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Introduction

Dear God,

If I have just one hour remaining to live,

Please put me in a calculus class

So that it will seem to last forever.

— A bored student’s prayer

In the study of mathematics non-routine problems, puzzles, paradoxes, and

sophisms often delight and fascinate. Captivating examples can excite, en-

lighten, and inspire learners and spur their passion for discovery. Further-

more, thought-provoking exercises and contemplation of paradoxes can nat-

urally engage students and offer them a unique opportunity to understand

more fully the history and development of mathematics. “Justification of

otherwise inexplicable notions on the grounds that they yield useful results

has occurred frequently in the evolution of mathematics [15].”

The teaching and learning process often loses its effectiveness for lack

of appropriate intellectual challenges and for insufficient active involve-

ment or emotional investment from students in the experience. What we

tend to remember most are knowledge and learning experiences tied to

intense thinking, noteworthy discovery, or inspired creativity. This book

presents problems and examples that may lead students to contemplate con-

ceptual issues in calculus and to comprehend the subtleties of this subject

more deeply.

In that light, this book aims to enhance the teaching and learning of a

first-year calculus course. The following major topics from a typical single-

variable calculus course are explored in the book: functions, limits, deriva-

tives, and integrals.

1



i

i

“master” — 2013/4/15 — 11:01 — page 2 — #16
i

i

i

i

i

i

2 Paradoxes and Sophisms in Calculus

The book consists of two main types of examples: paradoxes and soph-

isms. Why should we endeavor to study these atypical or troublesome

problems from calculus? Consider these compelling remarks from How

Mathematicians Think: Using Ambiguity, Contradiction, and Paradox to

Create Mathematics [6, p. 6]: “Logic abhors the ambiguous, the paradox-

ical, and especially the contradictory, but the creative mathematician wel-

comes such problematic situations because they raise the question, ‘What

is going on here?’ Thus the problematic signals a situation that is worth

investigating. The problematic is a potential source of new mathematics.”

The word paradox comes from the Greek word paradoxon which means

unexpected. Several usages of this word exist, including those that allow

for contradiction. However, in this book, the word paradox will exclusively

be used to mean a surprising, unexpected, counter-intuitive statement that

looks invalid but in fact is true. “All I know is that I know nothing,” a state-

ment attributed to Socrates in Plato’s Republic, offers a classical paradox of

logic. In this book the paradoxes we examine relate to notions in calculus

or the study of functions and limits. While some of the paradoxes presented

in the book (such as “A cat on a ladder” and “Encircling the Earth”) may

more naturally be considered precalculus topics, they can still be discussed

in calculus classes to demonstrate that intuition can fail, even when we are

considering examples with shapes as mundane as circles or spheres. On the

other hand, while all the paradoxes or problems we examine can be under-

stood in a first-year calculus class, the explanations for a few problems may

involve topics more traditionally classified as advanced calculus or elemen-

tary analysis.

A number of the paradoxes touch upon classical examples, specialized

functions, or canonical curves. In such instances, we mention the paradoxes

or specific examples by name, in either the initial presentation or the so-

lution of the paradox, whichever place seems more fitting. If the nature of

the paradox depends on the definition of the precise curve, such as in the

paradoxes involving the Koch snowflake or the Sierpinski carpet, we will

include the curve name or paradox name at the outset. On the other hand, at

times where we prefer to keep the option of open-ended discovery available,

we may not provide the classical terminology until the solution is presented.

When possible, we have also included references that treat related material

in an expository or introductory manner. In this way, we hope to offer read-

ers resources for projects, classroom presentations, or subsequent inquiry.

Much of the book’s content can be viewed as recreational mathematics and

can be used as a natural stepping stone to further investigations into mathe-

matical topics.
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Introduction 3

The word sophism comes from the Greek word Sophos which means

wisdom. In modern usage it denotes intentionally invalid reasoning that

looks formally correct, but in fact contains a subtle mistake or flaw. In

other words, a sophism is a false proof of an incorrect statement. Each

such “proof” contains some sort of error in reasoning. Plato in his desire to

pursue the truth found nothing more deplorable than Sophists using delib-

erately deceptive arguments for personal empowerment. Priestley [29, pp.

75–80] provides a pleasant overview of this history in Calculus: A Liberal

Art.

Many students are exposed to sophisms at school. The exercise of find-

ing and analyzing the mistake in a sophism often provides a deeper un-

derstanding than a mere recipe-based approach in solving problems. Typi-

cal algebraic examples of flawed reasoning that produce sophisms include

division by zero or taking only a nonnegative square root. The following

sophism from basic algebra utilizes the trick of division by zero to “prove”

that “1 D 2”.

Statement: If x D y, then 1 D 2.

Proof:
x D y

Thus
xy D y2;

And
xy � x2 D y2 � x2;

so that
x.y � x/ D .y C x/.y � x/:

Now dividing by y � x gives

x D y C x:

Then substituting x D y on the right gives

x D 2x:

Finally dividing by x gives
1 D 2:

In this book the tricks or incorrect reasoning steps that lead to the soph-

isms are tied to calculus concepts. The examples are designed to reinforce

the correct understanding of oft-misconstrued principles. According to our

usage of the terms paradox and sophism, many well-known so-called para-

doxes, such as Zeno’s paradoxes and Aristotle’s wheel paradox will be

viewed as sophisms in this book. When classical sophisms are treated, we
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4 Paradoxes and Sophisms in Calculus

provide references when possible. We hope that interested readers will use

the ideas in this book as a springboard for future mathematical investiga-

tions.

In a manner similar to the first author’s previous book, Counterexamples

in Calculus [17] this book aspires to encourage students and teachers to

examine paradoxes and sophisms that arise in calculus for these purposes:

� To provide deeper conceptual understanding

� To reduce or eliminate common misconceptions

� To advance mathematical thinking beyond algorithmic or procedural

reasoning

� To enhance baseline critical thinking skills—analyzing, justifying, ver-

ifying, and checking

� To expand the example set of noteworthy mathematical ideas

� To engage students in more active and creative learning

� To encourage further investigation of mathematical topics

In that regard, this book may well serve

� High school teachers and university faculty as a teaching resource

� High school and college students as a learning resource for calculus

� Calculus instructors as a professional development resource

Contact Details for Feedback

Please send your questions and comments regarding the book to the authors.

Dr. Sergiy Klymchuk

Associate Professor
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Auckland University of Technology
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Part I

Paradoxes
I see it but I don't believe it!

     — Georg Cantor (1845–1918),
in a letter to Richard Dedekind (1877)
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1
Functions and Limits

1 Laying bricks

Imagine you have an unlimited supply of identical ideal homogeneous bricks.

You construct an arch by putting the bricks one on top of another without

applying any cement between layers. Each successive brick is placed further

to the right than the previous (see Figure 1.1).

Figure 1.1

How far past the bottom brick can the top brick extend?

2 Spiral curves

Construct two similar-looking spiral curves (see Figure 1.2) that both rotate

infinitely many times around a point, with one curve being of a finite length

9
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10 Part I. Paradoxes

and the other of an infinite length.

Figure 1.2

3 A paradoxical fractal curve: the Koch

snowflake

An equilateral triangle of side length 1 unit is transformed recursively as fol-

lows. First mark the middle third of each side of the previous stage. Next,

construct outward facing equilateral triangles with each of these middle por-

tions as bases. Finally remove these segments that served as bases. Iterate

this process indefinitely. The first few stages are depicted in Figure 1.3. The

Koch snowflake is the curve defined as the limit of this process. Show that

this curve has infinite length, yet it is located between two other closed, non

self-intersecting curves of finite length.

Figure 1.3

4 A tricky fractal area: the Sierpinski

carpet

A square with sides of 1 unit (and therefore area of 1 square unit) is divided

into nine equal squares, each with sides 1=3 unit and areas of 1=9 square

unit, then the central square is removed. Denote the original square by C.0/

and the subsequent stage as C.1/. Each of the remaining eight squares is
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C(0) C(1) C(2)

C(4)C(3)

Figure 1.4

divided into nine equal squares and the central squares are then removed.

Label the newly produced stage as C.2/. Iterate the process indefinitely.

Figure 1.4 shows the first four steps. At every step 1=9 of the current area

is removed and 8=9 is left, that is at every step the remaining area is eight

times bigger than the area removed. After infinitely many steps what would

the remaining area be?

5 A mysterious fractal set: the Cantor

ternary set

Start with the unit interval, C.0/ D Œ0; 1� and divide this into three equal

subintervals. Remove the open middle third interval
�

1
3
; 2

3

�

. Call what re-

mains the set C.1/ D
�

0; 1
3

�

[
�

2
3
; 1

�

. At the next step of the construction

remove the middle open third of each of these two intervals. This results in

C.2/ D
�

0; 1
9

�

[
�

2
9
; 1

3

�

[
�

2
3
; 7

9

�

[
�

8
9
; 1

�

. Iterate this process indefinitely.

Figure 1.5 illustrates the first four stages.

The Cantor ternary set C consists of all the points in the original inter-

val Œ0; 1� that are not removed at any stage. That is, C D limn!1 C.n/.

A striking pair of paradoxical facts holds true for the Cantor ternary set.

Compute the proportion of the original interval Œ0; 1� contained in the nth
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12 Part I. Paradoxes

C(0)

C(1)

C(2)

C(3)

C(4)

Figure 1.5

stage Cantor set C.n/ and show this proportion goes to 0 as n ! 1. On

the other hand, prove that C contains as many points as the original interval

Œ0; 1�! (Hint: As suggested by the name of the set, you may want to think

about ternary expansions of numbers.)

6 A misleading sequence

What is the next term in the sequence 2, 4, 8, 16?

7 Remarkable symmetry

For a shape with a center of symmetry, define a diameter as a line segment

that passes through the center and joins two opposite boundary points. For

example, Figure 1.6 pictures two diameters d1 and d2 for a regular hexagon

and a circle.

Given a shape with a center of symmetry, a student hypothesized that

if all diameters of the shape were equal in length, then the shape must be a

circle. Was the student’s reasoning correct?

d1

d2

d1

d2

CC

d1 ¹ d2 d1 = d2 for all diameters

Figure 1.6
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Chapter 1. Functions and Limits 13

Figure 1.7

8 Rolling a barrel

A person holds one end of a wooden board 3 m long and the other end lies

on a cylindrical barrel. The person walks towards the barrel, which is rolled

by the board sitting on it. The barrel rolls without sliding and the board

remains parallel to the ground. This process is illustrated in Figure 1.7.

What distance will the person cover before reaching the barrel?

9 A cat on a ladder

Imagine a cat sitting half way up a ladder that is placed almost flush with a

wall. (See Figure 1.8.)

Cat

Figure 1.8

Part 1 If the base of the ladder is pushed fully up against the wall, the

ladder and cat are most likely going to fall away from the wall (i.e., the top

of the ladder falls away from the wall).

If the cat stays on the ladder (not likely perhaps?) what will the trajec-

tory of the cat be? A, B or C in Figure 1.9?

Part 2 Which of the Figure 1.9 options represents the cat’s trajectory

if instead of the top of the ladder falling outwards, the base is pulled away?

A, B or C?
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14 Part I. Paradoxes

A B C

Figure 1.9

10 Sailing

A yacht returns from a trip around the world. Different parts of the yacht

have covered different distances. Which part of the yacht has covered the

longest distance?

11 Encircling the Earth

Imagine a rope lying around the Earth’s equator without any bends (i.e.,

idealize the Earth as a sphere and ignore mountains and deep-sea trenches).

The rope is lengthened by 20 meters and the circle is formed again. Estimate

approximately how high the rope will be above the Earth.

(a) 3 mm (b) 3 cm (c) 3 m

12 A tricky equation

To check the number of solutions of the equation log1=16 x D
�

1
16

�x
one

can sketch the graphs of this pair of inverse functions y D log1=16 x and

y D
�

1
16

�x
. See Figure 1.10.

Figure 1.10
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From the graphs we can see that there is one intersection point and there-

fore one solution to the equation log1=16 x D
�

1
16

�x
. But it is easy to check

by substitution that both x D 1
2

and x D 1
4

satisfy the equation. So how

many solutions does the equation have?

13 A snail on a rubber rope

Imagine a snail moving at a speed of 1 cm/min along a rubber rope 1 m

long. The snail starts its journey from one end of the rope. After each minute

the rope is uniformly expanded by 1 m. With each stretching, the snail is

carried forward with the elongated rope. Will the snail ever reach the end of

the rope?
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Derivatives and Integrals

1 An alternative product rule

A novice calculus student believes the derivative of the product of two dif-

ferentiable functions to be the product of their derivatives: .uv/0 D u0v0.

Clearly, if either of u or v is the zero function, or if both u and v are con-

stant functions, then the rule holds. Show that, strangely enough, there are

infinitely many other pairs of functions u and v for which this product rule

holds true.

2 Missing information?

At first glance it appears there is not enough information to solve the fol-

lowing problem: Given a metal sphere of radius greater than 8 cm, drill a

circular hole of 16 cm through its center. Find the volume of the remaining

part of the sphere.

3 A paint shortage

To paint the area bounded by the curve y D 1
x

, the x-axis, and the line

x D 1 is impossible. There is not enough paint in the world, because the

area is infinite:

Z 1

1

1

x
dx D lim

b!1
.ln b � ln 1/ D 1:

17
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18 Part I. Paradoxes

However, one can rotate the area around the x-axis and the resulting solid

of revolution would have a finite volume:

�

Z 1

1

1

x2
dx D �� lim

b!1

�

1

b
� 1

1

�

D �:

This solid of revolution contains the area, which is a cross-section of the

solid. One can fill the solid with � cubic units of paint and thus cover the

area with paint. Can you explain this paradox?

