

(
1 + 2

p4 − 1

)
.

2.1.2 Goldbach’s Conjecture

Some progress has been made recently in proving Goldbach’s conjecture, that is, in
turning someone’s guess into a theorem. Here are both binary and ternary versions:

Conjecture G. Every even integer > 2 can be expressed as a sum of two primes.

Conjecture G′. Every odd integer > 5 can be expressed as a sum of three primes.

Note that if G is true, then G′ is true. Here are the corresponding asymptotic versions:

Conjecture AG. There exists N so large that every even integer > N can be expressed
as a sum of two primes.

Conjecture AG′. There exists N ′ so large that every odd integer > N ′ can be expressed
as a sum of three primes.
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The circle method of Hardy & Littlewood [1] led Vinogradov [34] to prove that AG′ is
true; moreover, he showed that

Sn ∼
∏

p

(
1 + 1

(p − 1)3

)
·
∏
p>2
p|n

(
1 − 1

p2 − 3p + 3

)
· n2

2 ln(n)3
,

where Sn is the number of representations of the large odd integer n as a sum of three
primes. Observe that this is not a conjecture, but a theorem. Further, Borodzkin [35]
showed that Vinogradov’s number N ′ could be taken to be 3315 ≈ 107000000 and Chen
& Wang [36, 37] improved this to 107194. It is not possible with today’s technology
to check all odd integers up to this threshold and hence deduce G′. But by assuming
the truth of a generalized Riemann hypothesis, the number N ′ was reduced to 1020 by
Zinoviev [38], and Saouter [39] and Deshouillers et al. [40] successfully diminished
N ′ to 5. Therefore G′ is true, subject to the truth of a generalized Riemann hypothesis.

We do not have any analogous conditional proof for AG or for G. Here are two
known weakenings of these:

Theorem (Ramaré [41, 42]). Every even integer can be expressed as a sum of six or
fewer primes (in other words, Schnirelmann’s number is ≤ 6).

Theorem (Chen [11, 12, 43, 44]). Every sufficiently large even integer can be expressed
as a sum of a prime and a positive integer having ≤ 2 prime factors.

In fact, Chen proved the asymptotic inequality

R̃n > 0.67 ·
∏
p>2

(
1 − 1

(p − 1)2

)
·
∏
p>2
p|n

p − 1

p − 2
· n

ln(n)2
,

where R̃n is the number of corresponding representations. Chen also proved that there
are infinitely many primes p such that p + 2 is an almost prime, a weakening of the
twin prime conjecture, and the same coefficient 0.67 appears.

Here are additional details on these results. Kaniecki [45] proved that every odd
integer can be expressed as a sum of at most five primes, under the condition that the
Riemann hypothesis is true. With a large amount of computation, this will eventually
be improved to at most four primes. By way of contrast, Ramaré’s result that every even
integer is a sum of at most six primes is unconditional (not dependent on the Riemann
hypothesis).

Vinogradov’s result may be rewritten as

liminf
n→∞

ln(n)3

n2
Sn = 1

2

∏
p

(
1 + 1

(p − 1)3

)
·
∏
p>2

(
1 − 1

p2 − 3p + 3

)
= Ctwin

= 0.6601618158 . . . ,

limsup
n→∞

ln(n)3

n2
Sn = 1

2

∏
p

(
1 + 1

(p − 1)3

)
= 1.1504807723 . . . .
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That is, although S(n) is asymptotically misbehaved, its growth remains within the
same order of magnitude. This cannot be said for Chen’s result:

liminf
n→∞

ln(n)2

n
R̃n > 0.67 · Ctwin = 0.44,

limsup
n→∞

ln(n)

n
R̃n > 0.67 · 1

2
eγ = 0.59.

Note that the limit superior bound grows at a logarithmic factor faster than the limit
inferior bound. We have made use of Mertens’ formulas in obtaining these expressions.

Chen’s coefficient 0.67 for the Goldbach conjecture [43] was replaced by 0.81 in
[46] and by 2 in [11]. His inequality for the twin prime conjecture can likewise be
improved; the sharpenings in this case include 1.42 in [47], 1.94 in [48], 2.03 in [49],
and 2.1 in [50].

Chen [51], building upon [52–54], proved the upper bound

Rn ≤ 7.8342 ·
∏
p>2

(
1 − 1

(p − 1)2

)
·
∏
p>2
p|n

p − 1

p − 2
· n

ln(n)2
.

Pan [55] gave a simpler proof but a weaker result with coefficient 7.9880. Improvements
on the corresponding coefficient 7.8342 for twin primes include 7.8156 in [56], 7.5555
in [57], 7.5294 in [58], 7 in [59], 6.9075 in [47], 6.8354 in [50], and 6.8325 in [60]. (A
claimed upper bound of 6.26, mentioned in [3] and in the review of [50], was incorrect.)

Most of the sharpenings for twin primes are based on [59], which does not apply to
the Goldbach conjecture for complicated reasons.

There is also a sense in which the set of possible counterexamples to Goldbach’s
conjecture must be small [61–66]. The number ε(n) of positive even integers ≤ n that
are not sums of two primes provably satisfies ε(n) = o

(
n0.914

)
as n → ∞. Of course,

we expect ε(n) = 1 for all n ≥ 2. See also [67–69].

2.1.3 Primes Represented by Cubics

Hardy & Littlewood [1] conjectured that there exist infinitely many primes of the form
m3 + k, where the fixed integer k is not a cube. Further, if Tn is defined to be the number
of primes p ≤ n satisfying p = m3 + 2 for some integer m, then

lim
n→∞

ln(n)
3
√

n
Tn = A =

∏
p≡1 mod 6

p − α(p)

p − 1
= 1.2985395575 . . . ,

where

α(p) =
{

3 if 2 is a cubic residue mod p (i.e., if x3 ≡ 2 mod p is solvable),
0 otherwise.
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Likewise, if Un is defined to be the number of primes p ≤ n satisfying p = m3 + 3 for
some integer m, then

lim
n→∞

ln(n)
3
√

n
Un = B =

∏
p≡1 mod 6

p − β(p)

p − 1
= 1.3905439387 . . . ,

where

β(p) =
{

3 if 3 is a cubic residue mod p (i.e., if x3 ≡ 3 mod p is solvable),
0 otherwise.

The constants A and B are known as Bateman’s constants and were first computed to
high precision by Shanks & Lal [3, 22, 70, 71].

Here is an example involving a quartic [72]. If Vn is defined to be the number of
primes p ≤ n satisfying p = m4 + 1 for some integer m, then

lim
n→∞

ln(n)
4
√

n
Vn = 4I = 2.6789638796 . . . ,

where

I = π2

16 ln(1 + √
2)

∏
p≡1 mod 8

(
1 − 4

p

) (
p + 1

p − 1

)2

= 0.6697409699 . . . .

It seems appropriate to call this Shanks’ constant. Similar estimates for primes of the
form m5 + 2 or m5 + 3 evidently do not appear in the literature.

The Bateman–Horn conjecture [3, 21, 73] extends this theory to polynomials of
arbitrary degree. It also applies in circumstances when several such polynomials must
simultaneously be prime. For example [74–77], if Fn is defined to be the number of
prime pairs of the form (m − 1)2 + 1 and (m + 1)2 + 1 with the lesser of the two ≤ n,
then

lim
n→∞

ln(n)2

√
n

Fn = 4J = 1.9504911124 . . . ,

where

J = π2

8

∏
p≡1 mod 4

(
1 − 4

p

) (
p + 1

p − 1

)2

= 0.4876227781 . . . .

Note that Fn is also the number of Gaussian twin primes (m − 1 + i, m + 1 + i) situated
on the line x + i in the complex plane; hence J might be called the Gaussian twin
prime constant. (These are not all Gaussian twin primes in the plane: On the line
x + 2i , consider m = 179984.)

As another example, if Gn is defined to be the number of prime pairs of the form
(m − 1)4 + 1 and (m + 1)4 + 1 with the lesser of the two ≤ n, then

lim
n→∞

ln(n)2

4
√

n
Gn = 16K = 12.6753318106 . . . ,
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where

K = 2I 2
∏

p≡1 mod 8

p(p − 8)

(p − 4)2
= 0.7922082381 . . . .

The latter is known as Lal’s constant. Sebah [77] computed this and many of the
constants in this essay.
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2.2 Meissel–Mertens Constants

All of the infinite series discussed here and in [2.14] involve reciprocals of the prime
numbers 2, 3, 5, 7, 11, 13, 17, . . . . The sum of the reciprocals of all primes is divergent
and, in fact [1–6],

lim
n→∞

(∑
p≤n

1

p
− ln(ln(n))

)
= M = γ +

∑
p

[
ln

(
1 − 1

p

)
+ 1

p

]
= 0.2614972128 . . . ,

where both sums are over all primes p and where γ is Euler’s constant [1.5]. Accord-
ing to [7, 8], the definition of M was confirmed to be valid by Meissel in 1866 and
independently by Mertens in 1874. The quantity M is sometimes called Kronecker’s
constant [9] or the prime reciprocal constant [10]. A rapidly convergent series for M
is [11–13]

M = γ +
∞∑

k=2

µ(k)

k
ln(ζ (k)),

where ζ (k) is the Riemann zeta function [1.6] and µ(k) is the Möbius mu function

µ(k) =



1 if k = 1,

(−1)r if k is a product of r distinct primes,
0 if k is divisible by a square > 1.

If ω(n) denotes the number of distinct prime factors of an arbitrary integer n, then
interestingly the average value of ω(1), ω(2), . . . , ω(n):

En(ω) = 1

n

n∑
k=1

ω(k)

can be expressed asymptotically via the formula [2, 9, 14–16]

lim
n→∞ (En(ω) − ln(ln(n))) = M.

A somewhat larger average value for the total number, 	(n), of prime factors of n
(repeated factors counted) is as follows:

M ′ = lim
n→∞ (En(	) − ln(ln(n))) = M +

∑
p

1

p(p − 1)

= γ +
∑

p

[
ln

(
1 − 1

p

)
+ 1

p − 1

]
= γ +

∞∑
k=2

ϕ(k)

k
ln(ζ (k))

= 1.0346538818 . . . ,

where ϕ(k) is the Euler totient function [2.7]. A related limit [1, 17] is

lim
n→∞

(∑
p≤n

ln(p)

p
− ln(n)

)
= −M ′′ = −γ −

∑
p

ln(p)

p(p − 1)
= −1.3325822757 . . . ,
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and a fast way to compute M ′′ uses the series [18]

M ′′ = γ +
∞∑

k=2

µ(k)
ζ ′(k)

ζ (k)
.

Dirichlet’s famous theorem states that if a and b are coprime positive integers then
there exist infinitely many prime numbers of the form a + bl. What can be said about
the sum of the reciprocals of all such primes? The limit

ma,b = lim
n→∞


 ∑

p≤n
p≡a mod b

1

p
− 1

ϕ(b)
ln(ln(n))




can be shown to exist and is finite for each a and b. For example [19–23],

m1,4 = ln

(√
π

4K

)
+ γ

2
+

∑
p≡1 mod 4

[
ln

(
1 − 1

p

)
+ 1

p

]
= −0.2867420562 . . . ,

m3,4 = ln

(
2K√

π

)
+ γ

2
+

∑
p≡3 mod 4

[
ln

(
1 − 1

p

)
+ 1

p

]
= 0.0482392690 . . . ,

where K is the Landau–Ramanujan constant [2.3]. Of course, m1,4 + m3,4 + 1/2 = M .
The sum of the squared reciprocals of primes is

N =
∑

p

1

p2
=

∞∑
k=1

µ(k)

k
ln(ζ (2k)) = 0.4522474200 . . . ,

which is connected to the variance of ω(1), ω(2), . . . , ω(n):

Varn(ω) = En(ω2) − En(ω)2

via the formula [9, 14]

lim
n→∞ (Varn(ω) − ln(ln(n))) = M − N − π2/6 = −1.8356842740 . . . .

Likewise,

N ′ =
∑

p

1

(p − 1)2
= 1.3750649947 . . .

appears in the following:

lim
n→∞ (Varn(	) − ln(ln(n))) = M ′ + N ′ − π2/6 = 0.7647848097 . . . .

See [15, 24] for detailed accounts of evaluating N and N ′ and [25–27] for the asymptotic
probability distributions of ω and 	.

Given a positive integer n, let Dn = max{d : d2|n}. Define S to be the set of n such
that Dn is prime, and define S̃ to be the set of n ∈ S such that D3

n � |n. The asymptotic
densities of S and S̃ are, respectively [28–30],

6

π2

∑
p

1

p2
= 0.2749334633 . . . ,

6

π2

∑
p

1

p(p + 1)
= 0.2007557220 . . . .
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In words, S is the set of integers, each of whose prime factors are simple with exactly
one exception; in S̃, the exception must be a prime squared. See related discussions of
square-free sets [2.5] and square-full sets [2.6].

Bach [12] estimated the computational complexity of calculating M , as well as
Artin’s constant CArtin [2.4] and the twin prime constant Ctwin [2.1].

The alternating series
∞∑

k=1

(−1)k 1

pk
= −0.2696063519 . . . ,

where p1 = 2, p2 = 3, p3 = 5, . . . , is clearly convergent [31]. This is perhaps not so
interesting as the two non-alternating series [32–35]

∞∑
k=2

εk
1

pk
= 0.3349813253 . . . ,

∞∑
k=1

ε′
k

1

pk
= 0.6419448385 . . . ,

where

εk =
{−1 if pk ≡ 1 mod 4,

1 if pk ≡ 3 mod 4,
ε′

k =



−1 if pk ≡ 1 mod 3,

1 if pk ≡ 2 mod 3,

0 if pk ≡ 0 mod 3.

Of course, the following is also convergent [36]:
∞∑

k=2

εk
1

p2
k

= 0.0946198928 . . . .

Erdös [37, 38] wondered if the same is true for the series
∑∞

k=1(−1)kk/pk .
Merrifield [39] and Lienard [40] tabulated values of the series

∑
p p−n for 2 ≤ n ≤

167, as well as M and γ − M = 0.3157184521 . . . .

2.2.1 Quadratic Residues

Let f (p) denote the smallest positive quadratic nonresidue modulo p, where p is prime.
The average value of f (p) is [41, 42]

lim
n→∞

∑
p≤n

f (p)

∑
p≤n

1
= lim

n→∞
ln(n)

n

∑
p≤n

f (p) =
∞∑

k=1

pk

2k
= 3.6746439660 . . . .

More generally, if m is odd, let f (m) denote the least positive integer k for which the
Jacobi symbol (k/m) < 1, where m is nonsquare, and f (m) = 0 if m is square. (If
(k/m) = −1, for example, then k is a quadratic nonresidue modulo m.) The average
value of f (m) is [41, 43, 44]

lim
n→∞

2

n

∑
m≤n
m odd

f (m) = 1 +
∞∑
j=2

p j + 1

2 j−1

j−1∏
i=1

(
1 − 1

pi

)
= 3.1477551485 . . . .
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2.3 Landau–Ramanujan Constant

Let B(x) denote the number of positive integers not exceeding x that can be expressed
as a sum of two integer squares. Clearly B(x) → ∞ as x → ∞, but the rate at which
it does so is quite fascinating!

Landau [1–3] and Ramanujan [4, 5] independently proved that the following limit
exists:

lim
x→∞

√
ln(x)

x
B(x) = K ,
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where K is the remarkable constant

K = 1√
2

∏
p≡3 mod 4

(
1 − 1

p2

)− 1
2

= π

4

∏
p≡1 mod 4

(
1 − 1

p2

) 1
2

and the two products are restricted to primes p. An empirical confirmation of this limit
is found in [6]. Shanks [7, 8] discovered a rapidly convergent expression for K :

K = 1√
2

∞∏
k=1

[(
1 − 1

22k

)
ζ (2k)

β(2k)

] 1
2k+1

= 0.7642236535 . . . ,

where ζ (x) is the Riemann zeta function [1.6] and β(x) is the Dirichlet beta function
[1.7]. A stronger conclusion, due to Landau, is that

lim
x→∞

ln(x)
3
2

K x

(
B(x) − K x√

ln(x)

)
= C,

where C is given by [7, 9–12]

C = 1

2
+ ln(2)

4
− γ

4
− β ′(1)

4β(1)
+ 1

4

d

ds
ln

( ∏
p≡3 mod 4

(
1 − 1

p2s

))∣∣∣∣∣
s=1

= 1

2

(
1 − ln

(
πeγ

2L

))
− 1

4

∞∑
k=1

(
ζ ′(2k)

ζ (2k)
− β ′(2k)

β(2k)
+ ln(2)

22k − 1

)

= 0.5819486593 . . . ,

γ is Euler’s constant [1.5], and L = 2.6220575542 . . . is Gauss’ lemniscate constant
[6.1]. These formulas were the basis for several recent high-precision computations by
Flajolet & Vardi, Zimmermann, Adamchik, Golden & Gosper, MacLeod, and Hare.

2.3.1 Variations

Here are some variations. Define Kn to be the analog of K when counting positive
integers of the form a2 + nb2. Clearly K = K1. Define Cn likewise. It can be proved
that [10, 13–16]

K2 = 1
4
√

2

∏
p≡5 or 7 mod 8

(
1 − 1

p2

)− 1
2

= 0.8728875581 . . . ,

K3 = 1√
2
√

3

∏
p≡2 mod 3

(
1 − 1

p2

)− 1
2

= 0.6389094054 . . . ,

K4 = 3
4 K = 0.5731677401 . . . , C4 = C = 0.5819486593 . . . .

Moree & te Riele [17] recently computed C3 = 0.5767761224 . . . , but no one has yet
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found the value of Cn for n = 2 or n > 4. In the case n = 3, counting positive integers
of the form a2 + 3b2 is equivalent to counting those of the form a2 + ab + b2.

Define instead Kl,m to be the analog of K when counting positive integers simul-
taneously of the form a2 + b2 and lc + m, where l and m are coprime. Here, Kl,m is
simply a rational multiple of K depending on l only [18, 19].

Here are more variations. Let Bsqfr(x) be the number of positive square-free integers
not exceeding x that can be expressed as a sum of two squares. Also, let Bcopr(x) be
the number of positive integers not exceeding x that can be expressed as a sum of two
coprime squares. It can be proved that [20–22]

lim
x→∞

√
ln(x)

x Bsqfr(x) = 6K
π2 = 0.4645922709 . . . ,

lim
x→∞

√
ln(x)

x Bcopr(x) = 3
8K = 0.4906940504 . . . .

A conclusion from the first limit is that being square-free and being a sum of two
squares are asymptotically independent properties. Of course, the two squares must be
coprime; otherwise the sum could not be square-free.

Dividing the first expression by the second expression, we obtain that the asymptotic
relative density of the first set as a subset of the second set is [22]

lim
x→∞

Bsqfr(x)

Bcopr(x)
= 16K 2

π2
=

∏
p≡1 mod 4

(
1 − 1

p2

)
= 0.9468064072 . . . .

This is a large density! On the one hand, if we randomly select two coprime integers,
square them, and then add them, the sum is very likely to be square-free. On the other
hand, there are infinitely many counterexamples: Consider, for example, the primitive
Pythagorean triples [5.2].

Let B j (x) be the number of positive integers up to x , all of whose prime factors are
congruent to j modulo 4, where j = 1 or 3. It can be shown that [20, 21, 23, 24]

lim
x→∞

√
ln(x)

x B1(x) = 1
4K = 0.3271293669 . . . ,

lim
x→∞

√
ln(x)

x B3(x) = 2K
π

= 0.4865198884 . . . .

It is interesting that these are not equal! This is a manifestation of the Chebyshev effect
described by Rubenstein & Sarnak [25]. See [2.8] for a related discussion.

We mention two limits discovered by Uchiyama [26]:

lim
x→∞

√
ln(x)

∏
p≤x

p≡1 mod 4

(
1 − 1

p

)
= 4√

π
exp

(
−γ

2

)
K = 1.2923041571 . . . ,

lim
x→∞

√
ln(x)

∏
p≤x

p≡3 mod 4

(
1 − 1

p

)
=

√
π

2
exp

(
−γ

2

) 1

K
= 0.8689277682 . . . ,

which when multiplied together give Mertens’ famous theorem [2.2]. Extensions of
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these results appear in [27–29]. As corollaries, we have

lim
x→∞

1√
ln(x)

∏
p≤x

p≡1 mod 4

(
1 + 1

p

)
= 4

π
3
2

exp
(γ

2

)
K = 0.7326498193 . . . ,

lim
x→∞

1√
ln(x)

∏
p≤x

p≡3 mod 4

(
1 + 1

p

)
= 1√

π
exp

(γ

2

) 1

K
= 0.9852475810 . . . .

Here are formulas that complement the expression for 16K/π2 earlier:

∏
p≡3 mod 4

(
1 − 1

p2

)
= 1

2K 2
= 0.8561089817 . . . ,

∏
p≡1 mod 4

(
1 + 1

p2

)
= 192K 2G

π4
= 1.0544399448 . . . ,

∏
p≡3 mod 4

(
1 + 1

p2

)
= π2

16K 2G
= 1.1530805616 . . . ,

where G = β(2) denotes Catalan’s constant [1.7]. A similar expression emerges when
dealing with the following situation. Let B̂(x) be the number of positive square-free
integers that belong to the sequence n2 + 1 with 1 ≤ n ≤ x . Then [30, 31]

lim
x→∞

B̂(x)

x
=

∏
p≡1 mod 4

(
1 − 2

p2

)
= 0.8948412245 . . . .

Vast generalizations of this result are described in [32–34].
Let B̃(x) denote the number of positive integers n not exceeding x for which n2

cannot be expressed as a sum of two distinct nonzero squares. Shanks [35, 36] called
these non-hypotenuse numbers, proved that

K̃ = lim
x→∞

√
ln(x)

x
B̃(x) = 4K

π
= 0.9730397768 . . . ,

lim
x→∞

ln(x)
3
2

K̃ x

(
B̃(x) − K̃ x√

ln(x)

)
= C + 1

2
ln

(
πeγ

2L2

)
= 0.7047534517 . . . ,

and also mentioned that a third-order term is known to be positive (but did not compute
this).

Let A(x) denote the number of primes not exceeding x that can be expressed as a
sum of two squares. Since odd primes of the form a2 + b2 are precisely those that are
1 modulo 4, we have

lim
x→∞

ln(x)

x
A(x) = 1

2
.
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Define U (x) to be the number of primes not exceeding x that can be expressed in the
form a2 + b4. Friedlander & Iwaniec [37, 38] proved that

lim
x→∞

ln(x)

x
3
4

U (x) = 4L

3π
= 1.1128357889 . . . .

By coincidence, the constant L appeared in the second-order approximation of B(x)
as well. Drawing inspiration from this achievement, Heath-Brown [39] recently proved
an analogous result for primes of the form a3 + 2b3.

Let V (x) be the number of positive integers not exceeding x that can be expressed
in the form a2 + b4. It turns out that for almost all integers, the required representation
is unique; hence a formula in [38] is applicable and

lim
x→∞ x− 3

4 V (x) = L

3
= 0.8740191847 . . . .

The corresponding asymptotics for positive integers of the form a3 + 2b3 would be
good to see. Related material appears in [40, 41].

Let Q(x) be the number of positive integers not exceeding x that can be expressed
as a sum of three squares. Landau [1] proved that Q(x)/x → 5/6 as x → ∞. The error
term �(x) = Q(x) − 5x/6 is not well behaved asymptotically [42–44], in the sense
that

0 = liminf
x→∞

�(x) < limsup
x→∞

�(x) = 1

3 ln(2)
.

The average value of �(x) can be precisely quantified in terms of a periodic, continuous,
nowhere-differentiable function. More about such formulation is found in [2.16]. The
asymptotics for counts of x of the form a3 + b3 + c3 or a4 + b4 + c4 + d4 remain open
[45].
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2.4 Artin’s Constant

Fermat’s Little Theorem says that if p is a prime and n is an integer not divisible by p,
then n p−1 − 1 is divisible by p.

Consider now the set of all positive integers e such that ne − 1 is divisible by p.
If e = p − 1 is the smallest such positive integer, then n is called a primitive root
modulo p.

For example, 6 is a primitive root mod 11 since none of the remainders of
61, 62, 63, . . . , 69 upon division by 11 are equal to 1; thus e = 10 = 11 − 1. However,
6 is not a primitive root mod 19 since 69 − 1 is divisible by 19 and e = 9 < 19 − 1.

Here is an alternative, more algebraic phrasing. The set Z p = {0, 1, 2, . . . , p −
1} with addition and multiplication mod p forms a field. Further, the subset Up =
{1, 2, . . . , p − 1} with multiplication mod p forms a cyclic group. Hence we see that
the integer n (more precisely, its residue class mod p) is a primitive root mod p if and
only if n is a generator of the group Up.

Here is another interpretation. Let p > 5 be a prime. The decimal expansion of the
fraction 1/p has maximal period (= p − 1) if and only if 10 is a primitive root modulo
p. Primes satisfying this condition are also known as long primes [1–4].

Artin [5] conjectured in 1927 that if n �= −1, 0, 1 is not an integer square, then the
set S(n) of all primes for which n is a primitive root must be infinite. Some remarkable
progress toward proving this conjecture is indicated in [6–9]. For example, it is known
that at least one of the sets S(2), S(3), or S(5) is infinite.

Suppose additionally that n is not an r th integer power for any r > 1. Let n′ denote
the square-free part of n, equivalently, the divisor of n that is the outcome after all
factors of the form d2 have been eliminated. Artin further conjectured that the density
of the set S(n), relative to the primes, exists and equals

CArtin =
∏

p

(
1 − 1

p(p − 1)

)
= 0.3739558136 . . .

independently of the choice of n, if n′ �≡ 1 mod 4. A proof of this incredible conjecture
is still unknown. For other cases, a rational correction factor is needed – see [2.4.2] – but
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Artin’s constant remains the central feature of such formulas. Hooley [10, 11] proved
that such formulas are valid, subject to the truth of a generalized Riemann hypothesis.

A rapidly convergent expression for Artin’s constant is as follows [12–18]. Define
Lucas’ sequence as

l0 = 2, l1 = 1, ln = ln−1 + ln−2 for n ≥ 2

and observe that ln = ϕn + (1 − ϕ)n , where ϕ is the Golden mean [1.2]. Then

CArtin =
∏
n≥2

ζ (n)
− 1

n

∑
k|n lk ·µ

( n
k

)

= ζ (2)−1ζ (3)−1ζ (4)−1ζ (5)−2ζ (6)−2ζ (7)−4ζ (8)−5ζ (9)−8 · · · ,

where ζ (n) is Riemann’s zeta function [1.6] and µ(n) is Möbius’ mu function [2.2]. For
comparison’s sake, here is the analogous expression for the twin prime constant [2.1]:

Ctwin =
∏
n≥2

[(
1 − 1

2n

)
ζ (n)

]− 1
n

∑
k|n 2k ·µ

( n
k

)

=
(

3ζ (2)
4

)−1 (
7ζ (3)

8

)−2 (
15ζ (4)

16

)−3 (
31ζ (5)

32

)−6 (
63ζ (6)

64

)−9 (
127ζ (7)

128

)−18
· · · .

We briefly examine two k-dimensional generalizations of Artin’s constant, omitting
technical details. First, let S(n1, n2, . . . , nk) denote the set of all primes p for which the
integers n1, n2, . . . , nk are simultaneously primitive roots mod p. Matthews [19, 20]
deduced the analog of CArtin corresponding to the density of S(n1, n2, . . . , nk), relative
to the primes [21]:

CMatthews,k =
∏

p

(
1 − pk − (p − 1)k

pk(p − 1)

)
=




0.1473494003 . . . if k = 2,

0.0608216553 . . . if k = 3,

0.0261074464 . . . if k = 4,

which is valid up to a rational correction factor. Second, let N denote the sub-
group of the cyclic group Up generated by the set {n1, n2, . . . , nk} ⊆ Up, and define
S̃(n1, n2, . . . , nk) to be the set of all primes p for which N = Up. Pappalardi [22, 23]
obtained the analog of CArtin corresponding to the density of S̃(n1, n2, . . . , nk), relative
to the primes [17]:

CPappalardi,k =
∏

p

(
1 − 1

pk(p − 1)

)
=




0.6975013584 . . . if k = 2,

0.8565404448 . . . if k = 3,

0.9312651841 . . . if k = 4,

which again is valid up to a rational correction factor. Niklasch & Moree [17] computed
CPappalardi,k and many of the constants in this essay.

In the context of quadratic number fields [24, 25], a suitably extended Artin’s con-
jecture involves CPappalardi,2 as well as the constant

8Ctwin

π2
=

∏
p>2

(
1 − 2

p(p − 1)

)
= 0.5351070126 . . . .
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A generalization to arbitrary algebraic number fields seems to be an open problem. See
[26–28] for a curious variation of CArtin involving Fibonacci primitive roots, and see
[29] likewise for pseudoprimes and Carmichael numbers.

We describe an unsolved problem. Define, for any odd prime p, g(p) to be the least
positive integer that is a primitive root mod p, and define G(p) to be the least prime
that is a primitive root mod p. What are the expected values of g(p) and G(p)? Murata
[21, 30] argued heuristically that g(p) is never very far from

1 + CMurata = 1 +
∏

p

(
1 + 1

(p − 1)2

)
= 3.8264199970 . . .

for almost all p. This estimate turns out to be too low. Empirical data [21, 31, 32] suggest
that E(g(p)) = 4.9264 . . . and E(G(p)) = 5.9087 . . . . There is a complicated infinite
series for E(g(p)) involving Matthews’ constants [21], but it is perhaps computationally
infeasible. See [2.7] for another occurrence of CMurata.

2.4.1 Relatives

Here are some related constants from various parts of number theory. Let nonzero
integers a and b be multiplicatively independent in the sense that ambn �= 1 except
when m = n = 0. Let T (a, b) denote the set of all primes p for which p|(ak − b) for
some nonnegative integer k. Assuming a generalized Riemann hypothesis, Stephens
[33] proved that the density of T (a, b) relative to the primes is

∏
p

(
1 − p

p3 − 1

)
= 0.5759599688 . . .

up to a rational correction factor. Moree & Stevenhagen [34] extended Stephens’ work
and offered adjustments to the correction factors. They further proved uncondition-
ally that the density of T (a, b) must be positive. A rapidly convergent expression for
Stephens’ constant is given in [16, 17].

The Feller–Tornier constant [35–37]

1

2
+ 1

2

∏
p

(
1 − 2

p2

)
= 1

2
+ 3

π2

∏
p

(
1 − 1

p2 − 1

)
= 0.6613170494 . . .

is the density of integers that have an even number of powers of primes in their canonical
factorization. By power, we mean a power higher than the first. Thus 2 · 32 · 53 has two
powers of primes in it and contributes to the density, whereas 3 · 7 · 19 · 312 has one
power of a prime in it and does not contribute to the density.

Consider the set of integer vectors (x0, x1,x2, x3) satisfying the equation x3
0 = x1x2x3

and the constraints 0 < x j ≤ X for 1 ≤ j ≤ 3 and gcd(x1,x2, x3) = 1. What are the
asymptotics of the cardinality, N (X ), of this set as X → ∞? Heath-Brown & Moroz
[38] proved that

lim
X→∞

2880N (X )

X ln(X )6
=

∏
p

(
1 − 1

p7

) (
1 + 7

p
+ 1

p2

)
= 0.0013176411 . . . .

Counting problems such as these for arbitrary cubic surfaces are very difficult.
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Given a positive integer n, let D2
n = n/n′, the largest square divisor of n. De-

fine � to be the set of n such that Dn and n′ are coprime. Then � has asymptotic
density [37]

χ =
∏

p

(
1 − 1

p2(p + 1)

)
= 0.8815138397 . . . .

Interestingly, the constant χ appears in the following as well.
If d is the fundamental discriminant of an imaginary quadratic field (d < 0) and h(d)

is the associated class number, then the ratio 2πh(d)/
√−d is equal to χ on average

[39, 40]. This constant plays a role for real quadratic fields too (d > 0). In connection
with indefinite binary quadratic forms, Sarnak [41] obtained that the average value
of h(d), taken over the thin subset of discriminants 0 < d < D of the form c2 − 4, is
asymptotically

5π2

48

∏
p

(
1 − 1

p2
− 2

p3

)
·

√
D

ln(D)
= 0.7439711933 . . . ·

√
D

ln(D)

as D → ∞. The analogous constants for 0 < d < D of the form c2ν − 4, ν ≥ 2, do
not appear to possess similar formulation.

The 2k th moment (over the critical line) of the Riemann zeta function

m2k(T ) = 1

T

T∫
0

|ζ (1/2 + i t)|2kdt

is known to satisfy m2(T ) ∼ ln(T ) and m4(T ) ∼ (1/(2π2)) ln(T )4 as T → ∞. It is
conjectured that m2k(T ) ∼ γk ln(T )k2

and further that [42–44]

9!

42
γ6 =

∏
p

(
1 − 1

p

)4 (
1 + 4

p
+ 1

p2

)
,

16!

24024
γ8 =

∏
p

(
1 − 1

p

)9 (
1 + 9

p
+ 9

p2
+ 1

p3

)
.

This analysis can be extended to Dirichlet L-functions. Understanding the behavior of
moments such as these could have numerous benefits for number theory.

2.4.2 Correction Factors

We have assumed that n �= −1, 0, 1 is not an r th power for any r > 1 and that n′ is the
square-free part of n. If n′ ≡ 1 mod 4, then the density of the set S(n) relative to the
primes is conjectured to be [8, 10, 14, 45, 46](

1 − µ(|n′|)
∏
q|n′

1

q2 − q − 1

)
· CArtin,
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where the product is restricted to primes q. For example, if n′ = u is prime, then this
formula simplifies to

(
1 + 1

u2 − u − 1

)
· CArtin.

If instead n′ = uv, where u ≡ 1 mod 4 and v ≡ 1 mod 4 are both primes, then the
formula instead simplifies to

(
1 − 1

u2 − u − 1

1

v2 − v − 1

)
· CArtin.

If n is an r th power, a slightly more elaborate formula applies.
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2.5 Hafner–Sarnak–McCurley Constant

We start with a well-known theorem [1]. The probability that two randomly chosen
integers are coprime is 6/π2 = 0.6079271018 . . . (in the limit over large intervals).
What happens if we replace the integers by integer square matrices? Given two randomly
chosen integer n × n matrices, what is the probability, �(n), that the two corresponding
determinants are coprime?

Hafner, Sarnak & McCurley [2] showed that

�(n) =
∏

p


1 −

(
1 −

n∏
k=1

(
1 − p−k

))2



for each n, where the outermost product is restricted to primes p. It can be proved that

�(1) = 6

π2
> �(2) > �(3) > . . . > �(n − 1) > �(n) > . . . ,

and Vardi [3, 4] computed the limiting value

lim
n→∞ �(n) =

∏
p


1 −

(
1 −

∞∏
k=1

(
1 − p−k

))2

 = 0.3532363719 . . . .

2.5.1 Carefree Couples

It is also well known that 6/π2 is the probability that a randomly chosen integer x is
square-free [1], meaning x is divisible by no square exceeding 1. Schroeder [5] asked
the following question: Are the properties of being square-free and coprime statistically
independent? The answer is no: There appears to be a positive correlation between the
two properties. More precisely, define two randomly chosen integers x and y to be
carefree [5, 6] if x and y are coprime and x is square-free. The probability that x and
y are carefree is somewhat larger than 36/π4 = 0.3695 . . . and is exactly equal to

P = 6

π2

∏
p

(
1 − 1

p(p + 1)

)
= 0.4282495056 . . . .

Moree [7] proved that Schroeder’s formula is correct. Further, he defined x and y to
be strongly carefree when x and y are coprime, and x and y are both square-free. The
probability in this case is [8]

Q = 6

π2

∏
p

(
1 − 2

p(p + 1)

)
= 36

π4

∏
p

(
1 − 1

(p + 1)2

)
= 0.2867474284 . . . .

Define finally x and y to be weakly carefree when x and y are coprime, and x or y is
square-free. As a corollary, the probability here is 2P − Q = 0.5697515829 . . . , using
the fact that P(A ∪ B) = P(A) + P(B) − P(A ∩ B). Do there exist matrix analogs of
these joint probabilities?
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The constants P and Q appear elsewhere in number theory [7]. Let Dn = max{d :
d2|n}. Define

κ(n) = n

D2
n

, the square-free part of n,

K (n) =
∏
p|n

p, the square-free kernel of n;

then [9–11]

lim
N→∞

1

N 2

N∑
n=1

κ(n) = π2

30
= 0.3289 . . . , lim

N→∞
1

N 2

N∑
n=1

K (n) = π2 P

12
= 0.3522 . . .

(see [2.10] for the average of Dn instead). Let ω(n) be the number of distinct prime
factors of n, as in [2.2]; then [11–13]

lim
N→∞

1

N ln(N )

N∑
n=1

2ω(n) = 6

π2
= 0.6079 . . . ,

lim
N→∞

1

N ln(N )2

N∑
n=1

3ω(n) = Q

2
= 0.1433 . . . .

If ω(n) is replaced by 	(n), the total number of prime factors of n, then alternatively
[11, 14, 15]

lim
N→∞

1

N ln(N )2

N∑
n=1

2	(n) = 1

8 ln(2)Ctwin
= 0.2731707223 . . . ,

where Ctwin is the twin prime constant [2.1], which seems to be unrelated to P and Q.
We conclude with a generalization. The probability that k randomly chosen integers

are coprime is 1/ζ (k), as suggested in [1.6]. The probability that they are pairwise
coprime is known to be [5, 7]

∏
p

(
1 − 1

p

)k−1 (
1 + k − 1

p

)

for 2 ≤ k ≤ 3, but a proof for k > 3 has not yet been found. The expression naturally
reduces to 6/π2 if k = 2. More surprisingly, if k = 3, it reduces to Q.
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2.6 Niven’s Constant

Let m be a positive integer with prime factorization pa1
1 pa2

2 pa3
3 · · · pak

k . We assume that
each exponent ai ≥ 1 and each prime pi �= p j for all i �= j . Define two functions

h(m) =
{

1 if m = 1,

min{a1, . . . , ak} if m > 1,
H (m) =

{
1 if m = 1,

max{a1, . . . , ak} if m > 1,

that is, the smallest and largest exponents for m. Niven [1, 2] proved that

lim
n→∞

1

n

n∑
m=1

h(m) = 1

and, moreover,

lim
n→∞

(
n∑

m=1

h(m)

)
− n

√
n

= ζ ( 3
2 )

ζ (3)
= 2.1732543125 . . . ,

where ζ (x) denotes Riemann’s zeta function [1.6]. He also proved that

lim
n→∞

1

n

n∑
m=1

H (m) = C

and we call C Niven’s constant:

C = 1 +
∞∑

k=2

(
1 − 1

ζ (k)

)
= 1.7052111401 . . . .
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Subsequent authors discovered the following extended results [3, 4]:
n∑

m=1

h(m) = n + c02n
1
2 + (c12 + c03)n

1
3 + (c13 + c04)n

1
4 + (c23 + c14 + c05)n

1
5 + O(n

1
6 ),

n∑
m=1

1

h(m)
= n − c02

2
n

1
2 − 3c12 + c03

6
n

1
3 − 2c13 + c04

12
n

1
4

−10c23 + 5c14 + 3c05

60
n

1
5 + O(n

1
6 ),

where the coefficients ci j are given in [2.6.1]; additionally, we have

lim
n→∞

1

n

n∑
m=1

1

H (m)
=

∞∑
k=2

1

k(k − 1)ζ (k)
= 0.7669444905 . . . .

Averages for H are not as well understood asymptotically as averages for h.
The constant c02 = ζ (3/2)/ζ (3) also occurs when estimating the asymptotic

growth of the number of square-full integers [2.6.1], as does c12 = ζ (2/3)/ζ (2) =
−1.4879506635 . . . In contrast, the constant 6/π2 arises in connection with the square-
free integers [2.5].

A generalization of Niven’s theorem to the setting of a free abelian normed semigroup
appears in [5].

Here is a problem that gives expressions similar to C . First, observe that [6, 7]
∞∑

l=2

∞∑
n=2

1

nl
=

∞∑
l=2

(ζ (l) − 1) = 1,
∑

p

∞∑
n=2

1

n p
=

∑
p

(ζ (p) − 1) = 0.8928945714 . . . ,

where the sum over p is restricted to primes. Both series involve reciprocal nontrivial
integer powers with duplication, for example, 24 = 42 and 43 = 82. Now, let S = {4,
8, 9, 16, 25, 27, 32, 36, 49, 64, 81, . . . } be the set of nontrivial integer powers without
duplication. It follows that [8]

∑
s∈S

1

s
= −

∞∑
k=2

µ(k)(ζ (k) − 1) = 0.8744643684 . . . ,

where µ(k) is Möbius’ mu function [2.2]; we also have [8, 9]

∑
s∈S

1

s − 1
= 1,

∑
s∈S

1

s + 1
= π2

3
− 5

2
.

Given an arbitrary integer c /∈ S, what can be said about
∑

s∈S(s − c)−1? (By
Mihailescu’s recent proof of Catalan’s conjecture, the only two integers in S that differ
by 1 are 8 and 9.) See other expressions in [5.1].

2.6.1 Square-Full and Cube-Full Integers

Let k ≥ 2 be an integer. A positive integer m is k-full (or powerful of type k) if m = 1
or if, for any prime number p, p|m implies pk |m.
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Let Nk(x) denote the number of k-full integers not exceeding x . For the case k = 2,
Erdös & Szekeres [10] showed that

N2(x) = ζ ( 3
2 )

ζ (3)
x

1
2 + O

(
x

1
3

)

and Bateman & Grosswald [11–13] proved the more accurate result

N2(x) = ζ ( 3
2 )

ζ (3)
x

1
2 + ζ ( 2

3 )

ζ (2)
x

1
3 + o

(
x

1
6

)
.

This is essentially as sharp an error estimate as possible without additional knowledge
concerning the unsolved Riemann hypothesis. A number of researchers have studied this
problem. The current best-known error term [14, 15], assuming Riemann’s hypothesis,
is O(x1/7+ε) for any ε > 0, and several authors conjecture that 1/7 can be replaced by
1/10.

For the case k = 3, Bateman & Grosswald [12] and Krätzel [16, 17] demonstrated
unconditionally that

N3(x) = c03x
1
3 + c13x

1
4 + c23x

1
5 + o

(
x

1
8

)
.

By assuming Riemann’s hypothesis, the error term [15] can be improved to
O(x97/804+ε). Formulas for the coefficients ci j include [3, 12, 18–20]

c0 j =
∏

p

(
1 +

2 j−1∑
m= j+1

p− m
j

)
=




4.6592661225 . . . if j = 3,

9.6694754843 . . . if j = 4,

19.4455760839 . . . if j = 5,

c1 j = ζ
(

j
j+1

) ∏
p

(
1 +

2 j−1∑
m= j+2

p− m
j+1 −

3 j∑
m=2 j+2

p− m
j+1

)

=
{ −5.8726188208 . . . if j = 3,

−16.9787814834 . . . if j = 4,

c23 = ζ
(

3
5

)
ζ

(
4
5

) ∏
p

(
1 − p− 8

5 − p− 9
5 − p− 10

5 + p− 13
5 + p− 14

5

)
= 1.6824415102 . . . ,

where all products are restricted to primes p. The decimal approximations for the
Bateman–Grosswald constants listed here are due to Niklasch & Moree [21] and
Sebah [22]. Higher-order coefficients appear in the expansions of Nk(x) for k ≥ 4.

We observe that the Erdös–Szekeres paper [10] also plays a crucial role in the
asymptotics of abelian group enumeration [5.1]. The books by Ivić [23] and Krätzel
[24] provide detailed analyses and background. See also [5.4] for discussion of the
smallest and largest prime factors of m.

[1] I. Niven, Averages of exponents in factoring integers, Proc. Amer. Math. Soc. 22 (1969)
356–360; MR 39 #2713.

[2] F. Le Lionnais, Les Nombres Remarquables, Hermann, 1983.
[3] D. Suryanarayana and R. Sitaramachandrarao, On the maximum and minimum exponents

in factoring integers, Arch. Math. (Basel) 28 (1977) 261–269; MR 55 #10368.



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-02 CB503/Finch-v2.cls December 9, 2004 13:46 Char Count=

2.7 Euler Totient Constants 115

[4] H. Z. Cao, The asymptotic formulas related to exponents in factoring integers, Math.
Balkanica 5 (1991) 105–108; MR 93e:11107.
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2.7 Euler Totient Constants

When n is a positive integer, Euler’s totient function, ϕ(n), is defined to be the number
of positive integers not greater than n and relatively prime to n. For example, if p and
q are distinct primes and r and s are positive integers, then

ϕ(pr ) = pr−1(p − 1),

ϕ(pr qs) = pr−1qs−1(p − 1)(q − 1).

In the language of group theory, ϕ(n) is the number of generators in a cyclic group of
order n. Landau [1–4] showed that

limsup
n→∞

ϕ(n)

n
= 1
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but

liminf
n→∞

ϕ(n) ln(ln(n))

n
= e−γ = 0.5614594835 . . . ,

where γ is the Euler–Mascheroni constant [1.5].
The average behavior of ϕ(n) over all positive integers has been of interest to many

authors. Walfisz [5, 6], building on the work of Dirichlet and Mertens [2], proved that

N∑
n=1

ϕ(n) = 3N 2

π2
+ O

(
N ln(N )

2
3 ln(ln(N ))

4
3

)

as N → ∞, which is the sharpest such asymptotic formula known. (A claim in [7] that
the exponent 4/3 could be replaced by 1 + ε, for any ε > 0, is incorrect [8].) It is also
known [9, 10] that the error term is not o(N ln(ln(ln(N )))).

Interesting constants emerge if we consider instead the series of reciprocals of ϕ(n).
Landau [11–13] proved that

N∑
n=1

1

ϕ(n)
= A · (ln(N ) + B) + O

(
ln(N )

N

)
,

where

A = ζ (2)ζ (3)

ζ (6)
= 315

2π4
ζ (3) = 1.9435964368 . . . ,

B = γ −
∑

p

ln(p)

p2 − p + 1
= γ − 0.6083817178 . . . = −0.0605742294 . . .

A
,

and ζ (x) is Riemann’s zeta function [1.6]. Sums and products over p are restricted
to primes. The sum within B has inspired several accurate computations by Jameson
[14], Moree [15] and Sebah [16]. Landau’s error term O(ln(N )/N ) was improved to
O(ln(N )2/3/N ) by Sitaramachandrarao [17, 18].

Define K (x) to be the number of all positive integers n that satisfy ϕ(n) ≤ x . It is
known [19–22] that the following distributional result is true:

K (x) = Ax + O
(

x exp
(
−c

√
ln(x) ln(ln(x))

))

for any 0 < c < 1/
√

2. Other relevant formulas are [18, 23, 24]

N∑
n=1

ϕ(n)

n
= 6N

π2
+ O

(
ln(N )

2
3 ln(ln(N ))

4
3

)
,

N∑
n=1

n

ϕ(n)
= AN − 1

2
ln(N ) − 1

2
C + O

(
ln(N )

2
3

)
,

N∑
n=1

1

nϕ(n)
= D − A

N
+ O

(
ln(N )

N 2

)
,
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where

C = ln(2π ) + γ +
∑

p

ln(p)

p(p − 1)
= ln(2π ) + 1.3325822757 . . . = 3.1704593421 . . . ,

which occurred in [2.2], and

D = π2

6

∏
p

(
1 + 1

p2(p − 1)

)
= 2.2038565964 . . . ,

which came from a sharpening by Moree [24] of estimates in [25]. See [26] for numerical
evaluations of such prime products. The constant A occurs in [27, 28] as the asymptotic
mean of a certain prime divisor function and elsewhere too [29]. The constant D also
occurs in a certain Hardy–Littlewood conjecture proved by Chowla [30].

We note the following alternative representation of A:

A =
∏

p

1 − p−6

(1 − p−2) (1 − p−3)
=

∏
p

(
1 + 1

p(p − 1)

)
,

which bears a striking resemblance to Artin’s constant [2.4]. The only distinction is
that an addition is replaced by a subtraction. Curiously, Artin’s constant and Murata’s
constant [2.4] arise explicitly in the following asymptotic results [31, 32]:

lim
N→∞

ln(N )

N

∑
p≤N

ϕ(p − 1)

p − 1
= CArtin = 0.3739558136 . . . ,

lim
N→∞

ln(N )

N

∑
p≤N

p − 1

ϕ(p − 1)
= CMurata = 2.8264199970 . . . .

Let L(x) denote the number of all positive integers n not exceeding x for which n
and ϕ(n) are relatively prime. Erdös [33, 34] proved that

lim
n→∞

L(n) ln(ln(ln(n)))

n
= e−γ ,

another interesting occurrence of the Euler–Mascheroni constant.
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2.8 Pell–Stevenhagen Constants

If an integer d > 1 is not a square, then the Pell equation

x2 − dy2 = 1

has a solution in integers (in fact, infinitely many). This fact was known long ago [1–5].
We are here concerned with a more difficult question. What can be said about the set
D of integers d > 1 for which the negative Pell equation

x2 − dy2 = −1

has a solution in integers? Only recently has progress been made in answering this.
First, define the Pell constant

P = 1 −
∏
j≥1
j odd

(
1 − 1

2 j

)
= 0.5805775582 . . . ,

which is needed in the following. The constant P is provably irrational [6] but only
conjectured to be transcendental. Define also a function

ψ(p) = 2 + (
1 + 21−vp

)
p

2(p + 1)
,

where vp is the number of factors of 2 occurring in p − 1.
For any set S of positive integers, let fS(n) denote the number of elements in S not

exceeding n. Stevenhagen [6–8] developed several conjectures regarding the distribu-
tion of D. He hypothesized that the counting function fD(n) satisfies the following
[7]:

lim
n→∞

√
ln(n)

n
fD(n) = 3P

2π

∏
p≡1 mod 4

(
1 + ψ(p)

p2 − 1

) (
1 − 1

p2

) 1
2

= 0.28136 . . . ,

where the product is restricted to primes p.
Let U be the set of positive integers not divisible by 4, and let V be the set of positive

integers not divisible by any prime congruent to 3 module 4. Clearly D is a subset of
U ∩ V , and U ∩ V is the set of positive integers that can be written as a sum of two
coprime squares. By the conjectured limit mentioned here and by a coprimality result
given in [2.3.1] due to Rieger [9], the density of D inside U ∩ V is [7]

lim
n→∞

fD(n)

fU∩V (n)
= P

∏
p≡1 mod 4

(
1 + ψ(p)

p2 − 1

) (
1 − 1

p2

)
= 0.57339 . . . .

Here is another conjecture. Let W be the set of square-free integers, that is, integers
that are divisible by no square exceeding 1. Stevenhagen [6] hypothesized that

lim
n→∞

√
ln(n)

n
fD∩W (n) = 6

π2
P K = 0.2697318462 . . . ,
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where K is the Landau–Ramanujan constant [2.3]. Clearly V ∩ W is the set of positive
square-free integers that can be written as a sum of two (coprime) squares. By the
second conjectured limit and by a square-free result given in [2.3.1] due to Moree [10],
the density of D ∩ W inside V ∩ W is [8]

lim
n→∞

fD∩W (n)

fV ∩W (n)
= P = 0.5805775582 . . . .

A fascinating connection to continued fractions is as follows [7]: An integer d > 1
is in D if and only if

√
d is irrational and has a regular continued fraction expansion

with odd period length.
A constant Q similar to P here appears in [5.14]; however, exponents in Q are not

constrained to be odd integers.
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2.9 Alladi–Grinstead Constant

Let n be a positive integer. The well-known formula

n! = 1 · 2 · 3 · 4 · · · (n − 1) · n

is only one of many available ways to decompose n! as a product of n positive integer
factors. Let us agree to disallow 1 as a factor and to further restrict each of the n factors
to be a prime power:

pbk
k , each pk is prime and bk ≥ 1, k = 1, 2, . . . , n.

(Thus the previously stated natural decomposition of n! is inadmissible.) Let us also
write the factors in nondecreasing order from left to right. If n = 9, for example, all of
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the admissible decompositions are

9! = 2 · 2 · 2 · 2 · 2 · 22 · 5 · 7 · 34

= 2 · 2 · 2 · 2 · 3 · 5 · 7 · 23 · 33

= 2 · 2 · 2 · 2 · 5 · 7 · 23 · 32 · 32

= 2 · 2 · 2 · 3 · 22 · 22 · 5 · 7 · 33

= 2 · 2 · 2 · 22 · 22 · 5 · 7 · 32 · 32

= 2 · 2 · 2 · 3 · 3 · 5 · 7 · 32 · 24

= 2 · 2 · 3 · 3 · 22 · 5 · 7 · 23 · 32

= 2 · 2 · 3 · 3 · 3 · 3 · 5 · 7 · 25

= 2 · 3 · 3 · 22 · 22 · 22 · 5 · 7 · 32

= 2 · 3 · 3 · 3 · 3 · 22 · 5 · 7 · 24

= 2 · 3 · 3 · 3 · 3 · 5 · 7 · 23 · 23

= 3 · 3 · 3 · 3 · 22 · 22 · 5 · 7 · 23.

Note that eleven of the leftmost factors are 2 and one is 3. The maximum leftmost factor,
considering all admissible decompositions of 9! into 9 prime powers, is therefore 3.
We define

α(9) = ln(3)

ln(9)
.

In the same way, for arbitrary n, one determines the maximum leftmost factor pb

over all admissible decompositions of n! into n prime powers and defines

α(n) = ln(pb)

ln(n)
.

Clearly α(n) < 1 for each n. What can be said about α(n) for large n?
Alladi & Grinstead [1, 2] determined that the limit of α(n) as n → ∞ exists and

lim
n→∞ α(n) = ec−1 = 0.8093940205 . . . ,

where

c = −
∞∑

k=2

1

k
ln

(
1 − 1

k

)
=

∞∑
j=2

ζ ( j) − 1

j − 1
= 0.7885305659 . . .

= − ln(0.4545121805 . . .)

and ζ (x) is Riemann’s zeta function [1.6].
How strongly does Alladi & Grinstead’s result depend on decomposing n! and not

some other function f (n)? It is assumed that f provides sufficiently many small and
varied prime factors for each n. See [3] for a related unsolved problem.
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Let d(m) denote the number of positive integer divisors of m. What can be said
about d(n!)? Erdös et al. [4] proved that

lim
n→∞

ln(ln(n!))2

ln(n!)
ln(d(n!)) = C,

where

C =
∞∑

k=2

1

k(k − 1)
ln(k) = −

∞∑
j=2

ζ ′( j) = 1.2577468869 . . .

as mentioned in [1.8]. The similarity between c and C is quite interesting.
Here are four related infinite products [5, 6]:

∏
n≥2

(
1 + 1

n

) 1
n

= 1.7587436279 . . . ,
∏
n≥2

(
1 − 1

n

) 1
n

= 0.4545121805 . . . ,

∏
p

(
1 + 1

p

) 1
p

= 1.4681911223 . . . ,
∏

p

(
1 − 1

p

) 1
p

= 0.5598656169 . . . ,

the latter two of which are restricted to primes p. The second product is e−c, and the
fourth appears in [7, 8]. A related problem, regarding the asymptotics of the smallest
and largest prime factors of n, is discussed in [5.4].
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2.10 Sierpinski’s Constant

In his 1908 dissertation, Sierpinski [1] studied certain series involving the function
r (n), defined to be the number of representations of the positive integer n as a sum
of two squares, counting order and sign. For example, r (1) = 4, r (p) = 0 for primes
p ≡ 3 mod 4, and r (q) = 8 for primes q ≡ 1 mod 4.

Certain results about r (n) are not difficult to see; for example [2–4],

n∑
k=1

r (k) = πn + O
(

n
1
2

)
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as n → ∞. More details on this estimate are in [2.10.1]. Sierpinski’s series include
[1, 5, 6]

n∑
k=1

r (k)

k
= π (ln(n) + S) + O

(
n− 1

2

)
,

n∑
k=1

r (k2) = 4

π

(
ln(n) + Ŝ

)
n + O

(
n

2
3

)
,

n∑
k=1

r (k)2 = 4
(
ln(n) + S̃

)
n + O

(
n

3
4 ln(n)

)
,

where the constants Ŝ and S̃ are defined in terms of S as

Ŝ = γ + S − 12

π2
ζ ′(2) + ln(2)

3
− 1, S̃ = 2S − 12

π2
ζ ′(2) + ln(2)

3
− 1,

where γ is the Euler–Mascheroni constant [1.5] and ζ (x) is Riemann’s zeta function
[1.6]. See [2.15] and [2.18] for other occurrences of ζ ′(2).

The constant S, which we call Sierpinski’s constant, thus plays a role in the sum-
mation of all three series. It can be defined as

S = γ + β ′(1)

β(1)
= ln

(
π2e2γ

2L2

)
= ln

(
4π3e2γ

�
(

1
4

)4

)
= 2.5849817595 . . .

π
,

where β(x) is Dirichlet’s beta function [1.7], L = 2.6220575542 . . . is Gauss’ lemnis-
cate constant [6.1], and �(x) is the Euler gamma function [1.5.4]. It also appears in
our essays on the Landau–Ramanujan constant [2.3] and the Masser–Gramain constant
[7.2]. Sierpinski, in fact, defined S as a limit:

S = 1

π
lim
z→1

(
F(z) − π

z − 1

)
,

and the function F(z) = 4ζ (z)β(z) is central to our discussion of lattice sums [1.10.1].
Other formulas for S include a definite integral representation:

S = 2γ + 4

π

∞∫
0

e−x ln(x)

1 + e−2x
dx .

Clearly this is a meeting place for many ideas, all coming together at once.

2.10.1 Circle and Divisor Problems

More precisely [7–12], the sum of the first n values of r provably satisfies

n∑
k=1

r (k) = πn + O
(

n
23
73 ln(n)

315
146

)
,
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and it is conjectured that

n∑
k=1

r (k) = πn + O
(

n
1
4 +ε

)

for all ε > 0. The problem of estimating the error term is known as the circle problem
since this is the same as counting the number of integer ordered pairs falling within the
disk of radius

√
n centered at the origin.

Here is a related problem, known as the divisor problem, mentioned briefly in [1.5].
If d(n) is the number of distinct divisors of n, then

n∑
k=1

d(k) = n ln(n) + (2γ − 1)n + O
(

n
23
73 ln(n)

461
146

)

is the best-known estimate of the sum of the first n values of d. Again, the conjectured
exponent is 1/4 + ε, but this remains unproven. The analog of Sierpinski’s third series,
for example, is [13–15]

n∑
k=1

d(k)2 = (
A ln(n)3 + B ln(n)2 + C ln(n) + D

)
n + O

(
n

1
2 +ε

)
,

where

A = 1

π2
, B = 12γ − 3

π2
− 36

π4
ζ ′(2),

and the constants C and D have more complicated expressions. The analog of
Sierpinski’s first series is [16]

n∑
k=1

d(k)

k
= 1

2
ln(n)2 + 2γ ln(n) + (γ 2 − 2γ1) + O(n− 1

2 ),

where γ1 = −0.0728158454 . . . is the first Stieltjes constant [2.21].
In a variation of d(n), we might restrict attention to divisors of n that are square-free

[17]. Likewise, for r (n), we might count only representations n = u2 + v2 for which
u, v are coprime, or examine differences rather than sums. Here is another variation:
Define rm(n) to be the number of representations n = |u|m + |v|m , where u, v are
arbitrary integers. It is known that, if m ≥ 3, then [12, 18, 19]

n∑
k=1

rm(k) = 2�
(

1
m

)2

m�
(

2
m

) n
2
m + O

(
n

1
m (1− 1

m )
)

and, further, the error term may be replaced by

23− 1
m π−1− 1

m m
1
m �

(
1 + 1

m

) ·
∞∑

k=1

k−1− 1
m sin

(
2πkn

1
m − π

2m

)
· n

1
m (1− 1

m )

+O
(

n
46

73m ln(n)
315
146

)
.

A full asymptotic analysis of such circle or divisor sums will be exceedingly difficult
and cannot be expected soon.
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In a related 1908 paper, Sierpinski [20–22] discovered the following fact. Let Dn =
max{d : d2|n}; that is, D2

n is the largest square divisor of n. Then

1

n

n∑
k=1

Dk = 3

π2
ln(n) + 9γ

π2
− 36

π4
ζ ′(2) + o(1)

as n → ∞. By way of contrast, the average square-free part of n appears in [2.5].
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[11] A. Ivić, The Riemann Zeta-Function, Wiley, 1985, pp. 35–36, 93–94, 351–384; MR

87d:11062.
[12] E. Krätzel, Lattice Points, Kluwer, 1988, pp. 140–142, 228–230; MR 90e:11144.
[13] S. Ramanujan, Some formulae in the analytic theory of numbers, Messenger of Math. 45

(1916) 81–84; also in Collected Papers, ed. G. H. Hardy, P. V. Seshu Aiyar, and B. M.
Wilson, Cambridge Univ. Press, 1927, pp. 133–135, 339–340.

[14] B. M. Wilson, Proofs of some formulae enunciated by Ramanujan, Proc. London Math.
Soc. 21 (1922) 235–255.

[15] D. Suryanarayana and R. Sitaramachandra Rao, On an asymptotic formula of Ramanujan,
Math. Scand. 32 (1973) 258–264; MR 49 #2611.

[16] S. A. Amitsur, Some results on arithmetic functions, J. Math. Soc. Japan 11 (1959) 275–
290; MR 26 #67.

[17] R. C. Baker, The square-free divisor problem, Quart. J. Math 45 (1994) 269–277; part II,
Quart. J. Math 47 (1996) 133–146; MR 95h:11098 and MR 97f:11080.

[18] W. G. Nowak, On sums and differences of two relative prime cubes, Analysis 15 (1995)
325–341; part II, Tatra Mount. Math. Publ. 11 (1997) 23–34; MR 96m:11085 and MR
98j:11073.

[19] M. Kühleitner, On sums of two k th powers: An asymptotic formula for the mean square of
the error term, Acta Arith. 92 (2000) 263–276; MR 2001a:11164.

[20] W. Sierpinski, On the average values of several numerical functions (in Polish), Sprawoz-
dania Towarzystwo Naukowe Warszawskie 1 (1908) 215–226.

[21] S. M. Lee, On the sum of the largest k th divisors, Kyungpook Math. J. 15 (1975) 105–108;
MR 51 #5528.

[22] K. Greger, Square divisors and square-free numbers, Math. Mag. 51 (1978) 211–219; MR
58 #21916.



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-02 CB503/Finch-v2.cls December 9, 2004 13:46 Char Count=

126 2 Constants Associated with Number Theory

2.11 Abundant Numbers Density Constant

If n is a positive integer, let σ (n) denote the sum of all positive divisors of n. Then n is
said to be perfect if σ (n) = 2n, deficient if σ (n) < 2n, and abundant if σ (n) > 2n.

The smallest examples of perfect numbers are 6 and 28. If the Mersenne number
2m+1 − 1 is prime, then 2m(2m+1 − 1) is perfect. Here are two famous unanswered
questions [1]. Do there exist infinitely many even perfect numbers? Does there exist an
odd perfect number? (According to [2], a counterexample cannot be less than 10300.)

For positive real x , define the density function

A(x) = lim
n→∞

|{n : σ (n) ≥ x n}|
n

.

Behrend [3, 4], Davenport [5], and Chowla [6] independently proved that A(x) exists
and is continuous for all x . Erdös [7, 8] gave a proof requiring only elementary consider-
ations. Clearly A(x) = 1 for x ≤ 1, and A(x) → 0 as x → ∞. Refining Behrend’s tech-
nique, Wall [9, 10] obtained the following bounds on the abundant numbers density
constant:

0.2441 < A(2) < 0.2909,

and Deléglise [11] improved this to

|A(2) − 0.2477| < 0.0003.

Further, it can be demonstrated [12] that A(x) is differentiable everywhere except on a
set of Lebesgue measure zero, and

∞∫
0

xs−1 A(x)dx = 1

s

∏
p

[(
1 − 1

p

)−s+1 ∞∑
k=0

1

pk

(
1 − 1

pk+1

)s
]

for complex s satisfying Re(s) > 1. The product is over all primes p. An inversion of
this identity (Mellin transform) is theoretically possible but not yet numerically feasible
[11].

As an aside, define an exponential divisor d of n = pa1
1 · · · par

r to be a divisor of
the form d = pb1

1 · · · pbr
r , where b j |a j for each j . Let σ (e)(n) denote the sum of all

exponential divisors of n, with the convention σ (e)(1) = 1. Then [13–16]

lim
N→∞

1

N 2

N∑
n=1

σ (n) = π2

12
, lim

N→∞
1

N 2

N∑
n=1

σ (e)(n) = B,

where

B = 1

2

∏
p

[
1 + 1

p(p2 − 1)
− 1

p2 − 1
+

(
1 − 1

p

) ∞∑
k=2

pk

p2k − 1

]

= 0.5682854937 . . . .

A study of the corresponding density function A(e)(x) was begun in [17].
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de Théorie des Nombres, 1972-1973, exp. 11, Centre Nat. Recherche Sci., Talence, 1973;
MR 52 #13607.

[13] M. V. Subbarao, On some arithmetic convolutions, The Theory of Arithmetic Functions,
Proc. 1971 Kalamazoo conf., ed. A. A. Gioia and D. L. Goldsmith, Lect. Notes in Math.
251, Springer-Verlag, 1972, pp. 247–271; MR 49 #2510.

[14] J. Fabrykowski and M. V. Subbarao, The maximal order and the average order of multi-
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2.12 Linnik’s Constant

We first discuss prime values of a specific sequence. Dirichlet’s theorem states that any
arithmetic progression {an + b : n ≥ 0}, for which a ≥ 1 and b ≥ 1 are coprime, must
contain infinitely many primes. This raises a natural question: How large is the first
such prime p(a, b)?

Define p(a) to be the maximum of p(a, b) over all b satisfying 1 ≤ b < a,
gcd(a, b) = 1 and let

K = sup
a≥2

ln(p(a))

ln(a)
, L = lim

a→∞
ln(p(a))

ln(a)
.

That is, K is the infimum of κ satisfying p(a) < aκ for all a ≥ 2, and L is the infimum
of λ satisfying p(a) < aλ for all sufficiently large a. Much research [1, 2] has been
devoted to evaluating K and L , as well as to determining other forms of upper and
lower bounds on p(a, b).

Clearly K > 1.82 (witness the case p(5) = 19). Schinzel & Sierpinski [3] and
Kanold [4, 5] conjectured that K ≤ 2. If true, this would imply that there exists a
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prime somewhere in the following list:

b, a + b, 2a + b, . . . , (a − 1)a + b

if gcd(a, b) = 1. Such a statement is beyond the reach of present-day mathematics.
Schinzel & Sierpinski that confessed they did not know what the fate of their hypoth-
esis (among several) might be. Ribenboim [2] wondered if such hypotheses might be
undecidable within the framework of Peano axiomatic arithmetic.

Linnik [6, 7] proved that L exists and is finite. Clearly L ≤ K . If we assume a
generalized Riemann hypothesis, it is known that [8–10]

p(a) = O(ϕ(a)2 ln(a)2),

which would imply that L ≤ 2. Here ϕ(x) denotes the Euler totient function [2.7].
The search for an unconditional upper bound for Linnik’s constant L has occupied
many researchers [11–13]. A culmination of this work is Heath-Brown’s proof [14] that
L ≤ 5.5.

Partial evidence for L ≤ 2 includes the following. For any fixed positive integers b
and k, Bombieri, Friedlander & Iwaniec [15] proved that

p(a, b) <
a2

ln(a)k

for every a outside a set of density zero, as observed by Granville [16, 17]. We may
therefore infer L ≤ 2 for almost all integers a.

Chowla [18] believed that L = 1. Subsequent authors [19–23] conjectured that

p(a) = O(ϕ(a) ln(a)2),

which would imply that L = 1. An earlier theorem of Elliott & Halberstam [24] provides
partial support for this new estimate.

We now turn attention to prime solutions of a specific equation. Liu & Tsang [25–28],
among others, investigated existence issues of prime solutions p, q, r of the linear
equation ap + bq + cr = d, where a, b, c are nonzero integers and where it is further
assumed that a + b + c − d is even and that gcd(a, b, c), gcd(d, a, b), gcd(d, a, c),
gcd(d, b, c) are each 1. (Note that, if we were to allow c = 0, then the case a = b = 1
would be equivalent to Goldbach’s conjecture and the case a = 1, b = −1, d = 2 would
be equivalent to the twin prime conjecture.)

There are two cases, depending on whether a, b, c are all positive or not. We discuss
only one case here: Suppose a, b, c are not all of the same sign. Then there exists a
constant µ with the property that the equation ap + bq + cr = d must have a solution
in primes p, q, r satisfying

max(p, q, r ) ≤ 3|d| + (max(3, |a|, |b|, |c|))µ .

This result is a generalization of Linnik’s original theorem.
The infimum M of all such µ is known as Baker’s constant [29] and it can be proved

that L ≤ M . The best-known upper bound [30, 31] for M is 45 (unconditional) and 4
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(assuming a generalized Riemann hypothesis). Liu & Tsang, like Chowla, conjectured
that M = 1.
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Théorie des Nombres, Paris, 1991–92, ed. S. David, Birkhäuser, 1993, pp. 121–133; MR
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2.13 Mills’ Constant

Mills [1] demonstrated the surprising existence of a positive constant C such that the

expression
⌊

C3N
⌋

yields only prime numbers for all positive integers N . (Recall that

�x� denotes the largest integer not exceeding x .) The proof is based on a difficult
theorem in prime number theory due to Hoheisel [2] and refined by Ingham [3]: If
p < p′ are consecutive primes, then given ε > 0,

p′ − p < p(5/8)+ε

for sufficiently large p. This inequality is used to define the following recursive se-
quence. Let q0 = 2 and qn+1 be the least prime exceeding q3

n for each n ≥ 0. For exam-
ple [4, 5], q1 = 11, q2 = 1361, and q3 = 2521008887. The Hoheisel–Ingham theorem
implies that

q3
n < qn+1 < qn+1 + 1 < q3

n + q (15/8)+3ε
n + 1 < (qn + 1)3

for large n; hence

q3−n

n < q3−(n+1)

n+1 < (qn+1 + 1)3−(n+1)
< (qn + 1)3−n

.

We deduce that C = limn→∞ q3−n

n exists, which yields the desired prime-representing
result. For the particular sequence selected here [4, 6, 7], it is easily computed that
C = 1.3063778838 . . . .

A different choice of starting value q0 or variation in the exponent 3 will provide
a different value of C . There are infinitely many such quantities C ; that is, Mills’
constant 1.3063778838 . . . is not the unique value of C to give only prime numbers. A
generalization of Mills’ theorem (to arbitrary sequences of positive integers obeying a
growth restriction) is an exercise in [8].
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Another constant, c = 1.9287800 . . . , appears in Wright [9] as part of an alternative
prime-representing function: ⌊

222..
.2

c ⌋
,

the iterated exponential with N 2s and c at the top. Unlike Mills’ example, this example
does not require a deep theorem to work. All that is needed is the fact that p′ < 2p,
which is known as Bertrand’s postulate.

Several authors [6, 7, 10] wisely pointed out that formulas like that of Mills are not
very useful. One would need to know C correctly to many places to compute only a
few primes. To make matters worse, there does not seem to be any way of estimating
C except via the primes q1, q2, q3, . . . (i.e., the reasoning becomes circular). The only
manner in which Mills’ formula could be useful is if an exact value for C were to
somehow become available, which no one has conjectured might ever happen.

Nevertheless, the sheer existence of C is striking. It is not known whether C must
necessarily be irrational. A similar constant, 1.6222705028 . . . , due to Odlyzko &
Wilf, arises in [2.30]. See [11] for a related problem concerning expressions of the
form

⌊
C N

⌋
.

Huxley [12], among others, succeeded in replacing the exponent 5/8 by 7/12. Recent
work in sharpening the Hoheisel–Ingham theorem includes [13–16]. The best result
known to date is

p′ − p = O( p0.525).

Assuming the Riemann hypothesis to be true, Cramér [17, 18] proved that

p′ − p = O(
√

p ln(p)),

which would be a dramatic improvement if the unproved assertion someday falls to
analysis. He subsequently conjectured that [19]

p′ − p = O(ln(p)2)

and, moreover,

limsup
p→∞

p′ − p

ln(p)2
= 1.

Granville [20, 21], building upon the work of Maier [22], revised this conjecture as
follows:

limsup
p→∞

p′ − p

ln(p)2
≥ 2e−γ = 1.122 . . . ,

where γ is Euler’s constant [1.5]. It has been known for a long time [23] that

limsup
p→∞

p′ − p

ln(p)
= ∞;
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thus Cramér’s bound ln(p)2 cannot be replaced by ln(p). However, we have [24–26]

liminf
p→∞

p′ − p

ln(p)
≤ 0.248.

Is further improvement possible? If the twin prime conjecture is true [2.1], then the
limit infimum is clearly 0.
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2.14 Brun’s Constant

Brun’s constant is defined to be the sum of the reciprocals of all twin primes [1, 2]:

B2 =
(

1

3
+ 1

5

)
+

(
1

5
+ 1

7

)
+

(
1

11
+ 1

13

)
+

(
1

17
+ 1

19

)
+

(
1

29
+ 1

31

)
+ · · · .

Note that the prime 5 is taken twice (some authors do not do this). If this series were
divergent, then a proof of the twin prime conjecture [2.1] would follow immediately.
Brun proved, however, that the series is convergent and thus B2 is finite [3–8]. His result
demonstrates the scarcity of twin primes relative to all primes (whose reciprocal sum
is divergent [2.2]), but it does not shed any light on whether the number of twin primes
is finite or infinite.

Selmer [9], Fröberg [10], Bohman [11], Shanks & Wrench [12], Brent [13, 14],
Nicely [15–18], Sebah [19], and others successively improved numerical estimates of
B2. The most recent calculations give

B2 = 1.9021605831 . . .

using large datasets of twin primes and assuming the truth of the extended twin prime
conjecture [2.1]. Let us elaborate on the latter issue. Under Hardy & Littlewood’s
hypothesis, the raw summation of twin prime reciprocals converges very slowly:

∑
twin
p≤n

1

p
− B2 = O

(
1

ln(n)

)
,

but the following extrapolation helps to accelerate the process [10, 12, 15]:
∑

twin
p≤n

1

p
+ 4Ctwin

ln(n)


 − B2 = O

(
1√

n ln(n)

)
,

where Ctwin = 0.6601618158 . . . is the twin prime constant. Higher order extrapola-
tions exist but do not present practical advantages as yet. In the midst of his computa-
tions, Nicely [15] uncovered the infamous Intel Pentium error.

We discuss three relevant variations. Let A3 denote the reciprocal sum of prime
3-tuples of the form (p, p + 2, p + 6), A′

3 the reciprocal sum of prime 3-tuples of
the form (p, p + 4, p + 6), and A4 the reciprocal sum of prime 4-tuples of the form
(p, p + 2, p + 6, p + 8). Nicely [2, 20] calculated

A3 = 1.0978510391 . . . , A′
3 = 0.8371132125 . . . , A4 = 0.8705883800 . . . .
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Define Bh , where h ≥ 2 is an even integer, to be the reciprocal sum of primes separated
by h, and define B̃h to be the reciprocal sum of consecutive primes separated by h. Segal
proved that Bh is finite for all h [5, 21, 22]; thus B̃h is finite as well. Clearly B2 = B̃2 and

B4 =
(

1

3
+ 1

7

)
+

(
1

7
+ 1

11

)
+

(
1

13
+ 1

17

)
+

(
1

19
+ 1

23

)
+ · · · = B̃4 + 10

21
,

but highly precise computations of Bh or B̃h , h ≥ 4, have not yet been performed.
Wolf [23] speculated that, for h ≥ 6,

B̃h = 4Ctwin

h

∏
p|h
p>2

p − 1

p − 2

on the basis of a small dataset. Even if his conjecture is eventually shown to be false,
it should inspire more attempts to relate such generalized Brun’s constants to other
constants found in number theory.
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2.15 Glaisher–Kinkelin Constant

Stirling’s formula [1]

lim
n→∞

n!

e−nnn+ 1
2

=
√

2π

provides a well-known estimate for large factorials. If we replace n! = �(n + 1) by
different expressions, for example,

K (n + 1) =
n∏

m=1

mm or G(n + 1) = (n!)n

K (n + 1)
=

n−1∏
m=1

m!

then the approximation takes different forms. Kinkelin [2], Jeffery [3], and Glaisher
[4–6] demonstrated that

lim
n→∞

K (n + 1)

e− 1
4 n2

n
1
2 n2+ 1

2 n+ 1
12

= A and lim
n→∞

G(n + 1)

e− 3
4 n2

(2π )
1
2 nn

1
2 n2− 1

12

= e
1
12

A
.

The constant A, which plays the same role in these approximations as
√

2π plays in
Stirling’s formula, has the following closed-form expression:

A = exp

(
1

12
− ζ ′(−1)

)
= exp

(−ζ ′(2)

2π2
+ ln(2π ) + γ

12

)
= 1.2824271291 . . . ,

where ζ ′(x) is the derivative of the Riemann zeta function [1.6] and γ is the Euler–
Mascheroni constant [1.5]. See [2.10] and [2.18] for other occurrences of ζ ′(2).

Many beautiful formulas involving A exist, including two infinite products [6]:

1
1
1 · 2

1
4 · 3

1
9 · 4

1
16 · 5

1
25 · · · =

(
A12

2πeγ

) π2

6

,

1
1
1 · 3

1
9 · 5

1
25 · 7

1
49 · 9

1
81 · · · =

(
A36

24π3e3γ

) π2

24

,

and two definite integrals [4, 7]:
∞∫
0

x ln(x)

e2πx − 1
dx = 1

24
− 1

2
ln(A),

1/2∫
0

ln(�(x + 1))dx = −1

2
− 7

24
ln(2) + 1

4
ln(π ) + 3

2
ln(A).

More formulas are found in [8–12].
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A generalization of the latter integral,

x∫
0

ln(�(t + 1))dt = 1

2
ln(2π )x − 1

2
x(x + 1) + x ln(�(x + 1)) − ln(G(x + 1)),

was obtained by Alexeiewsky [13], Hölder [14], and Barnes [15–17] using an analytic
extension of G(n + 1). Just as the gamma function extends the factorial function �(n +
1) to the complex z-plane, the Barnes G-function

G(z + 1) = (2π )
1
2 ze− 1

2 z(z+1)− γ

2 z2
∞∏

n=1

(
1 + z

n

)n
e−z+ 1

2n z2

extends G(n + 1). Just as the gamma function assumes a special value at z = 1/2:

�

(
1

2

)
=

(
−1

2

)
! = √

π,

the Barnes function satisfies

G

(
1

2

)
= 2

1
24 e

1
8 π− 1

4 A− 3
2 .

A similar, natural extension of Kinkelin’s function via K (z + 1) = �(z + 1)z/G(z +
1) has been comparatively neglected by researchers in favor of G. Here is a sample
application. Define

D(x) = lim
n→∞

2n+1∏
k=1

(
1 + x

k

)(−1)k+1k
= exp(x) · lim

n→∞

2n∏
k=1

(
1 + x

k

)(−1)k+1k
.

Melzak [18] proved that D(2) = πe/2. Borwein & Dykshoorn [19] extended this result
to

D(x) =
(

�( x
2 + 1

2 )

�( x
2 )

)x (
K ( x

2 )K ( 1
2 )

K ( x
2 + 1

2 )

)2

exp(− x
2 ).

where x > 0. As a special case, D(1) = A6/(2
1
6 π

1
2 ).

Apart from infrequent whispers [20–27], the Glaisher–Kinkelin constant seemed
largely forgotten until recently. Vignéras [28], Voros [29], Sarnak [30], Vardi [31], and
others revived interest in the Barnes G-function because of its connection to certain
spectral functions in mathematical physics and differential geometry. There is also a
connection with random matrix theory and the spacing of zeta function zeros [32–34].
See [2.15.3] and [5.22] as well. Thus generalizations of the formulas here for �(1/2)
and G(1/2) possess a significance unanticipated by their original discoverers.

2.15.1 Generalized Glaisher Constants

Bendersky [35, 36] studied the product 11k · 22k · 33k · 44k · · · nnk
, which is n! for k = 0

and K (n + 1) for k = 1. More precisely, he examined the logarithm of the product and
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determined the value of the limit

ln(Ak) = lim
n→∞

(
n∑

m=1

mk ln(m) − pk(n)

)
,

where

pk(n) =
(

nk+1

k+1 + nk

2 + Bk+1

k+1

)
ln(n) − nk+1

(k+1)2

+ k!
k−1∑
j=1

B j+1

( j+1)!
nk− j

(k− j)!

(
ln(n) +

j∑
i=1

1
k−i+1

)

and Bn is the nth Bernoulli number [1.6.1]. Clearly A0 = √
2π and A1 = A. Choudhury

[37] and Adamchik [38] obtained the following exact expression for all k ≥ 0:

Ak = exp

(
Bk+1

k + 1

k∑
j=1

1

j
− ζ ′(−k)

)
=




1.0309167521 . . . if k = 2,

0.9795555269 . . . if k = 3,

0.9920479745 . . . if k = 4,

1.0096803872 . . . if k = 5.

Zeta derivatives at negative integers can be transformed: If n > 0, then [12, 39]

ζ ′(−2n) = (−1)n (2n)!

2(2π )2n
ζ (2n + 1),

ζ ′(−2n + 1) = 1

2n

[
(−1)n+1 2(2n)!

(2π )2n
ζ ′(2n) +

(
2n−1∑
j=1

1

j
− ln(2π ) − γ

)
B2n

]
.

It follows that ln(A2) = ζ (3)/(4π2) and ln(A3) = 3ζ ′(4)/(4π4) − (ln(2π ) + γ )/120.

2.15.2 Multiple Barnes Functions

Barnes [40] defined a sequence of functions {Gn(z)} on the complex plane satisfying

G0(z) = z, Gn(1) = 1, Gn+1(z + 1) = Gn+1(z)

Gn(z)
for n ≥ 0.

The sequence is unique, by an argument akin to the Bohr–Mollerup theorem [41], if it
is further assumed that

(−1)n dn+1

dxn+1
ln(Gn(x)) ≥ 0 for x > 0.

Clearly G1(z) = 1/�(z) and G2(z) = G(z). Properties of {Gn(z)} are given in
[31, 42, 43]. Of special interest are the values of Gn(1/2). Adamchik [42] determined
the simplest known formula for these:

ln
(
Gn

(
1
2

)) = 1
(n−1)!

[
− ln(π )

2n

n∏
k=2

(2k − 3) +
n∑

m=1

(
ln(2) Bm+1

m+1 + (2m+1− 1)ζ ′(−m)
)

qm,n

2m

]
,
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where qm,n is the coefficient of xm in the expansion of the polynomial 21−n
∏n−1

j=1(2x +
2 j − 1). We may hence write

ln

(
G3

(
1

2

))
= 1

8
+ 1

24
ln(2) − 3

16
ln(π ) − 3

2
ln(A1) − 7

8
ln(A2),

ln

(
G4

(
1

2

))
= 265

2304
+ 229

5760
ln(2) − 5

32
ln(π ) − 23

16
ln(A1)

−21

16
ln(A2) − 5

16
ln(A3)

in terms of the generalized Glaisher constants Ak .

2.15.3 GUE Hypothesis

Assume that the Riemann hypothesis [1.6.2] is true. Let

γ1 = 14.1347251417 . . . ≤ γ2 = 21.0220396387 . . .

≤ γ3 = 25.0108575801 . . . ≤ γ4 ≤ γ5 ≤ . . .

denote the imaginary parts of the nontrivial zeros of ζ (z) in the upper half-plane. If
N (T ) denotes the number of such zeros with imaginary part < T , then the Riemann–
von Mongoldt formula [44] gives

N (T ) = T

2π
ln

(
T

2πe

)
+ O(ln(T ))

as T → ∞, and hence

γn ∼ 2πn

ln(n)

as n → ∞. The mean spacing between γn and γn+1 tends to zero as n → ∞, so it is
useful to renormalize (or “unfold”) the consecutive differences to be

δn = γn+1 − γn

2π
ln

( γn

2π

)
,

and thus δn has mean value 1.
What can be said about the probability distribution of δn? That is, what density

function p(s) satisfies

lim
N→∞

1

N
|{n : 1 ≤ n ≤ N , α ≤ δn ≤ β}| =

β∫
α

p(s)ds

for all 0 < α < β?
Here is a fascinating conjectured answer. A random Hermitian N × N matrix X

is said to belong to the Gaussian unitary ensemble (GUE) if its (real) diagonal ele-
ments x j j and (complex) upper triangular elements x jk = u jk + iv jk are independently
chosen from zero-mean Gaussian distributions with Var(x j j ) = 2 for 1 ≤ j ≤ N and
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Figure 2.1. In a small simulation, the eigenvalues of fifty 120 × 120 random GUE matrices were
generated. The resulting histogram plot of δ̃n compares well against p(s).

Var(u jk) = Var(v jk) = 1 for 1 ≤ j < k ≤ N . Let λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λN denote the
(real) eigenvalues of X and consider the normalized spacings

δ̃n = λn+1 − λn

4π

√
8N − λ2

n, n ≈ N

2
.

With this choice of scaling, δ̃n has mean value 1. The probability density of δ̃n , in the
limit as N → ∞, tends to what is called the Gaudin density p(s). Inspired by some
theoretical work by Montgomery [45], Odlyzko [46–50] experimentally determined that
the distributions for δn and δ̃n are very close. The GUE hypothesis (or Montgomery–
Odlyzko law) is the astonishing conjecture that the two distributions are identical. See
Figure 2.1.

Furthermore, there are extensive results concerning the function p(s). Define

E(s) = exp




πs∫
0

σ (t)

t
dt


 ,

where σ (t) satisfies the Painlevé V differential equation (in “sigma form”)

(t · σ ′′)2 + 4(t · σ ′ − σ )[t · σ ′ − σ + (σ ′)2] = 0

with boundary conditions

σ (t) ∼ − t

π
−

(
t

π

)2

as t → 0+, σ (t) ∼ −
(

t

2

)2

− 1

4
as t → ∞;

then p(s) = d2 E/ds2.
The Painlevé representation [51–56] above allows straightforward numerical calcu-

lation of p(s), although historically a Fredholm determinant representation [49, 57, 58]
for E(s) came earlier. (Incidently, Painlevé II arises in our discussion of the longest
increasing subsequence problem [5.20], and Painlevé III arises in connection with the
Ising model [5.22].)
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Using p(s), one could compute the median, mode, and variance of δ̃n , as well as
higher moments.

Here is an interesting problem having to do with the tail of the Gaudin distribution
[59, 60]. The function E(s) can be interpreted as the probability that the interval [0, s]
contains no (scaled) eigenvalues. If the specific interval [0, s] is replaced by an arbitrary
interval of length s, then the probability remains the same. We know that [49, 61]

E(s) ∼ 1 − s + π2s4

360
as s → 0+, E(s) ∼ C · (πs)−

1
4 exp

(− 1
8 (πs)2

)
as s → ∞,

where C is a constant. Dyson [49, 62] nonrigorously identified

C = 2
1
3 e3ζ ′(−1) = 2

1
4 e2B

using a result of Widom [63], where

B = 1

24
ln(2) + 3

2
ζ ′(−1) = −0.2192505830 . . . .

This, in turn, is related to Glaisher’s constant A via the formula [22]

e2B = 2
1

12 e
1
4 A−3.

It is curious that a complete asymptotic expansion for E(s) is now known [60, 64–66],
all rigorously obtained except for the factor C! Similar phenomena were reported in
[67–70] in connection with certain associated problems.

There is another way of looking at the GUE hypothesis. Let us return to the normal-
ized differences δn of consecutive zeta function zeros and define

�nk =
k∑

j=0

δn+ j .

Earlier, k was constrained to be 0. If now k ≥ 0 is allowed to vary, what is the “dis-
tribution” of �nk? Montgomery [45] conjectured that the following simple formula is
true:

lim
N→∞

1

N
|{(n, k) : 1 ≤ n ≤ N , k ≥ 0, α ≤ �nk ≤ β}| =

β∫
α

[
1 −

(
sin(πr )

πr

)2
]

dr.

In other words, 1 − (sin(πr )/(πr ))2 is the pair correlation function of zeros of the zeta
function, as predicted by Montgomery’s partial results. Incredibly, it has been proved
that GUE eigenvalues possess the same pair correlation function. Odlyzko [46–49]
again has accumulated extensive numerical evidence supporting this conjecture. The
implications of the pair correlation conjecture for prime number theory were explored
in [71]. Hejhal [72] studied a three-dimensional analog, known as the triple correlation
conjecture; higher level correlations were examined in [73].

Careful readers will note the restriction n ≈ N/2 in the preceding definition of δ̃n .
In our small simulation, we took only the middle third of the eigenvalues, sampling
what is known as the “bulk” of the spectrum. If we sampled instead the “edges” of
the spectrum, a different density emerges [69, 70]. The sine kernel in the Fredholm
determinant for the “bulk” is replaced by the Airy kernel for the “edges.”
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Rudnick & Sarnak [73, 74] and Katz & Sarnak [75, 76] generalized the GUE hy-
pothesis to a wider, more abstract setting. They gave proofs in certain important special
cases, but not in the original case discussed here.

There is interest in the limit superior and limit inferior of δn , which are conjectured
to be ∞ and 0, respectively [77–80].

A huge amount of research has been conducted in the area of random matrices (with
no symmetry assumed) and the related subject of random polynomials. We mention only
one sample result. Let q(x) be a random polynomial of degree n, with real coefficients
independently chosen from a standard Gaussian distribution. Let zn denote the expected
number of real zeros of q(x). Kac [81, 82] proved that

lim
n→∞

zn

ln(n)
= 2

π
,

and it is known that [82–88]

lim
n→∞ zn − 2

π
ln(n) = c,

where

c = 2

π


ln(2) +

∞∫
0

(√
x−2 − 4e−2x (1 − e−2x )−2 − (x + 1)−1

)
dx




= 0.6257358072 . . . .

More terms of the asymptotic expansion are known; see [82, 87] for an overview.
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2.16 Stolarsky–Harborth Constant

Given a positive integer k, let b(k) denote the number of ones in the binary expansion
of k. Glaisher [1–6] showed that the number of odd binomial coefficients of the form(k

j

)
, 0 ≤ j ≤ k, is 2b(k). As a consequence, the number of odd elements in the first n

rows of Pascal’s triangle is

f (n) =
n−1∑
k=0

2b(k)

and satisfies the recurrence

f (0) = 0, f (1) = 1, f (n) =
{

3 f (m) if n = 2m
2 f (m) + f (m + 1) if n = 2m + 1

for n ≥ 2.

The question is: Can a simple approximation for f (n) be found? The answer is yes. Let
θ = ln(3)/ ln(2) = 1.5849625007 . . . , the fractal dimension [7, 8] of Pascal’s triangle
modulo 2. It turns out that nθ is a reasonable approximation for f (n). It also turns out that
f (n) is not well behaved asymptotically. Stolarsky [9] and Harborth [10] determined
that

0.812556 < λ = liminf
n→∞

f (n)

nθ
< 0.812557 < limsup

n→∞
f (n)

nθ
= 1,

and we call λ = 0.8125565590 . . . the Stolarsky–Harborth constant.
Here is a generalization. Let p be a prime and f p(n) be the number of elements in

the first n rows of Pascal’s triangle that are not divisible by p. Define

θp =
ln

(
p(p+1)

2

)
ln(p)

and note that lim
n→∞ θp = 2. Of course, f2(n) = f (n) and θ2 = θ . It is known that [11–14]

λp = liminf
n→∞

f p(n)

nθp
< limsup

n→∞
f p(n)

nθp
= 1,

λ3 = (
3
2

)1−θ3 = 0.7742 . . . , lim
p→∞ λp = 1

2

and further conjectured that

λ5 = (
3
2

)1−θ5 = 0.7582 . . . , λ7 = (
3
2

)1−θ7 = 0.7491 . . . ,

λ11 = 59
44

(
22
31

)θ11 = 0.7364 . . . .

Curiously, no such exact formula for λ2 = λ has been found. A broader generalization
involves multinomial coefficients [15–17].
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2.16.1 Digital Sums

The expression f2(n) is an exponential sum of digital sums. Another example is

m p(n) =
n−1∑
k=0

(−1)b(p k),

which, in the case p = 3, quantifies an empirical observation that multiples of 3 prefer
to have an even number of 1-digits. We will first discuss, however, a power sum of
digital sums:

sq (n) =
n−1∑
k=0

b(k)q

and set q = 1 for the sake of concreteness.
Trollope [18] and Delange [19], building upon [20–26], proved that

s1(n) = 1

2 ln(2)
n ln(n) + n S

(
ln(n)

ln(2)

)

exactly, where S(x) is a certain continuous nowhere-differentiable function of period 1,

−0.2075 . . . = ln(3)

2 ln(2)
− 1 = inf

x
S(x) < sup

x
S(x) = 0,

and the Fourier coefficients of S(x) are all known. See Figure 2.2. The mean value of
S(x) is [19, 27]

1∫
0

S(x)dx = 1

2 ln(2)
(ln(2π ) − 1) − 3

4
= −0.1455 . . . .

Extensions of this remarkable result to arbitrary q appear in [28–36].
Let ω = θ/2 and ε(n) = (−1)b(3n−1) if n is odd, 0 otherwise. Newman [37–39]

proved that m3(n) > 0 always and is O(nω). Coquet [40] strengthened this to

m3(n) = nω M

(
ln(n)

2 ln(2)

)
+ 1

3
ε(n),

where M(x) is a continuous nowhere-differentiable function of period 1,

1.1547 . . . = 2
√

3

3
= inf

x
M(x) < sup

x
M(x) = 55

3

(
3

65

)ω

= 1.6019 . . .

and, again, the Fourier coefficients of M(x) are all known. The mean value [27] of M(x)
is 1.4092203477 . . . but has a complicated integral expression. Extensions of this result
to p = 5 and 17 appear in [41–43]. The pattern in {(−1)b(k)} follows the well-known
Prouhet–Thue–Morse sequence [6.8], and associated sums of subsequences of the form
{(−1)b(pk+r )} are discussed in [44–46].
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Figure 2.2. The Trollope–Delange function is pictured, as well as its mean value.

We return to binomial coefficients. Stein [47] proved that

f2(n) = nθ F

(
ln(n)

ln(2)

)
,

where F(x) is a continuous function of period 1; by way of contrast, F(x) is dif-
ferentiable almost everywhere, but is nowhere monotonic [48]. This fact, however,
does not appear to give any insight concerning an exact formula for λ2 = infx F(x).
The Fourier coefficients of F(x) are all known, and the mean value [27] of F(x) is
0.8636049963. . . . Again, the underlying integral is complicated.

This material plays a role in the analysis of algorithms, for example, in approximating
the register function for binary trees [49], and in studying mergesort [50], maxima
finding [51], and other divide-and-conquer recurrences [52, 53].

2.16.2 Ulam 1-Additive Sequences

There is an unexpected connection between digital sums and Ulam 1-additive se-
quences [54]. Let u < v be positive integers. The 1-additive sequence with base u, v

is the infinite sequence (u, v) = a1, a2, a3, . . . with a1 = u, a2 = v and an is the least
integer exceeding an−1 and possessing a unique representation an = ai + a j , i < j ,
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n ≥ 3. Ulam’s archetypal sequence

(1, 2) = 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, . . .

remains a mystery. No pattern in its successive differences has ever been observed.
Ulam conjectured that the density of (1, 2), relative to the positive integers, is 0. No
one has yet found a proof of this.

Substantially more is known about the cases (2, v), where v is odd, and (4, v), where
v additionally is congruent to 1 modulo 4. Cassaigne & Finch [55] proved that the
successive differences of the Ulam 1-additive sequence (4, v) are eventually periodic
and that the density of (4, v) is

d(v) = 1

2(v + 1)

(v−1)/2∑
k=0

2−b(k).

It can be shown that d(v) → 0 as v → ∞. The techniques giving rise to the Stolarsky–
Harborth constant λ can be modified to give the following more precise asymptotic
estimate of the density:

1

4
= liminf

v→∞
v≡1 mod 4

(v

2

)2−θ

d(v) < 0.272190 < limsup
v→∞

v≡1 mod 4

(v

2

)2−θ

d(v) < 0.272191.

A certain family of ternary quadratic recurrences and its periodicity properties play
a crucial role in the proof in [55]. It is natural to ask how far this circle of ideas and
techniques can be extended.

2.16.3 Alternating Bit Sets

If n is a positive integer satisfying 2k−1 ≤ n < 2k , clearly the binary expansion of n
has k bits. Define an alternating bit set in n to be a subset of the k bit positions of n
with the following properties [6, 56–58]:

• The bits of n that lie in these positions are alternatively 1s and 0s.
• The leftmost (most significant) of these is a 1.
• The rightmost (least significant) of these is a 0.

Let c(n) be the cardinality of all alternating bit sets of n. For example, c(26) = 8 since
26 is 11010 in binary and hence all alternating bit sets of 26 are

{}, {5, 3}, {5, 1}, {4, 3}, {4, 1}, {2, 1}, {5, 3, 2, 1}, and {4, 3, 2, 1}.
Although c(n) is not a digital sum like b(n), it has similarly interesting combinatorial
properties: c(n) is the number of ways of writing n as a sum of powers of 2, with each
power used at most twice. It satisfies the recurrence

c(0) = 1, c(n) =
{

c(m) + c(m − 1) if n = 2m
c(m) if n = 2m + 1

for n ≥ 1.
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It is also linked to the Fibonacci sequence in subtle ways and one can prove that [57]

0.9588 < limsup
n→∞

c(n)

nln(ϕ)/ ln(2)
< 1.1709,

where ϕ is the Golden mean [1.2]. What is the exact value of this limit supremum? Is
there a reason to doubt that its exact value is 1?
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2.17 Gauss–Kuzmin–Wirsing Constant

Let x0 be a random number drawn uniformly from the interval (0, 1). Write x0 (uniquely)
as a regular continued fraction

x0 = 0 + 1|
|a1

+ 1|
|a2

+ 1|
|a3

+ · · · ,

where each ak is a positive integer, and define for all n > 0,

xn = 0 + 1|
|an+1

+ 1|
|an+2

+ 1|
|an+3

+ · · · .

For each n, xn is also a number in (0, 1) since xn = {1/xn−1}, where {y} denotes the
fractional part of y.

In 1812, Gauss examined the distribution function [1]

Fn(x) = probability that xn ≤ x
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and believed that he possessed a proof of a remarkable limiting result:

lim
n→∞ Fn(x) = ln(1 + x)

ln(2)
, 0 ≤ x ≤ 1.

The first published proof is due to Kuzmin [2], with subsequent improvements in error
bounds by Lévy [3] and Szüsz [4]. Wirsing [5] went farther and gave a proof that

lim
n→∞

Fn(x) − ln(1+x)
ln(2)

(−c)n
= �(x),

where c = 0.3036630028 . . . and � is an analytic function satisfying �(0) = �(1) =
0. A graph in [6] suggests that � is convex and −0.1 < �(x) < 0 for 0 < x < 1. The
constant c is apparently unrelated to more familiar constants and is computed as an
eigenvalue of a certain infinite-dimensional linear operator [2.17.1], with �(x) as the
corresponding eigenfunction. The key to this analysis is the identity

Fn+1(x) = T [Fn](x) =
∞∑

k=1

[
Fn

(
1

k

)
− Fn

(
1

k + x

)]
.

Babenko & Jurev [7–9] went even farther in establishing that a certain eigen-
value/eigenfunction expansion,

Fn(x) − ln(1 + x)

ln(2)
=

∞∑
k=2

λn
k · �k(x), 1 = λ1 > |λ2| ≥ |λ3| ≥ . . . ,

is valid for all x and all n > 0. Building upon the work of others [1, 5, 6, 10, 11], Sebah
[12] computed the Gauss–Kuzmin–Wirsing constant c to 100 digits, as well as the
eigenvalues λk for 3 ≤ k ≤ 50.

Some related paths of research are indicated in [13–19], but these are too far afield
for us to discuss.

2.17.1 Ruelle–Mayer Operators

The operators examined here first arose in dynamical systems [20, 21]. Let � denote the
open disk of radius 3/2 with center at 1, and let s > 1. Let X denote the Banach space of
functions f that are analytic on � and continuous on the closure of �, equipped with the
supremum norm. Define a linear operator Gs : X → X by the formula [10, 11, 22, 23]

Gs[ f ](z) =
∞∑

k=1

1

(k + z)s
f

(
1

k + z

)
, z ∈ �.

We will examine only the case s = 2 here; the case s = 4 is needed in [2.19].
Note that the derivative T [F]′(x) = G2[ f ](x), where F ′ = f , hence an understand-

ing of G2 carries over to T . The first six eigenvalues [1, 6, 10–12] of G2 after λ1 = 1
are

λ2 = −0.3036630028 . . . , λ3 = 0.1008845092 . . . , λ4 = −0.0354961590 . . . ,

λ5 = 0.0128437903 . . . , λ6 = −0.0047177775 . . . , λ7 = 0.0017486751 . . . .
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On the one hand, it might be conjectured that

lim
n→∞

λn+1

λn
= −1 − ϕ = −2.6180339887 . . . ,

where ϕ is the Golden mean [1.2]. On the other hand, it has been proved that the trace
of G2 is exactly given by [11]

τ1 = 1

2
− 1

2
√

5
+ 1

2

∞∑
k=1

(−1)k−1

(
2k

k

)
(ζ (2k) − 1) = 0.7711255236 . . . ,

where τn = ∑∞
j=1 λn

j . The connection between Gs and zeta function values [1.6] is not
surprising: Look at Gs applied to f (z) = zr ; then consider Maclaurin expansions of
arbitrary functions f and the linearity of Gs .

Other interesting trace formulas include the following. Let [24, 25]

ξn = 0 + 1|
|n + 1|

|n + 1|
|n + · · ·, n = 1, 2, 3, . . . .

Then

τ1 =
∞∫
0

J1(2u)

eu − 1
du =

∞∑
n=1

1

1 + ξ−2
n

,

where

J1(x) =
∞∑

k=0

(−1)k

k!(k + 1)!

( x

2

)2k+1

is the Bessel function of first order. In the same way, if

ξm,n = 0 + 1|
|m + 1|

|n + 1|
|m + 1|

|n + · · ·

then

τ2 =
∞∫
0

∞∫
0

J1(2
√

uv)2

(eu − 1)(ev − 1)
du dv =

∞∑
m=1

∞∑
n=1

1

(ξm,nξn,m)−2 − 1
= 1.1038396536 . . . .

Generalization of these is possible.
It can be proved that the dominant eigenvalue λ1(s) of Gs (of largest modulus) is

positive and unique, that the function s → λ1(s) is analytic and strictly decreasing, and
that [26]

lim
s→1+

(s − 1)λ1(s) = 1, λ1(2) = 1, lim
s→∞

1

s
ln(λ1(s)) = − ln(ϕ).