4 Racing marbles

Consider the curve given by the parametric equations

x.�/ D � � sin � and y.�/ D cos � � 1;

for 0 � � � � . The curve starts at the origin and ends at the point .�; �2/

as shown in Figure 2.1.

M

p

p–p

–p

Figure 2.1

Suppose that a marble is set at any point M on this curve. Amazingly

the amount of time the marble needs to roll to the finish point at .�; �2/ is

independent of M ! How can this be true?

5 A paradoxical pair of functions

The graphs of the two functions

f .x/ D
(

x sin 1=x; x ¤ 0

0; x D 0
and g.x/ D

(

x2 sin 1=x; x ¤ 0

0; x D 0

appear in Figures 2.2 and 2.3.

The graphs appear to exhibit similar oscillatory behavior near x D 0. In

fact, it is possible to show that both f .x/ and g.x/ are continuous at x D 0.
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Chapter 2. Derivatives and Integrals 19

However, f .x/ is not differentiable at x D 0, while g.x/ is differentiable

at x D 0. How can this be true?

Figure 2.2 y D x sin
�

1
x

�

Figure 2.3 y D x2 sin
�

1
x

�

6 An unruly function

A well-known calculus theorem states that if a function f .x/ is differen-

tiable on an interval .a; b/, then f .x/ is continuous on .a; b/ as well. Is it

possible to find a function that is not continuous on any interval and yet it

is differentiable at some point?

7 Jagged peaks galore

The standard example f .x/ D jxj offers a continuous function that is not

differentiable for a certain value of x. Here f .x/ fails to be differentiable

at x D 0, where the graph of the function contains a corner. It is easy

to imagine that adding more peaks or corners to the graph of f .x/ could

induce non-differentiability at more values of x. What is the most extreme

manner in which a continuous function can fail to be differentiable?

This question persisted in the minds of mathematicians for much of the

development of calculus:

“There was a presumption in the seventeenth through mid-nineteenth

centuries that all continuous functions can be differentiated, with perhaps

a few exceptional points (such as interface points for functions defined in

pieces). In fact, Joseph Louis Lagrange (1736–1813) built a whole theory

of functions around this assumption.” [21, p. 136]

However, this presumption in the history of calculus fails to be true in

a most striking way. Spectacular pathological functions exist that are con-

tinuous everywhere, but differentiable nowhere! Can you envision this im-

plausible phenomenon?
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20 Part I. Paradoxes

8 Another paradoxical pair of functions

Consider two functions defined on Œ0; 1�. The first of these is Dirichlet’s

function,

f .x/ D
(

1 for x a rational number

0 for x an irrational number
:

For the second function g.x/ we again split our definition into cases

based on whether the value x is rational or irrational. When x is rational,

we first write it in reduced form, that is x D p=q, where the integers p and

q share no common factors. Here we consider the value 0 to be in lowest

terms when written as 0 D 0=1. We define the function as

g.x/ D
(

1=q for x rational, x D p=q

0 for x an irrational number
:

For instance, g.0/ D g.1/ D 1, and g. 9
12

/ D g.3
4
/ D 1

4
. Beyond the sim-

ilar mode of definition, another feature shared by f .x/ and g.x/ is their

discontinuity at each rational point x. However, f .x/ is not Riemann inte-

grable, while g.x/ is! How can this difference be explained?



Part II

Sophisms
         1 + 1 = 3 for large values of 1.

    — A student joke
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3
Functions and Limits

1 Evaluation of limn!1
Pn

kD1
1p

n2Ck
proves

that 1 D 0.

We determine the limit using two different methods and equate the values.

(a) Applying the theorem for the limit of a sum, we have

lim
n!1

n
X

kD1

1p
n2 C k

D lim
n!1

1p
n2 C 1

C lim
n!1

1p
n2 C 2

C � � � C lim
n!1

1p
n2 C n

D 0 C 0 C � � � C 0 D 0:

(b) For our second approach to the problem, we first find lower and upper

bounds for the sum
n

X

kD1

1
p

n2 C k
:

We have

n
X

kD1

1p
n2 C n

<

n
X

kD1

1p
n2 C k

<

n
X

kD1

1p
n2

:

23
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24 Part II. Sophisms

Both the lower and upper bounds converge to 1 as n ! 1.

lim
n!1

n
X

kD1

1p
n2 C n

D lim
n!1

np
n2 C n

D 1

and

lim
n!1

n
X

kD1

1p
n2

D lim
n!1

np
n2

D 1:

It follows by the squeeze theorem that

lim
n!1

n
X

kD1

1p
n2 C k

D 1:

Comparing the results from (a) and (b), we conclude that 1 D 0.

2 Evaluation of limx!0

�

x sin 1
x

�

proves that

1 D 0.

We find limx!0

�

x sin 1
x

�

using two methods and compare our answers.

(a) Since �1 � sin 1
x

� 1 we have �jxj � x sin 1
x

� jxj. Applying the

squeeze theorem we conclude that limx!0

�

x sin 1
x

�

D 0.

(b) It is well known that

lim
x!0

sin x

x
D 1:

Rewriting the limit we obtain

lim
x!0

�

x sin
1

x

�

D lim
x!0

sin.1=x/

.1=x/
D 1:

Equating the results found in (a) and (b), we conclude that 1 D 0.

3 Evaluation of limx!0C.xx/ shows that

1 D 0.

Again we determine the limit using two methods.

(a) First find the limit of the base and then evaluate the remaining portion

of the limit. We then have

lim
x!0C

.xx/ D
�

lim
x!0C

x

�x

D lim
x!0C

0x D 0:
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Chapter 3. Functions and Limits 25

(b) For our second solution, we first find the limit of the power and then

determine the remaining portion of the limit.

lim
x!0C

.xx/ D x.lim
x!0C x/ D lim

x!0C

x0 D 1:

Comparing the results found in (a) and (b), we conclude that 1 D 0.

4 Evaluation of limn!1
n
p

n demonstrates

that 1 D 1.

As before, we compute the limit in two different manners.

(a) First find the limit of the expression under the radical sign and then

evaluate the other part of the limit. By this method we have

lim
n!1

n
p

n D n

q

lim
n!1

n D lim
n!1

n
p

1 D 1:

(b) This time first find the limit of the nth root and then determine the

other part of the limit. This solution gives

lim
n!1

n
p

n D lim
n!1

n1=n D nlimn!1 1=n D lim
n!1

n0 D lim
n!1

1 D 1:

Comparing the results, we conclude that 1 D 1.

5 Trigonometric limits prove that

sin kx D k sin x.

It is well known that

lim
x!0

sin x

x
D 1:

Using this we find both

lim
x!0

sin kx

x
D k lim

x!0

sin kx

kx
D k lim

u!0

sin u

u
D k;

and

lim
x!0

k sin x

x
D k lim

x!0

sin x

x
D k:

Therefore we have

lim
x!0

sin kx

x
D lim

x!0

k sin x

x
:

It follows that
sin kx

x
D k sin x

x
;

which implies sin kx D k sin x.
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26 Part II. Sophisms

6 Evaluation of a limit of a sum proves

that 1 D 0.

(a) We know that the limit of the sum of two sequences equals the sum of

their limits, provided both limits exist. That is, limn!1.an C bn/ D
limn!1 an C limn!1 bn, provided both limits on the right side exist.

We also know that this is true for any number k of sequences in the

sum. Let us take n constant sequences 1
n

and find the limit of their sum

when n ! 1:

lim
n!1

�

1

n
C 1

n
C � � � C 1

n

�

D lim
n!1

1

n
C lim

n!1

1

n
C � � � C lim

n!1

1

n

D 0 C 0 C � � � C 0 D 0:

(b) On the other hand, the sum
�

1
n

C 1
n

C � � � C 1
n

�

.n terms/
is equal to

n � 1
n

D 1.

So we have shown 1 D 0.

7 Analysis of the function xCy

x�y
proves that

1 D �1.

Let us find two limits for this function:

(a) lim
x!1

lim
y!1

x C y

x � y
D lim

x!1
lim

y!1

x
y

C 1

x
y

� 1
D lim

x!1
.�1/ D �1.

(b) lim
y!1

lim
x!1

x C y

x � y
D lim

y!1
lim

x!1

1 C y
x

1 � y
x

D lim
y!1

1 D 1.

Because

lim
x!1

lim
y!1

x C y

x � y
D lim

y!1
lim

x!1

x C y

x � y
;

the results from (a) and (b) must be equal. Therefore we have proved that

1 D �1.

8 Analysis of the function axCy

xCay
proves

that a D 1
a
, for any value a ¤ 0.

Let a be a nonzero number. We compute two equivalent limits

lim
x!1

lim
y!1

ax C y

x C ay
D lim

y!1
lim

x!1

ax C y

x C ay
:
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(a) First compute

lim
x!1

lim
y!1

ax C y

x C ay
D lim

x!1
lim

y!1

ax
y

C 1

x
y

C a
D lim

x!1

1

a
D 1

a
:

(b) Next we find

lim
y!1

lim
x!1

ax C y

x C ay
D lim

y!1
lim

x!1

a C y
x

1 C ay
x

D lim
y!1

a D a:

Equating the results from (a) and (b) we conclude that a D 1=a.

9 One-to-one correspondences imply that

1 D 2.

(a) Consider the line segment joining .0; 0/ to .2; 0/ and the one joining

.0; 1/ to .1; 1/. They have lengths 2 and 1 units respectively. We es-

tablish a one-to-one correspondence between their points as shown in

Figure 3.1.

(0, 2)

(0, 1) (1, 1)

(0, 0) (2, 0)P

Q

Figure 3.1

In particular, observe that P D .x; 0/ in the longer segment corre-

sponds to the point Q D .x=2; 1/ in the shorter segment for 0 � x �
2.

It follows that the number of points on the line segment of length 1

unit is the same as the number of points on the line segment of length

2 units, meaning that 1 D 2.

(b) Take two circles of radius 1 unit and 2 units. As in part (a) define a

one-to-one correspondence between the points on the circles as shown

in Figure 3.2.

Because the number of points on the circumference of the inner circle is

the same as the number of points on the circumference of the outer circle,

we can conclude that 1 D 2.
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28 Part II. Sophisms

Figure 3.2

10 Aristotle’s wheel implies that R D r.

Two wheels of different radii are attached to each other and put on the same

axis. Both wheels are on a rail (see Figures 3.3 and 3.4). After one rotation

the large wheel with radius R covers the distance AB which is equal to the

length of its circumference 2�R. The small wheel with radius r covers the

distance CD which is equal to the length of its circumference 2�r . Since

AB D CD, therefore 2�R D 2�r and thus R D r .

Rail

Wheel

r
R

Figure 3.3 Cross-section showing the wheel and the rail.

C D

A B

Figure 3.4
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11 Logarithmic inequalities show 2 > 3.

From
1

4
>

1

8
or

�

1

2

�2

>

�

1

2

�3

;

taking natural logarithms of both sides yields

ln

�

1

2

�2

> ln

�

1

2

�3

:

Applying the power rule of logarithms we have

2 ln

�

1

2

�

> 3 ln

�

1

2

�

:

Dividing both sides by ln
�

1
2

�

then gives 2 > 3.

12 Analysis of the logarithm function

implies 2 > 3.

From
1

4
>

1

8
or

�

1

2

�2

>

�

1

2

�3

;

taking logarithms with base 1
2

of both sides yields

log 1
2

�

1

2

�2

> log 1
2

�

1

2

�3

:

Applying the power rule of logarithms we have

2 log 1
2

�

1

2

�

> 3 log1
2

�

1

2

�

:

Finally, since log1=2

�

1
2

�

D 1 we obtain 2 > 3.

13 Analysis of the logarithm function

proves 1
4

> 1
2
.

From

ln
1

2
D ln

1

2
;

doubling the left-hand side yields the inequality

2 ln
1

2
> ln

1

2
:
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Applying the power rule of logarithms we have

ln

�

1

2

�2

> ln

�

1

2

�

:

Since y D ln x is an increasing function, it follows that

�

1

2

�2

>
1

2
or

1

4
>

1

2
:

14 Limit of perimeter curves shows that

2 D 1.

We start with an equilateral triangle with sides of 1 unit. Divide each of the

upper sides in half and transform them into a zig-zag curve with four linear

subportions as shown in Figure 3.5(b). To obtain Figure 3.5(c), we halve all

the non-horizontal segments in (b) and replace them with a zig-zag piece.

Continue this process indefinitely.

1

11

1 1 1

(a) (b) (d)(c)

…

Figure 3.5

(a) At any stage the length of the zig-zag segment equals 2 units, because

it is constructed from transformations of the original two sides of 1

unit each.

(b) On the other hand, from Figure 3.5 we can see as the number of stages

n goes to infinity, the zig-zag curve gets closer and closer to the base of

the triangle, which has length 1 unit. That is, limn!1 Sn D 1, where

Sn is the length of the zig-zag curve at stage n.

Comparing (a) and (b) we conclude that 2 D 1.

15 Limit of perimeter curves shows � D 2.

Let us take a semicircle with diameter d . We divide the diameter into n

equal parts and on each part construct semicircles of diameter d
n

as in Figure

3.6.



i

i

“master” — 2013/4/15 — 11:01 — page 31 — #45
i

i

i

i

i

i

Chapter 3. Functions and Limits 31

Figure 3.6

(a) The arc length of each small semicircle is �d
2n

. The total length Ln of

n semicircles is

Ln D �d

2n
� n D �d

2
:

Therefore the limit of Ln when n ! 1 is

lim
n!1

Ln D lim
n!1

�d

2
D �d

2
:

(b) From Figure 3.6 we can see that when n increases, the curve consisting

of n small semicircles gets closer to the diameter, which has length d .

That is limn!1 Ln D d .

Comparing (a) and (b) we see that �d
2

D d and conclude that � D 2.

16 Serret’s surface area definition proves

that � D 1.

Let us find the lateral surface area of a cylinder with height 1 unit and radius

1 unit using the following approach due to Serret. Divide the cylinder into n

horizontal strips. Divide the circumference of each cross-section by points

into m equal parts. Rotate the odd-numbered circumferences in such a way

that the points on them are exactly midway between the points on the even-

numbered circumferences. Form 2mn equal isosceles triangles by joining

two adjacent points on each circumference with the point midway between

them on the circumferences above and below. Two adjacent bands in this

decomposition are in Figure 3.7.

First compute the area of one triangle, 4PQR, in the polyhedral sur-

face. Here P Y D 1=n, and OQ D OR D 1. Segment PX denotes the

altitude of triangle PQR. Thus the area of this triangle is 1
2
QR � PX . Be-

cause the circumference is divided evenly into m portions, it follows that

QR D 2 sin �
m

.
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P

Y

Q

X
R

O

Figure 3.7

Now observe that 4P YX is a right triangle with hypotenuse PX and

leg XY D 1 � cos �
m

. From the Pythagorean Theorem,

PX D 1

n

r

1 C n2
�

1 � cos
�

m

�2

D 1

n

r

1 C 4n2 sin4 �

2m
:

The area of the polyhedral surface is thus given by

Smn D 2m sin
�

m

r

1 C 4n2 sin4 �

2m
:

When both m and n tend to infinity this area tends to the lateral surface

area of the cylinder. The limit of Smn is found using the well-known formula

limx!1
sin x

x
D 1. Let us consider three cases.

(a) n D m:

lim
m!1

Sm D lim
m!1

2m sin
�

m

r

1 C 4m2 sin4 �

2m

D lim
m!1

2�
sin �

m
�
m

s

1 C �4

4m2

�

sin �
2m

�
2m

�4

D 2�:
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(b) n D m2:

lim
m!1

Sm D lim
m!1

2m sin
�

m

r

1 C 4m4 sin4 �

2m

D lim
m!1

2�
sin �

m
�
m

s

1 C �4

4

�

sin �
2m

�
2m

�4

D 2�

r

1 C �4

4
:

(c) n D m3:

lim
m!1

Sm D lim
m!1

2m sin
�

m

r

1 C 4m6 sin4 �

2m

D lim
m!1

2�
sin �

m
�
m

s

1 C �4m2

4

�

sin �
2m

�
2m

�4

D 1:

In (a), (b) and (c) when m ! 1 the polyhedral surface tends to the lateral

surface of the cylinder. So the limit limm!1 Sm in (a), (b), and (c) must be

the same.

This is possible only if � D 1.

17 Achilles and the tortoise

This sophism, devised by the Greek philosopher Zeno in the 5th century

B.C., is traditionally referred to as Zeno’s paradox of Achilles and the tor-

toise or in short “The Achilles.” With the definitions of “paradox” and

“sophism” we use, Zeno’s “paradoxes” are sophisms.

In a race between Achilles, the fastest of Greek warriors, and a tortoise,

the tortoise has been granted a head start. Achilles will never pass the tor-

toise. Suppose the initial distance between the two is 1 unit and Achilles

is moving 100 times faster than the tortoise. When Achilles covers the dis-

tance of 1 unit, the tortoise will have moved 1
100

th of a unit further from its

starting point. When Achilles has covered the distance of 1
100

th of a unit,

the tortoise will move 1
1002 of a unit further, and so on. The tortoise is al-

ways ahead of Achilles by 1
100n of a unit no matter how long the race is.

This means that Achilles will never reach the tortoise.
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18 Reasonable estimations lead to

1;000;000 � 2;000;000.

If we add 1 to a sufficiently large number the result would be approximately

equal to the original number. For instance, if we take 1;000;000 and add 1

to it, we would agree that

1;000;000 � 1;000;001:

Similarly

1;000;001 � 1;000;002:

And

1;000;002 � 1;000;003:

And so on. . . , all the way to

1;999;999 � 2;000;000:

Multiplying the left-hand sides and the right-hand sides of the equalities we

obtain

1;000;000 � 1;000;001 � � � � � 1;999;999

� 1;000;001 � 1;000;002 � � � � � 2;000;000:

Dividing both sides by 1;000;001 � � � � � 1;999;999 we conclude that

1;000;000 � 2;000;000:

19 Properties of square roots prove

1 D �1.

Since
p

a � b D
p

a �
p

b, it follows that

1 D
p

1 D
p

.�1/ � .�1/ D
p

�1 �
p

�1 D i � i D i2 D �1:

20 Analysis of square roots shows that

2 D �2.

Two students were discussing square roots with their teacher.

The first student said, “A square root of 4 is �2”.

The second student was skeptical, and wrote down
p

4 D 2.

Their teacher commented, “You are both right”.

The teacher was correct, so 2 D �2.
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21 Properties of exponents show that

3 D �3.

Using the exponential rule

.am/n D amn

With a D �3, m D 2, and n D 1
2

, we obtain

�3 D
�

.�3/2
�

1
2 D 9

1
2 D

p
9 D 3:

22 A slant asymptote proves that 2 D 1.

Let us find the equation of a slant (or oblique) asymptote to the graph of the

function

f .x/ D x2 C x C 4

x � 1

using two methods.

(a) Long division gives

f .x/ D x2 C x C 4

x � 1
D x C 2 C 6

x � 1
:

The last term, 6
x�1

, tends to zero as x ! 1. Therefore as x ! 1 the

graph of the function approaches the straight line y D x C 2, which is

its slant asymptote.

(b) Dividing both numerator and denominator by x gives

f .x/ D x2 C x C 4

x � 1
D

x C 1 C 4
x

1 � 1
x

:

Both 4
x

and 1
x

tend to zero as x ! 1. Therefore as x ! 1 the graph

of the function approaches the straight line, y D x C 1, which is thus

its slant asymptote.

Because

f .x/ D x2 C x C 4

x � 1

has only one slant asymptote, from (a) and (b) it follows that x C2 D x C1.

Subtracting x from both sides yields 2 D 1.
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23 Euler’s interpretation of series shows
1
2

D 1 � 1 C 1 � 1 C � � � .
Euler began intensive investigations into series in the 1730s. Here is an

argument he presented.

We know
1

1 � x
D 1 C x C x2 C x3 C � � � :

When we let x D �1 and evaluate the expressions on both sides, we obtain

1

2
D 1 � 1 C 1 � 1 C � � � :

24 Euler’s manipulation of series proves

�1 > 1 > 1.

Euler substituted x D �1 in

1

.1 C x/2
D 1 � 2x C 3x2 � 4x3 C � � �

to get

1 D 1 C 2 C 3 C 4 C � � � :

Next he substituted x D 2 in

1

1 � x
D 1 C x C x2 C x3 C � � � ;

to get

�1 D 1 C 2 C 4 C 8 C � � � :

Because 2n�1 � n, for n D 1; 2; : : : , we have

1 C 2 C 4 C 8 C � � � > 1 C 2 C 3 C 4 C � � � :

By the transitive property, it follows that �1 > 1. Because 1 > 1, it

follows that �1 > 1 > 1.

25 A continuous function with a jump

discontinuity

For k � 1, define the function fk.x/ on Œ0; 1/ by

fk.x/ D 1

.k � 1/x C 1
� 1

kx C 1
:
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(a) Each fk.x/ is continuous on Œ0; 1/. If

S.x/ D
1

X

kD1

fk.x/;

since each function fk.x/ is continuous, the sum S.x/ is continuous

at the values of x where the series converges.

(b) Let

Sn.x/ D
n

X

kD1

fk.x/:

Because the terms form a telescoping sum we see that

Sn.x/ D 1 �
1

nx C 1
:

By definition, the series converges to S.x/ for the values of x where

limn!1 Sn.x/ exists. Because Sn.0/ D 0, for all n, it follows S.0/ D
0.

If x > 0, we obtain

S.x/ D lim
n!1

Sn.x/ D lim
n!1

�

1 � 1

nx C 1

�

D 1:

That is,

S.x/ D
(

0 for x D 0

1 for x > 0
:

Comparing (a) and (b) it follows that the continuous function S.x/ has a

jump discontinuity at x D 0.

26 Evaluation of Taylor series proves

ln 2 D 0.

Consider the Taylor series expansion for ln.1 C x/,

D x � x2

2
C x3

3
� x4

4
C � � � D

1
X

nD1

.�1/nC1 xn

n
:

The radius of convergence is

� D
�

lim
n!1

jaj1=n
��1

:

Because an D .�1/nC1

n
, � D 1.



i

i

“master” — 2013/4/15 — 11:01 — page 38 — #52
i

i

i

i

i

i

38 Part II. Sophisms

To determine the interval of convergence we check if the endpoints 1

and �1 are included in the interval of convergence. At x D �1, the series

is
1

X

nD1

.�1/nC1 .�1/n

n
D

1
X

nD1

�1

n
;

which diverges.

However at x D 1, the series is

1
X

nD1

.�1/nC1 .1/n

n
D

1
X

nD1

.�1/nC1

n
;

which converges by the alternating series test. Thus we conclude that the

interval of convergence of the series is .�1; 1�.

Now since x D 1 lies in the interval of convergence, we have

ln 2 D ln.1 C 1/ D 1 � 1

2
C 1

3
� 1

4
C 1

5
� 1

6
C � � � :

But

1 � 1

2
C 1

3
� 1

4
C 1

5
� 1

6
C � � �

D
�

1 C 1

3
C 1

5
C � � �

�

C
�

1

2
C 1

4
C 1

6
C � � �

�

� 2

�

1

2
C 1

4
C 1

6
C � � �

�

D
�

1 C 1

2
C 1

3
C 1

4
C 1

5
C � � �

�

�
�

1 C 1

2
C 1

3
C 1

4
C 1

5
C � � �

�

D 0:

Comparing our two computations, we conclude ln 2 D 0.
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1 Trigonometric integration shows 1 D C ,

for any real number C .

Let us apply the u-substitution method to find the indefinite integral
R

sin x cos x dx using two different substitutions:

(a) The substitution u D sin x with du D cos x dx, gives

Z

sin x cos x dx D
Z

u du D u2

2
C C1 D sin2 x

2
C C1:

(b) The substitution u D cos x with du D � sin x dx, gives

Z

sin x cos x dx D �
Z

u du D �u2

2
C C2 D �cos2 x

2
C C2;

where C1 and C2 are arbitrary constants. Equating the right-hand sides

in (a) and (b) we obtain

sin2 x

2
C C1 D �cos2 x

2
C C2

Multiplying by 2 and simplifying we obtain sin2 x C cos2 x D 2C2 �
2C1 or sin2 x C cos2 x D C , since the difference of two arbitrary constants

is an arbitrary constant. On the other hand we know the trigonometric iden-

tity sin2 x C cos2 x D 1. Therefore 1 D C .

39
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2 Integration by parts demonstrates

1 D 0.

Let us find the indefinite integral
R

1
x

dx using the formula for integration

by parts
R

u dv D uv �
R

v du, with u D 1
x

and dv D dx. This gives

Z

1

x
dx D

�

1

x

�

x �
Z

x

�

� 1

x2

�

dx D 1 C
Z

1

x
dx:

That is,
Z

1

x
dx D 1 C

Z

1

x
dx:

Subtracting
R

1
x

dx from both sides we conclude 0 D 1.

3 Division by zero is possible.

Let us evaluate the indefinite integral
R

dx
2xC1

by using the formula

Z

f 0.x/ dx

f .x/
D ln jf .x/j C C

in two different ways.

(a)

Z

dx

2x C 1
D 1

2

Z

dx

x C 1
2

D 1

2
ln

ˇ

ˇ

ˇ

ˇ

x C 1

2

ˇ

ˇ

ˇ

ˇ

C C1

(b)

Z

dx

2x C 1
D 1

2

Z

2 dx

2x C 1
D 1

2
ln j2x C 1j C C2.

By equating the right-hand sides in (a) and (b) it follows that

1

2
ln

ˇ

ˇ

ˇ

ˇ

x C 1

2

ˇ

ˇ

ˇ

ˇ

C C1 D 1

2
ln j2x C 1j C C2:

Since C1 and C2 are arbitrary constants that can assume any values, let

C1 D C2 D 0. Then

1

2
ln

ˇ

ˇ

ˇ

ˇ

x C 1

2

ˇ

ˇ

ˇ

ˇ

D 1

2
ln j2x C 1j:

Solving for x we obtain xC 1
2

D 2xC1, so x D � 1
2

. Substituting this value

of x into the original integral gives zero in the denominator, so division by

zero is possible.
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4 Integration proves sin2 x D 1 for any

value of x.

Let us differentiate the function y D tan x twice:

y0 D 1

cos2 x
; y00 D 2 sin x

cos3 x
:

The second derivative can be written as

y00 D
2 sin x

cos3 x
D

2 sin x

cos x � cos2 x
D 2 tan x �

1

cos2 x
D 2yy0 D .y2/0:

Integrating both sides of the equation y00 D .y2/0 leads to

y0 D y2; or
1

cos2 x
D tan2 x; or

1

cos2 x
D sin2 x

cos2 x
:

From here we conclude that sin2 x D 1, for any value of x.

5 The u-substitution method shows that
�
2

< 0 < �.