A simple argument [22] shows that λ′
1(2) = −π2/(12 ln(2)) is Lévy’s constant [1.8].

Later, we will see that both λ′
1(2) and λ′′

1(2) arise in connection with determining
precisely the efficiency of the Euclidean algorithm [2.18]. Likewise, λ1(4) occurs in
the analysis of certain comparison and sorting algorithms [2.19]. It is known that all
eigenvalues λ j (s) are real, but questions of sign and uniqueness remain open for j > 1.
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Here is an alternative definition of λ1(s). For any k-dimensional vector w =
(w1, . . . , wk) of positive integers, let 〈w〉 denote the denominator of the continued
fraction

0 + 1|
|w1

+ 1|
|w2

+ 1|
|w3

+ · · · + 1|
|wk

and let W (k) be the set of all such vectors. Then

λ1(s) = lim
k→∞

( ∑
w∈W (k)

〈w〉−s

) 1
k

is true for all s > 1. This is the reason λ1(s) is often called a pseudo-zeta function
associated with continued fractions.

2.17.2 Asymptotic Normality

We initially studied the denominator Qn(x) of the nth continued fraction convergent to
x in [1.8]. With the machinery introduced in the previous section, more can now be
said.

If x is drawn uniformly from (0, 1), then the mean and variance of ln(Qn(x)) satisfy
[22, 26]

E(ln(Qn(x))) = An + B + O(cn), Var(ln(Qn(x))) = Cn + D + O(cn),

where c = − λ2(2) = 0.3036630028 . . . , A = − λ′
1(2) = 1.1865691104 . . . , and [2.18]

C = λ′′
1(2) − λ′

1(2)2 = 0.8621470373 . . . = (0.9285187329 . . .)2.

The constants B and D await numerical evaluation. Further, the distribution of
ln(Qn(x)) is asymptotically normal:

lim
n→∞ P

(
ln(Qn(x)) − An√

Cn
≤ y

)
= 1√

2π

y∫
−∞

exp

(
− t2

2

)
dt.

This is the first of several appearances of the Central Limit Theorem in this book.

2.17.3 Bounded Partial Denominators

A consequence of the Gauss–Kuzmin density is that almost all real numbers have
unbounded partial denominators ak . What does the set of all real numbers with only
1s and 2s for partial denominators “look like”? It is known [27–31] that this set has
Hausdorff dimension between 0.53128049 and 0.53128051. Further discussion of this
parameter is deferred until [8.20].
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2.18 Porter–Hensley Constants

Given two nonnegative integers m and n, let L(m, n) denote the number of division
steps required to compute gcd(m, n) by the classical Euclidean algorithm. By definition,
if m ≥ n, then

L(m, n) =
{

1 + L(n, m mod n) if n ≥ 1,

0 if n = 0,

and if m < n, then L(m, n) = 1 + L(n, m). Equivalently, L(m, n) is the length of the
regular continued fraction representation of m/n. We are interested in determining
precisely the efficiency of the Euclidean algorithm and will do so by examining three
types of random variables:

Xn = L(m, n), where 0 ≤ m < n is chosen at random,

Yn = L(m, n), where 0 ≤ m < n is chosen at random and m is coprime to n,

Z N = L(m, n), where both 1 ≤ m ≤ N and 1 ≤ n ≤ N are chosen at random.

Of these three, the expected value of Yn is best behaved and was the first to succumb to
analysis. It is interesting to follow the progress in understanding these average values.
In his first edition, Knuth [1] observed that, empirically, E(Yn) ∼ 0.843 ln(n) + 1.47
and gave compelling reasons for

E(Yn) ∼ 12 ln(2)

π2
ln(n) + 1.47, E(Z N ) ∼ 12 ln(2)

π2
ln(N ) + 0.06,

where the coefficient of ln(n) is Lévy’s constant [1.8]. He decried the gaping theoretical
holes in proving these asymptotics, however, and wrote, “The world’s most famous
algorithm deserves a complete analysis!”

By the second edition [2], remarkable progress had been achieved by Heilbronn [3],
Dixon [4, 5], and Porter [6]. For any ε > 0, the following asymptotic formula is true:

E(Yn) ∼ 12 ln(2)

π2
ln(n) + C + O

(
n− 1

6 +ε

)
,
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and Porter’s constant C is defined by

C = 6 ln(2)

π2

(
3 ln(2) + 4γ − 24

π2
ζ ′(2) − 2

)
− 1

2
= 1.4670780794 . . . ,

where γ is the Euler–Mascheroni constant [1.5],

ζ ′(2) = d

dx
ζ (x)

∣∣∣∣
x=2

= −
∞∑

k=2

ln(k)

k2
= −0.9375482543 . . . ,

and ζ (x) is the Riemann zeta function [1.6]. This expression for C was discovered by
Wrench [7], who also computed ζ ′(2), and hence C , to 120 decimal places [8]. See
[2.10] for more occurrences of ζ ′(2).

What can be said of the other two average values? Norton [9] proved that, for any
ε > 0,

E(Z N ) ∼ 12 ln(2)

π2
ln(N ) + B + O

(
N− 1

6 +ε

)
,

where

B = 12 ln(2)

π2

(
−1

2
+ 6

π2
ζ ′(2)

)
+ C − 1

2
= 0.0653514259 . . . .

The asymptotic expression for E(Xn) is similar to that for E(Yn) minus a correction
term [2, 9] based on the divisors of n:

E(Xn) ∼ 12 ln(2)

π2

(
ln(n) −

∑
d|n

�(d)

d

)
+ C + 1

n

∑
d|n

ϕ(d) · O

(
d− 1

6 +ε

)
,

where ϕ is Euler’s totient function [2.7] and � is von Mangoldt’s function:

�(d) =
{

ln(p) if d = pr for p prime and r ≥ 1,

0 otherwise.

In the midst of the proof in [9], Norton mentioned the Glaisher–Kinkelin constant A,
which we discuss in [2.15]. Porter’s constant C can be written in terms of A as

C = 6 ln(2)

π2
(48 ln(A) − 4 ln(π ) − ln(2) − 2) − 1

2

Knuth [7] mentioned a long-forgotten paper [10] containing (1 − 2B)/4 =
0.2173242870 . . . and proposed that C instead be called the Lochs–Porter constant.

It is far more difficult to compute the corresponding variance of L(m, n). Let us
focus only on Z N . Hensley [11] proved that

Var(Z N ) = H ln(N ) + o(ln(N )),

where

H = −λ′′
1(2) − λ′

1(2)2

π6λ′
1(2)3

= 0.0005367882 . . . = (0.0231686908 . . .)2
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and λ′
1(2) and λ′′

1(2) are precisely as described in [2.17.1]. Numerical work by Flajolet
& Vallée [12] yielded the estimate 4λ′′

1(2) = 9.0803731646 . . . needed to evaluate H .
Furthermore, the distribution of Z N is asymptotically normal:

lim
N→∞

P

(
Z N − 12 ln(2)

π2 ln(N )√
H ln(N )

≤ w

)
= 1√

2π

w∫
−∞

exp

(
− t2

2

)
dt.

A recent paper [13] contains several Porter-like constants in connection with the prob-
lem of sorting several real numbers via their continued fraction representations.

2.18.1 Binary Euclidean Algorithm

Assume m and n are positive odd integers. Let e(m, n) be the largest integer such that
2e(m,n) divides m − n. The number of subtraction steps required to compute gcd(m, n)
by the binary Euclidean algorithm [14] is

K (m, n) =




1 + K

(
m − n

2e(m,n)
, n

)
if m > n,

0 if m = n,

K (n, m) if m < n.

Define the random variable

WN = K (m, n), where odd 0 < m ≤ N and 0 < n ≤ N are chosen at random.

Computing the expected value of WN is much more complicated than for Z N . As in
[2.17.1], study of a linear operator on function spaces [15, 16]

Vs[ f ](z) =
∑
k≥1

∑
1≤ j<2k

odd

1

( j + 2k z)s
f

(
1

j + 2k z

)
,

is needed. For s = 2, let ψ denote the unique fixed point of Vs (up to scaling) and define
a constant

κ = 2

π2ψ(1)

∑
r≥1
odd

2
−

⌊
ln(r )
ln(2)

⌋ 1
r∫
0

ψ(x)dx ;

then E(WN ) ∼ κ ln(N ). Further, if a certain conjecture by Vallée is true [15, 16], then
some heuristic formulas due to Brent [17–19] are applicable and

κ = 1.0185012157 . . . = ln(2)−1 · 0.7059712461 . . . .

A direct computation, based on the exact definition of κ , has yet to be carried out.
Other performance parameters [15, 16] and alternative algorithms [17] have been

studied, giving more constants. There is a continued fraction interpretation of these
results. A general framework for investigating Euclidean-like algorithms [20, 21] pro-
vides analyses of methods for evaluating the Jacobi symbol from number theory [22].



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-02 CB503/Finch-v2.cls December 9, 2004 13:46 Char Count=

2.18 Porter–Hensley Constants 159

Even more constants emerge if we examine average bit complexity rather than arith-
metical operation counts [23, 24]. Many related questions remain unanswered.

2.18.2 Worst-Case Analysis

It is known [14, 25, 26] that the maximum value of Z N occurs when m and n are
consecutive Fibonacci numbers fk and fk+1, and k is the largest integer with fk+1 ≤ N .
Therefore

max(Z N ) = k ∼ 1

ln(ϕ)
ln(N ) = 2.0780869212 . . . · ln(N ),

where ϕ is the Golden mean [1.2]. In contrast [14],

max(WN ) ∼ 1

ln(2)
ln(N ) = 1.4426950408 . . . · ln(N ),

and this occurs when m and n are of the form 2k−1 − 1 and 2k−1 + 1.
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2.19 Vallée’s Constant

Let x and y be random numbers drawn uniformly and independently from the interval
(0, 1). To compare x and y is to determine which of the following is true: x < y or
x > y. There is an obvious algorithm for comparing x and y: Search for where the
decimal or binary expansions of x and y first disagree. In base b, the number L of
iterations of this algorithm has mean value

E(L) = b

b − 1

and a probability distribution given by

pn = P(L ≥ n + 1) = b−n, n = 0, 1, 2 . . . .

Clearly

lim
n→∞ p

1
n
n = 1

b

is a simply a way of expressing the (asymptotic) rate at which digits in the two base-b
expansions coincide.
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Here is a less obvious algorithm, proposed in [1], for comparing x and y. Write x
and y (uniquely) as regular continued fractions:

x = 0 + 1|
|a1

+ 1|
|a2

+ 1|
|a3

+ · · · , y = 0 + 1|
|b1

+ 1|
|b2

+ 1|
|b3

+ · · · ,

where each a j and b j is a positive integer and search for where ak �= bk first occurs.
If k is even, then x < y if and only if ak < bk . If k is odd, then x < y if and only if
ak > bk . (There are other necessary provisions if x or y are rational, i.e., where a j or
b j might be 0, which we do not discuss.)

The analysis of this algorithm is much more difficult and uses techniques and ideas
discussed in [2.17.1]. Daudé, Flajolet & Vallée [2–5] proved that the mean number of
iterations is

E(L) = 3

4
+ 180

π4

∞∑
i=1

2i∑
j=i+1

1

i2 j2
= 17

4
+ 360

π4

∞∑
i=1

i∑
j=1

(−1)i

i2 j2

= 17 − 60

π4

[
24 Li4

(
1

2

)
− π2 ln(2)2 + 21ζ (3) ln(2) + ln(2)4

]

= 1.3511315744 . . . ,

where Li4(z) is the tetralogarithm function [1.6.8] and ζ (3) is Apéry’s constant [1.6].
This closed-form evaluation draws upon work in [6–8]. We also have

p1 =
∞∑

i=1

1

i2(i + 1)2
= π2

3
− 3 = 0.2898681336 . . . ,

p2 =
∞∑

i=1

∞∑
j=1

1

(i j + 1)2(i j + i + 1)2
= 0.0484808014 . . .

= −5 + 2π2

3
− 2ζ (3) + 2

∞∑
n=0

(−1)n(n + 1)ζ (n + 4) [ζ (n + 2) − 1] ,

p3 =
∞∑

i=1

∞∑
j=1

∞∑
k=1

1

(i jk + i + k)2(i jk + i j + i + k + 1)2
= 0.0102781647 . . . ,

but unlike earlier, a nice compact formula for pn is not known. The elaborate recurrence
giving rise to pn appears later [2.19.1]. It can be deduced that [2–5]

v = lim
n→∞ p

1
n
n = 0.1994588183 . . .

using the fact that this is the largest eigenvalue of the linear operator G4 defined in
[2.17.1]. As with G2, the eigenvalues of G4 are real and seem to alternate in sign
(the next one is −0.0757395140 . . .). A similar argument applies in the analysis of the
Gaussian algorithm for finding a short basis of a lattice in two-dimensional space, given
an initially skew basis. Vallée’s constant v also appears in connection with the problem
of sorting n > 2 real numbers via their continued fraction representations [9].
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If, when comparing x and y, we instead use centered continued fractions, then the
number L̂ of iterations satisfy [2, 5]

E(L̂) = 360

π4

∞∑
i=1

�(ϕ+1)i�∑
j=�ϕi�

1

i2 j2
= 1.0892214740 . . . ,

v̂ = lim
n→∞ p̂

1
n
n = 0.0773853773 . . . ,

where ϕ is the Golden mean [1.2]. Since 1/v = 5.01 . . . and 1/v̂ = 12.92 . . . , it follows
that continued fractions behave roughly like base-5 and base-13 representations in this
respect. Not much is known about the corresponding operator Ĝs and its spectrum.
Flajolet & Vallée [5] also numerically computed values of the mock zeta function

ζθ (z) =
∞∑

k=1

1

�kθ�z , Re(z) > 1, θ > 1,

where θ > 1 is irrational. For example, ζϕ(2) = 1.2910603681 . . . .

2.19.1 Continuant Polynomials

Define functions recursively by the rule [3]

fk(x1, x2, . . . , xk) = xk fk−1(x1, x2, . . . , xk−1) + fk−2(x1, x2, . . . , xk−2),

k = 2, 3, 4, . . . ,

where

f0 = 1, f1(x1) = x1.

These are called continuant polynomials and can also be defined by taking the sum
of monomials obtained from x1x2 · · · xk by crossing out in all possible ways pairs of
adjacent variables x j x j+1. For example,

f2(x1, x2) = x1x2 + 1, f3(x1, x2, x3) = x1x2x3 + x1 + x3,

f4(x1, x2, x3, x4) = x1x2x3x4 + x1x2 + x1x4 + x3x4 + 1.

The probability of interest to us is

pk =
∞∑

n1=1

∞∑
n2=1

· · ·
∞∑

nk=1

1

f 2
k ( fk + fk−1)2

.

Each pk can be expressed in terms of complicated series involving Riemann zeta
function values and thus falls in the class of polynomial-time computable constants
[5].

[1] M. Beeler, R. W. Gosper, and R. Schroeppel, Continued fraction arithmetic, HAKMEM,
MIT AI Memo 239, item 101A.
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[2] H. Daudé, P. Flajolet, and B. Vallée, An analysis of the Gaussian algorithm for lat-
tice reduction, Proc. 1994 Algorithmic Number Theory Sympos. (ANTS-I), Ithaca, ed. L.
M. Adleman and M.-D. Huang, Lect. Notes in Comp. Sci. 877, Springer-Verlag, 1994,
pp. 144–158; MR 96a:11075.
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ed. M. Théra, Amer. Math. Soc., 2000, pp. 53–82; INRIA preprint RR4072; MR 2001h:
11161.

[6] R. Sitaramachandrarao, A formula of S. Ramanujan, J. Number Theory 25 (1987) 1–19;
MR 88c:11048.

[7] P. J. de Doelder, On some series containing ψ(x) − ψ(y) and (ψ(x) − ψ(y))2 for certain
values of x and y, J. Comput. Appl. Math. 37 (1991) 125–141; MR 92m:40002.

[8] G. Rutledge and R. D. Douglass, Evaluation of
∫ 1

0
log(u)

u log(1 + u)2du and related definite
integrals, Amer. Math. Monthly 41 (1934) 29–36.
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2.20 Erdös’ Reciprocal Sum Constants

2.20.1 A-Sequences

An infinite sequence of positive integers 1 ≤ a1 < a2 < a3 < . . . is called an A-
sequence if no ak is the sum of two or more distinct earlier terms of the sequence
[1]. For example, the sequence of nonnegative powers of 2 is an A-sequence. Erdös [2]
proved that

S(A) = sup
A-sequences

∞∑
k=1

1

ak
< 103

and thus the largest reciprocal sum must be finite in particular. Levine & O’Sullivan
[3, 4] proved that any A-sequence must satisfy what we call the χ -inequality:

( j + 1)a j + ai ≥ ( j + 1)i

for all i and j , and consequently S(A) < 3.9998. In the other direction, Abbott [5] and
Zhang [6] gave specific examples that demonstrate that S(A) > 2.0649. These are the
best-known bounds on S(A) so far.

The χ -inequality is itself interesting. Levine & O’Sullivan [3, 7] defined a specific
integer sequence by the greedy algorithm: χ1 = 1 and

χi = max
1≤ j≤i−1

( j + 1)(i − χ j )
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for i > 1, that is, 1, 2, 4, 6, 9, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 60, 65, . . . .
They conjectured that

S(A) ≤
∞∑

k=1

1

χk
= 3.01 . . .

and further that {χk} dominates the reciprocal sum of any other integer sequence sat-
isfying the χ -inequality. Finch [8–10] wondered if this latter conjecture still holds for
arbitrary (not necessarily integer) real sequences.

The authors of [3–5] used the phrase “sum-free sequence” to refer to A-sequences,
which is unfortunate terminology since the word “sum-free” usually refers to an entirely
different class of sequences [2.25]. We have adopted the phrase “A-sequence” from
Guy [1]. See also [2.28] concerning sets with distinct subset sums.

2.20.2 B2-Sequences

An infinite sequence of positive integers 1 ≤ b1 < b2 < b3 < . . . is called a B2-
sequence (or Sidon sequence) if all pairwise sums bi + b j , i ≤ j , are distinct [1].
For example, the greedy algorithm gives the Mian–Chowla [7, 11] sequence 1, 2, 4, 8,
13, 21, 31, 45, 66, 81, 97, 123, 148, 182, 204, 252, 290, . . . , which is known to have
reciprocal sum [12] between 2.158435 and 2.158677. Zhang [13] proved that

S(B2) = sup
B2-sequences

∞∑
k=1

1

bk
> 2.1597

and thus is larger than the Mian–Chowla sum. An observation by Levine [1, 13] shows
that S(B2) is necessarily finite; in fact, it is < 2.374. More recent work [12, 14] gives
the improved bounds 2.16086 < S(B2) < 2.247327.

Erdös & Turán [15–17] asked if a finite B2-sequence of positive integers b1 < b2 <

. . . < bm with bm ≤ n must satisfy m ≤ n1/2 + C for some constant C . Lindström [18]
demonstrated that m < n1/2 + n1/4 + 1. Zhang [19] computed that if such a C exists, it
must be > 10.27. Lindström [20] improved the lower bound for C to 13.71. In a more
recent paper [21], he concluded that C probably does not exist and conjectured that
m ≤ n1/2 + o(n1/4).

2.20.3 Nonaveraging Sequences

An infinite sequence of positive integers 1 ≤ c1 < c2 < c3 < . . . is said to be nonaver-
aging if it contains no three terms in arithmetic progression. Equivalently, c + d �= 2e
for any three distinct terms c, d, e of the sequence [1]. For example, the greedy algo-
rithm gives the Szekeres [7, 22] sequence 1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37,
38, 40, 41, 82, 83, . . . ; that is, n is in the sequence if and only if the ternary expan-
sion of n − 1 contains only 0s and 1s. This is known to have reciprocal sum between
3.00793 and 3.00794. Wróblewski [23], building upon [24, 25], constructed a special
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nonaveraging sequence to demonstrate that

S(C) = sup
nonaveraging

sequences

∞∑
k=1

1

ck
> 3.00849.

A proof that S(C) is necessarily finite is not known; the best lower bound [26] for ck is
only O(k

√
ln(k)/ ln(ln(k))).

Some related studies of the density of {ck} ∩ [1, n], constructed greedily with al-
ternative formation rules or different initial values, appear in [27–31]. Under certain
conditions, as n increases, the density oscillates with peaks and valleys (rather than
falling smoothly) in roughly geometric progression. The ratio between two consecutive
peaks seems, as N → ∞, to approach a limit. This phenomenon deserves to be better
understood.
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2.21 Stieltjes Constants

The Riemann zeta function ζ (z), as defined in [1.6], has a Laurent expansion in a
neighborhood of its simple pole at z = 1:

ζ (z) = 1

z − 1
+

∞∑
n=0

(−1)n

n!
γn(z − 1)n.

The coefficients γn can be proved to satisfy [1–9]

γn = lim
m→∞

(
m∑

k=1

ln(k)n

k
− ln(m)n+1

n + 1

)
=




0.5772156649 . . . if n = 0,

−0.0728158454 . . . if n = 1,

−0.0096903631 . . . if n = 2,

0.0020538344 . . . if n = 3,

0.0023253700 . . . if n = 4,

0.0007933238 . . . if n = 5,

and, in particular, γ0 = γ , the Euler–Mascheroni constant [1.5].
Here is a sample application to number theory. Define a positive integer N to be

jagged if its largest prime factor is >
√

N , and let j(N ) be the number of such integers
not exceeding N . The first several jagged numbers are 2, 3, 5, 6, 7, 10, 11, 13, 14, . . . and,
asymptotically [10, 11],

j(N ) = ln(2)N − (1 − γ0)
N

ln(N )
− (1 − γ0 − γ1)

N

ln(N )2
+ O

(
N

ln(N )3

)
,
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where 1 − γ0 = 0.4227843351 . . . and 1 − γ0 − γ1 = 0.4956001805 . . . . See the re-
lated discussion of smooth numbers in [5.4]. Other occurrences of γn include [12–17].

The signs of the Stieltjes constants γn follow a seemingly random pattern. Briggs [18]
proved that infinitely many γn are positive and infinitely many are negative. Mitrovic
[19] extended this result by demonstrating that each of the inequalities

γ2n < 0, γ2n > 0, γ2n−1 < 0, γ2n−1 > 0

must hold for infinitely many n. In an elaborate analysis, Matsuoka [20, 21] proved
that, for any ε > 0, there exist infinitely many integers n for which all of γn , γn+1,
γn+2, . . . , γn+�(2−ε) ln(n)� have the same sign, and there exist only finitely many integers
n for which all of γn , γn+1, γn+2, . . . , γn+�(2+ε) ln(n)� have the same sign. Also, if

f (n) = |{0 ≤ k ≤ n : γn > 0}|, g(n) = |{0 ≤ k ≤ n : γn < 0}|
then f (n) = n/2 + o(n) and g(n) = n/2 + o(n).

The first few Stieltjes constants γn are close to 0, but this is deceptive. In fact, their
magnitudes seem to → ∞ as n → ∞, although a proof is not known. Upper bounds
for |γn| were successively obtained by several authors [18, 22–26], culminating in

|γn| ≤ (3 + (−1)n)(2n)!

nn+1(2π )n
.

The last word again belongs to Matsuoka [20, 21], who proved that the lower bound

exp(n ln(ln(n)) − εn) < |γn|
holds for infinitely many n, while the upper bound

|γn| ≤ 1

10000
exp(n ln(ln(n)))

holds for all n ≥ 10.
We mentioned in [1.5] the following formula due to Vacca:

γ0 =
∞∑

k=1

(−1)k

k

⌊
ln(k)

ln(2)

⌋
.

Hardy [27] gave an analog for γ1:

γ1 =
∞∑
j=1

(−1) j ln( j)

j

⌊
ln( j)

ln(2)

⌋
− ln(2)

2

∞∑
k=1

(−1)k

k

⌊
ln(2k)

ln(2)

⌋ ⌊
ln(k)

ln(2)

⌋
,

and Kluyver [28] presented more such series for higher-order constants. Also, if {x}
denotes the fractional part of x , then [29]

∞∫
1

{x}
x2

dx = 1 − γ0,

∞∫
1

∞∫
x

{y}
xy2

dydx = 1 − γ0 − γ1.

Additional formulas for γn appear in [7, 8, 30–32].
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We now discuss certain associated constants. An alternating series variant,

τn =
∞∑

k=1

(−1)k ln(k)n

k

=




− ln(2) = −0.6931471805 . . . if n = 0,

− 1
2 ln(2)2 + γ0 ln(2) = 0.1598689037 . . . if n = 1,

− 1
3 ln(2)3 + γ0 ln(2)2 + 2γ1 ln(2) = 0.0653725925 . . . if n = 2,

can be related to the Stieltjes constants via the formulas [1, 4, 8, 26]

τn = − ln(2)n+1

n+1 +
n−1∑
k=0

(n
k

)
ln(2)n−kγk, γn = 1

n+1

n+1∑
k=0

(n+1
k

)
Bn+1−k ln(2)n−kτk,

where B j is the j th Bernoulli number [1.6.1]. Consider also the Laurent expansion for
ζ (z) at the origin (rather than at unity):

ζ (z) = 1

z − 1
+

∞∑
n=0

(−1)n

n!
δnzn.

Sitaramachandrarao [33] proved that [3, 34]

δn = lim
m→∞


 m∑

k=1

ln(k)n −
m∫
1

ln(x)ndx − 1

2
ln(m)n


 = (−1)n(ζ (n)(0) + n!)

=




1
2 = 0.5 if n = 0,

1
2 ln(2π ) − 1 = −0.0810614667 . . . if n = 1,

−π2

24 − 1
2 ln(2π )2 + γ 2

0
2 + γ1 + 2 = −0.0063564559 . . . if n = 2,

and these, in turn, were helpful to Lehmer [35] in approximating sums of the form
[7, 26]

σn =
∑

ρ

1

ρn
=




− 1
2 ln(4π ) + γ0

2 + 1 = 0.0230957089 . . . if n = 1,

−π2

8 + γ 2
0 + 2γ1 + 1 = −0.0461543172 . . . if n = 2,

− 7ζ (3)
8 + γ 3

0 + 3γ0γ1 + 3γ2

2 + 1 = −0.0001111582 . . . if n = 3,

where each sum is over all nontrivial zerosρ of ζ (z). The constantσ1 also appears in [1.6]
and [2.32]. Keiper [36] and Kreminski [37] vastly extended Lehmer’s computations.

The analog of γn corresponding to the arithmetic progression a, a + b, a + 2b,

a + 3b, . . . was studied by Knopfmacher [38], Kanemitsu [39], and Dilcher [40]:

γn,a,b = lim
m→∞


 ∑

0<k≤m
k≡a mod b

ln(k)n

k
− 1

b

ln(m)n+1

n + 1


 .
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For example,
∑b−1

a=0 γn,a,b = γn and

γn,0,2 = 1
2

[
n∑

j=0

(n
j

)
γn− j ln(2) j − ln(2)n+1

n+1

]
, γ1,0,3 = 1

3

[
γ1 + γ0 ln(3) − ln(3)2

2

]
,

γ1,1,3 = 1
6

[
2γ1 − γ0 ln(3) + ln(3)2

2 −
(

γ0+ln(2π )
3 − ln

[
�( 1

3 )2
√

3
2π

])
π

√
3
]
.

Different extensions of γn are found in [23, 26, 41–46].
The reader should be warned that some authors define the Stieltjes constants to be

(−1)nγn/n! rather than γn , so care is needed when reviewing the literature.

2.21.1 Generalized Gamma Functions

For complex z, the generalized gamma function �n(z) is defined by [47, 48]

�n(z) = lim
m→∞

exp

(
ln(m)n+1

n + 1
z

) m∏
k=1

exp

(
ln(k)n+1

n + 1

)

m∏
k=0

exp

(
ln(k + z)n+1

n + 1

)

and is analytic over the complex plane slit along the negative x-axis. Clearly �0(z) =
�(z) and �n(z) satisfies

�n(1) = 1, �n(z + 1) = exp

(
ln(z)n+1

n + 1

)
�n(z).

The connection between �n(z) and γn is through the formula ψn(1) = −γn , where

ψn(x) = d

dx
ln(�n(x)) = −γn −

∞∑
k=0

(
ln(x + k)n

x + k
− ln(k + 1)n

k + 1

)

is the generalized digamma function. A generalized Stirling formula includes

�0(x) ∼ √
2πx x− 1

2 e−x , �1(x) ∼ Cx
1
2 (x− 1

2 ) ln(x)−x ex

as special cases, where [48, 49]

ln(C) = ln

(
�1

(
1

2

))
− 1

4
ln(2)2 − 1

2
ln(2) ln(2π )

= −π2

48
− 1

4
ln(2π )2 + γ 2

0

4
+ γ1

2
= −1.0031782279 . . . .

Many more formulas of this kind can be found.
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2.22 Liouville–Roth Constants

We may study constants by means of other constants. Given a real number ξ , let R
denote the set of all positive real numbers r for which the inequality

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ <
1

qr

has at most finitely many solutions (p, q), where p and q > 0 are integers. Define the
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Liouville–Roth constant (or irrationality measure)

r (ξ ) = inf
r∈R

r,

that is, the critical rate threshold above which ξ is not approximable by rational
numbers [1–3]. It is known that

ξ is rational ⇒ r (ξ ) = 1,

ξ is algebraic irrational ⇒ r (ξ ) = 2 (Thue-Siegel-Roth theorem [4, 5]),
ξ is transcendental ⇒ r (ξ ) ≥ 2.

If ξ is a Liouville number, for example,

∞∑
n=1

1

2n!
= 1

21
+ 1

22
+ 1

26
+ 1

224
+ 1

2120
+ · · · = 0.7656250596 . . . ,

then r (ξ ) = ∞. Similarly, one can construct ξ so that r (ξ ) assumes any value,
2 < r (ξ ) < ∞ (from series of rationals with appropriately fast convergence). Among
famous constants, it is known that [2]

r (e) = 2

(in fact, much more precise inequalities are possible, but e is somewhat atypical), and

2 ≤ r (π ) ≤ 8.016045 . . . (Hata [6, 7]),
2 ≤ r (ln(2)) ≤ 3.89139978 . . . (Rukhadze [8, 9]),
2 ≤ r (π2) ≤ 5.441243 . . . (Hata [10], Rhin & Viola [11]),
2 ≤ r (ζ (3)) ≤ 5.513891 . . . (Hata [12], Rhin & Viola [13]),

where ζ (3) is Apéry’s constant [1.6]. Upper bounds for r corresponding to Catalan’s
constant G [1.7] or Khintchine’s constant K [1.8] are not known. Whether G and K
are even irrational remains open.

A consequence of Hata’s work concerning π is that the two functions [14, 15]

C(x) = inf
n>0 integer

nx | sin(n)|, D(x) = sup
n>0 integer

n−x | tan(n)|

satisfy C(7.02) > 0, D(7.02) = 0. If a conjecture [16] that r (π ) = 2 is true, then
C(1 + ε) > 0, D(1 + ε) = 0 for all ε > 0. Numerical evidence suggests that C(1) = 0,
D(1) = ∞.

One can also examine multidimensional analogs of these constants. For example,
let 1, ξ1, ξ2, . . . , ξn be linearly independent over the rationals, where ξ1, ξ2, . . . , ξn are
real algebraic numbers. Let R denote the set of all positive real numbers r for which
the simultaneous system of inequalities

0 <

∣∣∣∣ξi − pi

q

∣∣∣∣ <
1

qr
, i = 1, 2, . . . , n,

has at most finitely many solutions (p1, p2, . . . , pn, q), where each pi and q > 0 are
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integers. Define r (ξ1, ξ2, . . . , ξn) exactly as before. Schmidt [5, 17, 18] extended the
Thue–Siegel–Roth theorem to deduce that

r (ξ1, ξ2, . . . , ξn) = n + 1

n
.

Clearly the joint irrationality measure r (e, π ) satisfies r (e, π ) ≤ max{r (e), r (π )}, but
no one has improved on this bound. Of course, we do not even know whether e and π

are linearly independent over the rationals!
A related subject, concerning the simultaneous Diophantine approximation con-

stants [2.23], is similar yet possesses a different focus than that here.
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2.23 Diophantine Approximation Constants

In our essay on Liouville–Roth constants [2.22], we discussed rational approximations
of a single irrational number ξ . Here we study the simultaneous rational approximation
of n real numbers ξ1, ξ2, . . . , ξn , of which at least one is irrational, by fractions all with
the same denominator. Dirichlet’s box principle [1, 2] implies that, if c ≥ 1, then the
system of inequalities ∣∣∣∣ξi − pi

q

∣∣∣∣ < c
1
n q− n+1

n , i = 1, 2, . . . , n,

has infinitely many solutions (p1, p2, . . . , pn, q), where p1, p2, . . . , pn and q > 0 are
integers. The focus of this essay is not on the exponent (n + 1)/n of the right-hand
side, as it was earlier, but rather on the linear coefficient c.

As is traditional, rearrange the inequalities to

q · |qξi − pi |n < c

and define cn to be the infimum of all 0 < c ≤ 1 for which the solution set
(p1, p2, . . . , pn, q) remains infinite. Then define the n-dimensional simultaneous
Diophantine approximation constant γn to be the supremum of cn over all such
ξ1, ξ2, . . . , ξn . So γn is not measuring the goodness of approximation of a single set of
n numbers, but instead it is defined across all possible sets and thus depends only on
the dimension n.

Here is a summary of what is known about the approximation constants γn:

γ1 = 1√
5

= 0.4472135955 . . . (Hurwitz [1]),

0.2857142857 . . . = 2
7 ≤ γ2 ≤ 64

169 = 0.378 . . . (Cassels [2], Nowak [3]),

0.120 . . . = 2
5
√

11
≤ γ3 ≤ δ2 = 1

2
1

π−2 = 0.437 . . . (Cusick [4], Spohn [5]),

0.044 . . . = 16
9
√

1609
≤ γ4 ≤ δ3 = 27

4
1

8
√

3π−27
= 0.408 . . . (Krass [6], Spohn [5]),

0.010 . . . = 16
207

√
53

≤ γ5 ≤ δ4 = 0.390 . . . [5–7],

0.004 . . . = 16
9
√

184607
≤ γ6 ≤ δ5 = 0.379 . . . [5–7],

where the upper bounds [5] are computed via the definite integrals

1

δk
= k2k+1

1∫
0

xk−1

(1 + xk)(1 + x)k
dx .

There is a wealth of computational [8] and theoretical evidence [9, 10] that γ2 = 2/7
but this cannot yet be regarded as a theorem. Adams [9] proved that 2/7 is the correct
value if we impose the constraint that ξ1 = 1, ξ2, ξ3 form a basis of a real cubic number
field. Cusick [10, 11] proved additional results under the hypothesis that the regular
continued fraction expansion of 2 cos(2π/7) has certain finite partial denominator
patterns occurring infinitely often. See also [12, 13].

With regard to γ3, Szekeres [14] indicated that its true value might be as high as
0.170, substantially greater than the lower bound given here.
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Figure 2.3. A star body S along with an S-admissible lattice L .

Nowak [15] obtained an improvement to Spohn’s upper bounds, involving a function
of δk , but numerical estimates are not possible at this time.

There is a remarkable connection between the values of γn and the geometry of
numbers. We first illustrate this in the two-dimensional setting (see Figure 2.3). Consider
the unbounded region S in the plane determined by |xy| ≤ 1 (which is an example of
what is called a star body). Consider as well the lattice L with basis vectors (1, 1) and
((1 + √

5)/2, (1 − √
5)/2). It can be proved that the only vertex of L that lies within

the interior of S is the origin (0,0). Consequently L is said to be S-admissible.
The area of any single parallelogram cell of L is clearly

√
5. This is called the

determinant of L , written det(L). It can be further proved that any other S-admissible
lattice L must satisfy det(L) ≥ √

5.
In the same way, consider the unbounded region S in (n + 1)-dimensional space

determined by

|xn+1| · max{|x1|n, |x2|n, . . . , |xn|n} ≤ 1

and consider all (n + 1)-dimensional S-admissible lattices L . Davenport [16, 17] proved
that the volume, det(L), of any single parallelepiped cell of L satisfies det(L) ≥ 1/γn

and, moreover, equality must occur for some choice of L . Therefore

1

γn
= min

S-admissible
lattices L

det(L)

is also known as the critical determinant or lattice constant for the star body S. This
geometric insight unfortunately offers only limited help in computing γn . Some sample
computations are given in [18–24].

Here is a similar problem from the geometry of numbers (having nothing to do with
γn as far as is known). Again, we illustrate this in the two-dimensional setting (see
Figure 2.4). Let Z denote the standard integer lattice in the plane, that is, with basis
vectors (1,0) and (0,1). Consider an arbitrary parallelogram P centered at the origin
(0,0). P is called Z -allowable if the interior of P contains no other vertices of Z . Now,
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1

0

0

−1

−1 1

Figure 2.4. A Z -allowable parallelogram P .

given any basis v, w of the plane, there clearly exists a Z -allowable parallelogram P
with sides perpendicular to v and w (just take P to have suitably small area). Define
α(v, w) to be the supremum of the areas for all such P . Then define κ2 to be the infimum
of α(v, w)/4 for all such bases v, w. Szekeres [25] proved that

κ2 = 1

2

(
1 + 1√

5

)
= 0.7236067977 . . . .

The slopes of the “critical parallelogram,” in this case a square, are (1 + √
5)/2 and

(1 − √
5)/2. It is interesting that the Golden mean [1.2] occurs here as well as with the

computation of γ2 earlier.
For higher dimensions, let Z denote the standard n-dimensional integer lattice and

consider n-dimensional Z -allowable parallelepipeds P with faces normal to a given
basis v1, v2, . . . , vn . As before, 2nκn is the largest possible volume of P in the sense that
P can have volume 2nκn independent of the prescribed directions v1, v2, . . . , vn , but
this fails for P of volume 2nκn + ε for any ε > 0. It is known [26–28] that κ3 > 1/4,
κ4 > 1/16, and there is theoretical evidence [29] that possibly

κ3 = 8

7
cos

(
2π

7

)
cos

(π

7

)2
= 0.5784167628 . . . .

Moreover, it has been proved that asymptotically [28, 30]

n

(n!)2

(
1

2

) n(n+1)
2

< κn <

[
1

2

(
1 + 1√

5

)] n−1
2

.

One might call κ2, κ3, κ4, . . . the Mordell constants [31]; further discussion is found
in [32–34].

Here is one more problem. Let K be a bounded convex body in n-space of volume
V (K ) and symmetric with respect to the origin. Let�(K ) denote the critical determinant
of K and define

ρn = inf
K

V (K )

�(K )
.



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-02 CB503/Finch-v2.cls December 9, 2004 13:46 Char Count=

2.23 Diophantine Approximation Constants 177

For example, if n = 2 and K is a disk, then clearly V (K )/�(K ) = 2π/
√

3 = 3.627 . . . .
This is not optimal, for it is known [35–38] that

3.570624 . . . ≤ ρ2 ≤ 4
8 − 4

√
2 − ln(2)

2
√

2 − 1
= 3.6096567319 . . .

and further conjectured [39, 40] that ρ2 is equal to its upper bound (corresponding to
a smoothed octagon K obtained by rounding off each corner with a hyperbolic arc). It
is also known [35, 41, 42] that ρ3 ≥ 4.216, ρ4 ≥ 4.721, and ρn > r = 4.921553 . . . for
n ≥ 5, where r is the unique solution > 1 of the equation r ln(r ) = 2(r − 1). Mahler
[35], however, believed that ρn → ∞ as n → ∞, so there is considerable room for
improvement. This theory is an outgrowth of the classical Minkowski–Hlawka theorem;
by letting σn be the analog of ρn corresponding to bounded star bodies S, a parallel
set of questions can be asked. For example [43], σ2 ≤ 3.5128 . . . (corresponding to S
bounded by eight hyperbolic arcs), but no one appears to have conjectured an exact
value for σ2.
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2.24 Self-Numbers Density Constant

Any nonnegative integer n has a unique binary representation:

n =
∞∑

k=0

nk2k, nk = 0 or 1.

What happens if we slightly perturb this formula, for example, by replacing the expo-
nential 2k by 2k + 1? Things become noticeably different: The integers 1, 4, and 6 have
no representations of the form

n0 · (20 + 1) + n1 · (21 + 1) + n2 · (22 + 1) = 2n0 + 3n1 + 5n2, nk = 0 or 1,

whereas 5 has two such representations, 5 and 2 + 3.
Let us focus solely on the existence issue. Define S to be the set of all n for which

a representation

n =
∞∑

k=0

nk (2k + 1), nk = 0 or 1

exists (including 0). Define T to be the complement of S relative to the nonnegative
integers [1], thus T = {1, 4, 6, 13, 15, 18, 21, 23, 30, 32, 37, 39, . . .}. These are known
as binary self numbers (Kaprekar [2, 3]) or binary Columbian numbers (Recamán
[4]).

It can be proved that T is an infinite set. Let τ (N ) denote the cardinality of binary
self numbers not exceeding N . Zannier [5] proved that the limit

0 < λ = lim
N→∞

τ (N )

N
< 1

exists and moreover τ (N ) = λN + O(ln(N )2). The self-numbers density constant λ

can be calculated by the formula

λ = 1

8

(∑
n∈S

1

2n

)2

= 0.2526602590 . . .

and was recently proved by Troi & Zannier [6, 7] to be a transcendental number.
We can extend this discussion to any base b > 1. Define Sb to be the set of all n for

which a representation

n =
∞∑

k=0

nk (bk + 1), nk = 0, 1, . . . , b − 2 or b − 1,

exists. Define Tb and τb(N ) similarly. We have τb(N ) = λb N + O(ln(N )2) as before [5]
and numerical approximations λ4 = 0.209 . . . and λ10 = 0.097 . . . but no fast infinite
series for λb (analogous to the formula for λ2) has yet been established for any b > 2.
Likewise, no one has yet proved that λb, b ≥ 3, is even irrational.
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There is also the issue of uniqueness. Let us focus on the binary case only. Define
U to be the set of all n for which the representation

n =
∞∑

k=0

nk(2k + 1), nk = 0 or 1,

exists and is unique. Define V to be the complement of U relative to S. The set V is
trivially infinite because, for all k > 2,

1 · (2k + 1) + 1 · (22 + 1) = 1 · (2k + 1) + 1 · (20 + 1) + 1 · (21 + 1)

and the set U is trivially infinite because, for each integer t in T ,

t+1∑
k=0

(2k + 1) = (2t+2 + 1) + t

has no other admissible representations. What can be said about the densities of U and
V ? See also [8] for the density of self numbers within arithmetic progressions, and [9]
for related discussion of digitaddition series.
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2.25 Cameron’s Sum-Free Set Constants

A set S of positive integers is sum-free if the equation x + y = z has no solutions
x , y, z ∈ S. Equivalently, S is sum-free if and only if (S + S) ∩ S = ∅, where A + B
denotes the set of all sums a + b, a ∈ A, b ∈ B. For example, the set of all odd positive
integers is sum-free.

Consider now the collection of all sum-free sets. Cameron [1–3] defined a natural
probability measure on this collection, which can informally be thought of as a recipe
for constructing random sum-free sets S. The recipe is as follows:

• Set S = ∅ initially and look at each positive integer n one-by-one in order.
• If n = a + b for some a, b ∈ S, then skip n and move ahead to n + 1.
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• If n = x + y has no solutions x , y ∈ S, then toss a fair coin; if heads, set S = S ∪ {n}
and move ahead to n + 1; if tails, simply move ahead.

Observe, for example, that clearly

P(S consists entirely of even integers) = 0.

In contrast, Cameron [1] proved the remarkable fact that the constant

c = P(S consists entirely of odd integers)

is positive and, in fact, 0.21759 ≤ c ≤ 0.21862. Equivalently [2], if N = {0, 1, . . . , n −
1} and

F(n) = 2−2n
∑
X⊆N

2|(X+X )∩N |,

then F(n) is decreasing and limn→∞ F(n) = c. The summation is over all subsets X of
N and |E | denotes the cardinality of a set E . An alternative proof was given by Calkin
[4].

Cameron [2] proved a more general result, which bounds (from below) the probabil-
ity that S is contained entirely within certain sum-free unions of arithmetic progressions.
Rather than state his general theorem, we simply provide a sample application:

P(S ⊆ {2, 7, 12, 17, 22, 27, . . .} ∪ {3, 8, 13, 18, 23, 28, . . .}) ≥c2d

2
> 0.0066,

where 0.28295 ≤ d = limn→∞ G(n) ≤ 0.29484 and the decreasing function G(n) is
defined by

G(n) = 2−3n
∑

X,Y⊆N

2|(X+Y )∩N |.

This, however, is not close to his estimate of approximately 0.022 (based on computer
simulation).

Calkin & Cameron [5] advanced our understanding of random sum-free sets even
farther. Again, we do not present their theorem in general form, but merely give an
example:

P(S contains 2 and S contains no other even integers) > 0.

Computer simulations provide an estimate for this probability of approximately
0.00016.

Let us now turn away from probability and consider instead the number sn of sum-
free subsets of {1, 2, . . . , n}. The first several terms [6] of sn are 1, 2, 3, 6, 9, 16,
24, . . . . Cameron & Erdös [7, 8] conjectured that sn2−n/2 is bounded and, moreover,
the following two limits exist and are approximately

lim
k→∞

s2k+12−(k+ 1
2 ) = co = 6.8 . . . , lim

k→∞
s2k2−k = ce = 6.0 . . . ,
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where

co = √
2 + lim

k→∞
H (2k + 1), ce = 1 + lim

k→∞
H (2k),

H (n) = 2−n/2
∑

X⊆N ′
2−|(X+X )∩N ′|, N ′ = {0, 1, . . . , n}.

Calkin [9], Alon [10], and Erdös & Granville independently demonstrated that

lim
n→∞ sn2−( 1

2 +ε) n = 0

for every ε > 0. Additional evidence for boundedness appears in [11], and a general-
ization is found in [12–15].

We cannot resist presenting one more problem. A sum-free set S of positive integers
is complete if, for all sufficiently large integers n, either n ∈ S or there exist s, t ∈ S
such that s + t = n. Equivalently, S is complete if and only if it is constructed greedily
from a finite set. A sum-free set S is periodic if there exists a positive integer m such
that, for all sufficiently large integers n, n ∈ S if and only if n + m ∈ S. Equivalently,
S is periodic if and only if the elements of S, arranged in increasing order, give rise to
an (eventually) periodic sequence of successive differences.

Is an arbitrary complete sum-free set necessarily periodic [16]? Cameron [3] gave
the first potentially aperiodic example: the complete sum-free set starting with 3, 4,
13, 18, 24. Calkin & Finch [17] gave other potentially aperiodic examples, including
1, 3, 8, 20, 26, . . . and 2, 15, 16, 23, 27, . . . . Calkin & Erdös [18] proved the existence
of incomplete aperiodic sum-free sets – in fact, they exhibited uncountably many such
sets, constructed in a natural way – but no one has yet established the existence of a
single complete aperiodic sum-free set.
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2.26 Triple-Free Set Constants

A set S of positive integers is called double-free if, for any integer x , the set {x, 2x} �⊆ S.
Equivalently, S is double-free if x ∈ S implies 2x /∈ S. Consider the function

r (n) = max {|S| : S ⊆ {1, 2, . . . , n} is double-free} ,

that is, the maximum cardinality of double-free sets with no element exceeding n. It is
not difficult to prove that

lim
n→∞

r (n)

n
= 2

3
;

that is, the asymptotic maximal density of double-free sets is 2/3. Wang [1] obtained
both recursive and closed-form expressions for r (n) and, moreover, demonstrated that
r (n) = 2n/3 + O(ln(n)) as n → ∞.

Let us now discuss a much harder problem. Define a set S of positive integers to be

• weakly triple-free (or triple-free) if, for any integer x , the set {x, 2x, 3x} �⊆ S, and
• strongly triple-free if x ∈ S implies 2x /∈ S and 3x /∈ S.

Unlike the double-free case, the weak and strong senses of triple-free do not coincide.
Consider the functions

p(n) = max {|S| : S ⊆ {1, 2, . . . , n} is weakly triple-free} ,

q(n) = max {|S| : S ⊆ {1, 2, . . . , n} is strongly triple-free} .

We wish to calculate the constants

λ = lim
n→∞

p(n)

n
, µ = lim

n→∞
q(n)

n
.

Define an infinite set

A = {
2i 3 j : i, j ≥ 0

} = {a1 < a2 < a3 < . . .}
= {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, . . .}
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Figure 2.5. Grid graph associated with A19, for which g19 = 10, A19,0 = {1, 4, 6, 9, 16, 24, 36,

54, 64, 81}, f19 = 6 = h19, B19,0 = {1, 6, 8, 27, 36, 48, 64}, and B̃19,0 = {64}.

and An to be the first n terms of A; then λ and µ can be written as

λ = 1

3

∞∑
n=1

(n − fn)

(
1

an
− 1

an+1

)
, µ = 1

3

∞∑
n=1

gn

(
1

an
− 1

an+1

)
,

where the integer sequences

{ fn} = {0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, . . .},
{gn} = {1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 11, . . .}

will be defined momentarily.
The constant µ has not attracted as much attention as λ. Eppstein [2] showed that

gn is the size of the largest set of nonadjacent vertices in the grid graph An (called an
independence number). For each k = 0, 1, define An,k ⊆ An to consist of all elements
2i 3 j satisfying i + j ≡ k mod 2. Then {An,0, An,1} is a partition of An and at least
one of these is a maximal independent set, as found by Cassaigne [3]. (See Figure
2.5). From here, Zimmermann [3] computed the triple-free set constant to be µ =
0.6134752692 . . . .

By way of contrast, the constant λ has intrigued people for over twenty-five years [4].
Graham, Spencer & Witsenhausen [5] were concerned with general conditions on sets,
contained in {1, 2, . . . , n}, that avoid the values of linear forms

∑w
v=1 cuvxv . Among

many things, they asked whether λ is irrational. Starting from a table of fn values in
[5], Cassaigne [6] proved that λ ≥ 4/5. Chung, Erdös & Graham [7] showed that fn

is the size of the smallest set of vertices in An that intersects every L-shaped vertex
configuration of the form {2i 3 j , 2i+13 j , 2i 3 j+1} ⊆ An (called an L-hitting number).
For each k = 0, 1, 2, define Bn,k ⊆ An to consist of all elements 2i 3 j satisfying i − j ≡
k mod 3. Then {Bn,0, Bn,1, Bn,2} is a partition of An . Define also B̃n,k ⊆ Bn,k to consist
of all elements 2i , 1 ≤ i ≡ k mod 3, for which 2i−13 /∈ An . It is known that

fn ≤ hn = min
0≤k≤2

|Bn,k | − |B̃n,k | ≤
⌊n

3

⌋
,

and consequently 0.800319 < λ < 0.800962. It is conjectured that fn = hn for all n,
which if true would imply that λ = 0.8003194838 . . . = 1 − 0.1996805161 . . . .
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Given fixed s > 1, consider sets S of positive integers for which {x, 2x,

3x, . . . , s x} �⊆ S for all integers x . Denote the corresponding asymptotic maximal
density by λs . What can be said about the asymptotics of λs as s → ∞? Spencer &
Erdös [8] proved that there exist constants c and C for which

1 − C

s ln(s)
< λs < 1 − c

s ln(s)

for all suitably large s, although specific numerical values were not presented. Also,
consider sets T of positive integers for which {x, 2x, 3x, 6x} �⊆ T for all integers x . The
corresponding asymptotic maximal density is exactly 11/12 [7], which is surprising
since the case s = 3 was so much more difficult.

More instances of the interplay between the numbers 2 and 3 occur in [2.30.1],
which is concerned with powers of 3/2 modulo 1.
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Theory, Enseignement Math. Monogr. 28, 1980, p. 20; MR 82j:10001.

[5] R. Graham, J. Spencer, and H. Witsenhausen, On extremal density theorems for linear forms,
Number Theory and Algebra, ed. H. Zassenhaus, Academic Press, 1977, pp. 103–109; MR
58 #569.

[6] J. Cassaigne, Lower bound on triple-free constant λ, unpublished note (1996).
[7] F. Chung, P. Erdös, and R. Graham, On sparse sets hitting linear forms, Number Theory for
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2.27 Erdös–Lebensold Constant

A strictly increasing sequence of positive integers a1, a2, a3, . . . is primitive [1–3] if
ai � |a j for any i �= j . That is, no term of the sequence divides any other. An example of
a finite primitive sequence is the set of all integers m in the interval

⌈
n+1

2

⌉ ≤ m ≤ n,
where n is a positive integer. An example of an infinite primitive sequence consists of
all positive integers composed of exactly r prime factors, where r is fixed. We discuss
the finite and infinite cases separately. See also [5.5] for a related note.

2.27.1 Finite Case

For each positive integer n, define

M(n) = sup
primitive

A⊆{1,2,...,n}

∑
i

1
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as the maximum possible number of terms, and

L(n) = sup
primitive

A⊆{1,2,...,n}

∑
i

1

ai

as the maximum possible reciprocal sum. Clearly M(n) = ⌊
n+1

2

⌋
and thus

limn→∞ M(n)/n = 1/2. It is more difficult to establish [4, 5] that

lim
n→∞

√
ln(ln(n))

ln(n)
L(n) = 1√

2π
,

which is an unexpected appearance of Archimedes’ constant [1.4].

2.27.2 Infinite Case

Any infinite primitive sequence satisfies

0 = liminf
n→∞

1

n

∑
ai ≤n

1 ≤ limsup
n→∞

1

n

∑
ai ≤n

1 <
1

2
.

Besicovitch [1, 6] proved that, for each ε > 0, there exists a primitive sequence such
that

limsup
n→∞

1

n

∑
ai ≤n

1 >
1

2
− ε.

In particular, a primitive sequence need not possess an asymptotic density! Maybe the
limiting value 1/2 is not so surprising, given the earlier result about M(n).

In contrast, Erdös, Sárkozy & Szemerédi [7] proved that

lim
n→∞

√
ln(ln(n))

ln(n)

∑
ai ≤n

1

ai
= 0,

which is drastically different from the earlier result about L(n). The finite and infinite
cases behave independently in this respect.

Forging a new trail, Erdös [1, 8] proved that the series

∑
i

1

ai ln(ai )

is convergent (except for the trivial primitive sequence {1}) and is, moreover, bounded
by some absolute constant. He conjectured that

∑
i

1

ai ln(ai )
≤

∑
i

1

pi ln(pi )
= 1.6366163233 . . . ,

where the latter summation is over all primes. Several partial results are known. Zhang
[9, 10] proved that the inequality is true for all primitive sequences whose terms contain
at most four prime factors. Zhang [11] did likewise, hypothesizing a different, more
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technical set of conditions. Erdös & Zhang [12] proved that, for any primitive sequence,

∑
i

1

ai ln(ai )
≤ 1.84

and Clark [13] strengthened this to

∑
i

1

ai ln(ai )
≤ eγ = 1.7810724179 . . . ,

where γ is Euler’s constant [1.5].
Incidently, the estimate 1.6366163233. . . given here for the prime series is due to

Cohen [14].

2.27.3 Generalizations

Let k be a positive integer. A strictly increasing sequence of positive integers a1, a2,
a3, . . . is k-primitive if no term of the sequence divides k others. (This phraseology is
new.) Let us consider only the finite case. Define M(n, k) and L(n, k) as before. An
example of a 2-primitive sequence is the set of all integers m in the interval

⌈
n+1

3

⌉ ≤
m ≤ n; thus limn→∞ M(n, 2)/n ≥ 2/3, but here improvement is possible. Lebensold
[15] proved that

0.6725 ≤ lim
n→∞

M(n, 2)

n
≤ 0.6736

and observed that more accurate bounds could be achieved by additional computation
in exactly the same manner. Erdös asked if the limit is irrational [10]. No one has
examined L(n, 2) or the case k > 2, as far as is known.

A strictly increasing sequence of positive integers b1, b2, b3, . . . is quasi-primitive
[16] if the equation gcd(bi , b j ) = br is not solvable with r < i < j . An example of an
infinite quasi-primitive sequence consists of all prime powers

q1 = 2, q2 = 3, q3 = 22, q4 = 5, q5 = 7, q6 = 23, q7 = 32, q8 = 11, . . . .

Erdös & Zhang [16] conjectured that, for any quasi-primitive sequence,

∑
i

1

bi ln(bi )
≤

∑
i

1

qi ln(qi )
= 2.006 . . . .

Clark [17] corrected a false claim in [16] and proved that

∑
i

1

bi ln(bi )
< 4.2022.

A more accurate estimate for the prime-power series is an unsolved problem.
The topics of k-primitive sequences and quasi-primitive sequences appear to be

wide open areas for research, as are the allied topics of triple-free set constants [2.26]
and Erdös’ reciprocal sum constants [2.20].
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2.28 Erdös’ Sum-Distinct Set Constant

A set a1 < a2 < a3 < . . . < an of positive integers is called sum-distinct if the 2n

sums

n∑
k=1

εkak (each εk = 0 or 1, 1 ≤ k ≤ n)

are all different. Equivalently, sum-distinctness holds if and only if any two subset sums
are never equal [1–4]. The set of nonnegative powers of 2 is clearly sum-distinct and
serves as a baseline for comparison. In 1931, Erdös examined the ratio

αn = inf
A

an

2n
,
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where the infimum is over all sum-distinct sets A of cardinality n, and conjectured
that α = infn αn is positive. No one knows whether this is true, but in 1955, Erdös and
Moser [2, 5, 6] proved that, for all n ≥ 2,

αn ≥ max

(
1

n
,

1

4
√

n

)
,

and Elkies [7] proved that, for sufficiently large n,

αn ≥ 1√
πn

.

Gleason & Elkies [8] subsequently removed the factor of π via a variance reduction
technique. See also [9]. It is probably true that α > 1/8 = 0.125. Significant progress
in resolving Erdös’ conjecture will almost certainly require a brand-new idea or as-yet-
unseen insight.

Several interesting constructions provide upper bounds on α. In 1986, Atkinson,
Negro & Santoro [10, 11] defined a sequence

u0 = 0, u1 = 1, uk+1 = 2uk − uk−m, m = ⌊
1
2 k + 1

⌋
that gives rise to a sum-distinct set ak = un − un−k , 1 ≤ k ≤ n, for each n. Clearly
an = un . Lunnon [11] calculated that

lim
n→∞

un

2n
= 0.3166841737 . . . = 1

2
(0.6333683473 . . .).

A smaller ratio is obtained via a sequence due to Conway & Guy [2, 11–13]:

v0 = 0, v1 = 1, vk+1 = 2vk − vk−m, m =
⌊

1
2 + √

2k
⌋

.

Only recently Bohman [14] proved that this sequence gives rise to a sum-distinct set
ak = vn − vn−k , 1 ≤ k ≤ n, for each n. (Prior to 1996, we knew this claim to be true
for only n < 80.) Lunnon [11] calculated that

lim
n→∞

vn

2n
= 0.2351252848 . . . = 1

2
(0.4702505696 . . .).

Although the Atkinson–Negro–Santoro and Conway–Guy limiting ratios are inter-
esting constants, they do not provide the best-known upper bounds on α. A frequently
used trick for doing so is as follows: If a1 < a2 < a3 < . . . < an is a sum-distinct set
with n elements, then clearly 1 < 2a1 < 2a2 < 2a3 < . . . < 2an is a sum-distinct set
with n + 1 elements. Enlarging as such can be continued indefinitely, of course. Thus
if one has found a sum-distinct set with n elements and small ratio ρ, we immediately
have an upper bound α ≤ ρ. For example, Lunnon [11] found a sum-distinct set with
n = 67 and ρ = 0.22096 via computer search, which improves on the Conway–Guy
bound. Generalizing the work of Conway, Guy, and Lunnon, Bohman [15] established
the best-known upper bound α ≤ 0.22002. Additionally, Maltby [16] has shown, given
a sum-distinct set, how to construct a larger sum-distinct set with a smaller ratio. Hence
Erdös’ constant α is not realized by any sum-distinct set; that is, the infimum is never
achieved!
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Bae [17] studied sum-distinct sets whose sums avoid r mod q, for given r and q.
Also, consider the inequality

n∑
k=1

1

ak
< 2 =

∞∑
k=1

1

2k−1
,

which is true for all sum-distinct sets A. It is curious that the upper bound 2 is sharp and
elementary proofs are possible [9, 18, 19]. (Actually much more is known!) Elsewhere
we discuss other such reciprocal sums [2.20], which are often exceedingly difficult to
evaluate.
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2.29 Fast Matrix Multiplication Constants

Everyone knows that multiplying two arbitrary n × n matrices requires n3 multiplica-
tions, at least if we do it using standard formulas.

In the mid 1960s, Pan and Winograd [1] discovered a way to reduce this to approx-
imately n3/2 multiplications for large n, and for a few years people believed that this
might be the best possible reduction.

Define the exponent of matrix multiplication ω as the infimum of all real numbers τ

such that multiplication of n × n matrices may be achieved with O(nτ ) multiplications.
Clearly ω ≤ 3 and it can be proved that ω ≥ 2.

Strassen [2] discovered a surprising base algorithm to compute the product of 2 × 2
matrices with only seven multiplications. The technique can be recursively extended to
large matrices via a tensor product construction. In this case, the construction is very
simple: Large matrices are broken down recursively by partitioning the matrices into
quarters, sixteenths, etc. This gives ω ≤ ln(7)/ ln(2) < 2.808.

More sophisticated base algorithms and tensor product constructions permit further
improvements. Many researchers have contributed to this problem, including Pan [3, 4]
who found ω < 2.781 and Strassen [5] who found ω < 2.479. See [6, 7] for an overview
and history.

Coppersmith & Winograd [8] presented a new method, based on a combinatorial
theorem of Salem & Spencer [9], which gives dense sets of integers containing no three
terms in arithmetic progression. They consequently obtained ω < 2.376, which is the
best-known upper bound today.

Is ω = 2? Bürgisser [10] called this the central problem of algebraic complexity
theory. Here is a closely related combinatorial problem [8, 11].

Given an abelian additive group G of order n, find the least integer f (n, G) with
the following property. If a subset S of G has cardinality ≥ f (n, G), then there exist
three subsets A, B, C of S, pairwise disjoint and not all empty, such that∑

a∈A

a =
∑
b∈B

b =
∑
c∈C

c.

(Clearly f (n, G) exists for n ≥ 5, because if S = G, then consider A = {0}, B =
{g, −g}, C = {h, −h}, where nonzero elements g and h satisfy g �= h and g �= −h.)
Now define another function

F(n) = max
G

f (n, G),

the maximum taken over all abelian groups G of order n, and examine the ratio

ρ = lim
n→∞

ln(n)

F(n)
.

Coppersmith & Winograd [8] demonstrated that if ρ = 0, then ω = 2. A proof that
ρ = 0, however, is still unknown. What (if any) numerical evidence exists in support
of ρ = 0?

Coppersmith [12] further gave a constant α > 0.294 and, for any ε > 0, an algorithm
for multiplying an n × n matrix by an n × nα matrix with complexity O(n2+ε). An
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improvement in the lower bound for α would provide more hope that ω = 2. Research
in this area continues [13, 14].
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2.30 Pisot–Vijayaraghavan–Salem Constants

Given any positive real number x , let {x} = x mod 1 denote the fractional part of x . For
any positive integer n, clearly {n + x} = x for all x , and the sequence {nx} is periodic
if x is rational. A consequence of Weyl’s criterion [1–4] is that the sequence {nx} is
dense in the interval [0, 1] if x is irrational. Moreover, it is uniformly distributed in
[0, 1], meaning that the probability of finding an arbitrary element in any subinterval
is proportional to the subinterval length.

Having discussed addition and multiplication, let us turn to exponentiation. It can
be proved [5, 6] that the sequence {xn} is uniformly distributed for almost all real
numbers x > 1 (curiously, no specific such values x were known until recently [7, 8]).
It is believed that the sequence for x = 3/2 is a typical example [2.30.1]. The measure-
zero, uncountable set E of exceptions x to this behavior [9–12] includes the numbers
2, 3, 4, . . . and 1 + √

2. What else can be said about E?
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First, we review some terminology. A monic polynomial is a polynomial with a
leading coefficient equal to 1. An algebraic integer α is a zero of a monic polynomial
with integer coefficients. The conjugates of α are all zeros of the minimal polynomial
of α. Define the set U to be all real algebraic integers α > 1 whose conjugates γ �= α

each satisfy |γ | ≤ 1. It is known that U ⊆ E and that U is countably infinite. Let us
study the exceptional behavior in more detail.

Define the set S of Pisot–Vijayaraghavan (P-V) numbers to be all real algebraic
integers θ > 1 whose conjugates γ �= θ each satisfy |γ | < 1. Define the set T of Salem
numbers to be all real algebraic integers τ > 1 whose conjugates γ �= τ each satisfy
|γ | ≤ 1 with at least one case of equality. Then clearly S and T determine a partition
of U . Moreover, if θ is a P-V number, then

lim
n→∞{θn} = 0 mod 1,

whereas, if τ is a Salem number, then {τ n} is dense but not uniformly distributed in the
interval [0, 1]. There are many related results and we give an example [11]. Suppose we
are given an algebraic real α > 1 and a real λ > 0 for which {λαn} has at most finitely
many limit points modulo one. Then α must be in S. Additionally, the limit points must
each be rational. It is unknown whether anyone has exhibited explicitly a number that
is in E but not in U (e.g., a transcendental exceptional x).

We turn attention to the set S, which is known to be countably infinite and closed,
and which possesses an isolated minimum point θ0 > 1. Salem [13] and Siegel [14]
proved that θ0 = 1.3247179572 . . . is the real zero of the polynomial x3 − x − 1, that
is,

θ0 =
(

1
2 +

√
69

18

) 1
3 + 1

3

(
1
2 +

√
69

18

)− 1
3 = 2

√
3

3 cos
(

1
3 arccos

(
3
√

3
2

))
.

This constant also appears in [1.2.2].
In fact, a complete listing of all P-V numbers up to ϕ + ε is possible [15], where

ϕ = 1.6180339887 . . . is the Golden mean [1.2] and 0 < ε < 0.0004. Also, let S<1>

denote the set of all limit points of S, that is, the derived set of S. The minimum point
of S<1> is ϕ and is isolated. More generally, let S<k> denote the derived set of S<k−1>

for all k ≥ 2. The minimum point of S<2> is 2, and the minimum point of S<k> is
between

√
k and k + 1, but no exact values of these points for k ≥ 3 are known.

The set T is more difficult to study. We know that T is countably infinite and that
U is a proper subset of the closure of T . The existence of a minimum Salem number
remains an open problem, but it is conjectured to be τ0 = 1.1762808182 . . . , which is
one of the zeros of Lehmer’s polynomial [16]

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1.

It has been proved [17–20] that there are exactly forty-five Salem numbers less than
1.3 with degree at most 40. (There are only two known Salem numbers less than 1.3
with degree exceeding 40, but conceivably there may be more.) Is θ0 the smallest limit
point of T ? The answer is not known to this question either.
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The constants θ0 and τ0 appear in connection with a related conjecture, due to
Lehmer, about Mahler’s measure of a nonzero algebraic integerα. Ifα is of degree n with
conjugates α1 = α, α2, α3, . . . , αn , define M(α) to be the absolute value of the product
of all α j satisfying |α j | > 1. Kronecker [21, 22] proved that if M(α) = 1, then α is a
root of unity. Is it true that for every ε > 0, there exists α such that 1 < M(α) < 1 + ε?

If α is non-reciprocal, that is, if α and 1/α are not conjugate, then Smyth [11, 23]
proved that the answer is no. More precisely, either M(α) ≥ θ0 = 1.324 . . . or α is a
root of unity.

For arbitrary α, Lehmer [16] conjectured that the answer remains no. More precisely,
either M(α) ≥ τ0 = 1.176 . . . or α is a root of unity. Despite extensive searches, no
counterexamples to this inequality have been found. The best-known relevant estimate,
if α is not a root of unity, is [24–30]

M(α) > 1 +
(

9

4
− ε

) (
ln(ln(n))

ln(n)

)3

for sufficiently large n. For more about Mahler’s measure, see [3.10]. We mention a
related inequality [21, 30–32] involving what is called the house of α:

|α| = max
1≤k≤n

|αk | > 1 + 1

n

(
64

π2
− ε

) (
ln(ln(n))

ln(n)

)3

and a corresponding conjecture [33]: |α| ≥ 1 + 3
2 ln(θ0)/n = 1 + (0.4217993614 . . .)/

n. See also [34, 35].

2.30.1 Powers of 3/2 Modulo One

Pisot [9] and Vijayaraghavan [36] proved that {(3/2)n} has infinitely many accumula-
tion points, that is, infinitely many convergent subsequences with distinct limits. The
sequence is believed to be uniformly distributed, but no one has even proved that it is
dense in [0, 1].

Here is a somewhat less ambitious problem: Prove that {(3/2)n} has infinitely many
accumulation points in both [0, 1/2) and [1/2, 1]. In other words, prove that the se-
quence does not prefer one subinterval over the other. This problem remains unsolved,
but Flatto, Lagarias & Pollington [37] recently made some progress. They proved
that any subinterval of [0, 1] containing all but perhaps finitely many accumulation
points of {(3/2)n} must have length at least 1/3. Therefore, the sequence cannot prefer
[0, 1/3 − ε) over [1/3 − ε, 1] for any ε > 0. Likewise, it cannot prefer [2/3 + ε, 1]
over [0, 2/3 + ε). To extend the proof to [0, 1/2) and [1/2, 1] would be a significant
but formidable achievement.

Lagarias [38] mentioned the sequence {(3/2)n} and its loose connections with
ergodic-theoretic aspects of the famous 3x + 1 problem. The details are too elabo-
rate to discuss here. What is fascinating is that the sequence is also fundamental to a
seemingly distant area of number theory: Waring’s problem on writing integers as sums
of nth powers.
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Let g(n) denote the smallest integer k for which every positive integer can be ex-
pressed as the sum of k nth powers of nonnegative integers. Hilbert [39] proved that
g(n) < ∞ for each n. For 2 ≤ n ≤ 6, it is known that [40–44]

g(n) = 2n +
⌊(

3

2

)n⌋
− 2.

Dickson [45, 46] and Pillai [47] independently proved that this formula is true for all
n > 6, provided that the condition

{(
3

2

)n}
≤ 1 −

(
3

4

)n

is satisfied. Hence it is sufficient to study this inequality, the last remaining obstacle in
the solution of Waring’s problem.

Kubina & Wunderlich [48], extending the work of Stemmler [49], verified compu-
tationally that the inequality is met for all 2 ≤ n ≤ 471600000. Mahler [50] moreover
proved that it fails for at most finitely many n, using the Thue–Siegel–Roth theorem
on rational approximations to algebraic numbers [2.22]. The proof is non-constructive
and thus a computer calculation that rules out failure altogether is still not possible.

It appears that the inequality can be strengthened to
(

3

4

)n

<

{(
3

2

)n}
< 1 −

(
3

4

)n

for all n > 7 and generalized in certain ways [51, 52]. Again, no proof is known apart
from Mahler’s argument. (The best effective results are due to Beukers [53], Dubickas
[54], and Habsieger [55], with 3/4 replaced by 0.577.) The fact that so simple an
inequality can defy all attempts at analysis is remarkable.

The calculation of g(n) is sometimes called the “ideal” part of Waring’s problem.
Let G(n) denote the smallest integer k for which all sufficiently large integers can be
expressed as the sum of k nth powers of nonnegative integers. Clearly G(n) ≤ g(n),
and Hurwitz [56] and Maillet [57] proved that G(n) ≥ n + 1. In other words, there are
arbitrarily large integers that are not the sum of n nth powers. It is known [43, 58–60]
that G(2) = 4, 4 ≤ G(3) ≤ 7, G(4) = 16, 6 ≤ G(5) ≤ 17, and 9 ≤ G(6) ≤ 24. See
[61–63] for numerical evidence supporting a conjecture that G(3) = 4. See also [64, 65]
for the asymptotics of the number of representations of n as a sum of four cubes,
which interestingly turns out to involve �(4/3), where �(x) is Euler’s gamma function
[1.5.4].

Here are several unrelated facts. Infinitely many integers of the form �xn� are com-
posite [66, 67] when x = 3/2. This is also true when x = 4/3. Are infinitely many such
integers prime? What can be said for other values of x?

A conjecture is that, if t is a real number for which 2t and 3t are both integers, then t
is rational. This would follow from the so-called four-exponentials conjecture [68, 69].
A weaker result, the six-exponentials theorem, is known to be true.
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Define an infinite sequence by x0 = 1 and xn = ⌈
3
2 xn−1

⌉
for n ≥ 1. Odlyzko & Wilf

[70] proved that

xn =
⌊

K ·
(

3

2

)n⌋

for all n, where the constant K = 1.6222705028 . . . (in fact, they proved much more).
Their work is connected to the solution of the ancient Josephus problem. The constant
K is analogous to Mills’ constant [2.13], in the sense that the formula is useless com-
putationally (unless an exact value for K somehow became available), but its mere
existence is remarkable.

A 3-smooth number is a positive integer whose only prime divisors are 2 or 3. A
positive integer n possesses a 3-smooth representation if n can be written as a sum of
3-smooth numbers, where no summand divides another. Let r (n) denote the number of
3-smooth representations of n. Some recent papers [71–73] answer the question of the
maximal and average orders of r (n). See also [5.4].

Let n be an integer larger than 8. Need the base-3 expansion of 2n possess a digit
equal to 2 somewhere? Erdös [74] conjectured that the answer is yes, and Vardi [75]
verified this up to n = 2 · 320. More instances of the interplay between the numbers 2
and 3 occur in [2.26].
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2.31 Freiman’s Constant

2.31.1 Lagrange Spectrum

In our essay on Diophantine approximation constants [2.23], we discussed Hurwitz’s
[1, 2] theorem that, for any irrational number ξ , the inequality∣∣∣∣ξ − p

q

∣∣∣∣ <
1√
5

1

q2

has infinitely many solutions (p, q), where p and q are integers. Can this result be
improved? That is, can

√
5 be replaced by a larger quantity? The answer is no for

certain special numbers ξ , but it is yes otherwise. We now elaborate.
For each number ξ , define λ(ξ ) to be the supremum of all quantities c for which the

integer solution set (p, q) of ∣∣∣∣ξ − p

q

∣∣∣∣ <
1

c

1

q2

remains infinite. The set of values L taken by the function λ(ξ ) is called the Lagrange
spectrum [3]. Clearly the smallest value in L is

√
5. It can be proved that the set

L ∩ [2, 3] is countably infinite, with 3 as its only limit point, but [θ, ∞) ⊆ L for some
point θ > 4. Much more will be said about L shortly.

2.31.2 Markov Spectrum

A two-variable quadratic form with real coefficients f (x, y) = αx2 + βxy + γ y2

is indefinite if f assumes both positive and negative values. If the discriminant
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d( f ) = β2 − 4αγ is positive, then the plot of z = f (x, y) in real xyz-space is a saddle
surface, that is, with no maximum or minimum points.

For each such f , define

µ( f ) =
√

d( f )

inf
(m,n)�=(0,0)

| f (m, n)| ,

where the infimum ranges over all nonzero integer pairs. The set of values M taken by
the function µ( f ) is called the Markov spectrum [3]. It can be proved that L ⊆ M
and further that M ∩ [2, 3] = L ∩ [2, 3] and [θ, ∞) ⊆ M for the same point θ > 4
mentioned for L . However, M ∩ [3, θ ] �= L ∩ [3, θ ]; that is, L is a proper subset of M ,
which gives rise to some interesting unresolved issues.

2.31.3 Markov–Hurwitz Equation

Let us return to Hurwitz’s theorem. First, define two numbers ξ and η to be equivalent
if there are integers a, b, c, d such that

ξ = aη + b

cη + d
, |ad − bc| = 1.

This relation permits the partitioning of numbers into equivalence classes. Two irra-
tional numbers ξ and η are equivalent if and only if, after some point, their respective
sequences of continued fraction partial denominators are identical.

Now, it can be proved that λ(ξ ) = √
5 for all ξ equivalent to the Golden mean ϕ

[1.2], that is, possessing partial denominators that are eventually all 1s. Such numbers
can be thought of as “simplest,” but from the point of view of rational approximations,
the simplest numbers are the “worst” [1, 4]. If we leave these out, the next level of
approximation difficulty is given by λ(ξ ) = √

8 for all ξ equivalent to Pythagoras’
constant

√
2 [1.1], that is, possessing partial denominators that are eventually all 2s. If

we leave these out as well, the next level is λ(ξ ) = √
221/5 and so on. See [3] for a table

of smallest numbers in the Lagrange spectrum, as well as an algorithm for computing
a corresponding representative quadratic form f (x, y).

The values
√

5,
√

8,
√

221/5,
√

1517/13,
√

7565/29, . . . are all of the form√
9w2 − 4/w, where u, v, w are positive integers satisfying the Diophantine equation

u2 + v2 + w2 = 3uvw, 1 ≤ u ≤ v ≤ w.

The first several admissible triples are

(u, v, w) = (1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), (2, 5, 29), (1, 13, 34), . . .

and the infinite sequence of ws

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, . . .

are called Markov numbers [5]. It is unknown [6–12] whether every wk determines a
unique admissible triple (uk, vk, wk). Note that, clearly, the limit of λ(wk) as k → ∞
is 3. This proves that L ∩ [2, 3] accumulates at 3, as was to be shown.
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Here is a side topic. The number N (n) of admissible triples (u, v, w) with w ≤ n
was proved by Zagier [7, 8] to be

N (n) = C · ln(n)2 + O
[
ln(n) · ln(ln(n))2

]
,

where

C = 3

π2

1

2

(
1

g(1)2
+ 2g(1) − g(2)

g(1)2g(2)

)
+ 3

π2

∑
admissible

(u,v,w) with
u<v<w

g(u) + g(v) − g(w)

g(u)g(v)g(w)

= 0.1807171047 . . .

and

g(x) = ln

(
3x + √

9x2 − 4

2

)
= arccosh

(
3x

2

)
, x ≥ 2

3
.

He conjectured that this asymptotic result can be strengthened to

N (n) = C · ln(3n)2 + o (ln(n)) ,

which, if the uniqueness conjecture is true, may be rewritten as

wk =
(

1

3
+ o(1)

)
exp

(√
k

C

)
=

(
1

3
+ o(1)

)
(10.5101504239 . . .)

√
k .

Here is a generalization of the side topic. Let m ≥ 3. Consider the Markov–Hurwitz
equation

u2
1 + u2

2 + · · · + u2
m = mu1u2 · · · um, 1 ≤ u1 ≤ u2 ≤ · · · ≤ um,

and define Nm(n) to be the number of admissible m-tuples (u1, u2, . . . , um) of positive
integers with um ≤ n. It is surprising that the growth rate of Nm(n) is not O(ln(n)m−1),
but rather O(ln(n)α(m)+ε) for any ε > 0, where the exponents α(m) satisfy [13–15]

α(3) = 2, 2.430 < α(4) < 2.477, 2.730 < α(5) < 2.798, 2.963 < α(6) < 3.048

and limm→∞ α(m)/ ln(m) = 1/ ln(2). The analog of Zagier’s constant C for m ≥ 4 is
not known.

2.31.4 Hall’s Ray

Our knowledge of L ∩ [3, ∞) and M ∩ [3, ∞) is much less complete than the afore-
mentioned information for L ∩ [2, 3]. Each of L and M is a closed subset of the real
line; hence the complement of each spectrum is a countable union of open intervals, that
is, of gaps. A gap is maximal if its endpoints are in the spectrum under consideration.
Here are several maximal gaps (with regard to both L and M):(√

12,
√

13
)

= (3.464101 . . . , 3.605551 . . .),(√
13,

65 + 9
√

3

22

)
= (3.605551 . . . , 3.663111 . . .),

(√
480

7
,
√

10

)
= (3.129843 . . . , 3.162277 . . .).
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The first two were discovered by Perron [16]; many others are listed in [3]. Evidently
there is no “first” gap with left-hand endpoint ≥ 3.

Hall [17] proved that any real number in the interval [
√

2 − 1, 4
√

2 − 4] can be
written as a sum of two numbers whose continued fraction partial denominators never
exceed 4. It follows that L and M contain all sufficiently large real numbers; this portion
of these spectra is called Hall’s ray. Freiman [18] succeeded in computing the precise
point θ at which Hall’s ray begins (which is the same for both L and M) and its exact
expression is [3, 6]

θ = 4 + 253589820 + 283748
√

462

491993569
= 4.5278295661 . . . .

In fact, the “last” gap with right-hand endpoint < ∞ is (4.527829538 . . . ,
4.527829566 . . .), true for both L and M .

By way of contrast, Bumby [3, 19] determined that M ∩ [3, 3.33437 . . .] has
Lebesgue measure zero! Can the endpoint 3.33437 . . . be shifted any farther to the
right and yet preserve the measure-zero property? Can an exact expression for this
endpoint be found?

2.31.5 L and M Compared

This is perhaps the most mysterious area of this study, and we shall be very brief
[3]. Freiman [20] constructed a quadratic irrational ξ = 3.118120178 . . . that is in
M but not in L . Freiman [21] later found another example: η = 3.293044265 . . . .
Infinitely many more such examples are now known. Berstein [22, 23] determined the
largest intervals containing Freiman’s points ξ and η but not containing any elements
of L . The interval for ξ has approximate length 1.7 × 10−10 whereas that for η has
approximate length 2 × 10−7. Freiman additionally showed that these intervals each
contain countably infinite elements of M .

Cusick & Flahive [3] conjectured that L and M coincide above
√

12 = 3.464101 . . . .
The largest known number in M but not in L is 3.29304 . . . . Much more on this
fascinating subject is found in [24].
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2.32 De Bruijn–Newman Constant

We discuss a constant here that is unlike any other in this collection: It is positive if
and only if the notorious Riemann hypothesis [1.6.2] is false. It is, moreover, defined
in a manner that permits the computer calculation of precise numerical bounds [1].

Starting with the Riemann zeta function ζ (z), define [2]

ξ (z) = 1
2 z(z − 1)π− 1

2 z�( 1
2 z)ζ (z), �(z) = ξ (i z + 1

2 ), z complex.

It is trivial to prove that the Riemann hypothesis is true if and only if the zeros of �(z)
are all real. This restatement of the conjecture will be useful to us in what follows.
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Think of �(z/2)/8 as a complex frequency function, that is, as the Fourier cosine
transform of a time signal �(t). The signal can be calculated to be

�(t) =
∞∑

n=1

(2π2n4e9t − 3πn2e5t ) exp(−πn2e4t ), t real, t ≥ 0.

Given a real parameter λ, consider the modified signal �(t) exp(λt2) and then carry
it back into the frequency domain, that is, returning to where we were initially. The
resulting family of Fourier cosine transforms, Hλ(z), contains H0(z) = �(z/2)/8 as a
special case.

What is known about the zeros of Hλ(z), for fixed λ? De Bruijn [3] proved, among
other things, that Hλ has only real zeros for λ ≥ 1/2. Newman [4] established further
that there is a constant, �, such that Hλ has only real zeros if and only if λ ≥ �.
Of course, � ≤ 1/2 follows immediately from de Bruijn’s result. The Riemann hy-
pothesis is equivalent to the conjecture that � ≤ 0. Newman conjectured that � ≥ 0,
emphasizing nicely that the Riemann hypothesis, if it is true, is just barely so.

Lower bounds on � are clearly of enormous interest to everybody concerned. Elab-
orate computations in [1, 5–8] gave � > −0.0991. Csordas, Smith & Varga [9, 10]
proved a theorem, involving certain “close” consecutive zeros of the Riemann xi func-
tion (known as Lehmer pairs), that dramatically sharpened estimates of the de Bruijn–
Newman constant. The current best lower bound [11, 12] is � > −2.7 × 10−9. No
progress has been made, as far as is known, on improving the upper bound 1/2 on �.

As an aside, we mention one other criterion equivalent to the Riemann hypothesis.
Define, for each positive integer n, the series

λn =
∑

ρ

[
1 −

(
1 − 1

ρ

)n]

=




− 1
2 ln(4π ) + γ0

2 + 1 = 0.0230957089 . . . if n = 1,

π2

8 − ln(4π ) + γ0 − γ 2
0 − 2γ1 + 1 = 0.0923457352 . . . if n = 2,

0.2076389205 . . . if n = 3,

where each sum is over all nontrivial zeros ρ of ζ (z) and γk is the k th Stieltjes constant
[2.21]. Li [13] proved that λn ≥ 0 for all n if and only if the Riemann hypothesis is
true. See the related constants σn in [2.21] and insightful discussion in [14, 15].
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2.33 Hall–Montgomery Constant

A complex-valued function f defined on the positive integers is completely
multiplicative if f (mn) = f (m) f (n) for all m and n. Clearly such a function is de-
termined by its values on 1 ∪ {primes}. Simple examples include f (n) = 0, f (n) = 1,
and f (n) = nr for some fixed r > 0. A more complicated example, for a fixed odd
prime p, is the Legendre symbol

f p(n) =
(

n

p

)
=




0 if p|n,

1 if p � |n and n is a quadratic residue modulo p,

−1 otherwise;

for example, (6/19) = 1 since 52 ≡ 6 mod 19, but (39/47) = −1 since the congruence
x2 ≡ 39 mod 47 has no solution.

To illustrate, define g(N ) to be the cardinality of the set {1 ≤ n ≤ N : f p(n) = 1}. It
is known [1] that, from the integers {1, 2, . . . , p − 1}, (p − 1)/2 are quadratic residues
and (p − 1)/2 are nonresidues. Hence g(N )/N → 1/2 as N → ∞ through multiples
of p. It is natural to ask about other possible limiting values of g(N )/N for different
choices of N . We will return to this issue shortly.

Consider the class F of all completely multiplicative functions whose values are
constrained to the closed real interval [−1, 1]. What numbers arise as mean values of
functions in F? More precisely, what is the set � of limit points of

µN ( f ) = 1

N

N∑
n=1

f (n)
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as f varies over F and as N → ∞? The set � is called the multiplicative spectrum
of [−1, 1], and an understanding of its structure has been reached only recently.

Granville & Soundararajan [2, 3], building upon independent work by Hall & Mont-
gomery [4], proved that � is a closed interval and, in fact,

� = [δ1, 1] = [−0.6569990137 . . . , 1],

where δ1 = 2δ0 − 1,

δ0 = 1 − π2

6
− ln(1 + √

e) ln

(
e

1 + √
e

)
+ 2 Li2

(
1

1 + √
e

)
= 0.1715004931 . . . ,

and Li2(x) is the dilogarithm function [1.6.8]. By analytic continuation, the expression
for δ0 can be simplified to 1 + π2/6 + 2 Li2(−√

e). This remarkable formula is only
the tip of a larger theory: Much can also be said about �(S), where S is an arbitrary
subset of the unit disk D in the complex plane (rather than just the interval [−1, 1]).
An important role in the proofs is played by differential and integral equations with
delay [5.4].

Returning to the special case of f p(n), by the aforementioned theorem,

g(N ) − (N − g(N )) ≥ (δ1 + o(1))N ;

that is, g(N ) ≥ (δ0 + o(1))N . In other words, the proportion of integers not exceeding
N that are quadratic residues mod p is at least δ0, independent of the choice of p:

δ0 ≤ liminf
N→∞

g(N )

N
≤ 1

2
≤ limsup

N→∞

g(N )

N
≤ 1.

This proves a 1994 conjecture of Heath-Brown [4]. Additionally, the constant δ0 is the
best possible and, in fact, the limit inferior is equal to δ0 for infinitely many primes p.

Likewise, the limit superior is equal to 1 for infinitely many primes p. Here is a proof.
For fixed N , select a prime p ≡ 1 mod M , where M is 8× the product of all odd primes
≤ N . This is possible by Dirichlet’s theorem on primes in arithmetic progressions. Thus
(2/p) = 1 and, if q is an odd prime ≤ N , then (q/p) = (p/q) = (1/q) = 1 by the law
of quadratic reciprocity. Any n ≤ N is the product of primes ≤ N ; hence (n/p) = 1.
Therefore, all n ≤ N are quadratic residues mod p. Infinitely many choices of p are
possible, of course, so the result follows.

Let us examine a generalization. A complex-valued function f defined on the pos-
itive integers is multiplicative if f (mn) = f (m) f (n) whenever m and n are relatively
prime. (If f is completely multiplicative, then clearly f is multiplicative.) Assume that
−1 ≤ f (n) ≤ 1 for all n (as before); then its mean value exists and is equal to [5–9]

lim
N→∞

µN ( f ) =
∏

p

(
1 − 1

p

) (
1 +

∞∑
k=1

f (pk)

pk

)
,

where the product is over all primes p. For example, if f (n) = ϕ(n)/n, where ϕ

is the Euler totient function [2.7], then limN→∞ µN ( f ) = 6/π2. Note that, in this
example, f (pk) = f (p) for any k ≥ 1. Complicated conditions for the existence of
limN→∞ µN ( f ) arise if we weaken our assumption to only f (n) ∈ D for all n.
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Here is an (unrelated) asymptotic result corresponding to a rather artificial example
[10]. Define a multiplicative function f by the recursive formula

f (n) =
{

1 if n = 1,

p f (k) if n = pk for any prime p;

then

lim
N→∞

1

N 2

N∑
n=1

f (n) = 1

2

∏
p

(
1 − 1

p2
+ (p − 1)

∞∑
n=2

f (n)

p2n

)

= 1

2
(0.8351076361 . . .).

By way of contrast, the completely additive function 	(n) introduced in [2.2] satisfies
	(pk) = k	(p) for any prime p and has quite dissimilar asymptotics.

[1] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed.,
Springer-Verlag, 1990, pp. 50–65; MR 92e:11001.
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Number Theory, Proc. 1997 Penn. State Univ. conf., ed. S. D. Ahlgren, G. E. Andrews, and
K. Ono, Kluwer, 1999, pp. 1–15; math.NT/9909190; MR 2000m:11088.
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Math. 153 (2001) 407–470; MR 2002g:11127.
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3

Constants Associated with Analytic Inequalities

3.1 Shapiro–Drinfeld Constant

Consider the cyclic sum

fn(x1, x2, . . . , xn) = x1

x2 + x3
+ x2

x3 + x4
+ · · · + xn−1

xn + x1
+ xn

x1 + x2
,

where each x j is nonnegative and each denominator is positive. Shapiro [1] asked if
fn(x1, x2, . . . , xn) ≥ n/2 for all n. Lighthill [2] gave a counterexample for n = 20.
Other counterexamples were subsequently discovered for n = 14 [3, 4] and for n = 25
[5, 6]. See [7–9] for a history of progress in understanding cyclic sums. We will only
summarize: Shapiro’s inequality is true for even n ≤ 12 and odd n ≤ 23 (using a
computer-based proof [10]) and is false otherwise. This result has been analytically
proved in the even case [11] but not yet for odd 13 ≤ n ≤ 23.

It is interesting to examine the tools mathematicians used to unravel Shapiro’s in-
equality early on. We look at just one. Let

f (n) = inf
x≥0

fn(x1, x2, . . . , xn).

Rankin [12] studied the expression

λ = lim
n→∞

f (n)

n
= inf

n≥1

f (n)

n

and proved that λ < 0.49999993 < 1/2. From this he deduced immediately that
Shapiro’s inequality is false for all sufficiently large n. Others took interest in the
constant λ and attempted to calculate it to increasing accuracy [7]. Note that such ef-
forts had no bearing on the truth of Shapiro’s inequality for finite n. As is often the
case, a tool for one person’s use becomes the object of study for another.

Drinfeld [13] discovered a geometric interpretation of λ that also provides means
for computing λ to arbitrary precision. Consider the two curves

y = 1

exp(x)
, y = 2

exp(x) + exp(x/2)

208
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1.2

1.1

e−x

2.(ex + ex/2)−1

φ(x)

1

0.9

0.8
−0.2 −0.1 0

x
0.1 0.2

Figure 3.1. In a neighborhood of x = 0, the graph of y = ϕ(x) is a joint tangent to the other two
curves.

in the xy-plane. Let ϕ(x) be the convex support of these two functions. That is, ϕ(x) is
the largest concave up function not exceeding the others (see Figure 3.1). Then

λ = ϕ(0)

2
= 0.4945668172 . . . = 1

2
(0.9891336344 . . .).

Many modifications of Shapiro’s sum have been studied [7]. We mention only two.
Consider first the cyclic sum

gn(x1, x2, . . . , xn) = x1 + x3

x1 + x2
+ x2 + x4

x2 + x3
+ · · · + xn−1 + x1

xn−1 + xn
+ xn + x2

xn + x1

under the same conditions for x j . The inequality gn(x1, x2, . . . , xn) ≥ n is, like
Shapiro’s inequality, false in general. Elbert [14] studied the expression

µ = lim
n→∞

g(n)

n
, where g(n) = inf

x≥0
gn(x1, x2, . . . , xn).

Using Drinfeld’s method, he found that µ = ψ(0) = 0.9780124781 . . . , where y =
ψ(x) is the convex support of the two functions

y = 1 + exp(x)

2
, y = 1 + exp(x)

1 + exp(x/2)
.

Recent computations of λ and µ include [15, 16]; generalizations are found in [17, 18].
Consider also the difference of cyclic sums �n = fn − hn , where fn is as before and

hn(x1, x2, . . . , xn) = x1

x1 + x2
+ x2

x2 + x3
+ · · · + xn−1

xn−1 + xn
+ xn

xn + x1
.
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Gauchman [19, 20] obtained that

inf
n≥1

inf
x≥0

�n(x1, x2, . . . , xn)

n
= −0.0219875218 . . . ,

and the corresponding two curves are

y = 1 − exp(x/2)

exp(x) + exp(x/2)
, y = exp(−x) − 1

2
.

We mention one other (non-cyclic) sum, due to Shallit [15, 21]:

sn(x1, x2, . . . , xn) =
n∑

i=1

xi +
∑

1≤i≤k≤n

k∏
j=i

1

xk
,

which can be proved to satisfy

lim
n→∞ inf

x>0
sn(x1, x2, . . . , xn) − 3n = −1.3694514039 . . .

by numerical (non-geometric) means. Many variations of these sums fn , �n , and sn

suggest themselves.

3.1.1 Djokovic’s Conjecture

Djokovic’s conjecture, like Shapiro’s, began as a Monthly problem and ultimately gave
rise to an interesting constant. Assuming x1 < x2 < . . . < xn , define

P(x1, x2, . . . , xn) = 1

M

xn∫
x1

(
n∏

k=1

(t − xk)

)
dt, where M = max

x1≤t≤xn

∣∣∣∣∣
n∏

k=1

(t − xk)

∣∣∣∣∣ .
Djokovic [22] conjectured that (−1)n+1−k(∂ P/∂xk) > 0 for each k. It is now known
that this is not generally valid [23, 24], even for n = 3. Let a1 = 0.1824878875 . . .

be the unique real zero of the cubic 12a3 − 16a2 + 8a − 1 and a2 = 1 − a1 =
0.8175121124 . . . . Then Djokovic’s inequality is true if a1(x3 − x1) < x2 − x1 <

a2(x3 − x1) and false otherwise. Similarly, for n ≥ 4, the validity of the inequality
depends on the distribution of the xs. If the xs are uniformly spaced, then for n ≤ 6,
the inequality is true, but for sufficiently large n, it is false.

[1] H. S. Shapiro, Problem 4603, Amer. Math. Monthly 61 (1954) 571.
[2] M. J. Lighthill, Note on problem 4603: An invalid inequality, Amer. Math. Monthly 63

(1956) 191–192; also Math. Gazette 40 (1956) 266.
[3] A. Zulauf, On a conjecture of L. J. Mordell, Abh. Math. Sem. Univ. Hamburg 22 (1958)

240–241; MR 23 #A1575.
[4] M. Herschorn and J. E. L. Peck, Partial solution of problem 4603: An invalid inequality,

Amer. Math. Monthly 67 (1960) 87–88.
[5] D. E. Daykin, Inequalities for functions of a cyclic nature, J. London Math. Soc. 3 (1971)

453–462; MR 44 #1622a.
[6] M. A. Malcolm, A note on a conjecture of L. J. Mordell, Math. Comp. 25 (1971) 375–377;

MR 44 #1622b.
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Oberwolfach conf., ed. W. Walter, Birkhäuser, 1992, pp. 17–31; MR 94g:26030.
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96f:26022.
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MR 90f:26025.
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(2002) 331–348; Univ. of Sussex CMAIA report 2000–08.

[12] R. A. Rankin, An inequality, Math. Gazette 42 (1958) 39–40.
[13] V. G. Drinfeld, A certain cyclic inequality (in Russian), Mat. Zametki 9 (1971) 113–119;

Engl. transl. in Math. Notes Acad. Sci. USSR 9 (1971) 68–71; MR 43 #6379.
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Russian), Mat. Zametki 20 (1976) 203–205; Engl. transl. in Math. Notes Acad. Sci. USSR
20 (1976) 673–675; MR 54 #13007.

[18] E. K. Godunova and V. I. Levin, Lower bound for a cyclic sum (in Russian), Mat. Zametki
32 (1982) 3–7, 124; Engl. transl. in Math. Notes Acad. Sci. USSR 32 (1982) 481–483; MR
84c:26021.

[19] V. Cârtoaje, J. Dawson, and H. Volkmer, Solution of problem 10528a: Cyclic sum inequal-
ities, Amer. Math. Monthly 105 (1998) 473–474.

[20] H. Gauchman, Solution of problem 10528b: Cyclic sum inequalities, unpublished note
(1998).
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[22] D. Z. Djokovic, The integral of a normalized polynomial with real roots, Amer. Math.
Monthly 72 (1965) 794–795; 73 (1966) 788.
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Expos. 10 (1990) 271–278; MR 91g:26024.
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3.2 Carlson–Levin Constants

Let f be a nonnegative real-valued function on [0, ∞). We wish to determine bounds
for the integral of f (x), given the existence of the integrals of xa f (x)p and xb f (x)q .
In the special case a = 0, b = 2, p = q = 2, Carlson [1–3] determined that

∞∫
0

f (x)dx ≤ √
π




∞∫
0

f (x)2dx




1/4 


∞∫
0

x2 f (x)2dx




1/4

and that the constant
√

π is the best possible. By “best possible” we mean that
√

π is the
smallest real coefficient for which the inequality is true. (If we attempt to sharpen the
inequality by making the coefficient less than

√
π , then there is an admissible function

f that will be a counterexample.)
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For the general case, with p > 1, q > 1, λ > 0, and µ > 0, Levin [2–4] discovered
that

∞∫
0

f (x)dx ≤ C




∞∫
0

x p−1−λ f (x)pdx




s 


∞∫
0

xq−1+µ f (x)qdx




t

and the best constant is

C = 1

(ps)s

1

(qt)t

[
�( s

r )�( t
r )

(λ + µ)�( s+t
r )

]r

,

where

r = 1 − s − t, s = µ

pµ + qλ
, t = λ

pµ + qλ
,

and �(x) is Euler’s gamma function [1.5.4]. It is interesting that such a closed-form
expression for the best constant even exists: Many inequalities cannot be evaluated so
completely. See extensions in [5–8].

[1] F. Carlson, Une inégalité, Ark. Mat. Astron. Fysik, v. 25B (1934) n. 1, 1–5.
[2] E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, 1965; MR 33 #236.
[3] D. S. Mitrinovic, J. E. Pecaric, and A. M. Fink, Inequalities Involving Functions and Their

Integrals and Derivatives, Kluwer, 1991; MR 93m:26036.
[4] V. I. Levin, Exact constants in inequalities of the Carlson type (in Russian), Dokl. Akad.

Nauk SSSR 59 (1948) 635–638; MR 9,415b.
[5] B. Kjellberg, Ein Momentenproblem, Ark. Mat. Astron. Fysik, v. 29A (1943) n. 2, 1–33; MR

6,203a.
[6] B. Kjellberg, A note on an inequality, Ark. Mat. 3 (1956) 293–294; MR 17,950a.
[7] V. I. Levin and S. B. Steckin, Inequalities, Amer. Math. Soc. Transl. 14 (1960) 1–29; MR 22

#3771.
[8] V. I. Levin and E. K. Godunova, A generalization of Carlson’s inequality (in Russian), Mat.

Sbornik 67 (1965) 643–646; Engl. transl. in Amer. Math. Soc. Transl. 86 (1970) 133–136;
MR 32 #5824.

3.3 Landau–Kolmogorov Constants

There is a vast literature on inequalities involving the norms of a function f and its
derivatives f (k). We state just enough here to define certain constants C(n, k) in four
separate cases. The constants correspond to the inequality (to be explained in each
case)

|| f (k)|| ≤ C(n, k)|| f ||1− k
n || f (n)|| k

n , 1 ≤ k < n,

which is henceforth called “inequality I .”

3.3.1 L∞(0, ∞) Case

Let || f || here denote the supremum of | f (x)|, where the real-valued function f is
defined on (0, ∞). Landau [1] proved that if f is twice-differentiable and both f and
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f ′′ are bounded, then

|| f ′|| ≤ 2|| f || 1
2 || f ′′|| 1

2

and the constant 2 is the best possible. By this, we mean that replacing 2 by 2 − ε for
any positive number ε would necessarily lead to a counterexample f .

Schoenberg & Cavaretta [2, 3] extended this inequality to a setting where the nth

derivative of f exists and both f and f (n) are bounded. They determined best constants
C(n, k), 1 ≤ k < n, for inequality I and characterized C(n, k) in terms of norms of
Euler splines. For example,

C(3, 1) = (
243
8

) 1
3 = 4.35622 . . . , C(3, 2) = 24

1
3 = 2.88449 . . . ,

C(4, 1) = 4.288 . . . , C(4, 2) = 5.750 . . . , C(4, 3) = 3.708 . . . .

An explicit formula for all n and k is not available [4, 5].

3.3.2 L∞(−∞, ∞) Case

Let || f || here denote the supremum of | f (x)|, where the real-valued function f is
defined on (−∞, ∞). Hadamard [6] proved that if f is twice-differentiable and both
f and f ′′ are bounded, then

|| f ′|| ≤
√

2|| f || 1
2 || f ′′|| 1

2

and the constant
√

2 is the best possible.
Kolmogorov [7] determined best constants C(n, k), 1 ≤ k < n, for inequality I in

terms of Favard constants [4.3]:

C(n, k) = an−ka
−1+ k

n
n , where an = 4

π

∞∑
j=0

[
(−1) j

2 j + 1

]n+1

.

These formulas include special cases discovered by Shilov [8]:

C(3, 1) = (
9
8

) 1
3 , C(3, 2) = 3

1
3 ,

C(4, 1) = (
512
375

) 1
4 , C(4, 2) = (

6
5

) 1
2 , C(4, 3) = (

24
5

) 1
4 ,

C(5, 1) = (
1953125
1572864

) 1
5 , C(5, 2) = (

125
72

) 1
5 .

Observe that this case, involving functions on the whole line, is easier than the previous
case involving functions on the half line [4, 5].