Let us estimate the integral

Z �

0

dx

1 C cos2 x
.

(a) Since
1

2
� 1

1 C cos2 x
� 1 on Œ0; ��, then

Z �

0

1

2
dx �

Z �

0

dx

1 C cos2 x
�

Z �

0

dx

Or
�

2
�

Z �

0

dx

1 C cos2 x
� �:

(b) On the other hand, with u D tan x and du D dx
cos2 x

, we have

Z �

0

dx

1 C cos2 x
D

Z �

0

dx

cos2 x

1 C tan2 x C 1
D

Z 0

0

du

2 C u2
;

because u D 0 when x D 0 and u D 0 when x D � . Thus the integral

has value 0.

From (a) and (b) we conclude that 0 2
�

�
2

; �
�

.
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6 ln 2 is not defined.

Let us find the area enclosed by the graph of the function y D 1
x

, the x-axis,

and the straight lines x D �2 and x D �1 using two different methods (see

Figure 4.1).

(a) The derivative of y D ln x is y0 D 1
x

and therefore an antiderivative

of f .x/ D 1
x

is F.x/ D ln x. We can apply the Newton-Leibniz for-

mula to the integral
R �1

�2
1
x

dx (the limits are finite and the function is

continuous on Œ�2; �1�) to find the required area:

A D �
Z �1

�2

1

x
dx D �

�

ln.�1/ � ln.�2/
�

:

This value is undefined since the logarithm of a negative number does

not exist.

Figure 4.1

(b) On the other hand, the area is the same as the area enclosed by the

graph of y D 1
x

, the x-axis, and the straight lines x D 1, and x D 2,

due to the symmetry of the graph about the origin. Therefore the area

equals

A D
Z 2

1

1

x
dx D ln 2 � ln 1 D ln 2:

Comparing (a) and (b) we conclude that ln 2 is not defined.

7 � is not defined.

Let us find

lim
x!1

�x C sin x

x C sin x
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using two different methods.

(a) lim
x!1

�x C sin x

x C sin x
D lim

x!1

� C sin x
x

1 C sin x
x

D �:

(b) Since both numerator and denominator are differentiable and approach

1 as x ! 1, we can use l’Hôpital’s rule

lim
x!1

f .x/

g.x/
D lim

x!1

f 0.x/

g0.x/

which gives us

lim
x!1

�x C sin x

x C sin x
D lim

x!1

� C cos x

1 C cos x
;

which is undefined.

From (a) and (b) we conclude that � is not defined.

8 Properties of indefinite integrals show

0 D C , for any real number C .

We know that
Z

kf .x/ dx D k

Z

f .x/ dx; where k is a constant.

Let us apply this property for k D 0.

(a) The left-hand side of the above equality becomes

Z

0f .x/ dx D
Z

0 dx D C; where C is an arbitrary constant.

(b) The right-hand side is 0
R

f .x/ dx D 0.

Comparing (a) and (b) we conclude that 0 D C , where C is any real

number.

9 Volumes of solids of revolution

demonstrate that 1 D 2.

Let us find the volume of the solid of revolution produced by rotating the

hyperbola y2 D x2 � 1 about the x-axis on the interval Œ�2; 2� using two

different methods.
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(a) V D �

Z 2

�2

y2 dx D �

Z 2

�2

.x2 � 1/ dx D �

�

x3

3
� x

�
ˇ

ˇ

ˇ

ˇ

2

�2

D
4

3
� (cubic units).

(b) Since the hyperbola is symmetric about the y-axis we can find the

volume of a half of the solid of revolution, say on the right of the y-

axis, and then multiply it by 2. Obviously the point .1; 0/ is the vertex

to the right of the origin and the right branch of the hyperbola is to the

right of the vertex .1; 0/. Therefore the volume of the right half is

V1 D �

Z 2

1

y2 dx D �

Z 2

1

.x2 � 1/ dx D �

�

x3

3
� x

�
ˇ

ˇ

ˇ

ˇ

2

1

D 4

3
� (cubic units)

and the total volume is V D 2V1 D 8
3
� (cubic units).

Comparing (a) and (b) we deduce 4
3
� D 8

3
� or 1 D 2.

10 An infinitely fast fall

Imagine a cat sitting on the top of a ladder leaning against a wall. Suppose

that the bottom of the ladder is being pulled away from the wall horizontally

at a uniform rate. The cat speeds up, until it’s eventually falling infinitely

fast. The “proof” is below.

x

ly

Figure 4.2

By the Pythagorean Theorem y D
p

l2 � x2, where x D x.t/, y D
y.t/ are the horizontal and vertical distances from the ends of the ladder to
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the corner at time t . Differentiation of both sides with respect to t gives us

y0 D �
xx0

p
l2 � x2

:

Since the ladder is pulled away at a uniform speed, x0 is a constant. Let us

find the limit of y0 when x approaches l :

lim
x!l

y0 D lim
x!l

�

� xx0
p

l2 � x2

�

D �1:

Therefore when the bottom of the ladder is pulled away by the distance l

from the wall, the cat falls infinitely fast.

11 A positive number equals a negative

number.

(a) The function

f .x/ D
sin x

1 C cos2 x

is continuous and nonnegative on the interval
�

0; 3�
4

�

and positive on

any subinterval of the form
�

a; 3�
4

�

, for a > 0. Therefore, by the def-

inition of the definite integral, the area enclosed by the function f .x/

and the x-axis on the interval
�

0; 3�
4

�

is a positive number, or

Z 3�
4

0

sin x

1 C cos2 x
dx > 0:

(b) That F.x/ D tan�1.sec x/ is an antiderivative of f .x/ is easy to check

by differentiation. This allows us an alternative method to compute the

definite integral:

Z 3
4 �

0

sin x

1 C cos2 x
dx D � tan�1

p
2 � �

4
:

Combining (a) and (b), we see that a positive number equals a negative

number.

12 The power rule for differentiation

proves that 2 D 1.

Consider the following representation of x2, for any x ¤ 0.

x2 D x C x C x C � � � C x (x copies).
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Differentiating both sides of the equation gives

2x D 1 C 1 C 1 C � � � C 1 D x:

Division of both sides by x yields 2 D 1.
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5
Functions and Limits

1 Laying bricks

The top brick can extend infinitely far past the bottom brick! The x-

coordinate of the position of the center of mass of a system of n objects

with masses m1; m2; : : : ; mn is defined by the formula

x0 D m1x1 C m2x2 C � � � C mnxn

m1 C m2 C � � � C mn

; (5.1)

where xi denotes the x-coordinate of the center of mass of the i th object.

In our problem each of the bricks has an identical mass of m, and the center

of mass for each brick lies at the geometric center of the brick.

l
x

y

s1

Figure 5.1

First examine the case of two

bricks. For the upper brick not to fall

off the lower brick, the x-coordinate

of the center of mass of the up-

per brick should not be positioned

beyond the right edge of the lower

brick. That is, the maximum value

of the x-coordinate of the center of

mass of the upper brick is l : x1 D l .

So the maximum shift is s1 D l
2

.

(See Figure 5.1.)

Next we consider three bricks in Figure 5.2.

49
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l
x

y

s1

s2

Figure 5.2

For the top brick we have already shown the maximum possible shift

past the brick below it is s1 D l
2

. Let us find the maximum possible shift s2

for the middle brick. This time we must ensure that the the x-coordinate of

the center of mass of the system composed of the top two bricks does not

exceed l .

From (5.1) we compute the center of mass and obtain

l D mx1 C mx2

2m
D

�

s2 C s1 C l
2

�

C
�

s2 C l
2

�

2
:

Solving this yields s2 D l
4

.

Continuing in this manner allows us to determine the sequence of max-

imum shifts, s3 D l
6

, s4 D l
8

, . . . , sn D l
2n

.

The sum of the first n shifts is then

s1 C s2 C � � � C sn D
l

2

�

1 C
1

2
C � � � C

1

n

�

:

It is well known that the harmonic series diverges, so when n ! 1 the

sum in the parentheses tends to infinity. This means that the top brick can

extend as far past the bottom brick as we want.

In practice it is, of course, impossible to build such an arch. Starting

from a certain value of n we will not be able to make shifts of the length 1
2n

as they will be too small to perform.

Martin Gardner brought this problem to popular attention with his Sci-

entific American article, “Some paradoxes and puzzles involving infinite

series and the concept of limit” [11]. He refers to it as the “infinite-offset

paradox.” Interested readers can also delve more deeply into this question

with recent American Mathematical Monthly articles focused on the maxi-

mum overhang of bricks problem [26] and [27].
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2 Spiral curves

(a) Let us construct a spiral curve of a finite length.

First draw a line segment of length d . Draw a semicircle with diameter

d on one side of the line segment. Then on the other side of the line

segment draw a semicircle of diameter d=2. Then on the other side

draw a semicircle of diameter d=4, and so on, as in Figure 5.3.

d

Figure 5.3

The length of the curve is given by the geometric series

�
d

2
C �

d

4
C �

d

8
C � � � D �d

�

1

2
C 1

4
C 1

8
C � � �

�

D �d:

(b) Now let us construct a spiral curve of infinite length. Draw a line seg-

ment AB of length d with midpoint P . Choose a value of a, with

0 < a < d=4. Let C be a point on AB that is at distance a from

P . Draw a circle with the center C and radius a. Let D denote the

other endpoint of the diameter PD for this circle. On one side of the

line segment AB draw a semicircle of diameter d . On the other side of

the line segment draw a semicircle of diameter AE , where point E is

the midpoint of PB . Then on the other side of the line segment draw a

semicircle of diameter EF , where point F is the midpoint of AD and

so on (see Figure 5.4).

A F D P E B
C

Figure 5.4
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The curve has infinitely many rotations around C and each rotation has

a length bigger than the circumference 2�a, so the length of the curve is

infinite.

Readers interested in spirals may enjoy learning more about the loga-

rithmic spiral (also called the equiangular spiral) associated with the golden

mean or the Archimedean spiral. For a quick introduction to either topic,

consider Pappas’ The Joy of Mathematics [24, pp. 105, 149, 189], or More

Joy of Mathematics [25, pp. 136, 146, 147]. A more in-depth study of the

logarithmic spiral can be found in Maor’s e: The Story of a Number [19,

pp. 121–127] and more coverage of spirals in general is given by Gazalé in

Chapter 8 of Gnomon: From Pharoahs to Fractals [12].

3 A paradoxical fractal curve: the Koch

snowflake.

C(0) C(1) C(2) C(3) C(4)

Figure 5.5

The initial triangle and all consecutive stars and snowflakes in Figure

5.5 lie between the incircle and the circumcircle of the original triangle.

These circles have circumferences of finite length.

Now we examine the perimeter of the star curves. If the perimeter of the

initial triangle is 1 unit, then the perimeter of the star in the first iteration is

12 � 1
9

D 4
3

units. The perimeter of the snowflake in the second iteration

is 48 � 1
27

D 16
9

D
�

4
3

�2
units. The perimeter of the snowflake in the nth

iteration is
�

4
3

�n
units. As n ! 1 the perimeter of the snowflake tends

to infinity. The Koch curve has an infinite length while it bounds a finite

area! Note the area of the snowflake is less than the area of the circumcircle

minus the area of the incircle.

Reference materials abound for further study of the Koch snowflake

curve and related fractals. We first mention two books that provide associ-

ated lesson plans for teachers: Fractals for the Classroom: Strategic Activi-

ties, an NCTM aligned resource, [28], and Fractals: A Tool Kit of Dynamics
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Activities, [7]. Readers seeking more information on the intriguing nature

of this and other strange curves, may enjoy Curious Curves, [9].

4 A tricky fractal area: the Sierpinski

carpet

Although at every step the remaining area is 8 times bigger than the area

removed, the limit of the remaining area will be zero and thus the limit of

the total area removed will be 1 square unit. Let us see why this is the case.

After the first step, the remaining area equals 1 � 1
9

D 8
9

. After the second

step, the remaining area is

8

9
� 8 � 1

81
D 64

81
D

�

8

9

�2

:

Similarly, after the nth step the remaining area is
�

8
9

�n
. As n tends to in-

finity this area tends to zero. For references on the Sierpinski carpet see the

materials mentioned in the answer to Paradox 3.

5 A mysterious fractal set: the Cantor

ternary set

First compute the size of C.n/. At stage n, C.n/ consists of 2n disjoint

closed intervals each of length .1
3
/n. Thus the proportion of the original

interval that remains at stage n is 2n=3n. Clearly

lim
n!1

2n

3n
D 0:

That is, the Cantor ternary set C accounts proportionally for 0% of the

original interval.