3.3.3 L2(−∞, ∞) Case

Given a real-valued function f defined on (−∞, ∞), define

|| f || =



∞∫
−∞

f (x)2dx




1
2

.
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Hardy, Littlewood & Pólya [9] proved, assuming the nth derivative of f exists and both
f and f (n) are square-integrable, that C(n, k) = 1 is the best possible for 1 ≤ k < n.

3.3.4 L2(0, ∞) Case

As before, the half-line case is more difficult than the corresponding whole-line case.
Given a real-valued function f defined on (0, ∞), define

|| f || =



∞∫
0

f (x)2dx




1
2

.

Hardy & Littlewood [9] proved, assuming f is twice-differentiable and both f and f ′′

are square-integrable, that

|| f ′|| ≤
√

2|| f || 1
2 || f ′′|| 1

2

and the constant
√

2 is the best possible.
Ljubic [10] and Kupcov [11] extended this inequality to I and gave a remarkable

algorithm for finding best constants C(n, k) in terms of zeros of certain explicit poly-
nomials. For example [12, 13],

C(3, 1) = C(3, 2) = 3
1
2

[
2

(
2

1
2 − 1

)]− 1
3 = 1.84420 . . . ,

C(4, 1) = C(4, 3) =
[

1

a

(
3

1
4 + 3− 3

4

)] 1
2

= 2.27432 . . . ,

C(4, 2) =
(

2

b

) 1
2

= 2.97963 . . . ,

where a is the least positive root of x8 − 6x4 − 8x2 + 1 = 0 and b is the least positive
root of x4 − 2x2 − 4x + 1 = 0, and

C(5, 1) = C(5, 4) = 2.70247 . . . , C(5, 2) = C(5, 3) = 4.37800 . . . .

In the special case k = 1, it can also be shown that

C(n, 1) =
[

(n − 1)
1
n + (n − 1)−1+ 1

n

c

] 1
2

,

where c is the least positive root of

c∫
0

∞∫
0

1

(x2n − yx2 + 1)
√

y
dxdy = π2

2n
.

A similar formula for k > 1 is not known. A consequence of Ljubic and Kupcov’s work
is that all C(n, k) for this case must be algebraic numbers. This assertion appears to be
true for the L∞(0, ∞) case as well.
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Among the topics we have omitted are:

• best constants associated with the L p(0, ∞) and L p(−∞, ∞) norms, where p �= 2
and p �= ∞, or the same over a finite interval [14, 15];

• best constants in the discrete case, specifically, those associated with one-way and
two-way infinite real sequences with the l p norm and where derivatives are replaced
by differences [16, 17].

It turns out that p = 1, 2, ∞ are the only cases for which best constants have exact
formulas. For all other values of p, numerical approximation is evidently required.

Here is an unsolved problem, which concerns a slight variant of L2(0, ∞). Assuming
f to be twice-differentiable and both f and f ′′ to be square-integrable with respect to
a weighting function w(x) = x , Everitt & Guinand [5, 18] proved that




∞∫
0

x f ′(x)2dx




2

≤ K ·
∞∫
0

x f (x)2dx ·
∞∫
0

x f ′′(x)2dx,

where the best possible constant satisfies 2.35070 < K < 2.35075. An exact expression
for K remains undiscovered.

[1] E. Landau, Einige Ungleichungen für zweimal differenzierbare Funktionen, Proc. London
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87a:47050.

[14] Z. M. Franco, H. G. Kaper, M. K. Kwong, and A. Zettl, Bounds for the best constant in
Landau’s inequality on the line, Proc. Royal Soc. Edinburgh 95A (1983) 257–262; MR
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Theory 94 (1998) 420–454; MR 99f:41013.
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[17] H. Kaper and B. E. Spellman, Best constants in norm inequalities for the difference operator,
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3.4 Hilbert’s Constants

Let p > 1 and q = p/(p − 1). If {an}, {bn} are nonnegative sequences and f (x), g(x)
are nonnegative integrable functions, then Hilbert’s inequality [1–3] for series is

∞∑
m=1

∞∑
n=1

ambn

m + n
< π csc

(
π

p

) ( ∞∑
m=1

a p
m

) 1
p
( ∞∑

n=1

bq
n

) 1
q

,

unless all an are zero or all bn are zero, and Hilbert’s inequality for integrals is

∞∫
0

∞∫
0

f (x)g(y)

x + y
dxdy < π csc

(
π

p

) 


∞∫
0

f (x)pdx




1
p



∞∫
0

g(y)qdy




1
q

,

unless f is identically zero or g is identically zero. The constant π csc(π/p) is the
best possible in the sense that, if one replaces it by a smaller constant, then there exist
counterexamples.

We are concerned with the following two-parameter extension of Hilbert’s inequality.
Let p > 1, q > 1 and

1
p + 1

q ≥ 1, so that 0 < λ = 2 − 1
p − 1

q ≤ 1.

Levin [4], Steckin [5], and Bonsall [6] showed that

∞∑
m=1

∞∑
n=1

ambn

(m + n)λ
≤

[
π csc

(
π (q − 1)

λq

)]λ
( ∞∑

m=1

a p
m

) 1
p
( ∞∑

n=1

bq
n

) 1
q

,

∞∫
0

∞∫
0

f (x)g(y)

(x + y)λ
dxdy ≤

[
π csc

(
π (q − 1)

λq

)]λ




∞∫
0

f (x)pdx




1
p



∞∫
0

g(y)qdy




1
q

,

but it is not known whether the indicated constant is the best possible.
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There appears to be some confusion on the last point. Boas [7] indicated in 1949 that
Steckin had proved the constant is the best possible in the discrete case; in 1950 Boas
corrected himself and wrote that the bound is not exact. Mitrinovic, Pecaric & Fink [1]
wrote that Steckin had established the constant to be the best possible. However, both
Levin & Steckin [8] and Walker [9] wrote that the problem is still open.

As far as is known, no one has calculated the best constant even for the case λ = 1/2
and p = q = 4/3. Is a computation possible analogous to that discussed with the
Copson–de Bruijn constant [3.5]?

[1] D. S. Mitrinovic, J. E. Pecaric, and A. M. Fink, Inequalities Involving Functions and Their
Integrals and Derivatives, Kluwer, 1991; MR 93m:26036.

[2] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, 1934; MR
89d:26016.

[3] K. Oleszkiewicz, An elementary proof of Hilbert’s inequality, Amer. Math. Monthly 100
(1993) 276–280; MR 94a:51032.

[4] V. I. Levin, On the two-parameter extension and analogue of Hilbert’s inequality, J. London
Math. Soc. 11 (1936) 119–124.

[5] S. B. Steckin, On positive bilinear forms (in Russian), Dokl. Akad. Nauk SSSR 65 (1949)
17–20; MR 10,515e and MR 11,870 errata/addenda.

[6] F. F. Bonsall, Inequalities with non-conjugate parameters, Quart. J. Math. 2 (1951) 135–150;
MR 12,807e.

[7] R. P. Boas, Review of “On positive bilinear forms,” MR 10,515e, errata in MR 11,870.
[8] V. I. Levin and S. B. Steckin, Inequalities, Amer. Math. Soc. Transl. 14 (1960) 1–29; MR 22

#3771.
[9] P. L. Walker, A note on an inequality with non-conjugate parameters, Proc. Edinburgh Math.

Soc. 18 (1973) 293–294; MR 48 #8723.

3.5 Copson–de Bruijn Constant

The interplay between series and integrals is sometimes very natural, but sometimes
not. Let {an} be a nonnegative sequence and f (x) a nonnegative integrable function.
Define

An =
n∑

k=1

ak, Bn =
∞∑

k=n

ak,

F(x) =
x∫
0

f (t)dt, G(x) =
∞∫
x

f (t)dt.

Assume throughout that all infinite series and improper integrals under consideration
are convergent and finite. We will examine two examples, the first for which all is as
expected and the second for which all is not. Given p > 1, Hardy’s inequality [1] is of
the form

∞∑
n=1

(
An

n

)p

<

(
p

p − 1

)p ∞∑
n=1

a p
n ,
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which always holds unless all an are zero. The corresponding theorem for integrals is

∞∫
0

(
F(x)

x

)p

dx <

(
p

p − 1

)p
∞∫
0

f (x)pdx,

which always holds unless f is identically zero. The constant (p/(p − 1))p is the best
possible in the sense that, if one replaces it by a smaller constant, then there exist {an}
and f (x) that are counterexamples.

Given 0 < p < 1, one of Copson’s integral inequalities [2, 3] is of the form

∞∫
0

(
G(x)

x

)p

dx >

(
p

1 − p

)p
∞∫
0

f (x)pdx,

unless f is identically zero. The corresponding theorem for series, curiously, is

(
1 + 1

p − 1

) (
B1

1

)p

+
∞∑

n=2

(
Bn

n

)p

>

(
p

1 − p

)p ∞∑
n=1

a p
n ,

unless all an are zero. The constant is the best possible, as found by Elliott. What is
surprising is the correction term (or “gloss” as described in [2]) required to achieve the
correspondence.

If one removes the correction term, the following inequality emerges [2, 4]:

∞∑
n=1

(
Bn

n

)p

> p p
∞∑

n=1

a p
n ,

unless all an are zero. The constant p p is, however, not the best possible. Hence by
removing the “gloss” we have wrecked the precision of the inequality.

Levin & Steckin [5] proved, for 0 < p < 1/3, that the best constant is (p/(1 − p))p,
but they could not do likewise for p > 1/3.

Consider the special case when p = 1/2:

∞∑
n=1

(
an + an+1 + an+2 + · · ·

n

) 1
2

≥ C
∞∑

n=1

a
1
2
n

and rearrange the inequality by replacing an by a2
n :

∞∑
n=1

an ≤ c
∞∑

n=1

(
a2

n + a2
n+1 + a2

n+2 + · · ·
n

) 1
2

.

Steckin [6] proved that c ≤ 2/
√

3 and Boas & de Bruijn [7] improved this to 1.08 <

c < 17/15. To estimate c more accurately, de Bruijn [8] defined a sequence of complex
numbers via the recurrence

u1 = x, un = n− 1
2 x + (

u2
n−1 − 1

) 1
2 for n ≥ 2.
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It can be proved that c = 1.1064957714 . . . is the smallest real number for which x ≥ c
implies un ≥ 1 (in particular, Im(un) = 0) for all n ≥ 1. Further, if x ≥ c, then

lim
n→∞ n− 1

2 un =
{

x + (
x2 − 1

) 1
2 if x > c,

c − (
c2 − 1

) 1
2 if x = c.

Whether de Bruijn’s procedure can be applied for other values of p > 1/3 is open.
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#3771.
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3.6 Sobolev Isoperimetric Constants

The area A enclosed by a simple closed curve C in the plane with perimeter P satisfies
4π A ≤ P2, and equality holds if and only if C is a circle. We first generalize this
isoperimetric property from two to n dimensions and then relate it to a certain Sobolev
inequality.

Let 	 be the closure of a bounded, open, connected set in Euclidean space R
n

with piecewise continuously differentiable boundary and surface area S. Let f be a
continuously differentiable function defined on R

n with compact support, meaning that
f = 0 identically outside of a ball, and let � f denote the gradient of f . Also define
ωn = πn/2�(n/2 + 1)−1, the volume enclosed by the unit sphere in R

n . The following
two statements are equivalent [1–4]:

• The volume V of 	 satisfies nnωn V n−1 ≤ Sn with equality if and only if 	 is a ball.
• The Ln/(n−1) norm of f is related to the L1 norm of its gradient via


∫

Rn

| f (x)| n
n−1 dx




n−1
n

≤ 1

nω
1/n
n

∫
Rn

|� f (x)|dx

and the constant n−1ω
−1/n
n is sharp.

The former is geometric in nature, whereas the latter falls within functional analysis.
As a consequence, there is an extended interpretation of the phrase “isoperimetric
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problem” to encompass Sobolev inequalities and hence eigenvalues of differential
equations with boundary conditions. We cannot even hope to summarize such a massive
field [5–7] but attempt only to introduce a few constants.

Several authors [8, 9] have commented that Sobolev inequalities act as uncertainty
principles: The size of the gradient of a function f is bounded from below in terms of
the size of f . Note that the constants ωn are interesting in themselves; for example,
limn→∞ n1/2ω

1/n
n = √

2πe = 4.1327313541 . . . by Stirling’s formula. We turn to four
sample exercises from physics.

3.6.1 String Inequality

If smooth functions f are constrained to satisfy f (0) = f (1) = 0, then

1∫
0

f (x)2dx ≤ 1

π2

1∫
0

(
d f

dx

)2

dx

and the constant 1/π2 = 0.1013211836 . . . is the best possible [10]. This corresponds,
via the calculus of variations, to the fact that the smallest eigenvalue of the ordinary
differential equation (ODE)

d2g

dx2
+ λg(x) = 0, g(0) = g(π ) = 0,

is λ = 1. This ODE, in turn, arises from the study of a vibrating, homogeneous string
that is pulled taut on the x-axis and is fastened at the endpoints [11, 12]. The value√

λ = 1 has the physical interpretation as the principal frequency of the sound one
hears when the string is plucked.

A generalization of this is due to Talenti [3]:




1∫
0

| f (x)|qdx




1
q

≤ q

2

(
1 + r

q

) 1
p (

1 + q

r

)− 1
q �( 1

q + 1
r )

�( 1
q )�( 1

r )




1∫
0

∣∣∣∣d f

dx

∣∣∣∣
p

dx




1
p

,

where f (0) = f (1) = 0, p > 1, q ≥ 1, and r = p/(p − 1). The indicated constant is
sharp.

3.6.2 Rod Inequality

A second-order version of the “string inequality” follows. If suitably smooth f are
constrained to satisfy

f (0) = d f

dx
(0) = f (1) = d f

dx
(1) = 0,

then
1∫
0

f (x)2dx ≤ µ

1∫
0

(
d2 f

dx2

)2

dx,
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where µ = 1/θ4 = 0.0019977469 . . . and θ = 4.7300407448 . . . is the smallest posi-
tive root of the equation

cos(θ ) cosh(θ ) = 1.

Moreover, the constant µ is the best possible [12–14]. This corresponds to the fact that
the smallest eigenvalue of the ODE

d4g

dx4
− λg(x) = 0, g(0) = dg

dx
(0) = g(π ) = dg

dx
(π ) = 0,

is λ = θ4/π4 = 5.1387801326 . . . . This ODE, in turn, arises from the study of a
vibrating, homogeneous rod or bar that is clamped at the endpoints.

3.6.3 Membrane Inequality

A two-dimensional version of the “string inequality” follows. If smooth f are con-
strained to vanish on the boundary C of the unit disk D, then

∫
D

f 2dxdy ≤ µ

∫
D

[(
∂ f

∂x

)2

+
(

∂ f

∂y

)2
]

dx dy,

where µ = 1/θ2 = 0.1729150690 . . . and θ = 2.4048255576 . . . is the smallest posi-
tive zero of the zeroth Bessel function

J0(z) =
∞∑
j=0

(−1) j

( j!)2

( z

2

)2 j
.

Moreover, the constant µ is the best possible [11, 12, 15]. This corresponds to the fact
that the smallest eigenvalue of the ODE

r2 d2g

dr2
+ r

dg

dr
+ λr2g(r ) = 0, g(0) = 1, g(1) = 0,

is λ = θ2 = 5.7831859629 . . . . This ODE, in turn, arises from the study of a vibrat-
ing, homogeneous membrane that is uniformly stretched across D and fastened at the
boundary C . The value

√
λ = θ is the principal frequency of the sound one hears when

a kettledrum is struck.
Consider the Laplace partial differential equation (PDE)

∂2u

∂x2
+ ∂2u

∂y2
+ �u = 0

for a vibrating membrane on an arbitrary region D of fixed area A with u = 0 on the
boundary C . Rayleigh [16, 17] conjectured in 1877 that the first eigenvalue � is least
when C is a circle. This conjecture was proved independently in 1923 by Faber [18]
and Krahn [19]: � ≥ (π/A)θ2 with equality if and only if C is a circle. Interestingly,
the same is not true for the second eigenvalue: The critical boundary is not a circle, but
a figure-eight [20–22].
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3.6.4 Plate Inequality

A two-dimensional, second-order version of the “string inequality” follows. Assume
that suitably smooth f and its outward normal derivative ∂ f/∂n are both constrained
to vanish on the boundary C of the unit disk D. Then

∫
D

f 2dxdy ≤ µ

∫
D

(
∂2 f

∂x2
+ ∂2 f

∂y2

)2

dx dy

where µ = 1/θ4 = 0.0095819302 . . . , θ = 3.1962206165 . . . is the smallest positive
root of the equation

J0(θ )I1(θ ) + I0(θ )J1(θ ) = 0,

and I0(z) is the zeroth modified Bessel function

I0(z) =
∞∑
j=0

1

( j!)2

( z

2

)2 j
, I1(z) = d I0

dz
, J1(z) = −d J0

dz
.

Moreover, the constant µ is the best possible [12, 14–16, 23]. This is associated with
the study of a vibrating, homogeneous plate clamped at the boundary C .

As with the membrane case, we state a related isoperimetric inequality. Consider
the PDE

∂2

∂x2

(
∂2u

∂x2
+ ∂2u

∂y2

)
+ ∂2

∂y2

(
∂2u

∂x2
+ ∂2u

∂y2

)
− �u = 0

for a vibrating plate on an arbitrary region of fixed area A with u = ∂u/∂n = 0 on the
boundary. Rayleigh [16] conjectured that � ≥ (π2/A2)θ4 and Szegö [24–26] proved
this to be true under a special hypothesis. The general conjecture was proved only
recently [27, 28].

3.6.5 Other Variations

Let || f || denote the supremum of | f (x, y)|, where the function f is defined on all of
R

2 and is twice continuously differentiable. Then || f || is related to the integral of the
sum of squares of all partial derivatives of f via

|| f || ≤ α2,2


∫

R2

(
f 2 + f 2

x + f 2
y + f 2

xx + f 2
xy + f 2

yy

)
dxdy




1
2

,

where the best constant α2,2 = 0.3187590609 . . . is given by [29]

α2,2 =

 1

π2

∞∫
0

∞∫
0

dxdy

1 + x2 + y2 + x4 + x2 y2 + y4




1
2

=

 1

2π

∞∫
1

dt√
t2 + 2

√
t2 + 3




1
2

.
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Such formulation is naturally extended to m-times continuously differentiable functions
f defined on all of R

n , with corresponding constant αm,n . For example,

α1,1 =

 1

π

∞∫
0

dx

1 + x2




1
2

=
√

2

2
, α2,3 = 0.231522 . . . , α3,3 = 0.142892 . . . .

If instead f is defined only on the unit cube in R
n , then among the associated constants

α̃m,n , we have [30–32]

α̃1,1 = tanh(1)−
1
2 = 1.1458775176 . . . , α̃2,2 = 1.24796 . . . .

In fact, for arbitrary m ≥ 1,

αm,1 =
[

1

m + 1

cos( π
2m+2 )

sin( 3π
2m+2 )

] 1
2

, α̃m,1 =
[

2

m + 1

m∑
k=1

sin( πk
m+1 )3

tanh(sin( πk
m+1 ))

] 1
2

.

These inequalities are useful in the study of the finite element method in numerical
analysis.

A related idea is Friedrichs’ inequality [33], which involves continuously differen-
tiable functions f on the closed interval [0, 1] ⊆ R:




1∫
0

(
f (x)2 + f ′(x)2

)
dx




1
2

≤ β


 f (0)2 + f (1)2 +

1∫
0

f ′(x)2dx




1
2

.

The best constant β = 1.0786902162 . . . satisfies β = √
1 + θ−2, where θ =

2.4725480752 . . . is the unique solution of the equation

cos(θ ) − θ (θ2 + 1)−1 sin(θ ) = −1, 0 < θ < π.

Many more examples are possible [34–45].
Let us return to geometry for one more problem. Consider a simple closed curve

C in R
3 with perimeter P . Let V denote the volume of its convex hull, that is, the

intersection of all convex sets in R
3 containing C . Then V ≤ γ3 P3 and the best constant

is γ3 = 0.0031816877 . . . (obtained in [46, 47] via numerical solution of a system of
ODEs). No closed-form expression for γ3 is known. If the setting is changed from R

3

to R
n , where the integer n is even, then curiously the best constant [48] is exactly given

by γn = [(πn)n/2n!(n/2)!]−1. The case for odd n ≥ 5 remains open.
A deeper connection between Sobolev inequalities and isoperimetric properties

within Riemannian manifolds (Rn being the simplest example) is beyond the scope of
this book.
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3.7 Korn Constants

Let u(x) be a smooth vector field defined on the closure of a bounded, open, connected
set 	 in n-dimensional space. Then ∇u(x) is the n × n matrix made up of partial
derivatives of u(x). By the norm |M | of a matrix M , we mean the Euclidean norm of
M , that is, the square root of the sum of squares of all entries. Let also MT denote the
transpose of M .

Consider the so-called second case of Korn’s inequality [1–3]

∫
	

|∇u(x)|2dx ≤ K

∫
	

∣∣∣∣∇u(x) + ∇u(x)T

2

∣∣∣∣
2

dx
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with the side condition ∫
	

(∇u(x) − ∇u(x)T
)

dx = 0.

The best constants K (	) for various domains 	 are important in linear elasticity
theory and in incompressible fluid dynamics. If Bn is an n-dimensional ball [4, 5], then
K (B2) = 4 and K (B3) = 56/13. The corresponding values for n ≥ 4 are not known.
Let Pm denote a two-dimensional m-sided regular polygonal region. For a square P4,
it can be proved that [2]

5 ≤ K (P4) ≤ 4(2 +
√

2),

and Horgan & Payne [6] conjectured that K (P4) = 7. For an equilateral triangle P3,
we have

6 ≤ K (P3) ≤ 8(2 +
√

3)

using Laplacian eigenvalue formulas in [7–9]. For arbitrary m, we have the upper bound
[2]

K (Pm) ≤ 4

1 − sin(π/m)
,

and a lower bound for K (P6) is possible using eigenvalue numerical estimates in [9].
Korn constants for ellipses and limacons are given in [2, 10]; for circular rings and
spherical shells, see [11, 12].

Here is a related problem (for n = 2 only). Let z = x + iy, where i is the imaginary
unit, and let f (x, y) and g(x, y) denote the real and imaginary parts of an analytic
function w(z). In other words, f (x, y) and g(x, y) are harmonic conjugates. Consider
Friedrichs’ inequality [6, 10, 13–15]∫

	

f (x, y)2dxdy ≤ �

∫
	

g(x, y)2dxdy

with the side condition ∫
	

f (x, y)dxdy = 0.

The best constants � for various simply-connected domains 	 are related to the Korn
constants K by K = 2(1 + �), assuming 	 has a continuously differentiable boundary.
In the event 	 is a square region, Horgan & Payne [6] conjectured that the optimizing
functions are

f (x, y) = 2xy, g(x, y) = y2 − x2

and hence � = 5/2. This would lead immediately to K = 7 if it were not for the
smoothness requirement.

Horgan’s survey [2] is a valuable starting point for research. Related topics appear
in [16, 17].
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3.8 Whitney–Mikhlin Extension Constants

Let Bn,r denote the n-dimensional closed ball of radius r centered at the origin. Assume
throughout that r > 1 is fixed. A function F defined on all of n-dimensional space is
called an r -extension of a given function f defined on Bn,1 if F(x) = f (x) for all
|x | ≤ 1 and F(x) = 0 for all |x | ≥ r .

We are interested in procedures for building F , given f , and we want to do this in
such a way as to “minimize waste.” Here are two ways (among many) to interpret the
phrase “minimize waste”:

• To every continuous f , construct a continuous r -extension F such that

max
x∈Bn,r

|F(x)| ≤ c · max
x∈Bn,1

| f (x)|,

where c is a constant (independent of f ) and is the smallest possible.
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• To every continuously differentiable f , construct a continuously differentiable
r -extension F such that



∫
Bn,r

(
F(x)2 +

n∑
k=1

(
∂ F

∂xk

)2
)

dx




1
2

≤ χ ·




∫
Bn,1

(
f (x)2 +

n∑
k=1

(
∂ f

∂xk

)2
)

dx




1
2

,

where (again) χ is a constant and is the smallest possible.

Another way of phrasing this is as follows: Given two Banach spaces of functions
defined on Bn,1 and Bn,r , determine the r -extension operator from one to the other
of minimal norm. In the first case, the Banach space norm is the L∞ or supremum
norm; in the second, it is the Sobolev W 1

2 integral norm, which penalizes misbehaved
derivatives as well.

Whitney [1] proved that c = 1 in the first case by a partition-of-unity argument. The
calculus of variations provides that [2, 3]

χ =
√

1 + coth(1) coth(r − 1)

when n = 1 for the second case (note that this depends on r ).
Mikhlin [4–6] determined best constants χ = χ (n, r ) when n ≥ 2 for the second

case. Earlier relevant work included Hestenes [7], Calderón [8], and Stein [9]. Define,
for convenience, ν = (n − 2)/2 and modified Bessel functions

Iν(r ) =
(r

2

)ν ∞∑
j=0

1

j!�(ν + j + 1)

(r

2

)2 j
, Kν(r ) = π

2

I−ν(r ) − Iν(r )

sin(νπ )
.

See [4] for a table of numerical estimates of χ (n, r ), based on algebraic formulas
involving Iν(r ) and Kν(r ). Our interest is solely in the asymptotic values

χn = lim
r→∞ χ (n, r ) =

√
1 + Iν(1)

Iν+1(1)

Kν+1(1)

Kν(1)
,

and clearly

χ1 =
√

2e2

e2−1 , χ3 = e, χ5 =
√

e2

e2−7 , χ7 =
√

2
7

√
e2

37−5e2 , χ9 =
√

1
37

√
e2

18e2−133

for odd dimensions n, an unexpected occurrence of the natural logarithmic base e.
Similar formulation, in terms not of e but of I0(1), I1(1), K0(1), and K1(1), can be
written for even dimensions n.
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3.9 Zolotarev–Schur Constant

Let n be a positive integer. Define Sn to be the set of nth degree polynomials p(x) with
real coefficients satisfying |p(x)| ≤ 1 for all −1 ≤ x ≤ 1.

Markov [1, 2] proved that, if p ∈ Sn , then |p′(x)| ≤ n2 for all −1 ≤ x ≤ 1, where
p′ is the derivative of p. Equality occurs if and only if x = ±1 and p(x) = ±Tn(x),
the nth Chebyshev polynomial [4.9].

Let −1 ≤ ξ ≤ 1 be a real number and n ≥ 3 be an integer. Define Sn,ξ to be the subset
of Sn characterized by the additional restriction p′′(ξ ) = 0. Note that Tn /∈ Sn,±1; hence
maximizing the quantity |p′(±1)| over the set Sn,±1 leads to quite different solutions
than before.

Schur [3, 4] proved that, if p ∈ Sn,ξ , then |p′(ξ )| < 1
2 n2. Further, letting

sn = sup
−1≤ξ≤1

sup
p∈Sn,ξ

|p′(ξ )|
n2

and σ = limsup
n→∞

sn

he obtained the bounds 0.217 ≤ σ ≤ 0.465.
It turns out that identifying the constant σ is an outcome of work performed by

Zolotarev [5–12]. Just as Tn(x) arise as extremal polynomials in Markov’s theorem,
a new set of polynomials Zn(x) are required to fully understand Schur’s theorem.
Zolotarev determined in 1877 a number of exact solutions to various polynomial ap-
proximation problems using elliptic functions, in research that was far ahead of its
time.

Erdös & Szegö [4] established the connection between Schur’s theorem and
Zolotarev’s polynomials. They proved that

σ = 1

c2

(
1 − E(c)

K (c)

)2

= 0.3110788667 . . . ,

where K (x) and E(x) are complete elliptic integrals of the first and second kind [1.4.6],
and c is the unique solution of the equation

[K (c) − E(c)]3 + (1 − c2)K (c) − (1 + c2)E(c) = 0, 0 < c < 1.
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The extremum snn2 is attained for n > 3 at ξ = 1 and p(x) = ±Zn(x), or at ξ = −1 and
p(x) = ±Zn(−x). To discuss Zolotarev’s polynomials and the associated differential
equation would take us too far afield, so we stop here.

3.9.1 Sewell’s Problem on an Ellipse

Here is an extension of Markov’s problem. Let p(z) be a complex polynomial of degree
n in z = x + iy and assume that |p(z)| ≤ 1 on the elliptical region E given by x2 +
(y/g)2 ≤ 1, where 0 < g ≤ 1. What is the smallest constant K (g), independent of n,
for which |p′(z)| ≤ n · K (g) over all of E?

It is known [13–16] that K (1) = 1 and K (g) ≤ 1/g. From the quadratic example
p(z) = (8z2 − 3)/5, van Delden [17] deduced that K (1/2) ≥ 8/5. He further utilized
the generalized Chebyshev polynomial sequence [4.9]

Tn(z, g) = cos(n arccos(z̃)) = (z̃ + √
z̃2 − 1)n + (z̃ − √

z̃2 − 1)n

2
, z̃ = z√

1 − g2
,

to suggest that K (g) is equal to its upper bound 1/g.
Analogous constants can be defined over other boundary curves as well [18–20].

See also [21–25].
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3.10 Kneser–Mahler Polynomial Constants

Given a polynomial, what can be said about the size of its factors? Let ||p|| denote the
supremum norm of an nth degree polynomial p(x) with complex coefficients, defined
on the closed real interval [−1, 1]. Suppose p(x) = q(x)r (x), where q(x) is of degree
k and r (x) is of degree n − k. Then Kneser [1], building upon the work of Aumann [2],
proved that [3–5]

||q|| · ||r || ≤ 1

2
Cn,kCn,n−k · ||p||,

where

Cn,k = 2k
k∏

j=1

[
1 + cos

(
(2 j − 1)π

2n

)]
.

Furthermore, for any n and k ≤ n, the constant is the best possible. Observe that here,
the right-hand “knows” the degree k of q(x).

Suppose information on the degree k of q(x) is not available. Borwein [4, 5] observed
as a corollary of Kneser’s result that k = �n/2
 maximizes Cn,k and thus

||q|| · ||r || ≤ δ2n||p||
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asymptotically as n → ∞, where

δ = exp

(
2G

π

)
= 1.7916228120 . . .

is the dimer constant [5.23] and G is Catalan’s constant [1.7]. Moreover, the inequality
is sharp, meaning

limsup
n→∞

( ||q|| · ||r ||
||p||

) 1
n

= δ2 = 3.2099123007 . . . ,

where the supremum is over all polynomials p of degree n and factors q and r .
The remarkable occurrence of δ in this expression was anticipated several years

earlier by Boyd [6], working over a different domain. Henceforth, define ||p|| to be the
supremum norm of p(z) defined on the unit disk D in the complex plane. Boyd proved,
if p(z) = q(z)r (z), then asymptotically

||q|| · ||r || ≤ δn||p||
and this is sharp. It is interesting that δ2 occurs for [−1, 1] but δ occurs for D.

Suppose we remove ||r || from this inequality. To avoid frivolous multiplication of
q by a large constant, we assume that p and q and hence r are monic. Boyd [6] proved
here that asymptotically

||q|| ≤ βn||p||
and this is sharp, where

β = exp

(
1

π
I (

2

3
π )

)
= 1.3813564445 . . .

and

I (θ ) =
θ∫
0

ln
(

2 cos(
x

2
)
)

dx .

The integral is simply Cl(π − θ ), where Cl(θ) is Clausen’s integral [7, 8]. We note a
similar representation [6, 9]

δ = exp

(
2

π
I (

1

2
π )

)

and also two series [10, 11]

ln(δ) = 2

π

(
1 − 1

32
+ 1

52
− 1

72
+ 1

92
− 1

112
+ − · · ·

)
= 0.5831218080 . . . ,

ln(β) = 3
√

3

4π

(
1 − 1

22
+ 1

42
− 1

52
+ 1

72
− 1

82
+ − · · ·

)
= 0.3230659472 . . . .

The constant β has occurred in several places in the literature, the first in Mahler
[12] with regard to an apparently unrelated polynomial inequality. In [13, 14], it appears
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in the asymptotics of what are called binomial circulant determinants. In [15], ln(β) is
the entropy of a simple two-dimensional shift and in [16], π ln(β) = 1.0149416064 . . .

is the largest possible volume of a hyperbolic tetrahedron. See also [5.23] and [8.9].
An amusing recent account of π ln(β) is found in [17], where it is called Gieseking’s
constant.

Likewise, δ has occurred throughout the literature. We already mentioned the con-
nection to the dimer packing of a two-dimensional integer lattice. In [18, 19], ln(δ)
appears with regard to Schmidt’s Gaussian integer continued fractions. Other ways δ

plays a role in mathematical physics include those described in [20, 21].
Boyd [9] extended this discussion from two factors to m factors. If p(z) =

p1(z)p2(z) · · · pm(z), with m fixed, then asymptotically

||p1|| · ||p2|| · · · ||pm || ≤ cn
m · ||p||

and this is sharp, where

cm = exp

(
m

π
I (

1

m
π )

)
.

Observe that c2 = δ and, since I (π/3) = (2/3)I (2π/3), we have c3 = β2 =
1.9081456268 . . . [8]. We also have c4 = 1.9484547890 . . . , c5 = 1.9670449011 . . . ,
and c6 = 1.9771268308 . . . .

Boyd [9] considered the case when p(z) and all pi (z) have real coefficients, but are
defined on D. Here the constant cm is simply replaced by δ and this is sharp. That is,
in the real case, the best constant does not depend on m. Borwein [4, 5] considered the
case of complex p(x) and pi (x) defined on the interval [−1, 1]. Here the constant cm

is simply replaced by δ2 and again this is sharp. Pritsker [22, 23] obtained a general
formula for the analog, B(a), of β for Boyd’s inequality [6] on the interval [−a, a]. For
example, B(2) = β2 = 1.90815 . . . and B(1) = √

2δ = 2.53373 . . . . See also [24, 25].
In [2.30], we discuss Mahler’s measure M(α) for algebraic integers α. This is, in

essence, equivalent to Mahler’s measure M( f ) for univariate polynomials [26]

f (z) = α0

n∏
j=1

(z − α j ),

which is given by

M( f ) = exp




1∫
0

ln(| f (e2π iθ )|)dθ


 = |α0|

n∏
j=1

max(|α j |, 1)

as a consequence of Jensen’s formula [27].
An important generalization to multivariate functions f (z1, z2, . . . , zm) is given by

M( f ) = exp




1∫
0

1∫
0

· · ·
1∫
0

ln(| f (e2π iθ1 , e2π iθ2 , . . . , e2π iθm )|)dθ1dθ2 · · · dθm


 .
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Some examples are

M(1 + x) = 1, M(1 + x + y) = β = M(max(1, |x + 1|)),

M(1 + x + y + z) = exp

(
7ζ (3)

2π2

)
,

M(1 + x + y − xy) = δ = M(max(|x − 1|, |x + 1|)),
where ζ (3) is Apéry’s constant [1.6]. Two asymptotic results are [10]

lim
m→∞

M(z1 + z2 + · · · + zm)√
m

= exp

(
−1

2
γ

)
= 0.7493060013 . . . ,

involving the Euler–Mascheroni constant γ [1.5], and

lim
m→∞ M (z1 + (1 + z2)(1 + z3) · · · (1 + zm))

1√
m = exp

(√
π

24

)
.

Finally, we discuss Bombieri’s supremum norm: If p(z) = ∑n
j=0 a j z j , then

[p] = max
0≤ j≤n

|a j | n!

j!(n − j)!
.

If p(z) and q(z) are complex monic polynomials on D, deg(p) = n, and q is a factor of
p, we are interested in the size of ||q|| relative to [p]. It is known that asymptotically
[28–31]

||q|| ≤ K n · [p],

where

K = M(1 + |x + 1|) = M
(
(1 + x + x2 + y)2

) = 2.1760161352 . . . ,

but a proof that K is the best possible remains undiscovered.
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3.11 Grothendieck’s Constants

For any integer n ≥ 2, there is a constant k(n) with the following property [1, 2]: Let
A be any m × m matrix for which∣∣∣∣∣

m∑
i=1

m∑
j=1

ai j si t j

∣∣∣∣∣ ≤ 1
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is satisfied for all scalars s1, s2, . . . , sm, t1, t2, . . . , tm with |si | ≤ 1, |t j | ≤ 1. Then

∣∣∣∣∣
m∑

i=1

m∑
j=1

ai j 〈xi , y j 〉
∣∣∣∣∣ ≤ k(n)

for all vectors x1, x2, . . . , xm, y1, y2, . . . , ym in an n-dimensional Hilbert space with
||xi || ≤ 1, ||y j || ≤ 1. As usual, 〈x, y〉 is the inner product of x and y and ||x || =√〈x, x〉. The constant k(n) is taken to be the least possible.

This definition actually covers two possible cases:

• Scalars and matrices are real, and vectors are in a real Hilbert space.
• Scalars and matrices are complex, and vectors are in a complex Hilbert space.

We denote the two corresponding constants by kR(n) and kC (n). It is known [3–6] that

kR(2) = √
2, kR(3) < 1.517, kR(4) ≤ π/2

but

1.1526 ≤ kC (2) ≤ 1.2157, 1.2108 ≤ kC (3) ≤ 1.2744, 1.2413 ≤ kC (4) ≤ 1.3048.

Each sequence clearly increases with n. For both real and complex cases, define κ =
limn→∞ k(n). It is not hard to show that [2], in the limit,

1

2
κR ≤ κC ≤ 2κR .

The best-known numerical bounds are [3, 4, 7–9]

1.67696 ≤ κR ≤ π

2 ln(1 + √
2)

= 1.7822139781 . . . ,

1.33807 ≤ κC ≤ 8

π · (x0 + 1)
= 1.40491 . . . ,

where x0 is the solution of a certain equation involving complete elliptic integrals K (x)
and E(x) of the first and second kind [1.4.6]:

ψ(x) = π

8
(x + 1), −1 < x < 1,

where

ψ(x) = x

π
2∫
0

cos(θ )2√
1 − x2 sin(θ )2

dθ = 1

x

[
E(x) − (1 − x2)K (x)

]
.

The upper estimate for κR was conjectured by Krivine [3, 4, 10] to be the exact value. In
contrast, Haagerup [7] doubted whether 1.40491 is the exact value for κC and thought
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that

1

|ψ(i)| =




π
2∫
0

cos(θ )2√
1 + sin(θ )2

dθ




−1

= 1.4045759346 . . .

is a more plausible candidate. His reasoning was by analogy: The function ψ(x) for
the complex case is like the function ϕ(x) employed by Krivine for the real case,

ϕ(x) = 2

π
arcsin(x),

and one sees that

1

|ϕ(i)| = π

2 arcsinh(1)
= π

2 ln(1 + √
2)

.

A different approach for bounding κR is given in [11].
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3.12 Du Bois Reymond’s Constants

Abel’s theorem from advanced calculus implies that if the series of real numbers∑∞
n=0 an converges, then the corresponding power series satisfies

lim
r→1−

∞∑
n=0

anrn =
∞∑

n=0

an.

This is a consequence of uniform convergence on the interval [0, 1]. We start with a
question: What happens if

∑∞
n=0 an diverges?
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Define the sequence of partial sums sn = ∑n
k=0 ak and assume

s = liminf
n→∞

sn, S = limsup
n→∞

sn

are both finite. That is, the series is bounded and oscillates between two finite limits. It
is natural to believe here that

s ≤ lim
r→1−

∞∑
n=0

anrn ≤ S

and this is indeed true [1].
In fact, much more is true. Let ϕ(x) be a continuously differentiable function for

x > 0 that satisfies the conditions

lim
x→0+

ϕ(x) = 1, lim
x→∞ ϕ(x) = 0, I =

∞∫
0

∣∣∣∣ d

dx
ϕ(x)

∣∣∣∣ dx < ∞

and

f (x) =
∞∑

n=0

anϕ(nx) is convergent for all x > 0.

Then it can be proved that [1, 2]

1

2
(S + s) − 1

2
(S − s) · I ≤ lim

x→0+
f (x) ≤ 1

2
(S + s) + 1

2
(S − s) · I.

Moreover, this truly extends what was discussed before: Set r = ϕ(x) = exp(−x) to
see why.

Another important case arises if we instead set ϕ(x) = (sin(x)/x)m for an integer
m ≥ 2. Define the m th Du Bois Reymond constant by

cm = I − 1 =
∞∫
0

∣∣∣∣ d

dx

(
sin(x)

x

)m∣∣∣∣ dx − 1.

Watson [2–6] proved that

c2 = 1
2 (e2 − 7) = 0.1945280495 . . . , c4 = 1

8 (e4 − 4e2 − 25) = 0.0052407047 . . . ,

c6 = 1
32 (e6 − 6e4 + 3e2 − 98) = 0.0002206747 . . .

and that c2k is expressible as a polynomial of degree k in e2 with rational coefficients.
No such expression is known for c2k+1, but there is an interesting series available for
all cm . Let ξ1, ξ2, ξ3, . . . denote all positive solutions of the equation tan(x) = x . Then

cm = 2
∞∑
j=1

1

(1 + ξ 2
j )m/2
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and, in particular, c3 = 0.0282517642 . . . . It is possible to numerically evaluate c5,
c7, . . . as well. Watson also determined that

c3 = − 2

π

∞∫
1

x√
x2 − 1

d

dx

(
tanh(x)2

x − tanh(x)

)
dx,

but there appears to be no further simplification of this integral.
The sequence ξ1, ξ2, ξ3, . . . arose in a recent Monthly problem:

∞∑
n=1

1

ξ 2
n

= 1

10

and attracted much attention [7]. This formula parallels that just discussed and Watson’s
other results, namely,

bm = 2
∞∑
j=1

(−1) j+1

(1 + ξ 2
j )m/2

, b3 = − 1
4 (e3 − 3e − 12) = 0.0173271405 . . . ,

and b2k+1 is expressible as a polynomial of degree 2k + 1 in e with rational coefficients.
Note that similar expressions in e appear in [3.8].

Here are other constants involving equations with the tangent function. The maxi-
mum value M(n) of the function(

n∑
k=1

xk

k

)2

+
n∑

k=1

( xk

k

)2
,

subject to the constraint
∑n

k=1 x2
k ≤ 1, satisfies the following asymptotic result [8]:

lim
n→∞ M(n) =

(
π

ξ

)2

= 2.3979455861 . . . ,

where ξ = 2.0287578381 . . . is the smallest positive solution of the equation x +
tan(x) = 0. Another example [9], described in [3.14], involves the equation π + x =
tan(x).

[1] E. W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier’s
Series, v. 2, Dover, 1957, pp. 221–225; MR 19,1166b.

[2] G. N. Watson, Du Bois Reymond’s constants, Quart. J. Math. 4 (1933) 140–146.
[3] A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An Index of Mathematical Tables,

2nd ed., v. 1, Addison-Wesley, 1962, p. 129; MR 26 #365a.
[4] H. P. Robinson and E. Potter, Mathematical Constants, UCRL-20418, Univ. of Calif. at

Berkeley, 1971; available through the National Technical Information Service, Springfield
VA 22151.
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[6] S. Plouffe, 2nd Du Bois Reymond constant (Plouffe’s Tables).
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[9] G. Brown and K.-Y. Wang, An extension of the Fejér-Jackson inequality, J. Austral. Math.
Soc. Ser. A 62 (1997) 1–12; MR 98e:42003.

3.13 Steinitz Constants

3.13.1 Motivation

If
∑

xi is an absolutely convergent series of real numbers, then any rearrangement of
the terms xi of the series will have no impact on the sum.

By contrast, if
∑

xi is a conditionally convergent series of real numbers, then the
terms xi may be rearranged to produce a series that has any desired sum (even ∞ or
−∞). This is a well-known theorem due to Riemann.

Suppose instead that the terms xi are elements of a finite-dimensional normed real
space; that is, the xi are real vectors but possibly with a different notion of length
(choice of metric). Assume nothing about the nature of

∑
xi . Let C denote the set of

all sums of convergent rearrangements of the terms xi . Steinitz [1–3] proved that C
is either empty or of the form y + L , for some vector y and some linear subspace L .
(Note that L = {0}, the zero subspace, is one possibility.)

To prove this theorem, Steinitz needed bounds on certain constants K (0, 0), defined
in the next section. For details on the precise connection, see [4–6].

3.13.2 Definitions

Let a and b be nonnegative real numbers. In an m-dimensional normed real space, define
a set S = {u, v1, v2, . . . , vn−1, vn , w} of n + 2 vectors satisfying |u| ≤ a, |v j | ≤ 1 for
each 1 ≤ j ≤ n, |w| ≤ b, and u + ∑n

j=1 v j + w = 0 (see Figure 3.2).
Let π denote a permutation of the indices {1, 2, . . . , n} and define a function

F(π, n, S) = max
1≤k≤n

∣∣∣∣∣u +
k∑

j=1

vπ ( j)

∣∣∣∣∣ .
In words, F is the radius of the smallest sphere, with center at 0, circumscribing the

v(n − 1)

v (n)

v(2)

v(1)

w

u

0

Figure 3.2. A set S of vectors satisfying u + ∑n
j=1 v j + w = 0.
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polygon with sides u, vπ (1), vπ (2), . . . , vπ (n). Of the vector orderings determined by all
possible π , there is (at least) one that minimizes the spherical radius. Define

Km(a, b) = max
n,S

min
π

F(π, n, S);

that is, Km(a, b) is the least number for which |u + ∑k
j=1 vπ ( j)| ≤ Km(a, b) for some

permutation π , for all integers n and sets S.

3.13.3 Results

In the general setting just described (with no restrictions on the norm), the best-known
upper bound on the m-dimensional Steinitz constant is

Km(0, 0) ≤ m − 1 + 1

m

due to Banaszczyk [7], improving on the work in [8]. Further, Grinberg & Sevastyanov
[8] observed that, for m = 2, the upper bound 3/2 is the best possible. In other words,
there exists a norm for which equality holds. Whether this observation holds for larger
m is unknown.

Henceforth let us assume the norm is Euclidean. Banaszczyk [9] proved that

K2(a, b) =
√

1 + max(a2, b2, 1/4),

which extends the results K2(1, 0) = K2(1, 1) = √
2, K2(0, 0) = √

5/2 =
1.1180339887 . . . known to earlier authors. Damsteeg & Halperin [4] demonstrated
that

Km(0, 0) ≥ 1

2

√
m + 3

and, for m ≥ 2,

Km(1, 1) ≥ Km(1, 0) ≥ 1

2

√
m + 6.

Behrend [10] proved that

Km(1, 0) ≤ Km(1, 1) < m, K3(1, 0) ≤ K3(1, 1) <
√

5 + 2
√

3 = 2.9093129112 . . . ,

but an exact value for any m > 2 remains unknown. (Note: There seems to be some
confusion in [11] between K (0, 0) and K (1, 0), but not in the earlier reference [12].)
Behrend believed it to be likely that the true order of these constants is

√
m. See also

[13–18] for related ideas.
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3.14 Young–Fejér–Jackson Constants

3.14.1 Nonnegativity of Cosine Sums

In the following, n is a positive integer, 0 ≤ θ ≤ π , and a is a parameter to be studied.
Young [1] proved that the cosine sum

C(θ, a, n) = 1

1 + a
+

n∑
k=1

cos(kθ )

k + a
≥ 0

for −1 < a ≤ 0. Rogosinski & Szegö [2] extended this result to −1 < a ≤ 1 and proved
that there is a best upper limit A, 1 ≤ A ≤ 2(1 + √

2), in the sense that

• C(θ, a, n) ≥ 0 for −1 < a ≤ A, for all n and all θ,

• C(θ, a, n) < 0 for a > A, for some n and some θ.

Gasper [3, 4] proved that A = 4.5678018826 . . . and has minimal polynomial

9x7 + 55x6 − 14x5 − 948x4 − 3247x3 − 5013x2 − 3780x − 1134.
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In fact, if a > A, then C(θ, a, 3) < 0 for some θ . This completes the story for cosine
sums.

3.14.2 Positivity of Sine Sums

Here, n is a positive integer, 0 < θ < π , and b is the parameter of interest. Fejér [5],
Gronwall [6, 7], and Jackson [8] obtained that the corresponding sine series

S(θ, b, n) =
n∑

k=1

sin(kθ )

k + b
> 0

for b = 0. See [9] for a quick proof; see also [10–13]. Brown & Wang [14] extended
this result to −1 < b ≤ B for odd integers n, where B is the best upper limit. For even
integers n, the story is more complicated and we shall explain later.

Two intermediate constants need to be defined:

• λ = 0.4302966531 . . ., a solution of the equation (1 + λ)π = tan(λπ ),
• µ = 0.8128252421 . . ., a solution of the equation (1 + λ) sin(µπ ) = µ sin(λπ ).

With these, define B = 2.1102339661 . . . to be a solution of the equation [14, 15]

(1 + λ) · π · ((B − 1)ψ(1 + B−1
2 ) − 2Bψ(1 + B

2 ) + (B + 1)ψ(1 + B+1
2 )

) = 2 sin(λπ ),

where ψ(x) is the digamma function [1.5.4]. Is B algebraic? The answer is unknown.
We now discuss the case of even n. Define cn(x) = 1 − 2x/(4n + 1). If −1 < b ≤ B

and n is even, then S(θ, b, n) > 0 for 0 < θ ≤ πcn(µ). Further, the constant µ is the
best possible, meaning that 0 < ν < µ implies S(πcn(ν), b, n) < 0 for some b < B
and infinitely many n.

Wilson [16] indicated that S < 0 can be expected on the basis of Belov’s work [17].

3.14.3 Uniform Boundedness

Fix a parameter value 0 < r < 1. Consider the sequence of functions

Fn(θ, r ) =
n∑

k=1

k−r cos(kθ ), n = 1, 2, 3, . . . .

This sequence is said to be uniformly bounded below if there exists a constant m >

−∞ such that m < Fn(θ, r ) for all θ and all n. Note that m depends on the choice of r .
Zygmund [11] proved that there is a best lower limit 0 < R < 1 for r , in the sense

that

• Fn(θ, r ) is uniformly bounded below for r ≥ R and
• Fn(θ, r ) is not uniformly bounded below for r < R.
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The constant R = 0.3084437795 . . . is the unique solution of the equation [15, 18–22]

3π
2∫
0

x−R cos(x)dx = 0

and this plays a role in Belov’s papers [17, 23] as well. Interestingly, the sequence of
functions

Gn(θ, r ) =
n∑

k=1

k−r sin(kθ ), n = 1, 2, 3, . . . ,

is uniformly bounded below for all r > 0; hence there is no analog of R for the sequence
Gn(θ, r ).
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3.15 Van der Corput’s Constant

Let f be a real twice-continuously differentiable function on the interval [a, b] with
the property that | f ′′(x)| ≥ r for all x . There exists a smallest constant m, independent
of a and b as well as f , such that∣∣∣∣∣∣

b∫
a

exp(i · f (x))dx

∣∣∣∣∣∣ ≤ m√
r
,

where i is the imaginary unit [1–3]. This inequality was first proved by van der Corput
[1] and has several applications in analytic number theory. Kershner [4, 5], following a
suggestion of Wintner, proved that the maximizing function f is the parabola f (x) =
r x2/2 + c, with domain endpoints given by

−a = b =
√

π − 2c

r

and coefficient c = −0.7266432468 . . . given as the only solution of the equation
√

π
2 −c∫
0

sin(x2 + c)dx = 0, −π

2
≤ c ≤ π

2
.

From this, it follows that van der Corput’s constant m is

m = 2
√

2

√
π
2 −c∫
0

cos(x2 + c)dx = 3.3643175781 . . . .
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[3] E. C. Titchmarsh, On van der Corput’s method and the zeta-function of Riemann, Quart. J.

Math. 2 (1932) 161–173.
[4] R. Kershner, Determination of a van der Corput-Landau absolute constant, Amer. J. Math.

57 (1935) 840–846.
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549–554.

3.16 Turán’s Power Sum Constants

For fixed complex numbers z1, z2, . . . , zn , define [1]

S(z) = max
1≤k≤n

∣∣∣∣∣
n∑

j=1

zk
j

∣∣∣∣∣
to be the maximum modulus of power sums of degree ≤ n. Define also the (n − 1)-
dimensional complex region

Kn = {
z ∈ C

n : z1 = 1 and |z j | ≤ 1 for 2 ≤ j ≤ n
}
.

Consider the problem of minimizing S(z) subject to z ∈ Kn . The optimal value σn

of S(z) is [2–4]
√

5 − 1√
2

= 0.8740320488 . . . if n = 2, and x = 0.8247830309 . . . if n = 3,

where x has minimal polynomial [5]

x30 − 81x28 + 2613x26 − 43629x24 + 417429x22 − 2450985x20 + 9516137x18

− 26203659x16 + 53016480x14 − 83714418x12 + 112601340x10 − 140002992x8

+ 156204288x6 − 124361568x4 + 55427328x2 − 10077696.

Exact values of σn for n ≥ 4 are not known, but we have bounds 0.3579 < σn <

1 − (250n)−1 for all sufficiently large n [1, 6, 7]. It is conjectured that limn→∞ σn exists,
but no one has numerically explored this issue, as far as is known.

Define instead [1, 8]

T (z) = max
2≤k≤n+1

∣∣∣∣∣
n∑

j=1

zk
j

∣∣∣∣∣
and consider the problem of minimizing T (z) subject to z ∈ Kn . The minimum value
τn of T (z) surprisingly satisfies τn < 1.321−n for all sufficiently large n. This is very
different behavior from that of σn . If we replace the exponent range 2 ≤ k ≤ n + 1 by
3 ≤ k ≤ n + 2, then the constant 1.321 can be replaced by 1.473.

Turán’s book [1] is a gold mine of related theory and applications.
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4

Constants Associated with the Approximation
of Functions

4.1 Gibbs–Wilbraham Constant

Let f be a piecewise smooth function defined on the half-open interval [−π, π), ex-
tended to the real line via periodicity, and possessing at most finitely many discontinu-
ities (all finite jumps). Let

ak = 1

π

π∫
−π

f (t) cos(kt) dt, bk = 1

π

π∫
−π

f (t) sin(kt) dt

denote the Fourier coefficients of f and let

Sn( f, x) = a0

2
+

n∑
k=1

(ak cos(kx) + bk sin(kx))

be the nth partial sum of the Fourier series of f . Let x = c denote one of the disconti-
nuities. Define

δ =
(

lim
x→c−

f (x)

)
−

(
lim

x→c+
f (x)

)
, µ = 1

2

[(
lim

x→c−
f (x)

)
+

(
lim

x→c+
f (x)

)]

and assume without loss of generality that δ > 0. Let xn < c denote the first local
maximum of Sn( f, x) to the left of c, and let ξn > c denote the first local minimum of
Sn( f, x) to the right of c. Then

lim
n→∞ Sn( f, xn) = µ + δ

π
G, lim

n→∞ Sn( f, ξn) = µ − δ

π
G,

where

G =
π∫
0

sin(θ )

θ
dθ =

∞∑
n=0

(−1)nπ2n+1

(2n + 1)(2n + 1)!
= 1.8519370519 . . .

= π

2
(1.1789797444 . . .)

is the Gibbs–Wilbraham constant [1–5].
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1
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+
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0
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−5.π
4

G
−

5.π
4

Figure 4.1. The Fourier series approximation of a square wave exhibits both overshooting and
undershooting.

Consider the graph in Figure 4.1, with f (x) = 1 for −π ≤ x < 0 and f (x) = 0
for 0 ≤ x < π . The limiting crest of the highest oscillation converges not to 1 but
to 1/2 + G/π = 1.0894898722 . . . . Similarly, the deepest trough converges not to
0 but to 1/2 − G/π = −0.0894898722 . . . . In words, the Gibbs–Wilbraham constant
quantifies the degree to which the Fourier series of a function overshoots or undershoots
the function value at a jump discontinuity.

These phenomena were first observed by Wilbraham [6] and Gibbs [7]. Bôcher [8]
generalized such observations to arbitrary functions f .

More generally, if xn,2r−1 < c denotes the r th local maximum of Sn( f, x) to the left
of c, if xn,2r < c denotes the r th local minimum to the left of c, and if likewise for ξn,2r

and ξn,2r−1, then

lim
n→∞ Sn( f, xn,s) = µ + δ

π

sπ∫
0

sin(θ )

θ
dθ, lim

n→∞ Sn( f, ξn,s) = µ − δ

π

sπ∫
0

sin(θ )

θ
dθ.

The sine integral decreases to π/2 for increasing integer values of s = 2r − 1, but it
increases to π/2 for s = 2r . For large enough r , the limiting values become µ ± δ/2,
which is consistent with intuition.

Fourier series are best L2 (least-squares) trigonometric polynomial fits; Gibbs–
Wilbraham phenomena appear in connection with splines [5, 9–11], wavelets [5, 12],
and generalized Padé approximants [13] as well. Hence there are many Gibbs–
Wilbraham constants! Moskona, Petrushev & Saff [5, 14] studied best L1 trigonometric
polynomial fits and determined the analog of 2G/π − 1 = 0.1789797444 . . . in this
setting; its value is maxx≥1 g(x) = 0.0657838882 . . . , where

g(x) = − sin(πx)

π

1∫
0

t x−1 1 − t

1 + t
dt = − sin(πx)

πx

∞∑
k=1

k! · 2−k

(x + 1)(x + 2) · · · (x + k)



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-04 CB503/Finch-v2.cls April 8, 2003 11:9 Char Count=

250 4 Constants Associated with the Approximation of Functions

for x > 0. The case of L p approximation, where 1 < p �= 2, was investigated only
recently [15].
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4.2 Lebesgue Constants

4.2.1 Trigonometric Fourier Series

If a function f is integrable over the interval [−π, π ], let

ak = 1

π

π∫
−π

f (t) cos(kt) dt, bk = 1

π

π∫
−π

f (t) sin(kt) dt

denote the Fourier coefficients of f and let

Sn( f, x) = a0

2
+

n∑
k=1

(ak cos(kx) + bk sin(kx))
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be the nth partial sum of the Fourier series of f . Assuming further that | f (x)| ≤ 1 for
all x , it follows that

|Sn( f, x)| ≤ 1

π

π∫
0

∣∣sin( 2n+1
2 θ )

∣∣
sin( θ

2 )
dθ = Ln

for all x , where Ln is the nth Lebesgue constant [1, 2]. The values of the first several
Lebesgue constants are

L0 = 1, L1 = 1
3 + 2

√
3

π
= 1.4359911241 . . . , L2 = 1.6421884352 . . . ,

L3 = 1.7783228615 . . . .

Several alternative formulas are due to Fejér [3, 4] and Szegö [5]:

Ln = 1

2n + 1
+ 2

π

n∑
k=1

1

k
tan

(
πk

2n + 1

)
= 16

π2

∞∑
k=1

(2n+1)k∑
j=1

1

4k2 − 1

1

2 j − 1

The latter expression demonstrates that {Ln} is monotonically increasing.
The Lebesgue constants are the best possible, in the sense that Ln = sup f |Sn( f, 0)|

and the supremum is taken over all continuous f satisfying | f (x)| ≤ 1 for all x . It can
be easily shown [6, 7] that

4

π2
ln(n) < Ln < 3 + 4

π2
ln(n).

This implies that Ln → ∞ and, consequently, the Fourier series for f can be unbounded
even if f is continuous [8–10]. It also implies that if the modulus of continuity of f ,

ω( f, δ) = sup
|x−y|<δ

| f (x) − f (y)|,

satisfies limδ→0 ω( f, δ) ln(δ) = 0, then the Fourier series for f converges uniformly to
f . This is known as the Dini–Lipschitz theorem [2, 7]. In words, while mere continuity is
not enough, continuity plus additional conditions (e.g., differentiability) ensure uniform
convergence.

Much greater precision in estimating the Lebesgue constants is possible. Watson
[11] proved that

lim
n→∞

(
Ln − 4

π2
ln(2n + 1)

)
= c,

where

c = 8

π2

( ∞∑
k=1

ln(k)

4k2 − 1

)
− 4

π2
ψ(

1

2
)

= 8

π2

( ∞∑
j=0

λ(2 j + 2) − 1

2 j + 1

)
+ 4

π2
(2 ln(2) + γ )

= 0.9894312738 . . . = 4

π2
(2.4413238136 . . .),



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-04 CB503/Finch-v2.cls April 8, 2003 11:9 Char Count=

252 4 Constants Associated with the Approximation of Functions

γ is the Euler–Mascheroni constant [1.5], ψ(x) is the digamma function [1.5.4], and
λ(x) appears in [1.7]. Higher-order coefficients in the asymptotic expansion of Ln can
be written as finite combinations of Bernoulli numbers [1.6.1]. Galkin [12] further
proved that

Ln − 4

π2
ln(2n + 1) decreases to c, whereas Ln − 4

π2
ln(2n + 2) increases to c

as n → ∞. More asymptotics appear in [13, 14]. We mention two integral formulas
discovered by Hardy [15]:

Ln = 4

∞∫
0

tanh((2n + 1)x)

tanh(x)

1

π2 + 4x2
dx

= 4

π2

∞∫
0

sinh((2n + 1)x)

sinh(x)
ln

(
coth( 2n+1

2 x)
)

dx .

See a related discussion in our essay on Favard constants [4.3].
There are many possible extensions of Ln; it is interesting to ascertain which proper-

ties for Fourier series carry over to the case in question. For example, the monotonicity
of Lebesgue constants for Legendre series has been proved [16], confirming a conjec-
ture of Szegö.

Here is a related idea. If f is complex analytic inside the unit disk, continuous on
the boundary, and | f (z)| < 1 for all |z| < 1, then [17]

f (z) =
∞∑

k=0

ak zk implies that

∣∣∣∣∣
n∑

k=0

ak

∣∣∣∣∣ ≤ Gn,

where

Gn =
n∑

m=0

1

24m

(
2m

m

)2

= 1 +
(

1

2

)2

+
(

1 · 3

2 · 4

)2

+ · · · +
(

1 · 3 · · · (2n − 1)

2 · 4 · · · (2n)

)2

is the nth Landau constant (note the similarity with [1.5.4]). The constant Gn is the
best possible for each n. It is known that [11]

lim
n→∞

(
Gn − 1

π
ln(n + 1)

)
= 1

π
(4 ln(2) + γ ) = 1.0662758532 . . . ,

G2n ≤ Ln <
4

π
G2n,

and both sequences {Gn} and {Ln/G2n} are monotonically increasing. More refine-
ments are found in [18–21].

4.2.2 Lagrange Interpolation

Here is a different sense in which the same phrase “Lebesgue constants” is used. Given
real-valued data X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn} with −1 ≤ x1 < x2 < . . . <
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xn ≤ 1, there is a unique polynomial pX,Y (x) of degree at most n − 1 such that

pX,Y (xi ) = yi , i = 1, 2, . . . , n,

called the Lagrange interpolating polynomial, given X and Y . The formula for
pX,Y (x) is

pX,Y (x) =
n∑

k=1

(
yk ·

∏
j �=k

x − x j

xk − x j

)
.

We wish to understand the approximating power of interpolating polynomials as the
spatial arrangement of {xi } varies or as n increases [6, 22]. The expression

�n(X ) = max
−1≤x≤1

n∑
k=1

∣∣∣∣∣
∏
j �=k

x − x j

xk − x j

∣∣∣∣∣
is useful for this purpose and is called the nth Lebesgue constant corresponding to X .
Note that �n does not depend on Y . It can be easily shown that

�n >
4

π2
ln(n) − 1

for all n and hence limn→∞ �n = ∞, regardless of the choice of X . This means that,
given any X , there exists a continuous function f such that pX, f (X )(x) does not converge
uniformly to f as n increases. In words, there is no “universal” set X guaranteeing
uniform convergence for all continuous functions f .

Erdös [23] further tightened the lower bound on the Lebesgue constants. He proved
that there must exist a constant C such that

�n >
2

π
ln(n) − C

for all n, for arbitrary X . We will exhibit the smallest possible value of C shortly. Erdös’
result cannot be improved because, if T consists of the n zeros

x j = − cos

(
(2 j − 1)π

2n

)
j = 1, 2, . . . , n,

of the nth Chebyshev polynomial [4.9], then

�n(T ) = 1

n

n∑
j=1

cot

(
(2 j − 1)π

4n

)
≤ 2

π
ln(n) + 1.

In fact, {�n(T ) − 2
π

ln(n)} is monotonically decreasing with [24–26]

lim
n→∞

(
�n(T ) − 2

π
ln(n)

)
= 2

π
(3 ln(2) − ln(π ) + γ ) = 0.9625228267 . . . .

A complete asymptotic expansion (again involving Bernoulli numbers) was obtained
in [27–30].

What is the optimal set X∗ for which �n is smallest [22]? Certainly the Chebyshev
zeros are a good candidate for X∗ but it can be shown that other choices of X will do
even better. Kilgore [31] and de Boor & Pinkus [32] proved Bernstein’s equioscillatory
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conjecture [33] regarding such X∗. A more precise, analytical description of X∗ is not
known.

A less hopeless problem is to estimate �∗
n = �n(X∗). Vértesi [34–36], building

upon the work of Erdös [23], proved that

lim
n→∞

(
�∗

n − 2

π
ln(n)

)
= 2

π
(2 ln(2) − ln(π ) + γ ) = 0.5212516264 . . . .

This resolves the identity of C , but higher-order asymptotics and monotonicity issues
remain open.
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4.3 Achieser–Krein–Favard Constants

In this essay, we presuppose knowledge of the Lebesgue constants Ln [4.2]. Assume a
function f to be integrable over the interval [−π, π] and Sn( f, x) to be the nth partial
sum of the Fourier series of f . If | f (x)| ≤ 1 for all x , then we know that

|Sn( f, x)| ≤ Ln = 4

π2
ln(n) + O(1)

and, moreover, Ln is best possible (it is a maximum). If we restrict attention to con-
tinuous functions f , that is, a subclass of the integrable functions, then Ln is still best
possible (although it is only a supremum).
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This may be considered as an extreme case (r = 0) of the following result due to
Kolmogorov [1–3]. Fix an integer r ≥ 1. If a function f is r -times differentiable and
satisfies | f (r )(x)| ≤ 1 for all x , then

| f (x) − Sn( f, x)| ≤ Ln,r = 4

π2

ln(n)

nr
+ O

(
1

nr

)
,

where

Ln,r =




1

π

π∫
−π

∣∣∣∣∣
∞∑

k=n+1

sin(kθ )

kr

∣∣∣∣∣ dθ if r ≥ 1 is odd,

1

π

π∫
−π

∣∣∣∣∣
∞∑

k=n+1

cos(kθ )

kr

∣∣∣∣∣ dθ if r ≥ 2 is even

is best possible.
All this is a somewhat roundabout way for introducing the Achieser–Krein–Favard

constants, which are often simply called Favard constants. In the preceding, we
focused solely on the quality of the Fourier estimate Sn( f, x) of f . Suppose we replace
Sn( f, x) by an arbitrary trigonometric polynomial

Pn(x) = a0

2
+

n∑
k=1

(ak cos(kx) + bk sin(kx)),

where no conditions are placed on the coefficients (apart from being real). If, as before,
the r th derivative of f is bounded between −1 and 1, then there exists a polynomial
Pn(x) for which

| f (x) − Pn(x)| ≤ Kr

(n + 1)r

for all x, where the r th Favard constant [4–6]

Kr = 4

π

∞∑
j=0

[
(−1) j

2 j + 1

]r+1

is the smallest numerator possible. In other words, whereas Lebesgue constants are
connected to approximations that are best in a least-squares sense (Fourier series),
Favard constants are connected to approximations that are best in a pointwise sense.

Observe that

Kr =




4

π
λ(r + 1) if r is odd,

4

π
β(r + 1) if r is even,

where both the lambda and beta functions are discussed in [1.7]. Each Favard constant
is hence a rational multiple of π r , for example,

K0 = 1, K1 = π

2
, K2 = π2

8
, K3 = π3

24
,

and 1 = K0 < K2 < . . . < 4/π < . . . < K3 < K1 = π/2.
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This is the first of many sharp results for various classes of functions and methods
of approximation that involve the constants Kr . The theorems are rather technical and
so will not be discussed here. We mention, however, the Bohr–Favard inequality [7–9]
and the Landau–Kolmogorov constants [3.3]. See also [10, 11].

Here is an unsolved problem. For an arbitrary trigonometric polynomial Pn(θ ), it is
known that [12, 13]

max
−π≤θ≤π

|Pn(θ )| ≤ C
n

2π

π∫
−π

|Pn(θ )| dθ,

and the best possible constant asymptotically satisfies 0.539 ≤ C ≤ 0.58 as n → ∞.
An exact expression for C is not known.
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4.4 Bernstein’s Constant

For any real function f (x) with domain [−1, 1], let En( f ) denote the error of best
uniform approximation to f by real polynomials of degree at most n. That is,

En( f ) = inf
p∈Pn

sup
−1≤x≤1

| f (x) − p(x)|,
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where Pn = {∑n
k=0 ak xk : ak real

}
. Consider the special case α(x) = |x |, for which

Jackson’s theorem [1, 2] implies En(α) ≤ 6/n. Since |x | is an even continuous func-
tion on [−1, 1], then so is its (unique) best uniform approximation from Pn on [−1, 1].
It follows that E2n(α) = E2n+1(α), so we consider only the even-subscript case hence-
forth. Bernstein [3] strengthened the Jackson inequality

2nE2n(α) ≤ 6

to

2nE2n(α) ≤ 4n

π (2n + 1)
<

2

π
= 0.636 . . .

using Chebyshev polynomials [4.9]. He proved the existence of the following limit and
obtained the indicated bounds:

0.278 . . . < β = lim
n→∞ 2nE2n(α) < 0.286 . . . .

Bernstein conjectured that β = 1/(2
√

π ) = 0.2821 . . . . This conjecture remained un-
resolved for seventy years, owing to the difficulty in computing E2n(α) for large n and
to the slow convergence of 2nE2n(α) to β.

Varga & Carpenter [4, 5] computed β = 0.2801694990 . . . to fifty decimal places,
disproving Bernstein’s conjecture. They required calculations of 2nE2n(α) up to n = 52
with accuracies of nearly 95 places and a number of other techniques. At the end of
[4], they indicated that it is not implausible to believe that β might admit a closed-form
expression in terms of the classical hypergeometric function or other known constants.

Since we have just discussed the problem of the best uniform polynomial approxi-
mation to |x |, it is natural to consider the problem of the best uniform rational approx-
imation as well. Define, for arbitrary f on [−1, 1],

Em,n( f ) = inf
r∈Rm,n

sup
−1≤x≤1

| f (x) − r (x)|,

where Rm,n = {p(x)/q(x) : p ∈ Pm, q ∈ Pn, q �= 0}. Newman [6] proved that

1
2 e−9

√
n ≤ En,n(α) ≤ 3e−√

n, n ≥ 4,

equivalently, that En,n → 0 incomparably faster than En . Newman’s work created a
sensation among researchers [5, 7]. Bulanov [8], extending results of Gonchar [9],
proved that the lower bound could be improved to

e−π
√

n+1 ≤ En,n(α)

and Vjacheslavov [10] proved the existence of positive constants m and M such that

m ≤ eπ
√

n En,n(α) ≤ M.

(Petrushev & Popov [7] remarked on the interesting juxtaposition of the constants e
and π here in a seemingly unrelated setting.) As before, E2n,2n(α) = E2n+1,2n+1(α), so
we focus on the even-subscript case. Varga, Ruttan & Carpenter [11] conjectured, on
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the basis of careful computations, that

lim
n→∞ eπ

√
2n E2n,2n(α) = 8,

which Stahl [12, 13] recently proved. The contrast between the polynomial and rational
cases is fascinating!

Gonchar [9] pointed out the relevance of Zolotarev’s work [3.9] to this line of
research.
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4.5 The “One-Ninth” Constant

We are concerned here with the rational approximation of exp(−x) on the half-line
[0, ∞). Let λm,n denote the error of best uniform approximation:

λm,n = inf
r∈Rm,n

sup
x≥0

|e−x − r (x)|,
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where Rm,n is the set of real rational functions p(x)/q(x) with deg(p) ≤ m, deg(q) ≤ n,
and q �= 0, as defined in [4.4].

There are two cases of special interest, when m = 0 and m = n, since clearly

0 < λn,n ≤ λn−1,n ≤ λn−2,n ≤ . . . ≤ λ2,n ≤ λ1,n ≤ λ0,n.

Many researchers [1–4] have studied these constants λm,n , referred to as Chebyshev
constants in [4]. We mention the work of only a few. Schönhage [5] proved that

lim
n→∞ λ

1
n
0,n = 1

3
,

which led several people to conjecture that

lim
n→∞ λ

1
n
n,n = 1

9
.

Numerical evidence uncovered by Schönhage [6] and Trefethen & Gutknecht [7]
suggested that the conjecture is false. Carpenter, Ruttan & Varga [8] calculated the
Chebyshev constants to an accuracy of 200 digits up to n = 30 and carefully obtained

lim
n→∞ λ

1
n
n,n = 1

9.2890254919 . . .
= 0.1076539192 . . . ,

although a proof that the limit even existed was still to be found.
Building upon the work of Opitz & Scherer [9] and Magnus [10–12], Gonchar &

Rakhmanov [4, 13] proved that the limit exists and that it equals

� = exp

(
−π K (

√
1 − c2)

K (c)

)
,

where K (x) is the complete elliptic integral of the first kind [1.4.6] and the constant
c is defined as follows. Let E(x) be the complete elliptic integral of the second kind
[1.4.6]; then 0 < c < 1 is the unique solution of the equation K (c) = 2E(c).

Gonchar and Rakhmanov’s exact disproof of the “one-ninth” conjecture utilized
ideas from complex potential theory, which seems far removed from the rational ap-
proximation of exp(−x)! They also obtained a number-theoretic characterization of the
“one-ninth” constant �. If

f (z) =
∞∑
j=1

a j z j , where a j =
∣∣∣∣∣
∑
d| j

(−1)dd

∣∣∣∣∣ ,
then f is complex-analytic in the open unit disk. The unique positive root of the equation
f (z) = 1/8 is the constant �. Another way of writing a j is as follows [14]: If

j = 2m pm1
1 pm2

2 · · · pmk
k

is the prime factorization of the integer j , where p1 < p2 < . . . < pk are odd primes,
m ≥ 0, and mi ≥ 1, then

a j = |2m+1 − 3| pm1+1
1 − 1

p1 − 1

pm2+1
2 − 1

p2 − 1
· · · pmk+1

k − 1

pk − 1
.

Carpenter [4] computed � to 101 digits using this equation.
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Here is another expression due to Magnus [10]. The one-ninth constant � is the
unique solution of the equation

∞∑
k=0

(2k + 1)2(−x)
k(k+1)

2 = 0, 0 < x < 1,

which turns out to have been studied one hundred years earlier by Halphen [15]. Halphen
was interested in theta functions and computed � to six digits, clearly unaware that
this constant would become prominent a century later! Varga [4] suggested that � be
renamed the Halphen constant. So many researchers have contributed to the solution
of this approximation problem, however, that retaining the amusingly inaccurate “one-
ninth” designation might be simplest.

The constant c = 0.9089085575 . . . defining � arises in a completely unrelated
field: the study of Euler elasticae [16–18]. A quotient of elliptic functions, similar to
that discussed here, occurs in [7.8].
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[10] A. P. Magnus, On the use of the Carathéodory-Fejér method for investigating “1/9” and
similar constants, Nonlinear Numerical Methods and Rational Approximation, ed. A. Cuyt,
Reidel, 1988, pp. 105–132, MR 90j:65035.

[11] A. P. Magnus, Asymptotics and super asymptotics for best rational approximation error
norms to the exponential function (the “1/9” problem) by the Carathéodory-Fejér method,
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4.6 Fransén–Robinson Constant

For increasing x , the reciprocal gamma function 1/�(x) decreases more rapidly than
exp(−cx) for any constant c, and thus may be useful as a one-sided density function
for certain probability models. As a consequence, the value

I =
∞∫
0

1

�(x)
dx = 2.8077702420 . . .

is needed for the sake of normalization.
One way to compute this integral is via the limit of Riemann sums In as n → ∞,

where [1]

In = 1

n

∞∑
k=1

1

�( k
n )

=
{

e = 2.7182818284 . . . if n = 1,

1
2

(
1√
π

+ e erfc(−1)
)

= 2.7865848321 . . . if n = 2,

and

erf(x) = 2√
π

x∫
0

exp(−t2)dt = 1 − erfc(x)

is the error function. This is, however, too slow a procedure for computing I to high
precision.

Fransén [2] computed I to 65 decimal digits, using Euler–Maclaurin summation
and the formula

�(x) = e−γ x

x

∞∏
n=1

(
1 + x

n

)−1
e

x
n = 1

x
exp

[ ∞∑
k=1

(−1)ksk

k
xk

]
,

where s1 = γ and sk = ζ (k), k ≥ 2. Background on the Euler–Mascheroni constant γ

appears in [1.5] and that on the Riemann zeta function ζ (z) in [1.6].
Robinson [2] independently obtained an estimate of I to 36 digits using an 11-

point Newton–Coates approach. Fransén & Wrigge [3, 4], via Taylor series and other
analytical tools, achieved 80 digits, and Johnson [5] subsequently achieved 300 decimal
places.

Sebah [6] utilized the Clenshaw–Curtis method (based on Chebyshev polynomials)
to compute the Fransén–Robinson constant to over 600 digits. He also noticed the
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elementary fact that

I =
2∫
1

f (x)

�(x)
dx,

where f (x) is defined by the fast converging series

f (x) = x +
∞∑

k=0

(
k∏

j=0

1

x + j

)
= x + e

∞∑
k=0

(−1)k

k!(x + k)

and f (1) = f (2) = e, f (3/2) = (1 + e
√

π erf(1))/2. Using this, I is now known to
1025 digits.

Ramanujan [7, 8] observed that
∞∫
0

wx

�(1 + x)
dx = ew −

∞∫
−∞

exp(−wey)

y2 + π2
dy,

which has value 2.2665345077 . . . when w = 1. Differentiating with respect to w gives
the analogous expression that generalizes I :

1

w

∞∫
0

wx

�(x)
dx = ew +

∞∫
−∞

exp(−wey + y)

y2 + π2
dy.

Such formulas play a role in the computation of moments for the reciprocal gamma
distribution [5, 9].

The function x x grows even more quickly than �(x) and we compute [10]
∞∫
0

1

x x
dx = 1.9954559575 . . . ,

∞∫
1

1

x x
dx = 0.7041699604 . . . .

More about iterated exponentials is found in [6.11]. Reciprocal distributions could be
based on the multiple Barnes functions [2.15] or generalized gamma functions [2.21]
as well.
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4.7 Berry–Esseen Constant

Let X1, X2, . . . , Xn be independent random variables with moments

E(Xk) = 0, E(X2
k ) = σ 2

k > 0, E(|Xk |3) = βk < ∞
for each 1 ≤ k ≤ n. Let �n be the probability distribution function of the random
variable

X = 1

σ

n∑
k=1

Xk, where σ 2 =
n∑

k=1

σ 2
k .

Define the Lyapunov ratio

λ = β

σ 3
, where β =

n∑
k=1

βk .

Let � denote the standard normal distribution function. Berry [1] and Esseen [2, 3]
proved that there exists a constant C such that

sup
n

sup
Fk

sup
x

|�n(x) − �(x)| ≤ C λ,

where, for all k, Fk denotes the distribution function of Xk . The smallest such constant
C has bounds [4–12]

0.4097321837 . . . = 3 + √
10

6
√

2π
≤ C < 0.7915

under the conditions given here. If X1, X2, . . . , Xn are identically distributed, then
the upper bound for C can be improved to 0.7655. Furthermore, there is asymptotic
evidence that C is equal to the indicated lower bound.

Related studies include [13–22]. In words, the Berry–Esseen inequality quantifies
the rate of convergence in the Central Limit Theorem, that is, how close the normal
distribution is to the distribution of a sum of independent random variables [23–26].
Hall & Barbour [27], by way of contrast, presented an inequality that describes how far
apart the two distributions must be. Another constant arises here too, but little seems
to be known about it.
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4.8 Laplace Limit Constant

Given real numbers M and ε, |ε| ≤ 1, the accurate solution of Kepler’s equation

M = E − ε sin(E)

is critical in celestial mechanics [1–4]. It relates the mean anomaly M of a planet,
in elliptical orbit around the sun, to the planet’s eccentric anomaly E and to the
eccentricity ε of the ellipse. It is a transcendental equation, that is, without an algebraic
solution in terms of M and ε. Computing E is a commonly-used intermediate step to
the calculation of planetary position as a function of time. Therefore it is not hard to
see why hundreds of mathematicians from Newton to present have devoted thought
to this problem.

We will not give the orbital mechanics underlying Kepler’s equation but instead
give a simple geometric motivational example. Pick an arbitrary point F inside the unit
circle. Let P be the point on the circle closest to F and pick another point Q elsewhere
on the circle. Define E and ε as pictured in Figure 4.2. Let M be twice the area of the
shaded sector PFQ. Then

M

2
= (area of sector POQ) − (area of triangle FOQ) = 1

2
E − 1

2
ε sin(E).

So the solution of Kepler’s equation allows us to compute the angle E , given the area
M and the length ε.

Q

M/2

P

1

E F

O ε 1 − ε

Figure 4.2. Geometric motivational example for Kepler’s equation.
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Kepler’s equation has a unique solution, here given as a power series in ε (via the
inversion method of Lagrange):

E = M +
∞∑

n=1

anε
n,

where [1, 5–7]

an = 1

n!2n−1

�n/2�∑
k=0

(−1)k

(
n

k

)
(n − 2k)n−1 sin((n − 2k)M).

Power series solutions as such were the preferred way to do calculations in the pre-
computer nineteenth century. So it perhaps came as a shock that this series diverges for
|ε| > 0.662 as evidently first discovered by Laplace. Arnold [8] wrote, “This plays an
important part in the history of mathematics . . . The investigation of the origin of this
mysterious constant led Cauchy to the creation of complex analysis.”

In fact, the power series for E converges like a geometric series with ratio

f (ε) = ε

1 + √
1 + ε2

exp(
√

1 + ε2).

The value λ = 0.6627434193 . . . for which f (λ) = 1 is called the Laplace limit. A
closed-form expression for λ in terms of elementary functions is not known. An infinite
series or definite integral expression for λ is likewise not known.

The story does not end here. A Bessel function series for E is as follows [5, 6, 9]:

E = M +
∞∑

n=1

2

n
Jn(nε) sin(nM),

where

Jp(x) =
∞∑

k=0

(−1)k

k!(p + k)!

( x

2

)p+2k
.

This series is better than the power series since it converges like a geometric series with
ratio

g(ε) = ε

1 + √
1 − ε2

exp(
√

1 − ε2),

which satisfies |g(ε)| ≤ 1 for all |ε| ≤ 1.
Iterative methods, however, outperform both of these series expansion methods.

Note that the function

T (E) = M + ε sin(E) (for fixed M and ε)

is a contraction mapping; thus the method of successive approximations

E0 = 0, Ei+1 = T (Ei ) = M + ε sin(Ei )

works well. Newton’s method

E0 = 0, Ei+1 = Ei + M + ε sin(Ei ) − Ei

1 − ε cos(Ei )
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converges even more quickly. Variations of these abound. Putting practicality aside,
there are some interesting definite integral expressions [10–13] that solve Kepler’s
equation. These cannot be regarded as competitive in the race for quick accuracy, as
far as is known.

An alternative representation ofλ is as follows [7, 14, 15]: Letµ = 1.1996786402 . . .

be the unique positive solution of coth(µ) = µ, then λ =
√

µ2 − 1.
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4.9 Integer Chebyshev Constant

Consider the class Pn of all real, monic polynomials of degree n. Which nonzero
member of this class deviates least from zero in the interval [0, 1]? That is, what is the
solution of the following optimization problem:

min
p∈Pn
p �=0

max
0≤x≤1

|p(x)| = f (n) ?

The unique answer is pn(x) = 21−2nTn(2x − 1), where [1, 2]

Tn(x) = cos(n arccos(x)) = (x + √
x2 − 1)n + (x − √

x2 − 1)n

2

and

lim
n→∞ f (n)

1
n = 1

4
.
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Table 4.1. Real Chebyshev Polynomials

n pn(x) f (n) f (n)1/n

1 x − 1
2

2
41 = 1

2 0.500

2 x2 − x + 1
8

2
42 = 1

8 0.353

3 x3 − 3
2 x2 + 9

16 x − 1
32

2
43 = 1

32 0.314

4 x4 − 2x3 + 5
4 x2 − 1

4 x + 1
128

2
44 = 1

128 0.297

5 x5 − 5
2 x4 + 35

16 x3 − 25
32 x2 + 25

256 x − 1
512

2
45 = 1

512 0.287

The first several polynomials pn(x), which we call real Chebyshev polynomials (de-
fying tradition), are listed in Table 4.1. (The phrase “Chebyshev polynomial” is more
customarily used to denote the polynomial Tn(x).) In the definition of f (n), note that
we could just as well replace the word “monic” by the phrase “leading coefficient at
least 1.”

Consider instead the class Qn of all integer polynomials of degree n, with positive
leading coefficient. Again, which nonzero member of this class deviates least from zero
in the interval [0, 1]? That is, what is the solution of

min
q∈Qn
q �=0

max
0≤x≤1

|q(x)| = g(n) ?

Clearly this is a more restrictive version of the earlier problem. Here we do not have
a complete solution nor do we have uniqueness. The first several polynomials qn(x),
which we call integer Chebyshev polynomials, are listed in Table 4.2 [3, 4]. Define the
integer Chebyshev constant (or integer transfinite diameter or integer logarithmic
capacity [4.9.1]) to be

χ = lim
n→∞ g(n)

1
n .

What can be said about χ? On the one hand, we have a lower bound [3–5]

exp(−0.8657725922 . . .) = 1

2.3768417063 . . .
= 0.4207263771 . . . = α ≤ χ,

Table 4.2. Integer Chebyshev Polynomials

n qn(x) g(n) g(n)1/n

1 x or x − 1 or 2x − 1 1 1.000
2 x(x − 1) 1

4 0.500

3 x(x − 1)(2x − 1)
√

3
18 0.458

4 x2(x − 1)2 or x(x − 1)(2x − 1)2 or x(x − 1)(5x2 − 5x + 1) 1
16 0.500

5 x2(x − 1)2(2x − 1)
√

5
125 0.447

6 x2(x − 1)2(2x − 1)2 1
108 0.458

7 x3(x − 1)3(2x − 1) 27
√

7
19208 0.449
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where

α0 = 2, αk = αk−1 + 1

αk−1
, k ≥ 1, α = 1

2

∞∏
j=0

(
1 + 1

α2
j

)− 1
2 j+1

.

This recursion was obtained with the help of what are known as Gorshkov–Wirsing
polynomials [3, 6]. It was conjectured [5] that χ = α until Borwein & Erdélyi [4]
proved to everyone’s surprise that χ > α. On the other hand, we have an upper
bound

χ ≤ β = 0.42347945 = 1

2.36138964
= exp(−0.85925028)

due to Habsieger & Salvy [7], who succeeded in computing an integer Chebyshev
polynomial for each degree up to 75. Better algorithms will be needed to find such
polynomials to significantly higher degree and to determine β in this manner. By a
different approach, however, Pritsker [8] recently obtained improved bounds 0.4213 <

χ < 0.4232.
Thus far we have focused all attention on the interval [0, 1], that is, on the constant

χ = χ (0, 1). What can be said about other intervals [a, b]? It is known [4, 9] that

χ (−1, 1)4 = χ (0, 1)2 = χ (0, 1
4 );

hence the preceding bounds can be applied. The exact value of χ (a, b) for any 0 < b −
a < 4 remains an open question [4]. However, χ (a, b) = 1 if b − a ≥ 4 and χ (0, c) =
χ (0, 1) for all 1 − 0.172 ≤ c < 1 + ε for some ε > 0, that is, χ (0, c) is locally constant
at c = 1. Also [10], we have

χ (0, 1) = χ (1, 2) > 0.42,

but, from elementary considerations,

χ (0, 2) ≤ 1√
2

< 0.71 < 0.84 = 2(0.42);

that is, χ (0, 2) is not the same as either 2χ (0, 1) or χ (0, 1) + χ (1, 2). The rela-
tion χ (0, 1) = χ (d, d + 1) also fails for non-integer d. So scaling, additivity, and
translation-invariance do not hold for the integer Chebyshev case (unlike the real
case).

There is an interesting connection between calculating χ (0, 1) and prime number
theory [3, 5] due to Gel’fond and Schnirelmann. If it were true that χ = 1/e = 0.36 . . . ,
then one would have a new proof of the famous Prime Number Theorem. Unfortunately,
this is false (as our bounds clearly indicate).

Finally, on the interval [0, 1], Aparicio Bernardo [11] observed that integer
Chebyshev polynomials qn(x) always have factors

x(x − 1), 2x − 1, and 5x2 − 5x + 1

that tend to repeat and increase in power as n grows. The relative rates at which this
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occurs, that is, the asymptotic structure of the polynomial qn(x), gives rise to more
interesting constants [4, 6, 8].

4.9.1 Transfinite Diameter

We utilized some language earlier from potential theory that deserves elaboration. Let
E be a compact set in the complex plane. The (real) transfinite diameter or (real)
logarithmic capacity is defined to be

γ (E) = lim
n→∞ max

z1,z2,...,zn∈E

(∏
j<k

|z j − zk |
) 2

n(n−1)

,

that is, the maximal geometric mean of pairwise distances for n points in E , in the limit
as n → ∞. For example,

γ ([0, 1]) = 1

4
= lim

n→∞ f (n)
1
n ,

and this equality is not an accidental coincidence. For arbitrary E , the phrases transfi-
nite diameter, logarithmic capacity, and (real) Chebyshev constant are interchangeable
[1, 12]. See [13–15] for sample computations. Relevant discussions of what are known
as Robin constants appear in [16–18].
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5

Constants Associated with Enumerating
Discrete Structures

5.1 Abelian Group Enumeration Constants

Every finite abelian group is a direct sum of cyclic subgroups. A corollary of this
fundamental theorem is the following. Given a positive integer n, the number a(n) of
non-isomorphic abelian groups of order n is given by [1, 2]

a(n) = P(α1)P(α2)P(α3) · · · P(αr ),

where n = pα1
1 pα2

2 pα3
3 · · · pαr

r is the prime factorization of n, p1, p2, p3, . . . , pr are
distinct primes, each αk is positive, and P(αk) denotes the number of unrestricted
partitions of αk . For example, a(p4) = 5 for any prime p since there are five partitions
of 4:

4 = 1 + 3 = 2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1.

As another example, a(p4q4) = 25 for any distinct primes p and q, but a(p8) = 22.
It is clear that

liminf
n→∞

a(n) = 1,

but it is more difficult to see that [3–6]

limsup
n→∞

ln(a(n))
ln(ln(n))

ln(n)
= ln(5)

4
.

A number of authors have examined the average behavior of a(n) over all positive
integers. The most precise known results are [7–10]

N∑
n=1

a(n) = A1 N + A2 N
1
2 + A3 N

1
3 + O

(
N

50
199 +ε

)
,

273
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where ε > 0 is arbitrarily small,

Ak =
∞∏
j=1
j �=k

ζ

(
j

k

)
=




2.2948565916 . . . if k = 1,

−14.6475663016 . . . if k = 2,

118.6924619727 . . . if k = 3,

and ζ (x) is Riemann’s zeta function [1.6]. We cannot help but speculate about the
following estimate:

N∑
n=1

a(n) ∼
∞∑

k=1

Ak N
1
k + �(N ),

but an understanding of the error �(N ) has apparently not yet been achieved [11, 12].
Similar enumeration results for finite semisimple associative rings appear in [5.1.1].

If, instead, focus is shifted to the sum of the reciprocals of a(n), then [13, 14]

N∑
n=1

1

a(n)
= A0 N + O

(
N

1
2 ln(N )−

1
2

)
,

where A0 is an infinite product over all primes p:

A0 =
∏

p

[
1 −

∞∑
k=2

(
1

P(k − 1)
− 1

P(k)

)
1

pk

]
= 0.7520107423 . . . .

In summary, the average number of non-isomorphic abelian groups of any given order
is A1 = 2.2948 if “average” is understood in the sense of arithmetic mean, and A−1

0 =
1.3297 if “average” is understood in the sense of harmonic mean. We cannot even hope
to obtain analogous statistics for the general (not necessarily abelian) case at present.
Some interesting bounds are known [15–19] and are based on the classification theorem
of finite simple groups.

The constant A1 also appears in [20] in connection with the arithmetical properties
of class numbers of quadratic fields.

Erdös & Szekeres [21, 22] examined a(n) and the following generalization: a(n, i)
is the number of representations of n as a product (of an arbitrary number of terms,
with order ignored) of factors of the form p j , where j ≥ i . They proved that

N∑
n=1

a(n, i) = Ci N
1
i + O

(
N

1
i+1

)
, where Ci =

∞∏
k=1

ζ

(
1 + k

i

)
,

and surely someone has tightened this estimate by now. See also the discussion of
square-full and cube-full integers in [2.6.1].

5.1.1 Semisimple Associative Rings

A finite associative ring R with identity element 1 �= 0 is said to be simple if R has no
proper (two-sided) ideals and is semisimple if R is a direct sum of simple ideals.
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Simple rings generalize fields. Semisimple rings, in turn, generalize simple rings.
Every (finite) semisimple ring is, in fact, a direct sum of full matrix rings over finite
fields. Consequently, given a positive integer n, the number s(n) of non-isomorphic
semisimple rings of order n is given by

s(n) = Q(α1)Q(α2)Q(α3) · · · Q(αr ),

where n = pα1
1 pα2

2 pα3
3 · · · pαr

r is the prime factorization of n, p1, p2, p3, . . . , pr are
distinct primes, each αk is positive, and Q(αk) denotes the number of (unordered) sets
of integer pairs (r j , m j ) for which

αk =
∑

j

r j m2
j and r j m2

j > 0 for all j .

As an example, s(p5) = 8 for any prime p since

5 = 1 · 12 + 1 · 22 = 5 · 12 = 2 · 12 + 3 · 12 = 1 · 12 + 4 · 12

= 1 · 12 + 1 · 12 + 3 · 12 = 1 · 12 + 2 · 12 + 2 · 12

= 1 · 12 + 1 · 12 + 1 · 12 + 2 · 12 = 1 · 12 + 1 · 12 + 1 · 12 + 1 · 12 + 1 · 12.

Asymptotically, there are extreme results [23, 24]:

liminf
n→∞

s(n) = 1,

limsup
n→∞

ln(s(n))
ln(ln(n))

ln(n)
= ln(6)

4

and average results [25–30]:

N∑
n=1

s(n) = A1 B1 N + A2 B2 N
1
2 + A3 B3 N

1
3 + O

(
N

50
199 +ε

)
,

where ε > 0 is arbitrarily small, Ak is as defined in the preceding, and

Bk =
∞∏

r=1

∞∏
m=2

ζ

(
rm2

k

)
.

In particular, there are, on average,

A1 B1 =
∏

rm2>1

ζ
(
rm2

) = 2.4996161129 . . .

non-isomorphic semisimple rings of any given order (“average” in the sense of arith-
metic mean).
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5.2 Pythagorean Triple Constants

The positive integers a, b, c are said to form a primitive Pythagorean triple if a ≤ b,
gcd(a, b, c) = 1, and a2 + b2 = c2. Clearly any such triple can be interpreted geomet-
rically as the side lengths of a right triangle with commensurable sides. Define Ph(n),
Pp(n), and Pa(n) respectively as the number of primitive Pythagorean triples whose
hypotenuses, perimeters, and areas do not exceed n. D. N. Lehmer [1] showed that

lim
n→∞

Ph(n)

n
= 1

2π
, lim

n→∞
Pp(n)

n
= ln(2)

π2

and Lambek & Moser [2] showed that

lim
n→∞

Pa(n)√
n

= C = 1√
2π5

�

(
1

4

)2

= 0.5313399499 . . . ,

where �(x) is the Euler gamma function [1.5.4].
What can be said about the error terms? D. H. Lehmer [3] demonstrated that

Pp(n) = ln(2)

π2
n + O

(
n

1
2 ln(n)

)
,

and Lambek & Moser [2] and Wild [4] further demonstrated that

Ph(n) = 1

2π
n + O

(
n

1
2 ln(n)

)
, Pa(n) = Cn

1
2 − Dn

1
3 + O

(
n

1
4 ln(n)

)
,

where

D = −1 + 2− 1
3

1 + 4− 1
3

ζ ( 1
3 )

ζ ( 4
3 )

= 0.2974615529 . . .

and ζ (x) is the Riemann zeta function [1.6]. Sharper estimates for Pa(n) were obtained
in [5–8].

It is obvious that the hypotenuse c and the perimeter a + b + c of a primitive
Pythagorean triple a, b, c must both be integers. If ab was odd, then both a and b
would be odd and hence c2 ≡ 2 mod 4, which is impossible. Thus the area ab/2 must
also be an integer. If P ′

a(n) is the number of primitive Pythagorean triples whose areas
≤ n are integers, then P ′

a(n) = Pa(n). Such an identity does not hold for non-right
triangles, of course.

A somewhat related matter is the ancient congruent number problem [9], the
solution of which Tunnell [10] has reduced to a weak form of the Birch–Swinnerton–
Dyer conjecture from elliptic curve theory. In the congruent number problem, the right
triangles are permitted to have rational sides (rather than just integer sides). For a
prescribed integer n, does there exist a rational right triangle with area n?

There is also the problem of enumerating primitive Heronian triples, equivalently,
coprime integers a ≤ b ≤ c that are side lengths of an arbitrary triangle with com-
mensurable sides. What can be said asymptotically about the numbers Hh(n), Hp(n),
Ha(n), and H ′

a(n) (analogously defined)? A starting point for answering this question
might be [11, 12].
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5.3 Rényi’s Parking Constant

Consider the one-dimensional interval [0, x] with x > 1. Imagine it to be a street for
which parking is permitted on one side. Cars of unit length are one-by-one parked
completely at random on the street and obviously no overlap is allowed with cars
already in place. What is the mean number, M(x), of cars that can fit?

Rényi [1–3] determined that M(x) satisfies the following integrofunctional equation:

M(x) =




0 if 0 ≤ x < 1,

1 + 2

x − 1

x−1∫
0

M(t) dt if x ≥ 1.

By a Laplace transform technique, Rényi proved that the limiting mean density, m, of
cars in the interval [0, x] is

m = lim
x→∞

M(x)

x
=

∞∫
0

β(x) dx = 0.7475979202 . . . ,

where

β(x) = exp


−2

x∫
0

1 − e−t

t
dt


 = e−2(ln(x)−Ei(−x)+γ ), α(x) = m −

x∫
0

β(t) dt,
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γ is the Euler–Mascheroni constant [1.5], and Ei is the exponential integral [6.2.1].
Several alternative proofs appear in [4, 5].

What can be said about the variance, V (x), of the number of cars that can fit on the
street? Mackenzie [6], Dvoretzky & Robbins [7], and Mannion [8, 9] independently
addressed this question and deduced that

v = lim
x→∞

V (x)

x
= 4

∞∫
0

[
e−x (1 − e−x )

α(x)

x
− e−2x (x + e−x − 1)

α(x)2

β(x)x2

]
dx − m

= 0.0381563991 . . . .

A central limit theorem holds [7], that is, the total number of cars is approximately
normally distributed with mean mx and variance vx for large enough x .

It is natural to consider the parking problem in a higher dimensional setting. Consider
the two-dimensional rectangle of length x > 1 and width y > 1 and imagine cars to be
unit squares with sides parallel to the sides of the parking rectangle. What is the mean
number, M(x, y), of cars that can fit? Palasti [10–12] conjectured that

lim
x→∞ lim

y→∞
M(x, y)

xy
= m2 = (0.7475979202 . . .)2 = 0.558902 . . . .

Despite some determined yet controversial attempts at analysis [13, 14], the conjecture
remains unproven. The mere existence of the limiting parking density was shown
only recently [15]. Intensive computer simulation [16–18] suggests, however, that the
conjecture is false and the true limiting value is 0.562009 . . . .

Here is a variation in the one-dimensional setting. In Rényi’s problem, a car that lands
in a parking position overlapping with an earlier car is discarded. Solomon [14, 19–21]
studied a revised rule in which the car “rolls off” the earlier car immediately to the left
or to the right, whichever is closer. It is then parked if there exists space for it; otherwise
it is discarded. The mean car density is larger:

m =
∞∫
0

(2x + 1) exp
[−2(x + e−x − 1)

]
β(x) dx = 0.8086525183 . . .

since cars are permitted greater flexibility to park bumper to bumper. If Rényi’s prob-
lem is thought of as a model for sphere packing in a three-dimensional volume, then
Solomon’s variation corresponds to packing with “shaking” allowed for the spheres to
settle, hence creating more space for additional spheres.

Another variation involves random car lengths [22, 23]. If the left and right endpoints
of the k th arriving car are taken as the smaller and larger of two independent uniform
draws from [0, x], then the asymptotic expected number of cars successfully parked is
C · k(

√
17−3)/4, where [24, 25]

C =
(

1 − 1

2(
√

17−1)/4

) √
π

�
(√

17
2

)

�
(√

17+1
4

)
�

(√
17+3
4

)2 = 0.9848712825 . . .
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and � is the gamma function [1.5.4]. Note that x is only a scale factor in this variation
and does not figure in the result.

Applications of the parking problem (or, more generally, the sequential packing or
space-filling problem) include such widely separated disciplines as:

• Physics: models of liquid structure [26–29];
• Chemistry: adsorption of a fluid film on a crystal surface [5.3.1];
• Monte Carlo methods: evaluation of definite integrals [30];
• Linguistics: frequency of one-syllable, length-n English words [31];
• Sociology: models of elections in Japan and lengths of gaps generated in parking

problems [32–35];
• Materials science: intercrack distance after multiple fracture of reinforced concrete

[36];
• Computer science: optimal data placement on a CD [37] and linear probing hashing

[38].

See also [39–41]. Note the similarities in formulation between the Golomb–Dickman
constant [5.4] and the Rényi constant.

5.3.1 Random Sequential Adsorption

Consider the case in which the interval [0, x] is replaced by the discrete finite linear
lattice 1, 2, 3, . . . , n. Each car is a line segment of unit length and covers two lattice
points when it parks. No car is permitted to touch points that have already been covered.
The process stops when no adjacent pairs of lattice points are left uncovered. It can be
proved that, as n → ∞ [19, 42–45],

m = 1 − e−2

2
= 0.4323323583 . . . , v = e−4 = 0.0183156388 . . . ,

both of which are smaller than their continuous-case counterparts. The two-dimensional
discrete analog involves unit square cars covering four lattice points, and is analytically
intractable just like the continuous case. Palasti’s conjecture appears to be false here too:
The limiting mean density in the plane is not m2 = 0.186911 . . . but rather 0.186985 . . .