Now we examine the ternary expansion of the points in the Cantor

ternary set. Here a value .0:a1a2a3 : : : an/3 in ternary stands for the number

n
X

iD1

ai

3i
;

where ai D 0; 1; or 2. For example, :23 D 2
3

and :2013 D 2
3

C 1
27

. Ternary

expansions need not terminate. A value .0:a1a2a3 : : : an : : : /3 represents

1
X

iD1

ai

3i
:
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For instance

:13 D
1

X

iD1

1

3i
D 1

2
:

As in the decimal system, any number with a terminating ternary expansion

can also be represented with a non-terminating expansion. For example,
1
9

D :013 can also be written as

1

9
D :0023 D

1
X

iD3

2

3i
:

This observation proves particularly helpful when we describe the points

which remain in the Cantor ternary set. At stage 1 remove
�

1
3
; 2

3

�

and what

remains is

C.1/ D
�

0;
1

3

�

[
�

2

3
; 1

�

:

Observe that Œ0; 1
3
� consists of all ternary numbers between 0 D :03 to

1
3

D :023. In other words, Œ0; 1
3
� is the set of numbers in Œ0; 1� that have a

ternary expansion containing a1 D 0. Similarly Œ 2
3
; 1� consists of all ternary

numbers between 2
3

D :23 to 1 D :23, or all numbers in Œ0; 1� that have a

ternary expansion with a1 D 2. Thus at stage 1, we exclude values whose

representations in ternary form require a1 D 1. Continuing at stage 2, where

C.2/ D Œ0; 1
9
� [ Œ 2

9
; 1

3
� [ Œ 2

3
; 7

9
� [ Œ 8

9
; 1�, note that the endpoints have the

following ternary expansions:

0 D :03;
1

9
D :0023;

2

9
D :023;

1

3
D :023;

2

3
D :23;

7

9
D :2023;

8

9
D :223; and 1 D :23:

It follows that the points which remain in C.2/ are those that possess

a ternary expansion with both a1 D 0 or 2 and a2 D 0 or 2. Continuing

on in this manner we realize the values that remain in the Cantor ternary

set are those which admit a ternary expansion consisting entirely of 0s and

2s. Now associate with each point .0:a1a2a3 : : : an : : : /3 in C the corre-

sponding point in Œ0; 1� with binary expansion .0:b1b2b3 : : : bn : : : /2, for

bi D ai

2
. The points .0:b1b2b3 : : : bn : : : /2 provide all possible binary ex-

pansions for points in Œ0; 1�. Thus the Cantor ternary set contains as many

points as our original interval!
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6 A misleading sequence

(a) While the expected answer is 32, there are infinitely many other correct

answers. In fact, the next term a5 in the sequence 2, 4, 8, 16 can take

on any value a.

Consider the sequence rule for the nth term given by

an D 2n C .n � 1/.n � 2/.n � 3/.n � 4/x:

The first four terms of this sequence are 2, 4, 8, 16. We can make a5 D a

by taking x D .a�32/
24

.

(b) Another interesting combinatoric example from geometry produces the

sequence 2, 4, 8, 16 for the first four terms, but surprises us with its fifth

term. Draw a circle, put two dots on the circumference and connect

them with a line segment. The circle is divided into two regions. Put

a third dot and connect all dots. The circle is now divided into four

regions. Put a fourth dot and connect all dots. The circle is now divided

into eight regions. (See Figure 5.6) Put a fifth dot and connect all dots.

The circle is now divided into sixteen regions. It looks like we have

a clear pattern. But when you put a sixth dot and connect all dots the

circle is divided into thirty regions!

1

2

4

1

2
3

1

2
3

4

5
6

7

8

Figure 5.6

7 Remarkable symmetry: Reuleaux

polygons

No, the student was not right. A figure can be of constant diameter and yet

not be a circle. As an example, consider the following curve. In an equilat-

eral triangle draw circular arcs with the radius equal to the side of the trian-

gle from each vertex. The resulting curved triangle, known as the Reuleaux

triangle, (see Figure 5.7) has a constant diameter. When it rolls on a hori-

zontal surface its center moves along a sine curve, undulating up and down



i

i

“master” — 2013/4/15 — 11:01 — page 56 — #70
i

i

i

i

i

i

56 Part III. Solutions to Paradoxes

Figure 5.7

(the center of a rolling circle does not move up and down). For this rea-

son it is not practical to use it as a wheel. However, the Reuleaux triangle

does have practical applications. Wankel rotary engines employ Reuleaux

triangles. And some cities distinguish potable water from waste water by

utilizing Reuleaux triangular covers for one type of valves and circular cov-

ers for the others.

For any odd number n, this construction can be modified to produce a

Reuleaux n-gon. We begin with an n-pointed star inscribed in a circle. First

evenly space n points on the circle. Then connect every m D .n � 1/=2

points on the circle to form a star. Each vertex of the star is connected to

exactly two other vertices and these two vertices are adjacent on the circle.

From each vertex, draw circular arcs with radius equal to the side length

of the star. These arcs join pairs of adjacent vertices on the circle. The

Reuleaux n-gon results. In Figure 5.8 is a five-pointed star and the resulting

Reuleaux pentagon.

O

A

B

C

D

E

Figure 5.8

Reuleaux heptagons (7-gons) have often been used for British coinage,

including two pence, twenty pence, and fifty pence pieces. Their constant

diameter allows for their use in coin-operated vending machines. The Reu-

leaux heptagon is of smaller area than the associated circle of the same

radius, so a Reuleaux coin requires less material.

Chapter 10 of How Round Is Your Circle?, [4] offers an engaging chap-

ter on Reuleaux polygons in addition to solids of constant width. A number
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of interesting physical and engineering applications are discussed there as

well.

8 Rolling a barrel

The barrel rolls as long as the person continues walking. The velocity of the

point on the top of the barrel equals the velocity of the walking person. The

velocity of any point on the cylinder is given by the sum of the rotational

and translational velocity. Here the translational velocity is the velocity of

the axis of the barrel and the rotational velocity is the velocity of the point

on the barrel with respect to the axis. For the point on the top of the barrel,

both the translational and rotational velocities are R!, where R is the radius

of the barrel and ! is the angular velocity. In other words, the velocity of

the point on top of the barrel is twice the velocity of the axis of the barrel.

(Perhaps even more strangely, the velocity of the point on the bottom of

the barrel is always 0!) Thus, the person will cover twice the length of the

board, or 6 m by the time he reaches the barrel.

9 A cat on a ladder

Part 1. Most people confidently choose the correct answer C to Part 1.

Without much difficulty, one can imagine the ladder rotating about a central

point, i.e., where the base of the ladder touches the wall. A circular arc then

results as in Figure 5.9.

Figure 5.9

Part 2. However, Part 2 isn’t so easy to solve intuitively! Many people

are convinced that A is the correct answer. They may reason that as the

ladder slides away from the wall that it would appear to drop quickly, then

level out as it approaches the horizontal. Surprisingly, the answer to this
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Figure 5.10

problem is also C. To gain a sense of what is happening, you may want

to first try making a model for this problem. (See Figure 5.10.) Mark the

midpoint of a paper ladder. Slowly slide the ladder down and away from the

wall, always keeping the endpoints of the ladder on the wall and floor. After

each movement, put a dot on the page where the center of the ladder lies. As

the ladder approaches the horizontal, further lateral movement is minimal.

Here is a simple coordinate geometry proof for the situation in part 2.

Let AB be the ladder and label the midpoint of AB as C , in honor of the

cat. (See Figure 5.11.)

O A

B

C

D

Figure 5.11

Suppose that A D .a; 0/ and B D .0; b/. This implies the coordinates

of the cat are at C D .a=2; b=2/. Observe that as the ladder moves, points

A and B move along the x and y-axes respectively, but the length of AB Dp
a2 C b2 remains fixed. The point C always lies on circle of radius AB=2

centered at the origin. That is C always lies on the circle

x2 C y2 D a2 C b2

4
:

You may well be surprised to learn the trajectory is the same in either

case. However, intuition fails many people in this pair of problems. A col-

league tested groups of 100 fourth-year engineering students in Australia,
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Germany, New Zealand, and Norway. Students of engineering are expected

to be able to quickly conceptualize shapes, movements, and forces. They

were given forty seconds for this mental exercise with no calculations or

drawings permitted. The results were startling, for although 74% of the stu-

dents gave C, the correct answer to Part 1, 86% selected the wrong response

in Part 2 (52% chose A and 34% choose B).

Part 2 of this problem is a special case of the trammel of Archimedes

problem. There, the cat need not sit at the midpoint, but can be placed at

any point on the ladder. As the ladder slides with its endpoints A and B

remaining on the x and y-axes, the trajectory of the cat is part of an ellipse.

Devices constructed to model this are called ellipsographs. Interested read-

ers can learn more about this subject from a recent article [1] “A New Look

at the So-Called Trammel of Archimedes.”

10 Sailing

The top of the yacht has covered the longest distance. The shape of the Earth

is approximately spherical, so the top of the yacht has the longest radius

compared to lower parts and therefore has the longest circumference.

11 Encircling the Earth

The correct answer of approximately 3 m high is a surprise to many people.

Let r be the radius of the Earth and R be the radius of the circle after adding

20 meters to the rope. The difference between the two circumferences is

20 m: 2�R � 2�r D 20 or 2�.R � r/ D 20. From here it follows that the

difference between the two radii is R � r D 10=� � 3 m. The answer does

not depend on the original length of the rope! Thus if we replaced the Earth

with a mere basketball, the result would be the same.

12 A tricky equation

The rough sketches of the graphs are too rough. The graphs of y D log1=16 x

and y D
�

1
16

�x
are very close to each other on the interval .0:1; 0:7/ and, in

fact, they intersect three times on this interval. If we use a computer to draw

the correct graphs and zoom them we can see that the equation has three

solutions: 0:25, � 0:364, and 0:5, See Figures 5.12–5.15. The first is on the

interval .0:1; 0:7/ and the other three on the intervals around the solutions

0:25, � 0:364, and 0:5.
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Figure 5.12 The graphs of the functions y D log1=16 x and y D
�

1
16

�x
on

.0:1; 0:7/

Figure 5.13 The graphs of the functions y D log1=16 x and y D
�

1
16

�x
on

.0:22; 0:34/

Figure 5.14 The graphs of the functions y D log1=16 x and y D
�

1
16

�x
on

.0:362; 0:366/



i

i

“master” — 2013/4/15 — 11:01 — page 61 — #75
i

i

i

i

i

i

Chapter 5. Functions and Limits 61

Figure 5.15 The graphs of the functions y D log1=16 x and y D
�

1
16

�x
on

.0:44; 0:56/

If we use the solve command in Matlab to solve the equation log1=16 x D
�

1
16

�x
we receive only one solution, 0:5.

13 A snail on a rubber rope

Yes, the snail will reach the end of the rope. Let us denote by an the portion

of the rope the snail has covered just before the stretching at time n. In the

first minute, the snail advances 1 cm by his own efforts. Thus he has covered
1

100
th D a1 of the rope in this time frame. Upon the first stretching of the

rope uniformly by 1 m, we have a scaling factor of 2, so the snail is carried

forth by this elongation to the 2 cm position. In the second minute the snail

moves by himself another 1 cm. Thus his new position is at the 3 cm mark,

and we have 3 cm D
�

1
100

C 1
200

�

2 m, so that a2 D 1
100

�

1 C 1
2

�

. The

second stretching by 1 m induces a scalar factor of 3=2, so the snail is now

pulled along to a position 9
2

cm away from his initial starting point. In the

third minute he advances 1 cm again under his own power. His position

before the third stretching is at the 11=2 cm mark. Observe that

11

2
cm D

�

1

100
C 1

200
C 1

300

�

3 m;

or that a3 D 1
100

�

1 C 1
2

C 1
3

�

. Continuing inductively, we can show that

the fraction of the rope traversed at time n before the stretching takes place

is an D 1
100

�

1 C 1
2

C � � � C 1
n

�

. Because the harmonic series diverges, we

know that for some value of n,
Pn

1
1
i

> 100, or that at this stage an > 1. It

follows that the snail will eventually reach the end of the rope.
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Derivatives and Integrals

1 An alternative product rule

The “product rule” is true when u and v are any functions that satisfy the

differential equation u0v0 D u0v C uv0. We can let u be any function and

seek v.

For example, suppose we let u D x. Then we need v to satisfy v0 D
v C xv0. We can solve this system for v by separation of variables:

v0.1 � x/ D v;

dv

v
D

dx

1 � x
;

ln jvj D � ln j1 � xj C ln jcj;

ln jvj D ln
ˇ

ˇ

ˇ

c

1 � x

ˇ

ˇ

ˇ
;

v D c

1 � x
;

where c is an arbitrary constant. In particular,

u D x and v D 1

1 � x

serve as a solution pair.

As a result, there are infinitely many pairs of functions for which the

“rule” is true.

63
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2 Missing information?

Let R be the radius of the sphere. The radius of the drilled hole is then

r D
p

R2 � 64. The volume that remains once the hole has been drilled

equals the volume of the solid of revolution when the shaded area rotates

around the x-axis (see Figure 6.1):

y

0 8 x

R

Figure 6.1

V D 2�

Z 8

0

.R2 � x2 � r2/ dx D 2�

Z 8

0

.R2 � r2 � x2/ dx

D 2�

Z 8

0

.64 � x2/ dx D 2048�

3
cm3:

3 A paint shortage

This solid of revolution known as Torricelli’s trumpet or Gabriel’s horn

presents one of the most famous paradoxes to involve areas and volumes.

The general approach to explain paradoxes that involve infinity and phys-

ical objects (like paint in this case) is to differentiate the “mathematical”

universe from the “physical” universe. Infinity is a pure mathematical idea

that we cannot apply to real, finite objects. From a mathematical point of

view one “abstract” drop of paint is enough to cover any area, no matter

how large. One just needs to make the thickness of the cover very thin, and

infinitely thin if you want to cover an infinite area. Consider an easier ex-

ample. You have 1 drop of paint which has the volume of 1 cubic unit. You

need to cover a square plate of the size x by x units. Then the (uniform)

thickness of the cover will be 1
x2 units. If x D 100 cm, then the thickness of

the cover is 1
10000

cm. If x ! 1, then the area x2 ! 1 and the thickness
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1
x2 ! 0. But at any stage the volume is

x2 � 1

x2
D 1 cubic cm.

So mathematically you can cover any infinite area with any finite amount of

paint, even with a single drop. In reality such infinite areas don’t exist, nor

can one make the cover infinitely thin. For further historical background and

more in-depth study of Torricelli’s trumpet, see Chapter 8 of Nonplussed by

Havil [13].