[46–48].
For simplicity’s sake, we refer to the infinite linear lattice 1, 2, 3, . . . as the 1 × ∞

strip. The 2 × ∞ strip is the infinite ladder lattice with two parallel lines and crossbeams,
the 3 × ∞ strip is likewise with three parallel lines, and naturally the ∞ × ∞ strip
is the infinite square lattice. Thus we have closed-form expressions for m and v on
1 × ∞, but only numerical corrections to Palasti’s estimate on ∞ × ∞.

If a car is a unit line segment (dimer) on the 2 × ∞ strip, then the mean car density
is 1

2 (0.91556671 . . .). If instead the car is on the ∞ × ∞ strip, then the corresponding
mean density is 1

2 (0.90682 . . .) [49–55]. Can exact formulas be found for these two
quantities?
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If the car is a line segment of length two (linear trimer) on the 1 × ∞ strip, then
the mean density of vacancies is µ(3) = 0.1763470368 . . . , where [6, 56–58]

µ(r ) = 1 − r

1∫
0

exp

(
−2

r−1∑
k=1

1 − xk

k

)
dx .

More generally, µ(r ) is the mean density of vacancies for linear r -mers on the 1 × ∞
strip, for any integer r ≥ 2. A corresponding formula for the variance is not known.

Now suppose that the car is a single particle and that no other cars are allowed to
park in any adjacent lattice points (monomer with nearest neighbor exclusion). The
mean car density for the 1 × ∞ strip is m1 = 1

2 (1 − e−2) as before, of course. The
mean densities for the 2 × ∞ and 3 × ∞ strips are [59–61]

m2 = 2 − e−1

4
= 0.4080301397 . . . , m3 = 1

3
= 0.3333333333 . . . ,

and the corresponding density for the ∞ × ∞ strip is m∞ = 0.364132 . . .

[47, 48, 50, 53, 55, 62]. Again, can exact formulas for m4 or m∞ be found?
The continuous case can be captured from the discrete case by appropriate limiting

arguments [6, 58, 63]. Exhaustive surveys of random sequential adsorption models are
provided in [64–66].
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[51] M. J. de Oliveira, T. Tomé, and R. Dickman, Anisotropic random sequential adsorption of
dimers on a square lattice, Phys. Rev. A 46 (1992) 6294–6299.

[52] J.-S. Wang and R. B. Pandey, Kinetics and jamming coverage in a random sequential
adsorption of polymer chains, Phys. Rev. Lett. 77 (1996) 1773–1776.

[53] C. K. Gan and J.-S. Wang, Extended series expansions for random sequential adsorption,
J. Chem. Phys. 108 (1998) 3010–3012.

[54] C. Fusco, P. Gallo, A. Petri, and M. Rovere, Random sequential adsorption and diffusion
of dimers and k-mers on a square lattice, J. Chem. Phys. 114 (2001) 7563–7569.

[55] J.-S. Wang, Series expansion and computer simulation studies of random sequential ad-
sorption, Colloids and Surfaces A 165 (2000) 325–343.

[56] M. Gordon and I. H. Hillier, Statistics of random placement, subject to restrictions, on a
linear lattice, J. Chem. Phys. 38 (1963) 1376–1380.

[57] E. A. Boucher, Kinetics and statistics of occupation of linear arrays: A model for polymer
reactions, J. Chem. Phys. 59 (1973) 3848–3852.
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5.4 Golomb–Dickman Constant

Every permutation on n symbols can be uniquely expressed as a product of disjoint
cycles. For example, the permutation π on {0, 1, 2, . . . , 9} defined by π (x) = 3x mod
10 has cycle structure

π = (0) (1 3 9 7) (2 6 8 4) (5).

In this case, the permutation π has α1(π ) = 2 cycles of length 1, α2(π ) = 0 cycles of
length 2, α3(π ) = 0 cycles of length 3, and α4(π ) = 2 cycles of length 4. The total
number

∑∞
j=1 α j of cycles in π is equal to 4 in the example.

Assume that n is fixed and that the n! permutations on {0, 1, 2, . . . , n−1} are assigned
equal probability. Picking π at random, we have the classical results [1–4]:

E

( ∞∑
j=1

α j

)
=

n∑
i=1

1

i
= ln(n) + γ + O

(
1

n

)
,

Var

( ∞∑
j=1

α j

)
=

n∑
i=1

i − 1

i2
= ln(n) + γ − π2

6
+ O

(
1

n

)
,

lim
n→∞ P(α j = k) = 1

k!
exp

(
−1

j

) (
1

j

)k

(asymptotic Poisson distribution),

lim
n→∞ P




∞∑
j=1

α j − ln(n)

√
ln(n)

≤ x




= 1√
2π

x∫
−∞

exp

(
− t2

2

)
dt (asymptotic normal distribution),

where γ is the Euler–Mascheroni constant [1.5].
What can be said about the limiting distribution of the longest cycle and the shortest

cycle,

M(π ) = max{ j ≥ 1 : α j > 0}, m(π ) = min{ j ≥ 1 : α j > 0},
given a random permutation π? Goncharov [1, 2] and Golomb [5–7] both considered
the average value of M(π ). Golomb examined the constant [8–10]

λ = lim
n→∞

E(M(π ))

n
= 1 −

∞∫
1

ρ(x)

x2
dx = 0.6243299885 . . . ,
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where ρ(x) is the unique continuous solution of the following delay-differential
equation:

ρ(x) = 1 for 0 ≤ x ≤ 1, xρ ′(x) + ρ(x − 1) = 0 for x > 1.

(Actually, he worked with the function ρ(x − 1).) Shepp & Lloyd [11] and others [6]
discovered additional expressions:

λ =
∞∫
0

e−x+Ei(−x) dx =
1∫
0

eLi(x) dx = G(1, 1),

where

G(a, r ) = 1

a

∞∫
0

(
1 − exp(a Ei(−x))

r−1∑
k=0

(−a)k

k!
Ei(−x)k

)
dx,

Ei is the exponential integral [6.2.1], and Li is the logarithmic integral [6.2.2]. Gourdon
[12] determined the complete asymptotic expansion for E(M(π )):

E(M(π )) = λn + λ

2
− eγ

24

1

n
+

[
eγ

48
− (−1)n

8

]
1

n2

+
[

17eγ

3840
+ (−1)n

8
+ e

2(2n+1)π
3 i

6
+ e

2(n+2)π
3 i

6

]
1

n3
+ O

(
1

n4

)
.

Note the periodic fluctuations involving roots of unity.
A similar integral formula for limn→∞ Var(M(π ))/n2 = 0.0369078300 . . . =

H (1, 1) holds, where [12]

H (a, r ) = 2

a(a + 1)

∞∫
0

(
1 − exp(a Ei(−x))

r−1∑
k=0

(−a)k

k!
Ei(−x)k

)
x dx − G(a, r )2.

We will need values of G(a, r ) and H (a, r ), a �= 1 �= r , later in this essay. An analog
of λ appears in [13, 14] in connection with polynomial factorization.

The arguments leading to asymptotic average values of m(π ) are more complicated.
Shepp & Lloyd [11] proved that

lim
n→∞

E(m(π ))

ln(n)
= e−γ = 0.5614594835 . . .

as well as formulas for higher moments. A complete asymptotic expansion for E(m(π )),
however, remains open.

The mean and variance of the r th longest cycle (normalized by n and
n2, as n → ∞) are given by G(1, r ) and H (1, r ). For example, G(1, 2) =
0.2095808742 . . . , H (1, 2) = 0.0125537906 . . . and G(1, 3) = 0.0883160988 . . . ,
H (1, 3) = 0.0044939231 . . . [11, 12].

There is a fascinating connection between λ and prime factorization algorithms
[15, 16]. Let f (n) denote the largest prime factor of n. By choosing a random integer
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n between 1 and N , Dickman [17–20] determined that

lim
N→∞

P( f (n) ≤ nx ) = ρ( 1
x )

for 0 < x ≤ 1. With this in mind, what is the average value of x such that f (n) = nx ?
Dickman obtained numerically that

µ = lim
N→∞

E(x) = lim
N→∞

E
(

ln( f (n))
ln(n)

)
=

1∫
0

x dρ
(

1
x

)
= 1 −

∞∫
1

ρ(y)
y2 dy = λ,

which is indeed surprising! Dickman’s constant µ and Golomb’s constant λ are iden-
tical! Knuth & Trabb Pardo [15] described this result as follows: λn is the asymptotic
average number of digits in the largest prime factor of an n-digit number. More gener-
ally, if we are factoring a random n-digit number, the distribution of digits in its prime
factors is approximately the same as the distribution of the cycle lengths in a random
permutation on n elements. This remarkable and unexpected fact is explored in greater
depth in [21, 22].

Other asymptotic formulas involving the largest prime factor function f (n) include
[15, 23, 24]

E( f (n)k) ∼ ζ (k + 1)

k + 1

N k

ln(N )
, E(ln( f (n))) ∼ λ ln(N ) − λ(1 − γ ),

where ζ (x) is the zeta function [1.6]. See also [25–29]. Note the curious coincidence
[15] involving integral and sum:

∞∫
0

ρ(x) dx = eγ =
∞∑

n=1

nρ(n).

Dickman’s function is important in the study of y-smooth numbers [24, 30–32], that is,
integers whose prime divisors never exceed y. It appears in probability theory as the
density function (normalized by eγ ) of [33, 34]

X1 + X1 X2 + X1 X2 X3 + · · · , X j independent uniform random variables on [0, 1].

See [35–40] for other applications of ρ(x). A closely-allied function, due to Buchstab,
satisfies [24, 34, 41–45]

ω(x) = 1

x
for 1 ≤ x ≤ 2, xω′(x) + ω(x) − ω(x − 1) = 0 for x > 2,

which arises when estimating the frequency of integers n whose smallest prime factor
≥ nx . Both functions are positive everywhere, and special values include [46]

ρ( 3+√
5

2 ) = 1 − ln( 3+√
5

2 ) + ln( 1+√
5

2 )2 − π2

60 , lim
x→∞ ρ(x) = 0,

5+√
5

2 ω( 5+√
5

2 ) = 1 + ln( 3+√
5

2 ) + ln( 1+√
5

2 )2 − π2

60 , lim
x→∞ ω(x) = e−γ .

Whereas ρ(x) is nonincreasing, the difference ω(x) − e−γ changes sign (at most twice)
in every interval of length 1. Its oscillatory behavior plays a role in understanding
irregularities in the distribution of primes.
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Note the similarity in formulation between the Golomb–Dickman constant and
Rényi’s parking constant [5.3].

5.4.1 Symmetric Group

Here are several related questions. Givenπ , a permutation on n symbols, define its order
θ (π ) to be the least positive integer m such that πm = identity. Clearly 1 ≤ θ (π ) ≤ n!.
What is its mean value, E(θ (π ))? Goh & Schmutz [47], building upon the work of
Erdös & Turán [48], proved that

ln(E(θ (π ))) = B

√
n

ln(n)
+ o(1),

where B = 2
√

2b = 2.9904703993 . . . and

b =
∞∫
0

ln
(
1 − ln(1 − e−x )

)
dx = 1.1178641511 . . . .

Stong [49] improved the o(1) estimate and gave alternative representations for b:

b =
∞∫
0

xe−x

(1 − e−x )(1 − ln(1 − e−x ))
dx =

∞∫
0

ln(x + 1)

ex − 1
dx = −

∞∑
k=1

ek

k
Ei(−k).

A typical permutation π can be shown to satisfy ln(θ (π )) ∼ 1
2 ln(n)2; hence a few

exceptional permutations contribute significantly to the mean. What can be said about
the variance of θ (π )?

Also, define g(n) to be the maximum order θ (π ) of all n-permutations π . Landau
[50, 51] proved that ln(g(n)) ∼ √

n ln(n), and greatly refined estimates of g(n) appeared
in [52].

A natural equivalence relation can be defined on the symmetric group Sn via con-
jugacy. In the limit as n → ∞, for almost all conjugacy classes C , the elements of C
have order equal to exp(

√
n(A + o(1))), where [48, 53, 54]

A = 2
√

6

π

∑
j �=0

(−1) j+1

3 j2 + j
= 4

√
2 − 6

√
6

π
.

Note that the summation involves reciprocals of nonzero pentagonal numbers.
Let sn denote the probability that two elements of the symmetric group, Sn , chosen

at random (with replacement) actually generate Sn . The first several values are s1 = 1,
s2 = 3/4, s3 = 1/2, s4 = 3/8, . . . [55]. What can be said about the asymptotics of sn?
Dixon [56] proved an 1892 conjecture by Netto [57] that sn → 3/4 as n → ∞. Babai
[58] gave a more refined estimate.

5.4.2 Random Mapping Statistics

We now generalize the discussion from permutations (bijective functions) on n symbols
to arbitrary mappings on n symbols. For example, the function ϕ on {0, 1, 2, . . . , 9}
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Figure 5.1. The functional graph forψ(x) = x2 + 2 mod 20 has two components, each containing
a cycle of length 2.

defined by ϕ(x) = 2x mod 10 has cycles (0) and (2 4 8 6). The remaining symbols 1,
3, 5, 7, and 9 are transient in the sense that if one starts with 3, one is absorbed into the
cycle (2 4 8 6) and never returns to 3. We can nevertheless define cycle lengths α j as
before; in this simple example, α1(ϕ) = 1, α2(ϕ) = α3(ϕ) = 0, and α4(ϕ) = 1.

The lengths of the longest and shortest cycles, M(ϕ) and m(ϕ), are clearly of interest
in pseudo-random number generation. Purdom & Williams [59–61] found that

lim
n→∞

E(M(ϕ))√
n

= λ

√
π

2
= 0.7824816009 . . . , lim

n→∞
E(m(ϕ))

ln(n)
= 1

2
e−γ .

Observe that E(M(ϕ)) grows on the order of only
√

n rather than n as earlier.
As another example, consider the function ψ on {0, 1, 2, . . . , 19} defined by ψ(x) =

x2 + 2 mod 20. From Figure 5.1, clearly α2(ψ) = 2. Here are other interesting quanti-
ties [62]. Note that the transient symbols 0, 5, 10, and 15 each require 2 steps to reach
a cycle, and this is the maximum such distance. Thus define the longest tail L(ψ) = 2.
Note also that 4 is the number of vertices in the nonrepeating trajectory for each of 0,
5, 10, and 15, and this is the maximum such length. Thus define the longest rho-path
R(ψ) = 4. Clearly, for the earlier example, L(ϕ) = 1 and R(ϕ) = 5. It can be proved
that, for arbitrary n-mappings ϕ [61],

lim
n→∞

E(L(ϕ))√
n

=
√

2π ln(2) = 1.7374623212 . . . ,

lim
n→∞

E(R(ϕ))√
n

=
√

π

2

∞∫
0

(1 − eEi(−x)−I (x)) dx = 2.4149010237 . . . ,

where

I (x) =
x∫
0

e−y

y

(
1 − exp

( −2y

ex−y − 1

))
dy.

Another quantity associated with a mapping ϕ is the largest tree P(ϕ). Each vertex
in each cycle of ϕ is the root of a unique maximal tree [5.6]. Select the tree with the
greatest number of vertices, and call this number P(ϕ). For the two examples, clearly
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P(ϕ) = 2 and P(ψ) = 6. It is known that, for arbitrary n-mappings ϕ [12, 61],

ν = lim
n→∞

E(P(ϕ))

n
= 2

∞∫
0

[
1 − (1 − F(x))−1

]
dx = 0.4834983471 . . . ,

lim
n→∞

Var(P(ϕ))

n2
= 8

3

∞∫
0

[
1 − (1 − F(x))−1

]
x dx − ν2 = 0.0494698522 . . . ,

where

F(x) = −1

2
√

π

∞∫
x

e−t t− 3
2 dt = 1 − 1√

πx
exp(−x) − erf(

√
x)

and erf is the error function [4.6]. Gourdon [63] mentioned a coin-tossing game, the
analysis of which yields the preceding two constants.

Finally, let us examine the connected component structure of a mapping. We have
come full circle, in a sense, because components relate to mappings as cycles relate
to permutations. For the two examples, the counting function is β2(ϕ) = 1, β8(ϕ) = 1
while β10(ψ) = 2. In the interest of analogy, here are more details. The total number∑∞

j=1 β j of components is equal to 2 in both cases. Picking ϕ at random, we have
[64–67]

E

( ∞∑
j=1

β j

)
=

n∑
i=1

cn,0,i = 1

2
ln(n) + 1

2
(ln(2) + γ ) + o(1),

Var

( ∞∑
j=1

β j

)
=

n∑
i=1

cn,0,i −
(

n∑
i=1

cn,0,i

)2

+
n∑

i=1

cn,0,i

n−i∑
j=1

cn,i, j

= 1

2
ln(n) + o(ln(n)),

lim
n→∞ P(β j = k) = 1

k!
exp(−d j ) dk

j , (asymptotic Poisson distribution),

where

cn,p,q =
(

n − p

q

)
(q − 1)!

nq
, d j = e− j

j

j−1∑
i=0

j i

i!
,

and a corresponding Gaussian limit also holds. Define the largest component Q(ϕ) =
max{ j ≥ 1 : β j > 0}; then [12, 61, 68]

lim
n→∞

E(Q(ϕ))

n
= G( 1

2 , 1) = 0.7578230112 . . . ,

lim
n→∞

Var(Q(ϕ))

n2
= H ( 1

2 , 1) = 0.0370072165 . . . .



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-05 CB503/Finch-v2.cls December 9, 2004 14:1 Char Count=

290 5 Constants Associated with Enumerating Discrete Structures

Such results answer questions raised in [69–71]. It seems fitting to call 0.75782. . . the
Flajolet–Odlyzko constant, owing to its importance. The mean and variance of the r th

largest component (again normalized by n and n2, as n → ∞) are given by G( 1
2 , r ) and

H ( 1
2 , r ). For example, G( 1

2 , 2) = 0.1709096198 . . . and H ( 1
2 , 2) = 0.0186202233 . . . .

A discussion of smallest components appears in [72].
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5.5 Kalmár’s Composition Constant

An additive composition of an integer n is a sequence x1, x2, . . . , xk of integers (for
some k ≥ 1) such that

n = x1 + x2 + · · · + xk, x j ≥ 1 for all 1 ≤ j ≤ k.
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A multiplicative composition of n is the same except

n = x1x2 · · · xk, x j ≥ 2 for all 1 ≤ j ≤ k.

The number a(n) of additive compositions of n is trivially 2n−1. The number m(n) of
multiplicative compositions does not possess a closed-form expression, but asymptot-
ically satisfies

N∑
n=1

m(n) ∼ −1

ρζ ′(ρ)
N ρ = (0.3181736521 . . .) · N ρ,

where ρ = 1.7286472389 . . . is the unique solution of ζ (x) = 2 with x > 1 and ζ (x)
is Riemann’s zeta function [1.6]. This result was first deduced by Kalmár [1, 2] and
refined in [3–8].

An additive partition of an integer n is a sequence x1, x2, . . . , xk of integers (for
some k ≥ 1) such that

n = x1 + x2 + · · · + xk, 1 ≤ x1 ≤ x2 ≤ · · · ≤ xk .

Partitions naturally represent equivalence classes of compositions under sorting. The
number A(n) of additive partitions of n is mentioned in [1.4.2], while the number M(n)
of multiplicative partitions asymptotically satisfies [9, 10]

N∑
n=1

M(n) ∼ 1

2
√

π
N exp

(
2
√

ln(N )
)

ln(N )−
3
4 .

Thus far we have dealt with unrestricted compositions and partitions. Of many
possible variations, let us focus on the case in which each x j is restricted to be a prime
number. For example, the number Mp(n) of prime multiplicative partitions is trivially
1 for n ≥ 2. The number ap(n) of prime additive compositions is [11]

ap(n) ∼ 1

ξ f ′(ξ )

(
1

ξ

)n

= (0.3036552633 . . .) · (1.4762287836 . . .)n,

where ξ = 0.6774017761 . . . is the unique solution of the equation

f (x) =
∑

p

x p = 1, x > 0,

and the sum is over all primes p. The number mp(n) of prime multiplicative compo-
sitions satisfies [12]

N∑
n=1

mp(n) ∼ −1

ηg′(η)
N−η = (0.4127732370 . . .) · N−η,

where η = −1.3994333287 . . . is the unique solution of the equation

g(y) =
∑

p

py = 1, y < 0.

Not much is known about the number Ap(n) of prime additive partitions [13–16]
except that Ap(n + 1) > Ap(n) for n ≥ 8.
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Here is a related, somewhat artificial topic. Let pn be the nth prime, with p1 = 2,
and define formal series

P(z) = 1 +
∞∑

n=1

pnzn, Q(z) = 1

P(z)
=

∞∑
n=0

qnzn.

Some people may be surprised to learn that the coefficients qn obey the following
asymptotics [17]:

qn ∼ 1

θ P ′(θ )

(
1

θ

)n

= (−0.6223065745 . . .) · (−1.4560749485 . . .)n.

where θ = −0.6867778344 . . . is the unique zero of P(z) inside the disk |z| < 3/4.
By way of contrast, pn ∼ n ln(n) by the Prime Number Theorem. In a similar spirit,
consider the coefficients ck of the (n − 1)st degree polynomial fit

c0 + c1(x − 1) + c2(x − 1)(x − 2) + · · · + cn−1(x − 1)(x − 2)(x − 3) · · · (x − n + 1)

to the dataset [18]

(1, 2), (2, 3), (3, 5), (4, 7), (5, 11), (6, 13), . . . , (n, pn).

In the limit as n → ∞, the sum
∑n−1

k=0 ck converges to 3.4070691656 . . . .

Let us return to the counting of compositions and partitions, and merely mention
variations in which each x j is restricted to be square-free [12] or where the xs must be
distinct [8]. Also, compositions/partitions x1, x2, . . . , xk and y1, y2, . . . , yl of n are said
to be independent if proper subsequence sums/products of xs and ys never coincide.
How many such pairs are there (as a function of n)? See [19] for an asymptotic answer.

Cameron & Erdös [20] pointed out that the number of sequences 1 ≤ z1 < z2 <

· · · < zk = n for which zi |z j whenever i < j is 2m(n). The factor 2 arises because
we can choose whether or not to include 1 in the sequence. What can be said
about the number c(n) of sequences 1 ≤ w1 < w2 < · · · < wk ≤ n for which wi � |w j

whenever i �= j? It is conjectured that limn→∞ c(n)1/n exists, and it is known that
1.55967n ≤ c(n) ≤ 1.59n for sufficiently large n. For more about such sequences,
known as primitive sequences, see [2.27].

Finally, define h(n) to be the number of ways to express 1 as a sum of n + 1 elements
of the set {2−i : i ≥ 0}, where repetitions are allowed and order is immaterial. Flajolet
& Prodinger [21] demonstrated that

h(n) ∼ (0.2545055235 . . .)κn,

where κ = 1.7941471875 . . . is the reciprocal of the smallest positive root x of the
equation

∞∑
j=1

(−1) j+1 x2 j+1−2− j

(1 − x)(1 − x3)(1 − x7) · · · (1 − x2 j −1)
− 1 = 0.

This is connected to enumerating level number sequences associated with binary trees
[5.6].
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5.6 Otter’s Tree Enumeration Constants

A graph of order n consists of a set of n vertices (points) together with a set of edges
(unordered pairs of distinct points). Note that loops and multiple parallel edges are
automatically disallowed. Two vertices joined by an edge are called adjacent.

A forest is a graph that is acyclic, meaning that there is no sequence of adjacent
vertices v0, v1, . . . , vm such that vi �= v j for all i < j < m and v0 = vm .

A tree (or free tree) is a forest that is connected, meaning that for any two distinct
vertices u and w, there is a sequence of adjacent vertices v0, v1, . . . , vm such that
v0 = u and vm = w.

Two trees σ and τ are isomorphic if there is a one-to-one map from the vertices
of σ to the vertices of τ that preserves adjacency (see Figure 5.2). Diagrams for all
non-isomorphic trees of order < 11 appear in [1]. Applications are given in [2].
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Figure 5.2. There exist three non-isomorphic trees of order 5.

What can be said about the asymptotics of tn , the number of non-isomorphic trees
of order n? Building upon the work of Cayley and Pólya, Otter [3–6] determined that

lim
n→∞

tnn
5
2

αn
= β,

where α = 2.9557652856 . . . = (0.3383218568 . . .)−1 is the unique positive solution
of the equation T (x−1) = 1 involving a certain function T to be defined shortly, and

β = 1√
2π

(
1 +

∞∑
k=2

1

αk
T ′

(
1

αk

)) 3
2

= 0.5349496061 . . .

where T ′ denotes the derivative of T . Although α and β can be calculated efficiently
to great accuracy, it is not known whether they are algebraic or transcendental [6, 7].

A rooted tree is a tree in which precisely one vertex, called the root, is distinguished
from the others (see Figure 5.3). We agree to draw the root as a tree’s topmost vertex
and that an isomorphism of rooted trees maps a root to a root. What can be said about
the asymptotics of Tn , the number of non-isomorphic rooted trees of order n? Otter’s
corresponding result is

lim
n→∞

Tnn
3
2

αn
=

(
β

2π

) 1
3

= 0.4399240125 . . . =
(

1

4πα

) 1
2

(2.6811281472 . . .).

In fact, the generating functions

t(x) =
∞∑

n=1

tn xn

= x + x2 + x3 + 2x4 + 3x5 + 6x6 + 11x7 + 23x8 + 47x9 + 106x10 + · · · ,

T (x) =
∞∑

n=1

Tn xn

= x + x2 + 2x3 + 4x4 + 9x5 + 20x6 + 48x7 + 115x8 + 286x9 + · · ·
are related by the formula t(x) = T (x) − 1

2 (T (x)2 − T (x2)), the constant α−1 is the
radius of convergence for both, and the coefficients Tn can be computed using

T (x) = x exp

( ∞∑
k=1

T (xk)

k

)
, Tn+1 = 1

n

n∑
k=1

(∑
d|k

dTd

)
Tn−k+1.

There are many varieties of trees and the elaborate details of enumerating them are
best left to [4, 5]. Here is the first of many examples. A weakly binary tree is a rooted
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Figure 5.3. There exist nine non-isomorphic rooted trees of order 5.

tree for which the root is adjacent to at most two vertices and all non-root vertices are
adjacent to at most three vertices. For instance, there exist six non-isomorphic weakly
binary trees of order 5. The asymptotics of Bn , the number of non-isomorphic weakly
binary trees of order n, were obtained by Otter [3, 8–10]:

lim
n→∞

Bnn
3
2

ξ n
= η,

where ξ−1 = 0.4026975036 . . . = (2.4832535361 . . .)−1 is the radius of convergence
for

B(x) =
∞∑

n=0

Bn xn

= 1 + x + x2 + 2x3 + 3x4 + 6x5 + 11x6 + 23x7 + 46x8 + 98x9 + · · ·
and

η =
√

ξ

2π

(
1 + 1

ξ
B(

1

ξ 2
) + 1

ξ 3
B ′(

1

ξ 2
)

) 1
2

= 0.7916031835 . . . = (0.3187766258 . . .)ξ.

The series coefficients arise from

B(x) = 1 + 1

2
x

(
B(x)2 + B(x2)

)
,

Bk =




Bi (Bi + 1)

2
+

i−1∑
j=0

Bk− j−1 B j if k = 2i + 1,

i−1∑
j=0

Bk− j−1 B j if k = 2i.

Otter showed, in this special case, that ξ = limn→∞ c2−n

n , where the sequence {cn} obeys
the quadratic recurrence

c0 = 2, cn = c2
n−1 + 2 for n ≥ 1,

and consequently

η = 1

2

√
ξ

π

√
3 + 1

c1
+ 1

c1c2
+ 1

c1c2c3
+ 1

c1c2c3c4
+ · · ·.
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Figure 5.4. There exist two non-isomorphic strongly binary trees of order 7.

Here is a slight specialization of the preceding. Define a strongly binary tree to
be a rooted tree for which the root is adjacent to either zero or two vertices, and all
non-root vertices are adjacent to either one or three vertices (see Figure 5.4). These
trees, also called binary trees, are discussed further in [5.6.9] and [5.13]. The number
of non-isomorphic strongly binary trees of order 2n + 1 turns out to be exactly Bn .
The one-to-one correspondence is obtained, in the forward direction, by deleting all
the leaves (terminal nodes) of a strongly binary tree. To go in reverse, starting with a
weakly binary tree, add two leaves to any vertex of degree 1 (or to the root if it has
degree 0), and add one leaf to any vertex of degree 2 (or to the root if it has degree 1).
Hence the same asymptotics apply in both weak and strong cases.

Also, in a commutative non-associative algebra, the expression x4 is ambiguous and
could be interpreted as xx3 or x2x2. The expression x5 likewise could mean xxx3,
xx2x2, or x2x3. Clearly Bn−1 is the number of possible interpretations of xn; thus {Bn}
is sometimes called the Wedderburn-Etherington sequence [11–15].

5.6.1 Chemical Isomers

A weakly ternary tree is a rooted tree for which the root is adjacent to at most three
vertices and all non-root vertices are adjacent to at most four vertices. For instance,
there exist eight non-isomorphic weakly ternary trees of order 5. The asymptotics of
Rn , the number of non-isomorphic weakly ternary trees of order n, were again obtained
by Otter [3, 15–17]:

lim
n→∞

Rnn
3
2

ξ n
R

= ηR,

where ξ−1
R = 0.3551817423 . . . = (2.8154600332 . . .)−1 is the radius of convergence

for

R(x) =
∞∑

n=0

Rn xn

= 1 + x + x2 + 2x3 + 4x4 + 8x5 + 17x6 + 39x7 + 89x8 + 211x9 + · · · ,

ηR =
√

ξR

2π

(
−1 + ρ + 1

ξ 3
R

R′
(

1

ξ 2
R

)
ρ + 1

ξ 4
R

R′
(

1

ξ 3
R

)) 1
2

ρ− 1
2

= 0.5178759064 . . . ,
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Figure 5.5. The formula C3H7OH (propanol) has two isomers.

and ρ = R(ξ−1
R ). The series coefficients arise from

R(x) = 1 + 1

6
x

(
R(x)3 + 3R(x)R(x2) + 2R(x3)

)
.

An application of this material involves organic chemistry [18–21]: Rn is the number
of constitutional isomers of the molecular formula CnH2n+1OH (alcohols – see Figure
5.5). Constitutional isomeric pairs differ in their atomic connectivity, but the relative
positioning of the OH group is immaterial.

Further, if we define [18, 19, 22, 23]

r (x) = 1

24
x

(
R(x)4 + 6R(x)2 R(x2) + 8R(x)R(x3) + 3R(x2)2 + 6R(x4)

)

− 1

2

(
R(x)2 − R(x2)

) + R(x)

then

r (x) =
∞∑

n=0

rn xn

= 1 + x + x2 + x3 + 2x4 + 3x5 + 5x6 + 9x7 + 18x8 + 35x9 + 75x10 + · · ·
and rn is the number of constitutional isomers of the molecular formula CnH2n+2

(alkanes – see Figure 5.6). The series r (x) is related to R(x) as t(x) is related to T (x)
(in the sense that r, t are free and R, T are rooted); its radius of convergence is likewise
ξ−1

R and

lim
n→∞

rnn
5
2

ξ n
R

= 2π
η3

R

ξR
ρ = 0.6563186958 . . . .

H

H C H

H

CH C

H

H

C H

HH

H

H

H HC

H

H

C

H

H

C

H

H

C

Figure 5.6. The formula C4H10 (butane) has two isomers.
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A carbon atom is chiral or asymmetric if it is attached to four distinct substituents
(atoms or groups). If Qn is the number of constitutional isomers of CnH2n+1OH without
chiral C atoms, then [18, 24]

lim
n→∞

Qn

ξ n
Q

= ηQ,

where ξ−1
Q = 0.5947539639 . . . = (1.6813675244 . . .)−1 is the radius of convergence

for

Q(x) =
∞∑

n=0

Qn xn

= 1 + x + x2 + 2x3 + 3x4 + 5x5 + 8x6 + 14x7 + 23x8 + 39x9 + · · · .
The coefficients arise from Q(x) = 1 + x Q(x)Q(x2), so that

Q(x) = 1|
|1 − x |

|1 − x2
∣∣

|1 − x4
∣∣

|1 − x8
∣∣

|1 − x16
∣∣

|1 − · · · ,

which is an interesting continued fraction. From this, it easily follows that Q(x) =
ψ(x2)/ψ(x) uniquely (assuming ψ is analytic and ψ(0) = 1) and hence

ηQ = −ξQ ψ

(
1

ξ 2
Q

) (
ψ ′

(
1

ξQ

))−1

= 0.3607140971 . . . .

Let Sn denote the number of stereoisomers of CnH2n+1OH. The relative position-
ing of the hydroxyl group now matters as well [18, 19, 25]; for instance, the illus-
trated stereoisomeric pair (represented by two tetrahedra – see Figure 5.7) are non-
superimposable. The generating function for Sn is

S(x) =
∞∑

n=0

Sn xn

= 1 + x + x2 + 2x3 + 5x4 + 11x5 + 28x6 + 74x7 + 199x8 + 551x9 + · · · ,

S(x) = 1 + 1

3
x

(
S(x)3 + 2S(x3)

)
, Sn ∼ ηS n− 3

2 ξ n
S ,

OH

C2H5CH3

H

C

OH

C2H5H

CH3

C

Figure 5.7. The simplest alcohol for which there are (nontrivial) stereoisomers is C4H9OH.
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with radius of convergence ξ−1
S = 0.3042184090 . . . = (3.2871120555 . . .)−1. We

omit the value of ηS for brevity’s sake.

5.6.2 More Tree Varieties

An identity tree is a tree for which the only automorphism is the identity map. There
clearly exist unique identity trees of orders 7 and 8 but no nontrivial cases of order ≤ 6.
The generating function for identity trees is [4, 26]

u(x) =
∞∑

n=1

un xn

= x + x7 + x8 + 3x9 + 6x10 + 15x11 + 29x12 + 67x13 + 139x14 + · · · .
A rooted identity tree is a rooted tree for which the identity map is the only automor-
phism that fixes the root. With this additional condition, rooted identity trees exist of
all orders, and the associated generating function is

U (x) =
∞∑

n=1

Un xn = x + x2 + x3 + 2x4 + 3x5 + 6x6 + 12x7 + 25x8 + 52x9 + · · · .

See the pictures of rooted identity trees in [6.11]. Such trees are also said to be asym-
metric, in the sense that every vertex and edge is unique, that is, isomorphic siblings
are forbidden. It can be proved that [5, 27]

lim
n→∞

Unn
3
2

ξ n
U

= ηU = 1√
2π

(
1 −

∞∑
k=2

(−1)k

ξ k
U

U ′
(

1

ξ k
U

)) 1
2

= 0.3625364234 . . . ,

lim
n→∞

unn
5
2

ξ n
U

= 2πη3
U = 0.2993882877 . . . ,

where ξ−1
U = 0.3972130965 = (2.5175403550 . . .)−1 is the radius of convergence for

both U (x) and u(x), and further

U (x) = x exp

( ∞∑
k=1

(−1)k+1 U (xk)

k

)
, u(x) = U (x) − 1

2 (U (x)2 + U (x2)).

A tree is homeomorphically irreducible (or series-reduced) if no vertex is adjacent
to exactly two other vertices. Clearly no such tree of order 3 exists, and the generating
function is [4, 26, 28]

h(x) =
∞∑

n=1

hn xn

= x + x2 + x4 + x5 + 2x6 + 2x7 + 4x8 + 5x9 + 10x10 + 14x11 + · · · .
A planted homeomorphically irreducible tree is a rooted tree that is homeomorphi-
cally irreducible and whose root is adjacent to exactly one other vertex. The associated
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generating function is

H (x) =
∞∑

n=1

Hn xn

= x2 + x4 + x5 + 2x6 + 3x7 + 6x8 + 10x9 + 19x10 + 35x11 + · · · = x H̃ (x).

It can be proved that [5, 29]

lim
n→∞

Hnn
3
2

ξ n
H

= ηH = 1

ξH

√
2π

(
ξH

ξH + 1
+

∞∑
k=2

1

ξ k
H

H̃ ′
(

1

ξ k
H

)) 1
2

= 0.1924225474 . . . ,

lim
n→∞

hnn
5
2

ξ n
H

= 2πξ 2
H (ξH + 1)η3

H = 0.6844472720 . . . ,

where ξ−1
H = 0.4567332095 . . . = (2.1894619856 . . .)−1 is the radius of convergence

for both H (x) and h(x), and further

H̃ (x) = x

x + 1
exp

( ∞∑
k=1

H̃ (xk)

k

)
,

h(x) = (x + 1)H̃ (x) − x + 1

2
H̃ (x)2 − x − 1

2
H̃ (x2).

If we take into account the ordering (from left to right) of the subtrees of any vertex,
then ordered trees arise and different enumeration problems occur. For example, define
two ordered rooted trees σ and τ to be cyclically isomorphic if σ and τ are isomorphic
as rooted trees, and if τ can be obtained from σ by circularly rearranging all the subtrees
of any vertex, or likewise for each of several vertices. The equivalence classes under this
relation are called mobiles. There exist fifty-one mobiles of order 7 but only forty-eight
rooted trees of order 7 (see Figure 5.8).

The generating function for mobiles is [22, 26, 30]

M(x) =
∞∑

n=1

Mn xn

= x + x2 + 2x3 + 4x4 + 9x5 + 20x6 + 51x7 + 128x8+ 345x9 + · · · ,

M(x) = x

(
1 −

∞∑
k=1

ϕ(k)

k
ln(1 − M(xk))

)
, Mn ∼ ηM n− 3

2 ξ n
M ,

Figure 5.8. There exist three pairs of distinct mobiles (of order 7) that are identical as rooted
trees.
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where ϕ is the Euler totient function [2.7] and ξ−1
M = 0.3061875165 . . . =

(3.2659724710 . . .)−1.
If we label the vertices of a graph distinctly with the integers 1, 2, . . . , n, the cor-

responding enumeration problems often simplify; for example, there are exactly nn−2

labeled free trees and nn−1 labeled rooted trees. For labeled mobiles, the problem
becomes quite interesting, with exponential generating function [31]

M̂(x) =
∞∑

n=1

M̂n

n!
xn

= x + 2

2!
x2 + 9

3!
x3 + 68

4!
x4 + 730

5!
x5 + 10164

6!
x6 + 173838

7!
x7 + · · · ,

M̂(x) = x (1 − ln(1 − M̂(x)) ), M̂n ∼ η̂ ξ̂ nnn−1,

where ξ̂ = e−1(1 − µ)−1 = 1.1574198038 . . . , η̂ = √
µ(1 − µ) = 0.4656386467

. . . , and µ = 0.6821555671 . . . is the unique solution of the equation µ(1 − µ)−1 =
1 − ln(1 − µ).

An increasing tree is a labeled rooted tree for which the labels along any branch
starting at the root are increasing. The root must be labeled 1. Again, for increasing
mobiles, enumeration provides interesting constants [32]:

M̃(x) =
∞∑

n=1

M̃n

n!
xn

= x + 1

2!
x2 + 2

3!
x3 + 7

4!
x4 + 36

5!
x5 + 245

6!
x6 + 2076

7!
x7 + · · · ,

M̃ ′(x) = 1 − ln(1 − M̃(x)) , M̃n ∼ ξ̃ n−1n!

(
1

n2
− 1

n2 ln(n)
+ O

(
1

n2 ln(n)2

))

where ξ̃−1 = −e Ei(−1) = 0.5963473623 . . . = e−1(0.6168878482 . . .)−1 is the
Euler–Gompertz constant [6.2]. See a strengthening of these asymptotics in [31, 33].

5.6.3 Attributes

Thus far, we have discussed only enumeration issues. Otter’s original constants α and β,
however, appear in several asymptotic formulas governing other attributes of trees. By
the degree (or valency) of a vertex, we mean the number of vertices that are adjacent
to it. Given a random rooted tree with n vertices, the expected degree of the root is [34]

θ = 1 +
∞∑

i=1

T

(
1

αi

)
= 2 +

∞∑
j=1

Tj
1

α j (α j − 1)
= 2.1918374031 . . .

as n → ∞, and the variance of the degree of the root is

∞∑
i=1

iT

(
1

αi

)
= 1 +

∞∑
j=1

Tj
2α j − 1

α j (α j − 1)2
= 1.4741726868 . . . .
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By the distance between two vertices, we mean the number of edges in the shortest
path connecting them. The average distance between a vertex and the root is

1

2

(
2π

β

) 1
3

n
1
2 = (1.1365599187 . . .)n

1
2

as n → ∞, and the variance of the distance is

4 − π

4π

(
2π

β

) 2
3

n = (0.3529622229 . . .)n.

Let v be an arbitrary vertex in a random free tree with n vertices and let pm denote
the probability, in the limit as n → ∞, that v is of degree m. Then [35]

p1 =
α−1 +

∞∑
k=1

Dk
α−2k

1 − α−k

1 +
∞∑

k=1

kTk
α−2k

1 − α−k

= 0.4381562356 . . . ,

where D1 = 1 and Dk+1 = ∑n
j=1

(∑
d| j Dd

)
Tk− j+1. Clearly pm → 0 as m → ∞.

More precisely, if

ω =
∞∏

i=1

(
1 − 1

αi

)−Ti+1

= exp

( ∞∑
j=1

1

j

[
α j T (

1

α j
) − 1

])
= 7.7581602911 . . .

then limm→∞ αm pm is given by [36, 37]

(2πβ2)−
1
3 ω = (1.2160045618 . . .)−1ω = 6.3800420942 . . . .

We will need both θ and ω later. See also [38, 39].
Let G be a graph and let A(G) be the automorphism group of G. A vertex v of G is

a fixed point if ϕ(v) = v for every ϕ ∈ A(G). Let q denote the probability, in the limit
as n → ∞, that an arbitrary vertex in a random tree of order n is a fixed point. Harary
& Palmer [7, 40] proved that

q = (2πβ2)−
1
3

(
1 − E

(
1

α2

))
= 0.6995388700 . . . ,

where E(x) = T (x)(1 + F(x) − F(x2)). Interestingly, the same value q applies for
rooted trees as well.

For reasons of space, we omit discussion of constants associated with covering and
packing [41–43], as well as counting maximally independent sets of vertices [44–47],
games [48], and equicolorable trees [49].
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5.6.4 Forests

Let fn denote the number of non-isomorphic forests of order n; then the generating
function [26]

f (x) =
∞∑

n=1

fn xn

= x + 2x2 + 3x3 + 6x4 + 10x5 + 20x6 + 37x7 + 76x8 + 153x9 + 329x10 + · · ·
satisfies

1 + f (x) = exp

( ∞∑
k=1

t(xk)

k

)
, fn = 1

n

n∑
k=1

(∑
d|k

dtd

)
fn−k

and f0 = 1 for the sake only of the latter formula. Palmer & Schwenk [50] showed that

fn ∼ c tn =
(

1 + f

(
1

α

))
tn = (1.9126258077 . . .)tn.

If a forest is chosen at random, then as n → ∞, the expected number of trees in the
forest is

1 +
∞∑

i=1

t

(
1

αi

)
= 3

2
+ 1

2
T

(
1

α2

)
+

∞∑
j=1

t j
1

α j (α j − 1)
= 1.7555101394 . . . .

The corresponding number for rooted trees is θ = 2.1918374031 . . . , a constant that
unsurprisingly we encountered earlier [5.6.3]. The probability of exactly k rooted trees
in a random forest is asymptotically ωα−k = (7.7581602911 . . .)α−k . For free trees,
the analogous probability likewise drops off geometrically as α−k with coefficient

α

c

∞∏
i=1

(
1 − 1

αi

)−ti+1

= α

c
exp

( ∞∑
j=1

1

j

[
α j t

(
1

α j

)
− 1

])
= 3.2907434386 . . . .

Also, the asymptotic probability that two rooted forests of order n have no tree in
common is [51]

∞∏
i=1

(
1 − 1

α2i

)Ti

= exp

(
−

∞∑
j=1

1

j
T

(
1

α2 j

))
= 0.8705112052 . . . .

5.6.5 Cacti and 2-Trees

We now examine graphs that are not trees but are nevertheless tree-like. A cactus is a
connected graph in which no edge lies on more than one (minimal) cycle [52–54]. See
Figure 5.9. If we further assume that every edge lies on exactly one cycle and that all
cycles are polygons with m sides for a fixed integer m, the cactus is called an m-cactus.
By convention, a 2-cactus is simply a tree. Discussions of 3-cacti appear in [4], 4-cacti
in [55], and m-cacti with vertex coloring in [56]; we will not talk about such special



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-05 CB503/Finch-v2.cls December 9, 2004 14:1 Char Count=

306 5 Constants Associated with Enumerating Discrete Structures

Figure 5.9. There exist nine non-isomorphic cacti of order 5.

cases. The generating functions for cacti and rooted cacti are [57]

c(x) =
∞∑

n=1

cn xn

= x + x2 + 2x3 + 4x4 + 9x5 + 23x6 + 63x7 + 188x8 + 596x9 + 1979x10 + · · · ,

C(x) =
∞∑

n=1

Cn xn

= x + x2 + 3x3 + 8x4 + 26x5 + 84x6 + 297x7 + 1066x8 + 3976x9 + · · · ,
and these satisfy [58–60]

C(x) = x exp

[
−

∞∑
k=1

1

k

(
C(xk)2 − 2 + C(x2k)

2(C(xk) − 1)(C(x2k) − 1)
+ 1

)]
,

c(x) = C(x) − 1

2

∞∑
k=1

ϕ(k)

k
ln(1 − C(xk)) + (C(x) + 1)(C(x)2 − 2C(x) + C(x2))

4(C(x) − 1)(C(x2) − 1)
,

with radius of convergence 0.2221510651 . . . . For the labeled case, we have

ĉ(x) =
∞∑

n=1

ĉn

n!
xn

= x + 1

2!
x2 + 4

3!
x3 + 31

4!
x4 + 362

5!
x5 + 5676

6!
x6 + 111982

7!
x7 + · · · ,

Ĉ(x) =
∞∑

n=1

Ĉn

n!
xn

= x + 2

2!
x2 + 12

3!
x3 + 124

4!
x4 + 1810

5!
x5 + 34056

6!
x6 + 783874

7!
x7 + · · · ,
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and these satisfy

Ĉ(x) = x exp

(
Ĉ(x)

2

2 − Ĉ(x)

1 − Ĉ(x)

)
, xĉ′(x) = Ĉ(x),

with radius of convergence 0.2387401436 . . . .
A 2-tree is defined recursively as follows [4]. A 2-tree of rank 1 is a triangle (a graph

with three vertices and three edges), and a 2-tree of rank n ≥ 2 is built from a 2-tree
of rank n − 1 by creating a new vertex of degree 2 adjacent to each of two existing
adjacent vertices. Hence a 2-tree of rank n has n + 2 vertices and 2n + 1 edges. The
generating function for 2-trees is [61]

w(x) =
∞∑

n=0

wn xn

= 1 + x + x2 + 2x3 + 5x4 + 12x5 + 39x6 + 136x7 + 529x8 + 2171x9 + · · ·

w(x) = 1

2

[
W (x) + exp

( ∞∑
k=1

1

2k
(2xk W (x2k) + x2k W (x2k)2 − x2k W (x4k))

)]

+ 1

3
x

(
W (x3) − W (x)3

)
,

where W (x) is the generating function for 2-trees with a distinguished and oriented
edge:

W (x) =
∞∑

n=0

Wn xn

= 1 + x + 3x2 + 10x3 + 39x4 + 160x5 + 702x6 + 3177x7+ 14830x8 + · · ·

W (x) = exp

( ∞∑
k=1

xk W (xk)2

k

)
, wn ∼ ηw n− 5

2 ξ n
w.

Further, w(x) has radius of convergence ξ−1
w = 0.1770995223 . . . =

(5.6465426162 . . .)−1 and

ηw = 1

16ξ
√

π

(
ξ + 2W̃ ′

(
1

ξ

)
W̃

(
1

ξ

)−1
) 3

2

= 0.0948154165 . . . ,

W̃ (x) = e−xW (x)2
W (x).

5.6.6 Mapping Patterns

We studied labeled functional graphs on n vertices in [5.4]. Let us remove the labels
and consider only graph isomorphism classes, called mapping patterns. Observe that
the original Otter constants α and β play a crucial role here. The generating function
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of mapping patterns is [57, 62]

P(x) =
∞∑

n=1

Pn xn

= x + 3x2 + 7x3 + 19x4 + 47x5 + 130x6 + 343x7 + 951x8 + 2615x9 + · · · ,

1 + P(x) =
∞∏

k=1

(
1 − T (xk)

)−1
, Pn ∼ ηP n− 1

2 αn,

where

ηP = 1

2π

(
2π

β

) 1
3 ∞∏

i=2

(
1 − T (

1

αi
)

)−1

= 0.4428767697 . . .

= (1.2241663491 . . .)(4π2β)−
1
3 .

From this, it follows that the expected length of an arbitrary cycle in a random mapping
pattern is

1

2

(
2π

β

) 1
3

n
1
2 = (1.1365599187 . . .)n

1
2 , n → ∞

(an expression that we saw in [5.6.3], by coincidence) and the asymptotic probability
that the mapping pattern is connected is

1

2ηP
n− 1

2 = (1.1289822228 . . .)n− 1
2 .

If we further restrict attention to connected mapping patterns, the associated generating
function is

K (x) =
∞∑

n=1

Kn xn

= x + 2x2 + 4x3 + 9x4 + 20x5 + 51x6 + 125x7 + 329x8 + 862x9 + · · ·

K (x) = −
∞∑
j=1

ϕ( j)

j
ln(1 − T (x j )), Kn ∼ 1

2
n−1αn.

It follows that the expected length of the (unique) cycle in a random connected mapping
pattern is

1

π

(
2π

β

) 1
3

n
1
2 = (0.7235565167 . . .)n

1
2 , n → ∞,

which is less than before. A comparison between such statistics for both unlabeled and
labeled cases (the numerical results are indeed slightly different) appears in [62]. See
[63, 64] for more recent work in this area.
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5.6.7 More Graph Varieties

A graph G is an interval graph if it can be represented as follows: Each vertex of G
corresponds to a subinterval of the real line in such a way that two vertices are adjacent
if and only if their corresponding intervals have nonempty intersection. It is a unit
interval graph if the intervals can all be chosen to be of length 1. The generating
function of unit interval graphs, for example, is [65, 66]

I (x) =
∞∑

n=1

In xn

= x + 2x2 + 4x3 + 9x4 + 21x5 + 55x6 + 151x7 + 447x8 + 1389x9 + · · · ,

1 + I (x) = exp

( ∞∑
k=1

ψ(xk)

k

)
, ψ(x) = 1 + 2x − √

1 − 4x
√

1 − 4x2

4
√

1 − 4x2
,

with asymptotics

In ∼ 1

8κ
√

π
n− 3

2 4n, κ = exp

(
−

√
3

4

)
exp

(
−

∞∑
j=2

ψ(4− j )

j

)
= 0.6231198963 . . . .

Interval graphs have found applications in genetics and other fields [67, 68].
A graph is 2-regular if every vertex has degree two. The number Jn of 2-regular

graphs on n vertices is equal to the number of partitions of n into parts ≥ 3, whereas
the exponential generating function of 2-regular labeled graphs is [69]

Ĵ (x) =
∞∑

n=0

Ĵ n

n!
xn = 1 + 1

3!
x3 + 3

4!
x4 + 12

5!
x5 + 70

6!
x6 + · · ·

= 1√
1 − x

exp

(
−1

2
x − 1

4
x2

)
;

therefore

Jn ∼ π2

12
√

3n2
exp

(
π

√
2n

3

)
, Ĵ n ∼ √

2e− 3
4

(n

e

)n
.

The latter has an interesting geometric interpretation [14, 70]. Given n planar lines in
general position with

(n
2

)
intersecting points, a cloud of size n is a (maximal) set of n

intersecting points, no three of which are collinear. The number of clouds of size n is
clearly Ĵ n .

A directed graph or digraph is a graph for which the edges are ordered pairs
of distinct vertices (rather than unordered pairs). Note that loops are automatically
disallowed. An acyclic digraph further contains no directed cycles; in particular, it
has no multiple parallel edges. The (transformed) exponential generating function of
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labeled acyclic digraphs is [65, 71–74]

A(x) =
∞∑

n=0

An

n!2(n
2)

xn = 1 + x + 3

2! · 2
x2 + 25

3! · 23
x3 + 543

4! · 26
x4 + 29281

5! · 210
x5 + · · · ,

A′(x) = A(x)2 A( 1
2 x)−1, An ∼ n!2(n

2)

ηA ξ n
A

,

where ξA = 1.4880785456 . . . is the smallest positive zero of the function

λ(x) =
∞∑

n=0

(−1)n

n!2(n
2)

xn = A(x)−1, λ′(x) = −λ( 1
2 x),

and ηA = ξAλ(ξA/2) = 0.5743623733 . . . = (1.7410611252 . . .)−1. It is curious that
the function λ(−x) was earlier studied by Mahler [75] with regard to enumerating
partitions of integers into powers of 2. See [76, 77] for discussion of the unlabeled
acyclic digraph analog.

5.6.8 Data Structures

To a combinatorialist, the phrase “(strongly) binary tree with 2n + 1 vertices” means an
isomorphism class of trees. To a computer scientist, however, the same phrase virtually
always includes the word “ordered,” whether stated explicitly or not. Hence the phrase
“random binary tree” is sometimes ambiguous in the literature: The sample space has
Bn elements for the former person but

(2n
n

)
/(n + 1) elements for the latter! We cannot

hope here to survey the role of trees in computer algorithms, only to provide a few
constants.

A leftist tree of size n is an ordered binary tree with n leaves such that, in any
subtree σ , the leaf closest to the root of σ is in the right subtree of σ . The generating
function of leftist trees is [6, 65, 78, 79]

L(x) =
∞∑

n=0

Ln xn

= x + x2 + x3 + 2x4 + 4x5 + 8x6 + 17x7 + 38x8 + 87x9 + 203x10 + · · ·

L(x) = x + 1

2
L(x)2 + 1

2

∞∑
m=1

lm(x)2 =
∞∑

m=1

lm(x),

where the auxiliary generating functions lm(x) satisfy

l1(x) = x, l2(x) = x L(x), lm+1(x) = lm(x)

(
L(x) −

m−1∑
k=1

lk(x)

)
, m ≥ 2.

It can be proved (with difficulty) that

Ln ∼ (0.2503634293 . . .) · (2.7494879027 . . .)nn− 3
2 .

Leftist trees are useful in certain sorting and merging algorithms.
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A 2,3-tree of size n is a rooted ordered tree with n leaves satisfying the following:

• Each non-leaf vertex has either 2 or 3 successors.
• All of the root-to-leaf paths have the same length.

The generating function of 2,3-trees (no relation to 2-trees!) is [65, 80, 81]

Z (x) =
∞∑

n=0

Zn xn

= x + x2 + x3 + x4 + 2x5 + 2x6 + 3x7 + 4x8 + 5x9 + 8x10 + 14x11 + · · ·

Z (x) = x + Z (x2 + x3), Zn =
�n/2�∑

k=
n/3�

( k
3k−n

)
Zk ∼ ϕnn−1 f (ln(n)),

where ϕ is the Golden mean [1.2] and f (x) is a nonconstant, positive, continuous func-
tion that is periodic with period ln(4 − ϕ) = 0.867 . . . , has mean (ϕ ln(4 − ϕ))−1 =
0.712 . . . , and oscillates between 0.682 . . . and 0.806 . . . . These are also a particular
type of B-trees. A similar analysis [82] uncovers the asymptotics of what are known as
AVL-trees (or height-balanced trees). Such trees support efficient database searches,
deletions, and insertions; other varieties are too numerous to mention.

If τ is an ordered binary tree, then its height and register functions are recursively
defined by [83]

ht(τ ) =
{

0 if τ is a point,
1 + max(ht(τL ), ht(τR)) otherwise,

rg(τ ) =



0 if τ is a point,
1 + rg(τL ) if rg(τL ) = rg(τR),
max(rg(τL ), rg(τR)) otherwise,

where τL and τR are the left and right subtrees of the root. That is, ht(τ ) is the number
of edges along the longest branch from the root, whereas rg(τ ) is the minimum number
of registers needed to evaluate the tree (thought of as an arithmetic expression). If we
randomly select a binary tree τ with 2n + 1 vertices, then the asymptotics of E(ht(τ ))
involve 2

√
πn as mentioned in [1.4], and those of E(rg(τ )) involve ln(n)/ ln(4) plus a

zero mean oscillating function [2.16]. Also, define ym(τ ) to be the number of maximal
subtrees of τ having register function exactly 1 less than rg(τ ). Prodinger [84], building
upon the work of Yekutiele & Mandelbrot [85], proved that E(ym(τ )) is asymptotically

2G

π ln(2)
+ 5

2
= 3.3412669407 . . .

plus a zero mean oscillating function, where G is Catalan’s constant [1.7]. This is also
known as the bifurcation ratio at the root, which quantifies the hierarchical complexity
of more general branching structures.
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5.6.9 Galton–Watson Branching Process

Thus far, by “random binary trees,” it is meant that we select binary trees with n vertices
from a population endowed with the uniform probability distribution. The integer n is
fixed.

It is also possible, however, to grow binary trees (rather than to merely select them).
Fix a probability 0 < p < 1 and define recursively a (strongly) binary tree τ in terms of
left and right subtrees of the root as follows: Take τL = ∅ with probability 1 − p, and
independently take τR = ∅ with probability 1 − p. It can be shown [86–88] that this
process terminates, that is, τ is a finite tree, with extinction probability 1 if p ≤ 1/2
and 1/p − 1 if p > 1/2. Of course, the number of vertices N is here a random variable,
called the total progeny.

Much can be said about the Bienaymé–Galton–Watson process (which is actually
more general than described here). We focus on just one detail. Let Nk denote the
number of vertices at distance k from the root, that is, the size of the k th generation.
Consider the subcritical case p < 1/2. Let ak denote the probability that Nk = 0; then
the sequence a0, a1, a2, . . . obeys the quadratic recurrence [6.10]

a0 = 0, ak = (1 − p) + pa2
k−1 for k ≥ 1, lim

k→∞
ak = 1.

What can be said about the convergence rate of {ak}? It can be proved that

C(p) = lim
k→∞

1 − ak

(2p)k
=

∞∏
l=0

1 + al

2
,

which has no closed-form expression in terms of p, as far as is known. This is over and
beyond the fact, of greatest interest to us here, that P(Nk > 0) ∼ C(p)(2p)k for 0 <

p < 1/2. Other interesting parameters are the moment of extinction min{k : Nk = 0}
or tree height, and the maximal generation size max{Nk : k ≥ 0} or tree width.

5.6.10 Erdös–Rényi Evolutionary Process

Starting with n initially disconnected vertices, define a random graph by successively
adding edges between pairs of distinct points, chosen uniformly from

(n
2

)
candidates

without replacement. Continue with this process until no candidate edges are left
[89–92].

At some stage of the evolution, a complex component emerges, that is, the first
component possessing more than one cycle. It is remarkable that this complex com-
ponent will usually remain unique throughout the entire process, and the probability
that this is true is 5π/18 = 0.8726 . . . as n → ∞. In other words, the first component
that acquires more edges than vertices is quite likely to become the giant component
of the random graph. The probability that exactly two complex components emerge
is 50π/1296 = 0.1212 . . . , but the probability (> 0.9938 . . .) that the evolving graph
never has more than two complex components at any time is not precisely known [93].

There are many related results, but we mention only one. Start with an m × n
rectangular grid of rooms, each with four walls. Successively remove interior walls in a
random manner such that, at some step in the procedure, the associated graph (with all
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mn rooms as vertices and all neighboring pairs of rooms with open passage as edges)
becomes a tree. Stop when this condition is met; the result is a random maze [94].
The difficulty lies in detecting whether the addition of a new edge creates an unwanted
cycle. An efficient way of doing this (maintaining equivalence classes that change over
time) is found in QF and QFW, two of a class of union-find algorithms in computer
science. Exact performance analyses of QF and QFW appear in [95–97], using random
graph theory and a variant of the Erdös-Rényi process.
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5.7 Lengyel’s Constant

5.7.1 Stirling Partition Numbers

Let S be a set with n elements. The set of all subsets of S has 2n elements. By a partition
of S we mean a disjoint set of nonempty subsets (called blocks) whose union is S. The
set of partitions of S that possess exactly k blocks has Sn,k elements, where Sn,k is a
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Stirling number of the second kind. The set of all partitions of S has Bn elements,
where Bn is a Bell number:

Bn =
n∑

k=1

Sn,k = 1

e

∞∑
j=0

j n

j!
= dn

dxn
exp (ex − 1)

∣∣∣∣
x=0

.

For example, S4,1 = 1, S4,2 = 7, S4,3 = 6, S4,4 = 1, and B4 = 15. More generally,
Sn,1 = 1, Sn,2 = 2n−1 − 1, and Sn,3 = 1

2 (3n−1 + 1) − 2n−1. The following recurrences
are helpful [1–4]:

Sn,0 =
{

1 if n = 0,

0 if n ≥ 1,
Sn,k = kSn−1,k + Sn−1,k−1 if n ≥ k ≥ 1,

B0 = 1, Bn =
n−1∑
k=0

(n−1
k

)
Bk,

and corresponding asymptotics are discussed in [5–9].

5.7.2 Chains in the Subset Lattice of S

If U and V are subsets of S, write U ⊂ V if U is a proper subset of V . This endows
the set of all subsets of S with a partial ordering; in fact, it is a lattice with maximum
element S and minimum element ∅. The number of chains ∅ = U0 ⊂ U1 ⊂ · · · ⊂
Uk−1 ⊂ Uk = S of length k is k!Sn,k . Hence the number of all chains from ∅ to S is
[1, 6, 10]

n∑
k=0

k!Sn,k =
∞∑
j=0

j n

2 j+1
= 1

2
Li−n

(
1

2

)
= dn

dxn

1

2 − ex

∣∣∣∣
x=0

∼ n!

2

(
1

ln(2)

)n+1

,

where Lim(x) is the polylogarithm function. Wilf [10] marveled at how accurate this
asymptotic approximation is.

If we further insist that the chains are maximal, equivalently, that additional proper
insertions are impossible, then the number of such chains is n! A general technique due
to Doubilet, Rota & Stanley [11], involving what are called incidence algebras, can be
used to obtain the two aforementioned results, as well as to enumerate chains within
more complicated posets [12].

As an aside, we give a deeper application of incidence algebras: to enumerating
chains of linear subspaces within finite vector spaces [6]. Define the q-binomial
coefficient and q-factorial by

(n
k

)
q

=

n∏
j=1

(q j − 1)

k∏
j=1

(q j − 1) ·
n−k∏
j=1

(q j − 1)

,

[n!]q = (1 + q)(1 + q + q2) · · · (1 + q + · · · + qn−1),
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where q > 1. Note the special case in the limit as q → 1+. Consider the n-dimensional
vector space F

n
q over the finite field Fq , where q is a prime power [12–16]. The number

of k-dimensional linear subspaces of F
n
q is

(n
k

)
q

and the total number of linear subspaces

of F
n
q is asymptotically ceqn2/4 if n is even and coqn2/4 if n is odd, where [17, 18]

ce =

∞∑
k=−∞

q−k2

∞∏
j=1

(1 − q− j )

, co =

∞∑
k=−∞

q−(k+ 1
2 )2

∞∏
j=1

(1 − q− j )

.

We give a recurrence for the number χn of chains of proper subspaces (again, ordered
by inclusion):

χ1 = 1, χn = 1 +
n−1∑
k=1

(n
k

)
q
χk for n ≥ 2.

For the asymptotics, it follows that [6, 17]

χn ∼ 1

ζ ′
q (r )r

(
1

r

)n n∏
j=1

(q j − 1) = A

rn
(q − 1)(q2 − 1)(q3 − 1) · · · (qn − 1),

where ζq (x) is the zeta function for the poset of subspaces:

ζq (x) =
∞∑

k=1

xk

(q − 1)(q2 − 1)(q3 − 1) · · · (qk − 1)

and r > 0 is the unique solution of the equation ζq (r ) = 1. In particular, when q = 2,
we have ce = 7.3719688014 . . . , co = 7.3719494907 . . . , and

χn ∼ A

rn
· Q · 2

n(n+1)
2 ,

where r = 0.7759021363 . . . , A = 0.8008134543 . . . , and

Q =
∞∏

k=1

(
1 − 1

2k

)
= 0.2887880950 . . .

is one of the digital search tree constants [5.14]. If we further insist that the chains are
maximal, then the number of such chains is [n!]q .

5.7.3 Chains in the Partition Lattice of S

We have discussed chains in the poset of subsets of the set S. There is, however, another
poset associated naturally with S that is less familiar and more difficult to study: the
poset of partitions of S. Here is the partial ordering: Assuming P and Q are two
partitions of S, then P < Q if P �= Q and if p ∈ P implies that p is a subset of q for
some q ∈ Q. In other words, P is a refinement of Q in the sense that each of its blocks
fits within a block of Q. For arbitrary n, the poset is, in fact, a lattice with minimum
element m = {{1}, {2}, . . . , {n}} and maximum element M = {{1, 2, . . . , n}}.
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{{1, 2}, {3}} {{1, 3}, {2}} {{2, 3}, {1}}

{{1, 2, 3}}

{{1}, {2}, {3}}

Figure 5.10. The number of chains m < P1 < M in the partition lattice of the set {1, 2, 3} is
three.

What is the number of chains m = P0 < P1 < P2 < · · · < Pk−1 < Pk = M of
length k in the partition lattice of S? In the case n = 3, there is only one chain for k = 1,
specifically, m < M . For k = 2, there are three such chains as pictured in Figure 5.10.

Let Zn denote the number of all chains from m to M of any length; clearly Z1 =
Z2 = 1 and, by the foregoing, Z3 = 4. We have the recurrence

Zn =
n−1∑
k=1

Sn,k Zk

and exponential generating function

Z (x) =
∞∑

n=1

Zn

n!
xn, 2Z (x) = x + Z (ex − 1),

but techniques of Doubilet, Rota & Stanley and Bender do not apply here to give
asymptotic estimates of Zn . The partition lattice is the first natural lattice without
the structure of a binomial lattice, which implies that well-known generating function
techniques are no longer helpful.

Lengyel [19] formulated a different approach to prove that the quotient

rn = Zn

(n!)2(2 ln(2))−nn−1−ln(2)/3

must be bounded between two positive constants as n → ∞. He presented numerical
evidence suggesting that rn tends to a unique value. Babai & Lengyel [20] then proved a
fairly general convergence criterion that enabled them to conclude that � = limn→∞ rn

exists and � = 1.09 . . . . The analysis in [19] involves intricate estimates of the Stirling
numbers; in [20], the focus is on nearly convex linear recurrences with finite retardation
and active predecessors.

In an ambitious undertaking, Flajolet & Salvy [21] computed � =
1.0986858055 . . . . Their approach is based on (complex fractional) analytic iterates of
exp(x) − 1 and much more, but unfortunately their paper is presently incomplete. See
[5.8] for related discussion of the Takeuchi-Prellberg constant.

By way of contrast, the number of maximal chains is given exactly by n!(n −
1)!/2n−1 and Lengyel [19] observed that Zn exceeds this by an exponentially large
factor.
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5.7.4 Random Chains

Van Cutsem & Ycart [22] examined random chains in both the subset and partition
lattices. It is remarkable that a common framework exists for studying these and that,
in a certain sense, the limiting distributions of both types of chains are identical. We
mention only one consequence: If κn = k/n is the normalized length of the random
chain, then

lim
n→∞ E(κn) = 1

2 ln(2)
= 0.7213475204 . . .

and a corresponding Central Limit Theorem also holds.
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5.8 Takeuchi–Prellberg Constant

In 1978, Takeuchi defined a triply recursive function [1, 2]

t(x, y, z) =
{

y if x ≤ y,

t(t(x − 1, y, z), t(y − 1, z, x), t(z − 1, x, y)) otherwise

that is useful for benchmark testing of programming languages. The value of t(x, y, z)
is of no practical significance; in fact, McCarthy [1, 2] observed that the function can
be described more simply as

t(x, y, z) =



y if x ≤ y,{
z if y ≤ z,
x otherwise,

otherwise.

The interesting quantity is not t(x, y, z), but rather T (x, y, z), defined to be the
number of times the otherwise clause is invoked in the recursion. We assume that the
program is memoryless in the sense that previously computed results are not available at
any time in the future. Knuth [1, 3] studied the Takeuchi numbers Tn = T (n, 0, n + 1):

T0 = 0, T1 = 1, T2 = 4, T3 = 14, T4 = 53, T5 = 223, . . .

and deduced that

en ln(n)−n ln(ln(n))−n < Tn < en ln(n)−n+ln(n)

for all sufficiently large n. He asked for more precise asymptotic information about the
growth of Tn .

Starting with Knuth’s recursive formula for the Takeuchi numbers

Tn+1 =
n∑

k=0

[(n+k
n

) − (n+k
n+1

)]
Tn−k +

n−1∑
k=1

(2k
k

) 1

k + 1

and the somewhat related Bell numbers [5.7]

Bn+1 =
n∑

k=0

(n
k

)
Bn−k, B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, . . . ,

Prellberg [4] observed that the following limit exists:

c = lim
n→∞

Tn

Bn exp
(

1
2 W 2

n

) = 2.2394331040 . . . ,

where Wn exp(Wn) = n are special values of the Lambert W function [6.11].
Since both the Bell numbers and the W function are well understood, this provides

an answer to Knuth’s question. The underlying theory is still under development, but
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Prellberg’s numerical evidence is persuasive. Recent theoretical work [5] relates the
constant c to an associated functional equation,

T (z) =
∞∑

n=0

Tnzn, T (z) = T (z − z2)

z
− 1

(1 − z)(1 − z + z2)
,

in a manner parallel to how Lengyel’s constant [5.7] is obtained.
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5.9 Pólya’s Random Walk Constants

Let L denote the d-dimensional cubic lattice whose vertices are precisely all integer
points in d-dimensional space. A walk ω on L , beginning at the origin, is an infinite
sequence of vertices ω0, ω1, ω2, ω3, . . . with ω0 = 0 and |ω j+1 − ω j | = 1 for all j .
Assume that the walk is random and symmetric in the sense that, at each time step,
all 2d directions of possible travel have equal probability. What is the likelihood that
ωn = 0 for some n > 0? That is, what is the return probability pd?

Pólya [1–4] proved the remarkable fact that p1 = p2 = 1 but pd < 1 for d > 2. Mc-
Crea & Whipple [5], Watson [6], Domb [7] and Glasser & Zucker [8] each contributed
facets of the following evaluations of p3 = 1 − 1/m3 = 0.3405373295 . . . , where the
expected number m3 of returns to the origin, plus one, is

m3 = 3

(2π )3

π∫
−π

π∫
−π

π∫
−π

1

3 − cos(θ ) − cos(ϕ) − cos(ψ)
dθ dϕ dψ

= 12

π2

(
18 + 12

√
2 − 10

√
3 − 7

√
6
)

K
[
(2 −

√
3)(

√
3 −

√
2)

]2

= 3
(

18 + 12
√

2 − 10
√

3 − 7
√

6
) [

1 + 2
∞∑

k=1

exp(−
√

6πk2)

]4

=
√

6

32π3
�

(
1

24

)
�

(
5

24

)
�

(
7

24

)
�

(
11

24

)
= 1.5163860591 . . . .

Hence the escape probability for a random walk on the three-dimensional cubic lattice
is 1 − p3 = 0.6594626704 . . . . In these expressions, K denotes the complete elliptic
integral of the first kind [1.4.6] and � denotes the gamma function [1.5.4]. Return and
escape probabilities can also be computed for the body-centered or face-centered cubic
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Table 5.1. Expected Number of Returns and Return
Probabilities

d md pd

4 1.2394671218. . . 0.1932016732. . .

5 1.1563081248. . . 0.1351786098. . .

6 1.1169633732. . . 0.1047154956. . .

7 1.0939063155. . . 0.0858449341. . .

8 1.0786470120. . . 0.0729126499. . .

lattices (as opposed to the simple cubic lattice), but we will not discuss these or other
generalizations [9].

What can be said about pd for d > 3? Closed-form expressions do not appear to
exist here. Montroll [10–12] determined that pd = 1 − 1/md , where

md = d

(2π )d

π∫
−π

π∫
−π

· · ·
π∫

−π

(
d −

d∑
k=1

cos(θk)

)−1

dθ1 dθ2 · · · dθd =
∞∫
0

e−t

(
I0

(
t

d

))d

dt

and I0(x) denotes the zeroth modified Bessel function [3.6]. The corresponding nu-
merical approximations, as functions of d, are listed in Table 5.1 [10, 13–17].

What is the length of travel required for a return? Let Ud,l,n be the number of d-
dimensional n-step walks that start from the origin and end at a lattice point l. Let Vd,l,n

be the number of d-dimensional n-step walks that start from the origin and reach the
lattice point l �= 0 for the first time at the end (second time if l = 0). Then the generating
functions

Ud,l(x) =
∞∑

n=0

Ud,l,n

(2d)n
xn, Vd,l(x) =

∞∑
n=0

Vd,l,n

(2d)n
xn

satisfy Vd,l(x) = Ud,l(x)/Ud,0(x) if l �= 0, Vd,l(x) = 1 − 1/Ud,0(x) if l = 0, and
Ud,0(1) = md , Vd,0(1) = pd . For example,

U1,l(x) =
∞∑

n=0

1

2n

(
n

l+n
2

)
xn, U2,l(x) =

∞∑
n=0

1

4n

(
n

l1+l2+n
2

)(
n

l1−l2+n
2

)
xn,

where we agree to set the binomial coefficients equal to 0 if l + n is odd for d = 1 or
l1 + l2 + n is odd for d = 2. If d = 3, then an = U3,0,2n satisfies [18]

an =
(

2n

n

) n∑
k=0

(
n

k

)2(2k

k

)
=

n∑
k=0

(2n)!(2k)!

(n − k)!2k!4
,

∞∑
n=0

an

(2n)!
y2n = I0(2y)3,

(n + 2)3an + 2 − 2(2n + 3)(10n2 + 30n + 23)an + 1 + 36(n + 1)(2n + 1)(2n + 3)an = 0,

and if d = 4, then bn = U4,0,2n satisfies [19]

(n + 2)4bn+2 − 4(2n + 3)2(5n2 + 15n + 12)bn+1

+ 256(n + 1)2(2n + 1)(2n + 3)bn = 0.
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For any d, the mean first-passage time to arrive at any lattice point l is infinite (in spite
of the fact that the associated probability Vd,l(1) = 1 for d = 1 or 2). There are several
alternative ways of quantifying the length of required travel. Using our formulas for
Vd,l(x), the median first-passage times are 2-4, 1-3, 6-8, and 17-19 steps for l = 0, 1,
2, and 3 when d = 1, and 2-4, 25-27, and 520-522 steps for l = (0, 0), (1, 0), and (1, 1)
when d = 2. Hughes [3, 20] examined the conditional mean time to return to the origin
(conditional upon return eventually occurring). Also, for d = 1, the mean time for the
earliest of three independent random walkers to return to the origin is finite and has
value [6, 21–23]

2
∞∑

n=0

1

26n

(
2n

n

)3

= 2

π3

π∫
0

π∫
0

π∫
0

1

1 − cos(θ ) cos(ϕ) cos(ψ)
dθ dϕ dψ

= 8

π2
K

(
1√
2

)2

= 1

2π3
�

(
1

4

)4

= 2(1.3932039296 . . .),

whereas for d = 2, the mean time for the earliest of an arbitrary number of independent
random walkers is infinite. More on multiple random walkers, of both the friendly and
vicious kinds, is found in [24].

It is known that

Ud,l(x) = d

(2π )d

π∫
−π

π∫
−π

· · ·
π∫

−π

(
d − x

d∑
k=1

cos(θk)

)−1

× exp

(
i

d∑
k=1

θklk

)
dθ1 dθ2 · · · dθd ,

which can be numerically evaluated for small d. Here are some sample probabilities
[11, 16] that a three-dimensional walk reaches a point l:

V3,l(1) = U3,l(1)

m3
=




0.3405373295 . . . if l = (1, 0, 0),
0.2183801414 . . . if l = (1, 1, 0),
0.1724297877 . . . if l = (1, 1, 1).

An asymptotic expansion for these probabilities is [11, 12]

V3,l(1) = 3

2πm3|l|
[

1 + 1

8|l|2
(

−3 + 5(l4
1 + l4

2 + l4
3)

|l|2 + · · ·
)]

∼ 0.3148702313 . . .

|l|
and is valid as |l|2 = l2

1 + l2
2 + l2

3 → ∞.
Let Wd,n be the average number of distinct vertices visited during a d-dimensional

n-step walk. It can be shown that [25–28]

Wd (x) =
∞∑

n=0

Wd,n xn = 1

(1 − x)2Ud,0(x)
, Wd,n ∼




√
8n

π
if d = 1,

πn

ln(n)
if d = 2,

(1 − p3)n if d = 3
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as n → ∞. Higher-order asymptotics for W3,n are possible using the expansion
[11, 12, 29–31]

U3,0(x) = m3 − 3
√

3

2π
(1 − x2)

1
2 + c(1 − x2) − 3

√
3

4π
(1 − x2)

3
2 + · · · ,

where x → 1− and

c = 9

32

(
m3 + 6

π2m3

)
= 0.5392381750 . . . .

Other parameters, for example, the average growth of distance from the origin [32],

lim
n→∞

1

ln(n)

n∑
j=1

j−1/2

1 + |ω j | = λ1 with probability 1, if d = 1,

lim
n→∞

1

ln(n)2

n∑
j=1

1

1 + |ω j |2 = λ2 with probability 1, if d = 2,

lim
n→∞

1

ln(n)

n∑
j=1

1

1 + |ω j |2 = λd with probability 1, if d ≥ 3,

are more difficult to analyze. The constants λd are known only to be finite and positive.
For a one-dimensional n-step walk ω, define M+

n to be the maximum value of ω j and
M−

n to be the maximum value of −ω j . Then M+
n and M−

n each follow the half-normal
distribution [6.2] in the limit as n → ∞, and [33, 34]

lim
n→∞ E

(
n− 1

2 M+
n

)
=

√
2

π
= lim

n→∞ E
(

n− 1
2 M−

n

)
.

Further, if T +
n is the smallest value of j for which ω j = M+

n and T −
n is the smallest

value of k for which −ωk = M−
n , then the arcsine law applies:

lim
n→∞ P

(
n−1T +

n < x
) = 2

π
arcsin

√
x = lim

n→∞ P
(
n−1T −

n < x
)
,

which implies that a one-dimensional random walk tends to be either highly negative
or highly positive (not both). Such detailed information about d-dimensional walks is
not yet available. Define also τd,r to be the smallest value of j for which |ω j | ≥ r , for
any positive integer r . Then [35]

τ1,r = r2, τ2,2 = 9
2 , τ2,3 = 135

13 , τ2,4 = 11791
668 ,

but a pattern is not evident. What precisely can be said about τd,r as r → ∞?
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As a computational aside, we mention a result of Odlyzko’s [36–38]: Any algorithm
that determines M+

n (or M−
n ) exactly must examine at least (A + o(1))

√
n of the ω j

values on average, where A = √
8/π ln(2) = 1.1061028674 . . . .

On the one hand, the waiting time Nn for a one-dimensional random walk to hit a
new vertex, not visited in the first n steps, satisfies [39]

limsup
n→∞

Nn

n ln(ln(n))2
= 1

π2
with probability 1.

On the other hand, if Fn denotes the set of vertices that are maximally visited by the
random walk up to step n, called favorite sites, then |Fn| ≥ 4 only finitely often, with
probability 1 [40].

For two-dimensional random walks, we may define Fn analogously. The number of
visits to a selected point in Fn within the first n steps is ∼ ln(n)2/π with probability 1,
as n → ∞. This can be rephrased as the asymptotic number of times a drunkard drops
by his favorite watering hole [41, 42]. Dually, the length of time Cr required to totally
cover all vertices of the r × r torus (square with opposite sides identified) satisfies [43]

lim
r→∞ P

(∣∣∣∣ Cr

r2 ln(r )2
− 4

π

∣∣∣∣ < ε

)
= 1

for every ε > 0 (convergence in probability). This solves what is known as the “white
screen problem” [44].

If a three-dimensional random walk ω is restricted to the region x ≥ y ≥ z, then the
analogous series coefficients are

ān =
n∑

k=0

(2n)!(2k)!

(n − k)!(n + 1 − k)!k!2(k + 1)!2
,

and from this we have [45]

m̄3 =
∞∑

n=0

ān

62n
= 1.0693411205 . . . , p̄3 = 1 − 1

m̄3
= 0.0648447153 . . .

characterizing the return. What can be said concerning other regions, for example, a
half-space, quarter-space, or octant?

Here is one variation. Let X1, X2, X3, . . . be independent normally distributed ran-
dom variables with mean µ and variance 1. Consider the partial sums Sj = ∑ j

k=1 Xk ,
which constitute a random walk on the real line (rather than the one-dimensional lattice)
with Gaussian increments (rather than Bernoulli increments). There is an enormous
literature on {Sj }, but we shall mention only one result. Let H be the first positive value
of Sj , called the first ladder height of the process; then the moments of H when µ = 0
are [46]

E0(H ) = 1√
2
, E0(H 2) = −ζ ( 1

2 )√
π

= √
2ρ = √

2(0.5825971579 . . .)
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and, for arbitrary µ in a neighborhood of 0,

Eµ(H ) = 1√
2

exp

[
− µ√

2π

∞∑
k=0

ζ ( 1
2 − k)

k!(2k + 1)

(
−µ2

2

)k
]

,

where ζ (x) is the Riemann zeta function [1.6]. Other occurrences of the interesting
constant ρ in the statistical literature are in [47–50].

Here is another variation. Let Y1, Y2, Y3, . . . be independent Uniform [−1, 1] ran-
dom variables, S0 = 0, and Sj = ∑ j

k=1 Yk . Then the expected maximum value of {S0,
S1, . . . , Sn} is [51]

E

(
max

0≤ j≤n
S j

)
=

√
2

3π
n

1
2 + σ + 1

5

√
2

3π
n− 1

2 + O
(

n− 3
2

)

as n → ∞, where σ = −0.2979521902 . . . is given by

σ = ζ ( 1
2 )√

6π
+ ζ ( 3

2 )

20
√

6π
+

∞∑
k=1

(
tk
k

− k− 1
2√

6π
− k− 3

2

20
√

6π

)

and

tk = 2(−1)k

(k + 1)!

∑
k/2≤ j≤k

(−1) j

(
k

j

) (
j − k

2

)k+1

.

A deeper connection between ζ (x) and random walks is discussed in [52].

5.9.1 Intersections and Trappings

A walk ω on the lattice L is self-intersecting if ωi = ω j for some i < j , and the
self-intersection time is the smallest value of j for which this happens. Computing
self-intersection times is more difficult than first-passage times since the entire history
of the walk requires memorization. If d = 1, then clearly the mean self-intersection
time is 3. If d = 2, the mean self-intersection time is [53]

2 · 4

42
+ 3 · 12

43
+ 4 · 44

44
+ 5 · 116

45
+ · · · =

∞∑
n=2

n(4cn−1 − cn)

4n

= c1

2
+

∞∑
n=2

cn

4n
= 4.5860790989 . . . ,

where the sequence {cn} is defined in [5.10]. When n is large, no exact formula for
evaluating cn is known, unlike the sequences {an}, {ān}, and {bn} discussed earlier.
We are, in this example, providing foreshadowing of difficulties to come later. See the
generalization in [54, 55].

A walk ω is self-trapping if, for some k, ωi �= ω j for all i < j ≤ k and ωk is com-
pletely surrounded by previously visited vertices. If d = 2, there are eight self-trapping
walks when k = 7 and sixteen such walks when k = 8. A Monte Carlo simulation in
[56, 57] gave a mean self-trapping time of approximately 70.7 . . . .
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Two walks ω and ω′ intersect if ωi = ω′
j for some nonzero i and j . The probability

qn that two n-step independent random walks never intersect satisfies [58–61]

ln(qn) ∼



− 5
8 ln(n) if d = 2,

−ξ ln(n) if d = 3,

− 1
2 ln(ln(n)) if d = 4

as n → ∞, where the exponent ξ is approximately 0.29 . . . (again obtained by simula-
tion). For each d ≥ 5, it can be shown [62] that limn→∞ qn lies strictly between 0 and
1. Further simulation [63] yields q5 = 0.708 . . . and q6 = 0.822 . . . , and we shall refer
to these in [5.10].

5.9.2 Holonomicity

A holonomic function (in the sense of Zeilberger [45, 64, 65]) is a solution f (z) of a
linear homogeneous differential equation

f (n)(z) + r1(z) f (n−1)(z) + · · · + rn−1(z) f ′(z) + rn(z) f (z) = 0,

where each rk(z) is a rational function with rational coefficients. Regular holonomic
constants are values of f at algebraic points z0 where each rk is analytic; f can
be proved to be analytic at z0 as well. Singular holonomic constants are values of
f at algebraic points z0 where each rk has, at worst, a pole of order k at z0 (called
Fuchsian or “regular” singularities [66–68]). The former include π , ln(2), and the
tetralogarithm Li4(1/2); the latter include Apéry’s constant ζ (3), Catalan’s constant G,
and Pólya’s constants pd , d > 2. Holonomic constants of either type fall into the class
of polynomial-time computable constants [69]. We merely mention a somewhat related
theory of EL numbers due to Chow [70].
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[60] G. Slade, Random walks, Amer. Scientist, v. 84 (1996) n. 2, 146–153.
[61] G. F. Lawler, O. Schramm, and W. Werner, Values of Brownian intersection exponents. II:

Plane exponents, Acta Math. 187 (2001) 275–308; math.PR/0003156.
[62] G. F. Lawler, A self-avoiding random walk, Duke Math. J. 47 (1980) 655–693; MR

81j:60081.
[63] T. Prellberg, Intersection probabilities for high dimensional walks, unpublished note (2002).
[64] D. Zeilberger, A holonomic systems approach to special functions identities, J. Comput.

Appl. Math. 32 (1990) 321–348; MR 92b:33014.
[65] H. S. Wilf and D. Zeilberger, Towards computerized proofs of identities, Bull. Amer. Math.

Soc. 23 (1990) 77–83; MR 91a:33003.



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-05 CB503/Finch-v2.cls December 9, 2004 14:1 Char Count=

5.10 Self-Avoiding Walk Constants 331

[66] W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Wiley, 1965,
pp. 1–29; MR 34 #3401.

[67] E. L. Ince, Ordinary Differential Equations, Dover, 1956, pp. 356–365; MR 6,65f.
[68] G. F. Simmons, Differential Equations with Applications and Historical Notes, McGraw-

Hill, 1972, pp. 153–174; MR 58 #17258.
[69] P. Flajolet and B. Vallée, Continued fractions, comparison algorithms, and fine struc-

ture constants, Constructive, Experimental, and Nonlinear Analysis, Proc. 1999 Limoges
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5.10 Self-Avoiding Walk Constants

Let L denote the d-dimensional cubic lattice whose vertices are precisely all integer
points in d-dimensional space. An n-step self-avoiding walk ω on L , beginning at
the origin, is a sequence of vertices ω0, ω1, ω2, . . . , ωn with ω0 = 0, |ω j+1 − ω j | = 1
for all j and ωi �= ω j for all i �= j . The number of such walks is denoted by cn .
For example, c0 = 1, c1 = 2d, c2 = 2d(2d − 1), c3 = 2d(2d − 1)2, and c4 = 2d(2d −
1)3 − 2d(2d − 2). Self-avoiding walks are vastly more difficult to study than ordinary
walks [1–6], and historically arose as a model for linear polymers in chemistry [7, 8].
No exact combinatorial enumerations are possible for large n. The methods for analysis
hence include finite series expansions and Monte Carlo simulations.

For simplicity’s sake, we have suppressed the dependence of cn on d; we will do this
for associated constants too whenever possible.

What can be said about the asymptotics of cn? Since cn+m ≤ cncm , on the basis of
Fekete’s submultiplicativity theorem [9–12], it is known that the connective constant

µd = lim
n→∞ c

1
n
n = inf

n
c

1
n
n

exists and is nonzero. Early attempts to estimate µ = µd included [13–15]; see [2] for
a detailed survey. The current best rigorous lower and upper bounds for µ, plus the
best-known estimate, are given in Table 5.2 [16–24]. The extent of our ignorance is
fairly surprising: Although we know that µ2 = limn→∞ cn+2/cn and cn+1 ≥ cn for all
n and all d, proving that µ = limn→∞ cn+1/cn for 2 ≤ d ≤ 4 remains an open problem
[25, 26].

Table 5.2. Estimates for Connective Constant µ

d Lower Bound Best Estimate for µ Upper Bound

2 2.6200 2.6381585303 2.6792
3 4.5721 4.68404 4.7114
4 6.7429 6.77404 6.8040
5 8.8285 8.83854 8.8602
6 10.8740 10.87809 10.8886
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It is believed that there exists a positive constant γ = γd such that the following
limit exists and is nonzero:

A =




lim
n→∞

cn

µnnγ−1
if d �= 4,

lim
n→∞

cn

µnnγ−1 ln(n)1/4
if d = 4.

The critical exponent γ is conjectured to be [27–29]

γ2 = 43
32 = 1.34375, γ3 = 1.1575 . . . , γ4 = 1

and has been proved [1, 30] to equal 1 for d > 4. For small d, we have bounds [1, 25, 31]

cn ≤
{

µn exp
(
Cn1/2

)
if d = 2,

µn exp
(
Cn2/(d+2) ln(n)

)
if 3 ≤ d ≤ 4,

which do not come close to proving the existence of A. It is known [32] that, for d = 5,
1 ≤ A ≤ 1.493 and, for sufficiently large d, A = 1 + (2d)−1 + d−2 + O(d−3).

Another interesting object of study is the mean square end-to-end distance

rn = E
(|ωn|2

) = 1

cn

∑
ω

|ωn|2,

where the summation is over all n-step self-avoiding walks ω on L . Like cn , it is
believed that there is a positive constant ν = νd such that the following limit exists and
is nonzero:

B =




lim
n→∞

rn

n2ν
if d �= 4,

lim
n→∞

rn

n2ν ln(n)1/4
if d = 4.

As before, it is conjectured that [27, 33, 34]

ν2 = 3
4 = 0.75, ν3 = 0.5877 . . . , ν4 = 1

2 = 0.5

and has been proved [1, 30] that ν = 1/2 for d > 4. This latter value is the same for
Pólya walks, that is, the self-avoidance constraint has little effect in high dimensions.
It is known [32] that, for d = 5, 1.098 ≤ B ≤ 1.803 and, for sufficiently large d, B =
1 + d−1 + 2d−2 + O(d−3). Hence a self-avoiding walk moves away from the origin
faster than a Pólya walk, but only at the level of the amplitude and not at the level of
the exponent.

If we accept the conjectured asymptotics cn ∼ Aµnnγ−1 and rn ∼ Bn2ν as truth (for
d �= 4), then the calculations shown in Table 5.3 become possible [23, 24, 33, 35–37].

Table 5.3. Estimates for Amplitudes A and B

d Estimate for A Estimate for B d Estimate for A Estimate for B

2 1.177043 0.77100 5 1.275 1.4767
3 1.205 1.21667 6 1.159 1.2940
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(The logarithmic correction for d = 4 renders any reliable estimation of A or B very
difficult.) Here is an application. Two walks ω and ω′ intersect if ωi = ω′

j for some
nonzero i and j . The probability that two n-step independent random self-avoiding
walks never intersect is [1, 38]

c2n

c2
n

∼




A−12γ−1n1−γ → 0 if 2 ≤ d ≤ 3,

A−1 ln(n)−1/4 → 0 if d = 4,

A−1 > 0 if d ≥ 5

as n → ∞. This conjectured behavior is consistent with intuition: c2n/c2
n is (slightly)

larger than the corresponding probability qn for ordinary walks [5.9.1] since self-
avoiding walks tend to be more thinly dispersed in space.

Other interesting measures of the size of a walk include the mean square radius of
gyration,

sn = E


 1

n + 1

n∑
i=0

∣∣∣∣∣ωi − 1

n + 1

n∑
j=0

ω j

∣∣∣∣∣
2

 = E

(
1

2(n + 1)2

n∑
i=0

n∑
j=0

∣∣ωi − ω j

∣∣2

)
,

and the mean square distance of a monomer from the endpoints,

tn = E

(
1

n + 1

n∑
i=0

|ωi |2 + |ωn − ωi |2
2

)
.

The radius of gyration, for example, can be experimentally measured for polymers
in a dilute solution via light scattering, but the end-to-end distance is preferred for
theoretical simplicity [33, 39–41]. It is conjectured that sn ∼ En2ν and tn ∼ Fn2ν ,
where ν is the same exponent as for rn , and E/B = 0.14026 . . . , F/B = 0.43961 . . .

for d = 2 and E/B = 0.1599 . . . for d = 3.
One can generalize this discussion to arbitrary lattices L in d-dimensional space.

For example, in the case d = 2, there is a rigorous upper bound µ < 4.278 and an
estimate µ = 4.1507951 . . . for the equilateral triangular lattice [17, 35, 42–45], and it

is conjectured that µ =
√

2 + √
2 = 1.8477590650 . . . for the hexagonal (honeycomb)

lattice [46–48]. The critical exponents γ , ν and amplitude ratios E/B, F/B, however,
are thought to be universal in the sense that they are lattice-independent (although
dimension-dependent). An important challenge, therefore, is to better understand the
nature of such exponents and ratios, and certainly to prove their existence in low
dimensions.

5.10.1 Polygons and Trails

The connective constant µ values given previously apply not only to the asymptotic
growth of the number of self-avoiding walks, but also to the asymptotic growth of num-
bers of self-avoiding polygons and of self-avoiding walks with prescribed endpoints
[2, 49]. See [5.19] for discussion of lattice animals or polyominoes, which are related
to self-avoiding polygons.
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No site or bond may be visited more than once in a self-avoiding walk. By way of
contrast, a self-avoiding trail may revisit sites, but not bonds. Thus walks are a proper
subset of trails [50–55]. The number hn of trails is conjectured to satisfy hn ∼ Gλnnγ−1,
where γ is the same exponent as for cn . The connective constant λ provably exists as
before and, in fact, satisfies λ ≥ µ. For the square lattice, there are rigorous bounds
2.634 < λ < 2.851 and an estimate λ = 2.72062 . . . ; the amplitude is approximately
G = 1.272 . . . . For the cubic lattice, there is an upper bound λ < 4.929 and an estimate
λ = 4.8426 . . . . Many related questions can be asked.

5.10.2 Rook Paths on a Chessboard

How many self-avoiding walks can a rook take from a fixed corner of an m × n chess-
board to the opposite corner without ever leaving the chessboard? Denote the number
of such paths by pm−1,n−1; clearly pk,1 = 2k , p2,2 = 12, and [56–58]

pk,2 ∼ 4 + √
13

2
√

13




√
3 + √

13

2




2k

= 1.0547001962 . . . · (1.8173540210 . . .)2k

as k → ∞. More broadly, the generating function for the sequence {pk,l}∞k=1 is rational
for any integer l ≥ 1 and thus relevant asymptotic coefficients are all algebraic numbers.
What can be said about the asymptotics of pk,k as k → ∞? Whittington & Guttmann
[59] proved that

pk,k ∼ (1.756 . . .)k2

and conjectured the following [60, 61]. If π j,k is the number of j-step paths with
generating function

Pk(x) =
∞∑
j=1

π j,k x j , Pk(1) = pk,k

then there is a phase transition in the sense that

0 < lim
k→∞

Pk(x)
1
k < 1 exists for 0 < x < µ−1 = 0.3790522777 . . . ,

lim
k→∞

Pk(µ−1)
1
k = 1,

1 < lim
k→∞

Pk(x)
1

k2 < ∞ exists for x > µ−1.

A proof was given by Madras [62]. This is an interesting occurrence of the connective
constant µ = µ2; an analogous theorem involving a d-dimensional chessboard also
holds and naturally makes use of µd .

5.10.3 Meanders and Stamp Foldings

A meander of order n is a planar self-avoiding loop (road) crossing an infinite line
(river) 2n times (2n bridges). Define two meanders as equivalent if one may be deformed
continuously into the other, keeping the bridges fixed. The number of inequivalent
meanders Mn of order n satisfy M1 = 1, M2 = 2, M3 = 8, M4 = 42, M5 = 262, . . . .



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-05 CB503/Finch-v2.cls December 9, 2004 14:1 Char Count=

5.10 Self-Avoiding Walk Constants 335

Figure 5.11. There are eight meanders of order 3 and ten semi-meanders of order 5; reflections
across the river are omitted.

A semi-meander of order n is a planar self-avoiding loop (road) crossing a semi-
infinite line (river with a source) n times (n bridges). Equivalence of semi-meanders
is defined similarly. The number of inequivalent semi-meanders M̃n of order n satisfy
M̃1 = 1, M̃2 = 1, M̃3 = 2, M̃4 = 4, M̃5 = 10, . . . .

Counting meanders and semi-meanders has attracted much attention [63–73]. See
Figure 5.11. As before, we expect asymptotic behavior

Mn ∼ C
R2n

nα
, M̃n ∼ C̃

Rn

nα̃
,

where R = 3.501838 . . . , that is, R2 = 12.262874 . . . . No exact formula for the con-
nective constant R is known. In contrast, there is a conjecture [74–76] that the critical
exponents are given by

α =
√

29

√
29 + √

5

12
= 3.4201328816 . . . ,

α̃ = 1 +
√

11

√
29 + √

5

24
= 2.0531987328 . . . ,

but doubt has been raised [77–79] about the semi-meander critical exponent value. The
sequences M̃n and Mn are also related to enumerating the ways of folding a linear or
circular row of stamps onto one stamp [80–87].
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5.11 Feller’s Coin Tossing Constants

Let wn denote the probability that, in n independent tosses of an ideal coin, no
run of three consecutive heads appears. Clearly w0 = w1 = w2 = 1, wn = 1

2wn−1 +
1
4wn−2 + 1

8wn−3 for n ≥ 3, and limn→∞ wn = 0. Feller [1] proved the following more
precise asymptotic result:

lim
n→∞ wnα

n+1 = β,

where

α =
(

136 + 24
√

33
) 1

3 − 8
(

136 + 24
√

33
)− 1

3 − 2

3
= 1.0873780254 . . .

and

β = 2 − α

4 − 3α
= 1.2368398446 . . . .

We first examine generalizations of these formulas. If runs of k consecutive heads,
k > 1, are disallowed, then the analogous constants are [1, 2]

α is the smallest positive root of 1 − x +
( x

2

)k+1
= 0

and

β = 2 − α

k + 1 − kα
.

Equivalently, the generating function that enumerates coin toss sequences with no runs
of k consecutive heads is [3]

Sk(z) = 1 − zk

1 − 2z + zk+1
,

1

n!

dn

dzn
Sk(z)

∣∣∣∣
z=0

∼ β

α

(
2

α

)n

.

See [4–8] for more material of a combinatorial nature.
If the coin is non-ideal, that is, if P(H ) = p, P(T ) = q, p + q = 1, but p and q are

not equal, then the asymptotic behavior of wn is governed by

α is the smallest positive root of 1 − x + qpk xk+1 = 0

and

β = 1 − pα

(k + 1 − kα)q
.

A further generalization involves time-homogeneous two-state Markov chains. It
makes little sense here to talk of coin tosses, so we turn attention to a different appli-
cation. Imagine that a ground-based sensor determines once per hour whether a fixed
line-of-sight through the atmosphere is cloud-obscured (0) or clear (1). Since meteo-
rological events often display persistence through time, the sensor observations are not
independent. A simple model for the time series X1, X2, X3, . . . of observations might
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be a Markov chain with transition probability matrix
(

P(X j+1 = 0|X j = 0) P(X j+1 = 1|X j = 0)
P(X j+1 = 0|X j = 1) P(X j+1 = 1|X j = 1)

)
=

(
π00 π01

π10 π11

)
,

where conditional probability parameters satisfy π00 + π01 = 1 = π10 + π11. The spe-
cial case when π00 = π10 and π01 = π11 is equivalent to the Bernoulli trials scenario
discussed in connection with coin tossing. Let wn,k denote the probability that no
cloudy intervals of length k > 1 occur, and assume that initially P(X0 = 1) = θ1.
The asymptotic behavior is similar to before, where α is the smallest positive root of
[9, 10]

1 − (π11 + π00)x + (π11 − π01)x2 + π10π01π
k−1
11 xk+1 = 0

and

β = [−1 + (2π11 − π01)α − (π11 − π01)π11α
2][θ1 + (π01 − θ1)α]

π10π01[−1 − k + (π11 + π00)kα + (π11 − π01)(1 − k)α2]
.

See [11] for a general technique for analysis of pattern statistics, with applications in
molecular biology.

Of many possible variations on this problem, we discuss one. How many patterns
of n children in a row are there if every girl is next to at least one other girl? If we
denote the answer by Yn , then Y1 = 1, Y2 = 2, Y3 = 4, and Yn = 2Yn−1 − Yn−2 + Yn−3

for n ≥ 4; hence

lim
n→∞

Yn+1

Yn
=

(
100 + 12

√
69

) 1
3 + 4

(
100 + 12

√
69

)− 1
3 + 4

6
= 1.7548776662 . . . .

A generalization of this, in which the girls must appear in groups of at least k, is given
in [12, 13]. Similar cubic irrational numbers occur in [1.2.2].

Let us return to coin tossing. What is the expected length of the longest run of
consecutive heads in a sequence of n ideal coin tosses? The answer is surprisingly
complicated [14–21]:

n∑
k=1

(1 − wn,k) = ln(n)

ln(2)
−

(
3

2
− γ

ln(2)

)
+ δ(n) + o(1)

as n → ∞, where γ is the Euler-Mascheroni constant and

δ(n) = 1

ln(2)

∞∑
k=−∞

k �=0

�

(
2π ik

ln(2)

)
exp

(
−2π ik

ln(n)

ln(2)

)
.

That is, the expected length is ln(n)/ ln(2) − 0.6672538227 . . . plus an oscillatory,
small-amplitude correction term. The function δ(n) is periodic (δ(n) = δ(2n)), has
zero mean, and is “negligible” (|δ(n)| < 1.574 × 10−6 for all n). The corresponding
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variance is C + c + ε(n) + o(1), where ε(n) is another small-amplitude function and

C = 1

12
+ π2

6 ln(2)2
= 3.5070480758 . . . ,

c = 2

ln(2)

∞∑
k=0

ln

[
1 − exp

(
− 2π2

ln(2)
(2k + 1)

)]
= (−1.237412 . . .) × 10−12.

Functions similar to δ(n) and ε(n) appear in [2.3], [2.16], [5.6], and [5.14].
Also, if we toss n ideal coins, then toss those which show tails after the first toss,

then toss those which show tails after the second toss, etc., what is the probability that
the final toss involves exactly one coin? Again, the answer is complicated [22–25]:

n

2

∞∑
j=0

2− j (1 − 2− j )n−1 ∼ 1

2 ln(2)
+ ρ(n) + o(1)

as n → ∞, where

ρ(n) = 1

2 ln(2)

∞∑
k=−∞

k �=0

�

(
1 − 2π ik

ln(2)

)
exp

(
2π ik

ln(n)

ln(2)

)
.

That is, the probability of a unique survivor (no ties) at the end is 1/(2 ln(2)) =
0.7213475204 . . . plus an oscillatory function satisfying |ρ(n)| < 7.131 × 10−6 for
all n. The expected length of the longest of the n coin toss sequences is

∑∞
j=0[1 − (1 −

2− j )n] and can be analyzed similarly [26]. Related discussion is found in [27–31].
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[15] P. Erdös and P. Révész, On the length of the longest head-run, Topics in Information Theory,

Proc. 1975 Keszthely conf., ed. I. Csiszár and P. Elias, Colloq. Math. Soc. János Bolyai
16, North-Holland, 1977, pp. 219–228; MR 57 #17788.

[16] D. E. Knuth, The average time for carry propagation, Proc. Konink. Nederl. Akad. Wetensch.
Ser. A 81 (1978) 238–242; Indag. Math. 40 (1978) 238–242; also in Selected Papers on
Analysis of Algorithms, CSLI, 2000, pp. 467–471; MR 81b:68030.

[17] L. J. Guibas and A. M. Odlyzko, Long repetitive patterns in random sequences, Z. Wahrsch.
Verw. Gebiete 53 (1980) 241–262; MR 81m:60047.

[18] L. Gordon, M. F. Schilling, and M. S. Waterman, An extreme value theory for long head
runs, Probab. Theory Relat. Fields 72 (1986) 279–287; MR 87i:60023.
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5.12 Hard Square Entropy Constant

Consider the set of all n × n binary matrices. What is the number F(n) of such matrices
with no pairs of adjacent 1s? Two 1s are said to be adjacent if they lie in positions (i, j)
and (i + 1, j), or if they lie in positions (i, j) and (i, j + 1), for some i , j . Equivalently,
F(n) is the number of configurations of non-attacking Princes on an n × n chessboard,
where a “Prince” attacks the four adjacent, non-diagonal places. Let N = n2; then [1–3]

κ = lim
n→∞ F(n)

1
N = 1.5030480824 . . . = exp(0.4074951009 . . .)
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is the hard square entropy constant. Earlier estimates were obtained by both physicists
[4–9] and mathematicians [10–13]. Some related combinatorial enumeration problems
appear in [14–16].

Instead of an n × n binary matrix, consider an n × n binary array that looks like


a11 a23

a22 a34

a21 a33

a32 a44

a31 a43

a42 a54

a41 a53

a52 a64




(here n = 4). What is the number G(n) of such arrays with no pairs of adjacent 1s?
Two 1s here are said to be adjacent if they lie in positions (i, j) and (i + 1, j), or in
(i, j) and (i, j + 1), or in (i, j) and (i + 1, j + 1), for some i , j . Equivalently, G(n)
is the number of configurations of non-attacking Kings on an n × n chessboard with
regular hexagonal cells. It is surprising that the hard hexagon entropy constant

κ = lim
n→∞ G(n)

1
N = 1.3954859724 . . . = exp(0.3332427219 . . .)

is algebraic (in fact, is solvable in radicals [17–22]) with minimal integer polynomial
[23]

25937424601x24 + 2013290651222784x22 + 2505062311720673792x20

+ 797726698866658379776x18 + 7449488310131083100160x16

+ 2958015038376958230528x14 − 72405670285649161617408x12

+ 107155448150443388043264x10 − 71220809441400405884928x8

− 73347491183630103871488x6 + 97143135277377575190528x4

− 32751691810479015985152.

This is a consequence of Baxter’s exact solution of the hard hexagon model [24–27]
via theta elliptic functions and the Rogers–Ramanujan identities from number theory
[28–31]! The expression for κ , in fact, comes out of a more general expression for

κ(z) = lim
n→∞ Zn(z)

1
N ,

where Zn(z) is known as the partition function for the model and G(n) = Zn(1), κ =
κ(1). More on the physics of phase transitions in lattice gas models is found in [5.12.1].

McKay and Calkin independently calculated that, if we replace Princes by
Kings on the chessboard with square cells, then the corresponding constant κ is
1.3426439511 . . . ; see also [32–34]. Note that the distinction between Princes and
Kings on a chessboard with regular hexagonal cells is immaterial. (Clarification: If a
Prince occupies cell c, then any cell sharing an edge with c is vulnerable to attack. If a
King occupies cell c, by contrast, then any cell sharing either an edge or corner with c
is vulnerable.)
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If we examine instead a chessboard with equilateral triangular cells, then κ =
1.5464407087 . . . for Princes [3]. This may be called the hard triangle entropy
constant. The value of κ when replacing Princes by Kings here is not known.

What are the constants κ for non-attacking Knights or Queens on chessboards with
square cells? The analysis for Knights should be similar to that for Princes and Kings,
but for Queens everything is different since interactions are no longer local [35].

The hard square entropy constant also appears in the form ln(κ)/ ln(2) =
0.5878911617 . . . in several coding-theoretic papers [36–41], with applications in-
cluding holographic data storage and retrieval.

5.12.1 Phase Transitions in Lattice Gas Models

Statistical mechanics is concerned with the average properties of a large system of
particles. We consider here, for example, the phase transition from a disordered fluid
state to an ordered solid state, as temperature falls or density increases.

A simple model for this phenomenon is a lattice gas, in which particles are placed
on the sites of a regular lattice and only adjacent particles interact. This may appear
to be hopelessly idealized, as rigid molecules could not possibly satisfy such strict
symmetry requirements. The model is nevertheless useful in understanding the link
between microscopic and macroscopic descriptions of matter.

Two types of lattice gas models that have been studied extensively are the hard
square model and the hard hexagon model. Once a particle is placed on a lattice site,
no other particle is allowed to occupy the same site or any next to it, as pictured in
Figure 5.12. Equivalently, the indicated squares and hexagons cannot overlap, hence
giving rise to the adjective “hard.”

Given a (square or triangular) lattice of N sites, assign a variable σi = 1 if site i
is occupied and σi = 0 if it is vacant, for each 1 ≤ i ≤ N . We study the partition
function

Zn(z) =
∑

σ

(
zσ1+σ2+σ3+···+σN ·

∏
(i, j)

(1 − σiσ j )

)
,

Figure 5.12. Hard squares and hard hexagons sit, respectively, on the square lattice and triangular
lattice.
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where the sum is over all 2N possible values of the vector σ = (σ1, σ2, σ3, . . . , σN )
and the product is over all edges of the lattice (sites i and j are distinct and adjacent).
Observe that the product enforces the nearest neighbor exclusion: If a configuration
has two particles next to each other, then zero contribution is made to the partition
function.

It is customary to deal with boundary effects by wrapping the lattice around to form
a torus. More precisely, for the square lattice, 2n new edges are created to connect the n
rightmost and n topmost points to corresponding n leftmost and n bottommost points.
Hence there are a total of 2N edges in the square lattice, each site “looking like” every
other. For the triangular lattice, 4n − 1 new edges are created, implying a total of 3N
edges. In both cases, the number of boundary sites, relative to N , is vanishingly small
as n → ∞, so this convention does not lead to any error.

Clearly the following combinatorial expressions are true [4, 42, 43]: For the square
lattice,

Zn =
�N/2�∑
k=0

fk,nzk, f0,n = 1, f1,n = N , f2,n =
{

2 if n = 2,
1
2 N (N − 5) if n ≥ 3,

f3,n =
{

6 if n = 3,
1
6 (N (N − 10)(N − 13) + 4N (N − 9) + 4N (N − 8)) if n ≥ 4,

where fk,n denotes the number of allowable tilings of the N -site lattice with k squares,
and for the triangular lattice,

Zn =
�N/3�∑
k=0

gk,nzk, g0,n = 1, g1,n = N , g2,n = 1
2 N (N − 7),

g3,n =
{

0 if n = 3,
1
6 (N (N − 14)(N − 19) + 6N (N − 13) + 6N (N − 12)) if n ≥ 4,

where gk,n denotes the corresponding number of hexagonal tilings.
Returning to physics, we remark that the partition function is important since it

acts as the “denominator” in probability calculations. For example, consider the two
sublattices A and B of the square lattice with sites as shown in Figure 5.13. The
probability that an arbitrary site α in the sublattice A is occupied is

ρA(z) = lim
n→∞

1

Zn

∑
σ

(
σα · zσ1+σ2+σ3+···+σN ·

∏
(i, j)

(1 − σiσ j )

)
,

which is also called the local density at α. We can define analogous probabilities for
the three sublattices A, B, and C of the triangular lattice.

We are interested in the behavior of these models as a function of the positive variable
z, known as the activity. Figure 5.14, for example, exhibits a graph of the mean density
for the hard hexagon case:

ρ(z) = z
d

dz
(ln(κ(z)) = ρA(z) + ρB(z) + ρC (z)

3

using the exact formulation given in [18].
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A AB B

A AB B

B BA A

B BA A

A B

AB C

C B

B C A

CA

C BA

Figure 5.13. Two sublattices of the square lattice and three sublattices of the triangular lattice.

The existence of a phase transition is visually obvious. Let us look at the extreme
cases: closely-packed configurations (large z) and sparsely-distributed configurations
(small z). For infinite z, one of the possible sublattices is completely occupied, assumed
to be the A sublattice, and the others are completely vacant; that is,

ρA = 1, ρB = 0 (for the square model)

and

ρA = 1, ρB = ρC = 0 (for the hexagon model).

0 8642 141210

z

1

0.5

0

ρ(z)

ρA(z)

ρB(z)

Figure 5.14. Graph of the mean density and sublattice densities, as functions of z, for the hexagon
model.
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For z close to zero, there is no preferential ordering on the sublattices; that is,

ρA = ρB (for the square model) and ρA = ρB = ρC (for the hexagon model).

Low activity corresponds to homogeneity and high activity corresponds to heterogene-
ity; thus there is a critical value, zc, at which a phase transition occurs. Define the order
parameter

R = ρA − ρB (for squares) and R = ρA − ρB = ρA − ρC (for hexagons);

then R = 0 for z < zc and R > 0 for z > zc.
Elaborate numerical computations [7, 44, 45] have shown that, in the limit as n →

∞,

zc = 3.7962 . . . (for squares) and zc = 11.09 . . . (for hexagons),

assuming site α to be infinitely deep within the lattice. The computations involved
highly-accurate series expansions for R and what are known as corner transfer matrices,
which we cannot discuss here for reasons of space.

In a beautiful development, Baxter [24, 25] provided an exact solution of the hexagon
model. The full breadth of this accomplishment cannot be conveyed here, but one of
many corollaries is the exact formula

zc = 11 + 5
√

5

2
=

(
1 + √

5

2

)5

= 11.0901699437 . . .

for the hexagon model. No similar theoretical breakthrough has occurred for the square
model and thus the identity of 3.7962 . . . remains masked from sight. The critical value
zc = 7.92 . . . for the triangle model (on the hexagonal or honeycomb lattice) likewise
is not exactly known [46].

For hard hexagons, the behavior of ρ(z) and R(z) at criticality is important
[24, 26, 27]:

ρ ∼ ρc − 5−3/2

(
1 − z

zc

)2/3

as z → z−
c , ρc = 5 − √

5

10
= 0.2763932022 . . . ,

R ∼ 3√
5

[
1

5
√

5

(
z

zc
− 1

)]1/9

as z → z+
c ,

and it is conjectured that the exponents 1/3 and 1/9 are universal. For hard squares
and hard triangles, we have only numerical estimates ρc = 0.368 . . . and 0.422 . . . ,
respectively. Far away from criticality, computations at z = 1 are less difficult [3, 47]:

ρ(1) =



0.1624329213 . . . for hard hexagons,
0.2265708154 . . . for hard squares,
0.2424079763 . . . for hard triangles,

and the first of these is algebraic of degree 12 [18, 22]. A generalization of ρ(1) is the
probability that an arbitrary point α and a specified configuration of neighboring points
α′ are all occupied; sample computations can be found in [3].
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Needless to say, three-dimensional analogs of the models discussed here defy any
attempt at exact solution [44].
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5.13 Binary Search Tree Constants

We first define a certain function f . The formulation may seem a little abstruse, but
f has a natural interpretation as a path length along a type of weakly binary tree (an
application of which we will discuss subsequently) [5.6].

Given a vector V = (v1, v2, . . . , vk) of k distinct integers, define two subvectors VL

and VR by

VL = (v j : v j < v1, 2 ≤ j ≤ k), VR = (v j : v j > v1, 2 ≤ j ≤ k).
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The subscripts L and R mean “left” and “right”; we emphasize that the sublists VL and
VR preserve the ordering of the elements as listed in V .

Now, over all integers x , define the recursive function

f (x, V ) =




0 if V = ∅ (∅ is the empty vector),


1 if x = v1,

1 + f (x, VL ) if x < v1,

1 + f (x, VR) if x > v1.

otherwise (v1 is the first vector component),

Clearly 0 ≤ f (x, V ) ≤ k always and the ordering of v1, v2, . . . , vk is crucial
in determining the value of f (x, V ). For example, f (7, (3, 9, 5, 1, 7)) = 4 and
f (4, (3, 9, 5, 1, 7)) = 3.

Let V be a random permutation of (1, 3, 5, . . . , 2n − 1). We are interested in the
probability distribution of f (x, V ) in two regimes:

• random odd x satisfying 1 ≤ x ≤ 2n − 1 (successful search),
• random even x satisfying 0 ≤ x ≤ 2n (unsuccessful search).

Note that both V and x are random; it is assumed that they are drawn independently
with uniform sampling. The expected value of f (x, V ) is, in the language of computer
science [1–3],

• the average number of comparisons required to find an existing random record x in
a data structure with n records,

• the average number of comparisons required to insert a new random record x into
a data structure with n records,

where it is presumed the data structure follows that of a binary search tree. Figure
5.15 shows how such a tree is built starting with V as prescribed. Define also g(l, V ) =
|{x : f (x, V ) = l, 1 ≤ x ≤ 2n − 1, x odd}|, the number of vertices occupying the l th

level of the tree (l = 1 is the root level). For example, g(2, (3, 9, 5, 1, 7)) = 2 and
g(3, (3, 9, 5, 1, 7)) = 1.

3
9
5
1
7

V =

1

3

5

9

7

Figure 5.15. Binary search tree constructed using V .
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In addition to the two average-case parameters, we want the probability distribution
of

h(V ) = max { f (x, V ) : 1 ≤ x ≤ 2n − 1, x odd} − 1,

the height of the tree (which captures the worst-case scenario for finding the record x ,
given V ), and

s(V ) = max {l : g(l, V ) = 2l−1} − 1,

the saturation level of the tree (which provides the number of full levels of vertices
in the tree, minus one). Thus h(V ) is the longest path length from the root of the tree
to a leaf whereas s(V ) is the shortest such path. For example, h(3, 9, 5, 1, 7) = 3 and
s(3, 9, 5, 1, 7) = 1.

Define, as is customary, the harmonic numbers

Hn =
n∑

k=1

1

k
= ln(n) + γ + 1

n
+ O

(
1

n2

)
, H (2)

n =
n∑

k=1

1

k2
= π2

6
− 1

n
+ O

(
1

n2

)
,

where γ is the Euler–Mascheroni constant [1.5]. Then the expected number of com-
parisons in a successful search (random, odd 1 ≤ x ≤ 2n − 1) of a random tree is
[2–4]

E( f (x, V )) = 2

(
1 + 1

n

)
Hn − 3 = 2 ln(n) + 2γ − 3 + O

(
ln(n)

n

)
,

and in an unsuccessful search (random, even 0 ≤ x ≤ 2n) the expected number is

E( f (x, V )) = 2(Hn+1 − 1) = 2 ln(n) + 2γ − 2 + O

(
1

n

)
.

The corresponding variances are, for odd x ,

Var( f (x, V )) =
(

2 + 10

n

)
Hn − 4

(
1 + 1

n

) (
H (2)

n + H 2
n

4

)
+ 4

∼ 2

(
ln(n) + γ − π3

3
+ 2

)

and, for even x ,

Var( f (x, V )) = 2(Hn+1 − 2H (2)
n+1 + 1) ∼ 2

(
ln(n) + γ − π3

3
+ 1

)
.

A complete analysis of h(V ) and s(V ) remained unresolved until 1985 when Devroye
[3, 5–7], building upon work of Robson [8] and Pittel [9], proved that

h(V )

ln(n)
→ c,

s(V )

ln(n)
→ d,
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almost surely as n → ∞, where c = 4.3110704070 . . . and d = 0.3733646177 . . . are
the only two real solutions of the equation

2

x
exp

(
1 − 1

x

)
= 0.

Observe that the rate of convergence for h(V )/ ln(n) and s(V )/ ln(n) is slow; hence a
numerical verification requires efficient simulation [10]. Considerable effort has been
devoted to making these asymptotics more precise [11–14]. Reed [15, 16] and Drmota
[17–19] recently proved that

E(h(V )) = c ln(n) − 3c

2(c − 1)
ln(ln(n)) + O(1),

E(s(V )) = d ln(n) + O(
√

ln(n) ln(ln(n)))

and Var(h(V )) = O(1) as n → ∞. No numerical estimates of the latter are yet available.
See also [20].

It is curious that for digital search trees [5.14], which are somewhat more complicated
than binary search trees, the analogous limits

h(V )

ln(n)
→ 1

ln(2)
,

s(V )

ln(n)
→ 1

ln(2)

do not involve new constants. The fact that limiting values for h(V )/ ln(n) and
s(V )/ ln(n) are equal means that the trees are almost perfect (with only a small “fringe”
around log2(n)). This is a hint that search/insertion algorithms on digital search trees
are, on average, more efficient than on binary search trees.

Here is one related subject [21–23]. Break a stick of length r into two parts at
random. Independently, break each of the two substicks into two parts at random as
well. Continue inductively, so that at the end of the nth step, we have 2n pieces. Let
Pn(r ) denote the probability that all of the pieces have length < 1. For fixed r , clearly
Pn(r ) → 1 as n → ∞. More interestingly,

lim
n→∞ Pn(rn) =

{
0 if r > e1/c,

1 if 0 < r < e1/c,

where e1/c = 1.2610704868 . . . and c is as defined earlier. The techniques for proving
this are similar to those utilized in [5.3].

We merely mention a generalization of binary search trees called quadtrees [24–30],
which also possess intriguing asymptotic constants. Quadtrees are useful for storing and
retrieving multidimensional real data, for example, in cartography, computer graphics,
and image processing [31–33].
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5.14 Digital Search Tree Constants

Prior acquaintance with binary search trees [5.13] is recommended before reading this
essay. Given a binary k × n matrix M = (mi, j ) = (m1, m2, . . . , mk) of k distinct rows,
define two submatrices ML ,p and MR,p by

ML ,p = (mi : mi,p = 0, 2 ≤ i ≤ k), MR,p = (mi : mi,p = 1, 2 ≤ i ≤ k)

for any integer 1 ≤ p ≤ n. That is, the pth column of ML ,p is all zeros and the pth

column of MR,p is all ones. The subscripts L and R mean “left” and “right”; we
emphasize that the sublists ML ,p and MR,p preserve the ordering of the rows as listed
in M .

Now, over all binary n-vectors x , define the recursive function

f (x, M, p) =




0 if M = ∅,


1 if x = m1,

1 + f (x, ML ,p, p + 1) if x �= m1 and x p = 0,

1 + f (x, MR,p, p + 1) if x �= m1 and x p = 1.

otherwise,

Clearly 0 ≤ f (x, M, p) ≤ k always and the ordering of m1, m2, . . . , mk , as well as
the value of p, is crucial in determining the value of f (x, M, p).

Let M = (m1, m2, . . . , mk) be a random binary n × n matrix with n distinct rows,
and let x denote a binary n-vector. We are interested in the probability distribution of
f (x, M, 1) in two regimes:

• random x satisfying x = mi for some i , 1 ≤ i ≤ n (successful search),
• random x satisfying x �= mi for all i , 1 ≤ i ≤ n (unsuccessful search).

There is double randomness here as with binary search trees [5.13], but note that x
depends on M more intricately than before. The expected value of f (x, M, 1) is, in the
language of computer science, [1–6]

• the average number of comparisons required to find an existing random record x in
a data structure with n records,

• the average number of comparisons required to insert a new random record x into
a data structure with n records,

where it is presumed the data structure follows that of a digital search tree. Figure
5.16 shows how such a tree is built starting with M as prescribed.
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Figure 5.16. Digital search tree constructed using M .

Another parameter of some interest is the number An of non-root vertices of degree
1, that is, nodes without children. For binary search trees [3, 7], it is known that E(An) =
(n + 1)/3. For digital search trees, the corresponding result is more complicated, as we
shall soon see. Because digital search trees are usually better “balanced” than binary
search trees, one anticipates a linear coefficient closer to 1/2 than 1/3.

Let γ denote the Euler–Mascheroni constant [1.5] and define a new constant

α =
∞∑

k=1

1

2k − 1
= 1.6066951524 . . . .

Then the expected number of comparisons in a successful search (random, x = mi for
some i) of a random tree is [3–6, 8, 9]

E( f (x, M, 1)) = 1

ln(2)
ln(n) + 3

2
+ γ − 1

ln(2)
− α + δ(n) + O

(
ln(n)

n

)

∼ log2(n) − 0.716644 . . . + δ(n),

and in an unsuccessful search (random x �= mi for all i) the expected number is

E( f (x, M, 1)) = 1

ln(2)
ln(n) + 1

2
+ γ

ln(2)
− α + δ(n) + O

(
ln(n)

n

)

∼ log2(n) − 0.273948 . . . + δ(n),

where

δ(n) = 1

ln(2)

∞∑
k=−∞

k �=0

�

(
−1 − 2π ik

ln(2)

)
exp

(
2π ik

ln(n)

ln(2)

)
.

The function δ(n) is oscillatory (δ(n) = δ(2n)), has zero mean, and is “negligible”
(|δ(n)| < 1.726 × 10−7 for all n). Similar functions ε(n), ρ(n), σ (n) and τ (n) will be
needed later. These arise in the analysis of many algorithms [3, 4, 6], as well as in
problems discussed in [2.3], [2.16], [5.6], and [5.11]. Although such functions can be
safely ignored for practical purposes, they need to be included in certain treatments for
the sake of theoretical rigor.
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The corresponding variances are, for searching,

Var( f (x, M, 1)) ∼ 1

12
+ π2 + 6

6 ln(2)2
− α − β + ε(n) ∼ 2.844383 . . . + ε(n)

and, for inserting,

Var( f (x, M, 1)) ∼ 1

12
+ π2

6 ln(2)2
− α − β + ε(n) ∼ 0.763014 . . . + ε(n),

where the new constant β is given by

β =
∞∑

k=1

1

(2k − 1)2
= 1.1373387363 . . . .

Flajolet & Sedgewick [3, 8, 10] answered an open question of Knuth’s regarding the
parameter An:

E(An) =
[
θ + 1 − 1

Q

(
1

ln(2)
+ α2 − α

)
+ ρ(n)

]
n + O(n1/2),

where the new constants Q and θ are given by

Q =
∞∏

k=1

(
1 − 1

2k

)
= 0.2887880950 . . . = (3.4627466194 . . .)−1,

θ =
∞∑

k=1

k2k(k−1)/2

1 · 3 · 7 · · · (2k − 1)

k∑
j=1

1

2 j − 1
= 7.7431319855 . . . .

The linear coefficient of E(An) fluctuates around

c = θ + 1 − 1

Q

(
1

ln(2)
+ α2 − α

)
= 0.3720486812 . . . ,

which is not as close to 1/2 as one might have anticipated! Here also [11] is an integral
representation for c:

c = 1

ln(2)

∞∫
0

x

1 + x

(
1 + x

1

)−1 (
1 + x

2

)−1 (
1 + x

4

)−1 (
1 + x

8

)−1
· · · dx .

There are three main types of m-ary search trees: digital search trees, radix search
tries (tries), and Patricia tries. We have assumed that m = 2 throughout. What, for
example, is the variance for searching corresponding to Patricia tries? If we omit the
fluctuation term, the remaining coefficient

ν = 1

12
+ π2

6 ln(2)2
+ 2

ln(2)

∞∑
k=1

(−1)k

k(2k − 1)

is interesting because, at first glance, it seems to be exactly 1! In fact, ν > 1 + 10−12

and this can be more carefully explained via the Dedekind eta function [12, 13].
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5.14.1 Other Connections

In number theory, the divisor function d(n) is the number of integers d, 1 ≤ d ≤ n,
that divide n. A special value of its generating function [4, 14, 15]

∞∑
n=1

d(n)qn =
∞∑

k=1

qk

1 − qk
=

∞∑
k=1

qk2
(1 + qk)

1 − qk

is α when q = 1/2. Erdös [16, 17] proved that α is irrational; forty years passed while
people wondered about constants such as

∞∑
n=1

1

2n − 3
and

∞∑
n=1

1

2n + 1

(the former appears in [18] whereas the latter is connected to tries [6] and mergesort
asymptotics [19, 20]). Borwein [21, 22] proved that, if |a| ≥ 2 is an integer, b �= 0 is a
rational number, and b �= −an for all n, then the series

∞∑
n=1

1

an + b
and

∞∑
n=1

(−1)n

an + b

are both irrational. Under the same conditions, the product

∞∏
n=1

(
1 + b

an

)

is irrational [23, 24], and hence so is Q. See [25] for recent computer-aided irrationality
proofs.

On the one hand, from the combinatorics of integer partitions, we have Euler’s
pentagonal number theorem [14, 26–28]

∞∏
n=1

(1 − qn) =
∞∑

n=−∞
(−1)nq

1
2 (3n+1)n = 1 +

∞∑
n=1

(−1)n
(

q
1
2 (3n−1)n + q

1
2 (3n+1)n

)

and
∞∏

n=1

(1 − qn)−1 = 1 +
∞∑

n=1

qn

(1 − q)(1 − q2)(1 − q3) · · · (1 − qn)

= 1 +
∞∑

n=1

qn2

(1 − q)2(1 − q2)2(1 − q3)2 · · · (1 − qn)2
= 1 +

∞∑
n=1

p(n)qn,

where p(n) denotes the number of unrestricted partitions of n. If q = 1/2, these spe-
cialize to Q and 1/Q. On the other hand, in the theory of finite vector spaces, Q appears
in the asymptotic formula [5.7] for the number of linear subspaces of Fq,n when q = 2.

A substantial theory has emerged involving q-analogs of various classical mathe-
matical objects. For example, the constant α is regarded as a 1/2-analog of the Euler–
Mascheroni constant [11]. Other constants (e.g., Apéry’s constant ζ (3) or Catalan’s
constant G) can be similarly generalized.
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Out of many more possible formulas, we mention three [4, 14, 26, 29]:

Q = 1

3
− 1

3 · 7
+ 1

3 · 7 · 15
− 1

3 · 7 · 15 · 31
+ − · · ·

= exp

(
−

∞∑
n=1

1

n(2n − 1)

)

=
√

2π

ln(2)
exp

(
ln(2)

24
− π2

6 ln(2)

) ∞∏
n=1

[
1 − exp

(−4π2n

ln(2)

)]
.

The second makes one wonder if a simple relationship between Q and α exists. It can
be shown that Q is the asymptotic probability that the determinant of a random n × n
binary matrix is odd. A constant P similar to Q appears in [2.8]; exponents in P are
constrained to be odd integers.

The reciprocal sum of repunits [30]

9
∞∑

n=1

1

10n − 1
= 1

1
+ 1

11
+ 1

111
+ 1

1111
+ · · · = 1.1009181908 . . .

is irrational by Borwein’s theorem. The reciprocal series of Fibonacci numbers can be
expressed as [31–33]

∞∑
k=1

1

fk
=

√
5

∞∑
n=0

(−1)n

ϕ2n+1 − (−1)n
= 3.3598856662 . . . ,

where ϕ is the Golden mean, and this sum is known to be irrational [34–37]. Note that
the subseries of terms with even subscripts can similarly be evaluated [26, 31]:

∞∑
k=1

1

f2k
=

√
5

( ∞∑
n=1

1

λn − 1
−

∞∑
n=1

1

µn − 1

)
= 1.5353705088 . . . ,

where 2λ = √
3 + 5 and 2µ = 7 + 3

√
5. A completely different connection to the

Fibonacci numbers (this time resembling the constant Q) is found in [1.2].
A certain normalizing constant [38–40]

K =
√√√√ ∞∏

n=0

(
1 + 1

22n

)
= 1.6467602581 . . .

occurs in efficient binary cordic implementations of two-dimensional vector rotation.
Products such as Q and K , however, have no known closed-form expression except
when q = exp(−πξ ), where ξ > 0 is an algebraic number [26, 41].

Observe that 2n+1 − 1 is the smallest positive integer not representable as a sum
of n integers of the form 2i , i ≥ 0. Define hn to be the smallest positive integer not
representable as a sum of n integers of the form 2i 3 j , i ≥ 0, j ≥ 0, that is, h0 =
1, h1 = 5, h2 = 23, h3 = 431, . . . [42, 43]. What is the precise growth rate of hn as
n → ∞? What is the numerical value of the reciprocal sum of hn (what might be
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called the 2-3 analog of the constant α)? This is vaguely related to our discussion in
[2.26] and [2.30.1].

5.14.2 Approximate Counting

Returning to computer science, we discuss approximate counting, an algorithm due
to Morris [44]. Approximate counting involves keeping track of a large number, N , of
events in only log2(log2(N )) bit storage, where accuracy is not paramount. Consider
the integer time series X0, X1, . . . , X N defined recursively by

Xn =



1 if n = 0,{
1 + Xn−1 with probability 2−Xn−1 ,

Xn−1 with probability 1 − 2−Xn−1 .
otherwise,

It is not hard to prove that

E(2X N − 2) = N and Var(2X N ) = 1
2 N (N + 1);

hence probabilistic updates via this scheme give an unbiased estimator of N . Flajolet
[45–50] studied the distribution of X N in much greater detail:

E(X N ) = 1

ln(2)
ln(N ) + 1

2
+ γ

ln(2)
− α + σ (n) + O

(
ln(N )

N

)

∼ log2(N ) − 0.273948 . . . + σ (N ),

Var(X N ) ∼ 1

12
+ π2

6 ln(2)2
− α − β − χ + τ (n) ∼ 0.763014 . . . + τ (N ),

where α and β are as before, the new constant χ is given by

χ = 1

ln(2)

∞∑
n=1

1

n
csch

(
2π2n

ln(2)

)
= (1.237412 . . .) × 10−12,

and σ (n) and τ (n) are oscillatory “negligible” functions. In particular, since χ > 0,
the constant coefficient for Var(X N ) is (slightly) smaller than that for Var( f (x, M, 1))
given earlier. Similar ideas in probabilistic counting algorithms are found in [6.8].
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5.15 Optimal Stopping Constants

Consider the well-known secretary problem. An unordered sequence of applicants
(distinct real numbers) s1, s2, . . . , sn are interviewed by you one at a time. You have no
prior information about the ss. You know the value of n, and as sk is being interviewed,
you must either accept sk and end the process, or reject sk and interview sk+1. The
decision to accept or reject sk must be based solely on whether sk > s j for all 1 ≤ j < k
(that is, on whether sk is a candidate). An applicant once rejected cannot later be
recalled.

If your objective is to select the most highly qualified applicant (the largest sk), then
the optimal strategy is to reject the first m − 1 applicants and accept the next candidate,
where [1–4]

m = min

{
k ≥ 1 :

n∑
j=k+1

1

j − 1
≤ 1

}
∼ n

e
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as n → ∞. The asymptotic probability of obtaining the best applicant via this strategy
is hence 1/e = 0.3678794411 . . . , where e is the natural logarithmic base [1.3]. See a
generalization of this in [5–7].

If your objective is instead to minimize the expected rank Rn of the chosen applicant
(the largest sk has rank 1, the second-largest has rank 2, etc.), then different formulation
applies. Lindley [8] and Chow et al. [9] derived the optimal strategy in this case and
proved that [10]

lim
n→∞ Rn =

∞∏
k=1

(
1 + 2

k

) 1
k+1 = 3.8695192413 . . . = C.

A variation might include you knowing in advance that s1, s2, . . . , sn are indepen-
dent, uniformly distributed variables on the interval [0, 1]. This is known as a full-
information problem (as opposed to the no-information problems just discussed).
How does knowledge of the distribution improve your chances of success? For the
“nothing but the best” objective, Gilbert & Mosteller [11] calculated the asymptotic
probability of success to be [12, 13]

e−a − (ea − a − 1) Ei(−a) = 0.5801642239 . . . ,

where a = 0.8043522628 . . . is the unique real solution of the equation Ei(a) − γ −
ln(a) = 1, Ei is the exponential integral [6.2], and γ is the Euler-Mascheroni constant
[1.5].

The full-information analog for limn→∞ Rn appears to be an open problem [14–16].
Yet another objective, however, might be to maximize the hiree’s expected quality Qn

itself (the k th applicant has quality sk). Clearly

Q0 = 0, Qn = 1
2 (1 + Q2

n−1) if n ≥ 1,

and Qn → 1 as n → ∞. Moser [11, 17–19] deduced that

Qn ∼ 1 − 2

n + ln(n) + b
,

where the constant b is estimated [10] to be 1.76799378 . . . .

Here is a closely related problem. Assume s1, s2, . . . , sn are independent, uniformly
distributed variables on the interval [0, N ]. Your objective is to minimize the number
TN of interviews necessary to select an applicant of expected quality ≥ N − 1. Gum
[20] sketched a proof that TN = 2N − O(ln(N )) as N → ∞. Alternatively, assume
everything as before except that s ′

1, s ′
2, . . . , s ′

n are drawn with replacement from the set
{1, 2, . . . , N }. It can be proved here that T ′

N = c N + O(
√

N ), where [10]

c = 2
∞∑

k=3

ln(k)

k2 − 1
− ln(2)

3
= 1.3531302722 . . . = ln(C).

The secretary problem and its offshoots fall within the theory of optimal stopping
[19]. Here is a sample exercise: We observe a fair coin being tossed repeatedly and can
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stop observing at any time. When we stop, the payoff is the average number of heads
observed. What is the best strategy to maximize the expected payoff? Chow & Robbins
[21, 22] described a strategy that achieves an expected payoff > 0.79 = (0.59 + 1)/2.
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5.16 Extreme Value Constants

Let X1, X2, . . . , Xn denote a random sample from a population with continuous prob-
ability density function f (x). Many interesting results exist concerning the distribution
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of the order statistics

X 〈1〉 < X 〈2〉 < · · · < X 〈n〉,

where X 〈1〉 = min{X1, X2, . . . , Xn} = mn and X 〈n〉 = max{X1, X2, . . . , Xn} = Mn .
We will focus only on the extreme values Mn for brevity’s sake.

If X1, X2, . . . , Xn are taken from a Uniform [0, 1] distribution (i.e., f (x) is 1 for
0 ≤ x ≤ 1 and is 0 otherwise), then the probability distribution of Mn is prescribed by

P(Mn < x) =



0 if x < 0,

xn if 0 ≤ x ≤ 1,

1 if x > 1

and its moments are given by

µn = E(Mn) = n

n + 1
, σ 2

n = Var(Mn) = n

(n + 1)2(n + 2)
.

These are all exact results [1–3]. Note that clearly

lim
n→∞ P (n (Mn − 1) < y) = lim

n→∞ P

(
Mn < 1 + 1

n
y

)
=

{
ey if y < 0,

1 if y ≥ 0.

This asymptotic result is a special case of a far more general theorem due to Fisher &
Tippett [4] and Gnedenko [5]. Under broad circumstances, the asymptotic distribution
of Mn (suitably normalized) must belong to one of just three possible families. We see
another, less trivial, example in the following.

If X1, X2, . . . , Xn are from a Normal (0, 1) distribution, that is,

f (x) = 1√
2π

exp

(
− x2

2

)
, F(x) =

x∫
−∞

f (ξ ) dξ = 1

2
erf

(
x√
2

)
+ 1

2
,

then the probability distribution of Mn is prescribed by

P(Mn < x) = F(x)n = n

x∫
−∞

F(ξ )n−1 f (ξ ) dξ

and its moments are given by

µn = n

∞∫
−∞

x F(x)n−1 f (x) dx, σ 2
n = n

∞∫
−∞

x2 F(x)n−1 f (x) dx − µ2
n.
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For small n, exact expressions are possible [2, 3, 6–11]:

µ2 = 1√
π

= 0.564 . . . , σ 2
2 = 1 − µ2

2 = 0.681 . . . ,

µ3 = 3
2
√

π
= 0.846 . . . , σ 2

3 = 1 +
√

3
2π

− µ2
3 = 0.559 . . . ,

µ4 = 3√
π

(1 − 2S2) = 1.029 . . . , σ 2
4 = 1 +

√
3

π
− µ2

4 = 0.491 . . . ,

µ5 = 5√
π

(1 − 3S2) = 1.162 . . . , σ 2
5 = 1 + 5

√
3

2π
(1 − 2S3) − µ2

5 = 0.447 . . . ,

µ6 = 15
2
√

π
(1 − 4S2 + 2T2) = 1.267 . . . , σ 2

6 = 1 + 5
√

3
π

(1 − 3S3) − µ2
6 = 0.415 . . . ,

µ7 = 21
2
√

π
(1 − 5S2 + 5T2) = 1.352 . . . , σ 2

7 = 1 + 35
√

3
4π

(1 − 4S3 + 2T3) − µ2
7

= 0.391 . . . ,

where

Sk =
√

k

π

π
4∫
0

dx√
k + sec(x)2

= 1

π
arcsin

√
k

2(1 + k)
,

Tk =
√

k

π2

π
4∫
0

π
4∫
0

dx dy√
k + sec(x)2 + sec(y)2

= 1

π2

π S(k)∫
0

arcsin

√
1

2

k(k + 1)

k(k + 2) − tan(z)2
dz.

Similar expressions for µ8 = 1.423 . . . and σ 2
8 = 0.372 . . . remain to be found. Ruben

[12] demonstrated a connection between moments of order statistics and volumes of
certain hyperspherical simplices (generalized spherical triangles). Calkin [13] discov-
ered a binomial identity that, in a limiting case, yields the exact expression for µ3.

We turn now to the asymptotic distribution of Mn . Let

an =
√

2 ln(n) − 1

2

ln(ln(n)) + ln(4π )√
2 ln(n)

.

It can be proved [14–18] that

lim
n→∞ P

(√
2 ln(n)(Mn − an) < y

)
= exp(−e−y),

and the resulting doubly exponential density function g(y) = exp(−y − e−y) is skewed
to the right (called the Gumbel density or Fisher–Tippett Type I extreme values density).
A random variable Y , distributed according to Gumbel’s expression, satisfies [4]

E(Y ) = γ = 0.577215 . . . , Skew(Y ) = E
[
(Y − E(Y ))3

]
Var(Y )3/2

= 12
√

6

π3
ζ (3)

= 1.139547 . . . ,

Var(Y ) = π2

6
= 1.644934 . . . , Kurt(Y ) = E

[
(Y − E(Y ))4

]
Var(Y )2

− 3 = 12

5
= 2.4,

where γ is the Euler–Mascheroni constant [1.5] and ζ (3) is Apéry’s constant [1.6].
(Some authors report the square of skewness; this explains the estimate 1.2986 in [2]
and 1.3 in [19].) The constant ζ (3) also appears in [20]. Doubly exponential functions
like g(y) occur elsewhere (see [2.13], [5.7], and [6.10]).
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The well-known Central Limit Theorem implies an asymptotic normal distribution
for the sum of many independent, identically distributed random variables, whatever
their common original distribution. A similar situation holds in extreme value theory.
The asymptotic distribution of Mn (normalized) must belong to one of the following
families [2, 14–17]:

G1,α(y) =
{

0 if y ≤ 0,

exp(−y−α) if y > 0,
“Fréchet” or Type II,

G2,α(y) =
{

exp(−(−y)α) if y ≤ 0,

1 if y > 0,
“Weibull” or Type III,

G3(y) = exp(−e−y), “Gumbel” or Type I,

where α > 0 is an arbitrary shape parameter. Note that G2,1(y) arose in our discussion
of uniformly distributed X and G3(y) with regard to normally distributed X . It turns
out to be unnecessary to know much about the distribution F of X to ascertain to which
“domain of attraction” it belongs; the behavior of the tail of F is the crucial element.
These three families can be further combined into a single one:

Hβ(y) = exp
(−(1 + βy)−1/β

)
if 1 + βy > 0, H0(y) = lim

β→0
Hβ(y),

which reduces to the three cases accordingly as β > 0, β < 0, or β = 0.
There is a fascinating connection between the preceding and random matrix theory

(RMT). Consider first an n × n diagonal matrix with random diagonal elements X1, X2,

. . . , Xn; of course, its largest eigenvalue is equal to Mn . Consider now a random n × n
complex Hermitian matrix. This means Xi j = X̄ i j , so diagonal elements are real and
off-diagonal elements satisfy a symmetry condition; further, all eigenvalues are real. A
“natural” way of generating such matrices follows what is called the Gaussian Unitary
Ensemble (GUE) probability distribution [21]. Exact moment formulas for the largest
eigenvalue exist here for small n just as for the diagonal normally-distributed case
discussed earlier [22]. The eigenvalues are independent in the diagonal case, but they
are strongly dependent in the full Hermitian case. RMT is important in several ways:
First, the spacing distribution between nontrivial zeros of the Riemann zeta function
appears to be close to the eigenvalue distribution coming from GUE [2.15.3]. Second,
RMT is pivotal in solving the longest increasing subsequence problem discussed in
[5.20], and its tools are useful in understanding the two-dimensional Ising model [5.22].
Finally, RMT is associated with the physics of atomic energy levels, but elaboration on
this is not possible here.
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5.17 Pattern-Free Word Constants

Let a, b, c, . . . denote the letters of a finite alphabet. A word is a finite sequence of
letters; two examples are abcacbacbc and abcacbabcb. A square is a word of the form
xx , with x a nonempty word. A word is square-free if it contains no squares as factors.
The first example contains the square acbacb whereas the second is square-free. We
ask the following question: How many square-free words of length n are there?

Over a two-letter alphabet, the only square-free words are a, b, ab, ba, aba, and bab;
thus binary square-free words are not interesting. There do, however, exist arbitrarily
long ternary square-free words, that is, over a three-letter alphabet. This fact was first
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proved by Thue [1, 2] using what is now called the Prouhet–Thue–Morse sequence [6.8].
Precise asymptotic enumeration of such words is complicated [3–7]. Brandenburg [8]
proved that the number s(n) of ternary square-free words of length n > 24 satisfies

6 · 1.032n < 6 · 2
n
22 ≤ s(n) ≤ 6 · 1172

n−2
22 < 3.157 · 1.379n,

and Brinkhuis [9] showed that s(n) ≤ A · 1.316n for some constant A > 0. Noonan &
Zeilberger [10] improved the upper bound to A′ · 1.302128n for some constant A′ > 0,
and obtained a non-rigorous estimate of the limit

S = lim
n→∞ s(n)

1
n = 1.302 . . . .

An independent computation [11] gave S = exp(0.263719 . . .) = 1.301762 . . . , as well
as estimates of S for k-letter alphabets, k > 3. Ekhad & Zeilberger [12] recently demon-
strated that 1.041n < 2n/17 ≤ s(n), the first improvement in the lower bound in fifteen
years. Note that S is a connective constant in the same manner as certain constants µ

associated with self-avoiding walks [5.10]. In fact, Noonan & Zeilberger’s computation
of S is based on the same Goulden-Jackson technology used in bounding µ.

A cube-free word is a word that contains no factors of the form xxx , where x is
a nonempty word. The Prouhet–Thue–Morse sequence gives examples of arbitrarily
long binary cube-free words. Brandenburg [8] proved that the number c(n) of binary
cube-free words of length n > 18 satisfies

2 · 1.080n < 2 · 2
n
9 ≤ c(n) ≤ 2 · 1251

n−1
17 < 1.315 · 1.522n,

and Edlin [13] improved the upper bound to B · 1.45757921n for some constant B > 0.
Edlin also obtained a non-rigorous estimate of the limit:

C = lim
n→∞ c(n)

1
n = 1.457 . . . .

A word is overlap-free if it contains no factor of the form xyxyx , with x nonempty.
The Prouhet–Thue–Morse sequence, again, gives examples of arbitrarily long binary
overlap-free words. Observe that a square-free word must be overlap-free, and that an
overlap-free word must be cube-free. In fact, overlapping is the lowest pattern avoidable
in arbitrarily long binary words. The number t(n) of binary overlap-free words of length
n satisfies [14, 15]

p · n1.155 ≤ t(n) ≤ q · n1.587

for certain constants p and q. Therefore, t(n) experiences only polynomial growth, un-
like s(n) and c(n). Cassaigne [16] proved the interesting fact that limn→∞ ln(t(n))/ ln(n)
does not exist, but

1.155 < TL = liminf
n→∞

ln(t(n))

ln(n)
< 1.276 < 1.332 < TU = limsup

n→∞
ln(t(n))

ln(n)
< 1.587

(actually, he proved much more). We observed similar asymptotic misbehavior in [2.16].
An abelian square is a word xx ′, with x a nonempty word and x ′ a permutation of

x . A word is abelian square-free if it contains no abelian squares as factors. The word
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abcacbabcb contains the abelian square abcacb. In fact, any ternary word of length at
least 8 must contain an abelian square. Pleasants [17] proved that arbitrarily long abelian
square-free words, based on five letters, exist. The four-letter case remained an open
question until recently. Keränen [18] proved that arbitrarily long quaternary abelian
square-free words also exist. Carpi [19] went farther to show that their number h(n)
must satisfy

liminf
n→∞

h(n)
1
n > 1.000021,

and he wrote, “. . . the closeness of this value to 1 leads us to think that, probably, it is
far from optimal.”

A ternary word w is a partially abelian square if w = xx ′, with x a nonempty word
and x ′ a permutation of x that leaves the letter b fixed, and that allows only adjacent
letters a and c to commute. For example, the word bacbca is a partially abelian square.
A word is partially abelian square-free if it contains no partially abelian squares as
factors. Cori & Formisano [20] used Kobayashi’s inequalities for t(n) to derive bounds
for the number of partially abelian square-free words.

Kolpakov & Kucherov [21, 22] asked: What is the minimal proportion of one letter
in infinite square-free ternary words? Follow-on work by Tarannikov suggests [23] that
the answer is 0.2746 . . . .

A word over a k-letter alphabet is primitive if it is not a power of any subword [24].
The number of primitive words of length n is

∑
d|n µ(d)kn/d , where µ(d) is the Möbius

mu function [2.2]. Hence, on the one hand, the proportion of words that are primitive is
easily shown to approach 1 as n → ∞. On the other hand, the problem of all counting
words not containing a power is probably about as difficult as enumerating square-free
words, cube-free words, etc.

A binary word w1w2w3 . . . wn of length n is said to be unforgeable if it never
matches a left or right shift of itself, that is, it is never the same as any of
u1u2 . . . umw1w2 . . . wn−m or wm+1wm+2 . . . wnv1v2 . . . vm for any possible choice of
ui s or v j s and any 1 ≤ m ≤ n − 1. For example, we cannot have w1 = wn because trou-
ble would arise when m = n − 1. Let f (n) denote the number of unforgeable words of
length n. The example shows immediately that

0 ≤ ρ = lim
n→∞

f (n)

2n
≤ 1

2
.

Further, via generating functions [7, 25–27],

ρ =
∞∑

n=1

(−1)n−1 2

2(2n+1−1) − 1

n∏
m=2

2(2m−1)

2(2m−1) − 1
= 0.2677868402 . . .

= 1 − 0.7322131597 . . . ,

and this series is extremely rapidly convergent.
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5.18 Percolation Cluster Density Constants

Percolation theory is concerned with fluid flow in random media, for example,
molecules penetrating a porus solid or wildfires consuming a forest. Broadbent &
Hammersley [1–3] wondered about the probable number and structure of open chan-
nels in media for fluid passage. Answering their question has created an entirely new
field of research [4–10]. Since the field is vast, we will attempt only to present a few
constants.

Let M = (mi j ) be a random n × n binary matrix satisfying the following:

• mi j = 1 with probability p, 0 with probability 1 − p for each i , j ,
• mi j and mkl are independent for all (i, j) �= (k, l).

An s-cluster is an isolated grouping of s adjacent 1s in M , where adjacency means
horizontal or vertical neighbors (not diagonal). For example, the 4 × 4 matrix

M =




1 0 1 1
1 1 0 0
0 1 0 1
1 0 0 1




has one 1-cluster, two 2-clusters, and one 4-cluster. The total number of clusters K4 is
4 in this case. For arbitrary n, the total cluster count Kn is a random variable. The limit
κS(p) of the normalized expected value E(Kn)/n2 exists as n → ∞, and κS(p) is called
the mean cluster density for the site percolation model. It is known that κS(p) is twice
continuously differentiable on [0, 1]; further, κS(p) is analytic on [0, 1] except possibly
at one point p = pc. Monte Carlo simulation and numerical Padé approximants can be
used to compute κS(p). For example [11], it is known that κS(1/2) = 0.065770 . . . .

Instead of an n × n binary matrix M , consider a binary array A of 2n(n − 1) entries
that looks like

A =




a12 a14 a16

a11 a13 a15 a17

a22 a24 a26

a21 a23 a25 a27

a32 a34 a36

a31 a33 a35 a37

a42 a44 a46




(here n = 4). We associate ai j not with a site of the n × n square lattice (as we do for
mi j ) but with a bond. An s-cluster here is an isolated, connected subgraph of the graph
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of all bonds associated with 1s. For example, the array

A =




1 0 0
1 0 0 0

0 1 0
0 1 1 0

0 1 0
1 0 0 0

0 0 0




has one 1-cluster, one 2-cluster, and one 4-cluster. For bond percolation models such
as this, we include 0-clusters in the total count as well, that is, isolated sites with
no attached 1s bonds. In this case there are seven 0-clusters; hence the total number
of clusters K4 is 10. The mean cluster density κB(p) = limn→∞ E(Kn)/n2 exists and
similar smoothness properties hold. Remarkably, however, an exact integral expression
can be found at p = 1/2 for the mean cluster density [13, 14]:

κB

(
1

2

)
= −1

8
cot(y) · d

dy




1

y

∞∫
−∞

sech

(
πx

2y

)
ln

(
cosh (x) − cos(2y)

cosh (x) − 1

)
dx




∣∣∣∣∣∣
y= π

3

,

which Adamchik [11, 12] recently simplified to

κB

(
1

2

)
= 3

√
3 − 5

2
= 0.0980762113 . . . .

This constant is sometimes reported as 0.0355762113 . . . , which is κB(1/2) − 1/16,
if 0-clusters are not included in the total count. It may alternatively be reported as
0.0177881056 . . . , which occurs if one normalizes not by the number of sites, n2, but
by the number of bonds, 2n(n − 1). Caution is needed when reviewing the literature.
Other occurrences of this integral are in [15–18].

An expression for the limiting variance of bond cluster density is not known, but a
Monte Carlo estimate 0.164 . . . and relevant discussion appear in [11]. The bond perco-
lation model on the triangular lattice gives a limiting mean cluster density 0.111 . . . at a
specific value p = 0.347 . . . (see the next section for greater precision). The associated
variance 0.183 . . . , again, is not known.

5.18.1 Critical Probability

Let us turn attention away from mean cluster density κ(p) and instead toward mean
cluster size σ (p). In the examples given earlier, S4 = (1 + 2 + 2 + 4)/4 = 9/4 for the
site case, S4 = (1 + 2 + 4)/3 = 7/3 for the bond case, and σ (p) is the limiting value
of E(Sn) as n → ∞. The critical probability or percolation threshold pc is defined
to be [5, 6, 10]

pc = inf
0<p<1
σ (p)=∞

p,
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that is, the concentration p at which an ∞-cluster appears in the infinite lattice. There
are other possible definitions that turn out to be equivalent under most conditions. For
example, if θ (p) denotes the percolation probability, that is, the probability that an ∞-
cluster contains a prescribed site or bond, then pc is the unique point for which p < pc

implies θ (p) = 0, and p > pc implies θ (p) > 0. The critical probability indicates a
phase transition in the system, analogous to that observed in [5.12] and [5.22].

For site percolation on the square lattice, there are rigorous bounds [19–24]

0.556 < pc < 0.679492

and an estimate [25, 26] pc = 0.5927460 . . . . based on extensive simulation. Ziff [11]
additionally calculated that κS(pc) = 0.0275981 . . . via simulation. Parameter bounds
for the cubic lattice and higher dimensions appear in [27–30].

In contrast, for bond percolation on the square and triangular lattices, there are
exact results due to Sykes & Essam [31, 32]. Kesten [33] proved that pc = 1/2 on the
square lattice, corresponding to the expression κB(1/2) in the previous section. On the
triangular lattice, Wierman [34] proved that

pc = 2 sin
( π

18

)
= 0.3472963553 . . . ,

and this corresponds to another exact expression [11, 35–37],

κB(pc) = −3

8
csc(2y) · d

dy




∞∫
−∞

sinh((π − y)x) sinh( 2
3 yx)

x sinh(πx) cosh(yx)
dx




∣∣∣∣∣∣
y= π

3

+ 3

2
− 2

1 + pc

= 35

4
− 3

pc
= 23

4
− 3

2
·
{

3

√
4

(
1 + i

√
3
)

+ 3

√
4

(
1 − i

√
3
)}

= 0.1118442752 . . . .

Similar results apply for the hexagonal (honeycomb) lattice by duality.
It is also known that pc = 1/2 for site percolation on the triangular lattice [10] and,

in this case, κS(1/2) = 0.0176255 . . . via simulation [11, 38]. For site percolation on
the hexagonal lattice, we have bounds [39]

0.6527 < 1 − 2 sin
( π

18

)
≤ pc ≤ 0.8079

and an estimate pc = 0.6962 . . . [40, 41].

5.18.2 Series Expansions

Here are details on how the functions κS(p) and κB(p) may be computed [6, 42, 43].
We will work on the square lattice, focusing mostly on site percolation. Let gst denote
the number of lattice animals [5.19] with area s and perimeter t , and let q = 1 − p.
The probability that a fixed site is a 1-cluster is clearly pq4. Because a 2-cluster can be
oriented either horizontally or vertically, the average 2-cluster count per site is 2p2q6.
A 3-cluster can be linear (two orientations) or L-shaped (four orientations); hence the
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Table 5.4. Mean s-Cluster Densities

s Mean s-Cluster Density for Site Model Mean s-Cluster Density for Bond Model

0 0 q4

1 pq4 2pq6

2 2p2q6 6p2q8

3 p3(2q8 + 4q7) p3(18q10 + 4q9)
4 p4(2q10 + 8q9 + 9q8) p4(55q12 + 32q11 + q8)

average 3-cluster count per site is p3(2q8 + 4q7). More generally, the mean s-cluster
density is

∑
t gst psqt . Summing the left column entries in Table 5.4 [44, 45]

gives κS(p) as the number of entries → ∞:

κS(p) = p − 2p2 + p4 + p8 − p9 + 2p10 − 4p11 + 11p12 + − · · ·
∼ κS(pc) + aS(p − pc) + bS(p − pc)2 + cS |p − pc|2−α .

Likewise, summing the right column entries in the table gives κB(p):

κB(p) = q4 + 2p − 6p2 + 4p3 + 2p6 − 2p7 + 7p8 − 12p9 + 28p10 + − · · ·
∼ κB( 1

2 ) + aB(p − 1
2 ) + bB(p − 1

2 )2 + cB

∣∣p − 1
2

∣∣2−α
,

where aB = −0.50 . . . , bB = 2.8 . . . , and cB = −8.48 . . . [46]. The exponent α is
conjectured to be −2/3, that is, 2 − α = 8/3.

If instead of
∑

s,t gst psqt , we examine
∑

s,t s2gst ps−1qt , then for the site model,

σS(p) = 1 + 4p + 12p2 + 24p3 + 52p4 + 108p5 + 224p6 + 412p7 + − · · ·
∼ C |p − pc|−γ

is the mean cluster size series (for low concentration p < pc). The exponent γ is
conjectured to be 43/18.

The expression 1 − ∑
s,t sgst ps−1qt , when expanded in terms of q, gives

θS(p) = 1 − q4 − 4q6 − 8q7 − 23q8 − 28q9 − 186q10 + 48q11 − + · · ·
∼ D |p − pc|β ,

which is the site percolation probability series (for high concentration p > pc). The
exponent β is conjectured to be 5/36.

Smirnov & Werner [47] recently proved that α, β, and γ indeed exist and are equal
to their conjectured values, for site percolation on the triangular lattice. A proof of
universality would encompass both site and bond cases on the square lattice, but this
has not yet been achieved.

5.18.3 Variations

Let the sites of an infinite lattice be independently labeled A with probability p and B
with probability 1 − p. Ordinary site percolation theory involves clusters of As. Let us
instead connect adjacent sites that possess opposite labels and leave adjacent sites with
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the same labels disconnected. This is known as AB percolation or antipercolation.
We wish to know what can be said of the probability θ (p) that an infinite AB cluster
contains a prescribed site. It turns out that θ (p) = 0 for all p for the infinite square lattice
[48], but θ (p) > 0 for all p lying in some nonempty subinterval containing 1/2, for the
infinite triangular lattice [49]. The exact extent of this interval is not known: Mai &
Halley [50] gave [0.2145, 0.7855] via Monte Carlo simulation whereas Wierman [51]
gave [0.4031, 0.5969]. The function θ (p), for the triangular lattice, is nondecreasing
on [0, 1/2] and therefore was deemed unimodal on [0, 1] by Appel [52].

Ordinary bond percolation theory is concerned with models in which any selected
bond is either open (1) or closed (0). First-passage percolation [53] assigns not a binary
random variable to each bond, but rather a nonnegative real random variable, thought
of as length. Consider the square lattice in which each bond is independently assigned
a length from the Uniform [0, 1] probability distribution. Let Tn denote the shortest
length of all lattice path lengths starting at the origin (0, 0) and ending at (n, 0); then it
can be proved that the limit

τ = lim
n→∞

E(Tn)

n
= inf

n

E(Tn)

n

exists. Building upon earlier work [54–58], Alm & Parviainen [59] obtained rigorous
bounds 0.243666 ≤ τ ≤ 0.403141 and an estimate τ = 0.312 . . . via simulation. If,
instead, lengths are taken from the exponential distribution with unit mean, then we
have bounds 0.300282 ≤ τ ≤ 0.503425 and an estimate τ = 0.402. Godsil, Grötschel
& Welsh [9] suggested the exact evaluation of τ to be a “hopelessly intractable problem.”

We mention finally a constant λc = 0.359072 . . . that arises in continuum percola-
tion [5, 60]. Consider a homogeneous Poisson process of intensity λ on the plane, that
is, points are uniformly distributed in the plane such that

• the probability of having exactly n points in a subset S of measure µ is e−λµ(λµ)n/n!
and

• the counts ni of points in any collection of disjoint measurable subsets Si are inde-
pendent random variables.

Around each point, draw a disk of unit radius. The disks are allowed to overlap; that
is, they are fully penetrable. There exists a unique critical intensity λc such that an
unbounded connected cluster of disks develops with probability 1 if λ > λc and with
probability 0 if λ < λc. Hall [61] proved the best-known rigorous bounds 0.174 <

λc < 0.843, and the numerical estimate 0.359072 . . . is found in [62–64]. Among
several alternative representations, we mention ϕc = 1 − exp(−πλc) = 0.676339 . . .

[65] and πλc = 1.128057 . . . [66]. The latter is simply the normalized total area of
all the disks, disregarding whether they overlap or not, whereas ϕc takes overlapping
portions into account. Continuum percolation shares many mathematical properties
with lattice percolation, yet in many ways it is a more accurate model of physical
disorder. Interestingly, it has also recently been applied in pure mathematics itself, to
the study of gaps in the set of Gaussian primes [67].
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5.19 Klarner’s Polyomino Constant

A domino is a pair of adjacent squares. Generalizing, we say that a polyomino or
lattice animal of order n is a connected set of n adjacent squares [1–7]. See Figures
5.17 and 5.18.

Define A(n) to be the number of polyominoes of order n, where it is agreed that
two polyominoes are distinct if and only if they have different shapes or different

Figure 5.17. All dominoes (polyominoes of order 2); A(2) = 2.
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Figure 5.18. All polyominoes of order 3; A(3) = 6.

orientations:

A(1) = 1, A(2) = 2, A(3) = 6, A(4) = 19, A(5) = 63,

A(6) = 216, A(7) = 760, . . . .

There are different senses in which polyominoes are defined, for example, free versus
fixed, bond versus site, simply-connected versus not necessarily so, and others. For
brevity, we focus only on the fixed, site, possibly multiply-connected case.

Redelmeier [8] computed A(n) up to n = 24, and Conway & Guttmann [9] found
A(25). In a recent flurry of activity, Oliveira e Silva [10] computed A(n) up to n = 28,
Jensen & Guttmann [11, 12] extended this to A(46), and Knuth [13] found A(47).
Klarner [14, 15] proved that the limit

α = lim
n→∞ A(n)

1
n = sup

n
A(n)

1
n

exists and is nonzero, although Eden [16] numerically investigated α several years
earlier. The best-known bounds on α are 3.903184 ≤ α ≤ 4.649551, as discussed in
[17–20]. Improvements are possible using the new value A(47). The best-known es-
timate, obtained via series expansion analysis by differential approximants [11], is
α = 4.062570 . . . . A more precise asymptotic expression for A(n) is

A(n) ∼
(

0.316915 . . .

n
− 0.276 . . .

n3/2
+ 0.335 . . .

n2
− 0.25 . . .

n5/2
+ O

(
1

n3

))
αn,

but such an empirical result is far from being rigorously proved.
Satterfield [5, 21] reported a lower bound of 3.91336 for α, using one of several

algorithms he developed with Klarner and Shende. Details of their work unfortunately
remain unpublished.

We mention that parallel analysis can be performed on the triangular and hexagonal
lattices [7, 22].

Any self-avoiding polygon [5.10] determines a polyomino, but the converse is false
since a polyomino can possess holes. A polyomino is row-convex if every (horizontal)
row consists of a single strip of squares, and it is convex if this requirement is met for
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every column as well. Note that a convex polyomino does not generally determine a
convex polygon in the usual sense. Counts of row-convex polyominoes obey a third-
order linear recurrence [23–28], but counts Ã(n) of convex polyominoes are somewhat
more difficult to analyze [29, 30]:

Ã(1) = 1, Ã(2) = 2, Ã(3) = 6, Ã(4) = 19, Ã(5) = 59,

Ã(6) = 176, Ã(7) = 502, . . . ,

Ã(n) ∼ (2.67564 . . .)α̃n,

where α̃ = 2.3091385933 . . . = (0.4330619231 . . .)−1. Exact generating function for-
mulation for Ã(n) was discovered only recently [31–33] but is too complicated to
include here. Bender [30] further analyzed the expected shape of convex polyominoes,
finding that, when viewed from a distance, most convex polyominoes resemble rods
tilted 45◦ from the vertical with horizontal (and vertical) thickness roughly equal to
2.37597 . . . . More results like this are found in [34–36].

It turns out that the growth constant α̃ for convex polyominoes is the same as the
growth constant α′ for parallelogram polyominoes, that is, polyominoes whose left
and right boundaries both climb in a northeasterly direction:

A′(1) = 1, A′(2) = 2, A′(3) = 4, A′(4) = 9, A′(5) = 20,

A′(6) = 46, A′(7) = 105, . . . .

These have the virtue of a simpler generating function f (q). Let (q)0 = 1 and (q)n =∏n
j=1(1 − q j ); then f (q) is a ratio J1(q)/J0(q) of q-analogs of Bessel functions:

J0(q) = 1 +
∞∑

n=1

(−1)nq(n+1
2 )

(q)n(q)n
, J1(q) = −

∞∑
n=1

(−1)nq(n+1
2 )

(q)n−1(q)n
,

which gives α′ = α̃, but a different multiplicative constant 0.29745 . . . .

There are many more counting problems of this sort than we can possibly summarize!
Here is one more example, studied independently by Glasser, Privman & Svrakic
[37] and Odlyzko & Wilf [38–40]. An n-fountain (Figure 5.19) is best pictured as a
connected, self-supporting stacking of n coins in a triangular lattice array against a
vertical wall.

Note that the bottom row cannot have gaps but the higher rows can; each coin in a
higher row must touch two adjacent coins in the row below. Let B(n) be the number of
n-fountains. The generating function for B(n) satisfies a beautiful identity involving

Figure 5.19. An example of an n-fountain.
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Ramanujan’s continued fraction:

1 +
∞∑

n=1

B(n)xn = 1 + x + x2 + 2x3 + 3x4 + 5x5 + 9x6 + 15x7 + 26x8 + 45x9 + · · ·

= 1|
|1 − x |

|1 − x2
∣∣

|1 − x3
∣∣

|1 − x4
∣∣

|1 − x5
∣∣

|1 − · · · ,

and the following growth estimates arise:

lim
n→∞ B(n)

1
n = β = 1.7356628245 . . . = (0.5761487691 . . .)−1,

B(n) = (0.3123633245 . . .)βn + O

((
5

3

)n)
.

See [41] for other related counting problems.
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5.20 Longest Subsequence Constants

5.20.1 Increasing Subsequences

Let π denote a random permutation on the symbols 1, 2, . . . , N . An increasing sub-
sequence of π is a sequence (π ( j1), π ( j2), . . . , π ( jk)) satisfying both 1 ≤ j1 < j2 <

. . . < jk ≤ N and π ( j1) < π ( j2) < . . . < π( jk). Define L N to be the length of the
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longest increasing subsequence of π . For example, the permutation π = (2, 7, 4, 1,
6, 3, 9, 5, 8) has longest increasing subsequences (2, 4, 6, 9) and (1, 3, 5, 8); hence
L9 = 4. What can be said about the probability distribution of L N (e.g., its mean and
variance) as N → ∞?

This question has inspired an avalanche of research [1–4]. Vershik & Kerov [5] and
Logan & Shepp [6] proved that

lim
N→∞

N− 1
2 E(L N ) = 2,

building upon earlier work in [7–10]. Odlyzko & Rains [11] conjectured in 1993 that
both limits

lim
N→∞

N− 1
3 Var(L N ) = c0, lim

N→∞
N− 1

6 (E(L N ) − 2
√

N ) = c1

exist and are finite and nonzero; numerical approximations were computed via Monte
Carlo simulation. In a showcase of analysis (using methods from mathematical physics),
Baik, Deift & Johansson [12] obtained

c0 = 0.81318 . . . (i.e.,
√

c0 = 0.90177 . . . ), c1 = −1.77109 . . . ,

confirming the predictions in [11]. These constants are defined exactly in terms of the
solution to a Painlevé II equation. (Incidently, Painlevé III arises in [5.22] and Painlevé
V arises in [2.15.3].) The derivation involves a relationship between random matrices
and random permutations [13, 14]. More precisely, Tracy & Widom [15–17] derived a
certain probability distribution function F(x) characterizing the largest eigenvalue of
a random Hermitian matrix, generated according to the Gaussian Unitary Ensemble
(GUE) probability law. Baik, Deift & Johansson proved that the limiting distribution
of L N is Tracy & Widom’s F(x), and then obtained estimates of the constants c0 and
c1 via moments quoted in [16].

Before presenting more details, we provide a generalization. A 2-increasing
subsequence of π is a union of two disjoint increasing subsequences of π . Define
L̃ N to be the length of the longest 2-increasing subsequence of π , minus L N . For ex-
ample, the permutation π = (2, 4, 7, 9, 5, 1, 3, 6, 8) has longest increasing subsequence
(2, 4, 5, 6, 8) and longest 2-increasing subsequence (2, 4, 7, 9) ∪ (1, 3, 6, 8); hence
L̃9 = 8 − 5 = 3. As before, both

lim
N→∞

N− 1
3 Var(L̃ N ) = c̃0, lim

N→∞
N− 1

6 (E(L̃ N ) − 2
√

N ) = c̃1

exist and can be proved [18] to possess values

c̃0 = 0.5405 . . . , c̃1 = −3.6754 . . . .

The corresponding distribution function F̃(x) characterizes the second-largest eigen-
value of a random Hermitian matrix under GUE. Such proofs were extended to
m-increasing subsequences, for arbitrary m > 2, and to the joint distribution of row
lengths from random Young tableaux in [19–21].



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-05 CB503/Finch-v2.cls December 9, 2004 14:1 Char Count=

384 5 Constants Associated with Enumerating Discrete Structures

Here are the promised details [12, 18]. Fix 0 < t ≤ 1. Let qt (x) be the solution of
the Painlevé II differential equation

q ′′
t (x) = 2qt (x)3 + xqt (x), qt (x) ∼ 1

2

(
t

π

) 1
2

x− 1
4 exp

(
−2

3
x

3
2

)
as x → ∞,

and define

�(x, t) = exp


−

∞∫
x

(y − x)qt (y)2dy


 .

The Tracy-Widom functions are

F(x) = �(x, 1), F̃(x) = �(x, 1) − ∂�

∂t
(x, t)

∣∣∣∣
t=1

and hence

c0 =
∞∫

−∞
x2 F ′(x)dx −




∞∫
−∞

x F ′(x)dx




2

, c1 =
∞∫

−∞
x F ′(x)dx,

c̃0 =
∞∫

−∞
x2 F̃ ′(x)dx −




∞∫
−∞

x F̃ ′(x)dx




2

, c̃1 =
∞∫

−∞
x F̃ ′(x)dx

are the required formulas. Note that the values of c0, c1, c̃0, and c̃1 appear in the caption
of Figure 2 of [16]. Hence these arguably should be called Odlyzko–Rains–Tracy–
Widom constants.

What makes this work especially exciting [1, 22] is its connection with the common
cardgame of solitaire (for which no successful analysis has yet been performed) and
possibly with the unsolved Riemann hypothesis [1.6] from prime number theory. See
[23, 24] for other applications.

5.20.2 Common Subsequences

Let a and b be random sequences of length n, with terms ai and b j taking values from
the alphabet {0, 1, . . . , k − 1}. A sequence c is a common subsequence of a and b
if c is a subsequence of both a and b, meaning that c is obtained from a by deleting
zero or more terms ai and from b by deleting zero or more terms b j . Define λn,k to be
the length of the longest common subsequence of a and b. For example, the sequences
a = (1, 0, 0, 2, 3, 2, 1, 1, 0, 2), b = (0, 1, 1, 1, 3, 3, 3, 0, 2, 1) have longest common
subsequence c = (0, 1, 1, 0, 2) and λ10,3 = 5. What can be said about the mean of λn,k

as n → ∞, as a function of k?
It can be proved that E(λn,k) is superadditive with respect to n, that is, E(λm,k) +

E(λn,k) ≤ E(λm+n,k). Hence, by Fekete’s theorem [25, 26], the limit

γk = lim
n→∞

E(λn,k)

n
= sup

n

E(λn,k)

n
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Table 5.5. Estimates for Ratios γk

k Lower Bound Numerical Estimate Upper Bound

2 0.77391 0.8118 0.83763
3 0.63376 0.7172 0.76581
4 0.55282 0.6537 0.70824
5 0.50952 0.6069 0.66443

exists. Beginning with Chvátal & Sankoff [27–30], a number of researchers [31–37]
have investigated γk . Table 5.5 contains rigorous lower and upper bounds for γk , as well
as the best numerical estimates of γk presently available [37].

It is known [27, 31] that 1 ≤ γk

√
k ≤ e for all k and conjectured [38] that

limk→∞ γk

√
k = 2. There is interest in the rate of convergence of the limiting ratio

[39–41]

γk n − O(
√

n ln(n)) ≤ E(λn,k) ≤ γk n

as well as in Var(λn,k), which is conjectured [39, 41, 42] to grow linearly with n.
A sequence c is a common supersequence of a and b if c is a supersequence of

both a and b, meaning that both a and b are subsequences of c. The shortest common
subsequence length �n,k of a and b can be shown [34, 43, 44] to satisfy

lim
n→∞

E(�n,k)

n
= 2 − γk .

Such nice duality as this fails, however, if we seek longest subsequences/shortest su-
persequences from a set of > 2 random sequences.
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[26] G. Pólya and G. Szegö, Problems and Theorems in Analysis, v. 1, Springer-Verlag, 1972,
ex. 98, pp. 23, 198; MR 81e:00002.
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5.21 k-Satisfiability Constants

Let x1, x2, . . . , xn be Boolean variables. Choose k elements randomly from the set
{x1, ¬x1, x2, ¬x2, . . . , xn , ¬xn} under the restriction that x j and ¬x j cannot both
be selected. These k literals determine a clause, which is the disjunction (

∨
, that is,

“inclusive or”) of the literals.
Perform this selection process m times. The m independent clauses determine a

formula, which is the conjunction (
∧

, that is, “and”) of the clauses. A sample formula,
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in the special case n = 5, k = 3, and m = 4, is

[x1 ∨ (¬x5) ∨ (¬x2)] ∧ [(¬x3) ∨ x2 ∨ (¬x1)] ∧ [x5 ∨ x2 ∨ x4] ∧ [x4 ∨ (¬x3) ∨ x1] .

A formula is satisfiable if there exists an assignment of 0s and 1s to the xs so that
the formula is true (that is, has value 1). The design of efficient algorithms for dis-
covering such an assignment, given a large formula, or for proving that the formula is
unsatisfiable, is an important topic in theoretical computer science [1–3].

The k-satisfiability problem, or k-SAT, behaves differently for k = 2 and k ≥ 3. For
k = 2, the problem can be solved by a linear time algorithm, whereas for k ≥ 3, the
problem is NP-complete.

There is another distinction involving ideas from percolation theory [5.18]. As
m → ∞ and n → ∞ with limiting ratio m/n → r , empirical evidence suggests that
the random k-SAT problem undergoes a phase transition at a critical value rc(k) of
the parameter r . For r < rc, a random formula is satisfiable with probability → 1 as
m, n → ∞. For r > rc, a random formula is likewise unsatisfiable almost surely. Away
from the boundary, k-SAT is relatively easy to solve; computational difficulties appear
to be maximized at the threshold r = rc itself. This observation may ultimately help
in improving algorithms for solving the traveling salesman problem [8.5] and other
combinatorial nightmares.

In the case of 2-SAT, it has been proved [4–6] that rc(2) = 1. A rigorous understand-
ing of 2-SAT from a statistical mechanical point-of-view was achieved in [7].

In the case of k-SAT, k ≥ 3, comparatively little has been proved. Here is an in-
equality [4] valid for all k ≥ 3:

3

8

2k

k
≤ rc(k) ≤ ln(2) · ln

(
2k

2k − 1

)−1

∼ ln(2) · 2k .

Many researchers have contributed to placing tight upper bounds [8–16] and lower
bounds [17–20] on the 3-SAT threshold:

3.26 ≤ rc(3) ≤ 4.506.

Large-scale computations [21–23] give an estimate rc(3) = 4.25 . . . . Estimates for
larger k [1] include rc(4) = 9.7 . . . , rc(5) = 20.9 . . . , and rc(6) = 43.2 . . . , but these
can be improved. Unlike 2-SAT, we do not yet possess a proof that rc(k) exists, for
k ≥ 3, but Friedgut [24] took an important step in this direction. Sharp phase transitions,
corresponding to certain properties of random graphs, play an essential role in his paper.
The possibility that rc(k) oscillates between the bounds O(2k/k) and O(2k) has not
been completely ruled out, but this would be unexpected.

We mention a similar instance of threshold phenomena for random graphs. When
m → ∞ and n → ∞ with limiting ratio m/n → s, then in a random graph G on n
vertices and with m edges, it appears that G is k-colorable with probability → 1 for
s < sc(k) and G is not k-colorable with probability → 1 for s > sc(k). As before, the



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-05 CB503/Finch-v2.cls December 9, 2004 14:1 Char Count=

5.21 k-Satisfiability Constants 389

existence of sc(k) is only conjectured if k ≥ 3, but we have bounds [25–33]

1.923 ≤ sc(3) ≤ 2.495, 2.879 ≤ sc(4) ≤ 4.587,

3.974 ≤ sc(5) ≤ 6.948, 5.190 ≤ sc(6) ≤ 9.539

and an estimate [34] sc(3) = 2.3.
Consider also the discrete n-cube Q of vectors of the form (±1, ±1, ±1, . . . , ±1).

The half cube Hv generated by any v ∈ Q is the set of all vectors w ∈ Q having
negative inner product with v. If a vector u ∈ Hv , it is natural to say that Hv covers
u. Let v1, v2, . . . , vm be drawn randomly from Q. When m → ∞ and n → ∞ with
limiting ratio m/n → t , it appears that

⋃m
k=1 Hvk covers all of Q with probability → 1

for t > tc but fails to do so with probability → 1 for t < tc. The existence of tc was
conjectured in [35] but a proof is not known. We have bounds [36, 37]

0.005 ≤ tc ≤ 0.9963 = 1 − 0.0037

and an estimate [38, 39] tc = 0.82. The motivation for studying this problem arises in
binary neural networks.

Here is an interesting variation that encompasses both 2-SAT and 3-SAT. Fix a num-
ber 0 ≤ p ≤ 1. When selecting m clauses at random, choose a 3-clause with probability
p and a 2-clause with probability 1 − p. This is known as (2 + p)-SAT and is useful in
understanding the onset of complexity when moving from 2-SAT to 3-SAT [3, 40–42].
Clearly the critical value for this model satisfies

rc(2 + p) ≤ min

{
1

1 − p
,

1

p
rc(3)

}

for all p. Further [43], if p ≤ 2/5, then with probability → 1, a random (2 + p)-
SAT formula is satisfiable if and only if its 2-SAT subformula is satisfiable. This is
a remarkable result: A random mixture containing 60% 2-clauses and 40% 3-clauses
behaves like 2-SAT! Evidence for a conjecture that the critical threshold pc = 2/5
appears in [44]. See also [45].

Another variation involves replacing “inclusive or” when forming clauses by
“exclusive or.” By way of contrast with k-SAT, k ≥ 3, the XOR-SAT problem can
be solved in polynomial time, and its transition from satisfiability to unsatisfiability is
completely understood [46].
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5.22 Lenz–Ising Constants

The Ising model is concerned with the physics of phase transitions, for example, the
tendency of a magnet to lose strength as it is heated, with total loss occurring above a
certain finite critical temperature. This essay can barely introduce the subject. Unlike
hard squares [5.12] and percolation clusters [5.18], a concise complete problem state-
ment here is not possible. We are concerned with large arrays of 1s and −1s whose joint
distribution passes through a singularity as a parameter T increases. The definition and
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characterization of the joint distribution is elaborate; our treatment is combinatorial
and focuses on series expansions. See [1–10] for background.

Let L denote the regular d-dimensional cubic lattice with N = nd sites. For example,
in two dimensions, L is the n × n square lattice with N = n2. To eliminate boundary
effects, L is wrapped around to form a d-dimensional torus so that, without excep-
tion, every site has 2d nearest neighbors. This convention leads to negligible error for
large N .

5.22.1 Low-Temperature Series Expansions

Suppose that the N sites of L are colored black or white at random. The d N edges
of L fall into three categories: black-black, black-white, and white-white. What can
be said jointly about the relative numbers of these? Over all possible such colorings,
let A(p, q) be the number of colorings for which there are exactly p black sites and
exactly q black-white edges. (See Figure 5.20.)

Then, for large enough N [11–14],

A(0, 0) = 1 (all white),
A(1, 2d) = N (one black),
A(2, 4d − 2) = d N (two black, adjacent),
A(2, 4d) = 1

2 (N − 2d − 1)N (two black, not adjacent),
A(3, 6d − 4) = (2d − 1)d N (three black, adjacent).

Properties of this sequence can be studied via the bivariate generating function

a(x, y) =
∑
p,q

A(p, q)x p yq

and the formal power series

α(x, y) = lim
n→∞

1

N
ln(a(x, y))

= xy2d + dx2 y4d−2 − 2d + 1

2
x2 y4d + (2d − 1)dx3 y6d−4 + · · ·

Figure 5.20. Sample coloring with d = 2, N = 25, p = 7, and q = 21 (ignoring wraparound).
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obtained by merely collecting the coefficients that are linear in N . The latter is some-
times written as [15]

exp(α(x, y)) = 1 + xy2d + dx2 y4d−2 − dx2 y4d + (2d − 1)dx3 y6d−4 + · · · ,
a series whose coefficients are integers only. This is what physicists call the low-
temperature series for the Ising free energy per site. The letters x and y are not
dummy variables but are related to temperature and magnetic field; the series α(x, y) is
not merely a mathematical construct but is a thermodynamic function with properties
that can be measured against physical experiment [16]. In the special case when x = 1,
known as the zero magnetic field case, we write α(y) = α(1, y) for convenience.

When d = 2, we have [11, 17]

exp(α(y)) = 1 + y4 + 2y6 + 5y8 + 14y10 + 44y12 + 152y14 + 566y16 + · · · .
Onsager [18–23] discovered an astonishing closed-form expression:

α(y) = 1

2

1∫
0

1∫
0

ln
[
(1 + y2)2 − 2y(1 − y2) (cos(2πu) + cos(2πv))

]
du dv

that permits computation of series coefficients to arbitrary order [24] and much more.
When d = 3, we have [11, 25–30]

exp(α(y)) = 1 + y6 + 3y10 − 3y12 + 15y14 − 30y16 + 101y18 − 261y16 + − · · ·
No closed-form expression for this series has been found, and the required computations
are much more involved than those for d = 2.

5.22.2 High-Temperature Series Expansions

The associated high-temperature series arises via a seemingly unrelated combinatorial
problem. Let us assume that a nonempty subgraph of L is connected and contains at
least one edge. Suppose that several subgraphs are drawn on L with the property that

• each edge of L is used at most once, and
• each site of L is used an even number of times (possibly zero).

Call such a configuration on L an even polygonal drawing. (See Figure 5.21.) An even
polygonal drawing is the union of simple, closed, edge-disjoint polygons that need not
be connected.

Let B(r ) be the number of even polygonal drawings for which there are exactly r
edges. Then, for large enough N [4, 11, 31],

B(4) = 1
2 d(d − 1)N (square),

B(6) = 1
3 d(d − 1)(8d − 13)N (two squares, adjacent),

B(8) = 1
8 d(d − 1)

(
d(d − 1)N + 216d2 − 848d + 850

)
N (many possibilities).

On the one hand, for d ≥ 3, the drawings can intertwine and be knotted [32], so com-
puting B(r ) for larger r is quite complicated! On the other hand, for d = 2, clearly
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Figure 5.21. An even polygonal drawing for d = 2; other names include closed or Eulerian
subgraph.

B(q) = ∑
p A(p, q) always. As before, we define a (univariate) generating function

b(z) = 1 +
∑

r

B(r )zr

and a formal power series

β(z) = lim
n→∞

1

N
ln(b(z))

= 1

2
d(d − 1)z4 + 1

3
d(d − 1)(8d − 13)z6 + 1

4
d(d − 1)(108d2 − 424d + 425)z8

+ 2

15
d(d − 1)(2976d3 − 19814d2 + 44956d − 34419)z10 + · · ·

called the high-temperature zero-field series for the Ising free energy. When d = 3
[11, 25, 29, 33–36],

exp(β(z)) = 1 + 3z4 + 22z6 + 192z8 + 2046z10 + 24853z12 + 329334z14 + · · · ,
but again our knowledge of the series coefficients is limited.

5.22.3 Phase Transitions in Ferromagnetic Models

The two major unsolved problems connected to the Ising model are [4, 31, 37]:

• Find a closed-form expression for α(x, y) when d = 2.

• Find a closed-form expression for β(z) when d = 3.
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Why are these so important? We discuss now the underlying physics, as well its rela-
tionship to the aforementioned combinatorial problems.

Place a bar of iron in an external magnetic field at constant absolute temperature
T . The field will induce a certain amount of magnetization into the bar. If the external
field is then slowly turned off, we empirically observe that, for small T , the bar retains
some of its internal magnetization, but for large T , the bar’s internal magnetization
disappears completely.

There is a unique critical temperature, Tc, also called the Curie point, where this
qualitative change in behavior occurs. The Ising model is a simple means for explaining
the physical phenomena from a microscopic point of view.

At each site of the lattice L , define a “spin variable” σi = 1 if site i is “up” and
σi = −1 if site i is “down.” This is known as the spin-1/2 model. We study the partition
function

Z (T ) =
∑

σ

exp

[
1

κT

(∑
(i, j)

ξσiσ j +
∑

k

ησk

)]
,

where ξ is the coupling (or interaction) constant between nearest neighbor spin vari-
ables, η ≥ 0 is the intensity constant of the external magnetic field, and κ > 0 is
Boltzmann’s constant.

The function Z (T ) captures all of the thermodynamic features of the physical system
and acts as a kind of “denominator” when calculating state probabilities. Observe that
the first summation is over all 2N possible values of the vector σ = (σ1, σ2, . . . , σN )
and the second summation is over all edges of the lattice (sites i and j are distinct and
adjacent). Henceforth we will assume ξ > 0, which corresponds to the ferromagnetic
case. A somewhat different theory emerges in the antiferromagnetic case (ξ < 0),
which we will not discuss.

How is Z connected to the combinatorial problems discussed earlier? If we assign
a spin 1 to the color white and a spin −1 to the color black, then∑

(i, j)

σiσ j = (d N − q) · 1 + q · (−1) = d N − 2q,

∑
k

σk = (N − p) · 1 + p · (−1) = N − 2p,

and therefore

Z = x− 1
2 N y− d

2 N a(x, y),

where

x = exp

(
− 2η

κT

)
, y = exp

(
− 2ξ

κT

)
.

Since small T gives small values of x and y, the phrase low-temperature series for
α(x, y) is justified. (Observe that T = ∞ corresponds to the case when lattice site
colorings are assigned equal probability, which is precisely the combinatorial problem
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described earlier. The range 0 < T < ∞ corresponds to unequal weighting, accentu-
ating the states with small p and q. The point T = 0 corresponds to an ideal case when
all spins are aligned; heat introduces disorder into the system.)

For the high-temperature case, rewrite Z as

Z =
(

4

(1 − z2)d (1 − w2)

) N
2 1

2N

∑
σ

(∏
(i, j)

(1 + σiσ j z) ·
∏

k

(1 + σkw)

)
,

where

z = tanh

(
ξ

κT

)
, w = tanh

( η

κT

)
.

In the zero-field scenario (η = 0), this expression simplifies to

Z =
(

4

(1 − z2)d

) N
2

b(z),

and since large T gives small z, the phraseology again makes sense.

5.22.4 Critical Temperature

We turn attention to some interesting constants. The radius of convergence yc in the
complex plane of the low-temperature series α(y) = ∑∞

k=0 αk yk is given by [29]

yc = lim
k→∞

|α2k |− 1
2k =

{√
2 − 1 = 0.4142135623 . . . if d = 2,√
0.2853 . . . = 0.5341 . . . if d = 3;

hence, if d = 2, the ferromagnetic critical temperature Tc satisfies

Kc = ξ

κTc
= 1

2
ln

(
1

yc

)
= 1

2
ln(

√
2 + 1) = 0.4406867935 . . . .

The two-dimensional result is a famous outcome of work by Kramers & Wannier [38]
and Onsager [18]. For d = 3, the singularity at y2 = −0.2853 . . . is nonphysical and
thus is not relevant to ferromagnetism; a second singularity at y2 = 0.412048 . . . is what
we want but it is difficult to compute directly [29, 39]. To accurately obtain the critical
temperature here, we examine instead the high-temperature series β(z) = ∑∞

k=0 βk zk

and compute

zc = lim
k→∞

β2k
− 1

2k = 0.218094 . . . , Kc = 1
2 ln

(
1 + zc

1 − zc

)
= 0.221654 . . . .

There is a huge literature of series and Monte Carlo analyses leading to this estimate
[40–53]. (A conjectured exact expression for zc in [54] appears to be false [55].) For
d > 3, the following estimates are known [56–65]:

zc =




0.14855 . . . if d = 4,

0.1134 . . . if d = 5,

0.0920 . . . if d = 6,

0.0775 . . . if d = 7,

Kc =




0.14966 . . . if d = 4,

0.1139 . . . if d = 5,

0.0923 . . . if d = 6,

0.0777 . . . if d = 7.

An associated critical exponent γ will be discussed shortly.
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Figure 5.22. An odd polygonal drawing for d = 2.

5.22.5 Magnetic Susceptibility

Here is another combinatorial problem. Suppose that several subgraphs are drawn on
L with the property that

• each edge of L is used at most once,
• all sites of L , except two, are even, and
• the two remaining sites are odd and must lie in the same (connected) subgraph.

Call this configuration an odd polygonal drawing. (See Figure 5.22.) Note that an
odd polygonal drawing is the edge-disjoint union of an even polygonal drawing and an
(undirected) self-avoiding walk [5.10] linking the two odd sites.

Let C(r ) be twice the number of odd polygonal drawings for which there are exactly
r edges. Then, for large enough N [12, 66],

C(1) = 2d N (SAW),
C(2) = 2d(2d − 1)N (SAW),
C(3) = 2d(2d − 1)2 N (SAW),
C(4) = 2d

(
2d(2d − 1)3 − 2d(2d − 2)

)
N (SAW),

C(5) = d2(d − 1)N 2 + 2d
(
16d4 − 32d3 + 16d2 + 4d − 3

)
N (square and/or SAW).

As before, we may define a generating function and a formal power series

c(z) = N +
∑

r

C(r )zr , χ (z) = lim
n→∞

1

N
ln(c(z)) =

∞∑
k=0

χk zk,

which is what physicists call the high-temperature zero-field series for the Ising
magnetic susceptibility per site. The radius of convergence zc of χ (z) is the same as
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that for β(z) for d > 1. For example, when d = 3, analyzing the series [67–73]

χ (z) = 1 + 6z + 30z2 + 150z3 + 726z4 + 3510z5 + 16710z6 + · · ·
is the preferred way to obtain critical parameter estimates (being the best behaved of
several available series). Further, the limit

lim
k→∞

χk

z−k
c kγ−1

appears to exist and is nonzero for a certain positive constant γ depending on di-
mensionality. As an example, if d = 2, numerical evidence surrounding the series
[67, 74, 75]

χ (z) = 1 + 4z + 12z2 + 36z3 + 100z4 + 276z5 + 740z6 + 1972z7 + 5172z8 + · · ·
suggests that the critical susceptibility exponent γ is 7/4 and that γ is universal (in
the sense that it is independent of the choice of lattice). No analogous exact expressions
appear to be valid for γ when d ≥ 3; for d = 3, the consensus is that γ = 1.238 . . .

[40, 44, 46, 49–52, 71, 73].
We finally make explicit the association of χ (z) with the Ising model [76]:

lim
n→∞

1

N
ln(Z (z, w)) = ln(2) − d

2
ln(1 − z2) − 1

2
ln(1 − w2) + β(z)

+ 1

2
(χ (z) − 1) w2 + O(w4),

where the big O depends on z. Therefore χ (z) occurs when evaluating a second
derivative with respect to w, specifically, when computing the variance of P (defined
momentarily).

5.22.6 Q and P Moments

Let us return to the random coloring problem, suitably generalized to incorporate
temperature. Let

Q = d − 2

N
q = 1

N

∑
(i, j)

σiσ j , P = 1 − 2

N
p = 1

N

∑
k

σk

for convenience and assume henceforth that d = 2. To study the asymptotic distribution
of Q, define

F(z) = lim
n→∞

1

N
ln(Z (z)).

Then clearly

lim
n→∞ E(Q) = (κT )

d F

dξ
, lim

n→∞ N Var(Q) = (κT )2 d2 F

dξ 2

via term-by-term differentiation of ln(Z ). Exact expressions for both moments are
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possible using Onsager’s formula:

F(z) = ln

(
2

1 − z2

)

+ 1

2

1∫
0

1∫
0

ln
[
(1 + z2)2 − 2z(1 − z2) (cos(2πu) + cos(2πv))] du dv,

but we give results at only two special temperatures. In the case T = ∞, for which states
are assigned equal weighting, E(Q) → 0 and N Var(Q) → 2, confirming reasoning in
[77]. In the case T = Tc, note that the singularity is fairly subtle since F and its first
derivative are both well defined [11]:

F(zc) = ln(2)

2
+ 2G

π
= 0.9296953983 . . . = 1

2
(ln(2) + 1.1662436161 . . .) ,

lim
n→∞ E(Q) =

√
2,

where G is Catalan’s constant [1.7]. The second derivative of F , however, is unbounded
in the vicinity of z = zc and, in fact [5],

lim
n→∞ N Var(Q) ≈ − 8

π

(
ln

∣∣∣∣ T

Tc
− 1

∣∣∣∣ + g

)
,

where g is the constant

g = 1 + π

4
+ ln

(√
2

4
ln(

√
2 + 1)

)
= 0.6194036984 . . . .

This is related to what physicists call the logarithmic divergence of the Ising specific
heat. (See Figure 5.23.)

As an aside, we mention that corresponding values of F(zc) on the triangular and
hexagonal planar lattices are, respectively [11],

ln(2) + ln(3)

4
+ H

2
= 0.8795853862 . . . ,

3 ln(2)

4
+ ln(3)

2
+ H

4
= 1.0250590965 . . . .
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Figure 5.23. Graphs of Ising specific heat and spontaneous magnetization.
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Both results feature a new constant [78, 79]:

H = 5
√

3

6π
ψ ′

(
1

3

)
− 5

√
3

9
π − ln(6) =

√
3

6π
ψ ′

(
1

6

)
−

√
3

3
π − ln(6)

= −0.1764297331 . . . ,

where ψ ′(x) is the trigamma function (derivative of the digamma functionψ(x) [1.5.4]).
See [80–82] for other occurrences of H ; note that the formula

ln(2) + ln(3) + H = 1

4π2

π∫
−π

π∫
−π

ln [6 − 2 cos(θ ) − 2 cos(ϕ) − 2 cos(θ + ϕ)] dθ dϕ

= 3
√

3

π

(
1 − 1

52
+ 1

72
− 1

112
+ 1

132
− 1

172
+ − · · ·

)

= 1.6153297360 . . .

parallels nicely similar results in [3.10] and [5.23].
A more difficult analysis allows us to compute the corresponding two moments of

P and also to see more vividly the significance of magnetic susceptibility and critical
exponents. Let

F(z, w) = lim
n→∞

1

N
ln(Z (z, w));

then clearly

lim
η→0+

lim
n→∞ E(P) = (κT )

∂ F

∂η

∣∣∣∣
η=0

, lim
η→0+

lim
n→∞ N Var(P) = (κT )2 ∂2 F

∂η2

∣∣∣∣
η=0

as before. Of course, we do not know F(z, w) exactly when w �= 0. Its derivative at
w = 0, however, has a simple expression valid for all z:

lim
η→0+

lim
n→∞ E(P) =




[
1 − sinh

(
2ξ

κT

)−4
] 1

8

if T < Tc,

0 if T > Tc,

=
{

(1 + y2)
1
4 (1 − 6y2 + y4)

1
8 (1 − y2)−

1
2 if T < Tc,

0 if T > Tc

due to Onsager and Yang [83–85]. A rigorous justification is found in [86–88]. For the
special temperature T = ∞, we have E(P) → 0 and N Var(P) → 1 since p is Binomial
(N , 1/2) distributed. At criticality, E(P) → 0 as well, but the second derivative exhibits
fascinatingly complicated behavior:

lim
η→0+

lim
n→∞ N Var(P) = χ (z) ≈ c+

0 t− 7
4 + c+

1 t− 3
4 + d0 + c+

2 t
1
4 + e0 t ln(t) + d1t + c+

3 t
5
4 ,

where 0 < t = 1 − Tc/T , c+
0 = 0.9625817323 . . . , d0 = −0.1041332451 . . . , e0 =

0.0403255003 . . . , d1 = −0.14869 . . . , and

c+
1 =

√
2

8 Kcc+
0 , c+

2 = 151
192 K 2

c c+
0 , c+

3 = 615
√

2
512 K 3

c c+
0 .
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Wu, McCoy, Tracy & Barouch [89–99] determined exact expressions for these series
coefficients in terms of the solution to a Painlevé III differential equation (described
in the next section). Different numerical values of the coefficients apply for T < Tc,
as well as for the antiferromagnetic case [100, 101]. For example, when t < 0, the
corresponding leading coefficient is c−

0 = 0.0255369745 . . . . The study of magnetic
susceptibility χ (z) is far more involved than the other thermodynamic functions men-
tioned in this essay, and there are still gaps in the rigorous line of thought [102]. Also,
in a recent breakthrough [103, 104], the entire asymptotic structure of χ (z) has now
largely been determined.

5.22.7 Painlevé III Equation

Let f (x) be the solution of the Painlevé III differential equation [105]

f ′′(x)

f (x)
=

(
f ′(x)

f (x)

)2

− 1

x

f ′(x)

f (x)
+ f (x)2 − 1

f (x)2

satisfying the boundary conditions

f (x) ∼ 1 − e−2x

√
πx

as x → ∞, f (x) ∼ x (2 ln(2) − γ − ln(x)) as x → 0+,

where γ is Euler’s constant [1.5]. Define

g(x) =
[

x f ′(x)

2 f (x)
+ x2

4 f (x)2

((
1 − f (x)2

)2 − f ′(x)2
)]

ln(x).

Then exact expressions for c+
0 and c−

0 are

c+
0 = 2

5
8 π ln(

√
2 + 1)−

7
4

∞∫
0

y(1 − f (y))

× exp




∞∫
y

x ln(x)
(
1 − f (x)2

)
dx − g(y)


 dy,

c−
0 = 2

5
8 π ln(

√
2 + 1)−

7
4

∞∫
0

y

×

(1 + f (y)) exp




∞∫
y

x ln(x)
(
1 − f (x)2

)
dx − g(y)


 − 2


 dy.

Painlevé II arises in our discussion of the longest increasing subsequence problem
[5.20], and Painlevé V arises in connection with the GUE hypothesis [2.15.3].

Here is a slight variation of these results. Define

h(x) = − ln
(

f
( x

c

))
for any constant c > 0; then the function h(x) satisfies what is known as the sinh-Gordon
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differential equation:

h′′(x) + 1

x
h′(x) = 2

c2
sinh(2h(x)),

h(x) ∼
√

c

πx
exp

(
−2x

c

)
as x → ∞.

Finally, we mention a beautiful formula:
∞∫
0

x ln(x)
(
1 − f (x)2

)
dx = 1

4
+ 7

12
ln(2) − 3 ln(A),

where A is Glaisher’s constant [2.15]. Conceivably, c+
0 and c−

0 may someday be related
to A as well.

[1] G. F. Newell and E. W. Montroll, On the theory of the Ising model of ferromagnetism,
Rev. Mod. Phys. 25 (1953) 353–389; MR 15,88b.

[2] M. E. Fisher, The theory of cooperative phenomena, Rep. Prog. Phys. 30 (1967) 615–730.
[3] S. G. Brush, History of the Lenz-Ising model, Rev. Mod. Phys. 39 (1967) 883–893.
[4] C. Thompson, Mathematical Statistical Mechanics, Princeton Univ. Press, 1972; MR

80h:82001.
[5] B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Model, Harvard Univ. Press,

1973.
[6] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, 1982; MR

90b:82001.
[7] G. A. Baker, Quantitative Theory of Critical Phenomena, Academic Press, 1990; MR

92d:82039.
[8] C. Domb, The Critical Point: A Historical Introduction to the Modern Theory of Critical

Phenomena, Taylor and Francis, 1996.
[9] G. M. Bell and D. A. Lavis, Statistical Mechanics of Lattice Systems, v. 1-2, Springer-

Verlag, 1999.
[10] D. S. Gaunt and A. J. Guttmann, Asymptotic analysis of coefficients, Phase Transitions

and Critical Phenomena, v. 3, ed. C. Domb and M. S. Green, Academic Press, 1974,
pp. 181–243; A. J. Guttmann, Asymptotic analysis of power-series expansions, Phase
Transitions and Critical Phenomena, v. 13, ed. C. Domb and J. L. Lebowitz, Academic
Press, 1989, pp. 1–234; MR 50 #6393 and MR 94i:82003.

[11] C. Domb, On the theory of cooperative phenomena in crystals, Adv. Phys. 9 (1960) 149–
361.

[12] T. Oguchi, Statistics of the three-dimensional ferromagnet. II and III, J. Phys. Soc. Japan
6 (1951) 27–35; MR 15,188h.

[13] A. J. Wakefield, Statistics of the simple cubic lattice, Proc. Cambridge Philos. Soc. 47
(1951) 419–429, 719–810; MR 13,308a and MR 13,417c.

[14] A. Rosengren and B. Lindström, A combinatorial series expansion for the Ising model,
Europ. J. Combin. 8 (1987) 317–323; MR 89c:82062.

[15] R. J. Baxter and I. G. Enting, Series expansions for corner transfer matrices: The square
lattice Ising model, J. Stat. Phys. 21 (1979) 103–123.

[16] C. Domb, Some statistical problems connected with crystal lattices, J. Royal Statist. Soc.
B 26 (1964) 367–397.

[17] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A001393, A002891,
A001408, and A002916.

[18] L. Onsager, Crystal physics. I: A two-dimensional model with an order-disorder transition,
Phys. Rev. 65 (1944) 117–149.



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-05 CB503/Finch-v2.cls December 9, 2004 14:1 Char Count=

5.22 Lenz–Ising Constants 403

[19] M. Kac and J. C. Ward, A combinatorial solution of the two-dimensional Ising model,
Phys. Rev. 88 (1952) 1332–1337.

[20] S. Sherman, Combinatorial aspects of the Ising model for ferromagnetism. I: A conjecture
of Feynman on paths and graphs, J. Math. Phys. 1 (1960) 202–217, addendum 4 (1963)
1213–1214; MR 22 #10273 and MR 27 #6560.

[21] N. V. Vdovichenko, A calculation of the partition function for a plane dipole lattice (in
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[53] A. L. Talapov and H. W. J. Blöte, The magnetization of the 3D Ising model, J. Phys. A 29
(1996) 5727–5733.

[54] A. Rosengren, On the combinatorial solution of the Ising model, J. Phys. A 19 (1986)
1709–1714; MR 87k:82149.

[55] M. E. Fisher, On the critical polynomial of the simple cubic Ising model, J. Phys. A. 28
(1995) 6323–6333; corrigenda 29 (1996) 1145; MR 97b:82018a and MR 97b:82018b.

[56] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A010556, A010579,
A010580, A030008, A030044, A030045, A030046, A030047, A030048, and A030049.

[57] M. E. Fisher and D. S. Gaunt, Ising model and self-avoiding walks on hypercubical lattices
and high density expansions, Phys. Rev. 133 (1964) A224–A239.

[58] M. A. Moore, Critical behavior of the four-dimensional Ising ferromagnet and the break-
down of scaling, Phys. Rev. B 1 (1970) 2238–2240.

[59] D. S. Gaunt, M. F. Sykes, and S. McKenzie, Susceptibility and fourth-field derivative of
the spin-1/2 Ising model for T > Tc and d = 4, J. Phys. A 12 (1979) 871–877.