4 Racing marbles

Our curve is given by the parametric equations x.�/ D ��sin � and y.�/ D
cos ��1, for 0 � � � � . Let v denote the velocity of the marble at any point

.x; y/ along its path. We have v D ds
dt

, where ds D
p

x0.�/2 C y0.�/2d� .

We compute ds along the curve and have

ds D
p

.1 � cos �/2 C .� sin �/2 d� D
p

2 � 2 cos � d� D
p

�2y d�:

We first compute the amount of time it would take a marble that starts

at the origin to travel to the endpoint .�; �2/. Let m denote the mass of the

marble. Then by conservation of energy, we have

1

2
mv2 D �mgy:

Thus

v D ds

dt
D

p

�2gy; and dt D dsp
�2gy

D d�
p

g
:

Thus the amount of time it takes the marble to travel from the origin to the

bottom point is

T D 1
p

g

Z �

0

d� D �
p

g
:

Suppose instead that the marble starts from an intermediate point M D
�

x.˛/; y.˛/
�

, with 0 < ˛ < � . This time conservation of energy gives

1

2
mv2 D mg

�

y.˛/ � y
�

Or that

dt D ds
p

2g.cos ˛ � cos �/
D 1

p
g

r

1 � cos �

cos ˛ � cos �
d�:



i

i

“master” — 2013/4/15 — 11:01 — page 66 — #80
i

i

i

i

i

i

66 Part III. Solutions to Paradoxes

To compute the time it takes to travel from M to the end of the track,

T D 1
p

g

Z �

˛

r

1 � cos �

cos ˛ � cos �
d�;

first employ the identities 1�cos � D 2 sin2.�
2
/ and 1Ccos � D 2 cos2.�

2
/.

Then we have

T D 1
p

g

Z �

˛

s

2 sin2.�=2/

.1 C cos ˛/ � .1 C cos �/
d�

D 1
p

g

Z �

˛

sin.�=2/
p

cos2.˛=2/ � cos2.�=2/
d�:

Next utilize the trigonometric substitution with u D cos.�=2/
cos.˛=2/

. The bounds

� D ˛ and � D � correspond to the bounds u D 1 and u D 0 respectively,

and du D � sin.�=2/d�
2 cos.˛=2/

. Rewriting the integral then gives

T D 1
p

g

Z 1

0

2dup
1 � u2

D �
p

g
:

Thus, the amount of time the marble needs to roll to the finish is independent

of the starting point M .

The curve described by this pair of parmetric equations is a cycloid.

The problem of finding a curve for which a marble placed anywhere will

reach the bottom in the same amount of time is classically referred to as

the tautochrone problem. Huygens first discovered and published a solu-

tion. Cycloids have been studied extensively and exhibit a number of other

intriguing properties as well. Readers may enjoy the well written Chapter 9

on cycloids in [18].

5 A paradoxical pair of functions

First we verify that both f .x/ and g.x/ are continuous at x D 0. In each

case the squeeze theorem for limits applies. We are naturally able to find

upper and lower bound functions for f .x/ and g.x/:

�jxj � x sin
1

x
� jxj;

and

�x2 � x2 sin
1

x
� x2:
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It follows that both limx!0 x sin 1
x

D 0 and limx!0 x2 sin 1
x

D 0 or that

f .x/ and g.x/ are continuous at x D 0.

The distinction in the differentiability of the two functions arises when

we examine the difference quotients in the definition of the derivative. To

see that f .x/ is not differentiable at x D 0, observe that

lim
x!0

f .x/ � f .0/

x � 0
D lim

x!0

x sin 1
x

x
D lim

x!0
sin

1

x

does not exist.

On the other hand, we can demonstrate that g.x/ is differentiable at

x D 0. We have

g0.0/ D lim
x!0

g.x/ � g.0/

x � 0
D lim

x!0

x2 sin 1
x

x

D lim
x!0

x sin
1

x
D 0:

6 An unruly function

Yes, such functions exist!

To showcase this possibility, we present a classical example that relies

on knowing that both the set of rational numbers and the set of irrational

numbers form dense subsets of the real numbers. The rationals are dense

in the real number line because for any two distinct real numbers a and b,

with a < b, we can always find a rational number r such that a < r < b. A

similar statement holds for the density of the irrationals.

Now employ the clever idea of defining a function f .x/ based on the

rationality or irrationality of x. Let

f .x/ D
(

x2 if x is rational

0 if x is irrational.

We first show that f .x/ is not continuous on any interval .a; b/. In fact,

f .x/ is continuous only at the single point x D 0.

By definition a function f .x/ is continuous at x D a if given any � >

0, there exists a ı > 0 such that whenever jx � aj < ı, this guarantees

jf .x/ � f .a/j < �. Thus to prove that f .x/ is not continuous at x D a,

we need only exhibit a value of � > 0 for which no matter what ı > 0 we

take, we can always produce a value of x where jx � aj < ı holds and yet

jf .x/ � f .a/j � �.

We demonstrate that f .x/ is not continuous at any rational value a ¤ 0.

(It can also be shown that f .x/ is not continuous at any irrational value a.)
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Once this is established, it is an immediate consequence of the density of

the rationals that f .x/ is not continuous on any interval .a; b/.

Suppose that a ¤ 0 is a rational number, so that f .a/ D a2 ¤ 0. Let

� D a2

2
. Now consider any ı > 0. By the density of the irrationals, there

exists an irrational number x such that x 2 .a � ı; a C ı/. At this value of

x, we have f .x/ D 0, jx � aj < ı, and jf .x/ � f .a/j D a2 > �. Thus

f .x/ is not continuous at x D a.

Remarkably, f .x/ is both continuous and differentiable at x D 0. To

see this we verify the respective limit definitions.

For the continuity of f .x/ at x D 0, consider any � > 0. Let ı D
p

�.

We then have jf .x/ � f .0/j < �, whenever jx � 0j < ı D
p

�.

As for the differentiability of f .x/ at x D 0, compute

f 0.0/ D lim
x!0

f .x/ � f .0/

x � 0

D lim
x!0

f .x/

x
:

We can utilize the squeeze theorem to evaluate this limit because 0 �
f .x/ � x2, so 0 �

ˇ

ˇ

f .x/
x

ˇ

ˇ � jxj. We conclude that f 0.0/ exists and

f 0.0/ D 0.

7 Jagged peaks galore

In the 1830s Bolzano produced the first known example of a continuous

function that is not differentiable anywhere. However, his discovery did not

initially draw much attention and his manuscript was not published until

roughly one hundred years later.

Nitecki [21, pp. 237–246], presents a detailed geometric construction of

a continuous nowhere differentiable function on Œ0; 1�. The inductive con-

struction first defines a sequence of piecewise linear functions with speci-

fied values at the triadic rationals. (Triadic rationals are those points with

terminating ternary expansions 0:a1a2a3 : : : an. See Paradox #5: The Can-

tor ternary set for more details about such expansions.) The function is then

extended to all real values in Œ0; 1� by taking limits of these functions and

utilizing the definition of continuity.

Nitecki also discusses the intriguing historical events surrounding this

problem. Based on an understanding of the exposition on the triadic ratio-

nals construction, he leads readers through a series of exercises that explore

Bolzano’s own construction. This treatment is accessible to advanced first-
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year calculus students and offers wonderful material for exploration or an

honors project.

The first example of a continuous nowhere differentiable function is

attributed to Weierstrass. In the 1870s he presented his trigonometric series

based result. The function

f .x/ D
1

X

nD0

�

1

2

�n

cos.3nx/

represents a special case of his example. Figure 6.2 shows the first seven

terms in this series and allows us to visualize its fractal nature.

Figure 6.2

The proof of the continuity and nowhere differentiability of the Weier-

strass function requires more advanced analysis tools and techniques. For

those familiar with Fourier series and uniform convergence, we recommend

the coverage in [3, pp. 259–263].

These fractal examples of Bolzano and Weierstrass oscillate at every

level. One could reasonably wonder, how extreme can the behavior of a

monotone continuous function be? After developing his continuous nowhere

differentiable function, Weierstrass went on to explore this question. He

constructed a monotone continuous function that is not differentiable at any

rational number. Weierstrass futher believed that he could construct a mono-

tone continuous nowhere differentiable function; he kept on searching for an

example. However, Lebesgue later proved him wrong by demonstrating that

no such function could exist! While we can understand the question Weier-

strass pursued in the context of first-year calculus, the result of Lebesgue

lies in the realm of a much more advanced area of analysis called measure

theory.
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8 Another paradoxical pair of functions

We first comment on the discontinuous nature of f .x/ and g.x/. While the

function f .x/ is, in fact, discontinuous for every value of x, we confirm

only its discontinuity for rational points. Take any rational value x 2 Œ0; 1�

and let � D 1
2

. Given any ı > 0, we can find an irrational value y 2
.x � ı; x C ı/ by the density of the irrational numbers. At y we have

ˇ

ˇf .x/ � f .y/
ˇ

ˇ D j1 � 0j D 1 > � D 1

2
; while jx � yj < ı:

It follows that f is discontinuous at x.

We show that the function g.x/ is discontinuous at every rational x in a

similar manner. For x D p
q

, in lowest terms, consider the value � D 1
2q

. For

any ı > 0, we can again find an irrational value y 2 .x � ı; x C ı/. There

ˇ

ˇg.x/ � g.y/
ˇ

ˇ D
ˇ

ˇ

ˇ

ˇ

1

q
� 0

ˇ

ˇ

ˇ

ˇ

D 1

q
> � D 1

2q
; while jx � yj < ı:

It follows that g is discontinuous at x.

For the integrability results, we recall the definition of Riemann sums

and the Riemann integral.

Riemann sum. Let f .x/ be a bounded function on Œa; b� and let P

be a partition of Œa; b� with a D x0 < x1 < x2 < � � � < xn�1 <

xn D b. Denote the width of the i th subinterval Œxi�1; xi � by �xi D
xi � xi�1, and let �P D maxiD1 to n �xi denote the mesh size of

the partition P . If ci is any point in Œxi�1; xi �, then the sum S D
Pn

iD1 f .ci /�xi , is called a Riemann sum of f .x/ on Œa; b� for the

partition P .

Riemann integral. The bounded function f .x/ on Œa; b� is said to

be Riemann integrable with value R D
R b

a
f .x/ dx, if for each � > 0,

there exists a ı > 0, such that jS � Rj < �, for every Riemann sum S

of f with �P < ı.

Now we show that f .x/ is not Riemann integrable. We establish this

with a proof by contradiction. Assume that
R 1

0
f .x/ dx D R. Let � D 1

2
.

Then there exists a ı > 0, such that jS � Rj < �, for every Riemann

sum S of f with �P < ı. We compute two particular Riemann sums S1

and S2 for any partition P with �P < ı. For S1, choose a rational value

ci 2 Œxi�1; xi �, for each subinterval in the partition. Then

S1 D
n

X

iD1

f .ci/�xi D
n

X

iD1

1�xi D 1:
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For S2, select an irrational value ci 2 Œxi�1; xi �, for each subinterval in the

partition. Then

S2 D
n

X

iD1

f .ci/�xi D
n

X

iD1

0�xi D 0:

However,

1 D jS1 � S2j � jS1 � Rj C jR � S2j <
1

2
C

1

2

yields a contradiction. Thus f .x/ is not Riemann integrable.

As for g.x/, despite its erratic behavior we can demonstrate that it is

Riemann integrable with
R 1

0
g.x/ dx D 0. Consider any value � > 0. Take

q large enough so that 1
q

< �
2

. Note that the number of points N.q/ in Œ0; 1�

where g.x/ � 1
q

is finite. In particular, we have the bound

N.q/ � q C .q � 1/ C .q � 2/ C � � � C 2 C 1 C 1:

Consider now ı D �
2N.q/

. Compute the Riemann sum for g.x/ over any

partition P with �P < ı by first classifying the subintervals in P as one of

two types. We say a subinterval Œxi�1; xi � 2 P is of type 1 if there exists a

point ci 2 Œxi�1; xi � for which g.ci / � 1
q

. Otherwise we say a subinterval

is of type 2, when g.ci / < 1
q

, for all ci 2 Œxi�1; xi �. Then for any partition

P with �P < ı, we have

S D
X

subintervals
of type 1

g.ci /�xi C
X

subintervals
of type 2

g.ci /�xi

< .1/N.q/
�

2
�

N.q/
� C 1

q
.1 � 0/

<
�

2
C �

2

D �:

Thus g.x/ is Riemann integrable.



i

i

“master” — 2013/4/15 — 11:01 — page 72 — #86
i

i

i

i

i

i



i

i

“master” — 2013/4/15 — 11:01 — page 73 — #87
i

i

i

i

i

i

Part IV

Solutions to

Sophisms



i

i

“master” — 2013/4/15 — 11:01 — page 74 — #88
i

i

i

i

i

i



i

i

“master” — 2013/4/15 — 11:01 — page 75 — #89
i

i

i

i

i

i

7
Functions and Limits

1 Evaluation of limn!1
Pn

kD1
1p

n2Ck
proves

that 1 D 0.

The mistake is in part (a). The theorem for the limit of a sum states that

lim
n!1

�

f1.n/ C f2.n/
�

D lim
n!1

f1.n/ C lim
n!1

f2.n/;

provided each of the limits lim
n!1

fi .n/ exist for i D 1; 2. For any natural

number k, we can extend this result to

lim
n!1

�

f1.n/ C f2.n/ C � � � C fk.n/
�

D lim
n!1

f1.n/ C lim
n!1

f2.n/ C � � � C lim
n!1

fk.n/;

provided each of the limits limn!1 fi .n/ exist for i D 1; 2; : : : ; k. In the

example in part (a), k is not a fixed natural number, but is in fact n itself.