[60] M. F. Sykes, Derivation of low-temperature expansions for Ising model. X: The four-
dimensional simple hypercubic lattice, J. Phys. A 12 (1979) 879–892.

[61] C. Vohwinkel and P. Weisz, Low-temperature expansion in the d = 4 Ising model, Nucl.
Phys. B 374 (1992) 647–666; MR 93a:82015.

[62] A. J. Guttmann, Correction to scaling exponents and critical properties of the n-vector
model with dimensionality > 4, J. Phys. A 14 (1981) 233–239.

[63] A. B. Harris and Y. Meir, Recursive enumeration of clusters in general dimension on
hypercubic lattices, Phys. Rev. A 36 (1987) 1840–1848; MR 88m:82037.

[64] C. Münkel, D. W. Heermann, J. Adler, M. Gofman, and D. Stauffer, The dynamical
critical exponent of the two-, three- and five-dimensional kinetic Ising model, Physica A
193 (1993) 540–552.

[65] M. Gofman, J. Adler, A. Aharony, A. B. Harris, and D. Stauffer, Series and Monte Carlo
study of high-dimensional Ising models, J. Stat. Phys. 71 (1993) 1221–1230.

[66] M. F. Sykes, Some counting theorems in the theory of the Ising model and the excluded
volume problem, J. Math. Phys. 2 (1961) 52–59; MR 22 #8749.

[67] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A002906, A002913,
A002926, and A002927.

[68] D. S. Gaunt and M. F. Sykes, The critical exponent γ for the three-dimensional Ising
model, J. Phys. A 12 (1979) L25–L28.



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-05 CB503/Finch-v2.cls December 9, 2004 14:1 Char Count=

5.22 Lenz–Ising Constants 405

[69] D. S. Gaunt, High temperature series analysis for the three-dimensional Ising model: A
review of some recent work, Phase Transitions – Cargèse 1980, ed. M. Lévy, J.-C. Le
Guillou, and J. Zinn-Justin, Plenum Press, 1982, pp. 217–246.

[70] A. J. Guttmann, The high temperature susceptibility and spin-spin correlation function of
the three-dimensional Ising model, J. Phys. A 20 (1987) 1855–1863; MR 88h:82075.

[71] P. Butera and M. Comi, N -vector spin models on the simple-cubic and the body-centered-
cubic lattices: A study of the critical behavior of the susceptibility and of the correlation
length by high-temperature series extended to order 21, Phys. Rev. B 56 (1997) 8212–
8240; hep-lat/9703018.

[72] M. Campostrini, Linked-cluster expansion of the Ising model, J. Stat. Phys. 103 (2001)
369–394; cond-mat/0005130.

[73] P. Butera and M. Comi, Extension to order β23 of the high-temperature expansions for
the spin-1/2 Ising model on the simple-cubic and the body-centered-cubic lattices, Phys.
Rev. B 62 (2000) 14837–14843; hep-lat/0006009.

[74] M. F. Sykes, D. S. Gaunt, P. D. Roberts, and J. A. Wyles, High temperature series for the
susceptibility of the Ising model. I: Two dimensional lattices, J. Phys. A 5 (1972) 624–639.

[75] B. G. Nickel, On the singularity structure of the 2D Ising model, J. Phys. A 32
(1999) 3889–3906; addendum 33 (2000) 1693–1711; MR 2000d:82013 and MR 2001a:
82022.

[76] C. Domb, Ising model, Phase Transitions and Critical Phenomena, v. 3, ed. C. Domb and
M. S. Green, Academic Press, 1974, pp. 357–484; MR 50 #6393.

[77] P. A. P. Moran, Random associations on a lattice, Proc. Cambridge Philos. Soc. 34 (1947)
321–328; 45 (1949) 488; MR 8,592b.

[78] R. M. F. Houtappel, Order-disorder in hexagonal lattices, Physica 16 (1950) 425–455;
MR 12,576j.

[79] V. S. Adamchik, Exact formulas for some Ising-related constants, unpublished note
(1997).

[80] R. Burton and R. Pemantle, Local characteristics, entropy and limit theorems for spanning
trees and domino tilings via transfer-impedances, Annals of Probab. 21 (1993) 1329–1371;
MR 94m:60019.

[81] F. Y. Wu, Number of spanning trees on a lattice, J. Phys. A 10 (1977) L113–L115; MR
58 #8974.

[82] R. Shrock and F. Y. Wu, Spanning trees on graphs and lattices in d dimensions, J. Phys.
A 33 (2000) 3881–3902; MR 2001b:05111.

[83] L. Onsager, Statistical hydrodynamics, Nuovo Cimento Suppl. 6 (1949) 279–287.
[84] C. N. Yang, The spontaneous magnetization of a two-dimensional Ising model, Phys. Rev.

85 (1952) 808–817; MR 14,522e.
[85] E. W. Montroll and R. B. Potts, Correlations and spontaneous magnetization of the two-

dimensional Ising model, J. Math. Phys. 4 (1963) 308–319; MR 26 #5913.
[86] G. Benettin, G. Gallavotti, G. Jona-Lasinio, and A. L. Stella, On the Onsager-Yang value

of the spontaneous magnetization, Commun. Math. Phys. 30 (1973) 45–54.
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5.23 Monomer-Dimer Constants

Let L be a graph [5.6]. A dimer consists of two adjacent vertices of L and the (non-
oriented) bond connecting them. A dimer arrangement is a collection of disjoint
dimers on L . Uncovered vertices are called monomers, so dimer arrangements are
also known as monomer-dimer coverings. We will discuss such coverings only briefly
at the beginning of the next section.

A dimer covering is a dimer arrangement whose union contains all the vertices of
L . Dimer coverings and the closely-related topic of tilings will occupy the remainder
of this essay.

5.23.1 2D Domino Tilings

Let an denote the number of distinct monomer-dimer coverings of an n × n square
lattice L and N = n2; then a1 = 1, a2 = 7, a3 = 131, a4 = 10012 [1, 2], and asymp-
totically [3–6]

A = lim
n→∞ a

1
N

n = 1.940215351 . . . = (3.764435608 . . .)
1
2 .

No exact expression for the constant A is known. Baxter’s approach for estimating
A was based on the corner transfer matrix variational approach, which also played a
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role in [5.12]. A natural way for physicists to discuss the monomer-dimer problem is
to associate an activity z with each dimer; A thus corresponds to the case z = 1. The
mean number ρ of dimers per vertex is 0 if z = 0 and 1/2 if z = ∞; when z = 1, ρ

is 0.3190615546 . . . , for which again there is no closed-form expression [3]. Unlike
other lattice models (see [5.12], [5.18], and [5.22]), monomer-dimer systems do not
have a phase transition [7].

Computing an is equivalent to counting (not necessarily perfect) matchings in L ,
that is, to counting independent sets of edges in L . This is related to the difficult
problem of computing permanents of certain binary incidence matrices [8–14]. Kenyon,
Randall & Sinclair [15] gave a randomized polynomial-time approximation algorithm
for computing the number of monomer-dimer coverings of L , assuming ρ to be given.

Let us turn our attention henceforth to the zero monomer density case, that is, z = ∞.
If bn is the number of distinct dimer coverings of L , then bn = 0 if n is odd and

bn = 2N/2
n/2∏
j=1

n/2∏
k=1

(
cos2 jπ

n + 1
+ cos2 kπ

n + 1

)

if n is even. This exact expression is due to Kastelyn [16] and Fisher & Temperley
[17, 18]. Further,

lim
n→∞
n even

1

N
ln(bn) = 1

16π2

π∫
−π

π∫
−π

ln [4 + 2 cos(θ ) + 2 cos(ϕ)] dθ dϕ

= G

π
= 0.2915609040 . . . ;

that is,

B = lim
n→∞
n even

b
1
N
n = exp

(
G

π

)
= 1.3385151519 . . . = (1.7916228120 . . .)

1
2 ,

where G is Catalan’s constant [1.7]. This is a remarkable solution, in graph theoretic
terms, of the problem of counting perfect matchings on the square lattice. It is also
an answer to the following question: What is the number of ways of tiling an n × n
chessboard with 2 × 1 or 1 × 2 dominoes? See [19–26] for more details. The constant
B2 is called δ in [3.10] and appears in [1.8] too; the expression 4G/π arises in [5.22],
G/(π ln(2)) in [5.6], and 8G/π2 in [7.7].

If we wrap the square lattice around to form a torus, the counts bn differ some-
what, but the limiting constant B remains the same [16, 27]. If, instead, we assume
the chessboard to be shaped like an Aztec diamond [28], then the associated constant
B = 21/4 = 1.189 . . . < 1.338 . . . = eG/π . Hence, even though the square chessboard
has slightly less area than the diamond chessboard, the former possesses many more
domino tilings [29]. Lattice boundary effects are thus seen to be nontrivial.
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5.23.2 Lozenges and Bibones

The analog of exp(2G/π ) for dimers on a hexagonal (honeycomb) lattice with
wraparound is [30–32]

C2 = lim
n→∞ c

2
N
n = exp


 1

8π2

π∫
−π

π∫
−π

ln [3 + 2 cos(θ ) + 2 cos(ϕ) + 2 cos(θ + ϕ)] dθ dϕ




= 1.3813564445 . . . .

This constant is called β in [3.10] and can be expressed by other formulas too. It
characterizes lozenge tilings on a chessboard with triangular cells satisfying periodic
boundary conditions. See [33–38] as well.

If there is no wraparound, then the sequence [39]

cn =
n∏

j=1

n∏
k=1

n + j + k − 1

j + k − 1

emerges, and a different growth constant 3
√

3/4 applies. We have assumed that the
hexagonal grid is center-symmetric with sides n, n, and n (i.e., the simplest possible
boundary conditions). The sequence further enumerates plane partitions contained
within an n × n × n box [40, 41].

The corresponding analog for dimers on a triangular lattice with wraparound is
[30, 42, 43]

D2 = lim
n→∞ d

2
N

n = exp


 1

8π2

π∫
−π

π∫
−π

ln [6 + 2 cos(θ ) + 2 cos(ϕ) + 2 cos(θ + ϕ)] dθ dϕ




= 2.3565273533 . . . .

The expression 4 ln(D) bears close similarity to a constant ln(6) + H described in
[5.22]. It also characterizes bibone tilings on a chessboard with hexagonal cells satis-
fying periodic boundary conditions. The case of no wraparound [1, 44, 45] apparently
remains open.

5.23.3 3D Domino Tilings

Let hn denote the number of distinct dimer coverings of an n × n × n cubic lattice
L and N = n3. Then hn = 0 if n is odd, h2 = 9, and h4 = 5051532105 [46, 47]. An
important unsolved problem in solid-state chemistry is the estimation of

lim
n→∞
n even

h
1
N
n = exp(λ)

or, equivalently,

λ = lim
n→∞
n even

1

N
ln(hn).
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Hammersley [48] proved that λ exists and λ ≥ 0.29156. Lower bounds were improved
by Fisher [49] to 0.30187, Hammersley [50, 51] to 0.418347, and Priezzhev [52, 53] to
0.419989. In a review of [54], Minc pointed out that a conjecture due to Schrijver &
Valiant on lower bounds for permanents of certain binary matrices would imply that
λ ≥ 0.44007584. Schrijver [55] proved this conjecture, and this is the best-known result.

Fowler & Rushbrooke [56] gave an upper bound of 0.54931 for λ over sixty years
ago (assuming λ exists). Upper bounds have been improved by Minc [8, 57, 58] to
0.5482709, Ciucu [59] to 0.463107, and Lundow [60] to 0.457547.

A sequence of nonrigorous numerical estimates by Nagle [30], Gaunt [31], and
Beichl & Sullivan [61] has culminated with λ = 0.4466 . . . . As with an , computing
hn for even small values of n is hard and matrix permanent approximation schemes
offer the only hope. The field is treacherously difficult: Conjectured exact asymptotic
formulas for hn in [62, 63] are incorrect.

A related topic is the number, kn , of dimer coverings of the n-dimensional unit
cube, whose 2n vertices consist of all n-tuples drawn from {0, 1} [47, 64]. The term
k6 = 16332454526976 was computed independently by Lundow [46] and Weidemann
[65]. In this case, we know the asymptotic behavior of kn rather precisely [44, 65, 66]:

lim
n→∞

1

n
k21−n

n = 1

e
= 0.3678794411 . . . ,

where e is the natural logarithmic base [1.3].
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5.24 Lieb’s Square Ice Constant

Let L denote the n × n planar square lattice with wraparound and let N = n2. An
orientation of L is an assignment of a direction (or arrow) to each edge of L . What
is the number, fn , of orientations of L such that at each vertex there are exactly two
inward and two outward pointing edges? Such orientations are said to obey the ice rule
and are also called Eulerian orientations. The sequence { fn} starts with the terms
f1 = 4, f2 = 18, f3 = 148, and f4 = 2970 [1, 2]. After intricate analysis, Lieb [3–5]
proved that

lim
n→∞ f

1
N

n =
(

4

3

) 3
2

=
√

64

27
= 1.5396007178 . . . .

This constant is known as the residual entropy for square ice. A brief discussion
of the underlying physics appears in [5.24.3]. The model is also called a six-vertex
model since, at each vertex, there are six possible configurations of arrows [6–9]. See
Figure 5.24.

We turn to several related results. Let f̃ n denote the number of orientations of L
such that at each vertex there are an even number of edges pointing in and an even
number pointing out. Clearly f̃ n ≥ fn and the model is called an eight-vertex model.
In this case, however, the analysis is not quite so intricate and we have f̃ n = 2N+1 via
elementary linear algebra. The corresponding expression for the sixteen-vertex model
(with no restrictions on the arrows) is obviously 22N .

Let us focus instead on the planar triangular lattice L with N vertices. What is the
number, gn , of orientations of L such that at each vertex there are exactly three inward
and three outward pointing edges? (The phrase Eulerian orientation applies here, but
not ice rule.) Baxter [10] proved that this twenty-vertex model satisfies

lim
n→∞ g

1
N

n =
√

27

4
= 2.5980762113 . . . .

The problem of computing fn and gn is the same as counting nowhere-zero flows modulo

Figure 5.24. A sample planar configuration of arrows satisfying the ice rule.
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3 on L [9, 11, 12]. Mihail & Winkler [13] studied related computational complexity
issues.

One of several solutions of the famous alternating sign matrix conjecture [1, 14–16]
is closely related to the square ice model. This achievement serves to underscore (once
again) the commonality of combinatorial theory and statistical physics.

5.24.1 Coloring

Here is a fascinating topic that anticipates the next essay [5.25]. Let un denote the
number of ways of coloring the vertices of the square lattice with three colors so that
no two adjacent vertices are colored alike. Lenard [5] pointed out that un = 3 fn . In
words, the number of 3-colorings of a square map is thrice the number of square ice
configurations. We will return to un momentarily, with generalization in mind.

Replace the square lattice by the triangular lattice L and fix an integer q ≥ 4. Let
vn denote the number of ways of coloring the vertices of L with q colors so that no
two adjacent vertices are colored alike. Baxter [17, 18] proved that, if a parameter
−1 < x < 0 is defined for q > 4 by q = 2 − x − x−1, then

lim
n→∞ v

1
N

n = − 1

x

∞∏
j=1

(1 − x6 j−3)(1 − x6 j−2)2(1 − x6 j−1)

(1 − x6 j−5)(1 − x6 j−4)(1 − x6 j )(1 − x6 j+1)
.

In particular, letting q → 4+ (note that the formula makes sense for real q), we obtain

C2 = lim
n→∞ v

1
N

n =
∞∏
j=1

(3 j − 1)2

(3 j − 2)(3 j)
= 3

4π2
�

(
1
3

)3

= 1.4609984862 . . . = (1.2087177032 . . .)2,

which we call Baxter’s 4-coloring constant for a triangular lattice.
Define likewise un and wn for the number of q-colorings of the square lattice and the

hexagonal (honeycomb) lattice with N vertices, respectively. Analytical expressions
for the corresponding limiting values are not available, but numerical assessment of
certain series expansions provide the list in Table 5.6 [19–21]. The only known quantity
in this table is Lieb’s constant in the upper left corner. See [5.25] for related discussion
on chromatic polynomials.

Table 5.6. Limiting Values of Roots
u1/N

n and w
1/N
n

q limn→∞ u1/N
n limn→∞ w1/N

n

3 1.5396 . . . 1.6600 . . .

4 2.3360 . . . 2.6034 . . .

5 3.2504 . . . 3.5795 . . .

6 4.2001 . . . 4.5651 . . .

7 5.1667 . . . 5.5553 . . .
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5.24.2 Folding

The square-diagonal folding problem may be translated into the following coloring
problem. Cover the faces of the square lattice with either of the two following square
tiles.

Tile 1

Tile 2

Tile 1: Alternating black and white segments join the centers of the consecutive edges around
the square; west-to-north segment is black, north-to-east is white, east-to-south is black, and
south-to-west is white. Tile 2: The opposite convention is adopted; west-to-north segment is
white, north-to-east is black, east-to-south is white, and south-to-west is black.

There are 2N such coverings for a lattice made of N squares. Now, surrounding each
vertex of the original lattice, there is a square loop formed from the four neighboring
tiles. Count the number Kw of purely white loops and the number Kb of purely black
loops, assuming wraparound. In the sample covering of Figure 5.25, both Kw and Kb

are zero. Define

s = lim
n→∞

1

4N
ln

( ∑
coverings

2Kw+Kb

)

to be the entropy of folding of the square-diagonal lattice, where the sum is over
all 2N tiling configurations. (This entropy is per triangle rather than per tile, which
explains the additional factor of 1/4.)

An obvious lower bound for s is

s ≥ lim
n→∞

1

4N
ln(2N + 2N ) = lim

n→∞
N + 1

4N
ln(2) = 1

4
ln(2) = 0.1732 . . . ,

which is obtained by allowing the tiling configurations to alternate like a chessboard.
There are two such possibilities (by simple exchanging of all tile 1s by tile 2s and all
tile 2s by tile 1s). A more elaborate argument [22, 23] gives s = 0.2299 . . . .
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Figure 5.25. Sample covering of a lattice by tiles of both types.

The corresponding entropy of folding of the triangular lattice is ln(C) =
0.1895600483 . . . due to Baxter [17, 18] and possesses a simpler coloring interpre-
tation, as already mentioned.

5.24.3 Atomic Arrangement in an Ice Crystal

Square ice is a two-dimensional idealization of water (H2O) in its solid phase. The
oxygen (O) atoms are pictured as the vertices of the square lattice, with outward pointing
edges interpreted as the hydrogen (H) atoms. In actuality, however, there are several
kinds of three-dimensional ice, depending on temperature and pressure [24, 25]. The
residual entropies W for ordinary hexagonal ice Ice-Ih and for cubic ice Ice-Ic satisfy
[3, 26–30]

1.5067 < W < 1.5070

and are equal within the limits of Nagle’s estimation error. These complicated three-
dimensional lattices are not the same as the simple models mathematicians tend to
focus on.

It would be interesting to see the value of W for the customary n × n × n cubic
lattice, either with the ice rule in effect (two arrows point out, two arrows point in, and
two null arrows) or with Eulerian orientation (three arrows point out and three arrows
point in). No one appears to have done this.
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5.25 Tutte–Beraha Constants

Let G be a graph with n vertices v j [5.6] and let λ be a positive integer. A λ-coloring
of G is a function {v1, v2, . . . , vn} → {1, 2, . . . , λ} with the property that adjacent
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vertices must be colored differently. Define P(λ) to be the number of λ-colorings
of G. Then P(λ) is a polynomial of degree n, called the chromatic polynomial (or
chromial) of G. For example, if G is a triangle (three vertices with each pair connected),
then P(λ) = λ(λ − 1)(λ − 2). Chromatic polynomials were first extensively studied by
Birkhoff & Lewis [1]; see [2–6] for introductory material.

A graph G is planar if it can be drawn in the plane in such a way that no two edges
cross except at a common vertex. The famous Four Color Theorem for geographic
maps can be restated as follows: If G is a planar graph, then P(4) > 0. Among several
restatements of the theorem, we mention Kauffman’s combinatorial three-dimensional
vector cross product result [7–9].

We can ask about the behavior of P(λ) at other real values. Clearly P(0) = 0 and, if G
is connected, then P(1) = 0 and P(λ) �= 0 for λ < 0 or 0 < λ < 1. Further, P(ϕ + 1) �=
0, where ϕ is the Golden mean [1.2]; more concerning ϕ will be said shortly.

A connected planar graph G determines a subdivision of the 2-sphere (under stere-
ographic projection) into simply connected regions (faces). If each such region is
bounded by a simple closed curve made up of exactly three edges of G, then G is
called a spherical triangulation. We henceforth assume that this condition is always
met.

Clearly P(2) = 0 for any spherical triangulation G. Empirical studies of typical
G suggest that P(λ) �= 0 for 1 < λ < 2, but a single zero is expected in the interval
2 < λ < 3. Tutte [10, 11] proved that

0 < |P(ϕ + 1)| ≤ ϕ5−n;

hence ϕ + 1, although not itself a zero of P(λ), is arbitrarily close to being a zero for
large enough n. For this reason, the constant ϕ + 1 is called the golden root.

It is known that P(3) > 0 if and only if G is Eulerian; that is, the number of edges
incident with each vertex is even [5]. Hence for non-Eulerian triangulations, we have
P(3) = 0.

Tutte [12–14] subsequently proved a remarkable identity:

P(ϕ + 2) = (ϕ + 2)ϕ3n−10 (P(ϕ + 1))2 ,

which implies that P(ϕ + 2) > 0. Note that ϕ + 2 = √
5ϕ = 3.6180339887 . . . . As

stated earlier, P(4) > 0, and P(λ) > 0 for λ ≥ 5 [1]. It is natural to ask about the
possible whereabouts of the next accumulation point for zeros (after 2.618 . . .).

Rigorous theory fails us here, so numerical evidence must suffice [15–18]. In the
following, fix a family {Gk} of spherical triangulations, where nk is the order of Gk

and nk → ∞ as k → ∞. Typically, the graph Gk is recursively constructed from Gk−1

for each k, but this is not essential. Experimental results indicate that the next batch of
chromatic zeros might cluster around the point

ψ = 2 + 2 cos

(
2π

7

)
= 4 cos

(π

7

)2
= 3.2469796037 . . . ,

that is, a solution of the cubic equation ψ3 − 5ψ2 + 6ψ − 1 = 0. The constant ψ is
called the silver root by analogy with the golden root ϕ + 1.
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Or the zeros might cluster around some other point > ψ , but ≤ 4. Beraha [19]
observed a pattern in the potential accumulation points, independent of the choice of
{Gk}. He conjectured that, for arbitrary {Gk}, if chromatic zeros zk cluster around a
real number x , then x = BN for some N ≥ 1, where

BN = 2 + 2 cos

(
2π

N

)
= 4 cos

( π

N

)2
.

In words, the limiting values x cannot fall outside of a certain countably infinite set.
Note that the Tutte–Beraha constants BN include all the roots already discussed:

B2 = 0, B3 = 1, B4 = 2, B5 = ϕ + 1,

B6 = 3, B7 = ψ, B10 = ϕ + 2, limN→∞ BN = 4.

Specific families {Gk} have been constructed that can be proved to possess B5, B7,
or B10 as accumulation points [20–23]. The marvel of Beraha’s conjecture rests in its
generality: It applies regardless of the configuration of Gk .

Beraha & Kahane also built a family {Gk} possessing B1 = 4 as an accumula-
tion point. This is surprising since we know P(4) > 0 always, but Pk(zk) = 0 for
all k and limk→∞ zk = 4. Hence the Four Color Theorem, although true, is nearly
false [24].

The Tutte–Beraha constants also arise in mathematical physics [25–28] since eval-
uating P(λ) over a lattice is equivalent to solving the λ-state zero-temperature anti-
ferromagnetic Potts model. A heuristic explanation of the Beraha conjecture in [27] is
insightful but is not a rigorous proof [8]. See [5.24] for related discussion on coloring
and ice models. Other expressions containing cos(π/7) are mentioned in [2.23] and
[8.2].
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Constants Associated with Functional Iteration

6.1 Gauss’ Lemniscate Constant

In 1799, Gauss observed that the limiting value, M , of the following sequence:

a0 = 1, b0 = √
2, an = an−1 + bn−1

2
, bn = √

an−1bn−1 for n ≥ 1

must satisfy

1

M
= lim

n→∞
1

an
= lim

n→∞
1

bn
= 2

π

1∫
0

dx√
1 − x4

= 0.8346268416 . . .

= 1

1.1981402347 . . .
.

The recursive formulation is based on what is called the arithmetic-geometric-mean
(AGM) algorithm. Gauss recognized this limit to be an extraordinary result and pointed
out an interesting connection to geometry as well. The total arclength of the lemniscate
r2 = cos(2θ ) is given by 2L , where

L =
π∫
0

dθ√
1 + sin(θ )2

= 2

1∫
0

dx√
1 − x4

= 2.6220575542 . . .

and thus L = π/M . The lemniscate constant L plays a role for the lemniscate anal-
ogous to what π plays for the circle, and the AGM algorithm provides a quadratically
convergent method of computing it [1–5].

Other representations of L are

L =
√

2K

(
1√
2

)
= 1

2
√

2π
�

(
1

4

)2

= π√
2

exp

(
1

2

[
γ − β ′(1)

β(1)

])
,

where K denotes the complete elliptic integral of the first kind [1.4.6], �(x) is the
Euler gamma function [1.5.4], γ is the Euler–Mascheroni constant [1.5], and β(x) is
Dirichlet’s beta function [1.7]. As stated in [2.10], clearly this is a meeting place for

420
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many ideas! Two rapidly convergent series are [4, 6]

1

M
=

[ ∞∑
n=−∞

(−1)ne−πn2

]2

= 2
5
4 e

−π
3

[ ∞∑
n=−∞

(−1)ne−2π (3n+1)n

]2

.

A third series involving central binomial coefficients appears in [1.5.4].
Several authors [7, 8] identify M/

√
2 = 0.8472130848 . . . as the so-called “ubiq-

uitous constant,” and the value L/
√

2 = 1.8540746773 . . . is also given in [9]. The
definite integrals

1∫
0

dx√
1 − x4

= L

2
= 1.3110287771 . . . ,

1∫
0

x2dx√
1 − x4

= M

2
= 0.5990701173 . . .

are sometimes called, respectively, the first and second lemniscate constants [4, 10, 11].
Gauss correctly anticipated that his limiting result and others like it would ignite

research for many years to come. The massive field of elliptic modular functions, asso-
ciated with names such as Abel, Jacobi, Cayley, Klein, and Fricke, can be said to have
started with Gauss’ observation [1, 4]. Although the theory slipped into obscurity by
the 1900s, it has recently enjoyed a renaissance. Two contributing factors in this renais-
sance are the widespread awakening to Ramanujan’s achievements and the discovery
of fast algorithms for computing π , based on AGM-like recursions.

The constant L was proved in 1937 to be transcendental by Schneider [12]. Let
us now consider something slightly more complicated. The infinite product over all
nonzero Gaussian integers

σ (z) = z
∏
ω 
=0

(
1 − z

ω

)
exp

(
z

ω
+ z2

2ω2

)

is called the Weierstrass sigma function [13, 14]. One has [15–17]

σ
(

1
2

) = 2
5
4 π

1
2 e

π
8 �

(
1
4

)−2 = 2− 1
4 e

π
8 L−1 = 0.4749493799 . . . ,

and this is transcendental, thanks to work by Nesterenko in 1996. Hence it took nearly
sixty years for sufficient progress to be made to deal with the extra exp(π/8) factor in
σ (1/2)! More results of this nature appear in [1.5.4].

Instead of the Gaussian integers ω, examine the lattice of points{
ω̃ = j ·

(
1
2 − i

√
3

2

)
+ k ·

(
1
2 + i

√
3

2

)
: −∞ < j, k < ∞ are integers

}
,

and define σ̃ (z) analogously over all such nonzero ω̃. We will need this function shortly
[6.1.1].

Starting with work of Erdös, Herzog & Piranian [18], Borwein [19] studied an
interesting question. Let p(z) denote a monic polynomial of degree n. Consider the
curve in the complex plane given by |p(z)| = 1. Is the total arclength of this curve no
greater than that for p(z) = zn − 1? In the special case when n = 2, this reduces to the
lemniscate r2 = 2 cos(2θ ), which has arclength 2

√
2L . See [20] for recent progress on

answering this question.
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The integral

1∫
0

√
1 − x4dx = L

3
= 0.8740191847 . . .

occurs in our discussion of the Landau–Ramanujan constant [2.3], in connection with
recent number theoretic work by Friedlander & Iwaniec. Also, from geometric prob-
ability, M arises in an expression for the expected perimeter of the convex hull of N
random points in the unit square, as discussed in [8.1].

6.1.1 Weierstrass Pe Function

Given σ (z) and σ̃ (z) as defined in the previous section, let

℘(z) = − d2

dz2
ln(σ (z)), ℘̃(z) = − d2

dz2
ln(σ̃ (z)).

Like the Jacobi elliptic functions [1.4.6], both ℘(z) and ℘̃(z) are doubly periodic
meromorphic functions. The real half-period r of ℘(x) is L/

√
2 = 1.8540746773 . . . ,

whereas the real half-period r̃ of ℘̃(x) is [1, 9, 21]

3
√

2
4
√

3
K

(√
2 − √

3

2

)
= 1

4π
�

(
1

3

)3

= 1.5299540370. . . .

Further, for all 0 < x ≤ r and 0 < y ≤ r̃ , we have

x =
∞∫

℘(x)

1√
(4t2 − 1)t

dt, y =
∞∫

℘̃(y)

1√
4t3 − 1

dt,

which suggest why ℘(z) and ℘̃(z) are important in elliptic curve theory [22]. The
Weierstrass pe function is, in fact, a two-parameter family of functions and encom-
passes the two examples provided here.
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6.2 Euler–Gompertz Constant

The regular continued fraction

c1 = 0 + 1|
|1 + 1|

|2 + 1|
|3 + 1|

|4 + 1|
|5 + · · ·

is convergent (hence it differs from the harmonic series in this regard). Its limiting
value is [1–3]

I1(2)

I0(2)
= c1 = 0.6977746579 . . . ,

where I0(x), I1(x) denote modified Bessel functions [3.6]. Using this formula, Siegel
[4, 5] proved that c1 is transcendental.

What happens if we reverse the patterns of the numerators and denominators pre-
scribed in c1? We obtain [6, 7]

C1 = 0 + 1|
|1 + 1|

|1 + 2|
|1 + 3|

|1 + 4|
|1 + 5|

|1 + · · · =
√

πe

2
erfc

(
1√
2

)

=
∞∫
1

exp
[

1
2 (1 − x2)

]
dx =

√
πe

2
− C̃1 = 0.6556795424 . . . ,

where erfc is the complementary error function [4.6] and

C̃1 =
∞∑

n=1

1

1 · 3 · 5 · · · (2n − 1)
=

√
πe

2
erf

(
1√
2

)
= 1.4106861346 . . . .
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What happens if we additionally repeat each numerator? In this case, we obtain [6, 8]

C2 = 0 + 1|
|1 + 1|

|1 + 1|
|1 + 2|

|1 + 2|
|1 + 3|

|1 + 3|
|1 + 4|

|1 + 4|
|1 + 5|

|1 + 5|
|1 + · · ·

= −e Ei(−1) =
∞∫
1

exp(1 − x)

x
dx = 0.5963473623 . . . ,

where Ei is the exponential integral [6.2.1]. More about the Euler–Gompertz constant
C2 appears shortly.

No one knows the exact outcome if we instead repeat each denominator in c1,
although numerically we find c2 = 0.5851972651 . . . .

Euler [9–11] discovered that

0 + 1|
|1 + 12

∣∣
|1 + 22

∣∣
|1 + 32

∣∣
|1 + 42

∣∣
|1 + 52

∣∣
|1 + · · · = ln(2) = 0.6931471805 . . .

and Ramanujan [12, 13] discovered that

0 + 1|
|1 + 12

∣∣
|1 + 12

∣∣
|1 + 22

∣∣
|1 + 22

∣∣
|1 + 32

∣∣
|1 + 32

∣∣
|1 + 42

∣∣
|1 + 42

∣∣
|1 + 52

∣∣
|1 + 52

∣∣
|1 + · · ·

= 4

∞∫
1

x exp(−√
5x)

cosh(x)
dx = 0.5683000031 . . . .

Again, however, no one knows the exact outcome if we reverse the patterns of the
numerators and denominators, or if the exponents are chosen to be ≥ 3.

6.2.1 Exponential Integral

Let γ be the Euler–Mascheroni constant [1.5]. The exponential integral Ei(x) is
defined by

Ei(x) = γ + ln |x | +
∞∑

k=1

xk

k · k!
=




lim
ε→0+




−ε∫
−∞

et

t
dt +

x∫
ε

et

t
dt


 if x > 0,

x∫
−∞

et

t
dt if x < 0;

that is, Ei(x) is the Cauchy principal value of the improper integral. Sample applications
of Ei(x) include evaluating the Raabe integrals [14–16]

A =
∞∫
0

sin(x)

1 + x2
dx = 1

2

(
e−1 Ei(1) − e Ei(−1)

)
,

B =
∞∫
0

x cos(x)

1 + x2
dx = − 1

2

(
e−1 Ei(1) + e Ei(−1)

)
,

which provide closure to an issue raised in [1.4.3].
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6.2.2 Logarithmic Integral

Define the logarithmic integral for 0 < x 
= 1 by the formula Li(x) = Ei(ln(x)). There
exists a unique number µ > 1 satisfying Li(µ) = 0, and Ramanujan and Soldner
[17–22] numerically calculated µ = 1.4513692348 . . . For example [23],

Li(2) = lim
ε→0+




1−ε∫
0

1

ln(t)
dt +

2∫
1+ε

1

ln(t)
dt


 =

2∫
µ

1

ln(t)
dt = 1.0451637801 . . . .

The famous Prime Number Theorem [2.1] is usually stated in terms of Li(x) or li(x) =
Li(x) − Li(2). Since these are both O(x/ ln(x)) as x → ∞, the difference Li(2) is
regarded by analytic number theorists as (asymptotically) insignificant.

6.2.3 Divergent Series

What meaning can be given to the divergent alternating factorial series 0! − 1! + 2! −
3! + − · · ·? Euler formally deduced that [24–28]

∞∑
n=0

(−1)n n! =
∞∑

n=0


(−1)n

∞∫
0

xne−x dx


 =

∞∫
0

e−x

1 + x
dx = C2.

The even and odd parts of the series can be evaluated separately [29–31]:

∞∑
n=0

(2n)! = A = 0.6467611227 . . . ,

∞∑
n=0

(2n + 1)! = −B = 0.0504137604 . . . ,

where A and B are the definite integrals defined earlier. Also, in the same extended
sense [32, 33],

∞∑
n=1

(−1)n+1(2n + 1)!! = 1 · 3 − 1 · 3 · 5 + 1 · 3 · 5 · 7 − 1 · 3 · 5 · 7 · 9 + − · · · = C1.

6.2.4 Survival Analysis

Le Lionnais [34] called C2 Gompertz’s constant; it is interesting to attempt an ex-
planation. Let the lifetime X of an individual be a random variable with cumulative
distribution function F(x) = P(X ≤ x) and probability density function f (x) = F ′(x).
Then the probability that an individual, having survived to time x , will survive at most
an additional time t , is

P(X − x ≤ t | X > x) = P(x < X ≤ x + t)

P(X > x)
= F(x + t) − F(x)

1 − F(x)
.

This is related to what is known in actuarial science as the force of mortality or the
hazard function [35, 36]. The conditional expectation of X − x , given X > x , is hence

E(X − x | X > x) =
∞∫
0

t · f (x + t)

1 − F(x)
dt.
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Consider the well-known Gompertz distribution [37]

F(x) = 1 − exp

[
b

a
(1 − eax )

]
, x > 0, a > 0, b > 0,

and let x = m be the mode of f , that is, the unique point at which f ′(m) = 0. Then it
is easily shown that [38], for all a and b,

E(X − m | X > m) = C2

a
,

which is a curious occurrence of Euler’s original constant.
Similarly, if �(x) = erf(x/

√
2) and ϕ(x) = �′(x), that is, if X follows the half-

normal (folded) distribution, then at the point of inflection x = 1,

E(X − 1 | X > 1) =
√

π

2

(
1

C1
− 1

)
,

1 − �(1)

ϕ(1)
= C1.

In closing, here are two additional continued fraction expansions [6, 10, 39–41]:

C̃1 = 0 + 1|
|1 − 1|

|3 + 2|
|5 − 3|

|7 + 4|
|9 − + · · · ,

C2 = 0 + 1|
|2 − 12

∣∣
|4 − 22

∣∣
|6 − 32

∣∣
|8 − 42

∣∣
|10

− · · · .

Note that (1 − C2)/e = 0.1484955067 . . . is connected with two-sided generalized
Fibonacci sequences [42]. The Euler–Gompertz constant also appears in [5.6.2] with
regard to increasing mobile trees.
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6.3 Kepler–Bouwkamp Constant

Draw a circle C1 of unit radius and inscribe it with an equilateral triangle. Inscribe the
triangle with another circle C2 and inscribe C2 with a square. Continue with a third
circle C3 inscribing the square and inscribe C3 with a regular pentagon. Repeat this
procedure indefinitely, each time increasing the number of sides of the regular polygon
by one. The radius of the limiting circle C∞ is given by [1–3]

ρ =
∞∏
j=3

cos

(
π

j

)
= 0.1149420448 . . . = (8.7000366252. . . . )−1.

This construction originated with Kepler [4, 5], who at one point believed that the orbits
of Jupiter and Saturn around the sun might be approximated by the circumscribed and
inscribed circles of an equilateral triangle, that is, by suitably scaled C1 and C2. Since
the equilateral triangle is the first regular polygon, he thought that the orbit of Mars
would thus correspond to C3, the orbit of Earth would correspond to C4, etc. (This
model, however, could not explain the fact that there were only six known planets.
Kepler subsequently replaced two-dimensional regular polygons by three-dimensional
regular polyhedra, of which there are precisely five, and also obtained better agreement
with astronomical data.)

Consider the same construction with the word “inscribe” replaced everywhere by
“circumscribe.” The limiting radius is not a new constant, but simply ρ−1 [6]. Consider
as well the infinite product

σ =
∞∏
j=2

j

π
sin

(
π

j

)
= 0.3287096916 . . . = 2

π
(0.5163359762 . . . ),

which has no apparent link with ρ. By way of contrast, the product
∞∏
j=3

(
1 − sin

(
π

j

))

diverges to zero.
Bouwkamp apparently was the first mathematician to exploit the more rapidly con-

vergent formulas [7, 8]

ρ = 2

π

∞∏
m=1

∞∏
n=1

(
1 − 1

m2
(
n + 1

2

)2

)
= 2

π
exp

[
−

∞∑
k=1

ζ (2k)22k(λ(2k) − 1)

k

]
,

σ =
∞∏

m=1

∞∏
n=2

(
1 − 1

m2n2

)
= exp

[
−

∞∑
k=1

ζ (2k)(ζ (2k) − 1)

k

]

for computation’s sake. Here ζ (x) is defined in [1.6] and λ(x) is defined in [1.7].
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A recent result involves the function

f (x) =
∞∏
j=1

cos

(
x

j

)
, lim

x→π

f (x)

x − π
= ρ

2
,

for which it is known that [9]

∞∫
0

f (x) dx = 0.7853805572 . . .<
π

4
= 0.7853981633. . . .

The function

g(x) =
∞∏
j=1

j

x
sin

(
x

j

)
, lim

x→π

g(x)

x − π
= −σ

π
,

can be similarly analyzed. See also [10–12] for an intriguing connection between f (x),
g(x) and the divisor problem from number theory.
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6.4 Grossman’s Constant

Grossman [1] defined a sequence of real numbers via the nonlinear recurrence

a0 = 1, a1 = y, an+2 = an

1 + an+1
for n ≥ 0.

On the basis of compelling numerical evidence, he conjectured that there is precisely one
real value of y = η for which this sequence converges, namely, η = 0.7373383033. . . .
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Janssen & Tjaden [2] succeeded in proving Grossman’s conjecture. Nyerges [3] fur-
ther demonstrated that existence and uniqueness of y = F(x) holds, given an arbitrary
starting point a0 = x ≥ 0. This gives rise to the functional equation

x = (1 + F(x)) F(F(x)), F : [0, ∞) → [0, ∞) continuous,

and Grossman’s constant is the special value η = F(1). Other than this, there is no
easily available description of η in terms of well-known constants or functions.

Ewing & Foias [4] examined the recurrence

b1 = x > 0, bn+1 =
(

1 + 1

bn

)n

for n ≥ 1

and determined that there is exactly one value x = ξ for which bn → ∞. In this case,
ξ = 1.1874523511 . . . thanks to a computation by Ross [4]. Again, there is a shortage
of representations of ξ , as with η.

In [3.5] and [6.10], we observe other constants reminiscent of Grossman’s constant.

[1] J. W. Grossman, Problem 86-2, Math. Intellig. 8 (1986) 31.
[2] A. J. E. M. Janssen and D. L. A. Tjaden, Solution to Problem 86-2, Math. Intellig. 9 (1987)

40–43.
[3] G. Nyerges, The solution of the functional equation x = (1 + F(x)) F2(x), unpublished

note (2000).
[4] J. Ewing and C. Foias, An interesting serendiptous real number, Finite Versus Infinite:

Contributions to an Eternal Dilemma, ed. C. S. Calude and G. Paun, Springer-Verlag, 2000,
pp. 119–126; MR 2001k:11267.

6.5 Plouffe’s Constant

We start with a formula that is surprising at first glance:
∞∑

n=0

ρ(an)

2n+1
= 1

2π
,

where

an = sin(2n) =




sin(1) if n = 0,

2a0

√
1 − a2

0 if n = 1,

2an−1
(
1 − 2a2

n−2

)
if n ≥ 2,

and ρ(x) = 1 if x < 0 and ρ(x) = 0 if x ≥ 0. In words, the binary expansion of 1/(2π )
is completely determined by the sign pattern of the second-order recurrence {an}. The
trivial proof uses the double-angle formulas for sine and cosine. One might believe that
we have uncovered here a fast way of computing the binary expansion of 1/(2π), but
this would be a mistake. The reason is that we would need sin(1) to high accuracy for
initialization, but computing sin(1) is no easier than computing 1/(2π ).

The double-angle formula for cosine gives rise to a simpler, first-order recurrence

bn = cos(2n) =
{

cos(1) if n = 0,

2b2
n−1 − 1 if n ≥ 1,



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-06 CB503/Finch-v2.cls April 7, 2003 10:40 Char Count=

6.5 Plouffe’s Constant 431

but the sum

K =
∞∑

n=0

ρ(bn)

2n+1
= 0.4756260767 . . .

does not appear to have a closed-form expression. (We will revisit this question later.)
The double-angle formula for tangent, however, gives rise to both a first-order recursion

cn = tan(2n) =



tan(1) if n = 0,
2cn−1

1 − c2
n−1

if n ≥ 1

and a closed-form expression for the sum

∞∑
n=0

ρ(cn)

2n+1
= 1

π

by a trivial proof like before. Again, computing tan(1) is no easier than computing
1/π .

We have observed so far that, for sine and tangent, certain irrational inputs yield
recognizable irrational outputs. Plouffe [1–3] wondered if this process could be ad-
justed somewhat. He asked whether it was possible to initialize any of these three
recurrences with rational values, such as 1/2, and still obtain recognizable irrational
binary expansions. Define

αn = sin
(
2n arcsin( 1

2 )
) =




1/2 if n = 0,√
3/2 if n = 1,

2αn−1
(
1 − 2α2

n−2

)
if n ≥ 2,

βn = cos
(
2n arccos( 1

2 )
) =

{
1/2 if n = 0,

2β2
n−1 − 1 if n ≥ 1,

γn = tan
(
2n arctan( 1

2 )
) =




1/2 if n = 0,
2γn−1

1 − γ 2
n−1

if n ≥ 1;

then the first two sums
∞∑

n=0

ρ(αn)

2n+1
= 1

12
,

∞∑
n=0

ρ(βn)

2n+1
= 1

2

are rational, but the third sum

C =
∞∑

n=0

ρ(γn)

2n+1
= 0.1475836176 . . .

is more mysterious. Plouffe numerically determined that

C = 1

π
arctan( 1

2 ),

but rigorous justification remained an open problem.
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Borwein & Girgensohn [4] succeeded in proving Plouffe’s formula for C and much
more. They demonstrated that, given an arbitrary real value x , if

ξn = tan (2n arctan(x)) =




x if n = 0,
2ξn−1

1 − ξ 2
n−1

if n ≥ 1 and |ξn−1| 
= 1,

−∞ if n ≥ 1 and |ξn−1| = 1,

then

∞∑
n=0

ρ(ξn)

2n+1
=




arctan(x)

π
if x ≥ 0,

1 + arctan(x)

π
if x < 0,

which we call Plouffe’s recursion.
This, however, was only one facet of their paper. It turns out to be crucial that the

aforementioned sum, call it f (x), satisfies the functional equation

2 f (x) = f

(
2x

1 − x2

)
if x ≥ 0, 2 f (x) − 1 = f

(
2x

1 − x2

)
if x < 0.

A vastly more general functional equation gives rise to other interesting recurrences and
binary expansions. We will not attempt to summarize these results except to remark that
Plouffe’s recursion appears to be the simplest example in the theory. Other examples,
associated with logarithmic, hyperbolic, and elliptic integrals of the first kind, are
presented in [4] as well.

A well-known theorem of Lehmer [5] gives that C is irrational. In fact, C is tran-
scendental [6].

Chowdhury [7] recently observed that the constant K defined earlier can be ex-
pressed in binary as the bitwise XOR sum of 1/(2π ) and 1/π . That is,

0.00101000101111100110 . . .

⊕ 0.01010001011111001100 . . .

= 0.01111001110000101010 . . .

and “addition exclusive or” is identical to addition modulo two without carries. Since
1/(2π ) is simply a shifted version of 1/π , the constant K is truly quite interesting! More
generally, if −1 ≤ x ≤ 1, the bitwise XOR sum of arccos(x)/(2π ) and arccos(x)/π is∑∞

n=0 ρ(ηn)2−n−1, where

ηn = cos (2n arccos(x)) =
{

x if n = 0,

2η2
n−1 − 1 if n ≥ 1.

This is a well-studied object: The sequence {1 − 2ηn} is equal to iterates of the chaotic
logistic map y �→ 4y(1 − y) defined in [1.9] with seed value 1 − 2x . Unfortunately,
this insight does not help us in more clearly identifying the constant K .
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6.6 Lehmer’s Constant

Every irrational number x has a unique infinite continued fraction representation of the
form

x = a0 + 1|
|a1

+ 1|
|a2

+ 1|
|a3

+ · · · ,

where each ak is a positive integer for k ≥ 1 and a0 is an integer [1]. Conversely, every
such expression is convergent. The Golden mean

1 + √
5

2
= 1 + 1|

|1 + 1|
|1 + 1|

|1 + · · ·

can be said to be the case for which the convergence rate is slowest.
Lehmer [2, 3] discovered an interesting analog of continued fractions. Every positive

irrational x has a unique infinite continued cotangent representation of the form

x = cot

( ∞∑
k=0

(−1)k arccot(bk)

)
,

where each bk is a nonnegative integer for k ≥ 0 and bk ≥ b2
k−1 + bk−1 + 1 for k ≥ 1.

Conversely, every such expression is convergent. Lehmer’s constant, ξ , corresponds to
the Golden mean under the analogy and

ξ = cot
(
arccot(0) − arccot(1) + arccot(3) − arccot(13) + − · · · + (−1)kck + · · ·)

= 0.5926327182 . . .

can be said to be the case for which the convergence rate is slowest. Here the k th

arccotangent argument is defined via the quadratic recurrence [4]

c0 = 0, ck = c2
k−1 + ck−1 + 1 for k ≥ 1,

which is itself an interesting object of study. Lehmer proved that ξ is not an al-
gebraic number of degree < 4. When coupled with Roth’s theorem [2.22], which
Lehmer did not have available back in 1938, the argument implies the transcendence
of ξ [5].
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What inspired Lehmer to even begin examining continued cotangents? He observed
that the iteration of simple two-variable functions such as

f (x, y) = x + y, g(x, y) = x + 1

y
,

h(x, y) = xy + 1

y − x
= cot (arccot(x) − arccot(y))

give rise to

f (x1, f (x2, f (x3, . . . ))) =
∞∑
j=1

x j ,

g(x1, g(x2, g(x3, . . . ))) = x1 + 1|
|x2

+ 1|
|x3

+ · · · ,

h(x1, h(x2, h(x3, . . . ))) = cot

( ∞∑
j=1

(−1) j+1 arccot(x j )

)
.

The first two results, infinite sums and infinite continued fractions, occur throughout
mathematics. Lehmer’s result and conceivably others might find applications in the
future.

[1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford
Univ. Press, 1985; MR 81i:10002.

[2] D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J. 4 (1938) 323–340.
[3] J. Shallit, Predictable regular continued cotangent expansions, J. Res. Nat. Bur. Standards

B. 80 (1976) 285–290; MR 55 #2734.
[4] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A002065.
[5] P. Borwein, Lehmer’s constant is transcendental, unpublished note (1999).

6.7 Cahen’s Constant

Here is a little known example of a self-generating continued fraction. Start with

0

1
= 0,

1

1
= 0 + 1

1

and define q0 = 1 and q1 = 1, the denominators on the left-hand side. Continue with

p2

q2
= 0 + 1

1 + 1

q0

= 0 + 1|
|1 + 1|

|q0
,

where gcd(p2, q2) = 1, obtaining q2 = 2. (Henceforth, whenever we write a fraction
p/q, it is assumed, for simplicity, to be in lowest terms.) Continue with

p3

q3
= 0 + 1|

|1 + 1|
|q0

+ 1|
|q1

,
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obtaining q3 = 3. Continue with

p4

q4
= 0 + 1|

|1 + 1|
|q0

+ 1|
|q1

+ 1|
|q2

,

obtaining q4 = 8. At each step in the process, the nth partial denominator qn is defined
in terms of the finite continued fraction with partial quotients up to qn−2. Maintaining
this indefinitely, one finds that the sequence of qs

1, 1, 2, 3, 8, 27, 224, 6075, 1361024, 8268226875, 11253255215681024, . . .

satisfies the quadratic recurrence qn+2 = qn(qn+1 + 1) and that the limiting value of
the continued fraction coincides with the sum of a certain alternating infinite series:

lim
n→∞

pn

qn
=

∞∑
j=0

(−1) j

q j q j+1
= 0.6294650204. . . .

This constant was apparently first discussed by Davison & Shallit [1], who proved it is
transcendental.

Let us now start over, but proceeding more generally. Let w0, w1, w2, . . . be an
infinite sequence of positive integers. From

0

1
= 0,

1

w0
= 0 + 1

w0

define q0 = 1 and q1 = w0. From

p2

q2
= 0 + 1|

|w0
+ 1|

|w1q0

obtain q2 = q0(w1q1 + 1). From

p3

q3
= 0 + 1|

|w0
+ 1|

|w1q0
+ 1|

|w2q1

obtain q3 = q1(w2q2 + 1). Maintaining this indefinitely, one finds that the sequence of
qs satisfies the recurrence qn+2 = qn(wn+1qn+1 + 1) and that the limiting value of the
continued fraction coincides with the series

ξ (w) = lim
n→∞

pn

qn
=

∞∑
j=0

(−1) j

q j q j+1
.

It can be proved [1] that the number ξ (w) is always transcendental, regardless of the
choice of ws.

Let k be a positive integer. As a special case of the preceding, define w0 = 1 and
w j+1 = qk−1

j for all j ≥ 0. Then the sequence of qs satisfies the recurrence qn+2 =
qn(qk−1

n qn+1 + 1) and the corresponding limiting value ξ (w) is

0 + 1|
|1 + 1|∣∣qk

0

+ 1|∣∣qk
1

+ 1|∣∣qk
2

+ · · · = ξk =
∞∑
j=0

(−1) j

q j q j+1
.
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The Davison–Shallit constant arises from the instance for which k = 1. The case k = 2
is often rewritten as sn = qnqn+1 + 1; hence

ξ2 = c =
∞∑
j=0

(−1) j

s j − 1
= 0.6434105462 . . . ,

where s0 = 2, sn+1 = s2
n − sn + 1 is Sylvester’s sequence. This sequence is also dis-

cussed in [6.10]. Cahen [2] was the first to examine the constant c. Subsequent ref-
erences include [3–6]. In the 1930s, Mahler partitioned the set of all transcendental
numbers into three classes: S, T , and U , the classification being determined by how
small a polynomial with bounded degree and height can be when evaluated at the
point in question. Töpfner [7] succeeded in proving that c must fall in the class S.
The case k ≥ 3 has not been examined, as far as is known: ξ3 = 0.6539007091 . . . ,
ξ4 = 0.6600049346 . . . , and ξ5 = 0.6632657345. . . .

Some variations on Cahen’s constant c are worth pointing out. The number
c′ = ∑∞

j=0(−1) j/s j satisfies 2c = c′ + 1, and thus c′ is also transcendental, whereas∑∞
j=0 1/s j = 1. What can be said about

∑∞
j=0 1/(s j − 1) = 1.6910302067 . . . ? Fi-

nally, what other kinds of self-generating continued fractions have appeared in the
literature?
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Math. 111 (1991) 119–126; MR 92f:11094.
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6.8 Prouhet–Thue–Morse Constant

The Prouhet–Thue–Morse binary sequence {tn} = {0, 1, 1, 0, 1, 0, 0, 1, 1, 0, . . . } has
several equivalent definitions: [1]

• t0 = 0, t2n = tn , and t2n+1 = 1 − tn for all n ≥ 0;
• tn is the number of ones, modulo two, in the binary expansion of n [2.16];
• (−1)tn is the coefficient of xn in the power series expansion of

∏∞
k=0(1 − x2k

);
• {0, 0, 1, 0, 0, 1, 1 − t0, 1 − t1, 1 − t2, 1 − t3, . . . } is the lexicographically smallest

overlap-free infinite binary word [5.17].
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We begin with the constant

τ =
∞∑

n=0

tn
2n+1

= 0.4124540336 . . . = 1

2
(0.8249080672 . . . ),

sometimes called the parity constant, which is known to be transcendental [2–6]. Less
“artificial” formulas include the infinite product [7, 8]

∞∏
k=0

(
1 − 1

22k

)
= 2(1 − 2τ )

and the continued fraction

2 − 1|
|4 − 3|

|16
− 15|

|256
− 255|

|65536
− 65535|

|4294967296
− · · · = τ

3τ − 1
,

where the pattern is generated by 22n
and 22n − 1.

6.8.1 Probabilistic Counting

Woods & Robbins [9] proved that

∞∏
m=0

(
2m + 1

2m + 2

)(−1)tm

= 1√
2
.

Shallit [10] generalized this result and wrote a base-3 version. Other generalizations
include [11–14]

∞∏
m=0

(
(2m + 1)2

(m + 1)(4m + 1)

)(−1)um

= 1√
2
,

where um is the Golay–Rudin–Shapiro sequence, which counts the number of (possibly
overlapping) elevens in the binary expansion of m, modulo two.

Here is a problem involving n coins. For each 1 ≤ k ≤ n, let Xk be the number of
independent tosses of the k th coin required for heads to appear, minus one. Define Rn

to be the smallest nonnegative integer 
= Xk for all k; then clearly 0 ≤ Rn ≤ n. Flajolet
& Martin [15] proved that

E(Rn) = 1

ln(2)
ln(ψn) + δ(n) + o(1),

where

ψ = eγ

√
2

∞∏
m=1

(
2m + 1

2m

)(−1)tm

= 0.7735162909 . . . ,

γ is the Euler–Mascheroni constant [1.5], and δ(n) is a “negligible” periodic function of
small amplitude (|δ(n)| < 10−5) of the type mentioned in [5.14]. A more complicated
expression for Var(Rn) ∼ 1.257 . . . + ε(n) appears in [15–17]. The proof involves the
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analytic continuation of a function

F(z) =
∞∑

k=1

(−1)tk

kz
, Re(z) > 1,

to the entire complex plane. This is useful in assessing probabilistic counting algo-
rithms for data mining, and it is interesting how the sequence {tn} persists throughout.
Plouffe [18] gave the following products:

∞∏
m=1

(
m

m + 1

)(−1)tm−1

= 0.8116869215 . . . ,

∞∏
m=1

(
2m

2m + 1

)(−1)tm−1

= 0.8711570464 . . . ,

∞∏
m=1

(
2m

2m + 1

)(−1)tm

= 1.6281601297 . . . ,

∞∏
m=1

(
m

m + 1

)(−1)tm

= 2.3025661371 . . . ,

due to Flajolet; the third is 2−1/2eγ ψ−1 of course. A finite expression for these in terms
of more familiar constants is not known. This situation makes the Woods–Robbins
formula and others all the more remarkable!

6.8.2 Non-Integer Bases

Fix q to be a real number satisfying 1 < q ≤ 2. Define a q-development to be a series

∞∑
n=1

εnq−n = 1,

where εn = 0 or 1 for every n. The greedy algorithm shows that q-developments exist.
If q = 2, then εn = 1 for all n and this is the unique 2-development. Do there exist
other values of q, 1 < q < 2, for which there is a unique q-development?

Intuitively, one would expect the answer to be no. Indeed, if we fix 1 < q < ϕ,
where ϕ is the Golden mean [1.2], then there exist uncountably many q-develop-
ments. Also, if q = ϕ, then there exist a countably infinite number of q-developments
[19–21].

If we fix ϕ < q < 2, however, intuition fails. There is an uncountable, measure-
zero subset of exceptional q-values, each with only one q-development. Moreover,
the exceptional subset possesses a minimum element that can be characterized exactly
[22]. This special q-value is the unique positive solution of the equation

∞∏
k=0

(
1 − 1

q2k

)
=

(
1 − 1

q

)−1

− 2;

hence q = 1.7872316501. . . . The corresponding q-development satisfies εn = tn for
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all n ≥ 1, an unexpected occurrence of the Prouhet–Thue–Morse sequence. Also, the
Komornik–Loreti constant q is transcendental, as shown by Allouche & Cosnard
[23].

6.8.3 External Arguments

Here is a connection between τ and the Myrberg constant c∞ = 1.4011551890 . . . from
fractal geometry [1.9]. Imagine the Mandelbrot set M [6.10] to be electrically charged;
thus it determines in the plane equipotential curves (which encircle M) and field
trajectories (which are orthogonal to the equipotential curves). Seen from far away, M
resembles a point charge and the field trajectories approach rays of the form r exp(2π iθ )
as r → ∞. The external arguments θk corresponding to the bifurcation points ck of
1 − cx2, given by [1.9]

c2 = 5
4 = 1.25, c3 = 1.3680 . . . , c4 = 1.3940 . . . ,

are (in binary)

θ2 = 0.01 = 1
3 , θ3 = 0.0110 = 2

5 , θ4 = 0.01101001 = 7
17 ,

with limiting value θ∞ = τ . Unfortunately the details are too elaborate to explain
further [24–26].

6.8.4 Fibonacci Word

Another “self-generating” constant is the so-called rabbit constant, which can be
defined via recursive bit substitutions 0 �→ 1, 1 �→ 10 leading to the infinite binary
Fibonacci word [27–32]. (The analogous substitution map for the Thue–Morse word is
0 �→ 01, 1 �→ 10.) A simpler definition is

ρ =
∞∑

k=1

1

2�kϕ� = 0.7098034428 . . . ,

where ϕ is the Golden mean [1.2]. It is known that [33–37]

ρ = 0 + 1|∣∣20
+ 1|∣∣21

+ 1|∣∣21
+ 1|∣∣22

+ 1|∣∣23
+ 1|∣∣25

+ 1|∣∣28
+ · · · ,

where the exponents form none other than the classical Fibonacci sequence, and hence
ρ is transcendental.

6.8.5 Paper Folding

Consider the act of folding a strip of paper in half, right over left [38]. Iterating this pro-
cess gives a sequence of creases in the strip, appearing when unfolded as either valleys
(1) or peaks (0). The paper folding sequence {sn} = {1, 1, 0, 1, 1, 0, 0, 1, 1, 1, . . . }
is defined by s4n−3 = 1, s4n−1 = 0, and s2n = sn for all n ≥ 1, or alternatively, by the
word transformation w �→ w1w̃, where w̃ is the mirror image of w with 0s replaced
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by 1s and 1s by 0s. It can be shown that

σ =
∞∑

n=1

sn

2n
= 0.8507361882 . . . =

∞∑
k=0

1

22k

(
1 − 1

22k+2

)−1

and transcendentality of σ follows [5, 39].
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6.9 Minkowski–Bower Constant

Define a function ? : [0, 1] → [0, 1] by

?

(
0 + 1|

|a + 1|
|b + 1|

|c + 1|
|d + · · ·

)
= 0.

a−1︷ ︸︸ ︷
00 . . . 011 . . . 1︸ ︷︷ ︸

b

c︷ ︸︸ ︷
00 . . . 011 . . . 1︸ ︷︷ ︸

d

00 . . . ,
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0

1

1

Figure 6.1. A graph of Minkowski’s question mark function.

where the input is a regular continued fraction and the output is written in binary
[1–3]. This is known as Minkowski’s question mark function (see Figure 6.1). It is
continuous, strictly increasing, but fractal-like. In fact, it is singular in the sense that
its derivative is zero almost everywhere (except on a set of Lebesgue measure zero).
Special values include

?
(

−1+√
5

2

)
= 2

3 , ?
(
−1 + √

2
)

= 2
5 , ?

(
−1+√

3
2

)
= 2

7 .

Bower [4, 5] asked about the fixed points of ? other than 0, 1/2, and 1. There appear
to be at least two more, arranged symmetrically around the center point. Are there
exactly two? He computed the lesser value to be 0.4203723394 . . . (in decimal). Does
this constant have a closed-form expression? Is it algebraic? A definition of ? in terms
of Farey fractions is also possible.

While on the subject of artificial constants, let us mention the Champernowne
number [6]

C = 0.12345678910111213141516171819202122232425 . . . ,

which is constructed by concatenating the digits of all positive integers, and the
Copeland–Erdös number [7]

0.2357111317192329313741434753596167717379 . . . ,

which is likewise constructed by concatenating the digits of all primes. Both are known
to be irrational; see [8–10] for recent proofs. Mahler [11] was the first to prove that
C is transcendental. His theorem is consistent with the observation that relatively
“short” rational numbers (e.g., 10/81 or 60499999499/490050000000) yield excellent
approximations of C . This observation, in turn, implies the existence of extraordinarily
large partial denominators in the regular continued fraction expansion for C (e.g., the
1709th partial denominator is ≈ 104911098, due to Sofroniou & Spaletta [12]).



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-06 CB503/Finch-v2.cls April 7, 2003 10:40 Char Count=

6.10 Quadratic Recurrence Constants 443

We also mention Trott’s constant E , defined to be the (apparently unique) number
with decimal digits {εk} that coincide with its partial fraction denominators [12]:

E = 0.ε1ε2ε3ε4 . . . = 0 + 1|
|ε1

+ 1|
|ε2

+ 1|
|ε3

+ 1|
|ε4

+ · · ·, 0 ≤ εk ≤ 9 for all k,

and this turns out to be 0.1084101512. . . . Is E transcendental? Are alternative expres-
sions for E possible?
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6.10 Quadratic Recurrence Constants

Linear recurrences include the Fibonacci sequence, which is discussed in [1.2].
Quadratic recurrences are far less understood and far more mysterious than linear
recurrences. The simplest example is

a0 = 2, an = a2
n−1 for n ≥ 1,

with solution an = 22n
. A more challenging example is the total number of strongly

binary trees [5.6] of height at most n:

b0 = 1, bn = b2
n−1 + 1 for n ≥ 1.

(See Figure 6.2.) Aho & Sloane [1, 2] showed that this quadratic recurrence likewise
has a doubly exponential solution bn = ⌊

β2n ⌋
, but β is not precisely known and, in fact,

β = exp

[ ∞∑
j=0

2− j−1 ln
(

1 + b−2
j

)]
= 1.5028368010. . . .

If one could find an expression for β independent of {bn}, this would be very surprising.
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Figure 6.2. There are five strongly binary trees of height at most 2.

Another example is the closest strict under-approximation Cn = ∑n
i=1 1/ci of the

number 1, where 1 < c1 < c2 < . . . < cn are integers. This is given by the quadratic
recurrence [6.7]

c1 = 2, cn = c2
n−1 − cn−1 + 1 for n ≥ 2,

known as Sylvester’s sequence. Further, Cn = 1 − 1/(cn+1 − 1), which implies that Cn

is formed by the greedy algorithm, equivalently, by choosing for the next term the largest
feasible unit fraction [3–13]. Here, Aho & Sloane determined cn = ⌊

χ2n + 1/2
⌋

, where

χ =
√

6

2
exp

[ ∞∑
j=1

2− j−1 ln
(
1 + (2c j − 1)−2

)] = 1.2640847353. . . .

Again, an independent expression for χ would be very surprising. We have encountered
such doubly exponential functions elsewhere in [2.13], [5.7], and [5.16].

A well-known example is the Lucas recurrence [14–21]

un = u2
n−1 − 2,

which has been studied extensively because of its connection with Mersenne prime
theory when |u0| > 2. In this case we have

un =
(

1

2
u0 + 1

2

√
u2

0 − 4

)2n

+
(

1

2
u0 − 1

2

√
u2

0 − 4

)2n

,

so divergence always occurs in this regime. For |u0| < 2 the long-term behavior is
more intricate and interesting to dynamical system theorists. See [1.9] for a related
discussion of the recurrence

0 ≤ x0 ≤ 1, xn = a xn−1(1 − xn−1) for n ≥ 1, 0 ≤ a ≤ 4,

with its cycle structure and period-doubling bifurcations.
Another well-known example is the Lehmer recurrence

v0 = 1, vn = v2
n−1 + vn−1 + 1 for n ≥ 1,

which generates the coefficients of the least rapidly convergent continued cotangent
[6.6].

Quadratic recurrences arise in tree-related contexts in other ways [5.6]: in the ex-
tinction probabilities associated with Galton–Watson branching processes,

y0 = 0, yn = (1 − p) + p y2
n−1 for n ≥ 1, 0 < p < 1,
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Figure 6.3. The Mandelbrot set is the black cardiod-shaped region and is entirely contained
within the indicated rectangle. Its intersection with the real line is the interval [−1/4, 2].

and in the asymptotics of non-isomorphic binary trees,

w0 = 2, wn = w2
n−1 + 2 for n ≥ 1.

In the study of 1-additive sequences, the ternary quadratic recurrence

tn = 2 (tn−2(tn−2 + 1) + tn−4k−3(tn−4k−3 + 1) + tn−8k−4(tn−8k−4 + 1)) mod 3,

with initial data (t1, t2, . . . , t8k+3, t8k+4) = (0, 0, . . . , 0, 1), turns out to be crucial [22]
and is related to the Stolarsky–Harborth constant [2.16].

The most famous quadratic recurrence, however, is

s0 = 0, sn = s2
n−1 − µ for n ≥ 1,

where µ may be any complex number. The Mandelbrot set M is defined to be the set
of all such µ for which sn 
→ ∞ (see Figure 6.3). Since the boundary of M is a fractal
of Hausdorff dimension 2 [8.20], it has infinite length [23]. However, the area of M has
been rigorously bounded between 1.506302 and 1.561303 and has been heuristically
estimated as 1.50659177. See [24–29] for details. No one has dared to conjecture an
exact formula for the area of M .

Davison & Shallit [30] studied the second-order quadratic recurrence [6.7]

q0 = q1 = 1, qn+2 = qn(qn+1 + 1) for n ≥ 0

and determined that qn = ⌊
ξϕn

η(1−ϕ)n ⌋
, where ϕ is the Golden mean [1.2],
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ξ = 1.3505061 . . . , and η = 1.4298155. . . . Another such recurrence [31]

r0 = 0, r1 = 1, rn+2 = rn+1 + r2
n for n ≥ 0

satisfies

r2n ∼ (1.436 . . . )
√

2
2n

, r2n+1 ∼ (1.451 . . . )
√

2
2n+1

.

The dependence of the growth on the subscript parity is intriguing.
Greenfield & Nussbaum [32] considered the possibility of a bi-infinite sequence

{zn : n = . . . , −2, −1, 0, 1, 2, . . . } of positive reals satisfying the recurrence

z0 = 1, zn = zn−1 + z2
n−2 for all n.

It turns out that there is exactly one value z1 = 1.5078747554 . . . for which this happens.
Stein & Everett [33] and Wright [34] studied the recurrence

d1 = 1, dn+1 = (n + δ)
n∑

k=1

dkdn−k+1 for n ≥ 1

for various values of δ. For δ = 0 and δ = −1/3, they obtained

dn ∼ 1

e

n∏
j=2

(2 j − 1), dn ∼ (0.35129898 . . . )
n∏

j=2

(2 j − 2),

respectively, where e is the natural logarithmic base [1.3]. Both cases possess combi-
natorial interpretations.

Lenstra [12] and Zagier [35] examined Göbel’s sequence

f0 = 1, fn = 1

n

(
1 +

n−1∑
k=0

f 2
k

)
for n ≥ 1

and determined that the first non-integer term is f43 > 10178485291567; further,

fn ∼ (1.0478314475 . . . )2n (
n + 2 − n−1 + 4n−2 − 21n−3 + 137n−4 − + · · ·) .

Somos [36] examined a related sequence

g0 = 1, gn = ng2
n−1 for n ≥ 1

and found that

gn ∼ γ 2n (
n + 2 − n−1 + 4n−2 − 21n−3 + 137n−4 − + · · ·)−1

,

where the constant γ has an infinite radical expansion

γ = 1.6616879496 . . . =

√
1 ·

√
2 ·

√
3 ·

√
4 · · · =

∞∏
j=1

j2− j
.

Another Somos constant λ = 0.3995246670 . . . arises as follows: If κ < λ, then the
sequence

h0 = 0, h1 = κ, hn = hn−1(1 + hn−1 − hn−2) for n ≥ 2
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converges to a limit less than 1; if κ > λ, then the sequence diverges to infinity. This is
similar to Grossman’s constant [6.4].
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6.11 Iterated Exponential Constants

Given y > 0, what numbers x > 0 satisfy y = x x ? The answer is more complicated
than one might expect. For example,

• x = 3 is the unique solution of x x = 27,
• x = 2 is the unique solution of x x = 4,
• x = 1/2 and x = 1/4 are both solutions of x x = 2−1/2, and there are no others.

More generally [1–3],

• x =
(

· · · log 1
y

log 1
y

1

e

)−1

is the unique solution of x x = y for y ≥ ee = 15.154 . . . ,

• x = y
1
y

1
y

···

is the unique solution of x x = y for 1 ≤ y ≤ ee,

• x = y
1
y

1
y

···

and x =
(
· · · log 1

y
log 1

y
e
)−1

are both solutions of x x = y for 0.692 . . . =
e−1/e ≤ y < 1, and there are no others.

This is a consequence, in part, of the fact that the iterated exponential ξξξ ···

converges
for 0.065 . . . = e−e ≤ ξ ≤ e1/e = 1.444 . . . and diverges for positive ξ outside this
interval. Other phrases for the same type of function include hyperpower sequence
and tower of exponents.

An alternative representation of x as a function of y is exp(W (ln(y))), where the
Lambert W function [3, 4] is

W (η) =




− ln

(
· · · loge−η loge−η

1

e

)
if η ≥ e = 2.718 . . . ,

η (e−η)(e−η)
···

if − 0.367 . . . = −e−1 ≤ η ≤ e
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and satisfies W (η) exp(W (η)) = η. In particular, W (ln(27)) = ln(3), W (ln(4)) = ln(2),
and W (− ln(2)/2) = − ln(2). We will refer to Lambert’s function throughout the re-
mainder of this essay.

Consider the equation x2 = 2x , which has three real roots including 2 and 4. The
third root can be written as

x = −1 · 2− 1
2 ·2− 1

2 ·2···

= − 2

ln(2)
W

(
ln(2)

2

)
= −0.7666646959 . . .

and is known to be transcendental [5]. It is interesting that W (− ln(2)/2) is elementary
but W (ln(2)/2) is not. Consider instead the equation x + ex = 0, which possesses a
unique real root:

x = −1 · e−1·e−1·e··
·

= −W (1) = −0.5671432904 . . . = − ln(1.7632228343 . . . ).

Other examples suggest themselves.
The hyperpower analog of the harmonic series

Hn =
(

1

2

)( 1
3 )···

( 1
n )

is divergent in the sense that even and odd partial exponentials converge to distinct
limits [6–8]:

lim
n→∞ H2n = 0.6583655992 . . . < 0.6903471261 . . . = lim

n→∞ H2n+1.

No alternative expressions for these constants are known.
Let i denote the imaginary unit; then the multivalued expression i i is always real:

i i = exp
(
−π

2
(4n + 1)

)
,

which, when n = 0, gives i i = exp(−π/2) = 0.2078795764. . . . If we restrict attention
to the principal branch of the logarithm (n = 0), iterating the exponential can be proved
[9–13] to converge to

2

π
i W

(
−π

2
i
)

= 0.4382829367 . . . + (0.3605924718 . . . )i.

Here are two striking integrals: [14–16]

1∫
0

x x dx =
∞∑

n=1

(−1)n+1

nn
= 0.7834305107 . . . ,

1∫
0

1

x x
dx =

∞∑
n=1

1

nn
= 1.2912859970. . . .
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These are easily proved via term-by-term integration of Maclaurin series expansions.
A more difficult evaluation concerns the series [17]

lim
N→∞

2N∑
n=1

(−1)nn
1
n =

∞∑
k=1

(
(2k)

1
2k − (2k − 1)

1
2k−1

)
=

∞∑
m=1

(−1)m
(

m
1
m − 1

)

= 1 + lim
N→∞

2N+1∑
n=1

(−1)nn
1
n = 0.1878596424 . . . ,

which is slowly convergent. No exact formulas are known, although the series bear
some resemblance to expressions mentioned in [2.15]. Cesàro summation and Cohen–
Villegas–Zagier acceleration [18] are two techniques available to compute the sum.

Long ago, Poisson [19] discovered a remarkable identity:

−π

2
W (−x) =

π∫
0

sin( 3
2θ ) − x ecos(θ ) sin( 5

2θ − sin(θ ))

1 − 2x ecos(θ ) cos(θ − sin(θ )) + x2e2 cos(θ )
sin( 1

2θ ) dθ,

valid for |x | < e−1. We wonder if his theory might someday lead to the solution, in
terms of a “compact” definite integral, of other transcendental equations (e.g., Kepler’s
equation [4.8]).

6.11.1 Exponential Recurrences

There is not as much to say about exponential recurrences as about quadratic recurrences
[6.10]. The simplest example is [20]

c0 = 0, cn = 2cn−1 for n ≥ 1.

If ∅ denotes the empty set, then c1 = 1 is the cardinality of the power set P(∅) of ∅,
c2 = 2 is the cardinality of P(P(∅)), c3 = 4 is the cardinality of P(P(P(∅))), etc. The
Ackermann-like growth of {cn} greatly exceeds that of any exponential function.

Another occurrence of {cn} is as follows. A rooted identity tree is a rooted tree for
which the only automorphism fixing the root is the identity map [5.6]. Fix an integer
h > 0. An identity tree of height h consists of a root, a nonempty set of identity trees (all
different) of height h − 1, and a (possibly empty) set of identity trees (all different) of
height < h − 1. (See Figure 6.4.) The cardinality of all such identity trees is therefore(

2ch−ch−1 − 1
)

2ch−1 = ch+1 − ch

since repetitions are not allowed. These are equivalent to what are called ranked sets
in set theory.

A variation of this,

γ0 = 0.1490279983 . . . , γn = 2γn−1 for n ≥ 1,

arises in combinatorial game theory [21, 22]. The number of impartial misère games
at day n is gn = �γn�, and each such game can be thought of as a rooted identity tree
t satisfying special conditions. Let S(t) denote the set of (distinct) identity subtrees
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Figure 6.4. There exist twelve rooted identity trees of height 3.

of t with roots adjacent to the root of t . The outcome O(t) of t is N if O(s) = P for
some s ∈ S(t) or if t is a single vertex; otherwise O(t) = P . A tree t is reversible if,
for some tree u, S(u) is a proper subset of S(t) and, if v ∈ S(t) − S(u), then u ∈ S(v);
further, if u is a single vertex, then O(w) = P for some w ∈ S(t). Finally, a tree t is
canonical if t is not reversible and if each s ∈ S(t) is canonical. The number gn of
canonical trees of height ≤ n is 1, 2, 3, 5, 22, and 4171780 for 0 ≤ n ≤ 5; a corrected
value of g6 ≈ 24171780 appears in [23–25]. Conway [21] claimed that constructing an
existence proof for the constant γ0, valid for all n, is not difficult.
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6.12 Conway’s Constant

Suppose we start with a string of digits, for example, 13. We might describe this as
“one one, one three” and thus write the derived string, 1113. This in turn we describe
as “three ones, one three,” giving 3113. Continuing, the following sequence of strings
are obtained [1]:

132113,

1113122113,

311311222113,

13211321322113,

1113122113121113222113,

31131122211311123113322113,

132113213221133112132123222113,

11131221131211132221232112111312111213322113,

31131122211311123113321112131221123113111231121123222113.
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We have given the first twelve strings of this sequence (k = 1 to k = 12). It can be
proved that only the digits 1, 2, and 3 appear at any step, so the process can be continued
indefinitely. What can be said about the length of the kth string? Its growth appears to
be exponential and at first glance one would anticipate this to be impossibly difficult
to characterize more precisely. Conway [2–5], defying expectation, proved that the
growth is asymptotic to Cλk , where λ = 1.3035772690 . . . = (0.7671198507 . . . )−1

is the largest zero of the polynomial

x71 − x69 − 2x68 − x67 + 2x66 + 2x65 + x64 − x63 − x62 − x61 − x60

− x59 + 2x58 + 5x57 + 3x56 − 2x55 − 10x54 − 3x53 − 2x52 + 6x51 + 6x50

+ x49 + 9x48 − 3x47 − 7x46 − 8x45 − 8x44 + 10x43 + 6x42 + 8x41 − 5x40

− 12x39 + 7x38 − 7x37 + 7x36 + x35 − 3x34 + 10x33 + x32 − 6x31 − 2x30

− 10x29 − 3x28 + 2x27 + 9x26 − 3x25 + 14x24 − 8x23 − 7x21 + 9x20

+ 3x19 − 4x18 − 10x17 − 7x16 + 12x15 + 7x14 + 2x13 − 12x12 − 4x11

−2x10 + 5x9 + x7 − 7x6 + 7x5 − 4x4 + 12x3 − 6x2 + 3x − 6.

This polynomial and λ were first computed by Atkin; Vardi [6] noticed a typographical
error (the x35 term was off by a sign in [4]).

Moreover, the same constant λ applies to the growth rates of all such sequences,
regardless of the starting string, with two trivial exceptions. We started with the string
13 earlier; the constant λ is universally applicable except for the empty initial string
and the string 22. This astonishing fact is a consequence of what is known as the
Cosmological Theorem, the proof of which was lost until recently [7]. Ekhad &
Zeilberger’s tour-de-force is a splendid illustration of the use of software in proving
theorems.

Even more can be said. Sometimes a string factors as the concatenation of two strings
L and R whose descendents never interfere with each other. We say that the string L R
splits as L .R and L R is called a compound. A string with no nontrivial splittings
is called an element or atom. It turns out that there are ninety-two special atoms
(named after the chemical elements Hydrogen, Helium, . . . , Uranium). Every string of
1s, 2s, and/or 3s eventually decays into a compound of these elements. Additionally,
the relative abundances of the elements approach fixed positive limits, independent
of the initial string. Thus, of every million atoms, about 91790 on average will be
of Hydrogen (the most common) whereas only about 27 will be of Arsenic (the least
common).

Conway’s Periodic Table of Elements [3, 4] traces the evolution of the string 13 as
previously, but indicates the evolution in terms of elements rather than long ternary
strings. For example, when k = 1 to k = 6, the strings are the elements Pa, Th, Ac, Ra,
Fr, and Rn, but when k = 7, the first compound emerges: 13211321322113, which may
be rewritten as Ho.At because Ho is 1321132 and At is 1322113. As another example,
when k = 91, Helium derives to the compound Hf.Pa.H.Ca.Li because H is 22.
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Let us illustrate further. If we start with 11, we obtain 21, then 1211, and then

111221,

312211,

13112221,

1113213211 = 11132.13211 = Hf.Sn.

If we start with 12, the first string is already an element: 12 = Ca, while starting with
32 or 23 gives

1312, 1213,

11131112 = 1113.1112 = Th.K, 11121113 = 1112.1113 = K.Th.

There is also the more general case of strings containing digits other than 1, 2, or 3.
If we start with, say, 14 or 55, the theorem regarding relative abundances still applies,
but we allow just two additional elements (isotopes of Plutonium and Neptunium)

Pu4 = 312211322212221121123222114,

Np4 = 13112221133211322112211213322114,

Pu5 = 312211322212221121123222115,

Np5 = 13112221133211322112211213322115,

the relative abundances of which tend to 0. This is true for strings with digits 6, 7, 8,
9, . . . as well.

We return finally to Conway’s constant λ. It is the (unique) largest eigenvalue (in
modulus) of the 92 × 92 transition matrix M whose (i, j)th element is the number of
atoms of element j resulting from the decay of one atom of element i . The relative
abundances also arise in a careful eigenanalysis of M . We know that Conway’s 71st

degree polynomial has Galois group S71, and hence λ cannot be expressed in terms of
radicals [8]. See [9–12] as well.
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Constants Associated with Complex Analysis

7.1 Bloch–Landau Constants

Let F denote the set of all complex analytic functions f defined on the open unit
disk D, centered at the origin, and satisfying f (0) = 0, f ′(0) = 1.

For each f ∈ F , let b( f ) be the supremum of all numbers r such that there is a
subregion S of D on which f is one-to-one and such that f (S) contains a disk of radius
r . Bloch [1–7] showed that b( f ) is at least 1/12. Bloch’s constant B is defined to be
inf {b( f ) : f ∈ F}. The precise value of B is unknown, but the following bounds were
established by Ahlfors & Grunsky [8] and Heins [9]:

0.433 <

√
3

4
< B ≤ 1√

1 + √
3

�( 1
3 )�( 11

12 )

�( 1
4 )

= 0.4718616534 . . . .

Ahlfors & Grunsky further conjectured that B is equal to its upper bound.
A related constant is defined as follows: For each f ∈ F , let l( f ) be the supremum

of all numbers r such that f (D) contains a disk of radius r . Landau’s constant L
[3, 5, 7, 10] is defined to be inf {l( f ) : f ∈ F}. It is clear that L is at least as large as B.
Like B, we do not know the value of L exactly. The following bounds were determined
by Robinson [11] and, independently, by Rademacher [12]:

0.5 = 1

2
< L ≤ �( 1

3 )�( 5
6 )

�( 1
6 )

= 0.5432589653 . . . .

Rademacher also conjectured that L is equal to its upper bound.
Both of these conjectures remain unproven to this day [13–17]. The form of the

conjectured exact expressions, ratios of gamma function values [1.5.4], are fascinating.
Bonk [18] proved in 1990 that a lower bound for B is

√
3/4 + 10−14, which Minda

[19] called the first quantitative improvement in estimating B in a half century. Chen &
Gauthier [20, 21] adapted Bonk’s method to replace 10−14 by 2 × 10−4, and Yanagihara
[22] improved the lower bound for L to 1/2 + 10−335.

456
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Let G denote the subset of F consisting of one-to-one functions. Such functions
are said to be univalent (or schlicht). Over G, the notions of Bloch constant and
Landau constant obviously coincide. Define the univalent Bloch–Landau constant
K (or schlicht Bloch–Landau constant) to be inf {l( f ) : f ∈ G}. The most current
bounds on K are 0.57088 < K < 0.6564155 [23–28]. No one has yet hypothesized an
exact expression for K .

There are various extensions of these ideas, for example, to a domain D that is not
a disk but an annulus [29], or to functions f of not one but several complex variables
[30, 31]. To discuss these would take us far afield.

MacGregor [32] raised some interesting questions concerning other geometrical
properties of f (D). If f ∈ F , it can be shown that the diameter of f (D), defined to
be sup {| f (z) − f (w)| : z, w ∈ D}, is at least 2. See [33] for a proof. What else can be
said? If f ∈ G, let a( f ) denote the area of the intersection of f (D) with the unit disk.
The work of Goodman, Jenkins & Reich [34–36] yields that 0.62π < A = inf {a( f ) :
f ∈ G} < 0.7728π . What is the precise value of the constant A? Also, Strohhäcker
[37] showed that, given f ∈ G, there is a line segment in f (D) with one endpoint at the
origin and possessing length greater than 0.73. What is the largest number 0.73 can be
replaced by? Conceivably this question is related to what is known as the Hayman-Wu
constant [7.5]. See also [8.19] for other relevant material.

For each f ∈ G, let m( f ) be the supremum of all numbers r such that f (D) contains
the disk of radius r , centered at the origin. Note the final hypothesis. Define the Koebe
constant M [38, 39] to be M = inf {m( f ) : f ∈ G}. Koebe [40] proved the existence
of M and Bieberbach [41] established Koebe’s conjecture that M = 1/4. The extremal
functions consist of precisely the mapping

f (z) = z

(1 − z)2

and its rotations. Observe that there is no nonzero analog of M for the set F . For
arbitrarily large integer n, f (z) = (exp(nz) − 1)/n is in F , but it omits the value −1/n
since the exponential function is never zero. Hence no disk, centered at the origin, is
contained in f (D) for suitably large n.
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7.2 Masser–Gramain Constant

Suppose f (z) is an entire function such that f (n) is an integer for each positive integer
n. Under what circumstances can we conclude that f is a polynomial? Pólya [1] proved
that if

limsup
r→∞

ln(Mr )

r
< ln(2) = 0.6931471805 . . . , where Mr = sup

|z|≤r
| f (z)|,

then the conclusion follows. Moreover, the special case f (z) = 2z demonstrates that
ln(2) is the largest constant (or “best constant”) for which this line of reasoning holds
[2–4].

Here is a more difficult but related problem. It involves the Gaussian integers, which
constitute the set of all complex numbers with integer real parts and integer imaginary
parts. Suppose f (z) is an entire function such that f (n) is a Gaussian integer for each
Gaussian integer n. Under what circumstances, again, can we conclude that f is a
polynomial? Gel’fond [5], building upon the work of Fukasawa [6], proved that there
exists a positive constant α such that

limsup
r→∞

ln(Mr )

r2
< α

implies the conclusion. Not surprisingly, a stronger limiting condition (involving r2 in
the denominator instead of r ) is needed to force f to be a polynomial. We will discuss
the best constant α later. Our focus is on a different constant δ that arose in one attempt
to identify α.

Masser [7] proved that α could be no larger than π/(2e) = 0.5778636748 . . . and
believed α to be equal to π/(2e). He also proved the following weaker result: f must
be a polynomial if the following holds:

limsup
r→∞

ln(Mr )

r2
< α0 = 1

2
exp

(
−δ + 4c

π

)
,

where

c = γ β(1) + β ′(1) = π

4
(− ln(2) + 2 ln(π ) + 2γ − 2 ln(L)) = 0.6462454398 . . . ,
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γ is the Euler–Mascheroni constant [1.5], β(x) is the Dirichlet beta function [1.7], L
is Gauss’ lemniscate constant [6.1], and δ will be defined shortly. Expressions similar
to this appear in our essays on the Landau–Ramanujan constant [2.3] and Sierpinski’s
constant S [2.10]; in fact, c = π S/4.

Define δ as a natural two-dimensional generalization of the Euler–Mascheroni
constant:

δ = lim
n→∞

(
n∑

k=2

1

π r2
k

− ln(n)

)
,

where rk is the minimum over all r ≥ 0 such that there exists a complex number z for
which the closed disk with center z and radius r contains at least k distinct Gaussian
integers.

The computation of δ is exceedingly difficult. Gramain & Weber [8] deter-
mined bounds 1.811447299 < δ < 1.897327117, which imply that 0.1707339 < α0 <

0.1860446. It turns out that α0 is the largest constant that Gel’fond’s technique
(known as the method of series interpolation) can give. Certainly α0 is far away
from the conjectured best constant π/(2e), but it is interesting that α0 is close to
1/(2e) = 0.1839397205 . . . . Gramain [9, 10] conjectured that α0 = 1/(2e), which
would imply δ = 1 + 4c/π = 1.8228252496 . . . ,but no one knows whether this is true.

How would one calculate the Masser–Gramain constant δ to, for example, four
decimal places? No formula for rk is known, so Gramain & Weber [8] had no choice
but to evaluate rk for large k via its definition. One has, for example [7], r2 = 1/2,
r3 = r4 = 1/

√
2, and bounds [9]√

π (k − 1) + 4 − 2

π
< rk <

√
k − 1

π
.

The upper bound is quite good, but the lower bound must be improved for the sake of
accurate estimation of δ. One has√

π (k − 6) + 2 − √
2

π
≤ rk

for k ≥ 6, but required further improvements [9, 10] are too complicated to present
here. To obtain δ to four decimal places would necessitate computing rk for k up
to 5 × 1013 according to [8]. Unless the algorithm for calculating rk is made more
efficient, the bounds for rk are improved, another procedure for computing δ is found,
or a breakthrough in computer hardware occurs, the identity of δ will remain unknown.

A completely different n-dimensional lattice sum generalization of Euler’s constant
is discussed in [1.10.1].

Finally, let us resolve a remaining issue. Gramain [9, 10], building upon the work
of Gruman [11], proved Masser’s conjecture that the best constant α is π/(2e). This
achievement does not, however, shed any light on the value of δ or α0.

[1] G. Pólya, Über ganzwertige ganze Funktionen, Rend. Circ. Mat. Palmero 40 (1915) 1–16;
also in Collected Papers, v. 1, ed. R. P. Boas, MIT Press, 1974, pp. 1–16, 771–773.
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[9] F. Gramain, Sur le théorème de Fukasawa-Gel’fond-Gruman-Masser, Séminaire Delange-
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7.3 Whittaker–Goncharov Constants

Suppose f is an entire function such that f and its derivatives f (n), n = 1, 2, 3, . . . , each
have at least one zero zn in the unit disk. Under what circumstances can we conclude
that f is identically zero? It is not difficult [1–5] to prove that if

limsup
r→∞

ln(Mr )

r
< ln(2), where Mr = sup

|z|≤r
| f (z)|,

then the conclusion f = 0 follows. This bound is not the best possible. Define
Whittaker’s constant W to be the largest number for which

limsup
r→∞

ln(Mr )

r
< W implies f = 0.

Then the previous result plus the example f (z) = sin(z) + cos(z) show that ln(2) =
0.693 . . . ≤ W ≤ 0.785 . . . = π/4. We alternatively have the identity

limsup
n→∞

∣∣ f (n)(z)
∣∣ 1

n = limsup
r→∞

ln(Mr )

r

for any choice of complex number z. In words, the asymptotic local behavior of f (n) is
governed by the global nature of the maximum modulus function M .

Other formulations exist for W in terms of Maclaurin series coefficients, as well as
conditions involving the behavior of the sequence {zn} or the possible univalence of
f . We do not discuss these except to mention that Goncharov’s constant G arises in
a such a way [6, 7] and W = G was later proved by Buckholtz [8, 9]. A formulation
involving what are known as Goncharov polynomials is discussed later [7.3.1].

The best-known rigorous bounds on W are due to Macintyre [10–12]:

0.7259 . . . < W < 0.7378 . . . ,
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building upon earlier work by Pólya, Boas, and Levinson. The upper bound arises from
a study of entire solutions of the functional differential equation

d

dz
ϕ(z, q) = ϕ(q z, q),

that is,

ϕ(z, q) =
∞∑

n=0

1

n!
q

n(n−1)
2 zn, |q| ≤ 1.

More precisely, W is no greater than the smallest moduli of zeros of ϕ(z, q), considered
over all q. The lower bound for W comes about in a different way.

Numerical heuristics allowed Varga & Wang [12, 13] to deduce that 0.7360 < W ,
hence disproving Boas’ conjecture [14, 15] that W = 2/e. More computations led
Waldvogel [16] to deduce that 0.73775075 < W , but we emphasize that rigorous
theoretical support for this work has not been finalized. However, refined estimates
of Macintyre’s upper bound [12, 13, 16] give W < 0.7377507574. . . . Thus Varga &
Waldvogel have conjectured that W is equal to its upper bound. No amount of floating
point calculations will suffice to prove an exact equality as such!

Some generalizations of W were defined in [4, 17–22]. Oskolkov [23] claimed to
possess a new method for computing an arbitrarily close lower bound to W .

Here is a related topic. Differentiating a power series

∞∑
n=0

anzn →
∞∑

n=1

n anzn−1

and shifting a power series (i.e., forming a normalized remainder)

∞∑
n=0

anzn →
∞∑

n=1

anzn−1

are somewhat similar operations. The aforementioned theory involving W , Goncharov
polynomials, and differentiation has an analog for shifting. We will take an alternative
viewpoint, for the sake of both simplicity and variety.

Let f be an analytic function whose Maclaurin series

f (z) =
∞∑

k=0

ak zk

has radius of convergence exactly equal to 1. Let

Sn(z, f ) =
n∑

k=0

ak zk, n = 1, 2, 3, . . . ,

be the nth partial sum of f and define ρn( f ) to be the largest moduli of the zeros of the
polynomial Sn . Let

ρ( f ) = liminf
n→∞

ρn( f )
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and define the power series constant

P = sup
f

ρ( f ).

Porter [24] and Kakeya [25, 26] showed that P ≤ 2. Clunie & Erdös [25] demonstrated
that

√
2 < P < 2. Buckholtz [27] improved this to 1.7 < P < 1.862 and Frank [27]

improved this to 1.7818 < P < 1.82. Independent work in estimating 1/P was done
by Pommiez [28–30]. Just as Whittaker’s constant W has formulation in terms of
Goncharov polynomials, the power series constant P has formulation in terms of what
are called remainder polynomials [7.3.2].

In this case, we consider not a functional differential equation, but rather a functional
equation involving shifting. The zeros of the solution

ψ(z, q) =
∞∑

n=0

q
n(n−1)

2 zn, |q| ≤ 1,

are again studied, yielding a lower bound P ≥ 1.7818046151. . . . Waldvogel [16] con-
jectured that the lower bound is, in fact, the true value of P . This is analogous to before,
although the analysis is more complicated.

A third constant, examined in [16], involves certain Padé approximants. Relevant
material includes [31–33].

7.3.1 Goncharov Polynomials

Bounds for the Whittaker–Goncharov constant W can theoretically be determined via
the Goncharov polynomials [7]:

G0(z) = 1, Gn(z, z0, z1, . . . , zn−1) =
z∫
z0

t1∫
z1

· · ·
tn−2∫
zn−2

tn−1∫
zn−1

1 dtn dtn−1 . . . dt2 dt1

for n ≥ 1. An equivalent recursive definition is

Gn(z, z0, z1, . . . , zn−1) = zn

n!
−

n−1∑
k=0

zn−k
k

(n − k)!
Gk(z, z0, z1, . . . , zk−1).

Evgrafov [34] proved that (
limsup

n→∞
g

1
n
n

)−1

= W,

where

gn = max
|zk |=1

0≤k≤n−1

|Gn(0, z0, z1, . . . , zn−1)| .

Buckholtz [35] further showed that(
2

5

) 1
n

g
− 1

n
n < W ≤ g

− 1
n

n ,
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and hence the limit superior can be replaced by a limit. Unfortunately, the convergence
rate using these formulas is much too slow for accurate estimation of W [12]. Other
techniques must be used.

7.3.2 Remainder Polynomials

A lower bound for the power series constant P can theoretically be determined via the
remainder polynomials [30, 36, 37]:

B0(z) = 1, Bn(z, z0, z1, . . . , zn−1) = zn −
n−1∑
k=0

zn−k
k Bk(z, z0, z1, . . . , zk−1)

for n ≥ 1. Buckholtz [36] proved that

lim
n→∞ b

1
n
n = P,

where

bn = max
|zk |=1

0≤k≤n−1

|Bn(0, z0, z1, . . . , zn−1)| .

Unfortunately, as with the Goncharov polynomials, the convergence rate using these
formulas is much too slow for accurate estimation of P .
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7.4 John Constant

Let X and Y be real Banach spaces (for example, X and Y may be taken to be finite-
dimensional Euclidean spaces) and let D be an open subset of X . Suppose two num-
bers m, M are given with 0 < m ≤ M < ∞. Define a mapping f : D → Y to be an
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(m, M)-isometry if it is continuous, open, locally one-to-one, and additionally satisfies

m ≤ liminf
y→x

| f (y) − f (x)|
|y − x | , limsup

y→x

| f (y) − f (x)|
|y − x | ≤ M

for all x ∈ D.
What does the last part of this definition mean? If we picture f as deforming the

domain D, then it does so in such a manner that lengths of line elements in D are altered
by factors constrained to lie between m and M . Such a mapping f is also known as a
quasi-isometry or a bi-Lipschitz map.

John [1–3] proved that, if m = M , then f must obey | f (y) − f (x)|/|y − x | = m
for all x, y ∈ D and thus f is a rigid motion, scaled by m. In particular, f is (globally)
one-to-one on D.

With this result in mind, it is natural to ask for the largest number µ = µ(D) with the
property that M/m < µ implies that all (m, M)-isometries of D are one-to-one. Hence-
forth assume D is an open ball in X . Gevirtz [4] proved that µ ≥ r = 1.114305 . . . ,
where r is the unique real root of the equation

r = r + √
25r2 − 8r

2r (3r − 1)
.

A numerically sharp lower bound is not known. A few words about upper bounds for
µ appear at the end of this essay.

If X is, moreover, a Hilbert space (hence angles can be measured in X ), then the
additional structure permits improved bounds. Gevirtz [4, 5], extending a result by
John [3], showed that µ ≥ √

2 = 1.414213. . . . If both X and Y are Hilbert spaces, then

Gevirtz [4], sharpening John [3], demonstrated that µ ≥
√

1 + √
2 = 1.553773 . . . and

in [5] showed that in fact µ ≥ s = 1.65743 . . . , where s is the minimum value for t > 0
of the function

s = s(t) = π + 2
√

1 + t2

1 + π
2 + t

.

The proofs of these lower bounds entail fairly complicated arguments that use the basic
principles for quasi-isometries established by John. Such lines of attack, however, are
not powerful enough to produce numerically sharp results.

John [6] considered the special case in which the mapping is effected by an analytic
function of one complex variable. That is, he considered analytic functions f defined
on the unit disk D in the z-plane that satisfy m ≤ | f ′(z)| ≤ M at all points z ∈ D. As
before, what is the largest number γ such that M/m ≤ γ implies that f is univalent
(in the disk)? The value γ is called the John constant for D. Since this is a special
case of the preceding, we may expect γ to be larger than µ.

Several researchers, including Avhadiev & Aksentev [7], John [6], Yamashita [8],
and Gevirtz [9, 10], worked to determine γ . The best-known bounds [6, 9] are

4.810477 . . . ≤ exp( 1
2π ) ≤ γ ≤ exp(λπ ) = 7.1879033516 . . . ,
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where λ = 0.6278342677 . . . satisfies the transcendental equation

π

exp(2πλ) − 1
=

∞∑
k=1

k

k2 + λ2
exp

(
−kπ

2λ

)
.

Gevirtz [10] conjectured that, in fact, γ = exp(λπ ) and gave compelling reasons for
why this equality might hold. A rigorous proof is not known.

Again, if we picture f as deforming the disk D, a helpful physical interpretation
emerges. If D is made of a hypothetical material that offers no resistance to infinitesimal
contractions and stretchings by factors between m and M , and infinite resistance beyond
these bounds, then how large must the ratio M/m be for one to bend D in such a way
to make D touch itself? For analytic functions f , the answer would appear to be
7.1879033516 . . . .

John constants can be defined for domains D in the complex plane other than the
unit disk. A variational approach initiated in this setting [10, 11] provides evidence for
the truth of Gevirtz’s conjecture.

As a postlude, let us return to the more general conditions of the beginning. If X = Y
and X is the one-dimensional real line, then µ = ∞ since a real-valued local homeo-
morphism of an interval must be a global homeomorphism (since it is monotonic). If
X = Y and the dimension of X is at least two, then upper bounds can be placed on µ.
For example, if X is a Hilbert space, then 2 ≥ µ ≥ 1.65743 . . . . This is an outgrowth
of a simple two-dimensional example by John [3]. If X is only a Banach space, then all
that can be said is 64 ≥ µ ≥ 1.114305 . . . . The proof of these bounds appears in [5].

This essay is partly based on a letter from Julian Gevirtz. He also mentioned his
long personal association with Fritz John. For this reason, we offer this essay as a small
tribute to John’s memory [12].
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7.5 Hayman Constants

7.5.1 Hayman–Kjellberg

Let f be a transcendental entire function. That is, f is analytic on the whole complex
plane but is not a polynomial. For each r > 0, define

M(r ) = max
|z|=r

| f (z)|,

the maximum modulus of f over the circle of radius r centered at the origin. Consider
the function

a(r ) = d2

d ln(r )2
ln(M(r )) =

(
r

d

dr

)2

ln(M(r )),

which exists and is continuous except at isolated points. Hadamard’s three circles
theorem [1] asserts that a(r ) ≥ 0. What else can be said about a(r )?

Hayman [2] proved that there is a constant A > 0.18 such that

limsup
r→∞

a(r ) ≥ A

for all f . He conjectured that A = 1/4, but this was disproved by Kjellberg [3], who
demonstrated that 0.24 < A < 0.25. Kjellberg mentioned that Richardson might have a
proof that A < 0.245. More accurate, computer-based estimates of A are still unknown.

7.5.2 Hayman–Korenblum

Let p be a real number with p ≥ 1. Define c(p) to be the largest real number < 1
so that the following holds: For any functions f and g analytic on the unit disk, if
| f (z)| ≤ |g(z)| for all z satisfying c(p) < |z| < 1, then∫

|z|≤1

| f (z)|pdx dy ≤
∫

|z|≤1

|g(z)|pdx dy,

where z = x + i y.
Hayman [4] proved that c(2) exists and 0.04 = 1/25 ≤ c(2) ≤ 1/

√
2 = 0.7071 . . . ,

confirming a conjecture of Korenblum [5]. (More precisely, Korenblum conjectured
the existence of c(2) and conditionally demonstrated that the upper bound holds.) In a
significant extension, Hinkkanen [6] proved that c(p) exists and 0.15724 ≤ c(p), and
he asked whether c(p) → 1 as p → ∞. No conjectures have been made about the
exact value of c(2), let alone c(p).
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7.5.3 Hayman–Stewart

Let f be a meromorphic function. That is, f is analytic on the whole complex plane
except for (isolated) poles. It can be proved that f is a quotient of two entire functions.
One customarily views f as a map to the Riemann sphere S, because where f has poles
it can be considered to take the value ∞. For every r > 0 and every point a ∈ S, define

n(r, a) = the number of roots of the equation f (z) = a in
the disk |z| ≤ r , with due count of multiplicity,

the counting function of a-points of f . Now define two related quantities:

n(r ) = max
a∈S

n(r, a),

A(r ) = mean
a∈S

n(r, a) = 1

π

∫
S

n(r, a) da = 1

π

∫
|z|≤r

| f ′(z)|2
(1 + | f (z)|2)2 dx dy,

where z = x + i y. It is natural to compare these quantities as r → ∞. Both A(r ) → ∞
and n(r ) → ∞, except in the case where f is a rational function (quotient of two
polynomials), which does not interest us.