Therefore the number of terms in our sum is changing with n and we cannot

apply the theorem.

2 Evaluation of limx!0

�

x sin 1
x

�

proves that

1 D 0.

The mistake is in part (b). If we let � D 1
x

, we see that our limit is, in fact,

of the form lim�!1
sin �

�
and not of the form lim�!0

sin �
�

.

75
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3 Evaluation of limx!0C.xx/ shows that

1 D 0.

This time the approach employed in each solution is mathematically flawed!

In such expressions it is incorrect to take limits separately in one portion of

the expression at a time. However, while both methods presented in (a) and

(b) are wrong, it can still be shown using l’Hôpital’s rule that 1 is the correct

value for the limit. In that case we have,

lim
x!0C

xx D lim
x!0C

ex ln x

D elim
x!0C x ln x

D elim
x!0C

ln x
1=x

D e
lim

x!0C
1=x

�1=x2

D elim
x!0C .�x/

D 1:

4 Evaluation of limn!1
n
p

n demonstrates

that 1 D 1.

As with the previous sophism it is incorrect to take limits separately one

after another in such expressions. Let us find the limit limn!1
n
p

n using

the squeeze theorem. Observe first that 0 D n
p

1 � 1 � n
p

n � 1.

In the binomial expansion of n D
�

1 C
�

n
p

n � 1
��n

each term is pos-

itive, so it follows that n exceeds any individual term in the expansion. In

particular, n >
�

n
2

� �

n
p

n � 1
�2

.

This yields the inequality

n >
n.n � 1/

2

�

n
p

n � 1
�2

:

From here we deduce the desired lower and upper bounds:

0 <
�

n
p

n � 1
�2

<
2

n � 1
:

Applying the squeeze theorem gives limn!1
�

n
p

n � 1
�2 D 0 and we there-

fore conclude limn!1
n
p

n D 1. It is also possible to prove that

limn!1
n
p

n D 1, by means of l’Hôpital’s rule.

lim
n!1

n
p

n D lim
n!1

n.1=n/ D lim
n!1

e.ln n=n/

D elimn!1 ln n=n D elimn!1 1=n D 1:
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It is worthwhile to note that limn!1
n
p

n naturally arises in many prob-

lems associated with the root test for series.

5 Trigonometric limits prove that

sin kx D k sin x.

If limx!a f .x/ D limx!a g.x/, it does not follow that f .x/ and g.x/ are

equal.

6 Evaluation of a limit of a sum proves

that 1 D 0.

Here the mistake is in part (a). We have introduced the same type of error

as in Sophism 1. For any k sequences we have

lim
n!1

�

s1.n/ C s2.n/ C � � � C sk.n/
�

D lim
n!1

s1.n/ C lim
n!1

s2.n/ C � � � C lim
n!1

sk.n/;

provided each of the limits exists. However, in Sophism 6 the value for k is

not fixed and varies with n.

7 Analysis of the function xCy

x�y
proves that

1 D �1.

The order of taking limits is important. Although the function is the same,

changing the order can give different results. In general,

lim
x!a

lim
y!b

f .x; y/ ¤ lim
y!b

lim
x!a

f .x; y/:

For example,

lim
x!0

lim
y!0

y sin
1

x
D 0

whereas limy!0 limx!0 y sin 1
x

is not defined because limx!0 y sin 1
x

does

not exist.

8 Analysis of the function axCy

xCay
proves

that a D 1
a
, for any value a ¤ 0.

See the comments in the solution to Sophism 7.
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9 One-to-one correspondences imply that

1 D 2.

Because there are infinitely many points on any line segment and any cir-

cumference it doesn’t make sense to talk about the number of points. By

definition, a set is infinite if there exists a one-to-one correspondence be-

tween its elements and the elements of one of its proper subsets. The rules

for sets with infinitely many elements are different than the rules for sets

with a finite number of elements. In particular, the one-to-one correspon-

dence between the points on these two line segments does not imply that

their lengths are the same.

You can readily envision modifications of the construction given in

Sophism 9 that would generate a one-to-one correspondence between any

two line segments. Perhaps you may be surprised, however, to learn that

a one-to-one correspondence between the interval .0; 1/ and the real num-

ber line R exists! This correspondence relies on the notion of stereographic

projection. We outline the main ideas briefly. First as we already noted, a

one-to-one correspondence between the points in the intervals .0; 1/ and

.0; 2�/ exists. Define the circle C by C D
˚

.x; y/jx2 C .y � 1/2 D 1
	

and let O denote the origin .0; 0/ and P denote the point .0; 2/. Now ob-

serve that a natural one-to-one correspondence between � 2 .0; 2�/ and

C.�/ 2 C � O can be defined as shown in the Figure 7.1.

P = (0, 2)

O = (0, 0)

q

X

X¢

C( )q

Figure 7.1

Let X ¤ O be a point on C . Then the stereographic projection of X

is defined as the point X 0 where the line through P and X intersects the

real axis. This projection completes the construction of the one-to-one cor-

respondence between .0; 1/ and the real number line R.

You may be even more amazed to discover that one-to-one correspon-

dences exists between points on a unit line segment and points in a unit
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square. The correspondences utilized this time rely on the concept of space-

filling curves. One can even establish a one-to-one correspondence between

points on a 1cm line segment and points of a 3-dimensional figure, for ex-

ample a sphere of the size of the Earth. As a student remarked, “infinity is

where things happen that don’t.”

For an entertaining introduction to the study of infinity, see Chapter 3

of The Heart of Mathematics [5]. More in-depth coverage of the notions of

countability and infinity is offered in the text The Mathematics of Infinity:

A Guide to Great Ideas [10].

10 Aristotle’s wheel implies that R D r.

This sophism was first described by the Greek philosopher Aristotle (384–

322 BC) in his book Problems of Mechanics. However, his original expla-

nation was not clear. Later Galileo Galilei (1564–1642) provided his own

explanation of the sophism. The mathematical essence of the sophism was

only finally fully explained with the development of the concept of one-to-

one correspondence between sets of equal cardinality discovered by Georg

Cantor (1845–1918). In that regard, the nature of this sophism is similar to

Sophism 9(b). To read more about the study of cardinality and infinity we

mention again [5, Chapter 3] and [10].

From a practical point of view it is impossible for both wheels to roll.

Only the big wheel can roll, and when it does the small wheel both rotates

and slides on the surface of the rail. When the big wheel makes one rotation

and covers distance AB , point C moves to point D. See Figure 7.2. Dis-

tance AB equals the circumference of the big wheel. Obviously AB D CD.

But CD is bigger than the circumference of the small wheel, because apart

from making one rotation the small wheel also slides on the surface of the

rail. Point A on the big wheel traces a curve called a cycloid. Point C on the

small wheel traces a curve that looks like a flattened cycloid. If the radius

of the small wheel is very small, almost zero, then the trajectory of point

C will be very close to the straight line OP . In this case the small wheel

would be mostly sliding, because the distance CD would be much bigger

than the length of the circumference of the small wheel. It is very unlikely

that anything would ever be constructed in this way, because the sliding of

the small wheel will always create friction.

The small wheel can roll only if the big wheel doesn’t contact the sur-

face. Point C on the small wheel traces a cycloid and point A on the big

wheel traces a curve that resembles an unfinished circumference. See Fig-

ure 7.3. If the radius of the small wheel is very small, almost zero, then
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A B

O

C

P

D

Figure 7.2

the trajectory of point A will be very close to the circumference of the big

wheel. For some time during the big wheel’s revolution its lowest point will

actually move in the opposite direction to that of the overall movement, and

there will be a small loop on the bottom of its trajectory.

C D

A B

Figure 7.3

This, in fact, is how physical railway wheels move. The small wheel

rolls and the big wheel does not touch the surface. See Figure 7.4, which

shows a cross-section through the wheel and the rail.

Figure 7.4

11 Logarithmic inequalities show 2 > 3.

The mistake is in the last step. The value ln 1
2

is negative, therefore when

dividing by it we need to change the sign of the inequality.
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12 Analysis of the logarithm function

implies 2 > 3.

The mistake is in step 2. The function y D log1=2 x is decreasing. Therefore

from
�

1
2

�2
>

�

1
2

�3
it follows that

log1=2

�

1

2

�2

< log1=2

�

1

2

�3

:

13 Analysis of the logarithm function

proves 1
4

> 1
2
.

The mistake is in step 3. The value ln 1
2

is negative, therefore when doubling

the left-hand side we should instead obtain 2 ln 1
2

< ln 1
2

.

14 Limit of perimeter curves shows that

2 D 1.

As n tends to infinity the length of each line segment approaches zero, but

from the diagram we can see that the zig-zag curve tends to the triangle base

of length 1. While this is true, it doesn’t necessarily mean that the length of

the zig-zag curve tends to the length of the base. When n is increasing, the

length of each line segment is getting smaller, but the number of segments

is getting bigger. At the second stage each line segment length in the zig-

zag curve is 1
2

, the number of the line segments is 4, and thus the length of

the zig-zag curve is 4 � 1
2

D 2. At the third stage the length of each line

segment is 1
4

, the number of the line segments is 8, and therefore the length

of the zig-zag curve is 8 � 1
4

D 2. At the nth stage each line segment length

is 1=2n�1 and the number of the segments is 2n, therefore the length of the

zig-zag curve is

2n � 1

2n�1
D 2:

So when n tends to infinity the limit of the zig-zag curve’s length is

lim
n!1

�

2n � 1

2n�1

�

D lim
n!1

2 D 2:

When n ! 1 we say that the sequence of curves Ln tends to the

segment line L of a finite length if the distance d .Ln; L/ tends to zero. In

our construction if Ln denotes the zig-zag curve at stage n and L denotes



i

i

“master” — 2013/4/15 — 11:01 — page 82 — #96
i

i

i

i

i

i

82 Part IV. Solutions to Sophisms

the horizontal base then we have,

d.Ln; L/ D
p

3

2n
:

Thus by definition Ln ! L.

On the other hand, even if Ln !L, this doesn’t mean that limn!1 l.Ln/

D l.L/. One can only prove that the inequality limn!1 l.Ln/ � l.L/ holds

(provided that the limit limn!1 l.Ln/ exists). In fact, the value limn!1
l.Ln/
l.L/

can be made as large as we desire by modifying the original triangle to be

an isosceles triangle with sides of equal length m and base 1. In general, if

curve A gets closer to curve B it doesn’t mean that the length of curve A

tends to the length of curve B .

15 Limit of perimeter curves shows � D 2.

The incorrect work lies in part (b). Part (a) has been correctly presented,

but as we learned in Sophism 14 even if one curve approaches another, i.e.,

Ln ! L, this doesn’t imply that limn!1 l.Ln/ D l.L/.

16 Serret’s surface area definition proves

that � D 1.

This is a well-known counterexample to Serret’s definition of the area of a

surface, found independently by Schwarz in 1880 and by Peano in 1882.

This computation showed that Serret’s definition of the area of a surface

(which was commonly accepted at that time) needed some modifications.

This example is known as Schwarz’s paradox or the cylinder area paradox.

When both m and n tend to infinity the polyhedral surface indeed tends to

the lateral surface of the cylinder, but the limit of the area of the polyhe-

dral surface depends on how m and n tend to infinity and can actually be

any number larger than or equal to 2� . Serret’s definition (quoted below)

neglected to consider how m and n tend to infinity:

“The area of a surface S bounded by a curve C is the limit of the el-

ementary areas of the inscribed polyhedral surfaces P bounded by a

curve G as P ! S and G ! C , where this limit exists and is in-

dependent of the particular sequence of inscribed polyhedral surfaces

which is considered.”

Similar to the situation that arises in the solution to Sophism 14, if sur-

face A tends to surface B it doesn’t imply that the area of surface A tends

to the area of surface B .
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If you are interested in further information on this paradox, consider the

Pólya Award winning article by Frieda Zames [31] on this subject.

17 Achilles and the tortoise

Underlying “The Achilles” sophism of Zeno are deep philosophical ques-

tions, much akin to those present in his three other famous sophisms: “The

Dichotomy,” “The Arrow,” and “The Stadium.”

“The Greek philosopher Zeno presented for the first time the problems

derived from assuming (or rejecting) the infinite divisibility of space

and time. He showed that knowledge of the physical world is depen-

dent on what axioms concerning reality are admitted: space and time

are either atomic or dividable ad infinitum.” [20]

The interdependence of the concepts of infinity, space, time, and conti-

nuity continue to engage mathematicians and philosophers. For an overview

of the four “sophisms” of Zeno, consider History of Mathematics: An Intro-

duction by Katz, [14, pp. 45–47] or The History of Mathematics: A Brief

Course by Cooke, [8, pp. 283–284]. Meyerstein offers an engaging account

of “The Achilles,” in “Is Movement an Illusion? Zeno’s Paradox From a

Modern View Point,” [20].

Here we consider only one aspect of this sophism—a limit. We will not

undertake the broader philosophical discussion.

Let the sequence of values an represent a set of positions of Achilles and

the sequence bn represent the positions of the tortoise at the corresponding

times. Then

a1 D 0 b1 D 1

a2 D 1 b2 D 1 C 1

100

a3 D 1 C
1

100
b3 D 1 C

1

100
C

1

1002

:::
:::

an D 1 C 1

100
C � � � C 1

100n�2
bn D 1 C 1

100
C � � � C 1

100n�1

We have geometric series with the first term 1 and ratio 1
100

. When

n ! 1 they have the same limit:

lim
n!1

an D lim
n!1

bn D 1

1 � 1
100

D 100

99
:
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This is the position when Achilles will reach the tortoise.

18 Reasonable estimations lead to

1;000;000 � 2;000;000.

The rule for multiplying left and right sides of equalities is only valid for ex-

act equalities, and is invalid for approximate equalities. These approximate

equalities are in actuality inequalities. For example, x � b with accuracy

of 0:1 means that b � 0:1 < x < b C 0:1 In multiplying left-hand sides and

right-hand sides of approximate equalities we actually multiply inequalities

of the same nature. For example, from a < b and c < d , where each of a,

b, c, and d > 0, it follows that ac < bd . Thus here we are only able to

conclude that 1;000;000 < 2;000;000.

19 Properties of square roots prove

1 D �1.

The property
p

a � b D
p

a �
p

b is valid only for nonnegative numbers a

and b.

20 Analysis of square roots shows that

2 D �2.

All three statements are true, but the conclusion is certainly wrong. By def-

inition the number 4 has two square roots, 2 and �2 (the result is 4 when

either are squared). The first student mentioned just one of the square roots

�2 (“a square root of 4 is �2,” which is equivalent to saying “one square

root of 4 is �2”). The second student gave the other (nonnegative) square

root of 4 because the symbol
p

is used by convention to represent only

the nonnegative square root. So the square roots of 4 are 2 and �2 and the

equality
p

4 D 2 actually reads “the nonnegative square root of 4 is 2,” not

“the square root of 4 is 2.”

21 Properties of exponents show that

3 D �3.

The exponential rule .am/n D amn is valid only for nonnegative numbers

a.
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22 A slant asymptote proves that 2 D 1.

By definition, a straight line y D mx C b is a slant asymptote to the graph

of a function y D f .x/ if limx!1
�

f .x/ � .mx C b/
�

D 0. From this

definition, it is easy to determine the values of m and b if a slant asymptote

exists:

m D lim
x!1

f .x/

x
and b D lim

x!1

�

f .x/ � mx
�

:

For this function, we have

m D lim
x!1

x2 C x C 4

x.x � 1/
D 1

and

b D lim
x!1

�

x2 C x C 4

x.x � 1/
� x

�

D lim
x!1

�

2 C 6

x � 1

�

D 2:

Rewriting f .x/ using long division as done in part (a) provides an

equivalent means to produce the same values for m and b, when a slant

asymptote exists.

The mistake is in part (b). The technique used in (b) only assists in

determining that limx!1 f .x/ D 1. Rewriting

f .x/ D x2 C x C 4

x � 1
D

x C 1 C 4
x

1 � 1
x

does not help identify the linear portion of the function.

23 Euler’s interpretation of series shows
1
2

D 1 � 1 C 1 � 1 C � � � .
In Chapter 20 “Infinite Series” of Mathematical Thought from Ancient to

Modern Times, Kline [16] provides an illuminating account of the historical

development of the theory of series. Numerous delightful examples illus-

trate the confusion in the early days of this area of mathematics.

The mistake arises in that a series representation is valid only for values

of x inside the interval of convergence. Here the interval of convergence of
P1

0 xn is .�1; 1/. The value x D �1 lies outside this interval.

24 Euler’s manipulation of series proves

�1 > 1 > 1.

Again as in Sophism 23, the mistake occurs because the series expansions

are valid only within their intervals of convergence. The interval of conver-
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gence for each of the series
P1

0 .�1/n.n C 1/xn and
P1

0 xn is .�1; 1/.

Thus the evaluations of these series at x D �1 and x D 2 respectively are

both invalid.

This entertaining fallacy of historical note is also discussed in Chapter

20 of [16].

25 A continuous function with a jump

discontinuity.

The mistake lies in part (a) within the statement

“Since each function fk.x/ in the sum is continuous, the sum S.x/ is

continuous at the values of x where the series converges.”

The notion of convergence of functions presented serious conceptual

challenges in the development of calculus. The above incorrect statement

is actually attributed to Cauchy. Bottazzini [2, pp. 108–112] offers a com-

pelling historical account of this fact and the evolution of the understanding

of convergence.

In order to rectify the problem, two types of convergence of functions

need to be distinguished. These two notions of pointwise convergence and

uniform convergence of functions are typically defined in an advanced cal-

culus or elementary analysis class. We provide these definitions here.

Let fSn.x/g be a sequence of real-valued functions on a set A � R. We

say that fSn.x/g converges pointwise to S.x/ on A, if limn!1 Sn.x/ D
S.x/ for all x 2 A.

Take note of the stronger hypothesis in the definition of uniform con-

vergence.

Let fSn.x/g be a sequence of real-valued functions on a set A � R. We

say that fSn.x/g converges uniformly to S.x/ on A, if for each � > 0, there

exists an N such that
ˇ

ˇSn.x/ � S.x/
ˇ

ˇ < � for all x 2 A and all n > N .

A treatment of these concepts together with the well-known theorem

that the uniform limit of continuous functions is continuous can be found in

Elementary Analysis: The Theory of Calculus [23]. The moral of the story is

to remember that the pointwise limit of a sequence of continuous functions

need not be continuous itself.
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26 Evaluation of Taylor series proves

ln 2 D 0.

Examples of this nature lead to the remark “Occasionally 17th- and 18th-

century mathematicians revelled in the art of series-manipulation if for no

better reason (it would seem) than to demonstrate their prowess.” [15].

In 1837 Dirichlet examined the pair of conditionally convergent series

1 � 1

2
C 1

3
� 1

4
C 1

5
� 1

6
C � � � (7.1)

and

1 C 1

3
� 1

2
C 1

5
C 1

7
� 1

6
C � � � (7.2)

that are rearrangements of each other [22, pp. 26-31]. He was able to show

that the series in (7.1) converges to ln 2, while the series in (7.2) converges

to 3
2

ln 2. This gives yet a third distinct value for what seemingly appears to

be the same sum. For the moment we are now facing the sophism 3
2

ln 2 D
ln 2 D 0!

What Dirichlet had discovered is that convergent series can be classified

as one of two distinct types depending on whether or not they remain con-

vergent after all the terms are made positive. Today we refer to these two

types of convergence as conditional or absolute convergence of series.

Later in the mid-19th century Riemann’s resolution of this seemingly

implausible situation was fundamental in the conceptual development of

the theory of infinite series. His famous rearrangement theorem for conver-

gent series clarifies that there is nothing special about these three particular

values in our sophism!

Theorem. Given any conditionally convergent series (i.e., one which is not

absolutely convergent) and any real number C , there exists a rearrange-

ment of the series so that the newly ordered series converges to C .

Thus the error in Sophism 26 lies in believing rearrangements of a con-

ditionally convergent series necessarily converge to the same value.
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Derivatives and Integrals

1 Trigonometric Integration shows 1 D C ,

for any real number C .

In both sides of the equation

sin2 x

2
C C1 D �cos2 x

2
C C2 (8.1)

we have the same infinite set of functions written in different forms. For

each antiderivative of the left-hand side with a certain value of C1 we can

find the same antiderivative of the right-hand side with another value of C2

and vice versa. Although being arbitrary, the constants C1 and C2 are not

independent of each other. They are related by the formula 2C2 � 2C1 D
1. This relationship can be obtained by using the trigonometric identity

sin2 x C cos2 x D 1 and replacing .1 � sin2 x/ with cos2 x in (8.1). The

difference of two arbitrary but dependent constants is not an arbitrary con-

stant.

2 Integration by parts demonstrates

1 D 0.

This is similar to the previous sophism. In both sides of the equation
Z

1

x
dx D 1 C

Z

1

x
dx

89



i

i

“master” — 2013/4/15 — 11:01 — page 90 — #104
i

i

i

i

i

i

90 Part IV. Solutions to Sophisms

we have the same infinite set of functions written in different forms:

ln jxj C C1 D 1 C ln jxj C C2:

For each antiderivative of the left-hand side with a certain value of C1 we

can find the same antiderivative of the right-hand side with another value

of C2 and vice versa. Although arbitrary, the constants C1 and C2 are not

independent of each other. They are clearly related by the formula C1 D
1 C C2.

3 Division by zero is possible.

Although arbitrary, the constants C1 and C2 once again are not independent

of each other. They are related by a formula that can be obtained by applying

the rules for logarithms:

1

2
ln

ˇ

ˇ

ˇ

ˇ

x C
1

2

ˇ

ˇ

ˇ

ˇ

C C1 D
1

2
ln j2x C 1j C C2

D 1

2
ln

ˇ

ˇ

ˇ

ˇ

2

�

x C 1

2

�
ˇ

ˇ

ˇ

ˇ

C C2

D 1

2
ln 2 C 1

2
ln

ˇ

ˇ

ˇ

ˇ

x C 1

2

ˇ

ˇ

ˇ

ˇ

C C2:

Thus it follows that C1 D ln
p

2 C C2.

While each of C1 and C2 can take on the value zero, it just cannot hap-

pen at the same time!

4 Integration proves sin2 x D 1 for any

value of x.

After integrating both sides of the differential equation y00 D .y2/0 an ar-

bitrary constant C was omitted. The resulting equation should be y0 D
y2 C C , or

1

cos2 x
D tan2 x C C

sec2 x D tan2 x C C:

This equation holds true for C D 1 and will not lead to an erroneous con-

clusion.
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5 The u-substitution method shows that
�
2

< 0 < �.

The theorem for the substitution rule for definite integrals is as follows:

Theorem. Let u D g.x/, where g0.x/ is continuous on Œa; b�, and let f be

continuous on the range of g. Then

Z b

a

f
�

g.x/
�

g0.x/ dx D
Z g.b/

g.a/

f .u/ du:

In Sophism 5 we used the substitution u D tan x. Observe that u0 D
g0.x/ D sec2.x/ is not continuous on Œ0; ��, thus the hypothesis for the

substitution rule has not been met.

6 ln 2 is not defined.

The mistake is in (a). The function F.x/ D ln x is the antiderivative of

f .x/ D 1
x

only for positive values of x. For negative values of x the an-

tiderivative of f .x/ D 1
x

is F.x/ D ln.�x/. Combining these two cases we

can see that the formula for an antiderivative of f .x/ D 1
x

is F.x/ D ln jxj
for all nonzero values of x.

7 � is not defined.

Let us state l’Hôpital’s Rule.

l’Hôpital’s Rule “ 1
1” case. Suppose that f and g are differentiable

on an open interval I of the form .a; 1/ with g0.x/ ¤ 0 on I . If

limx!1 f .x/ D ˙1 and limx!1 g.x/ D ˙1, then

lim
x!1

f .x/

g.x/
D lim

x!1

f 0.x/

g0.x/

provided that the limit on the right-hand side exists or is ˙1. In Sophism

7 the limit

lim
x!1

f 0.x/

g0.x/
D lim

x!1

� C cos x

1 C cos x

does not exist, so l’Hôpital’s Rule cannot be applied.

8 Properties of indefinite integrals show

0 D C , for any real number C .

Recall that the property
R

kf .x/ dx D k
R

f .x/ dx is valid only for nonzero

values of k. However, the corresponding property of the definite integral is
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valid for any value of k. That is,

Z b

a

kf .x/ dx D k

Z b

a

f .x/ dx;

for all constants k, when f .x/ is an integrable function on Œa; b�.

9 Volumes of solids of revolution

demonstrate that 1 D 2.

The mistake is in (a). We cannot integrate y2 over the interval Œ�2; 2� to

find the volume of the solid, because the hyperbola does not even exist on

the interval .�1; 1/, since x2 � 1 is negative for �1 < x < 1.

10 An infinitely fast fall

The model implicitly assumes the top of the ladder maintains contact with

the wall for the entire duration of the cat’s adventure. However, when the

angle between the ladder and the x-axis becomes sufficiently small, the

action of pulling on the bottom of the ladder will induce the top of the

ladder to start pulling away from the wall. From the moment the ladder

loses contact with the wall, the right triangle relationship y D
p

l2 � x2 is

no longer valid. Scholten and Simoson present an entertaining treatise on

this problem in “The Falling Ladder Paradox.” [30] For the slightly simpler

(and possibly more humane) case of the sliding ladder with no cat perched

atop, they determine precisely when the top of the ladder will lose contact

with the wall. They also analyze the trajectory of the top of the ladder from

the time it loses contact with the wall until it crashes to the floor.

11 A positive number equals a negative

number.

This example was considered by Cauchy in 1882.

The mistake is in (b). The function F.x/ D tan�1.sec x/ is an an-

tiderivative of the function

f .x/ D sin x

1 C cos2 x

for all points in the interval
�

0; 3�
4

�

except x D x
2

. At x D �
2

the func-

tion F.x/ D tan�1.sec x/ is neither differentiable nor continuous. For this
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reason we cannot apply the Fundamental Theorem of Calculus to F.x/ D
tan�1.sec x/.

One way to find the integral

Z 3
4

�

0

sin x

1 C cos2 x
dx

is to consider it on intervals Œ0; �
2

� and Œ �
2

; 3�
4

� and then add the results.

Another way is to use the antiderivative F.x/ D � tan�1.cos x/ that is

differentiable on Œ0; 3�
4

�. The correct value for the definite integral is 3�
4

�
tan�1

p
2, which is indeed a positive number.

12 The power rule for differentiation

proves that 2 D 1.

For any n functions we have

.f1 C f2 C � � � C fn/0.x/ D f 0
1.x/ C f 0

2.x/ C � � � C f 0
n.x/;

provided that each derivative f 0
i .x/ exists for i D 1 to n.

Here the problem is that n is not a fixed value and varies with x.
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