Clearly n(r ) ≥ A(r ) for all r since a maximum always exceeds an average. Certain
meromorphic functions f can be constructed for which limsupr→∞ n(r )/A(r ) = ∞.
Hence we turn attention to the ratio

H ( f ) = liminf
r→∞

n(r )

A(r )
.

Hayman & Stewart [7–9] proved that 1 ≤ H ( f ) ≤ e for all f . The first example of a
meromorphic function with H ( f ) > 1 was constructed by Toppila [10]; in fact, in his
example H ( f ) is at least 80/79. However, Miles [11] proved that H ( f ) is no larger than
e − 10−28 for all f . Thus if we define a constant h = sup f H ( f ), where the supremum
is over all nonconstant meromorphic functions f , we have 80/79 ≤ h ≤ e − 10−28.

Here is an interesting variation. Define

nT (r ) = max
a∈T

n(r, a)

for each finite subset T of S. For fixed T , clearly nT (r ) ≤ n(r ). Gary [12] proved that

liminf
r→∞

nT (r )

A(r )
≤ 2.65

for all f , which contrasts nicely against Miles’ more elaborate result. Dare we hope
for greater accuracy in estimating any of these constants any time soon?

In a letter, Alexandre Eremenko wrote: “Hayman’s constants are all defined as solu-
tions of some complicated extremal problems (extremum over a class of meromorphic
functions). It seems that none of these extremal problems has a nice symmetric so-
lution. So one cannot hope for more than finding good numerical bounds for them. An-
other constant of this type is the univalent Bloch–Landau constant [7.1] By contrast,
the ordinary Bloch–Landau constants are (presumably) of a different nature: They are
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related to some beautiful symmetric extremal configuration (if the conjectured values
are correct). Carleson & Jones, by conjecturing that the Clunie–Pommerenke constant
β is 1/4 [7.6], believe that β is of this second kind. Of course, β = 1/4 cannot happen
by accident: Some hidden symmetry should be responsible for this.”

7.5.4 Hayman–Wu

Hayman & Wu [13] proved that there is a constant C such that if f (z) is univalent on
the open unit disk and L is any line in the plane, then the preimage f −1(L) has length
| f −1(L)| ≤ C . Øyma [14, 15] has proved that the least possible value of C satisfies
π2 ≤ C < 4π and further conjectured that C is equal to the lower limit here.

[1] J. B. Conway, Functions of One Complex Variable, 2nd ed., Springer-Verlag, 1978, p. 137;
MR 80c:30003.

[2] W. K. Hayman, Note on Hadamard’s convexity theorem, Entire Functions and Related
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Rubel, Proc. Symp. Pure Math. 11, Amer. Math. Soc., 1968, pp. 210–213; MR 40 #5858
and MR 41 errata/addenda, p. 1965.
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Function, Ph.D. thesis, Univ. of Illinois, 1984.
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7.6 Littlewood–Clunie–Pommerenke Constants

7.6.1 Alpha

Let p(z) be a polynomial of degree n. The expression |p′(z)|/(1 + |p(z)|2) is called
the spherical derivative of p(z), in the sense that it measures how p changes with z,
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regarded as a map into the Riemann sphere [1]. Define

P(p) =
∫

|z|≤1

|p′(z)|
1 + |p(z)|2 dx dy,

where z = x + i y. This double integral is proportional to the mean spherical derivative

of p(z) over the unit disk. We ask about the maximal value

F(n) = sup {P(p) : p is a polynomial of degree n}

and the superior limit

α = limsup
n→∞

ln(F(n))

ln(n)
.

Littlewood [2] proved that F(n) is finite and F(n) ≤ π
√

n, that is, α ≤ 1/2. He

conjectured that α < 1/2. Eremenko & Sodin [3, 4] proved that F(n) = o(
√

n) as
n → ∞. Soon afterward, Lewis & Wu [5] proved that α ≤ 1/2 − 2−264, thus confirming
Littlewood’s conjecture. However, Eremenko [6] demonstrated that α > 0 and Baker &
Stallard [7] improved this to α ≥ 1.11 × 10−5.

For rational functions (as opposed to polynomials), the analog of α has value 1/2
[2, 8, 9]. Littlewood [2] also provided several alternative definitions of α not involving
the spherical derivative. The definition of α as given here was provided by Eremenko
[10].

7.6.2 Beta and Gamma

A complex analytic function f defined on an open planar region is univalent (or
schlicht) if f is one-to-one; that is, f (z) = f (w) if and only if z = w. Let

D = {z : |z| < 1} (the open disk), E = {z : |z| > 1} (an open annulus),

S =
{

univalent f on D with f (z) = z +
∞∑

n=2

cnzn

}
,

S1 =
{

bounded univalent f on D with f (z) =
∞∑

n=1

anzn and sup
z∈D

| f (z)| ≤ 1

}
,

S2 =
{

univalent f on E with f (z) = z +
∞∑

n=0

bnz−n

}
.

For the class S, de Branges [11, 12] proved that |cn| ≤ n, confirming Bieberbach’s
famous conjecture [13]. This inequality is sharp. For S1 and S2, analogous sharp in-
equalities are unknown. It turns out that estimating coefficient decay rates for S1 and
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S2 are closely related: Let

An = sup
f ∈S1

|an|, Bn = sup
f ∈S2

|bn|,

−γ1 = lim
n→∞

ln(An)

ln(n)
, −γ2 = lim

n→∞
ln(Bn)

ln(n)
.

For each k = 1, 2, we have relatively simple bounds 1/2 ≤ γk ≤ 1. Building upon
earlier work by Littlewood [14], Clunie & Pommerenke [15–18] showed that

0.503125 = 1

2
+ 1

320
< γk < 0.803,

and Carleson & Jones [19] improved the upper bound to γk < 0.76.
Here is an alternative, more geometric formulation. For ε > 0 and f ∈ Sk , consider

the arclength of the image of the circle |z| = exp((−1)kε) under the map f . Let

Lε = sup
f ∈S1

|{ f (z) : |z| = exp(−ε)}| , Mε = sup
f ∈S2

|{ f (z) : |z| = exp(ε)}| ,

−β1 = lim
ε→0+

ln(Lε)

ln(ε)
, −β2 = lim

ε→0+

ln(Mε)

ln(ε)
.

Carleson & Jones’ arguments show that 0.503 < γ1 = γ2 = 1 − β1 = 1 − β2 < 0.76
(in fact, they proved more.) The relation β + γ = 1 between power series coefficients
and circular image arclengths seemed to be anticipated in earlier papers, but Carleson
& Jones proved it explicitly and precisely for the first time.

Eremenko [10] provided a third formulation for these constants in terms of arclengths
of Green’s function level curves.

7.6.3 Conjectural Relations

Carleson & Jones [19] conjectured that γ = 3/4 (and hence β = 1/4) on the basis of
numerical experimentation. There may be some skepticism about this belief, but there
are no reliable means to confirm it yet.

Eremenko [6, 10] conjectured that α = β and further remarked that this can be
proved (or disproved) without actual knowledge of α or β. The problem of whether
α = β is perhaps easier than establishing their actual values.

We close with an unrelated problem. Consider the set of real numbers λ for which∫
|z|≤1

| f ′(z)|λdx dy < ∞

is true for all f ∈ S. Brennan [20–22] proved that the integral is finite for −1 − δ < λ <
2/3 for some δ > 0, but the integral is infinite if λ = 2/3 or λ = −2. He conjectured
that the integral is finite for −2 < λ < 2/3, that is, one may take δ = 1. The best value
of δ remains an open question.
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7.7 Riesz–Kolmogorov Constants

Let F(z) = f (z) + i f̃ (z) be an analytic function defined on the closed unit disk, with
the property that its imaginary part satisfies f̃ (0) = 0. Define the p-Hardy norm [1, 2]

|| f ||p =

 1

2π

2π∫
0

| f (eiθ )|pdθ




1
p

, 0 < p < ∞.
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What can be said about the relative sizes of the conjugate functions f and f̃ ? Riesz
[3] proved that

|| f̃ ||p ≤ C p · || f ||p, 1 < p < ∞,

and Pichorides [4] and Cole [5] determined the best constant in this inequality to be
[6–8]

C p =



tan
(

π
2p

)
1 < p ≤ 2,

cot
(

π
2p

)
2 < p < ∞.

If p = 1, there exist functions F for which || f ||1 < ∞ but || f̃ ||1 = ∞. Hence a revised
sense of “relative size” becomes necessary in this case.

If S is a measurable subset of the unit circle, let |S| denote its Lebesgue measure,
divided by 2π . For t ≥ 0, define the set

St ( f ) = {z : | f (z)| ≥ t and |z| = 1}.
Kolmogorov [9] proved the weak type 1-1 inequality

|St ( f̃ )| ≤ C1 · 1

t
· || f ||1 for all t > 0

and Davis [10] determined the best constant to be

C1 = π2

8G
= 1.3468852519 . . . = (0.7424537454 . . .)−1,

where G is Catalan’s constant [1.7]. A corollary of Kolmogorov’s theorem is

|| f̃ ||p ≤ C p · || f ||1, 0 < p < 1.

Davis [11, 12] identified the best constants here to be

C p =

 1

2π

2π∫
0

| csc(θ )|pdθ




1
p

=

 1√

π

�
(

1−p
2

)
�

(
2−p

2

)



1
p

,

where �(x) is the gamma function [1.5.4]. There is a related issue of the relative sizes
of F and f , which we will not discuss. See also [13–17].
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7.8 Grötzsch Ring Constants

Let R be a planar ring, that is, an open connected subset of the complex plane C.
Two regions R1 and R2 are conformally equivalent if there is an analytic function
f : R1 → R2 such that f is one-to-one and onto. Clearly this is an equivalence relation.
The famous Riemann mapping theorem implies the following:

• Among the simply connected regions, there are exactly two equivalence classes: one
consisting of C alone and the other containing the unit disk (and much more).

• Among the doubly connected regions, there are uncountably many equivalence
classes, each containing a circular annulus A(1, r ) = {z : 1 < |z| < r} for some
unique real r > 1 (and much more).

In particular, two annuli A(s, t) and A(u, v) are conformally equivalent if and only if
t/s = v/u, that is, the ratio of outer radius and inner radius is a conformal invariant
[1, 2].

Let us change the subject slightly for a moment. By a ring R in n-dimensional
Euclidean space, we mean a region whose complement consists of two components C0

and C1, where C0 is bounded and C1 is unbounded. Let B0 and B1 be the boundary
components of R. The conformal capacity of R is

cap(R) = inf
ϕ

∫
R

|∇ϕ|n dx,

where the infimum is over all real continuously differentiable functions ϕ on R with
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values 0 on B0 and 1 on B1. The modulus of R is

mod(R) =
(

σ

cap(R)

) 1
n−1

,

where σ = nπn/2�(1 + n/2)−1 is the surface area of the sphere of radius 1 in n-
dimensional space. For an n-dimensional spherical annulus A(s, t), we find that [3–8]

mod(A(s, t)) = ln

(
t

s

)
.

Therefore, in the case n = 2, the modulus of a ring is a conformal invariant. For n ≥ 3,
we lose this nice geometric interpretation since the Riemann mapping theorem no
longer applies: The unit n-dimensional ball is conformally equivalent only to another
ball or to a half-space. Nevertheless, the modulus is important in other ways (e.g., in
distortion theorems associated with quasiconformal mappings).

Let G(n, a) denote the n-dimensional Grötzsch ring, that is, the ring whose com-
plementary components are

C0 = {(x, 0, 0, . . . , 0) : 0 ≤ x ≤ a} , where 0 < a < 1;

C1 =
{

(x1, x2, . . . , xn) :
n∑

i=1

x2
i ≥ 1

}
.

In words, G(n, a) is the unit n-ball, slit from 0 to a along a radial vector. It is known
that the following limit exists and is finite [7–15]:

ln(λn) = lim
a→0+

(mod(G(n, a)) + ln(a)) ;

that is, mod(G(n, a)) experiences logarithmic growth as a decreases to 0. In the special
case n = 2, we have [4, 13, 14]

mod(G(2, a)) = π

2

K (
√

1 − a2)

K (a)

and hence λ2 = 4. K is the complete elliptic integral of the first kind; a similar expres-
sion appeared in [4.5]. We also have the interesting asymptotic result [9]

lim
n→∞ λ

1
n
n = e,

where e is the natural logarithmic base [1.3].
No such exact formulas have been found for λ3 or λ4. Rigorous lower and upper

bounds for λn , plus the best-known numerical estimates, are given in Table 7.1 [12, 15].
A table of bounds for λn exp(−n) for 3 ≤ n ≤ 22 appears in [14], along with a simple
inequality

2 exp(0.76(n − 1)) ≤ λn ≤ 2 exp(n − 1).

We conclude by returning to the case n = 2. What is the formula for the conformal
function f that maps A(1, r ) onto G(2, a(r )), where the slit length a(r ) is defined below?
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Table 7.1. Estimates for Parameters λn

n Lower bound Best estimate for λn Upper bound

3 9.341 9.37 ± 0.02 9.9002
4 21.85 22.6 ± 0.2 26.046

The mapping turns out to involve the Jacobi elliptic sine function sn [1.4.6]. Higher
transcendental functions often occur in this study: The appropriate generalizations for
n ≥ 3 await discovery.

7.8.1 Formula for a(r )

The annulus A(1, r ) and the Grötzsch ring G(2, a) are conformally equivalent if and
only if

ln(r ) = mod(A(1, r )) = mod(G(2, a)) = π

2

K (
√

1 − a2)

K (a)
.

We wish to solve for a as a function of r . It turns out that a(r ) can be written in terms
of an infinite product [14, 16]:

a(r ) = 2b(r )

1 + b(r )2
, where b(r ) = 2

r

∞∏
j=1

(
1 + r−8 j

1 + r−8 j+4

)2

.

Consider the ring H (n, b) whose complementary components are

D0 = {(x, 0, 0, . . . , 0) : −b ≤ x ≤ b} , where 0 < b < 1;

D1 =
{

(x1, x2, . . . , xn) :
n∑

i=1

x2
i ≥ 1

}
.

In words, H (n, b) is the unit n-ball, slit symmetrically from −b to b through the
origin. Then H (2, b(r )), A(1, r ), and G(2, a(r )) are conformally equivalent. Results
for mod(G(n, a)) conceivably have analogs for mod(H (n, b)). See also [17, 18].
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8

Constants Associated with Geometry

8.1 Geometric Probability Constants

We will only briefly touch the large subject of geometric probability [1] but enough to
introduce a few questions.

Suppose a point is randomly selected from the n-dimensional unit cube. The expected
Euclidean distance to the cube center, δ(n), has the following closed-form expressions
[2–7]:

δ(1) = 1

4
, δ(2) = 1

6

(√
2 + ln(1 + √

2)
)

= 0.3825978582 . . . ,

δ(3) = 1

48

(
6
√

3 + 12 ln(2 +
√

3) − π
)

= 0.4802959782 . . . .

It possesses the following bounds (for all n) and asymptotics:

1

4
n

1
2 ≤ δ(n) ≤ 1

2

(n

3

) 1
2
, δ(n) ∼ 1

2

(n

3

) 1
2

(in particular, δ(n) is unbounded). Are closed-form expressions for δ(4) =
0.5609498093 . . . and δ(5) = 0.6312033175 . . . possible? Incidently, 2δ(n) is the mean
distance from the point to an arbitrary corner of the n-cube. If we examine the analogous
problem corresponding to the n-dimensional unit ball [8–14], the expected Euclidean
distance is n/(n + 1) (which is bounded, of course).

Suppose two points are independently and uniformly chosen from the unit n-cube.
The expected Euclidean distance between them, �(n), is

�(1) = 1

3
, �(2) = 1

15

(√
2 + 2 + 5 ln(1 + √

2)
)

= 0.5214054331 . . . ,

�(3) = 1

105

(
4 + 17

√
2 − 6

√
3 + 21 ln(1 +

√
2) + 42 ln(2 +

√
3) − 7π

)

= 0.6617071822 . . .

479
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and has corresponding bounds and asymptotics:

1

3
n

1
2 ≤ �(n) ≤

(n

6

) 1
2
, �(n) ∼

(n

6

) 1
2
.

Are closed-form expressions for �(4) = 0.7776656535 . . . and �(5) =
0.8785309152 . . . possible? Much more is known for the unit n-ball analog of
this problem: The mean distance in this scenario is a ratio of gamma function values
and tends to

√
2 as n → ∞. The fact that, as n grows, the limiting �(n) is finite

for n-balls but infinite for n-cubes is very interesting! Additionally, the variance of
the distance separating the points in the n-ball tends to zero. Thus, for large n, the
separation between two random points is almost always equal to the distance between
the extremities of two orthogonal radii [1].

We mention that the expected reciprocal Euclidean distance between two random
points in the unit 3-cube is [15, 16]

2

(√
2 + 1 − 2

√
3

5
− π

3
− ln

[
(
√

2 − 1)(2 −
√

3)
])

= 1.8823126444 . . . ,

and clearly generalization is possible.
Suppose instead that three (rather than two) points are randomly selected in the unit

n-cube. What is the probability, �(n), that the three points form an obtuse triangle?
Langford [17, 18] proved that

�(2) = 97

150
+ π

40
= 0.7252064830 . . . ,

but no one has performed a similar calculation for �(n), n > 2. Again, much more is
known for the n-ball analog of this problem [19, 20]. Random triangles in the n-ball
tend to be acute for large n since most of the volume of the n-ball is near its surface
[21]. In fact, such random triangles tend to be approximately equilateral and thus have
small probability of being obtuse. See [22–28] for related discussion.

Suppose instead that N points p1, p2, . . . , pN are randomly selected in the unit
n-cube. Let C denote the convex hull of p1, p2, . . . , pN ; that is,

C =
{

N∑
j=1

λ j p j : λ j ≥ 0 for all j and
N∑

j=1

λ j = 1

}

is the intersection of all convex sets containing p1, p2, . . . , pN . Then,

• the expected n-dimensional volume, E(Vn(N )), of C ,
• the expected (n − 1)-dimensional surface area, E(Sn(N )), of C , and
• the expected number of vertices, E(Pn(N )), on the (polygonal) boundary of C
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satisfy

lim
N→∞

N

ln(N )
(1 − E(V2(N ))) = 8

3
,

lim
N→∞

√
N (4 − E(S2(N ))) = 2

√
π M = 4.2472965459 . . . ,

lim
N→∞

E(P2(N )) − 8

3
ln(N ) = 8

3
(γ − ln(2)) = −0.3091507084 . . .

according to Rényi & Sulanke [29–39], where γ denotes the Euler–Mascheroni constant
[1.5] and M is Gauss’ lemniscate constant [6.1]. Affentranger & Wieacker [40, 41]
obtained asymptotics for Vn(N ) and Pn(N ) for n ≥ 3. Cabo & Groeneboom [42–45]
demonstrated that

lim
N→∞

N Var(S2(N )) = 4(J − I 2) = 0.9932 . . . ,

where

I =
√

π

8


2 −

∞∫
1

(√
1 + s2 − s

)
s−3/2ds


 =

√
π

2
M = 1.0618241364 . . . ,

J = 2 − 4

∞∫
1

(√
1 + s2 − s

)
ϕ(s − 1) ds + 4

5

∞∫
1

(√
1 + s2 − s

)2
s−2ds

+ 1

4

∞∫
1

t∫
1

(√
1 + s2 − s

) (√
1 + t2 − t

)
ψ

(
t

s
− 1

)
s−3ds dt

+ 1

8

∞∫
1

∞∫
1

(√
1 + s2 − s

) (√
1 + t2 − t

)
ψ (s t − 1) ds dt

= 1.37575 . . . ,

and

ϕ(s) = 1

2(s + 1)2
− 1

4s(s + 1)
+ 1

4s

arctan(
√

s)√
s

,

ψ(s) = 15

s3
+ 1

s2
−

(
15

s3
+ 6

s2
− 1

s

)
arctan(

√
s)√

s
.

No higher-dimensional analog of this result is known.
Suppose instead that N lines are randomly drawn in the square [46, 47]. The average

number of regions into which the lines divide the square is given by [48, 49]

N (N − 1)π

16
+ N + 1,
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which is another fascinating occurrence of Archimedes’ constant π in geometry. The
average number of regions into which N random planes divide the cube is

(2N + 23)N (N − 1)π

324
+ N + 1.

What are the higher dimensional analogs of these results? Related material on the
maximum possible number of regions appears in [50–52].

We close with a different type of problem (not actually from geometric probability).
Here the issue is existence. Is there a positive constant c such that any measurable
plane set of area c must contain the vertices of a triangle of area exactly equal to 1?
Erdös [53, 54] wondered if c might be as small as 4π/(3

√
3) but no progress has been

made on determining whether c is even finite. A related question, concerning whether
every convex region in the Euclidean plane with area 1 can be inscribed in a triangle of
area at most equal to 2, was answered long ago [55, 56]. The three-dimensional analog
remains unsolved [57].
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8.2 Circular Coverage Constants

The problem of completely covering the unit interval [0, 1] by N smaller equal subin-
tervals is trivial: Tile the interval with subintervals of length 1/N . The only necessary
overlap occurs at boundary points of the tiling.

The problem of completely covering the planar unit disk D by N smaller equal sub-
disks is harder. Here overlap is substantial and contributes to the difficulty of solution.
Let r (N ) denote the minimum radius for which there exists a covering. If D is covered,
then in particular its boundary C (the unit circle) must be covered. To cover a unit
circular subarc of length 2π/N requires a disk of radius at least sin(π/N ); therefore
we have the bound r (N ) ≥ sin(π/N ). Equality occurs, in fact, for N = 2, 3, and 4 (see
Table 8.1). The case for N = 7 is also straightforward: A regular hexagon inscribed
in C has edges of length 1, so at least six disks of radius 1/2 are needed to cover C .
A seventh disk of radius 1/2 is then sufficient to cover the remaining central portion
of D.

The case for N = 5 is the first nontrivial case. Neville [1, 2] provided the first
known published solution (see Figure 8.1), although in the last step the value r (5)
was given incorrectly. Early editions of [3] repeated his error. One correctly obtains
r (5) = 0.6093828640 . . . as the value of cos(θ + ϕ/2), where θ and ϕ are solutions of

Table 8.1. Minimum Common Radius r (N ) of N Subdisks Covering the Unit Disk

N 1 2 3 4 5 6

r (N ) 1 1
√

3
2 = 0.866025 . . .

√
2

2 = 0.707106 . . . 0.609382 . . . 0.555905 . . .

N 7 8 9 10 11 12
r (N ) 1

2 = 0.5 0.445041 . . . 0.414213 . . . 0.394930 . . . 0.380006 . . . 0.361103 . . .
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0

Figure 8.1. Neville’s minimal configuration of five circles. It is asymmetric since three disks
pass near 0 but two do not.

the following nonlinear system of four equations in four unknowns:

2 sin(θ ) − sin(θ + 1
2ϕ + ψ) − sin(ψ − θ − 1

2ϕ) = 0,

2 sin(ϕ) − sin(θ + 1
2ϕ + χ ) − sin(χ − θ − 1

2ϕ) = 0,

2 sin(θ ) + sin(χ + θ ) − sin(χ − θ ) − sin(ψ + ϕ) − sin(ψ − ϕ)

− 2 sin(ψ − 2θ ) = 0,

cos(2ψ − χ + ϕ) − cos(2ψ + χ − ϕ) − 2 cos(χ ) + cos(2ψ + χ − 2θ )

+ cos(2ψ − χ − 2θ ) = 0.

A different characterization was provided by Bezdek [4–6]: r (5)−1 is the largest real
zero of the polynomial

a(y)x6 − b(y)x5 + c(y)x4 − d(y)x3 + e(y)x2 − f (y)x + g(y)

maximized over all y, subject to the constraints
√

2 < x < 2y + 1, −1 < y < 1,
where

a(y) = 80y2 + 64y, b(y) = 416y3 + 384y2 + 64y,

c(y) = 848y4 + 928y3 + 352y2 + 32y,

d(y) = 768y5 + 992y4 + 736y3 + 288y2 + 96y,

e(y) = 256y6 + 384y5 + 592y4 + 480y3 + 336y2 + 96y + 16,

f (y) = 128y5 + 192y4 + 256y3 + 160y2 + 96y + 32, g(y) = 64y2 + 64y + 16.

Neville [2] knew that r (5) is an algebraic number, for he wrote the following sen-
tence about his system of equations: “It is evident that these particular equations are
algebraic and even rational in the tangents of the angles θ/2, ϕ/4, ψ/2, χ/2, so that an
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algebraic equation can be found for cos(θ + ϕ/2) . . . .” Melissen [7] and Zimmermann
[8] independently obtained the minimal polynomial of r (5):

1296x8 + 2112x7 − 3480x6 + 1360x5 + 1665x4 − 1776x3 + 22x2 − 800x + 625;

however, they may not have been the first to achieve this.
Zahn [9] computed r (N ) for N = 6 and 8 ≤ N ≤ 10 by computer experimenta-

tion. Bezdek [10] numerically obtained r (6) = 0.5559052114 . . . as reported in [5–7];
conceivably he may have found a polynomial optimization characterization of r (6)
analogous to r (5). Nagy [11] and Krotoszynski [12] conjectured that, for 8 ≤ N ≤ 10,

r (N ) =
(

1 + 2 cos

(
2π

N − 1

))−1

=



0.4450418679 . . . if N = 8,√
2 − 1 = 0.4142135623 . . . if N = 9,

0.3949308436 . . . if N = 10,

and Fejes Tóth [13] succeeded in proving the formulas for r (8) and r (9). Evidence for
the r (10) formula was given by Melissen [7], who also provided an excellent survey
of the subject. More recently, Faugère & Zimmermann [14] discovered the minimal
polynomial for r (6):

7841367x18 − 3344997x16 + 62607492x14 − 63156942x12 + 41451480x10

− 19376280x8 + 5156603x6 − 746832x4 + 54016x2 + 3072.

All cases r (N ) for N ≥ 10 remain open; we mention that r (11) < (1 + 2 cos(π/5))−1

and also the conjecture

r (12) = 1

3

(
1 + (1 + 3

√
57)

1
3 − 8(1 + 3

√
57)−

1
3

)
= 0.3611030805 . . .

due to Melissen & Schuur [7].
There are some interesting “inverse” results due to Kerschner [15] and Verblunsky

[16]. For example, if we let N (ε) denote the smallest number of disks of radius ε needed
to cover D, the limit of the ratio of the area of D to the total area of the disks,

lim
ε→0+

π

(πε2)N (ε)
= lim

ε→0+

1

ε2 N (ε)
= 3

√
3

2π
= 0.8269933431 . . . ,

can be thought of as measuring the asymptotic efficiency of the covering. If one replaces
the unit disk D by a square, one can be even more precise.

Here is a related problem. We can cover the unit interval by intervals of length 1/2,
1/4, 1/8, 1/16, 1/32, . . . in the natural way. Moreover, the common ratio 1/2 cannot be
made smaller. What is the two-dimensional analog of this result? Eppstein [17] found
that D could be covered by smaller disks of radii sk , k = 1, 2, 3, . . . , for s = 0.77 but
evidently not for s = 0.765. A more precise estimate of the smallest s ≤ 0.77 would
be good to see.

The problem of covering a unit square by N smaller equal disks is surveyed in [7, 18].
The dual problem of packing disks in a unit disk [1, 7, 19–22] or square [1, 7, 23–28] has
attracted much attention, but we will say only a few words. Let t(N ) denote the greatest
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Table 8.2. Maximum Common Radius t(N ) of N Subdisks Packing the Unit Square

N 2 3 4 5

t(N )
√

2 = 1.414213 . . .
√

6 − √
2 = 1.035276 . . . 1

√
2

2 = 0.707106 . . .

N 6 7 8 9

t(N )
√

13
6 = 0.600925 . . . 2(2 − √

3) = 0.535898 . . .
√

6−√
2

2 = 0.517638 . . . 1
2 = 0.5

possible minimum distance between N points in the square (see Table 8.2). Computing
t(10) = 0.4212795439 . . . was a major obstacle until recently: Schlüter’s conjecture
[29, 30] has been proven true [31] and here is the minimal polynomial for t(10):

1180129x18 − 11436428x17 + 98015844x16 − 462103584x15 + 1145811528x14

− 1398966480x13 + 227573920x12 + 1526909568x11 − 1038261808x10

− 2960321792x9 + 7803109440x8 − 9722063488x7 + 7918461504x6

− 4564076288x5 + 1899131648x4 − 563649536x3 + 114038784x2

− 14172160x + 819200.

Here also, as an aside, are two elementary problems involving just two circles.
Imagine two overlapping circles, each of radius 1. If the area A of the inner overlap

region is equal to the sum of the areas of the two outer crescents, then clearly A = 2π/3.
What is the distance 2u between the centers of the two circles? It can be shown that
u = 0.2649320846 . . . is the unique root of the equation

u
√

1 − u2 + arcsin(u) = π

6

in the interval [0, 1]. Is u transcendental? This is called Mrs. Miniver’s problem [32, 33].
The second problem is called the grazing goat problem [34, 35]. A goat is tethered

to a post on the perimeter of a circular field of radius 1. How long should the rope be
so that the goat can eat exactly half of the grass in the field? One shows that the length,
v, of the rope satisfies

v
√

4 − v2 − 2(v2 − 2) arccos
(v

2

)
= π,

and hence v = 1.1587284730 . . . . Is v transcendental? Are v and u algebraically
independent?
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8.3 Universal Coverage Constants

Let U denote the class of all sets in the plane of unit diameter. A planar region R is
called a displacement cover (or universal cover) for U if it contains a congruent copy
of every set in U . That is, each set of unit diameter can be covered by R after suitable
translation and rotation [1–6].

Let S denote a class of specified regions in the plane (e.g., the class of all circular
disks). Does there exist an element of S that is both a displacement cover for U and
has area as small as possible? If yes, define A(S) to be the area of such an element.

For example, if we focus on the class of all circular disks [3, 4], then

A(circles) = π

3
= 1.0471975511 . . . ,

the area of a circle of radius 1/
√

3. A similar line of reasoning gives that a square region
of side 1 will also suffice:

A(squares) = 1.

Better still is the class of regular hexagonal regions:

A(regular hexagons) =
√

3

2
= 0.8660254037 . . . .

Consider now the class C of all convex planar regions. Lebesgue [7] asked about the
value of µ = A(C), that is, the area of the smallest possible convex blanket that covers
all sets of unit diameter. The best-known bounds are

0.8257117836 . . . = π

8
+

√
3

4
≤ µ ≤

√
3

2
− 2εP − εS − εH ≤ 0.84413770

due to Pál [7], Sprague [8], and Hansen [9, 10]. The lower bound is the area of the
convex hull of a circle and an equilateral triangle, both of unit diameter, with the circle
centered at the triangle centroid. The upper bound estimates, incrementally improving
on each other, are based on cutting corners off Pál’s original regular hexagonal cover:

εP = 7
√

3

12
− 1 ∼ 10−2, εS ∼ 10−3.

Hansen’s two improvements on Sprague’s upper bound estimate are tiny: ∼ 10−19 and
10−11. A more dramatic improvement, in [11], from 0.8441 to 0.8430, was conjectural
only. One interesting aspect about Hansen’s work is his use of computer simulation.
For example, he ruled out certain types of configurations by simulation in [10]; it is
not clear whether he has withdrawn his 1981 conjecture. As Klee & Wagon [5] wrote,
“Progress on this problem, which has been painfully slow in the past, may be even more
painfully slow in the future.”

For nonconvex covers, Duff [12, 13] constructed a region with area 0.84413570 . . . ,

which is smaller than all known convex examples. It is not surprising that nonconvexity
can improve matters; see the related discussion in [8.4] and [8.17].

There are many variations on these problems. If we restrict the meaning of cover to
encompass only translations (rather than displacements, i.e., translations and rotations,
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Figure 8.2. A truncated unit square obtained by revolving an inscribed Reuleaux triangle com-
pletely within the square and removing the four corner sets not touched.

as we have assumed so far), then the various outcomes are given in [8.3.1]. Also, one
can minimize the cover perimeter or mean width rather than area [14–16]. A different
sense of minimality – namely, a cover for which no proper subset is a cover – was
studied by Eggleston [17] in n dimensions.

There is a discrepancy in the reporting of the upper bound estimate for µ.
Meschkowski [2] and Hansen [9] reported Sprague’s estimate to be 0.844144, whereas
Duff [12] and Klee & Wagon [5] reported the estimate to be 0.84413770. No explana-
tion can be found for this discrepancy.

Finally, we note that early papers on this subject often mistakenly refer to this as
Besicovitch’s problem [18–20].

8.3.1 Translation Covers

A planar region R is called a translation cover (or strong universal cover) for U
if each set of unit diameter can be covered by R after suitable translation [5, 14, 21].
No rotations are allowed. Using notation similar to before, Ã(circles) = π/3 by the
obvious rotational symmetry of a disk and Ã(squares) = 1, but the regular hexagon
of Pál is not a translation cover [21, 22]. What, therefore, is the value of Ã(regular
hexagons)?

If C denotes the class of all convex planar regions, then there is a conjecture [5, 15, 16]
that

Ã(C) = π

6
+ 2

√
3 − 3 = 0.9877003907 . . . ,

which is the area of the truncated unit square in Figure 8.2. No rigorous tight bounds
on Ã(C) seem to appear in the literature. See [23] for a curious connection to the Watts
square drill bit. More constants associated with Reuleaux triangles are found in [8.10].
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8.4 Moser’s Worm Constant

A worm is a continuous rectifiable arc of unit length contained in the plane. Let W
denote the class of all worms. A planar region R is called a displacement cover (or
universal cover) for W if it contains a congruent copy of every worm in W . That is,
each arc of unit length can be covered by R after suitable translation and rotation [1, 2].

Let S denote a class of specified regions in the plane (e.g., the class of all circular
disks). Does there exist an element of S that is both a displacement cover for W and
has area as small as possible? If yes, define A(S) to be the area of such an element.
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For example, if we focus on the class of all circular disks [3], then

A(circles) = π

4
= 0.7853981633 . . . ,

the area of a circle of diameter 1. It is somewhat more difficult to prove [4, 5] that a
square region of diagonal 1 will also suffice:

A(squares) = 1

2
= 0.5.

Over the larger class of rectangular regions [4, 5],

A(rectangles) = β
√

1 − β2 = 0.3943847688 . . . ,

the area of a rectangle with sides β and
√

1 − β2, where β arises with regard to the
broadest curve of unit length [8.4.1]. Better still is the class of semicircular regions [6]:

A(semicircles) = π

8
= 0.3926990816 . . . ,

as proved by Meir. Interestingly, the class of equilateral triangular regions remains a
mystery. Besicovitch [7] proved that

A(equilateral triangles) ≥ 7
√

3

27
= 0.4490502094 . . . ,

the area of the triangle with side 2
√

21/9, and thought it likely that equality holds. The
conjectured exact expression for A was found by Knox [8]. Any counterexample to this
claim, if such a worm exists, must be zig-zag in the sense that the worm meets the line
segment joining its two endpoints at a third point (possibly more) [9].

Consider now the class C of all convex planar regions. Moser’s worm constant µ is
defined to be the value of A(C), that is, the area of the smallest possible convex blanket
that covers all worms. The best-known bounds are

0.2194626846 . . . = β

2
≤ µ ≤ 0.27524 . . .

as found by Schaer & Wetzel [5, 6] and Poole, Gerriets, Norwood & Laidacker [10–12].
The upper bound is the area of a certain rhombus with portions of two adjacent sides
replaced by a circular arc. Some recent unsuccessful attempts have been made to
improve the upper bound [13, 14]. Of many conjectures, we mention one in [6, 11, 12]:
The circular sector of radius 1 and angle π/6 covers all possible worms. If true, this
would reduce the upper bound on µ to π/12 = 0.261799 . . . .

There are many variations on these problems. If we restrict worms to be closed,
that is, with initial point coincident with terminal point, then the results are given in
[8.4.2]. If we restrict the meaning of cover to encompass only translations (rather than
displacements, i.e., translations and rotations, as we have assumed so far), then the
various outcomes are given in [8.4.3]. One can minimize the cover perimeter rather
than area [15]. Also, one can ask how efficient the cover is, for example, whether the
worm is necessarily close to the boundary of the cover, and such an inquiry leads
naturally to Bellman’s “lost in a forest” problem [16–19].
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Here is a related problem [20]: Prove that any worm can be covered by some rect-
angular blanket of area 1/4, and that this is the best possible. The question (given a
worm, find an element of S that covers it) is similar to the foregoing (find an element
of S that covers all worms) but has not received the same amount of attention. Another
problem is as follows: Given a worm, show that the maximum possible area of its
smallest convex cover is 1/(2π ) = 0.159154 . . . . This is attained for a semicircle of
unit length [21]. What is the three dimensional analog of this result?

Interesting things happen if we drop the convexity requirement [1, 2]. Hansen [22]
proposed (without proof) a nonconvex universal cover of area 0.246 . . . , which is less
than the best-known convex cover, but his claim remains unconfirmed. The smallest
provable upper bound in this case is 0.26044 . . . [23]. Davies [24] constructed non-
convex sets of measure zero that are translation covers for the class of all polygonal
arcs in the plane. This is closely allied with the Kakeya–Besicovitch problem [8.17].
Marstrand [25, 26], however, proved that any displacement cover for the class of all
rectifiable arcs must have positive measure.

8.4.1 Broadest Curve of Unit Length

What is the minimum width of an infinitely long planar strip that contains a congruent
copy of every worm in W ? Equivalently, fix a worm w for consideration and, for
0 ≤ θ ≤ π , let d(w, θ ) denote the distance between supporting parallel lines at angle θ

to the x-axis. Define the breadth of w to be the minimum value of d(w, θ ) taken over
all θ . Our question becomes: What is the worm of largest breadth?

The answer is a broadworm or caliper, as first discovered by Zalgaller [17, 27, 28].
See Figure 8.3. This curve has breadth given exactly by

β = sup
w

min
θ

d(w, θ ) = 1

2

(π

2
− ϕ − 2ψ + tan(ϕ) + tan(ψ)

)−1

= 0.4389253692 . . . = (2.2782916414 . . .)−1,

where the angles ϕ and ψ are defined by

ϕ = arcsin
[

1
6 + 4

3 sin
(

1
3 arcsin( 17

64 )
)]

, ψ = arctan
(

1
2 sec(ϕ)

)
.

It follows immediately that any universal rectangular cover must have both sides ≥ β

(to accommodate the caliper) and diagonal ≥ 1 (to accommodate the unit line segment);
proving that the β ×

√
1 − β2 rectangle is indeed universal requires more work.

Zalgaller [29] also examined the three-dimensional analog of this problem and
conjectured that the broadest curve in three-space of unit length has breadth
1/3.921545 . . . = 0.255001 . . . .

8.4.2 Closed Worms

A closed worm is a continuous rectifiable closed curve (with initial point coincident
with terminal point) of unit length contained in the plane. As before, we are interested
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β

β sec(φ)

φ

ψ

Figure 8.3. A caliper consists of two circular arcs with four tangent segments, configured in a
very precise fashion.

in displacement covers of least area. In this more restrictive scenario, we have

A′(circles) = π

16
= 0.1963495408 . . . ,

the area of a circle [3, 30, 31] of diameter 1/2,

A′(squares) = 1

8
= 0.125,

the area of a square [5, 31] of diagonal 1/2,

A′(rectangles) =
√

π2 − 4

2π2
= 0.1227367657 . . . ,

the area of a rectangle [5, 31] of sides 1/π and
√

π2 − 4/(2π ), and

A′(general triangles) = 3
√

3

4π2
= 0.1316200785 . . . ,

the area of an equilateral triangle [32, 33] with side
√

3/π .
It is curious that so much more is known about the general triangular case for covering

closed worms than for covering arbitrary worms (arcs). Here is a related result [34]. The
smallest equilateral triangle that can cover every triangle of perimeter 2 has side not 1,
but s = 2/y = 1.0028514266 . . . , where y is the global minimum of the trigonometric
function

f (x) =
√

3
(

1 + sin
( x

2

))
sec

(π

6
− x

)
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on the interval [0, π/6]. The constant s also appears in [35] in connection with a more
expansive problem.

What can be said about the analog of Moser’s worm constant here, that is, the
area µ′ = A′(C) of the smallest possible convex blanket that covers all closed worms?
Schaer & Wetzel [5] and Chakerian & Klamkin [31] proposed a lower bound equal to
the area of the convex hull of a circle of circumference 1 and a line segment of length
1/2 with midpoint at the circle center:

µ′ ≥ 1

4π2

(√
π2 − 4 + π − 2 arccos

(
2

π

))
= 0.0963296165 . . . .

More recently, Füredi & Wetzel [35] gave improved bounds 0.09666 ≤ µ′ ≤ 0.11754,
where the upper bound comes from the area of the best rectangle (mentioned earlier)
with one small corner clipped off.

Here is a related problem from [31] due to Schaer: Prove that any closed worm can be
covered by some rectangular blanket of area 1/π2, and that this is the best possible. The
question (given a worm, find an element of S that covers it) is similar to the foregoing
(find an element of S that covers all worms).

8.4.3 Translation Covers

A planar region R is called a translation cover (or strong universal cover) for W
if each worm in W can be covered by R after suitable translation. No rotations are
allowed. Since there are two types of worms, we study these separately. For arbitrary
worms (arcs), let us consider only the class C of all convex planar regions. In this
scenario, we have a complete solution due to Pál [36]:

µ̃ = Ã(C) =
√

3

3
= 0.5773502692 . . . ,

the area of an equilateral triangle of height 1. This scenario is perhaps the simplest of
all.

For closed worms, we have

Â(circles) = π

16
= 0.1963495408 . . .

by the obvious rotational symmetry of a disk [3, 30, 31],

Â(general triangles) =
√

3

9
= 0.1924500897 . . . ,

the area of an equilateral triangle [32, 33] with side 2/3,

Â(rectangles) = 1

4
= 0.25,

the area of a square with side 1/2, and

0.1554479088 . . . ≤ µ̂ = Â(C) ≤ 0.16526 . . . ,

for the convex case, owing to Wetzel [6] and Bezdek & Connelly [15].
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[35] Z. Füredi and J. E. Wetzel, The smallest convex cover for triangles of perimeter two, Geom.
Dedicata 81 (2000) 285–293; MR 2001c:52001.

[36] J. Pál, Ein minimumprobleme für ovale, Math. Annalen 83 (1921) 311–319.

8.5 Traveling Salesman Constants

Consider n distinct points in the d-dimensional unit cube. Of all (n − 1)!/2 closed
paths (or tours) passing through each point precisely once, what is the length Ld (n) of
the shortest such path?

Determining Ld (n), the minimum tour-length, is known as the traveling salesman
problem (TSP). This is one of the best-known combinatorial optimization problems,
dominating fields such as operations research, algorithm development, and complexity
theory. Its solution is difficult because it cannot be computed in polynomial time, that
is, the problem is NP-hard.

We nevertheless encounter some interesting asymptotics: There is a smallest constant
αd such that

limsup
n→∞

Ld (n)

n(d−1)/d
≤ αd , α′

d = αd√
d

for all optimal tours in the cube, and there is another constant βd such that

lim
n→∞

Ld (n)

n(d−1)/d
= βd , β ′

d = βd√
d

for almost all optimal tours in the cube, in the sense that the limit fails only for a
negligible (measure-zero) subset of the tours. These constants were first examined by
Beardwood, Halton & Hammersley [1, 2]. Rigorous bounds are listed in Table 8.3 [3–9].

It is known that [10–14]

lim
d→∞

β ′
d = 1√

2πe
= 0.2419707245 . . . ,

1√
2πe

≤ lim
d→∞

α′
d ≤ 2(3 − √

3)θ√
2πe

= 0.40509 . . . ,

where

1

2
≤ θ = lim

d→∞
θ

1
d

d ≤ 0.66019

Table 8.3. Bounds on Traveling Salesman Constants α′
d and β ′

d

d Lower Bound for β ′
d Upper Bound for β ′

d Lower Bound for α′
d Upper Bound for α′

d

2 0.44194 0.6508 0.75983 0.98398
3 0.37313 0.61772 0.64805 0.90422
4 0.34207 0.55696 0.5946 0.8364
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and θd is the best sphere packing density in d-space [8.7]. Even if someday the upper
bound 2−0.59905d+o(d) for θd is improved to 2−d+o(d), as is believed to be true [15], the
upper bound for limd→∞ α′

d will be reduced only to 0.30681. New insights will be
required to evaluate this limit exactly [13].

Nonrigorous numerical estimates of βd , due to Johnson, McGeoch & Rothberg [16]
and Percus & Martin [17, 18], give

β2 = 0.7124 . . . , β3 = 0.6979 . . . , β4 = 0.7234 . . . .

The fact that earlier estimates of β2 do not agree well may be connected with finite size
effects associated with the different experimental methods of computation. Another
recent estimate of β2 is 0.714 . . . , due to Applegate, Cook & Rohe [19]. This might
indicate that Norman & Moscato’s [20] conjectured expression for β2 (based on a fractal
space-filling curve),

β2 = 4(1 + 2
√

2)
√

51

153
= 0.7147827007 . . . ,

is justified; it surely indicates the need to assess the quality of random generations
underlying TSP simulations.

If the n points are independently and uniformly distributed in the unit square, then
the length �2(n) of a random (not necessarily optimal) tour satisfies [21]

lim
n→∞

E(�2(n))

n
= 1

15

(√
2 + 2 + 5 ln(1 +

√
2)

)
= 0.521405433 . . . ,

where E denotes both the average over all tours and the average over all point sets. The
exact expression for 0.5214 . . . is due to Ghosh [22] and is discussed further in [8.1].
Note that E(�2(n)) increases on the order of n whereas L2(n) typically increases on
the order of

√
n.

A more precise version of limd→∞ β ′
d has been conjectured [18]:

βd =
√

d

2πe
(πd)

1
2d

[
1 + 2 − ln(2) − 2γ

d
+ O

(
1

d2

)]
,

where γ denotes the Euler–Mascheroni constant [1.5]. The basis for this formula is
known as the random links TSP, a special case of which we will discuss momentarily.

8.5.1 Random Links TSP

Let Kn be the complete graph on n vertices, that is, every pair of distinct vertices
determines an edge. We have removed the ambient d-dimensional space and hence any
metric from this setting. Assign independently to each edge a Uniform [0, 1] random
variable called a length. Observe that lengths are not distances in the usual sense since
the triangle inequality is not satisfied. Of all (n − 1)!/2 tours passing through each
vertex precisely once, we can determine the shortest such path, with minimum sum of
lengths L(n), and define

lim
n→∞ L(n) = β with probability 1.
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Krauth & Mézard [23] nonrigorously obtained an analytical expression for β via the
cavity method:

β = 1

2

∞∫
−∞

f (x) (1 + f (x)) exp(− f (x)) dx = 2.0415 . . . = 2(1.0208 . . .),

where f (x) is the solution of the integral equation

f (x) =
∞∫
−x

(1 + f (y)) exp(− f (y)) dy.

In actuality, this is just one scenario (corresponding to d = 1) of a d-parametrized family
of random link approximations to the d-dimensional Euclidean TSP [16–18, 24].

8.5.2 Minimum Spanning Trees

Let us return to the familiar setting of n distinct points in the unit d-cube. Denote the
set of points by V . A minimum spanning tree (MST) is a connected graph [5.6] with
vertex-set V that has smallest possible length Ld (n) (meaning the sum of edge-lengths
in the usual Euclidean sense). Define

lim
n→∞

Ld (n)

n(d−1)/d
= βd with probability 1.

Numerical estimates [25, 26] and theoretical results [11] include

β2 = 0.6331 . . . , β3 = 0.6232 . . . , βd ∼
√

d

2πe
as d → ∞.

It is remarkable that an exact (but complicated) expression for βd exists [27, 28]. We give
the formula only for the case d = 2. Let �i denote the set of all points {x1, x2, . . . , xi−1}
in the plane such that the disks D j of center x j and radius 1/2, 0 ≤ j ≤ i − 1, form
a connected set, where x0 = 0. Define gi (x1, x2, . . . , xi−1) to be the area of

⋃i−1
j=0 D j ;

then

β2 = 1

2
+ 1

2

∞∑
i=2

�(i − 1
2 )

i!

∫
�i

gi (x1, x2, . . . , xi−1)−i+ 1
2 dx1 dx2 . . . dxi−1.

Using the first five terms of this series, we can obtain a rigorous lower bound β2 ≥
0.600822 [27].

Given a minimum spanning tree, we can study characteristics other than Ld (n).
Consider as an example L̃d (n), the sum of squared edge-lengths, and define

lim
n→∞

L̃d (n)

n(d−1)/d
= β̃d with probability 1.

The existence of β̃d was proved by Aldous & Steele [29, 30]; numerical estimates
include β̃2 = 0.4769 . . . (which is often called Bland’s constant) and β̃3 = 0.4194 . . .
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[26]. An exact expression for β̃d can be found as previously [27], with a rigorous lower
bound β̃2 ≥ 0.401 . . . .

The sum of squared edge-lengths parameter L̃d (n) is also interesting for TSP, given
an optimal tour. Although an existence proof for β̃d is not known, specific point con-
figurations can be constructed so that [31–33]

L̃d (n)

n(d−1)/d
> cd ln(n)

as n → ∞ for some cd > 0; hence α̃d definitely does not exist. Other variations abound.
If we minimize L̃d (n) rather than Ld (n) when computing optimal tours, a different path
is often determined (because of the power weighting) and the worst-case constant
[34–37]

limsup
n→∞

L̃d (n)

n(d−2)/d
≤ α̂d

is 4 when d = 2. Yukich [38, 39] proved that the corresponding average-case constant
β̂d exists as well, but the value of β̂2 is open.

For Kn , the complete graph on n vertices with independent Uniform [0, 1] random
edge-lengths, consider the MST with sum of lengths L(n). Frieze [40–42] demonstrated
that

lim
n→∞ L(n) = ζ (3) = 1.2020569031 . . . in probability

where ζ (3) is Apéry’s constant [1.6], a beautiful result! Janson [43] showed that√
n(L(n) − ζ (3)) is asymptotically Normal (0, σ 2) with

σ 2 = π4

45
− 2

∞∑
i=0

∞∑
j=1

∞∑
k=1

(i + k − 1)!kk(i + j)i−2 j

i!k!(i + j + k)i+k+2
= 1.6857 . . .

but no simplification of this constant seems possible. Another relevant occurrence of
ζ (3) is in [44].

8.5.3 Minimum Matching

Again, we consider n distinct points in the unit d-cube, with the additional assumption
that n is even. A matching is a (disconnected) graph consisting of n/2 edges such
that each of the n points is met by exactly one edge. A minimum matching (MM)
is a matching of smallest possible length Ld (n) (meaning the sum of edge-lengths in
the usual Euclidean sense). Define βd as before; the planar case β2 is often called
Papadimitriou’s constant [45, 46]. Numerical estimates [47–54] and theoretical re-
sults [11] include

β2 = 0.3104 . . . , β3 = 0.3172 . . . , βd ∼ 1

2

√
d

2πe
as d → ∞.

The corresponding worst-case constant α2 satisfies 0.537 ≤ α2 ≤ 0.707 [47].
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For Kn , the complete graph on n vertices with independent Uniform [0, 1] random
edge-lengths, consider the MM with sum of lengths L(n). Mézard & Parisi [55–57]
identified β = π2/12 = 0.8224670334 . . . via the replica method (plus an integral
equation simpler than that for f (x) earlier), and Aldous [58] found a rigorous proof.
Experimental verification appears in [53, 54]. As before, this is just one scenario (cor-
responding to d = 1) of a d-parametrized family of random link approximations to the
d-dimensional Euclidean MM problem.
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8.6 Steiner Tree Constants

Let P denote a set of n points in d-dimensional space. Define

• the Steiner minimal tree (SMT) of P to be the shortest connected graph [5.6] that
connects P , and

• the minimum spanning tree (MST) of P to be the shortest connected graph with
vertex-set P that connects P.

Let Pn denote the n vertices of a regular planar polygon with n sides. Figures 8.4 and 8.5
show that, for MSTs, only inter-vertex line segments are permitted, whereas for SMTs,

Figure 8.4. The SMT and MST of P3.
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Figure 8.5. The SMT and MST of P4.

additional vertices can be added to optimize the tree (hence the latter are more difficult
to compute, because infinitely many vertex locations are available). If |G| denotes the
total edge length of a graph G, then clearly

| SMT(P3)|
| MST(P3)| =

√
3

2
= 0.866 . . . ,

| SMT(P4)|
| MST(P4)| = 1 + √

3

3
= 0.910 . . . .

Incidently, SMT(P5) similarly consists of three additional vertices (called Torricelli or
Steiner points), each the intersection of three edges meeting at 120◦, but SMT(Pn) =
MST(Pn) for n ≥ 6. This can be confirmed by soap-film experiments as with minimum
area solutions of Plateau’s problem [1].

For an arbitrary set P , it is relatively easy to determine MST(P); therefore we are
interested in the value

ρd = inf
n, P

| SMT(P)|
| MST(P)| ,

the infimum being over all n-point sets in d-dimensional space, over all positive in-
tegers n. The Steiner ratio ρd indicates how much the total length of an MST can
be decreased by allowing Steiner points. Point sets achieving this infimum may be
regarded as “possessing the most shortcuts” [2–5].

Du & Hwang [6] proved Gilbert & Pollak’s [7] conjecture that

ρ2 =
√

3

2
= 0.8660254037 . . . ,

and Smith & Smith [8, 9] proved that

ρ3 ≤ s3 = 3
√

3 + √
7

10
= 0.7841903733 . . .

by use of a set P called the 3-sausage (whose points are evenly spaced along a circular
helix; see [10–13]). They provided extensive heuristic evidence that ρ3 = s3, but a
rigorous proof is not known. The best lower bound for ρ3, in fact, for any ρd , is [14, 15]

ρd ≥ 2 + x − √
x2 + x + 1√
3

= 0.6158277481 . . . ,
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where x is the unique positive root of

128x6 + 456x5 + 783x4 + 764x3 + 408x2 + 108x − 28 = 0.

Let us discuss upper bounds in more detail. Define the d-simplex to be the natural
generalization of the equilateral triangle for d = 2 and the regular tetrahedron for
d = 3. Chung & Gilbert [16] computed bounds for the Steiner ratio rd in this case and
showed that

limsup
d→∞

rd ≤
√

3

4 − √
2

= 0.6698352124 . . . .

Smith [15, 17] conjectured that limit supremum can be replaced here by limit and that
this inequality is in fact equality. It is known that rd > ρd if d ≥ 3 and, for example,

r3 = 1 + √
6

3
√

2
= 0.813053 . . . , r4 =

√
3 + √

5 + 2
√

6

8
√

2
= 0.783748 . . . .

The Steiner ratios sd corresponding to analogous higher-dimensional d-sausages
are also known to satisfy sd < rd for d ≥ 3. sd is strictly decreasing as a function of d.
We do not, however, know the numerical value of limd→∞ sd nor whether ρd = sd for
any d ≥ 3. Du & Smith [15] thought that equality might possibly be true for small d but
not for large d ≥ 15. For example, s4 = 0.7439856178 . . . has the minimal polynomial
[18]

900s8 − 1863s6 + 2950s4 − 1511s2 + 164,

and similar progress on evaluating s5 = 0.7218106748 . . . is perhaps not faraway.
Here is a different viewpoint (similar to our discussion of MSTs in [8.5]). If the n

points of P are all constrained to fall within the unit square, then there exist constants
c and C for which

0.930
√

n + c < ( 3
4 )

1
4
√

n + c ≤ | SMT(P)| < 0.995
√

n + C

for all n, as found by Chung & Graham [19–21]. If the points are instead constrained
to fall within the unit d-cube, then

| SMT(P)| ≤
√

d

2πe
n1− 1

d

as n → ∞, where d is sufficiently large [2, 22]. Improvements of both asymptotic
results would be good to see.
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8.7 Hermite’s Constants

What is the densest (lattice or non-lattice) packing of equal, non-overlapping spheres
in n-dimensional space [1, 2]? For n = 1, this corresponds to tiling the line with seg-
ments of equal length; hence the maximum density �n clearly satisfies �1 = 1. For
n = 2, the hexagonal lattice packing of circles in the plane gives �2 = π/

√
12 =

0.9068996821 . . . , which was first proved by Thue [3, 4]. Subsequent proofs were
found by Fejes Tóth [5, 6] and Segre & Mahler [7]. For n = 3, the face-centered cubic
packing of spheres in 3-space gives �3 = π/

√
18 = 0.7404804896 . . . . This was a

well-known conjecture, attributed to Kepler, until it was first proved by Hales [8–10].
What can be said about �n for n ≥ 4? Can non-lattice packings in 4-space improve
upon lattice packings?

If we restrict attention to only lattice packings, then the maximum density δn is
known for all n ≤ 8. Let ωn = πn/2�(n/2 + 1)−1 be the volume of the unit sphere in
n-dimensional space and let

γn = 4

(
δn

ωn

) 2
n
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Table 8.4. Hermite’s Constants δn and γ n
n

n δn γ n
n

1 1 1
2 π

2
√

3
= 0.9068996821 . . . 4

3

3 π

3
√

2
= 0.7404804896 . . . 2

4 π2

16 = 0.6168502750 . . . 4

5 π2

15
√

2
= 0.4652576133 . . . 8

6 π3

48
√

3
= 0.3729475455 . . . 64

3

7 π3

105 = 0.2952978731 . . . 64

8 π4

384 = 0.2536695079 . . . 256

denote Hermite’s constant of order n. Table 8.4 summarizes what is known for small
n [3, 11, 12]. Also, for sufficiently large n, it can be proved that

−1 ≤ log2(δn)

n
≤ log2(�n)

n
≤ −0.59905 . . . ,

1

2πe
≤ γn

n
≤ 1.74338 . . .

2πe
.

The expressions for the bounds c = −0.59905 . . . and 41+c = 1.74338 . . . are compli-

cated and are due to Kabatyanskii & Levenshtein [1, 13, 14]. It is believed that c = −1
[15], which would imply that γn/n → 1/(2πe) as n → ∞, but we do not even know
whether the limit exists [11]. Need γ n

n be rational for all n? The Hermite constants γn

are important as well in the study of quadratic forms and in coding theory.
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8.8 Tammes’ Constants

Let S = {(u, v, w) : u2 + v2 + w2 = 1} denote the unit sphere in three-dimensional
space and |p − q| denote Euclidean distance between two points p and q. Let N ≥ 2
be an integer and α be a real number. The α-energy associated with a finite subset
ωN = {x1, x2, . . . , xN } of points on S is

ε(α, ωN ) =




∑
i< j

|xi − x j |α if α 	= 0,

∑
i< j

ln

(
1

|xi − x j |
)

if α = 0.

Define the extremal energy for N points on S by

E(α, N ) =



min
ωN ⊆S

ε(α, ωN ) if α ≤ 0,

max
ωN ⊆S

ε(α, ωN ) if α > 0.

There is tremendous interest in the value of E(α, N ) and a representative configura-
tion of points ωN at which the minimum or maximum energy occurs. The applications
include coding theory, electrostatics, crystallography, botany, geometry, and computa-
tional complexity. We will mention only a few results here.

Maximizing 1-energy is the same as maximizing the average distance between all
pairs of points [1–5]. One can prove that

lim
N→∞

1

N 2
E(1, N ) = 2

3
,

and it is known that

lim
N→∞

E(1, N ) − 2
3 N 2

N 1/2
= λ,

where we have rigorous bounds−2.5066282746 . . . = −√
2π ≤ λ < 0 and an estimate

λ = −0.40096 . . . [6, 7].
Determining E(−1, N ) corresponds to locating identical point electrical charges

on the sphere so that they are in equilibrium (assuming the particles repel each other
according to the Coulomb potential). This is known as Thomson’s electron problem
and the optimizing point configurations are called Fekete points [8–13]. One can prove
that

lim
N→∞

1

N 2
E(−1, N ) = 1

2
,
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and, building upon the work of Wagner [14, 15], Kuijlaars & Saff [16, 17] conjectured
that

lim
N→∞

E(−1, N ) − 1
2 N 2

N 3/2
=

√
3

(√
3

8π

)1/2

ζ

(
1

2

) (
ζ

(
1

2
,

1

3

)
− ζ

(
1

2
,

2

3

))

= −0.5530512933 . . . ,

where ζ (s) is the usual Riemann zeta function and

ζ (s, a) =
∞∑

k=0
k+a 	=0

1

(k + a)s

is the Hurwitz zeta function (with analytic continuation). There is considerable theo-
retical and empirical evidence that this conjecture is true.

Minimizing 0-energy is equivalent to maximizing the product of distances∏
i< j |xi − x j |, and it is known that

lim
N→∞

E(0, N ) − (− 1
4 ln( 4

e )N 2 − 1
4 N ln(N )

)
N

= µ,

where we have rigorous bounds −0.1127687700 . . . ≤ µ ≤ −0.0234972918 . . . and
an estimate µ = −0.026422 . . . [6, 7, 18, 19].

As α → −∞, the α-energy is increasingly dominated by the term involving the
smallest of the distances, that is,

lim
α→−∞ ε(α, ωN )

1
α = min

i< j
|xi − x j |.

Therefore, the minimal energy problem reduces to calculating

dN = max
ωN

min
i< j

|xi − x j |,

which is the answer to Tammes’ 1930 question about pollen grains [8, 21–28]. Equiv-
alently, what is the largest diameter of N congruent circles that can be packed on S
(without overlap)? It is known that

dN =
(

8π√
3

) 1
2

N− 1
2 + O

(
N− 2

3

)

as N → ∞. A more precise estimate of the error term evidently has not been made.
Bounds were determined by Fejes Tóth [26, 29, 30] and van der Waerden [26, 31]:

2

[√
3

2π
N + 3

(
N

4π

) 2
3

+ 3

(
N

4π

) 1
3

]− 1
2

≤ dN ≤
[

4 − csc

(
π

6

N

N − 2

)2
] 1

2

.

Related questions ask for the smallest diameter of N congruent circles that can cover
S [32] and for N -point charge configurations on the unit disk that achieve equilibrium
[33].
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8.9 Hyperbolic Volume Constants

We first describe a certain enumeration problem. Let n be a positive integer. An n-
simplex is the convex hull of n + 1 points in n-dimensional Euclidean space, which
are assumed to be in general position. For example, a 1-simplex is a line segment, a
2-simplex is a triangle (with its interior), and a 3-simplex is a tetrahedron (with its
interior).

An n-cube is triangulated (or, more precisely, face-to-face vertex triangulated)
if it is partitioned into finitely many n-simplices with disjoint interiors, subject to the
constraints that

• the vertices of any n-simplex are also vertices of the cube, and
• the intersection of any two n-simplices is a face of each of them.

Define the simplexity f (n) of the n-cube to be the minimum number of n-simplices
required to triangulate it (see Figure 8.6). An enormous amount of computation leads
to the values of f (n) listed in Table 8.5 and bounds for f (n) listed in Table 8.6 [1–7].
An unsolved problem is to determine a tight lower bound for f (n), valid for all n. We
will describe an attempt to do this shortly.

The standard n-simplex Sn is the regular n-simplex inscribed in the unit n-sphere
(e.g., S2 is the equilateral triangle of area 3

√
3/4). The standard n-cube Cn is the

n-cube of side 2/
√

n, centered at the origin. Clearly

volume of Sn =
√

n + 1

n!

(
1 + 1

n

) n
2

, volume of Cn =
(

4

n

) n
2

.

Figure 8.6. Triangulation of the n-cube: f (2) = 2 and f (3) = 5.
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Table 8.5. Simplexity Values

n 1 2 3 4 5 6 7

f (n) 1 2 5 16 67 308 1493

The best-known attempt to minorize f (n) involves the integrals

ξn = volume of ideal hyperbolic n-cube =
∫
Cn

(
1 −

n∑
k=1

x2
k

)− n+1
2

dx1 dx2 . . . dxn,

ηn = volume of regular ideal hyperbolic n-simplex

=
∫
Sn

(
1 −

n∑
k=1

x2
k

)− n+1
2

dx1 dx2 . . . dxn.

More precisely,

f (n) ≥ ξn

ηn
≥ 1

2
6

n
2 (n + 1)−

n+1
2 n!,

as shown by Smith [8] and, independently, Marshall. There is considerable room for
improvement – the gap between f (n) and its bounds is huge – but the occurrence of
the constants ξn and ηn is interesting to us.

It can be demonstrated that η2 = π , η3 = π ln(β) = 1.0149416064 . . . , where β is
defined in [3.10], and [9–11]

η4 = 10π

3
arcsin

(
1

3

)
− π2

3
= 0.2688956601 . . . , η5 = 0.05756 . . . .

Also, ξ2 = 2π , ξ3 = 5η3 = 5.0747080320 . . . , ξ4 = 3.92259368 . . . , and ξ5 =
2.75861972 . . . [11, 12]. Asymptotically, we have [8, 9, 12]

ηn ∼ e

√
n

n!
, ξn ∼ 2

√
π

cn

�
(

n+1
2

)
as n → ∞, where e is the natural logarithmic base [1.3] and c = 1.0820884492 . . . is
twice the maximum of Dawson’s integral [13, 14]:

D(x) = exp(−x2)

x∫
0

exp(t2) dt,
c

2
= 0.5410442246 . . . = 1.2615225101 . . .√

2e
,

which occurs uniquely when x = 0.9241388730 . . . = 1/c.

Table 8.6. Bounds for Simplexity f (n)

n 8 9 10

Lower Bound 5522 26593 131269
Upper Bound 13136 105341 928780
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In spite of this detailed asymptotic information, it remains open whether f (n) ≥
γ nn! for some constant γ > 0 [15].
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8.10 Reuleaux Triangle Constants

Of all planar sets of constant width 1, the Reuleaux triangle (see Figure 8.7) possesses
the least area [1–11] and is the most asymmetric [12–15]. Let us examine certain key
phrases in the statement of this theorem more carefully, so that we may introduce several
related constants.

A compact convex set C ⊆ R
2 is of constant width w if all orthogonal projections

of C onto lines have the same length w. More generally, for C ⊆ R
d , d > 2, the required

condition becomes that every pair of parallel supporting (d − 1)-dimensional planes
are at the same distance w apart. (The word breadth was used in [8.4.1] for reasons of
convention.) For simplicity, set w = 1. The first part of the theorem is that the area,
µ(C), of C ⊆ R

2 satisfies

µ(C) ≥ π − √
3

2
= 0.7047709230 . . . .

It is believed that the volume, µ(C), of C ⊆ R
3 satisfies

µ(C) ≥
(

2

3
−

√
3

4
arccos

(
1

3

))
π = 0.4198600459 . . . ,
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Figure 8.7. The Reuleaux triangle (solid curves) consists of the vertices of an equilateral triangle
(dotted lines) together with three arcs of circles, each circle having a center at one of the vertices
and endpoints at the other two vertices.

which corresponds to Meisser’s tetrahedral analog of the Reuleaux triangle [1, 16]. The
best-known lower bound thus far is (3

√
6 − 7)π/3 = 0.3649161225 . . . ; hence there

is considerable room for improvement [8, 11].
Asymmetry is more difficult to define, primarily because there are competing notions

of it! We focus on just two measures of symmetry, called the Kovner–Besicovitch (inner)
and Estermann (outer) measures, respectively [14]:

σ (C) = µ(A)

µ(C)
, τ (C) = µ(C)

µ(B)
,

where A is the largest convex centrally symmetric subset of C and B is the smallest
convex centrally symmetric superset of C . The second part of the theorem is that, for
C ⊆ R

2 [8, 12],

σ (C) ≥ 6 arccos( 5+√
33

12 ) + √
3 − √

11

π − √
3

= 0.8403426028 . . .

= 1 − 0.1596573971 . . . ,

τ (C) ≥ π − √
3√

3
= 0.8137993642 = 1 − 0.1862006357 . . . .

The corresponding superset B is a regular hexagon circumscribed about the minimizing
Reuleaux triangle C ; the subset A is a circular hexagon obtained by reflecting C across
its center, calling this new subset C ′, and then forming C ∩ C ′. A higher-dimensional
analog of this bound is not known.

Here is one more result. What is the set C ⊆ R
2 of maximal constant width w that

avoids all vertices of the integer square lattice? The answer is a Reuleaux triangle,
oriented so that one axis of symmetry lies midway between two parallel lattice edges.
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Its width w = 1.5449417003 . . . has minimal polynomial [9]

4x6 − 12x5 + x4 + 22x3 − 14x2 − 4x + 4.

We mention that the Reuleaux triangle also appears in conjectures surrounding planar
convex translations [8.3.1], maximal planar rendezvous constants [8.21], and exact
values of the Bloch–Landau constants [7.1].
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8.11 Beam Detection Constant

A beam detector for the unit circle C is a set of points that intercepts all lines (i.e.,
beams) crossing C . Clearly C is itself a beam detector for C , although it is inefficient.
There exist shorter curves that meet the required condition [1, 2]. We need to explain
what we mean by curve before continuing.

A path is a continuous image of an interval in the plane, and an arc is a path with no
self-intersections. If this is the sense in which we interpret the word curve, then there is
a complete solution. Joris [3] and Faber, Mycielski & Pedersen [4, 5] proved that a bow-
shaped arc (see Figure 8.8) is the shortest path that meets all lines meeting the unit circle.

If we loosen the notion of curve then the length can be reduced substantially. An
n-arc is a union of n (possibly disconnected) arcs. Makai [6, 7] found the 2-arc of
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Figure 8.8. Bow-shaped arc of length π + 2 = 5.1415926535 . . . .

smallest known length, called a bow-and-arrow configuration by Thurston [1] (see
Figure 8.9). Faber & Mycielski [5] improved on this and found the 3-arc of smallest
known length (see Figure 8.10). These examples were rediscovered by Day [8]. For the
2-arc case, the solutions of the simultaneous equations

2 cos(θ1) − sin( θ2
2 ) = 0, tan( θ1

2 ) cos( θ2
2 ) + sin( θ2

2 )
(
sec( θ2

2 )2 + 1
) = 2, θ3 = θ1,

give the angles

θ1 = θ3 = 1.2865112676 . . . ≈ 73.71◦, θ2 = 1.1910478286 . . . ≈ 68.24◦,

yielding an upper bound on length for 2-arcs:

L2 ≤ 2π − 2θ1 − θ2 + 2 tan( θ1
2 ) + sec( θ2

2 ) − cos( θ2
2 ) + tan( θ1

2 ) sin( θ2
2 )

= 4.8189264563 . . . .

θ2

θ3θ1

Figure 8.9. The length of a 2-arc is 4.8189264563 . . . , where θ1 = 1.2865 . . . , θ2 = 1.1910 . . . ,
and θ3 = 1.2865 . . . ; the name “bow-and-arrow” is well justified.
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θ1

θ2
θ3

θ4

Figure 8.10. The length of a 3-arc is 4.799891547 . . . , where θ1 = 0.96 . . . , θ2 = 1.04 . . . ,
θ3 = 0.7 . . . , and θ4 = 1.2. . . .

Similar equations give rise to an upper bound on length for 3-arcs:

L3 ≤ 4.799891547 . . .

but nothing is known corresponding to 4-arcs or 5-arcs. Define the beam detection
constant to be

L = inf
n≥1

Ln ≥ π,

where the lower bound is due to Croft [9] and Thurston [1]. Some people presume that
the sequence {Ln} is strictly decreasing, but others believe that n-arcs, n ≥ 4, cannot
improve on 3-arcs.

One could equally well call L the trench diggers’ constant. Suppose a straight
cable of unknown direction is buried underground and all we know is that the ca-
ble passes within one unit of a given marker. There is a strategy for digging (highly
disconnected) trenches, guaranteed to locate the cable, of total length L + ε for any
ε > 0. Related strategies include escape trajectories for a hunter lost in a dense jungle
or a swimmer at sea in a thick fog, who know they are within one unit of a straight
boundary [5]. These are special cases of what is known as the “lost in a forest” problem
[3, 10–12].

A different generalization of path is possible. Instead of the continuous image of
an interval, consider any connected closed set in the plane. Instead of ordinary length,
consider one-dimensional Hausdorff measure. Eggleston [9, 13] determined that, even
for this extended class of curves, the optimal beam detector for C is the bow-shaped
arc of length π + 2. Curiously, if we replace the unit circle C by an equilateral triangle
or a square, the optimal known connected beam detector is tree-like, with several
branches, called the Steiner span of the vertices [8.6]. For the square, as for the circle,
we do better still if we discard connectivity [5, 14–19]. The conjectured optimal beam
detector for the unit square has two components (as shown in Figure 8.11) and length
(2 + √

3)/
√

2 = 2.6389584337 . . . = 4(0.6597396084 . . .).
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Figure 8.11. The length of the conjectured shortest opaque square fence is 2.6389584337 . . . .

Eppstein [1] pointed out an interesting connection with the design of algorithms for
computing a minimal opaque forest of a convex polygon [20–22]. Other variations of
beam detection appear in [23–25].

Zalgaller [26] reformulated the first problem as follows: What is the shortest con-
nected curve in the plane outside an open unit disk such that, moving along this curve,
we can see all points of the unit circle C? He then examined the three-dimensional ana-
log: What is the shortest connected curve in 3-space outside an open unit ball such that,
moving along this curve, we can see all the points of the unit sphere S? By a nonrigorous
argument, Zalgaller obtained an inspection trajectory of length 9.576778 . . . .
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8.12 Moving Sofa Constant

What is the longest ladder L that can be moved around a right-angled corner in a hallway
of unit width? We assume that the ladder is straight and rigid, and that it must remain
entirely within the hallway as it is passed through the turn. (All discussion throughout
this essay will be constrained to the two-dimensional setting; see Figure 8.12.) The
answer to the question is easy: L has the same length as the shortest line segment ab
intersecting the point c, which is clearly 2

√
2 [1].

b

a

c

Figure 8.12. This is the optimal ladder passing around the hallway corner.
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p

q

c

Figure 8.13. This is the optimal wire passing around the hallway corner.

Here is another question: If W is a connected, rigid piece of wire that can be moved
around the corner, how large can the diameter of W be? The diameter of any con-
tinuously differentiable curve is defined to be the maximum of all distances |x − y|
between points x and y on the curve. If W is not at all bent, then this reduces to the
ladder problem. The largest diameter turns out to be 2(1 + √

2) (see Figure 8.13). The
best curve W is the unique quarter-circle pq intersecting the point c [2].

Here is a more difficult problem: What is the greatest possible area for a sofa S that
can be moved around the corner [3–5]? We assume only that S is a connected region
of the plane. Hammersley [6] showed that the largest area is at least π/2 + 2/π =
2.2074 . . . (see Figure 8.14) but, contrary to intuition, his region is not optimal.

Gerver (and, independently, Logan) constructed a certain sofa, with complicated
boundaries, that possesses a larger area than any other so far examined [7, 8]. (See

Figure 8.14. Hammersley’s sofa consists of two quarter-circles on either side of a 1 × 4/π

rectangle from which a semicircle of radius 2/π has been removed.
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Figure 8.15. The boundary of Gerver’s conjectured optimal sofa has eighteen separate pieces.

Figure 8.15.) Further, his sofa is provably optimal within the class � of all sofas S that

• rotate 90◦ as S moves around the corner, and
• touch the wall first at two points as S starts to rotate, then at four points, then at three

points (when S has rotated 45◦), then at four points again, and then at two points
again as S finishes rotating.

It would be very surprising if a larger sofa could be found, because it could not be
in �.

What is the area of Gerver’s sofa? To answer this question, first compute constants
A, B, ϕ, and θ via the simultaneous set of four equations

A (cos(θ ) − cos(ϕ)) − 2B sin(ϕ) + (θ − ϕ − 1) cos(θ ) − sin(θ )

+ cos(ϕ) + sin(ϕ) = 0,

A (3 sin(θ ) + sin(ϕ)) − 2B cos(ϕ) + 3 (θ − ϕ − 1) sin(θ ) + 3 cos(θ )

− sin(ϕ) + cos(ϕ) = 0,

A cos(ϕ) −
(

sin(ϕ) + 1

2
− 1

2
cos(ϕ) + B sin(ϕ)

)
= 0,

(
A + π

2
− ϕ − θ

)
−

(
B − 1

2
(θ − ϕ)(1 + A) − 1

4
(θ − ϕ)2

)
= 0,

obtaining A = 0.0944265608 . . . , B = 1.3992037273 . . . , ϕ = 0.0391773647 . . . ,
and θ = 0.6813015093. . . . Next, let

r (α) =




1
2 if 0 ≤ α < ϕ,

1
2 (1 + A + α − ϕ) if ϕ ≤ α < θ,

A + α − ϕ if θ ≤ α < π
2 − θ,

B − 1
2 (π

2 − α − ϕ)(1 + A) − 1
4 (π

2 − α − ϕ)2 if π
2 − θ ≤ α < π

2 − ϕ,

s(α) = 1 − r (α),

u(α) =
{

B − 1
2 (α − ϕ)(1 + A) − 1

4 (α − ϕ)2 if ϕ ≤ α < θ,

A + π
2 − ϕ − α if θ ≤ α < π

4 ,
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and let u′ denote the derivative of u. Define three functions y1, y2, y3 by

y1(α) = 1 −
α∫
0

r (t) sin(t) dt, y2(α) = 1 −
α∫
0

s(t) sin(t) dt,

y3(α) = y2(α) − u(α) sin(α).

Then the area of the optimal sofa is 2.2195316688 . . . , that is,

2

π
2 −ϕ∫

0

y1(α)r (α) cos(α) dα + 2

θ∫
0

y2(α)s(α) cos(α) dα

+ 2

π
4∫
ϕ

y3(α)
(
u(α) sin(α) − u′(α) cos(α) − s(α) cos(α)

)
dα.

The three integrals represent, respectively, the area under the convex part of the outer
boundary, the area over the convex part of the inside boundary, and the area over the
concave part of the inside boundary (where the corner of the hallway scrapes against
the sofa).

Sommers [9] examined the problem with the additional condition that S is convex,
and he numerically determined the optimal area to be ≥ 1.644703. . . . Much more is
known if S is rectangular, even if the hallway corner is not right-angled and the two
corridors are of different widths [10].

This subject is related to motion planning in robotics, specifically, what is known as
the piano mover’s problem [11]. Given an open subset U in n-dimensional space and
two compact subsets C0 and C1 of U , where C1 is derived from C0 by a continuous
motion, is it possible to move C0 to C1 while remaining entirely inside U [12–15]?

[1] G. P. Vennebush, Move that sofa!, Math. Teacher, v. 95 (2002) n. 2, 92–97.
[2] P. E. Manne and S. R. Finch, A solution to the bent wire problem, Amer. Math. Monthly

109 (2002) 750–752.
[3] L. Moser, Moving furniture through a hallway, Problem 66–11, SIAM Rev. 8 (1966) 381–

382.
[4] N. R. Wagner, The sofa problem, Amer. Math. Monthly 83 (1976) 188–189; MR 53

#1422.
[5] H. T. Croft, K. J. Falconer, and R. K. Guy, Unsolved Problems in Geometry, Springer-

Verlag, 1991, sect. G5; MR 95k:5200.
[6] J. M. Hammersley, On the emfeeblement of mathematical skills by “Modern Mathematics”

and by similar soft intellectual trash in schools and universities, Bull. Inst. Math. Appl. 4
(1968) 66–85.

[7] J. L. Gerver, On moving a sofa around a corner, Geom. Dedicata 42 (1992) 267–283; MR
93d:51040.

[8] I. Stewart, Another Fine Math You’ve Got Me Into . . . , W. H. Freeman, 1992, pp. 255–269;
MR 93i:00003.

[9] J. A. Sommers, The convex sofa problem, unpublished note (2001).
[10] G. Eriksson, H. Eriksson, and K. Eriksson, Moving a food trolley around a corner, Theoret.

Comput. Sci. 191 (1998) 193–203; MR 98k:68164.
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[11] J. H. Davenport, A “piano movers” problem, SIGSAM Bull., v. 20 (1986) n. 1,
15–17.

[12] B. Buchberger, G. E. Collins, and B. Kutzler, Algebraic methods in geometry, Annual
Review of Computer Science, v. 3, ed. J. F. Traub, B. J. Grosz, B. W. Lampson, and N. J.
Nilsson, Annual Reviews Inc., 1988, pp. 85–119; MR 91g:68156.

[13] D. Leven and M. Sharir, An efficient and simple motion planning algorithm for a ladder
moving in two-dimensional space amidst polygonal barriers, J. Algorithms 8 (1987) 192–
215; MR 88h:68035.

[14] E. B. Feinberg and C. H. Papadimitriou, Finding feasible points for a two-point body, J.
Algorithms 10 (1989) 109–119; MR 90b:68099.

[15] M.-F. Roy, Géométrie algébrique réelle et robotique: La complexité du déménagement des
pianos, Gazette Math. (Paris) 51 (1992) 75–96; MR 93f:93090.

8.13 Calabi’s Triangle Constant

Let T denote an equilateral triangle. There are clearly three congruent largest squares
that can be wedged within T (see Figure 8.16). Do there exist non-equilateral triangles
with this property? One would at first expect the answer to be no; for example, a right
triangle U always has a unique largest square wedged within U , namely, the square
with sides aligned with the perpendicular legs of U .

Calabi examined the question and found an answer defying expectation [1, 2]: A non-
equilateral triangle with three congruent largest squares does exist and is unique (see
Figure 8.17). It is an isosceles triangle and, if AB is the triangular base and AC = BC ,
then the ratio

AB

AC
= 2 cos(α) = 1.5513875245 . . .

is algebraic with minimal polynomial 2x3 − 2x2 − 3x + 2. Also, the angle α at vertex
A is given by

α = 0.6829826991 . . . ∼ 39.13◦.

Figure 8.16. An equilateral triangle with three distinct inscribed squares of maximal size.
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Figure 8.17. A non-equilateral triangle with three distinct inscribed squares of maximal size.

Further related research was conducted by Wetzel [3, 4]. Here is an unresolved issue:
What is the three-dimensional tetrahedral analog of this result?

[1] J. H. Conway and R. K. Guy, The Book of Numbers, Springer-Verlag, 1996, p. 206; MR
98g:00004.

[2] E. Calabi, Outline of proof regarding squares wedged in triangle, unpublished note (1997).
[3] J. E. Wetzel, Squares in triangles, Math. Gazette 86 (2002) 28–34.
[4] J. E. Wetzel, Rectangles in triangles, submitted (2001).

8.14 DeVicci’s Tesseract Constant

How large a square can be inscribed within a unit cube? This is known as Prince
Rupert’s problem. More generally, how large an m-dimensional cube can be inscribed
within a unit n-dimensional cube, where m < n?

Let f (m, n) be the edge-length of the optimal m-cube. Clearly f (1, n) = √
n for

all n. Figure 8.18 suggests that

f (2, 3) = 3

4

√
2 = 1.0606601717 . . . ,

and this result has been known for a long time to be true [1–4].
DeVicci [5] proved that

f (m, n) =
√

n

m
if m divides n, f (2, n) =




√
n

2
if n is even,√

4n − 3

8
if n is odd.

An elaborate argument gives that [5]

f (3, 4) = 1.0074347569 . . . ,

which has minimal polynomial 4x8 − 28x6 − 7x4 + 16x2 + 16. In fact, f (3, 4) is solv-
able in radicals. Since the name tesseract is often used [7] to refer to the 4-cube, we call
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Figure 8.18. The 3-cube with corners at (±1/2, ±1/2, ±1/2), along with the largest inscribed
square.

f (3, 4) DeVicci’s tesseract constant. According to Gardner [8, 9], the list of people
who numerically anticipated this result includes Baer, Bosch, and de Josselin de Jong.

Huber [10] determined more exact evaluations of f (m, n), for example,

f (3, 5) =
√

11 − 4
√

6 = 1.0963763171 . . . .

It is known that f (m, n) is always an algebraic number [6]. Might the degree of the
corresponding minimal polynomial follow some recognizable function of m and n?

The same problem for maximal rectangles with fixed aspect ratio (instead of squares)
in cubes has been comparatively neglected until recently [11].

[1] H. T. Croft, K. J. Falconer, and R. K. Guy, Unsolved Problems in Geometry, Springer-
Verlag, 1991, sect. B4; MR 95k:52001.

[2] D. J. E. Schrek, Prince Rupert’s problem and its extension by Pieter Nieuwland, Scripta
Math. 16 (1950) 73–80, 261–267.

[3] D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin, 1986,
p. 33.

[4] J. G. Mauldon and R. J. Chapman, A variant of Prince Rupert’s problem, Amer. Math.
Monthly 102 (1995) 465–467.

[5] K. R. DeVicci, Largest m-cube in an n-cube, unpublished manuscript (1996).
[6] R. K. Guy and R. J. Nowakowski, Monthly unsolved problems, 1969-1997, Amer. Math.

Monthly 104 (1997) 967–968.
[7] M. L’Engle, A Wrinkle in Time, Dell, 1962.
[8] M. Gardner, Hypercubes, Sci. Amer., v. 215 (1966) n. 5, 138–145 and v. 215 (1966) n. 6,

131–132.
[9] M. Gardner, The Colossal Book of Mathematics, W. W. Norton, 2001, pp. 162–174.

[10] G. Huber, Cubing the square: A progress report on the Rupert problems, unpublished note
(1999).

[11] R. P. Jerrard and J. E. Wetzel, Prince Rupert’s rectangles, submitted (2002).
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8.15 Graham’s Hexagon Constant

Let P denote an n-sided convex polygon in the plane. Assume that P is of unit diameter,
equivalently, that the maximum distance between any two vertices of P is 1. What is
the largest possible area, Fn , enclosed by P?

Clearly F3 = √
3/4 = 0.4330127018 . . . and this is achieved uniquely by the equi-

lateral triangle with unit sides. More generally, we have upper and lower bounds

n

8
sin

(
2π

n

)
≤ Fn ≤ n

2
cos

(π

n

)
tan

( π

2n

)

valid for all n. Reinhardt [1] proved that the right-hand inequality becomes equality
for all odd n, and that this is achieved uniquely by the regular n-gon of unit diameter.
One would naively expect the left-hand inequality to become equality for even n, with
a similar uniqueness result.

If n = 4, the left-hand inequality becomes equality. In all other respects, the situation
for even n is unexpected. F4 = 1/2 is achieved not only by the unit square, but by
an infinite family of quadrilaterals of unit diameter. So uniqueness fails for n = 4.
Interestingly, uniqueness holds for n = 6. It is not known whether uniqueness also
holds for n = 8, 10, 12, . . . .

Let us focus on the case n = 6. The regular hexagon of unit diameter has area

n

8
sin

(
2π

n

)∣∣∣∣
n=6

= 3
√

3

8
= 0.6495190528 . . . .

Graham [2–5] proved the surprising result that this is not optimal. He constructed a
hexagon of unit diameter that has area F6 = 0.6749814429 . . . , an algebraic number
with minimal polynomial

4096x10 + 8192x9 − 3008x8 − 30848x7 + 21056x6 + 146496x5

− 221360x4 + 1232x3 + 144464x2 − 78488x + 11993

(see Figure 8.19).
What can be said about the maximum area for a unit-diameter octagon (n = 8)?

Briggs, Prieto, Vanderbei, Wright, Gay, and others obtained F8 = 0.726868 . . . via
numerical global optimization techniques. More recently, Audet et al. [6] proved a con-
jecture of Graham’s on the shape of the optimal octagon via a quadratic programming
scheme; the corresponding minimal polynomial still remains an open question.

No exact results are known for the decagon (n = 10) or the dodecagon (n = 12),
but numerical estimates are F10 = 0.749137 . . . and F12 = 0.760729 . . . , respectively.
Perimeters can be maximized rather than areas [7]. Not much is known about higher
dimensions: We know the largest volumes of d-dimensional convex polyhedra with
d + 2 vertices [8], but cases involving > d + 2 vertices evidently remain unsolved.

[1] K. Reinhardt, Extremale Polygone gegebenen Durchmessers, Jahresbericht Deutsch. Math.-
Verein. 31 (1922) 251–270.

[2] R. L. Graham, The largest small hexagon, J. Combin. Theory Ser. A 18 (1975) 165–170;
MR 50 #12803.
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Figure 8.19. Graham’s hexagon is the optimal hexagon (meaning it has maximum area) of unit
diameter.

[3] J. H. Conway and R. K. Guy, The Book of Numbers, Springer-Verlag, 1996, pp. 206–207;
MR 98g:00004.

[4] R. K. Guy and J. L. Selfridge, Optimal coverings of the square, Infinite and Finite Sets,
Proc. 1973 Keszthely conf., ed. A. Hajnal, R. Rado, and V. T. Sós, Colloq. Math. Soc. János
Bolyai 10, North-Holland, 1975, pp. 745–799; MR 51 #13873.

[5] H. T. Croft, K. J. Falconer, and R. K. Guy, Unsolved Problems in Geometry, Springer-Verlag,
1991, sect. B6; MR 95k:52001.

[6] C. Audet, P. Hansen, F. Messine, and J. Xiong, The largest small octagon, J. Combin. Theory
Ser. A 98 (2002) 46–59.

[7] N. K. Tamvakis, On the perimeter and the area of the convex polygons of a given diameter,
Bull. Soc. Math. Grèce 28 A (1987) 115–132; MR 89g:52008.

[8] B. Kind and P. Kleinschmidt, On the maximal volume of convex bodies with few vertices,
J. Combin. Theory Ser. A 21 (1976) 124–128; MR 53 #11500.

8.16 Heilbronn Triangle Constants

The nth Heilbronn triangle constant is the infimum of all numbers Hn for which the
following holds [1]: Given any arrangement of n points in the unit square, the smallest
triangle formed by any three of the points has area ≤ Hn .

Goldberg [2] considered the exact values of the first several Heilbronn con-
stants, including H3 = H4 = 1/2 = 0.5 and made several conjectures. Yang, Zhang
& Zeng [3, 4] disproved one of the conjectures by showing that H5 = √

3/9 =
0.1924500897 . . . but confirmed Goldberg’s assertion that H6 = 1/8 = 0.125. See
Figures 8.20 and 8.21. It is also known that H7 ≥ 0.0838590090 . . . , where the lower
bound has minimal polynomial 152x3 + 12x2 − 14x + 1 = 0, and [5]

H8 ≥
√

13 − 1

36
= 0.0723764243 . . . , H9 ≥ 9

√
65 − 55

320
= 0.0548759991. . . .
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Figure 8.20. The best arrangement of points corresponding to n = 5.

Comellas & Yebra [5] expressed confidence that these bounds very likely are optimal,
but acknowledged that there is (as yet) no proof of this.

What can be said about the asymptotics of Hn? Heilbronn conjectured in 1950 that
Hn = O(n−2) as n → ∞. Roth, Schmidt, and others made progress toward proving
this by showing that [6, 7]

Hn = O(n− 8
7 +ε)

for all sufficiently large n, for any ε > 0. Komlós, Pintz & Szemerédi, however, dis-
proved Heilbronn’s conjecture by demonstrating that there exists a constant c > 0 for
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Figure 8.21. The best arrangement of points corresponding to n = 6.
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which [8]

c ln(n)

n2
≤ Hn

for large enough n. Their proof was highly nonconstructive. A recent alternative proof
of the lower bound [9] gives a polynomial-time algorithm for finding a configuration
of n points where all triangles have area ≥ c ln(n)/n2, for each n. With regard to the
upper bound, can the exponent 8/7 be replaced by 2? This is a difficult question and
no one expects a complete answer soon.

Jiang, Li & Vitányi [10, 11] analyzed the average-case scenario (rather than the
worst-case one), given n uniformly distributed points in the unit square, and found that
the smallest triangle has expected area between a n−3 and b n−3 for some constants 0 <

a < b. A study of a higher dimensional analog of Heilbronn’s problem was undertaken
in [12, 13].

If we replace the unit square in the definition of Hn by an equilateral triangle of unit
area, then H̃ 3 = 1, H̃ 4 = 1/3, H̃ 5 = 3 − 2

√
2, and H̃ 6 = 1/8 [14]. In fact, we need

not specify that the domain be equilateral, since H̃ n is independent of the shape of
the unit triangle under consideration [6]. Moreover, the asymptotics discussed earlier
actually apply (within a constant factor) to the general case of n points sitting in a
compact convex domain in the plane.

Here is a vaguely related problem. Suppose the unit square is partitioned into m
connected sets. Let d be the maximum of the diameters of the m sets. What is the
minimum possible value of d [15–19]? For example, if m = 3, then d = √

65/8 =
1.0077822185. . . .

Another problem is reminiscent of Dirichlet–Voronoi cells and other geometric
close-proximity questions. How should k points be arranged inside a unit square to
minimize the average distance in the square to the nearest of the k points [20–26]? As
k → ∞, the k points approach the vertices of a regular hexagonal lattice. There are
many variations. We mention finally that the problem of packing l disks in a unit square
is the same as determining the greatest possible minimum distance between l points in
the square [8.2].

[1] R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer-Verlag, 1994, sect. F4;
MR 96e:11002.

[2] M. Goldberg, Maximizing the smallest triangle made by N points in a square, Math. Mag.
45 (1972) 135–144; MR 45 #5875.

[3] L. Yang, J. Z. Zhang, and Z. B. Zeng, Heilbronn problem for five points, Int. Centre Theoret.
Physics preprint IC/91/252 (1991).

[4] L. Yang, J. Z. Zhang, and Z. B. Zeng, A conjecture on the first several Heilbronn numbers
and a computation (in Chinese), Chinese Annals Math. Ser. A 13 (1992) 503–515; MR
93i:51045.

[5] F. Comellas and J. L. A. Yebra, New lower bounds for Heilbronn numbers, Elec. J. Combin.
9 (2002) R6.

[6] K. F. Roth, Developments in Heilbronn’s triangle problem, Adv. Math. 22 (1976) 364–385;
MR 55 #2771.

[7] J. Komlós, J. Pintz, and E. Szemerédi, On Heilbronn’s triangle problem, J. London Math.
Soc. 24 (1981) 385–396; MR 82m:10051.
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8.17 Kakeya–Besicovitch Constants

A region R in the plane is a Kakeya region if, inside R, a line segment of unit length
can be reversed, that is, maneuvered continuously and without leaving R to reach its
original position but rotated through 180◦. Kakeya [1] asked what the least possible
area of such a region R might be.

Let

K = inf
R Kakeya

area(R),
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where the infimum extends over all Kakeya regions. Besicovitch [2, 3] proved the
astonishing result that K = 0, which is to say that unit line segments can be reversed
within regions of arbitrarily small area. His proof used highly multiply connected
regions (i.e., with many holes) that are unbounded (i.e., with large diameters). People
wondered if such complicated regions were truly necessary and what the effect of
further restrictions on R might be [4–7].

Van Alphen [8] proved that K = 0 if R is restricted to fall within a circle of radius
2 + ε, for any ε > 0. So boundedness is not an issue. Later, Cunningham [9] proved
that K = 0 even if R is simply connected (i.e., with no holes) and falls within a circle
of radius 1. So even the absence of holes is not an issue. These are remarkably intricate
results and explanations of their significance outside geometry may be found in [10–13].

Different restrictions give rise to different results. Let

Kc = inf
R convex
Kakeya

area(R)

(meaning that, for any two points P, Q ∈ R, the line segment P Q ⊆ R) and

Ks = inf
R star-shaped

Kakeya

area(R)

(meaning that there is a point O ∈ R such that, for any point P ∈ R, the line segment
O P ⊆ R). Pál [14] proved that

Kc =
√

3

3
= 0.5773502691 . . . ,

which corresponds to the equilateral triangle of height 1.
In contrast, Bloom, Schoenberg & Cunningham [6, 9, 15] proved that

0.0290888208 . . . = π

108
≤ Ks ≤ 5 − 2

√
2

24
π = 0.2842582246 . . .

= (0.0904822031 . . . )π,

and Schoenberg further conjectured that Ks is equal to its upper bound. This evidently
remains an open problem.
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8.18 Rectilinear Crossing Constant

Let G be a graph [5.6]. A rectilinear drawing is a mapping of G into the plane with
the property that vertices go to distinct points and edges go to straight line segments.
Over all possible such drawings of G, determine one with the minimum number, ν̄(G),
of crossings of edges in the plane. Call ν̄(G) the rectilinear crossing number of G
[1–4].

For the complete graph Kn , with n vertices and all
(n

2

)
possible edges, the known

values of and bounds on ν̄(Kn) are listed in Tables 8.7 and 8.8 [5–8].
Asymptotically, we have [8, 9]

0.311507 < ρ = lim
n→∞

ν̄(Kn)(n
4

) = sup
n

ν̄(Kn)(n
4

) ≤ 6467

16848
< 0.383844.

An exact value for ρ is unknown.
Here is a seemingly unconnected problem, due to Sylvester [10], from geometric

probability. Let R be an open convex set in the plane with finite area. Randomly choose
four points independently and uniformly in R. With probability 1, no three of the points
are collinear, so the convex hull of the four points is either a triangle (one point in the
convex hull of the other three) or a quadrilateral. Let q(R) denote the probability that
the convex hull is a quadrilateral. Sylvester asked for the minimum and maximum
values of q(R) over all convex sets R in the plane.

Table 8.7. Values of ν̄(Kn)

n 4 5 6 7 8 9 10 11 12

ν̄(Kn) 0 1 3 9 19 36 62 102 153
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Table 8.8. Bounds on ν̄(Kn)

n 13 14 15

Upper Bound 229 324 447
Lower Bound 221 310 423

Blaschke [11, 12] proved that the maximum of q(R) is

1 − 35

12π2
= 0.7044798810 . . . ,

which is achieved when R is an ellipse, and the minimum is 2/3, attained when R is a
triangle. See [13–21] for details and related problems.

If we relax the conditions on R, what corresponding results hold? Let R be an open
set in the plane with finite area (i.e., convexity is no longer required). Define q(R) as
before. Then clearly supR q(R) = 1 since we may take R to be a very thin annulus, in
which four randomly selected points will almost surely span a quadrilateral.

The infimum of q(R) is more difficult to study. Scheinerman & Wilf [22, 23] proved
the remarkable fact that

inf
R

q(R) = ρ,

thus relating two seemingly unconnected constants. With its heightened status, ρ per-
haps will attract the attention necessary for it someday to be computed.

We have discussed rectilinear drawings; by way of contrast, ordinary drawings
permit curved edges that lead to the ordinary crossing number ν(G). In this case,
Guy [1] conjectured that

ν(Kn) = 1

4

⌊n

2

⌋ ⌊
n − 1

2

⌋ ⌊
n − 2

2

⌋ ⌊
n − 3

2

⌋
,

and this has been confirmed for n ≤ 12 [24]. No analogous conjectured formula is
known for ν̄(Kn). It is believed that ν̄(Kn) > ν(Kn) for sufficiently large n [25].

There are several related notions of the thickness of a graph; see [25, 26] for defini-
tions and references. Many fundamental constants like ρ apparently exist in geometric
probability (in the older literature, under what was once called integral geometry), yet
are extremely difficult to calculate.
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Notes in Comp. Sci. 1547, Springer-Verlag, 1998, pp. 102–110; math.CO/9910185; MR
2000g:68118.

8.19 Circumradius-Inradius Constants

The circumradius R(K ) of a planar compact convex set K is the radius of the smallest
disk that contains K , and the inradius r (K ) is the radius of the largest disk contained by
K . Formulas for R and r corresponding to well-known sets appear in [1–3]. Interesting
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constants involving R or r emerge in various geometric optimization problems over
families of sets; we will give three examples out of potentially many.

Consider all triangles � that lie in a compact convex set F of width 1. (The width
of F is the minimum over lengths of all orthogonal projections of F onto lines.) Let us
examine the maximum inradius a(F) = max� r (�) over all such triangles for several
special sets F :

• If F4 is the square of width 1 (i.e., of side 1), then [4, 5]

a(F4) = −1 + √
5

4
= 0.3090169943 . . . .

• If F5 is the regular pentagon of width 1 (i.e., of side 2 cot(2π )/5), then

a(F5) = 0.2440155280 . . . ,

which has minimal polynomial [6, 7]

5x9 − 170x8 + 436x7 − 205x6 − 96x5 + 440x4 − 120x3 + 64x2 − 80x + 16.

• If F6 is the regular hexagon of width 1 (i.e., of side 1/
√

3), then

a(F6) = 1

4
= 0.25.

Note that a(F5) < min{a(F4), a(F6)}. In fact, it is known that [8]

0.166 <
1

6
≤ inf

F
a(F) ≤ a(F5),

where the infimum is taken over arbitrary F . Might this infimum actually be equal to
its upper bound? This is an unsolved problem.

For the following, we require some notation. Let S denote the square with vertices
(±1, ±1) and let h1, h2, . . . , h8 denote its half-edges (proceeding counterclockwise).
Given a nonvertical line L passing through (0, 0), let L+ denote the half-line in the
right half-plane and let L− denote the half-line in the left half-plane. Let us agree that
L+ intercepts hi and L− intercepts h j , where i ≡ j mod 4. Define M+ to be a third
half-line passing through (0, 0) that intercepts hk , where k 	= i and k 	= j ; we say that
M+ is suitably distinct from L . Finally, let Z denote the standard integer lattice in the
plane, that is, with basis vectors (1, 0) and (0, 1).

Consider all compact convex sets G whose interiors contain the origin but no other
lattice points. (In the language of [2.23], G is Z -allowable.) Assume further that the
circumcenter of G is at the origin, that its corresponding circumcircle is C , and that for
any line L passing through (0, 0), we cannot have both G ∩ L+ ∩ C 	= ∅ and G ∩ L− ∩
C 	= ∅ unless there exists a suitably distinct half-line M+ for which G ∩ M+ ∩ C 	= ∅.
(In words, G does not protrude outside S simultaneously in opposite directions unless
it protrudes significantly elsewhere too.) Then [9]

sup
G

R(G) = 1.6847127097 . . . ,
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Figure 8.22. This Z -allowable triangle T has maximal circumradius R(T ) = 1.6847127097. . . .

which has minimal polynomial 5x6 − 15x4 + 3x2 − 2. A set with maximal circumra-
dius is the non-isosceles triangle T shown in Figure 8.22. If we did not impose the
technical condition regarding L+, L−, and M+, then the supremum would be infinite
(imagine a thin plank of width ε and length 1/ε, passing through the origin and avoiding
all nonzero lattice points).

Here is a result that relates the circumcenter of a compact convex set K with its
centroid (i.e., center of gravity). Let b(K ) denote the distance between the circumcenter
and the centroid, divided by R(K ). Clearly infK b(K ) = 0, for consider a disk or an
equilateral triangle. It is known that [10]

sup
K

b(K ) = 2

3
x = 0.4278733971 . . . ,

where x is the unique solution of the transcendental equation

x2 + 2
√

1 − x2 = 2x(x + arccos(x)), −1 ≤ x ≤ 1.

The extremal set is, in this case, a certain symmetric trapezoid with one of its parallel
edges replaced by a circular arc.

Inradii are involved in the formulation of certain problems far removed from ge-
ometry, for example, Bloch–Landau constants [7.1] and the eigenanalysis of vibrating
membranes [11–13].
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Monthly 96 (1989) 945–946.
[5] F. F. Abi-Khuzam and R. Barbara, A sharp inequality and the inradius conjecture, Math.

Inequal. Appl. 4 (2001) 323–326; MR 2002a:51021.
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functions and conformal mappings, Proc. Amer. Math. Soc. 126 (1998) 577–585; MR
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36 (1998) 275–306; MR 2000a:30048.

8.20 Apollonian Packing Constant

Consider the two pictures in Figure 8.23. The left starts with a large circular boundary
and three inner disks; the right starts with a curvilinear triangular boundary and a
single disk. Both packings are obtained by inscribing a disk Di of maximal radius
in each gap left uncovered by previous iterations. Every new disk is tangent to all
existing disks it touches and, clearly, the resulting configuration has three-fold rotational
symmetry.

What can be said about the residual set E of the packing, that is, the points not
covered by a disk? The set E can be shown to be of Lebesgue measure zero. One
important quantity is the packing exponent ε, defined to be the infimum value of e for
which [1, 2]

∞∑
i=1

|Di |e < ∞,

Figure 8.23. Apollonian packing illustrated with initial circle and inital curvilinear triangle.
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Table 8.9. Estimates of Packing Constant ε

Estimate Source

1.306951 Melzak [2]
1.3058 Boyd, as reported by Mandelbrot [11]
1.305636 Boyd [12]
1.305684 Manna & Herrmann [13]
1.305686729 Thomas & Dhar [14]
1.305688 McMullen [15]

where |D| denotes the diameter of D. Another important quantity is the Hausdorff
dimension dim(E), defined to be the unique value for which [1, 3]

sup
δ>0

inf
countable
δ-covers

Ui

∞∑
i=1

|Ui |s =
{∞ if 0 ≤ s < dim(E),

0 if s > dim(E),

where, by a δ-cover Ui , we mean E ⊆ ⋃∞
i=1 Ui , where each Ui is an open set and

0 < |Ui | ≤ δ for all i . It turns out that

ε = dim(E),

as shown by Larman [4] and Boyd [5–7]. Further work by Boyd [8–10] and others
yielded rigorous bounds

1.300197 < ε < 1.314534.

We also have numerical estimates from various sources (see Table 8.9).
Is dim(E) minimal, considered against all other disk packing strategies? Boyd [6]

answered that this is a difficult question. Whether any progress has been made in re-
solving this is not known. See [2.16], which makes reference to Sierpinski’s gasket, that
is, to the packing of similarly-oriented equilateral triangles in an oppositely-oriented
triangle (for which dim(E) is known to be exactly ln(3)/ ln(2)). The subject has also
recently become interesting to number theorists [16].
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8.21 Rendezvous Constants

Let E denote a compact, connected subset of d-dimensional Euclidean space. Gross
[1] and Stadje [2] independently proved the following: There is a unique real number
a(E) such that, for all (not necessarily distinct) points x1, x2, . . . , xn ∈ E , there exists
y ∈ E with

1

n

n∑
i=1

|xi − y| = a(E).

In words, there is a point y ∈ E such that the average distance from y to x1, x2, . . . , xn

is a(E). The constant a(E) works for all collections of n points, for any positive integer
n. Moreover, no other constant will work, which is most surprising!

For example, if E is convex, then a(E) is the circumradius of E . We henceforth
will focus on nonconvex sets E . If C is a circle of diameter 1, then a(C) = 2/π =
0.6366197723 . . . [3, 4]. If � is an isosceles triangle with baselength 2 and perimeter
2λ + 2, then [5]

a(�) =



λ2+2λ−√
λ2−1−2

√
(λ−√

λ2−1)λ(λ+1)

λ2+3λ−1−λ
√

λ2−1−2
√

(λ−√
λ2−1)λ(λ+1)

for
√

2 ≤ λ ≤ ξ,

λ2+1
2λ

for λ ≥ ξ,

where ξ = 2.3212850380 . . . has minimal polynomial 2x5 − 4x4 − 5x2 + 4x − 1. No
one has yet found a closed-form expression for a(E) if E is an arbitrary ellipse or acute
triangle.

Two alternative definitions of a(E) are as follows:

a(E) = sup
n≥1

sup
x1,x2,...,xn∈E

min
y∈E

1

n

n∑
i=1

|xi − y| = inf
n≥1

inf
x1,x2,...,xn∈E

max
y∈E

1

n

n∑
i=1

|xi − y|,

and its association with the minimax theorem of game theory becomes obvious [1, 3, 6].
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Define the rendezvous constant, r (E), of E to be the normalized ratio

r (E) = a(E)

diam(E)
, diam(E) = max

u,v∈E
|u − v|.

For this to make sense, E cannot be a single point p (for the diameter to be nonzero)
and cannot be a finite set (by connectedness). With these restrictions, Gross and Stadje
proved that 1/2 ≤ r (E) < 1. What is the maximum value, Rd , of r (E) considered over
all sets E in d-dimensional Euclidean space? Clearly R1 = 1/2. When d = 2, it seems
likely that the Reuleaux triangle T provides the answer [8.10]. Nickolas & Yost [7] and
Wolf [8] rigorously established the bounds

max

{
2

3
, r (T )

}
≤ R2 ≤ 1

2
+ π

16
< 0.69634955,

and the best-known numerical estimate of r (T ) is 0.6675277360 . . . [9]. No closed-
form expression for r (T ) has been discovered. The conjecture R2 = r (T ) deserves
more attention!

For d > 2, we have bounds [7]

d

d + 1
≤ Rd ≤ �( d

2 )22d−2
√

2d

�(d − 1
2 )

√
π (d + 1)

<

√
d

d + 1
,

where �(x) is the gamma function [1.5.4]. These bounds are less precise than those for
d = 2. No one has attempted to guess the higher dimensional shapes that maximize
the rendezvous constant, as far as is known.

A second relevant conjecture is that R2 = S2, where [8–11]

Sd = sup
n≥1

sup
x1,x2,...,xn|xi −x j |≤1

1

n2

n∑
i=1

n∑
j=1

|xi − x j |.

In words, Sd is the average pairwise distance of arbitrary points x1, x2, . . . , xn in d-
dimensional space, where no pair xi , x j has separation exceeding 1.

We have more bounds a(E) ≤ b(E), where [8]

b(E) = sup
n≥1

sup
x1,x2,...,xn∈E

1

n2

n∑
i=1

n∑
j=1

|xi − x j |.

The study of b(E) begins with a generalization: replacing the summations by integrals
and the point masses xi by a probability density, then applying potential theory [12–16].
A third conjecture is that a(T ) = b(T ) [9]. Another special case, when E is the two-
dimensional sphere, was discussed in [8.8].

The preceding material can be generalized: E may be any compact, connected metric
space. In fact, E need not even have a metric: Stadje [2] proved that E need only be
a compact, connected Hausdorff space possessing a real-valued continuous symmetric
function f (x, y) for x, y ∈ E (a kind of “weak metric”).

Finally, let E be the ellipse with semimajor axis 2 and semiminor axis 1. It is
numerically known that a(E) = 2.1080540666 . . . [9]. Although there is no precise
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formula for a(E), as stated earlier, it would be good nevertheless someday to better
understand the nature of this constant.
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0 Zero; conjectured value of de Bruijn–Newman constant [2.32]
0.0001111582 . . . With Stieltjes constants [2.21]
0.00016 . . . One of Cameron’s sum-free set constants [2.25]
0.0002206747 . . . 6th Du Bois Reymond constant [3.12]
0.0005367882 . . . Hensley’s constant [2.18]
0.0007933238 . . . 5th Stieltjes constant [2.21]
0.0013176411 . . . Heath–Brown–Moroz constant, with Artin’s constant [2.4]
0.0017486751 . . . λ7; with Gauss–Kuzmin–Wirsing constant [2.17]
0.0019977469 . . . With Sobolev isoperimetric constants [3.6]
0.0020538344 . . . 3rd Stieltjes constant [2.21]
0.0023253700 . . . 4th Stieltjes constant [2.21]
0.0031816877 . . . Melzak’s constant, with Sobolev isoperimetric constants [3.6]
0.0044939231 . . . With Golomb–Dickman constant [5.4]
0.0047177775 . . . −λ6; with Gauss–Kuzmin–Wirsing constant [2.17]
0.0052407047 . . . 4th Du Bois Reymond constant [3.12]
0.0063564559 . . . With Stieltjes constants [2.21]
0.0072973525 . . . Fine structure constant, with Feigenbaum–Coullet–Tresser [1.9]
0.0095819302 . . . With Sobolev isoperimetric constants [3.6]
0.0096903631 . . . Negative of 2nd Stieltjes constant [2.21]
0.0102781647 . . . p3; with Vallée’s constant [2.19]
0.0125537906 . . . With Golomb–Dickman constant [5.4]
0.0128437903 . . . λ5; with Gauss–Kuzmin–Wirsing constant [2.17]
0.0173271405 . . . b3; with Du Bois Reymond constants [3.12]
0.0176255 . . . With percolation cluster density constants [5.18]
0.0177881056 . . . −41/32 + 3

√
3/4; with percolation cluster density [5.18]

0.0183156388 . . . e−4; one of Rényi’s parking constants [5.3]
0.0186202233 . . . One of Pólya’s random walk constants [5.9]
0.0219875218 . . . Gauchman’s constant, with Shapiro–Drinfeld [3.1]
0.0230957089 . . . With Apéry [1.6], Stieltjes [2.21], de Bruijn–Newman [2.32]
0.0231686908 . . . Hensley’s constant [2.18]
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0.0255369745 . . . c−
0 ; with Lenz–Ising constants [5.22]

0.0261074464 . . . 4th Matthews constant [2.4]
0.026422 . . . With Tammes’ constants [8.8]
0.0275981 . . . κS(pc); with percolation cluster density constants [5.18]
0.0282517642 . . . 3rd Du Bois Reymond constant [3.12]
0.0333810598 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
0.0354961590 . . . −λ4; with Gauss–Kuzmin–Wirsing constant [2.17]
0.0355762113 . . . −41/16 + 3

√
3/2; with percolation cluster density [5.18]

0.0369078300 . . . With Golomb–Dickman constant [5.4]
0.0370072165 . . . With Golomb–Dickman constant [5.4]
0.0381563991 . . . One of Rényi’s parking constants [5.3]
0.0403255003 . . . e0; with Lenz–Ising constants [5.22]
0.0461543172 . . . With Stieltjes constants [2.21]
0.0482392690 . . . m3,4; with Meissel–Mertens constants [2.2]
0.0484808014 . . . p2; with Vallée’s constant [2.19]
0.0494698522 . . . With Golomb–Dickman constant [5.4]
0.0504137604 . . . With Euler–Gompertz constant [6.2]
0.0548759991 . . . Conjectured value of H9, Heilbronn triangle constants [8.16]
0.05756 . . . With hyperbolic volume constants [8.9]
0.0585498315 . . . 1/(2πe); with Hermite’s constants [8.7]
0.0605742294 . . . One of the Euler totient constants [2.7]
0.0608216553 . . . 3rd Matthews constant [2.4]
0.0648447153 . . . One of Pólya’s random walk constants [5.9]
0.0653514259 . . . Norton’s constant [2.18]
0.0653725925 . . . With Stieltjes constants [2.21]
0.065770 . . . κS(1/2); with percolation cluster density constants [5.18]
0.0657838882 . . . With Gibbs–Wilbraham constant [4.1]
0.0659880358 . . . e−e; one of the iterated exponential constants [6.11]
0.0723764243 . . . Conjectured value of H8, Heilbronn triangle constants [8.16]
0.0728158454 . . . Negative of 1st Stieltjes constant [2.21]
0.0729126499 . . . One of Pólya’s random walk constants [5.9]
0.0757395140 . . . With Vallée’s constant [2.19]
0.0773853773 . . . With Vallée’s constant [2.19]
0.0810614667 . . . With Stieltjes constants [2.21]
0.0838590090 . . . Conjectured value of H7, Heilbronn triangle constants [8.16]
0.0858449341 . . . One of Pólya’s random walk constants [5.9]
0.0883160988 . . . With Golomb–Dickman constant [5.4]
0.0894898722 . . . G/π − 1/2; with Gibbs–Wilbraham constant [4.1]
0.0904822031 . . . Conjectured value of Ks/π , with Kakeya–Besicovitch [8.17]
0.0923457352 . . . With de Bruijn–Newman constant [2.32]
0.0931878229 . . . exp(−π2/(6 ln(2))); with Khintchine–Lévy constants [1.8]
0.0946198928 . . . With Meissel–Mertens constants [2.2]
0.0948154165 . . . With Otter’s tree enumeration constants [5.6]
0.097 . . . Base-10 self-numbers density constant [2.24]
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0.0980762113 . . . (3
√

3 − 5)/2; with percolation cluster density [5.18]
0.1008845092 . . . λ3; with Gauss–Kuzmin–Wirsing constant [2.17]
0.1013211836 . . . 1/π2; with Sobolev isoperimetric constants [3.6]
0.1041332451 . . . −d0; with Lenz–Ising constants [5.22]
0.1047154956 . . . One of Pólya’s random walk constants [5.9]
0.1076539192 . . . “One-ninth” constant [4.5]
0.1084101512 . . . Trott’s constant, with Minkowski–Bower [6.9]
0.1118442752 . . . With percolation cluster density constants [5.18]
0.1149420448 . . . Kepler–Bouwkamp constant [6.3]
0.1227367657 . . . With Moser’s worm constant [8.4]
0.125 1/8; with Moser’s worm [8.4], Heilbronn’s triangle [8.16]
0.1316200785 . . . With Moser’s worm constant [8.4]
0.1351786098 . . . One of Pólya’s random walk constants [5.9]
0.14026 . . . One of the self-avoiding walk constants [5.10]
0.1433737142 . . . With Hafner–Sarnak–McCurley constant [2.5]
0.1473494003 . . . 2nd Matthews constant, with Artin’s constant [2.4]
0.1475836176 . . . arctan(1/2)/π ; Plouffe’s constant [6.5]
0.1484955067 . . . With Euler–Gompertz constant [6.2]
0.14855 . . . 4D critical point, with Lenz–Ising constants [5.22]
0.14869 . . . −d1; with Lenz–Ising constants [5.22]
0.1490279983 . . . Conway’s impartial misère games constant [6.11]
0.14966 . . . 4D inverse critical temperature, with Lenz–Ising [5.22]
0.1544313298 . . . 2γ − 1; with Euler–Mascheroni constant [1.5]
0.1596573971 . . . With Reuleaux triangle constants [8.10]
0.1598689037 . . . With Stieltjes constants [2.21]
0.1599 . . . One of the self-avoiding walk constants [5.10]
0.1624329213 . . . With hard square entropy constant [5.12]
0.164 . . . With percolation cluster density constants [5.18]
0.1709096198 . . . With Golomb–Dickman constant [5.4]
0.1715004931 . . . δ0; Hall–Montgomery constant [2.33]
0.1715728753 . . . 3 − 2

√
2; value of H̃ 5, Heilbronn triangle constant [8.16]

0.1724297877 . . . One of Pólya’s random walk constants [5.9]
0.1729150690 . . . With Gauss–Kuzmin–Wirsing constant [2.17]
0.1763470368 . . . One of Rényi’s parking constants [5.3]
0.1764297331 . . . −G2; with Lenz–Ising constants [5.22]
0.1770995223 . . . With Otter’s tree enumeration constants [5.6]
0.1789797444 . . . 2G/π − 1; with Gibbs–Wilbraham constant [4.1]
0.1807171047 . . . Zagier’s constant, with Freiman’s constant [2.31]
0.1824878875 . . . With Shapiro–Drinfeld constant [3.1]
0.183 . . . With percolation cluster density constants [5.18]
0.1839397205 . . . 1/(2e); with Masser–Gramain constant [7.2]
0.1862006357 . . . With Reuleaux triangle constants [8.10]
0.1866142973 . . . C6; one of the Hardy–Littlewood constants [2.1]
0.186985 . . . One of Rényi’s parking constants [5.3]
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0.1878596424 . . . With iterated exponential constants [6.11]
0.1895600483 . . . Triangular entropy of folding, with Lieb’s square ice [5.24]
0.1924225474 . . . With Otter’s tree enumeration constants [5.6]
0.1924500897 . . .

√
3/9; value of H5, Heilbronn triangle constant [8.16]

0.1932016732 . . . One of Pólya’s random walk constants [5.9]
0.1945280495 . . . 2nd Du Bois Reymond constant [3.12]
0.1994588183 . . . Vallée’s constant [2.19]
0.1996805161 . . . Conjectured value of weakly triple-free set constant [2.26]
0.2007557220 . . . With Meissel–Mertens constants [2.2]
0.2076389205 . . . With de Bruijn–Newman constant [2.32]
0.2078795764 . . . i i = exp(−π/2); with iterated exponential constants [6.11]
0.209 . . . Base-4 self-numbers density constant [2.24]
0.2095808742 . . . With Golomb–Dickman constant [5.4]
0.21 . . . One of Cameron’s sum-free set constants [2.25]
0.2173242870 . . . Lochs’ constant, with Porter–Hensley constants [2.18]
0.218094 . . . 3D critical point, with Lenz–Ising constants [5.22]
0.2183801414 . . . One of Pólya’s random walk constants [5.9]
0.2192505830 . . . With Glaisher–Kinkelin constant [2.15]
0.221654 . . . 3D inverse critical temperature, with Lenz–Ising [5.22]
0.2221510651 . . . With Otter’s tree enumeration constants [5.6]
0.2265708154 . . . With hard square entropy constant [5.12]
0.2299 . . . Square-diagonal entropy of folding, with Lieb’s square

ice [5.24]
0.2351252848 . . . Conway–Guy constant, with Erdös’ sum-distinct set

constant [2.28]
0.2387401436 . . . With Otter’s tree enumeration constants [5.6]
0.24 . . . One of the Hayman constants [7.5]
0.2419707245 . . . 1/

√
2πe; Sobolev isoperimetric [3.6], traveling salesman [8.5]

0.2424079763 . . . With hard square entropy constant [5.12]
0.2440155280 . . . One of the circumradius-inradius constants [8.19]
0.247 . . . Abundant numbers density constant [2.11]
0.25 1/4; Koebe’s constant, with Bloch–Landau constants [7.1]
0.2503634293 . . . With Otter’s tree enumeration constants [5.6]
0.2526602590 . . . Binary self-numbers density constant [2.24]
0.2536695079 . . . δ8; with Hermite’s constants [8.7]
0.2545055235 . . . With Kalmár’s composition constant [5.5]
0.255001 . . . With Moser’s worm constants [8.4]
0.2614972128 . . . M ; one of the Meissel–Mertens constants [2.2]
0.2649320846 . . . Mrs. Miniver’s constant, with circular coverage constants [8.2]
0.2665042887 . . . With Otter’s tree enumeration constants [5.6]
0.2677868402 . . . Unforgeable word constant, with pattern-free words [5.17]
0.2688956601 . . . With hyperbolic volume constants [8.9]
0.2696063519 . . . With Meissel–Mertens constants [2.2]
0.2697318462 . . . One of the Pell–Stevenhagen constants [2.8]
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0.272190 . . . Cassaigne–Finch constant, with Stolarsky–Harborth [2.16]
0.2731707223 . . . With Hafner–Sarnak–McCurley constant [2.5]
0.2746 . . . Tarannikov’s constant, with pattern-free words [5.17]
0.2749334633 . . . With Meissel–Mertens constants [2.2]
0.2763932022 . . . (5 − √

5)/10; with hard square entropy constant [5.12]
0.2801694990 . . . Bernstein’s constant [4.4]
0.28136 . . . One of the Pell–Stevenhagen constants [2.8]
0.2842582246 . . . Conjectured value of a Kakeya–Besicovitch constant [8.17]
0.2853 . . . With Lenz–Ising constants [5.22]
0.2857142857 . . . 2/7; conjectured value of 2nd Diophantine

approximation [2.23]
0.2867420562 . . . −m1,4; with Meissel–Mertens constants [2.2]
0.2867474284 . . . Strongly carefree constant, with Hafner–Sarnak–McCurley [2.5]
0.2887880950 . . . Q; with digital search tree constants [5.14], Lengyel’s [5.7]
0.2898681336 . . . p1 = π2/3 − 3; with Vallée’s constant [2.19]
0.29 . . . One of Pólya’s random walk constants [5.9]
0.2915609040 . . . G/π ; 2D dimer constant [5.23]
0.2952978731 . . . δ7; with Hermite’s constants [8.7]
0.29745 . . . With Klarner’s polyomino constant [5.18]
0.2974615529 . . . One of the Pythagorean triple constants [5.2]
0.2979521902 . . . One of Pólya’s random walk constants [5.9]
0.2993882877 . . . With Otter’s tree enumeration constants [5.6]
0.3036552633 . . . With Kalmár’s composition constant [5.5]
0.3036630028 . . . Gauss–Kuzmin–Wirsing constant [2.17]
0.3042184090 . . . With Otter’s tree enumeration constants [5.6]
0.3061875165 . . . With Otter’s tree enumeration constants [5.6]
0.3074948787 . . . C4 = 2E/27; one of the Hardy–Littlewood constants [2.1]
0.3084437795 . . . Zygmund’s constant, with Young–Fejér–Jackson [3.14]
0.3091507084 . . . (8/3)(ln(2) − γ ); one of the geometric probability

constants [8.1]
0.3104 . . . Papadimitriou’s constant, with traveling salesman

constants [8.5]
0.3110788667 . . . Zolotarev–Schur constant [3.9]
0.312 . . . τ ; with percolation cluster density constants [5.18]
0.3123633245 . . . With Klarner’s lattice animal constant [5.18]
0.3148702313 . . . One of Pólya’s random walk constants [5.9]
0.3157184521 . . . γ − M ; with Meissel–Mertens constants [2.2]
0.3166841737 . . . Atkinson–Negro–Santoro constant [2.28]
0.3172 . . . With traveling salesman constants [8.5]
0.3181736521 . . . Kalmár’s composition constant [5.5]
0.3187590609 . . . With Sobolev isoperimetric constants [3.6]
0.3187766258 . . . With Otter’s tree enumeration constants [5.6]
0.3190615546 . . . With monomer-dimer constants [5.23]
0.3230659472 . . . ln(β); with Kneser–Mahler polynomial constants [3.10]
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0.3271293669 . . . With Landau–Ramanujan constant [2.3]
0.3287096916 . . . With Kepler–Bouwkamp constant [6.3]
0.3289868133 . . . 30/π2; with Hafner–Sarnak–McCurley constant [2.5]
0.3332427219 . . . Hard hexagon entropy constant, with hard square [5.12]
0.3333333333 . . . 1/3; with Rényi’s parking constants [5.3]
0.3349813253 . . . With Meissel–Mertens constants [2.2]
0.3383218568 . . . With Otter’s tree enumeration constants [5.6]
0.3405373295 . . . One of Pólya’s random walk constants [5.9]
0.3472963553 . . . 2 sin(π/18); with percolation cluster density constants [5.18]
0.35129898 . . . One of the quadratic recurrence constants [6.10]
0.3522211004 . . . With Hafner–Sarnak–McCurley constant [2.5]
0.3529622229 . . . With Otter’s tree enumeration constants [5.6]
0.3532363719 . . . Hafner–Sarnak–McCurley constant [2.5]
0.3551817423 . . . With Otter’s tree enumeration constants [5.6]
0.359072 . . . With percolation cluster density constants [5.18]
0.3605924718 . . . Im(i i i ...

); with iterated exponential constants [6.11]
0.3607140971 . . . With Otter’s tree enumeration constants [5.6]
0.3611030805 . . . r (12) conjectured value; with circular coverage constants [8.2]
0.3625364234 . . . One of Otter’s tree enumeration constants [5.6]
0.364132 . . . One of Rényi’s parking constants [5.3]
0.3678794411 . . . 1/e; natural logarithmic base [1.3], iterated exponentials [6.11]
0.368 . . . With hard square entropy constant [5.12]
0.3694375103 . . . C7; one of the Hardy–Littlewood constants [2.1]
0.3720486812 . . . With digital search tree constants [5.14]
0.3728971438 . . . One of the extreme value constants [5.16]
0.3729475455 . . . δ6; with Hermite’s constants [8.7]
0.3733646177 . . . One of the binary search tree constants [5.13]
0.3739558136 . . . Artin’s constant [2.4]
0.3790522777 . . . One of the self-avoiding walk constants [5.10]
0.380006 . . . r (11) conjectured value; with circular coverage constants [8.2]
0.3825978582 . . . One of the geometric probability constants [8.1]
0.3919177761 . . . One of the extreme value constants [5.16]
0.3926990816 . . . π/8; with Moser’s worm constants [8.4]
0.3943847688 . . . One of Moser’s worm constants [8.4]
0.3949308436 . . . r (10) conjectured value; with circular coverage constants [8.2]
0.3972130965 . . . With Otter’s tree enumeration constants [5.6]
0.3995246670 . . . One of the quadratic recurrence constants [6.10]
0.3995352805 . . . α−1; one of the Feigenbaum–Coullet–Tresser constants [1.9]
0.40096 . . . With Tammes’ constants [8.8]
0.402 . . . With percolation cluster density constants [5.18]
0.4026975036 . . . With Otter’s tree enumeration constants [5.6]
0.4074951009 . . . Hard square entropy constant [5.12]
0.4080301397 . . . (2 − e−1)/4; one of Rényi’s parking constants [5.3]
0.4097321837 . . . Conjectured value of Berry–Esseen constant [4.7]
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0.4098748850 . . . C5; one of the Hardy–Littlewood constants [2.1]
0.412048 . . . With Lenz–Ising constants [5.22]
0.4124540336 . . . Prouhet–Thue–Morse constant [6.8]
0.4127732370 . . . With Kalmár’s composition constant [5.5]
0.4142135623 . . .

√
2 − 1; with circular coverage [8.2], Lenz–Ising
constants [5.22]

0.4159271089 . . . One of the extreme value constants [5.16]
0.4194 . . . One of the traveling salesman constants [8.5]
0.4198600459 . . . With Reuleaux triangle constants [8.10]
0.4203723394 . . . Minkowski–Bower constant [6.9]
0.4207263771 . . . Conjectured value of integer Chebyshev constant [4.9]
0.4212795439 . . . Schlüter’s constant t(10); with circular coverage constants [8.2]
0.4213829566 . . . (6 ln(2))/π2; Lévy’s constant [1.8]
0.4217993614 . . . With Pisot–Vijayaraghavan–Salem constants [2.30]
0.422 . . . With hard square entropy constant [5.12]
0.4227843351 . . . 1 − γ ; with Euler–Mascheroni [1.5], Stieltjes constants [2.21]
0.4278733971 . . . With circumradius-inradius constants [8.19]
0.4281657248 . . . With Euler–Mascheroni constant[ 1.5]
0.4282495056 . . . Carefree constant, with Hafner–Sarnak–McCurley

constant [2.5]
0.4302966531 . . . With Young–Fejér–Jackson constants [3.14]
0.4323323583 . . . (1 − e−2)/2; one of Rényi’s parking constants [5.3]
0.4330619231 . . . With Klarner’s polyomino constant [5.19]
0.434 . . . With Hardy–Littlewood constants [2.1]
0.4381562356 . . . With Otter’s tree enumeration constants [5.6]
0.4382829367 . . . Re(i i i ...

); with iterated exponential constants [6.11]
0.4389253692 . . . One of Moser’s worm constants [8.4]
0.43961 . . . One of the self-avoiding walk constants [5.10]
0.4399240125 . . . One of Otter’s tree enumeration constants [5.6]
0.4406867935 . . . ln(

√
2 + 1)/2; with Lenz–Ising constants [5.22]

0.4428767697 . . . With Otter’s tree enumeration constants [5.6]
0.4450418679 . . . r (8); with circular coverage constants [8.2]
0.4466 . . . 3D dimer constant [5.23]
0.4472135955 . . . 1/

√
5; 1st Diophantine approximation constant [2.23]

0.4490502094 . . . One of Moser’s worm constants [8.4]
0.4522474200 . . . One of the Meissel–Mertens constants [2.2]
0.4545121805 . . . With Alladi–Grinstead constant [2.9]
0.4567332095 . . . With Otter’s tree enumeration constants [5.6]
0.461543 . . . With Stieltjes constants [2.21]
0.4645922709 . . . With Landau–Ramanujan constant [2.3]
0.4652576133 . . . δ5; with Hermite’s constants [8.7]
0.4656386467 . . . With Otter’s tree enumeration constants [5.6]
0.4702505696 . . . 2·(Conway–Guy constant), with Erdös’ sum-distinct set [2.28]
0.4718616534 . . . Conjectured value of Bloch’s constant [7.1]
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0.4749493799 . . . Weierstrass constant, with Gauss’ lemniscate constant [6.1]
0.4756260767 . . . With Plouffe’s constant [6.5]
0.4769 . . . Bland’s constant, with traveling salesman constants [8.5]
0.4802959782 . . . One of the geometric probability constants [8.1]
0.4834983471 . . . With Golomb–Dickman constant [5.4]
0.4865198884 . . . With Landau–Ramanujan constant [2.3]
0.4876227781 . . . Gaussian twin prime constant, with Hardy–Littlewood

constants [2.1]
0.4906940504 . . . With Landau–Ramanujan constant [2.3]
0.4945668172 . . . Shapiro–Drinfeld constant [3.1]
0.4956001805 . . . 1 − γ0 − γ1; with [2.21] Stieltjes constants
0.5 1/2; with percolation cluster density [5.18],

Landau–Ramanujan [2.3]
0.5163359762 . . . With Kepler–Bouwkamp constant [6.3]
0.5178759064 . . . With Otter’s tree enumeration constants [5.6]
0.5212516264 . . . With Lebesgue constants [4.2]
0.5214054331 . . . Ghosh’s constant, with geometric probability [8.1], traveling

salesman [8.5]
0.5235987755 . . . π/6; with Archimedes [1.4], Madelung’s constant [1.10]
0.531280 . . . With Gauss–Kuzmin–Wirsing constant [2.17]
0.5313399499 . . . One of the Pythagorean triple constants [5.2]
0.5341 . . . With Lenz–Ising constants [5.22]
0.5349496061 . . . One of Otter’s tree enumeration constants [5.6]
0.5351070126 . . . With Artin’s constant [2.4]
0.5392381750 . . . One of Pólya’s random walk constants [5.9]
0.5396454911 . . . ζ (1/2) + 2; with Euler–Mascheroni constant [1.5]
0.5405 . . . One of the longest subsequence constants [5.20]
0.5410442246 . . . With hyperbolic volume constants [8.9]
0.5432589653 . . . Conjectured value of Landau’s constant [7.1]
0.5530512933 . . . Kuijlaars–Saff constant, with Tammes’ constants [8.8]
0.5559052114 . . . Bezdek’s constant r (6); with circular coverage constants [8.2]
0.5598656169 . . . With Alladi–Grinstead constant [2.9]
0.5609498093 . . . One of the geometric probability constants [8.1]
0.5614594835 . . . e−γ ; Euler’s constant [1.5], totient [2.7],

Golomb–Dickman [5.4]
0.562009 . . . With Rényi’s parking constant [5.3]
0.5671432904 . . . W (1); solution of xex = 1, with iterated exponential

constants [6.11]
0.5682854937 . . . With the abundant numbers density constant [2.11]
0.5683000031 . . . With Euler–Gompertz constant [6.2]
0.5697515829 . . . Weakly carefree constant, with Hafner–Sarnak–McCurley

constant [2.5]
0.5731677401 . . . (3/4)·(Landau–Ramanujan constant) [2.3]
0.57339 . . . One of the Pell–Stevenhagen constants [2.8]
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0.5743623733 . . . With Otter’s tree enumeration constants [5.6]
0.5759599688 . . . Stephens’ constant, with Artin’s constant [2.4]
0.5761487691 . . . With Klarner’s polyomino constant [5.18]
0.5767761224 . . . With Landau–Ramanujan constant [2.3]
0.5772156649 . . . Euler–Mascheroni constant, γ [1.5]; also Stieltjes

constants [2.21]
0.5773502691 . . . 1/

√
3; with Kakeya–Besicovitch constants [8.17]

0.5778636748 . . . π/(2e); with Masser–Gramain constant [7.2]
0.5784167628 . . . (8/7) cos(2π/7) cos(π/7)2; with Diophantine approximation

constants [2.23]
0.5801642239 . . . One of the optimal stopping constants [5.15]
0.5805775582 . . . Pell constant [2.8]
0.5817480456 . . . With Madelung’s constant [1.10]
0.5819486593 . . . With Landau–Ramanujan constant [2.3]
0.5825971579 . . . ρ; one of Pólya’s random walk constants [5.9]
0.5831218080 . . . 2G/π ; 2D dimer constant [5.23]; also Kneser–Mahler [3.10]
0.5851972651 . . . With Euler–Gompertz constant [6.2]
0.5877 . . . One of the self-avoiding walk constants [5.10]
0.5878911617 . . . With hard square entropy constant [5.12]
0.59 . . . One of the optimal stopping constants [5.15]
0.5926327182 . . . Lehmer’s constant [6.6]
0.5927460 . . . pc; with percolation cluster density constants [5.18]
0.5947539639 . . . With Otter’s tree enumeration constants [5.6]
0.5963473623 . . . Euler–Gompertz constant [6.2]
0.5990701173 . . . M/2; with Gauss’ lemniscate constant [6.1]
0.6069 . . . One of the longest subsequence constants [5.20]
0.6079271018 . . . 6/π2; with Archimedes [1.4], Hafner–Sarnak–McCurley [2.5]
0.6083817178 . . . One of the Euler totient constants [2.7]
0.6093828640 . . . Neville’s constant r (5), with circular coverage constants [8.2]
0.6134752692 . . . Strongly triple-free set constant [2.26]
0.6168502750 . . . δ4; with Hermite’s constants [8.7]
0.6168878482 . . . With Otter’s tree enumeration constants [5.6]
0.6180339887 . . . φ − 1; with [1.2] Golden Mean
0.6194036984 . . . One of the Lenz–Ising constants [5.22]
0.6223065745 . . . Backhouse’s constant, with Kalmár’s constant [5.5]
0.6231198963 . . . With Otter’s tree enumeration constants [5.6]
0.6232 . . . One of the traveling salesman constants [8.5]
0.6243299885 . . . Golomb–Dickman constant [5.4]
0.6257358072 . . . With Glaisher–Kinkelin constant [2.15]
0.6278342677 . . . With John constant [7.4]
0.6294650204 . . . Davison–Shallit constant ξ1; with Cahen’s constant [6.7]
0.6312033175 . . . One of the geometric probability constants [8.1]
0.6321205588 . . . 1 − 1/e; with natural logarithmic base [1.3]
0.6331 . . . One of the traveling salesman constants [8.5]
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0.6333683473 . . . 2·(Atkinson–Negro–Santoro constant), with Erdös’
sum-distinct set [2.28]

0.6351663546 . . . C3 = 2D/9; one of the Hardy–Littlewood constants [2.1]
0.6366197723 . . . 2/π ; with Archimedes [1.4], rendezvous constants [8.21]
0.6389094054 . . . With Landau–Ramanujan constant [2.3]
0.6419448385 . . . With Meissel–Mertens constants [2.2]
0.6434105462 . . . Cahen’s constant ξ2 [6.7]
0.6462454398 . . . With Masser–Gramain constant [7.2]
0.6467611227 . . . With Euler–Gompertz constant [6.2]
0.6537 . . . One of the longest subsequence constants [5.20]
0.6539007091 . . . ξ3; with Cahen’s constant [6.7]
0.6556795424 . . . With Euler–Gompertz constant [6.2]
0.6563186958 . . . With Otter’s tree enumeration constants [5.6]
0.6569990137 . . . −δ0; Hall–Montgomery constant [2.33]
0.6583655992 . . . One of the iterated exponential constants [6.11]
0.6594626704 . . . One of Pólya’s random walk constants [5.9]
0.6597396084 . . . (2 + √

3)/(4
√

2); with beam detection constant [8.11]
0.6600049346 . . . ξ4; with Cahen’s constant [6.7]
0.6601618158 . . . Twin prime constant, with Hardy–Littlewood constants [2.1]
0.6613170494 . . . Feller–Tornier constant, with Artin’s constant [2.4]
0.6617071822 . . . One of the geometric probability constants [8.1]
0.6627434193 . . . Laplace limit constant [4.8]
0.6632657345 . . . ξ5; with Cahen’s constant [6.7]
0.6672538227 . . . With Feller’s coin tossing constants [5.11]
0.6675277360 . . . With rendezvous constants [8.21]
0.6697409699 . . . Shanks’ constant, with Hardy–Littlewood constants [2.1]
0.67 . . . Erdös–Lebensold constant [2.27]
0.6709083078 . . . With Madelung’s constant [1.10]
0.6749814429 . . . Graham’s hexagon constant [8.15]
0.676339 . . . One of the percolation cluster density constants [5.18]
0.6774017761 . . . With Kalmár’s constant [5.5]
0.6821555671 . . . With Otter’s tree enumeration constants [5.6]
0.6829826991 . . . With Calabi’s triangle constant [8.13]
0.6844472720 . . . With Otter’s tree enumeration constants [5.6]
0.6864067314 . . . Cquad; one of the Hardy–Littlewood constants [2.1]
0.6867778344 . . . With Kalmár’s constant [5.5]
0.6903471261 . . . One of the iterated exponential constants [6.11]
0.6922006276 . . . e−1/e; one of the iterated exponential constants [6.11]
0.6931471805 . . . ln(2); with natural logarithmic base [1.3]
0.6962 . . . One of the percolation cluster density constants [5.18]
0.6975013584 . . . 2nd Pappalardi constant, with Artin’s constant [2.4]
0.6977746579 . . . I1(2)/I0(2); with Euler–Gompertz constant [6.2]
0.6979 . . . One of the traveling salesman constants [8.5]
0.6995388700 . . . One of Otter’s tree enumeration constants [5.6]
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0.70258 . . . Embree–Trefethen constant, with Golden mean [1.2]
0.7041699604 . . . With Fransén–Robinson constant [4.6]
0.7044798810 . . . 1 − 35/(12π2); with rectilinear crossing constant [8.18]
0.7047534517 . . . With Landau–Ramanujan constant [2.3]
0.7047709230 . . . (π − √

3)/2; with Reuleaux triangle constants [8.10]
0.7059712461 . . . With Porter–Hensley constants [2.18]
0.708 . . . One of Pólya’s random walk constants [5.9]
0.7098034428 . . . Rabbit constant, with Prouhet–Thue–Morse constant [6.8]
0.7124 . . . One of the traveling salesman constants [8.5]
0.7147827007 . . . Conjectured value, one of the traveling salesman

constants [8.5]
0.7172 . . . One of the longest subsequence constants [5.20]
0.7213475204 . . . 1/(2 ln(2)); with Lengyel’s constant [5.7], Feller’s coin

tossing [5.11]
0.7218106748 . . . 5D Steiner ratio, with Steiner tree constants [8.6]
0.7234 . . . One of the traveling salesman constants [8.5]
0.7235565167 . . . One of Pólya’s random walk constants [5.9]
0.7236067977 . . . (1/2)(1 + 1/

√
5); with Diophantine approximation

constants [2.23]
0.7252064830 . . . 97/150 + π/40; Langford’s constant, with geometric

probability [8.1]
0.7266432468 . . . With van der Corput’s constant [3.15]
0.726868 . . . With Graham’s hexagon constant [8.15]
0.7322131597 . . . Unforgeable word constant, with pattern-free words [5.17]
0.7326498193 . . . With Landau–Ramanujan constant [2.3]
0.7373383033 . . . Grossman’s constant [6.4]
0.7377507574 . . . Conjectured value of Whittaker–Goncharov constant [7.3]
0.7404804896 . . . π/

√
18; densest sphere packing, with Hermite’s constants [8.7]

0.7424537454 . . . One of the Riesz–Kolmogorov constants [7.7]
0.7439711933 . . . Sarnak’s constant, with Artin’s constant [2.4]
0.7439856178 . . . 4D Steiner ratio, with Steiner tree constants [8.6]
0.7475979202 . . . One of Rényi’s parking constants [5.3]
0.749137 . . . With Graham’s hexagon constant [8.15]
0.7493060013 . . . With Kneser–Mahler polynomial constants [3.10]
0.75 3/4; one of the self-avoiding walk constants [5.10]
0.7520107423 . . . One of the abelian group enumeration constants [5.1]
0.7578230112 . . . Flajolet–Odlyzko constant, with Golomb–Dickman [5.4]
0.760729 . . . With Graham’s hexagon constant [8.15]
0.7608657675 . . . (1/2)·(Bateman–Stemmler constant), with

Hardy–Littlewood [2.1]
0.7642236535 . . . Landau–Ramanujan constant [2.3]
0.7647848097 . . . With Meissel–Mertens constants [2.2]
0.7656250596 . . . With Liouville–Roth constants [2.22]
0.7666646959 . . . With iterated exponential constants [6.11]
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0.7669444905 . . . With Niven’s constant [2.6]
0.7671198507 . . . Conway’s constant [6.12]
0.77100 . . . One of the self-avoiding walk constants [5.10]
0.7711255236 . . . With Gauss–Kuzmin–Wirsing constant [2.17]
0.7735162909 . . . Flajolet–Martin constant, with Prouhet–Thue–Morse [6.8]
0.7759021363 . . . Bender’s constant, with Lengyel’s constant [5.7]
0.7776656535 . . . One of the geometric probability constants [8.1]
0.7824816009 . . . With Golomb–Dickman constant [5.4]
0.7834305107 . . . One of the iterated exponential constants [6.11]
0.7841903733 . . . 3D Steiner ratio, with Steiner tree constants [8.6]
0.7853805572 . . . With Kepler–Bouwkamp constant [6.3]
0.7853981633 . . . π/4; with Kepler–Bouwkamp [6.3], Moser’s worm [8.4]
0.7885305659 . . . Lüroth analog of Khintchine’s constant [1.8]
0.79 . . . One of the optimal stopping constants [5.15]
0.7916031835 . . . One of Otter’s tree enumeration constants [5.6]
0.7922082381 . . . Lal’s constant, with Hardy–Littlewood constants [2.1]
0.8003194838 . . . Conjectured value, weakly triple-free set constant [2.26]
0.8008134543 . . . Bender’s constant, with Lengyel’s constant [5.7]
0.8019254372 . . . With Euler–Mascheroni constant [1.5]
0.8043522628 . . . One of the optimal stopping constants [5.15]
0.8086525183 . . . Solomon’s parking constant, with Rényi’s parking [5.3]
0.8093940205 . . . Alladi–Grinstead constant [2.9]
0.8116869215 . . . One of Flajolet’s constants, with Thue–Morse [6.8]
0.8118 . . . One of the longest subsequence constants [5.20]
0.8125565590 . . . Stolarsky–Harborth constant [2.16]
0.8128252421 . . . With Young–Fejér–Jackson constants [3.14]
0.81318 . . . c0; one of the longest subsequence constants [5.20]
0.8137993642 . . . With Reuleaux triangle constants [8.10]
0.8175121124 . . . With Shapiro–Drinfeld constant [3.1]
0.82 . . . With k-satisfiability constants [5.21]
0.822 . . . One of Pólya’s random walk constants [5.9]
0.8224670334 . . . π2/12; with traveling salesman constants [8.5]
0.8247830309 . . . (

√
5 − 1)/

√
2; one of Turán’s power sum constants [3.16]

0.8249080672 . . . 2·(Prouhet–Thue–Morse constant) [6.8]
0.8269933431 . . . 3

√
3/(2π ); with circular coverage constants [8.2]

0.8319073725 . . . 1/ζ (3); with Apéry’s constant [1.6]
0.8324290656 . . . Rosser’s constant, with Hardy–Littlewood constants [2.1]
0.8346268416 . . . 1/M ; with Gauss’ lemniscate constant [6.1]
0.8351076361 . . . With Hall–Montgomery constant [2.33]
0.8371132125 . . . A′

3; with Brun’s constant [2.14]
0.8403426028 . . . With Reuleaux triangle constants [8.10]
0.8427659133 . . . (12 ln(2))/π2; Lévy’s constant [1.8]
0.8472130848 . . . 3M/

√
2; ubiquitous constant, with Gauss’ lemniscate [6.1]

0.8507361882 . . . Paper folding constant, with Prouhet–Thue–Morse [6.8]
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0.8561089817 . . . With Landau–Ramanujan constant [2.3]
0.8565404448 . . . 3rd Pappalardi constant, with Artin’s constant [2.4]
0.8621470373 . . . With Gauss–Kuzmin–Wirsing constant [2.17]
0.8636049963 . . . With Stolarsky–Harborth constant [2.16]
0.8657725922 . . . Conjectured value of integer Chebyshev constant [4.9]
0.8660254037 . . .

√
3/2; 2D Steiner ratio [8.6], universal coverage [8.3]

0.8689277682 . . . With Landau–Ramanujan constant [2.3]
0.8705112052 . . . With Otter’s tree enumeration constants [5.6]
0.8705883800 . . . A4; with Brun’s constant [2.14]
0.8711570464 . . . One of Flajolet’s constants, with Thue–Morse [6.8]
0.8728875581 . . . With Landau–Ramanujan constant [2.3]
0.8740191847 . . . L/3; with Landau–Ramanujan [2.3], Gauss’ lemniscate [6.1]
0.8740320488 . . . One of Turán’s power sum constants [3.16]
0.8744643684 . . . With Niven’s constant [2.6]
0.8785309152 . . . One of the geometric probability constants [8.1]
0.8795853862 . . . With Lenz–Ising constants [5.22]
0.8815138397 . . . Average class number, with Artin’s constant [2.4]
0.8856031944 . . . Minimum of 
(x), with Euler–Mascheroni constant [1.5.4]
0.8905362089 . . . eγ /2; with Hardy–Littlewood constants [2.1]
0.8928945714 . . . With Niven’s constant [2.6]
0.8948412245 . . . With Landau–Ramanujan constant [2.3]
0.90177 . . .

√
c0; one of the longest subsequence constants [5.20]

0.90682 . . . One of Rényi’s parking constants [5.3]
0.9068996821 . . . π/

√
12; densest circle packing, with Hermite’s constants [8.7]

0.9089085575 . . . With “one-ninth” constant [4.5]
0.91556671 . . . One of Rényi’s parking constants [5.3]
0.9159655941 . . . Catalan’s constant, G [1.7]
0.9241388730 . . . With hyperbolic volume constants [8.9]
0.9285187329 . . . With Gauss–Kuzmin–Wirsing constant [2.17]
0.9296953983 . . . ln(2)/2 + 2G/π ; with Lenz–Ising constants [5.22]
0.9312651841 . . . 4th Pappalardi constant, with Artin’s constant [2.4]
0.9375482543 . . . −ζ ′(2); with Porter’s constant [2.18]
0.9468064072 . . . With Landau–Ramanujan constant [2.3]
0.9625228267 . . . With Lebesgue constants [4.2]
0.9625817323 . . . c+

0 ; with [5.22] Lenz–Ising constants
0.9730397768 . . . With Landau–Ramanujan constant [2.3]
0.9780124781 . . . Elbert’s constant, with Shapiro–Drinfeld [3.1]
0.9795555269 . . . 3rd Bendersky constant, with Glaisher–Kinkelin [2.15]
0.9848712825 . . . One of Rényi’s parking constants [5.3]
0.9852475810 . . . With Landau–Ramanujan constant [2.3]
0.9877003907 . . . With universal coverage constants [8.3]
0.9878490568 . . . ln(Khintchine’s constant) [1.8]
0.9891336344 . . . 2·(Shapiro–Drinfeld constant) [3.1]
0.9894312738 . . . With Lebesgue constants [4.2]



P1: IKB

CB503-tcons CB503/Finch-v2.cls December 9, 2004 14:20 Char Count=

556 Table of Constants

0.9920479745 . . . 4th Bendersky constant, with Glaisher–Kinkelin [2.15]
0.9932 . . . With geometric probability constants [8.1]
1 One; conjectured value of Linnik’s constant, Baker’s

constant [2.12]
1.0028514266 . . . With Moser’s worm constants [8.4]
1.0031782279 . . . Generalized Stirling constant, with Stieltjes constants [2.21]
1.0074347569 . . . DeVicci’s tesseract constant [8.14]
1.0077822185 . . .

√
65/8; with Heilbronn triangle constants [8.16]

1.0096803872 . . . 5th Bendersky constant, with Glaisher–Kinkelin [2.15]
1.0149416064 . . . π ln(β); Gieseking’s constant, with Kneser–Mahler [3.10]
1.0174087975 . . . h3; with Euler–Mascheroni constant [1.5.4]
1.0185012157 . . . With Porter–Hensley constant [2.18]
1.0208 . . . One of the traveling salesman constants [8.5]
1.0250590965 . . . With Lenz–Ising constants [5.22]
1.0306408341 . . . π2/(6 ln(2) ln(10)); Lévy’s constant [1.8]
1.0309167521 . . . 2nd Bendersky constant, with Glaisher–Kinkelin [2.15]
1.0346538818 . . . One of the Meissel–Mertens constants [2.2]
1.0451637801 . . . Li(2); with Euler–Gompertz constant [6.2]
1.0471975511 . . . π/3; with universal coverage constants [8.3]
1.0478314475 . . . One of the quadratic recurrence constants [6.10]
1.0544399448 . . . With Landau–Ramanujan constant [2.3]
1.0547001962 . . . One of the self-avoiding walk constants [5.10]
1.0606601717 . . . With DeVicci’s tesseract constant [8.14]
1.0662758532 . . . With Lebesgue constants [4.2]
1.0693411205 . . . One of Pólya’s random walk constants [5.9]
1.0786470120 . . . One of Pólya’s random walk constants [5.9]
1.0786902162 . . . With Sobolev isoperimetric constants [3.6]
1.0820884492 . . . With hyperbolic volume constants [8.9]
1.0873780254 . . . One of Feller’s coin tossing constants [5.11]
1.0892214740 . . . With Vallée’s constant [2.19]
1.0894898722 . . . 1/2 + G/π ; with Wilbraham–Gibbs constant [4.1]
1.0939063155 . . . One of Pólya’s random walk constants [5.9]
1.0963763171 . . . With DeVicci’s tesseract constant [8.14]
1.0978510391 . . . A3; with Brun’s constant [2.14]
1.0986419643 . . . Paris’ constant, with Golden mean [1.2]
1.0986858055 . . . Lengyel’s constant [5.7]
1.1009181908 . . . With digital search tree constants [5.14]
1.1038396536 . . . With Gauss–Kuzmin–Wirsing constant [2.17]
1.1061028674 . . . One of Pólya’s random walk constants [5.9]
1.1064957714 . . . One of the Copson–de Bruijn constants [3.5]
1.1128357889 . . . (4L)/(3π ); with Landau–Ramanujan constant [2.3]
1.1169633732 . . . One of Pólya’s random walk constants [5.9]
1.1178641511 . . . Goh-Schmutz constant, with Golomb–Dickman [5.4]
1.1180339887 . . .

√
5/2; one of the Steinitz constants [3.13]
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1.128057 . . . One of the percolation cluster density constants [5.18]
1.1289822228 . . . With Otter’s tree enumeration constants [5.6]
1.13198824 . . . Viswanath’s constant, with Golden mean [1.2]
1.1365599187 . . . With Otter’s tree enumeration constants [5.6]
1.1373387363 . . . One of the digital search tree constants [5.14]
1.1481508398 . . . With Porter’s constant [2.18]
1.1504807723 . . . Goldbach–Vinogradov constant, with Hardy–Littlewood [2.1]
1.1530805616 . . . With Landau–Ramanujan constant [2.3]
1.1563081248 . . . One of Pólya’s random walk constants [5.9]
1.1574198038 . . . With Otter’s tree enumeration constants [5.6]
1.1575 . . . One of the self-avoiding walk constants [5.10]
1.1587284730 . . . Grazing goat constant, with circular coverage constants [8.2]
1.159 . . . One of the self-avoiding walk constants [5.10]
1.1662436161 . . . 4G/π ; with Lenz–Ising constants [5.22]
1.1762808182 . . . Salem constant [2.30]
1.177043 . . . One of the self-avoiding walk constants [5.10]
1.1789797444 . . . 2G/π ; with Wilbraham–Gibbs constant [4.1]
1.1803405990 . . . h1; with Euler–Mascheroni constant [1.5.4]
1.1865691104 . . . π2/(12 ln(2)); Lévy’s constant [1.8]
1.1874523511 . . . Foias’ constant, with Grossman’s constant [6.4]
1.1981402347 . . . M ; Gauss’ lemniscate constant [6.1]
1.1996786402 . . . With Laplace limit constant [4.8]
1.2013035599 . . . Rosser’s constant, with Hardy–Littlewood constants [2.1]
1.2020569031 . . . ζ (3); Apéry’s constant [1.6]
1.205 . . . One of the self-avoiding walk constants [5.10]
1.2087177032 . . . Baxter’s constant, with Lieb’s square ice constant [5.24]
1.2160045618 . . . One of Otter’s tree enumeration constants [5.6]
1.21667 . . . One of the self-avoiding walk constants [5.10]
1.2241663491 . . . One of Otter’s tree enumeration constants [5.6]
1.2267420107 . . . Fibonacci factorial constant, with Golden mean [1.2]
1.2368398446.. One of Feller’s coin tossing constants [5.11]
1.238 . . . With Lenz–Ising constants [5.22]
1.2394671218 . . . One of Pólya’s random walk constants [5.9]
1.257 . . . With Prouhet–Thue–Morse constant [6.8]
1.2577468869 . . . With Alladi–Grinstead [2.9], Khintchine–Lévy [1.8]
1.2599210498 . . . 3

√
2; with Pythagoras’ constant [1.1]

1.2610704868 . . . With binary search tree constants [5.13]
1.2615225101 . . . With hyperbolic volume constants [8.9]
1.2640847353 . . . One of the quadratic recurrence constants [6.10]
1.2672063606 . . . µ6; one of the extreme value constants [5.16]
1.272 . . . One of the self-avoiding walk constants [5.10]
1.275 . . . One of the self-avoiding walk constants [5.10]
1.2824271291 . . . Glaisher–Kinkelin constant [2.15]
1.2885745539 . . . With Feigenbaum–Coullet–Tresser constants [1.9]
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1.2910603681 . . . With Vallée’s constant [2.19]
1.2912859970 . . . One of the iterated exponential constants [6.11]
1.2923041571 . . . With Landau–Ramanujan constant [2.3]
1.2940 . . . One of the self-avoiding walk constants [5.10]
1.2985395575 . . . Bateman’s A constant, with Hardy–Littlewood [2.1]
1.302 . . . Square-free word constant [5.17]
1.3035772690 . . . Conway’s constant [6.12]
1.30568 . . . Apollonian packing constant [8.20]
1.3063778838 . . . Mills’ constant [2.13]
1.3110287771 . . . Quarter-lemniscate arclength L/2, Gauss’ constant [6.1]
1.3135070786 . . . K−3; with Khintchine’s constant [1.8]
1.3203236316 . . . 2Ctwin; one of the Hardy–Littlewood constants [2.1]
1.3247179572 . . . With Golden mean [1.2], Pisot–Vijayaraghavan

constants [2.30]
1.3325822757 . . . With Meissel–Mertens [2.2], totient constants [2.7]
1.3385151519 . . . exp(G/π ); 2D dimer constant [5.23]
1.3426439511 . . . With hard square entropy constant [5.12]
1.34375 43/32; one of the self-avoiding walk constants [5.10]
1.3468852519 . . . One of the Riesz–Kolmogorov constants [7.7]
1.3505061 . . . One of the quadratic recurrence constants [6.10]
1.3511315744 . . . With Vallée’s constant [2.19]
1.3521783756 . . . µ7; one of the extreme value constants [5.16]
1.3531302722 . . . With optimal stopping constants [5.15]
1.3694514039 . . . Shallit’s constant, with Shapiro–Drinfeld constant [3.1]
1.3728134628 . . . 2Cquad; one of the Hardy–Littlewood constants [2.1]
1.3750649947 . . . One of the Meissel–Mertens constants [2.2]
1.37575 . . . With geometric probability constants [8.1]
1.3813564445 . . . β; with Kneser–Mahler polynomial constants [3.10]
1.3905439387 . . . Bateman’s B constant, with Hardy–Littlewood [2.1]
1.3932039296 . . . One of Pólya’s random walk constants [5.9]
1.3954859724 . . . Hard hexagon entropy constant, with hard square [5.12]
1.3994333287 . . . With Kalmár’s composition constant [5.5]
1.4011551890 . . . Myrberg’s constant, with Feigenbaum–Coullet–Tresser [1.9]
1.4045759346 . . . Conjectured value of complex Grothendieck constant [3.11]
1.4092203477 . . . With Stolarsky–Harborth constant [2.16]
1.4106861346 . . . With Euler–Gompertz constant [6.2]
1.4142135623 . . .

√
2; Pythagoras’ constant [1.1]

1.4236003060 . . . µ8; one of the extreme value constants [5.16]
1.4298155 . . . One of the quadratic recurrence constants [6.10]
1.4359911241 . . . . . 1/3 + 2

√
3/π ; 1st Lebesgue constant [4.2]

1.4426950408 . . . ln(2)−1; with Porter–Hensley constants [2.18]
1.4446678610 . . . e1/e; one of the iterated exponential constants [6.11]
1.4503403284 . . . K−2; with Khintchine’s constant [1.8]
1.4513692348 . . . Ramanujan–Soldner constant, with Euler–Gompertz [6.2]
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1.4560749485 . . . Backhouse’s constant, with [5.5]
1.457 . . . Cube-free word constant [5.17]
1.4603545088 . . . −ζ (1/2); with Apéry’s constant [1.6]
1.4609984862 . . . Baxter’s constant, with Lieb’s square ice [5.24]
1.4616321449 . . . x minimizing 
(x), with Euler–Mascheroni constant [1.5.4]
1.4655712318 . . . Moore’s constant, with the Golden mean [1.2]
1.4670780794 . . . Porter’s constant [2.18]
1.4677424503 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
1.4681911223 . . . With Alladi–Grinstead constant [2.9]
1.4741726868 . . . One of Otter’s tree enumeration constants [5.6]
1.4762287836 . . . With Kalmár’s composition constant [5.5]
1.4767 . . . One of the self-avoiding walk constants [5.10]
1.4879506635 . . . −ζ (2/3)/ζ (2); with Niven’s constant [2.6]
1.4880785456 . . . One of Otter’s tree enumeration constants [5.6]
1.5028368010 . . . One of the quadratic recurrence constants [6.10]
1.5030480824 . . . Hard square entropy constant [5.12]
1.50659177 . . . Area of Mandelbrot set, quadratic recurrence [6.10]
1.50685 . . . Nagle’s constant, with Lieb’s square ice constant [5.24]
1.5078747554 . . . Greenfield–Nussbaum constant, quadratic recurrence [6.10]
1.5163860591 . . . One of Pólya’s random walk constants [5.9]
1.5217315350 . . . Bateman–Stemmler constant, Hardy–Littlewood [2.1]
1.5299540370 . . . With Gauss’ lemniscate constant [6.1]
1.5353705088 . . . With digital search tree constants [5.14]
1.5396007178 . . . (4/3)3/2; Lieb’s square ice constant [5.24]
1.5422197217 . . . Madelung constant for planar hexagonal lattice [1.10]
1.5449417003 . . . With Reuleaux triangle constants [8.10]
1.5464407087 . . . With hard square entropy constant [5.12]
1.5513875245 . . . Calabi’s triangle constant [8.13]
1.5557712501 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
1.5707963267 . . . π/2; with Archimedes’ constant [1.4]
1.5849625007 . . . ln(3)/ ln(2); with Stolarsky–Harborth constant [2.16]
1.5868266790 . . . With Feigenbaum–Coullet–Tresser constants [1.9]
1.6066951524 . . . One of the digital search tree constants [5.14]
1.6153297360 . . . With Lenz–Ising constants [5.22]
1.6155426267 . . . Negative of 2D NaCl Madelung constant [1.10]
1.6180339887 . . . Golden mean, ϕ [1.2]
1.6222705028 . . . Odlyzko–Wilf constant, with Mills’ constant [2.13]
1.6281601297 . . . Flajolet–Martin constant, with Prouhet–Thue–Morse [6.8]
1.6366163233 . . . With Erdös–Lebensold constant [2.27]
1.6421884352 . . . 2nd Lebesgue constant [4.2]
1.644703 . . . With moving sofa constant [8.12]
1.6449340668 . . . π2/6; with Apéry [1.6], Hafner–Sarnak–McCurley [2.5]
1.6467602581 . . . With digital search tree constants [5.14]
1.6600 . . . With Lieb’s square ice constant [5.24]
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1.6616879496 . . . One of the quadratic recurrence constants [6.10]
1.6813675244 . . . One of Otter’s tree enumeration constants [5.6]
1.6824415102 . . . Bateman–Grosswald c23 constant, with Niven’s constant [2.6]
1.6847127097 . . . One of the circumradius-inradius constants [8.19]
1.6857 . . . One of the traveling salesman constants [8.5]
1.6903029714 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
1.6910302067 . . . With Cahen’s constant [6.7]
1.6964441175 . . . With Khintchine–Lévy constants [1.8]
1.7052111401 . . . Niven’s constant [2.6]
1.7091579853 . . . π2/(12 ln(ϕ)); with Khintchine–Lévy constants [1.8]
1.7286472389 . . . Kalmár’s composition constant [5.5]
1.7356628245 . . . With Klarner’s polyomino constant [5.19]
1.7374623212 . . . With Golomb–Dickman constant [5.4]
1.7410611252 . . . One of Otter’s tree enumeration constants [5.6]
1.7454056624 . . . K−1; with Khintchine’s constant [1.8]
1.7475645946 . . . Negative of 3D NaCl Madelung constant [1.10]
1.75 7/4; with Lenz–Ising constants [5.22]
1.7548776662 . . . One of Feller’s coin tossing constants [5.11]
1.7555101394 . . . One of Otter’s tree enumeration constants [5.6]
1.756 . . . One of the self-avoiding walk constants [5.10]
1.7579327566 . . . Infinite nested radical, with Golden mean [1.2]
1.7587436279 . . . With Alladi–Grinstead constant [2.9]
1.7632228343 . . . With iterated exponential constants [6.11]
1.76799378 . . . With optimal stopping constants [5.15]
1.77109 . . . −c1; one of the longest subsequence constants [5.20]
1.7724538509 . . .

√
π ; with Euler’s constant [1.5.4], Carlson–Levin [3.2]

1.7783228615 . . . 3rd Lebesgue constant [4.2]
1.7810724179 . . . eγ ; with Euler’s constant [1.5], Erdös–Lebensold [2.27]
1.7818046151 . . . Conjectured value of power series constant [7.3]
1.7822139781 . . . Conjectured value of real Grothendieck constant [3.11]
1.7872316501 . . . Komornik–Loreti constant, with Prouhet–Thue–Morse [6.8]
1.7916228120 . . . exp(2G/π ); 2D dimer constant [5.23]
1.7941471875 . . . With Kalmár’s composition constant [5.5]
1.8173540210 . . . One of the self-avoiding walk constants [5.10]
1.8228252496 . . . Conjectured value of Masser–Gramain constant [7.2]
1.8356842740 . . . With Meissel–Mertens constants [2.2]
1.8392867552 . . . Associated with Tribonacci sequence and Golden mean [1.2]
1.8393990840 . . . Negative of 4D NaCl Madelung constant [1.10]
1.8442049806 . . . One of the Landau–Kolmogorov constants [3.3]

1.8477590650 . . .
√

2 + √
2; conjectured value of self-avoiding walk

constant [5.10]
1.8519370519 . . . Wilbraham–Gibbs constant [4.1]
1.8540746773 . . . L/

√
2; with Gauss’ lemniscate constant [6.1]

1.8823126444 . . . One of the geometric probability constants [8.1]



P1: IKB

CB503-tcons CB503/Finch-v2.cls December 9, 2004 14:20 Char Count=

Table of Constants 561

1.9021605831 . . . Brun’s constant [2.14]
1.9081456268 . . . β2 ; with Kneser–Mahler polynomial constants [3.10]
1.9093378156 . . . Negative of 5D NaCl Madelung constant [1.10]
1.9126258077 . . . One of Otter’s tree enumeration constants [5.6]
1.9276909638 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
1.9287800 . . . Wright’s constant, with Mills’ constant [2.13]
1.940215351 . . . 2D monomer-dimer constant [5.23]
1.9435964368 . . . One of the Euler totient constants [2.7]
1.9484547890 . . . c4; with Kneser–Mahler polynomial constants [3.10]
1.9504911124 . . . 4·(Gaussian twin prime constant), with Hardy–Littlewood [2.1]
1.9655570390 . . . Negative of 6D NaCl Madelung constant [1.10]
1.9670449011 . . . c5; with Kneser–Mahler polynomial constants [3.10]
1.9771268308 . . . c6; with Kneser–Mahler polynomial constants [3.10]
1.9954559575 . . . With Fransén–Robinson constant [4.6]
2 Two; conjectured value of fast matrix multiplication

constant [2.29]
2.006 . . . With Erdös–Lebensold constant [2.27]
2.0124059897 . . . Negative of 7D NaCl Madelung constant [1.10]
2.0287578381 . . . With Du Bois Reymond constants [3.12]
2.0415 . . . One of the traveling salesman constants [8.5]
2.0462774528 . . . Lüroth analog of Lévy’s constant [1.8]
2.05003 . . . One of the Whitney–Mikhlin extension constants [3.8]
2.0524668272 . . . Negative of 8D NaCl Madelung constant [1.10]
2.0531987328 . . . With self-avoiding walk constants [5.10]
2.0780869212 . . . ln(ϕ)−1; with Porter–Hensley constants [2.18]
2.1080540666 . . . With rendezvous constants [8.21]
2.1102339661 . . . Brown–Wang constant, from Young–Fejér–Jackson [3.14]
2.158 . . . Mian–Chowla constant, with Erdös’ reciprocal sum [2.20]
2.1732543125 . . . ζ (3/2)/ζ (3); with Niven’s constant [2.6]
2.1760161352 . . . With Kneser–Mahler polynomial constants [3.10]
2.1894619856 . . . One of Otter’s tree enumeration constants [5.6]
2.1918374031 . . . One of Otter’s tree enumeration constants [5.6]
2.2001610580 . . . Lüroth analog of Khintchine’s constant [1.8]
2.2038565964 . . . One of the Euler totient constants [2.7]
2.2195316688 . . . Moving sofa constant [8.12]
2.2247514809 . . . Robinson’s C constant, with Khintchine’s constant [1.8]
2.2394331040 . . . Takeuchi–Prellberg constant [5.8]
2.2665345077 . . . With Fransén–Robinson constant [4.6]
2.2782916414 . . . One of Moser’s worm constants [8.4]
2.2948565916 . . . One of the abelian group enumeration constants [5.1]
2.3 . . . Estimate of sc(3), with k-satisfiability constants [5.21]
2.3025661371 . . . One of Flajolet’s constants, with Thue–Morse [6.8]
2.3038421962 . . . Robinson’s A constant, with Khintchine’s constant [1.8]
2.3091385933 . . . With Klarner’s polyomino constant [5.19]
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2.3136987039 . . . With Madelung’s constant [1.10]
2.3212850380 . . . With rendezvous constants [8.21]
2.3360 . . . With Lieb’s square ice constant [5.24]
2.3507 . . . One of the Landau–Kolmogorov constants [3.3]
2.3565273533 . . . One of the monomer-dimer constants [5.23]
2.3731382208 . . . π2/(6 ln(2)); Lévy’s constant [1.8]
2.37597 . . . With Klarner’s polyomino constant [5.19]
2.3768417063 . . . Conjectured value of integer Chebyshev constant [4.9]
2.3979455861 . . . With Du Bois Reymond constants [3.12]
2.4048255576 . . . First zero of J0(x), with Sobolev isoperimetric constants [3.6]
2.4149010237 . . . With Golomb–Dickman constant [5.4]
2.4413238136 . . . With Lebesgue constants [4.2]
2.4725480752 . . . With Sobolev isoperimetric constants [3.6]
2.4832535361 . . . One of Otter’s tree enumeration constants [5.6]
2.4996161129 . . . One of the abelian group enumeration constants [5.1]
2.5029078750 . . . α; one of the Feigenbaum–Coullet–Tresser constants [1.9]
2.5066282746 . . .

√
2π ; Stirling’s constant; with Archimedes [1.4],
Glaisher–Kinkelin [2.15]

2.5175403550 . . . One of Otter’s tree enumeration constants [5.6]
2.5193561520 . . . With Madelung’s constant [1.10]
2.5695443449 . . . eγ / ln(2); with Euler–Mascheroni constant [1.5]
2.5849817595 . . . Sierpinski’s constant [2.10]
2.5980762113 . . .

√
27/4; with Lieb’s square ice constant [5.24]

2.6034 . . . With Lieb’s square ice constant [5.24]
2.6180339887 . . . Golden root ϕ + 1, with Tutte–Beraha [5.25], Gauss–Kuzmin–

Wirsing [2.17]
2.6220575542 . . . Half-lemniscate arclength L , Gauss’ constant [6.1]
2.6381585303 . . . Estimate of 2D self-avoiding walk constant [5.10]
2.6389584337 . . . (2 + √

3)/
√

2; with beam detection constant [8.11]
2.67564 . . . With Klarner’s polyomino constant [5.19]
2.6789385347 . . . 
(1/3); with Euler–Mascheroni constant [1.5.4]
2.6789638796 . . . 4·(Shanks’ constant), with Hardy–Littlewood constants [2.1]
2.6811281472 . . . One of Otter’s tree enumeration constants [5.6]
2.6854520010 . . . Khintchine’s constant [1.8]
2.7182818284 . . . Natural logarithmic base, e [1.3]
2.72062 . . . One of the self-avoiding walk constants [5.10]
2.7494879027 . . . One of Otter’s tree enumeration constants [5.6]
2.75861972 . . . With hyperbolic volume constants [8.9]
2.7865848321 . . . With Fransén–Robinson constant [4.6]
2.8077702420 . . . Fransén–Robinson constant [4.6]
2.8154600332 . . . One of Otter’s tree enumeration constants [5.6]
2.8264199970 . . . Murata’s constant, with Artin [2.4], totient [2.7]
2.8336106558 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
2.8372974794 . . . With Madelung’s constant [1.10]
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2.8582485957 . . . One of the Hardy–Littlewood constants [2.1]
2.9409823408 . . . co/

√
2π ; with Lengyel’s constant [5.7]

2.9409900447 . . . ce/
√

2π ; with Lengyel’s constant [5.7]
2.9557652856 . . . One of Otter’s tree enumeration constants [5.6]
2.9904703993 . . . Goh–Schmutz constant, with Golomb–Dickman [5.4]
3 Three; with Tutte–Beraha constants [5.25]
3.0079 . . . With Erdös’ reciprocal sum constants [2.20]
3.01 . . . With Erdös’ reciprocal sum constants [2.20]
3.1415926535 . . . Archimedes’ constant, π [1.4]
3.1477551485 . . . Quadratic residues constant, with Meissel–Mertens [2.2]
3.1704593421 . . . One of the Euler totient constants [2.7]
3.1962206165 . . . “Plate” constant, with Sobolev isoperimetric constants [3.6]
3.2099123007 . . . exp(4G/π ); 2D dimer constant [5.23]; also

Kneser–Mahler [3.10]
3.2469796037 . . . Silver root, one of the Tutte–Beraha constants [5.25]
3.2504 . . . With Lieb’s square ice constant [5.24]
3.2659724710 . . . One of Otter’s tree enumeration constants [5.6]
3.2758229187 . . . exp(π2)/(12 ln(2)); Lévy’s constant [1.8]
3.2871120555 . . . One of Otter’s tree enumeration constants [5.6]
3.2907434386 . . . One of Otter’s tree enumeration constants [5.6]
3.3038421963 . . . Robinson’s B constant, with Khintchine’s constant [1.8]
3.33437 . . . Bumby’s constant, with Freiman’s constant [2.31]
3.3412669407 . . . With Otter’s tree enumeration constants [5.6]
3.3598856662 . . . With digital search tree constants [5.14]
3.3643175781 . . . Van der Corput’s constant [3.15]
3.4070691656 . . . Magata’s constant, with Kalmár’s composition constant [5.5]
3.4201328816 . . . With self-avoiding walk constants [5.10]
3.4493588902 . . . Robinson’s D constant, with Khintchine’s constant [1.8]
3.4627466194 . . . Q−1; with digital search tree constants [5.14], Lengyel [5.7]
3.501838 . . . With self-avoiding walk constants [5.10]
3.5070480758 . . . With Feller’s coin tossing constants [5.11]
3.5795 . . . With Lieb’s square ice constant [5.24]
3.6096567319 . . . Conjectured value of ρ2, Diophantine approximation [2.23]
3.6180339887 . . . ϕ + 2; one of the Tutte–Beraha constants [5.25]
3.6256099082 . . . 
(1/4); with Euler–Mascheroni constant [1.5.4]
3.63600703 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
3.6746439660 . . . Quadratic residues constant, with Meissel–Mertens [2.2]
3.6754 . . . One of the longest subsequence constants [5.20]
3.7038741039 . . . 2·(Wilbraham–Gibbs constant) [4.1]
3.764435608 . . . 2D monomer-dimer constant [5.23]
3.7962 . . . zc; with hard square entropy constant [5.12]
3.8264199970 . . . Murata’s constant + 1, with Artin [2.4], totient [2.7]
3.8695192413 . . . With optimal stopping constants [5.15]
3.9002649200 . . . With Madelung’s constant [1.10]
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3.921545 . . . With Moser’s worm constants [8.4]
3.92259368 . . . With hyperbolic volume constants [8.9]
4 Four; Tutte–Beraha [5.25], 2D Grötzsch ring constant [7.8]
4.0180767046 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
4.062570 . . . Klarner’s polyomino constant [5.18]
4.121326 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
4.1327313541 . . .

√
2πe; Sobolev isoperimetric [3.6], traveling salesman [8.5]

4.1507951 . . . One of the self-avoiding walk constants [5.10]
4.1511808632 . . . One of the Hardy–Littlewood constants [2.1]
4.2001 . . . With Lieb’s square ice constant [5.24]
4.2472965459 . . . One of the geometric probability constants [8.1]
4.25 . . . Estimate of rc(3), with k-satisfiability constants [5.21]
4.3076923076 . . . 56/13; Korn constant for 3D ball [3.7]
4.3110704070 . . . One of the binary search tree constants [5.13]
4.5278295661 . . . Freiman’s constant [2.31]
4.5651 . . . With Lieb’s square ice constant [5.24]
4.5678018826 . . . Gasper’s constant, with Young–Fejér–Jackson [3.14]
4.5860790989 . . . One of Pólya’s random walk constants [5.9]
4.5908437119 . . . 
(1/5); with Euler–Mascheroni constant [1.5.4]
4.6592661225 . . . Bateman–Grosswald c03 constant, with Niven’s

constant [2.6]
4.6692016091 . . . δ; one of the Feigenbaum–Coullet–Tresser constants [1.9]
4.68404 . . . Estimate of 3D self-avoiding walk constant [5.10]
4.7300407448 . . . “Rod” constant, with Sobolev isoperimetric [3.6]
4.799891547 . . . Three-arc approximation of beam detection constant [8.11]
4.8189264563 . . . Two-arc approximation of beam detection constant [8.11]
4.8426 . . . One of the self-avoiding walk constants [5.10]
4.9264 . . . With Artin’s constant [2.4]
5.0747080320 . . . With hyperbolic volume constants [8.9]
5.1387801326 . . . With Sobolev isoperimetric constants [3.6]
5.1667 . . . With Lieb’s square ice constant [5.24]
5.2441151086 . . . Lemniscate arclength 2L , Gauss’ constant [6.1]
5.2569464048 . . . With Euler–Mascheroni constant [1.5.4]
5.4545172445 . . . With Khintchine–Lévy constants [1.8]
5.5243079702 . . . With Khintchine–Lévy constants [1.8]
5.5553 . . . With Lieb’s square ice constant [5.24]
5.5663160017 . . . 
(1/6); with Euler–Mascheroni constant [1.5.4]
5.6465426162 . . . One of Otter’s tree enumeration constants [5.6]
5.6493764966 . . . Conjectured value of integer Chebyshev constant [4.9]
5.7831859629 . . . With Sobolev isoperimetric constants [3.6]
5.8726188208 . . . Bateman–Grosswald −c13 constant, with Niven’s

constant [2.6]
5.9087 . . . With Artin’s constant [2.4]
5.9679687038 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
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6.0 . . . One of Cameron’s sum-free set constants [2.25]
6.2831853071 . . . 2π ; with Archimedes’ constant [1.4]
6.3800420942 . . . One of Otter’s tree enumeration constants [5.6]
6.77404 . . . Estimate of 4D self-avoiding walk constant [5.10]
6.7992251609 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
6.8 . . . One of Cameron’s sum-free set constants [2.25]
7.1879033516 . . . Conjectured value of John constant [7.4]
7.2569464048 . . . With Euler–Mascheroni constant [1.5.4]
7.2846862171 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
7.3719494907 . . . co; with Lengyel’s constant [5.7]
7.3719688014 . . . ce; with Lengyel’s constant [5.7]
7.7431319855 . . . One of the digital search tree constants [5.14]
7.7581602911 . . . One of Otter’s tree enumeration constants [5.6]
8.3494991320 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
8.7000366252 . . . Kepler–Bouwkamp constant [6.3]
8.7210972 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
8.83854 . . . Estimate of 5D self-avoiding walk constant [5.10]
9.0803731646 . . . Hensley’s constant [2.18]
9.27738 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
9.2890254919 . . . Reciprocal of “one-ninth” constant [4.5]
9.2962468327 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
9.37 . . . 3D Grötzsch ring constant [7.8]
9.576778 . . . With beam detection constant [8.11]
9.6694754843 . . . Bateman–Grosswald c04 constant, with Niven’s

constant [2.6]
9.7 . . . Estimate of rc(4), with k-satisfiability constants [5.21]
10.5101504239 . . . Zagier’s constant, with Freiman’s constant [2.31]
10.7310157948 . . . exp(π2/(6 ln(2))); Lévy’s constant [1.8]
10.87809 . . . Estimate of 6D self-avoiding walk constant [5.10]
11.0901699437 . . . (11 + 5

√
5)/2; with hard square entropy constant [5.12]

12.262874 . . . With self-avoiding walk constants [5.10]
12.6753318106 . . . 16·(Lal’s constant), with Hardy–Littlewood constants [2.1]
14.1347251417 . . . 1st zeta function zero, with Glaisher–Kinkelin constant [2.15]
14.6475663016 . . . One of the abelian group enumeration constants [5.1]
15.1542622415 . . . ee; one of the iterated exponential constants [6.11]
16.3638968792 . . . β; one of the Feigenbaum–Coullet–Tresser constants [1.9]
16.9787814834 . . . Bateman–Grosswald c14 constant, with Niven’s constant [2.6]
19.4455760839 . . . Bateman–Grosswald c05 constant, with Niven’s constant [2.6]
20.9 . . . Estimate of rc(5), with k-satisfiability constants [5.21]
21.0220396387 . . . 2nd zeta function zero, with Glaisher–Kinkelin

constant [2.15]
22.6 . . . 4D Grötzsch ring constant [7.8]
25.0108575801 . . . 3rd zeta function zero, with Glaisher–Kinkelin

constant [2.15]
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29.576303 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
39.1320261423 . . . With Calabi’s triangle constant [8.13]
43.2 . . . Estimate of rc(6), with k-satisfiability constants [5.21]
55.247 . . . One of the Feigenbaum–Coullet–Tresser constants [1.9]
118.6924619727 . . . One of the abelian group enumeration constants [5.1]
137.0359 . . . Inverse fine structure constant, with Feigenbaum–

Coullet–Tresser [1.9]
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Csáki, E., 330
Csordas, G., 204, 205
Cunningham, F., 532
Cureton, L. M., 227
Curnow, T., 429
Currie, J., 370
Curtiss, D. R., 447
Cusick, T. W., 170, 177, 202
Cvetkovic, D. M., 410
Cvijovic, D., 51, 255
Cvitanovic, P., 73, 75

Dörrie, H., 268, 484
Dabrowski, A., 51
Dafermos, C. M., 227
Dajani, K., 64, 155
Daley, D. J., 328, 482
Damsteeg, I., 242
Danby, J. M. A., 268
Dancik, V., 387
Darling, D. A., 38
Darmon, H., 17
Dash, S., 534
Dassios, G., 227
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Erdélyi, A., 40, 58, 427
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Hénon, M., 74
Henrici, P., 268
Henry, J. J., 409, 415
Hensley, D., 156, 159, 291
Heppes, A., 242
Herendi, T., 150
Heringa, J. R., 404
Herman, R., 329
Hermisson, J., 349, 411
Herrmann, H. J., 539
Herschorn, M., 210
Herstein, I. N., 16
Hertling, P. H., 83
Herzog, F., 423
Hestenes, M. R., 229
Heupel, W., 103
Hewitt, E., 244, 250
Hickerson, D., 382
Higgins, P. M., 292, 295
Hilbert, D., 198, 224
Hildebrand, A., 207, 291
Hildebrandt, S., 468
Hilgemeier, M., 455
Hilhorst, H. J., 411
Hill, J., 448
Hille, E., 271, 295, 457
Hillier, I. H., 283
Hinkkanen, A., 470
Hippisley, R. L., 58
Hirano, K., 341
Hirschberg, D. S., 534
Hirschhorn, M. D., 26



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-Aind CB503/Finch-v2.cls December 9, 2004 18:36 Char Count=

Author Index 577

Hirst, K. E., 538
Hitczenko, P., 342
Hlawka, E., 178
Hobson, E. W., 239
Hockney, G. M., 510
Hoey, D., 452
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Vignéras, M.-F., 142
Vijayaraghavan, T., 196, 197, 290
Vineyard, G. H., 329
Vinogradov, I. M., 92
Vinson, J. P., 458
Viola, A., 282
Viola, C., 173
Viot, P., 282, 283
Virtanen, K. I., 477
Viswanath, D., 11
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The following results are too beautiful to be overlooked. The Gaussian integers a + bi ,
where a, b are integers and i2 = −1, form a unique factorization domain with units
{±1, ±i}. Suppose two Gaussian integers are chosen at random. The probability that
they are coprime, in the limit over large disks, is [1, 2]

6

π2G
= 0.6637008046 . . .

where G is Catalan’s constant [1.7]. This is slightly greater than the corresponding
probability that two ordinary integers are coprime [1.4].

In the same way, the Eisenstein–Jacobi integers a + bω, where a, b are integers
and ω = (−1 + i

√
3)/2, form a unique factorization domain with units {±1, ±i, ±ω}.

The probability that two such randomly chosen integers are coprime, in the limit over
large disks, is [1, 3]

6

π2 H
= 0.7780944891 . . .

where

H = 4π

3
√

3
ln(β) =

∞∑
k=0

(
1

(3k + 1)2
− 1

(3k + 2)2

)
= 0.7813024128 . . .

and β is discussed extensively in [3.10].
The constants 6/(π2G) and 6/(π2 H ) are also, respectively, the probabilities that

a random Gaussian integer is square-free and a random Eisenstein–Jacobi integer is
square-free. As in [2.5], there are related notions of carefreeness but the corresponding
constants are not yet known.

Incidently, the pairwise coprimality result conjectured at the end of [2.5] has been
proved to be true [4].

And, as this book goes to press, it is unclear [5] whether the prime limit infimum
problem given at the conclusion of [2.13] is solved (or nearly so).

601



P1: IKB

CB503-AIP CB503/Finch-v2.cls May 26, 2003 15:16 Char Count=

602 Added in Press

[1] G. E. Collins and J. R. Johnson, The probability of relative primality of Gaussian integers,
Proc. 1988 Int. Symp. Symbolic and Algebraic Computation (ISSAC), Rome, ed. P. Gianni,
Lect. Notes in Comp. Sci. 358, Springer-Verlag, 1989, pp. 252–258; MR 90m:11165.

[2] E. Pegg, The neglected Gaussian integers (MathPuzzle).
[3] E. Kowalski, Coprimality and squarefreeness within quadratic fields, unpublished note

(2003).
[4] J.-Y. Cai and E. Bach, On testing for zero polynomials by a set of points with bounded

precision, Theoret. Comput. Sci. 296 (2003) 15–25.
[5] D. Goldston and C. Yildirim, Small gaps between primes, submitted (2003).


	Cover
	About
	ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS 94
	Mathematical Constants
	Copyright - ISBN: 0521818052
	Contents
	Preface
	Notation
	1 Well-Known Constants�����������������������������
	1.1 Pythagoras’ Constant, √2
	1.1.1 Generalized Continued Fractions��������������������������������������������
	1.1.2 Radical Denestings�������������������������������

	1.2 The Golden Mean, φ
	1.2.1 Analysis of a Radical Expansion��������������������������������������������
	1.2.2 Cubic Variations of the Golden Mean������������������������������������������������
	1.2.3 Generalized Continued Fractions��������������������������������������������
	1.2.4 Random Fibonacci Sequences���������������������������������������
	1.2.5 Fibonacci Factorials���������������������������������

	1.3 The Natural Logarithmic Base, e������������������������������������������
	1.3.1 Analysis of a Limit��������������������������������
	1.3.2 Continued Fractions��������������������������������
	1.3.3 The Logarithm of Two���������������������������������

	1.4 Archimedes’ Constant, π
	1.4.1 Infinite Series����������������������������
	1.4.2 Infinite Products������������������������������
	1.4.3 Definite Integrals�������������������������������
	1.4.4 Continued Fractions��������������������������������
	1.4.5 Infinite Radical�����������������������������
	1.4.6 Elliptic Functions�������������������������������
	1.4.7 Unexpected Appearances�����������������������������������

	1.5 Euler–Mascheroni Constant, γ
	1.5.1 Series and Products��������������������������������
	1.5.2 Integrals����������������������
	1.5.3 Generalized Euler Constants����������������������������������������
	1.5.4 Gamma Function���������������������������

	1.6 Apéry’s Constant, ζ(3)
	1.6.1 Bernoulli Numbers������������������������������
	1.6.2 The Riemann Hypothesis�����������������������������������
	1.6.3 Series�������������������
	1.6.4 Products���������������������
	1.6.5 Integrals����������������������
	1.6.6 Continued Fractions��������������������������������
	1.6.7 Stirling Cycle Numbers�����������������������������������
	1.6.8 Polylogarithms���������������������������

	1.7 Catalan’s Constant, G��������������������������������
	1.7.1 Euler Numbers��������������������������
	1.7.2 Series�������������������
	1.7.3 Products���������������������
	1.7.4 Integrals����������������������
	1.7.5 Continued Fractions��������������������������������
	1.7.6 Inverse Tangent Integral�������������������������������������

	1.8 Khintchine–Lévy Constants
	1.8.1 Alternative Representations����������������������������������������
	1.8.2 Derived Constants������������������������������
	1.8.3 Complex Analog���������������������������

	1.9 Feigenbaum–Coullet–Tresser Constants�����������������������������������������������
	1.9.1 Generalized Feigenbaum Constants���������������������������������������������
	1.9.2 Quadratic Planar Maps����������������������������������
	1.9.3 Cvitanovic–Feigenbaum Functional Equation������������������������������������������������������
	1.9.4 Golden and Silver Circle Maps������������������������������������������

	1.10 Madelung’s Constant�������������������������������
	1.10.1 Lattice Sums and Euler’s Constant�����������������������������������������������

	1.11 Chaitin’s Constant������������������������������

	2 Constants Associated with Number Theory������������������������������������������������
	2.1 Hardy–Littlewood Constants�������������������������������������
	2.1.1 Primes Represented by Quadratics���������������������������������������������
	2.1.2 Goldbach’s Conjecture����������������������������������
	2.1.3 Primes Represented by Cubics�����������������������������������������

	2.2 Meissel–Mertens Constants������������������������������������
	2.2.1 Quadratic Residues�������������������������������

	2.3 Landau–Ramanujan Constant������������������������������������
	2.3.1 Variations�����������������������

	2.4 Artin’s Constant���������������������������
	2.4.1 Relatives����������������������
	2.4.2 Correction Factors�������������������������������

	2.5 Hafner–Sarnak–McCurley Constant������������������������������������������
	2.5.1 Carefree Couples�����������������������������

	2.6 Niven’s Constant���������������������������
	2.6.1 Square-Full and Cube-Full Integers�����������������������������������������������

	2.7 Euler Totient Constants����������������������������������
	2.8 Pell–Stevenhagen Constants�������������������������������������
	2.9 Alladi–Grinstead Constant������������������������������������
	2.10 Sierpinski’s Constant���������������������������������
	2.10.1 Circle and Divisor Problems�����������������������������������������

	2.11 Abundant Numbers Density Constant���������������������������������������������
	2.12 Linnik’s Constant�����������������������������
	2.13 Mills’ Constant���������������������������
	2.14 Brun’s Constant���������������������������
	2.15 Glaisher–Kinkelin Constant��������������������������������������
	2.15.1 Generalized Glaisher Constants��������������������������������������������
	2.15.2 Multiple Barnes Functions���������������������������������������
	2.15.3 GUE Hypothesis����������������������������

	2.16 Stolarsky–Harborth Constant���������������������������������������
	2.16.1 Digital Sums��������������������������
	2.16.2 Ulam 1-Additive Sequences���������������������������������������
	2.16.3 Alternating Bit Sets����������������������������������

	2.17 Gauss–Kuzmin–Wirsing Constant�����������������������������������������
	2.17.1 Ruelle-Mayer Operators������������������������������������
	2.17.2 Asymptotic Normality����������������������������������
	2.17.3 Bounded Partial Denominators������������������������������������������

	2.18 Porter–Hensley Constants������������������������������������
	2.18.1 Binary Euclidean Algorithm����������������������������������������
	2.18.2 Worst-Case Analysis���������������������������������

	2.19 Vallée’s Constant
	2.19.1 Continuant Polynomials������������������������������������

	2.20 Erdös’ Reciprocal Sum Constants
	2.20.1 A-Sequences�������������������������
	2.20.2 B2-Sequences��������������������������
	2.20.3 Nonaveraging Sequences������������������������������������

	2.21 Stieltjes Constants�������������������������������
	2.21.1 Generalized Gamma Functions�����������������������������������������

	2.22 Liouville–Roth Constants������������������������������������
	2.23 Diophantine Approximation Constants�����������������������������������������������
	2.24 Self-Numbers Density Constant�����������������������������������������
	2.25 Cameron’s Sum-Free Set Constants��������������������������������������������
	2.26 Triple-Free Set Constants�������������������������������������
	2.27 Erdös–Lebensold Constant
	2.27.1 Finite Case�������������������������
	2.27.2 Infinite Case���������������������������
	2.27.3 Generalizations�����������������������������

	2.28 Erdös’ Sum–Distinct Set Constant
	2.29 Fast Matrix Multiplication Constants������������������������������������������������
	2.30 Pisot–Vijayaraghavan–Salem Constants������������������������������������������������
	2.30.1 Powers of 3/2 Modulo One��������������������������������������

	2.31 Freiman’s Constant������������������������������
	2.31.1 Lagrange Spectrum�������������������������������
	2.31.2 Markov Spectrum�����������������������������
	2.31.3 Markov–Hurwitz Equation�������������������������������������
	2.31.4 Hall’s Ray������������������������
	2.31.5 L and M Compared������������������������������

	2.32 De Bruijn–Newman Constant�������������������������������������
	2.33 Hall–Montgomery Constant������������������������������������

	3 Constants Associated with Analytic Inequalities��������������������������������������������������������
	3.1 Shapiro–Drinfeld Constant������������������������������������
	3.1.1 Djokovic’s Conjecture����������������������������������

	3.2 Carlson–Levin Constants����������������������������������
	3.3 Landau–Kolmogorov Constants��������������������������������������
	3.3.1 L8(0,8) Case�������������������������
	3.3.2 L8(-8,8) Case��������������������������
	3.3.3 L2(-8,8) Case��������������������������
	3.3.4 L2(0,8) Case�������������������������

	3.4 Hilbert’s Constants������������������������������
	3.5 Copson–de Bruijn Constant������������������������������������
	3.6 Sobolev Isoperimetric Constants������������������������������������������
	3.6.1 String Inequality������������������������������
	3.6.2 Rod Inequality���������������������������
	3.6.3 Membrane Inequality��������������������������������
	3.6.4 Plate Inequality�����������������������������
	3.6.5 Other Variations�����������������������������

	3.7 Korn Constants�������������������������
	3.8 Whitney–Mikhlin Extension Constants����������������������������������������������
	3.9 Zolotarev–Schur Constant�����������������������������������
	3.9.1 Sewell’s Problem on an Ellipse�������������������������������������������

	3.10 Kneser–Mahler Polynomial Constants����������������������������������������������
	3.11 Grothendieck’s Constants������������������������������������
	3.12 Du Bois Reymond’s Constants���������������������������������������
	3.13 Steinitz Constants������������������������������
	3.13.1 Motivation������������������������
	3.13.2 Definitions�������������������������
	3.13.3 Results���������������������

	3.14 Young–Fejér–Jackson Constants
	3.14.1 Nonnegativity of Cosine Sums������������������������������������������
	3.14.2 Positivity of Sine Sums�������������������������������������
	3.14.3 Uniform Boundedness���������������������������������

	3.15 Van der Corput’s Constant�������������������������������������
	3.16 Turán’s Power Sum Constants

	4 Constants Associated with the Approximation of Functions�����������������������������������������������������������������
	4.1 Gibbs–Wilbraham Constant�����������������������������������
	4.2 Lebesgue Constants�����������������������������
	4.2.1 Trigonometric Fourier Series�����������������������������������������
	4.2.2 Lagrange Interpolation�����������������������������������

	4.3 Achieser–Krein–Favard Constants������������������������������������������
	4.4 Bernstein’s Constant�������������������������������
	4.5 The “One-Ninth” Constant�����������������������������������
	4.6 Fransén–Robinson Constant
	4.7 Berry–Esseen Constant��������������������������������
	4.8 Laplace Limit Constant���������������������������������
	4.9 Integer Chebyshev Constant�������������������������������������
	4.9.1 Transfinite Diameter���������������������������������


	5 Constants Associated with Enumerating Discrete Structures
	5.1 Abelian Group Enumeration Constants����������������������������������������������
	5.1.1 Semisimple Associative Rings�����������������������������������������

	5.2 Pythagorean Triple Constants���������������������������������������
	5.3 Rényi’s Parking Constant
	5.3.1 Random Sequential Adsorption�����������������������������������������

	5.4 Golomb–Dickman Constant����������������������������������
	5.4.1 Symmetric Group����������������������������
	5.4.2 Random Mapping Statistics��������������������������������������

	5.5 Kalmár’s Composition Constant
	5.6 Otter’s Tree Enumeration Constants���������������������������������������������
	5.6.1 Chemical Isomers�����������������������������
	5.6.2 More Tree Varieties��������������������������������
	5.6.3 Attributes�����������������������
	5.6.4 Forests��������������������
	5.6.5 Cacti and 2-Trees������������������������������
	5.6.6 Mapping Patterns�����������������������������
	5.6.7 More Graph Varieties���������������������������������
	5.6.8 Data Structures����������������������������
	5.6.9 Galton–Watson Branching Process��������������������������������������������
	5.6.10 Erdös–Rényi Evolutionary Process

	5.7 Lengyel’s Constant�����������������������������
	5.7.1 Stirling Partition Numbers���������������������������������������
	5.7.2 Chains in the Subset Lattice of S����������������������������������������������
	5.7.3 Chains in the Partition Lattice of S�������������������������������������������������
	5.7.4 Random Chains��������������������������

	5.8 Takeuchi–Prellberg Constant��������������������������������������
	5.9 Pólya’s Random Walk Constants
	5.9.1 Intersections and Trappings����������������������������������������
	5.9.2 Holonomicity�������������������������

	5.10 Self-Avoiding Walk Constants����������������������������������������
	5.10.1 Polygons and Trails���������������������������������
	5.10.2 Rook Paths on a Chessboard����������������������������������������
	5.10.3 Meanders and Stamp Foldings�����������������������������������������

	5.11 Feller’s Coin Tossing Constants�������������������������������������������
	5.12 Hard Square Entropy Constant����������������������������������������
	5.12.1 Phase Transitions in Lattice Gas Models�����������������������������������������������������

	5.13 Binary Search Tree Constants����������������������������������������
	5.14 Digital Search Tree Constants�����������������������������������������
	5.14.1 Other Connections�������������������������������
	5.14.2 Approximate Counting����������������������������������

	5.15 Optimal Stopping Constants��������������������������������������
	5.16 Extreme Value Constants�����������������������������������
	5.17 Pattern-Free Word Constants���������������������������������������
	5.18 Percolation Cluster Density Constants�������������������������������������������������
	5.18.1 Critical Probability����������������������������������
	5.18.2 Series Expansions�������������������������������
	5.18.3 Variations������������������������

	5.19 Klarner’s Polyomino Constant����������������������������������������
	5.20 Longest Subsequence Constants�����������������������������������������
	5.20.1 Increasing Subsequences�������������������������������������
	5.20.2 Common Subsequences���������������������������������

	5.21 k-Satisfiability Constants��������������������������������������
	5.22 Lenz–Ising Constants��������������������������������
	5.22.1 Low-Temperature Series Expansions�����������������������������������������������
	5.22.2 High-Temperature Series Expansions������������������������������������������������
	5.22.3 Phase Transitions in Ferromagnetic Models�������������������������������������������������������
	5.22.4 Critical Temperature����������������������������������
	5.22.5 Magnetic Susceptibility�������������������������������������
	5.22.6 Q and P Moments�����������������������������
	5.22.7 Painlevé III Equation

	5.23 Monomer–Dimer Constants�����������������������������������
	5.23.1 2D Domino Tilings�������������������������������
	5.23.2 Lozenges and Bibones����������������������������������
	5.23.3 3D Domino Tilings�������������������������������

	5.24 Lieb’s Square Ice Constant��������������������������������������
	5.24.1 Coloring����������������������
	5.24.2 Folding���������������������
	5.24.3 Atomic Arrangement in an Ice Crystal��������������������������������������������������

	5.25 Tutte–Beraha Constants����������������������������������

	6 Constants Associated with Functional Iteration�������������������������������������������������������
	6.1 Gauss’ Lemniscate Constant�������������������������������������
	6.1.1 Weierstrass Pe Function������������������������������������

	6.2 Euler–Gompertz Constant����������������������������������
	6.2.1 Exponential Integral���������������������������������
	6.2.2 Logarithmic Integral���������������������������������
	6.2.3 Divergent Series�����������������������������
	6.2.4 Survival Analysis������������������������������

	6.3 Kepler–Bouwkamp Constant�����������������������������������
	6.4 Grossman’s Constant������������������������������
	6.5 Plouffe’s Constant�����������������������������
	6.6 Lehmer’s Constant����������������������������
	6.7 Cahen’s Constant���������������������������
	6.8 Prouhet–Thue–Morse Constant��������������������������������������
	6.8.1 Probabilistic Counting�����������������������������������
	6.8.2 Non-Integer Bases������������������������������
	6.8.3 External Arguments�������������������������������
	6.8.4 Fibonacci Word���������������������������
	6.8.5 Paper Folding��������������������������

	6.9 Minkowski–Bower Constant�����������������������������������
	6.10 Quadratic Recurrence Constants������������������������������������������
	6.11 Iterated Exponential Constants������������������������������������������
	6.11.1 Exponential Recurrences�������������������������������������

	6.12 Conway’s Constant�����������������������������

	7 Constants Associated with Complex Analysis���������������������������������������������������
	7.1 Bloch–Landau Constants���������������������������������
	7.2 Masser–Gramain Constant����������������������������������
	7.3 Whittaker–Goncharov Constants����������������������������������������
	7.3.1 Goncharov Polynomials����������������������������������
	7.3.2 Remainder Polynomials����������������������������������

	7.4 John Constant������������������������
	7.5 Hayman Constants���������������������������
	7.5.1 Hayman–Kjellberg�����������������������������
	7.5.2 Hayman–Korenblum�����������������������������
	7.5.3 Hayman–Stewart���������������������������
	7.5.4 Hayman–Wu����������������������

	7.6 Littlewood–Clunie–Pommerenke Constants�������������������������������������������������
	7.6.1 Alpha������������������
	7.6.2 Beta and Gamma���������������������������
	7.6.3 Conjectural Relations����������������������������������

	7.7 Riesz–Kolmogorov Constants�������������������������������������
	7.8 Grötzsch Ring Constants
	7.8.1 Formula for a(r)


	8 Constants Associated with Geometry�������������������������������������������
	8.1 Geometric Probability Constants������������������������������������������
	8.2 Circular Coverage Constants��������������������������������������
	8.3 Universal Coverage Constants���������������������������������������
	8.3.1 Translation Covers�������������������������������

	8.4 Moser’s Worm Constant��������������������������������
	8.4.1 Broadest Curve of Unit Length������������������������������������������
	8.4.2 Closed Worms�������������������������
	8.4.3 Translation Covers�������������������������������

	8.5 Traveling Salesman Constants���������������������������������������
	8.5.1 Random Links TSP�����������������������������
	8.5.2 Minimum Spanning Trees�����������������������������������
	8.5.3 Minimum Matching�����������������������������

	8.6 Steiner Tree Constants���������������������������������
	8.7 Hermite’s Constants������������������������������
	8.8 Tammes’ Constants����������������������������
	8.9 Hyperbolic Volume Constants��������������������������������������
	8.10 Reuleaux Triangle Constants���������������������������������������
	8.11 Beam Detection Constant�����������������������������������
	8.12 Moving Sofa Constant��������������������������������
	8.13 Calabi’s Triangle Constant��������������������������������������
	8.14 DeVicci’s Tesseract Constant����������������������������������������
	8.15 Graham’s Hexagon Constant�������������������������������������
	8.16 Heilbronn Triangle Constants����������������������������������������
	8.17 Kakeya–Besicovitch Constants����������������������������������������
	8.18 Rectilinear Crossing Constant�����������������������������������������
	8.19 Circumradius–Inradius Constants�������������������������������������������
	8.20 Apollonian Packing Constant���������������������������������������
	8.21 Rendezvous Constants��������������������������������

	Table of Constants�������������������������
	Author Index�������������������
	Subject Index��������������������
	Added in Press���������������������

