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Part 1: Single Variable Functions

1. Evaluate the limit lim
x→5

4 −
√
3x + 1

x2 − 7x + 10
. (Do not use L'Hôpital's Rule.)

Solution:

lim
x→5

4 −
√
3x + 1

x2 − 7x + 10
= lim

x→5

(4 −
√
3x + 1)(4 +

√
3x + 1)

(x2 − 7x + 10)(4 +
√
3x + 1)

= lim
x→5

16 − (3x + 1)
(x2 − 7x + 10)(4 +

√
3x + 1)

= lim
x→5

15 − 3x
(x − 5)(x − 2)(4 +

√
3x + 1)

= lim
x→5

3(5 − x)
(x − 5)(x − 2)(4 +

√
3x + 1)

= lim
x→5

−3
(x − 2)(4 +

√
3x + 1)

= −3
(5 − 2)(4 +

√
3 ⋅ 5 + 1)

= −3
3 ⋅ 8
= −1

8

Remark: �=� is the most frequently used verb in mathematics. It was introduced in 1557 by
Robert Recorde �to avoid the tedious repetition of the words `is equal to'.� It is important to
use the equal sign correctly.

� To introduce � �, the phantom equal sign, to avoid the tedious repetition of the symbol
�=� is not a good idea. The solution above should not go like:

lim
x→5

4 −
√
3x + 1

x2 − 7x + 10
lim
x→5

(4 −
√
3x + 1)(4 +

√
3x + 1)

(x2 − 7x + 10)(4 +
√
3x + 1)

lim
x→5

15 − 3x
(x − 5)(x − 2)(4 +

√
3x + 1)

lim
x→5

3(5 − x)
(x − 5)(x − 2)(4 +

√
3x + 1)
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� One must also not use other symbols, which have completely di�erent meanings, in place
of �=�. The solution above should not go like:

lim
x→5

4 −
√
3x + 1

x2 − 7x + 10
⇒ lim

x→5

(4 −
√
3x + 1)(4 +

√
3x + 1)

(x2 − 7x + 10)(4 +
√
3x + 1)

→ lim
x→5

15 − 3x
(x − 5)(x − 2)(4 +

√
3x + 1)

� lim
x→5

3(5 − x)
(x − 5)(x − 2)(4 +

√
3x + 1)

� The equal sign always stands between two things, although sometimes one of these things
are at the end of the previous line or at the beginning of the next line. The solution above
should not start like:

= lim
x→5

(4 −
√
3x + 1)(4 +

√
3x + 1)

(x2 − 7x + 10)(4 +
√
3x + 1)

This begs the question: What is equal to lim
x→5

(4 −
√
3x + 1)(4 +

√
3x + 1)

(x2 − 7x + 10)(4 +
√
3x + 1)

?

� The equal sign can be used between two functions when we deal with identities , like

x2 − 1
x − 1

= x + 1 for all x /= 1

or when we deal with equations , like

Find all x such that x2 = 4.

Therefore we can not just drop some of the limit signs in the solution above to make it
look like:

lim
x→5

4 −
√
3x + 1

x2 − 7x + 10
= (4 −

√
3x + 1)(4 +

√
3x + 1)

(x2 − 7x + 10)(4 +
√
3x + 1)

7

⋮

= −3
(x − 2)(4 +

√
3x + 1)

= −3
(5 − 2)(4 +

√
3 ⋅ 5 + 1)

7

= −3
3 ⋅ 8
= −1

8

The equalities on the lines marked with 7 are not correct.
−3

(x − 2)(4 +
√
3x + 1)

is

not equal to −1
8

because, for instance, if we let x = 1 then
−3

(x − 2)(4 +
√
3x + 1)

=

−3
(1 − 2)(4 +

√
3 ⋅ 1 + 1)

= 1

2
/= −1

8
.
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2. Let m be the slope of the tangent line to the graph of y = x2

x + 2
at the point (−3,−9).

Express m as a limit. (Do not compute m.)

Solution: The slope m of the tangent line to the graph of y = f(x) at the point
(x0, f(x0)) is given by the limit

m = lim
x→x0

f(x) − f(x0)
x − x0

or equivalently by the limit

m = lim
h→0

f(x0 + h) − f(x0)
h

.

Therefore two possible answers are

m = lim
x→−3

x2

x + 2
− (−9)

x − (−3)
= lim

h→0

(−3 + h)2
−3 + h + 2

− (−9)

h
.

3. Suppose that lim
x→c

f(x) /= 0 and lim
x→c

g(x) = 0. Show that lim
x→c

f(x)
g(x)

does not exist.

Solution: Assume that lim
x→c

f(x)
g(x)

exists, and let L = lim
x→c

f(x)
g(x)

. Then by the product

rule for limits we obtain

lim
x→c

f(x) = lim
x→c
(f(x)
g(x)

⋅ g(x)) = lim
x→c

f(x)
g(x)

⋅ lim
x→c

g(x) = L ⋅ 0 = 0 .

This contradicts the fact that lim
x→c

f(x) /= 0. Therefore our assumption cannot be

true: lim
x→c

f(x)
g(x)

does not exist.

4. Suppose that lim
x→c

f(x) = 0 and there exists a constant K such that ∣g(x)∣ ≤K for all x /= c in
some open interval containing c. Show that lim

x→c
(f(x)g(x)) = 0.

Solution: We have ∣f(x)g(x)∣ = ∣f(x)∣ ⋅ ∣g(x)∣ ≤ ∣f(x)∣ ⋅K in some open interval
around c. Therefore

−K ∣f(x)∣ ≤ f(x)g(x) ≤K ∣f(x)∣ .

Now applying the Sandwich Theorem and using the fact that lim
x→c
∣f(x)∣ = 0 we obtain

the result.
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5. Determine the following limits if lim
x→0+

f(x) = A and lim
x→0−

f(x) = B.

a. lim
x→0−

f(x2 − x) b. lim
x→0−
(f(x2) − f(x)) c. lim

x→0+
f(x3 − x)

d. lim
x→0−
(f(x3) − f(x)) e. lim

x→1−
f(x2 − x)

Solution: a. If x < 0, then x2 > 0 and −x > 0. Therefore x2 − x > 0 for x < 0, and
x2−x approaches 0 from the right as x approaches 0 from the left. lim

x→0−
f(x2 − x) = A.

b. Since x2 > 0 for x < 0, x2 approaches 0 from the right as x approaches 0 from
the left. Hence lim

x→0−
(f(x2) − f(x)) = lim

x→0−
f(x2) − lim

x→0−
f(x) = A −B.

c. For 0 < x < 1, we have x3 < x and x3 −x < 0. So x3 −x approaches 0 from the left
as x approaches 0 from the right. Therefore lim

x→0+
f(x3 − x) = B.

d. Since x3 < 0 for x < 0, x3 approaches 0 from the left as x approaches 0 from the
left. Hence lim

x→0−
(f(x3) − f(x)) = lim

x→0−
f(x3) − lim

x→0−
f(x) = B −B = 0.

e. For 0 < x < 1 we have x2 < x and x2 − x < 0. x2 − x approaches 0 from the left as
x approaches 1 from the left. Hence lim

x→1−
f(x2 − x) = B.

6. Let Q be the point of intersection in the �rst quadrant of the circle C1 with equation
(x− 1)2 + y2 = 1 and the circle C2 with equation x2 + y2 = r2. Let R be the point where the line
passing through the points P (0, r) and Q intersects the x-axis. Determine what happens to R
as r → 0+.

4



Solution: Subtracting x2 + y2 = r2 from (x − 1)2 + y2 = 1 we obtain x = r2/2, and
substituting this back in x2 + y2 = r2 gives us Q(r2/2,

√
r2 − r4/4).

Let R(a,0) be the coordinates of R and let S be the foot of the perpendicular from
Q to the x-axis. Since the triangles RSQ and ROP are similar we have

a − r2/2√
r2 − r4/4

= a

r

and hence

a = r3/2
r −
√
r2 − r4/4

.

Then

lim
r→0+

a = lim
r→0+

r3/2
r −
√
r2 − r4/4

= lim
r→0+
( r3/2
r2 − (r2 − r4/4)

⋅ (r +
√
r2 − r4/4))

= 2 lim
r→0+
(1 +
√
1 − r2/4)

= 2 ⋅ (1 +
√
1 − 02/4) = 4 .

Therefore R approaches the point (4,0) as r → 0+.

7.* Use the formal de�nition of the limit to show that lim
x→1/2

1

x
= 2.

Solution: Given ε > 0 we want to �nd δ > 0 such that

0 < ∣x − 1

2
∣ < δÔ⇒ ∣1

x
− 2∣ < ε . (⋆)

We will do this in two di�erent ways.

�Solve the Inequality� Method : First we solve ∣1
x
− 2∣ < ε for x.

∣1
x
− 2∣ < ε⇐⇒ 2 − ε < 1

x
< 2 + ε

The next step depends on whether 2 − ε is positive, zero or negative.

If 2 − ε > 0, that is if ε < 2, then

2 − ε < 1

x
< 2 + ε⇐⇒ 1

2 − ε
> x > 1

2 + ε
.

*Examples marked red are not part of the Fall 2016 Syllabus.
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If 2 − ε = 0, that is if ε = 2, then

2 − ε < 1

x
< 2 + ε⇐⇒ x > 1

2 + ε
.

If 2 − ε < 0, that is if ε > 2, then

2 − ε < 1

x
< 2 + ε⇐⇒ x > 1

2 + ε
or − 1

ε − 2
> x .
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Next we choose δ in such a way that every x satisfying the condition 0 < ∣x − 1

2
∣ < δ

lies in the solution set of ∣1
x
− 2∣ < ε, and therefore the implication in (⋆) holds. In

all three cases choosing a delta such that 0 < δ ≤ 1/2− 1/(2+ ε) = ε/(4+ 2ε) achieves
this.

The Estimation Method : Suppose 0 < ∣x − 1/2∣ < δ for some δ > 0. Then

∣1
x
− 2∣ = 2∣x − 1/2∣

∣x∣
< 2δ

∣x∣
.

At this point let us also decide to choose δ to satisfy δ ≤ 1/4. (Why 1/4?) Then
0 < ∣x − 1/2∣ < δ Ô⇒ 1/2 − δ < x < 1/2 + δ Ô⇒ 1/4 < x < 3/4 Ô⇒ 4 > 1/x > 4/3 Ô⇒
1/∣x∣ < 4 and therefore

∣1
x
− 2∣ < 2δ

∣x∣
< 8δ .

Hence for a given ε > 0 if we choose δ to satisfy δ ≤ ε/8 (as well as δ ≤ 1/4) then
we will have ∣1

x
− 2∣ < 8δ ≤ 8 ⋅ ε

8
= ε and (∗) will hold. In conclusion, any choice of δ

satisfying 0 < δ ≤min{ε/8,1/4} works.

8.* Show that lim
x→−3
(x4 + 7x − 17) = 43 using the formal de�nition of the limit.

Solution: For any given ε > 0 we have to �nd a δ > 0 so that for all x we have

0 < ∣x − (−3)∣ < δÔ⇒ ∣x4 + 7x − 17 − 43∣ < ε .

*Examples marked red are not part of the Fall 2016 Syllabus.
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We have (x4 + 7x − 17) − 43 = x4 + 7x − 60 = (x + 3)(x3 − 3x2 + 9x − 20). Suppose
that 0 < ∣x − (−3)∣ < δ and δ ≤ 1. Then −4 ≤ −3 − δ < x < −3 + δ ≤ −2. In particular,
∣x∣ < 4. Therefore, using the Triangle Inequality, we obtain ∣x3 − 3x2 + 9x − 20∣ ≤
∣x∣3 + 3∣x∣2 + 9∣x∣ + 20 < 43 + 3 ⋅ 42 + 9 ⋅ 4 + 20 = 168. Now if we choose δ to satisfy
0 < δ ≤min{ε/168,1}, then we have

∣x4 + 7x − 17 − 43∣ = ∣x4 + 7x − 60∣ = ∣x + 3∣ ⋅ ∣x3 − 3x2 + 9x − 20∣ < δ ⋅ 168 ≤ ε

168
⋅ 168 = ε

whenever 0 < ∣x − (−3)∣ < δ. We are done.

9.* Suppose that for all 0 < ε < 1,

∣x − 1∣ < ε2

4
Ô⇒ ∣f(x) − 3∣ < ε (⋆)

and
∣x − 1∣ < ε

35
Ô⇒ ∣g(x) − 4∣ < ε . (⋆⋆)

Find a real number δ > 0 such that

∣x − 1∣ < δÔ⇒ ∣f(x) + g(x) − 7∣ < 1

5
.

Solution: If we take ε = 1

10
in (⋆) we get

∣x − 1∣ < 1

400
Ô⇒ ∣f(x) − 3∣ < 1

10
.

If we take ε = 1

10
in (⋆⋆) we get

∣x − 1∣ < 1

350
Ô⇒ ∣g(x) − 4∣ < 1

10
.

Therefore if ∣x − 1∣ < 1

400
, then we have

∣f(x) + g(x) − 7∣ = ∣f(x) − 3 + g(x) − 4∣ ≤ ∣f(x) − 3∣ + ∣g(x) − 4∣ < 1

10
+ 1

10
= 1

5

by the Triangle Inequality. Hence we can take δ = 1

400
.

Remark: In fact, any δ ≤ 9 − 4
√
2

1225
works.

10.* Let f(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if x = 1

n
where n is a positive integer,

0 otherwise.

a. Show that if c /= 0 then lim
x→c

f(x) = 0.

b. Show that lim
x→0

f(x) does not exist.

*Examples marked red are not part of the Fall 2016 Syllabus.
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Solution: a. Assume c > 0. Then there is a positive integer m such that 1/m is
the closest to c among all real numbers di�erent from c and of the form 1/n where

n is a positive integer. (Why?) Let δ = ∣c − 1

m
∣ > 0. Then for any ε > 0, we have

0 < ∣x − c∣ < δÔ⇒ x /= 1

n
for any positive integer n

Ô⇒ f(x) = 0Ô⇒ ∣f(x) − 0∣ = ∣0 − 0∣ = 0 < ε .

Therefore lim
x→c

f(x) = 0.

Assume c < 0. Take δ = ∣c∣. Then for any ε > 0, we have

0 < ∣x − c∣ < δÔ⇒ x < 0Ô⇒ x /= 1

n
for any positive integer n

Ô⇒ f(x) = 0Ô⇒ ∣f(x) − 0∣ = ∣0 − 0∣ = 0 < ε .

Therefore lim
x→c

f(x) = 0.

b. Let L be a real number and assume that lim
x→0

f(x) = L. Then for every ε > 0,

there exists a δ > 0 such that for all x,

0 < ∣x − 0∣ < δÔ⇒ ∣f(x) −L∣ < ε .

If L is not 0, let ε = ∣L∣/2 > 0. Then there is a δ > 0 such that

0 < ∣x∣ < δÔ⇒ ∣f(x) −L∣ < ∣L∣/2 .

Take x = −δ/2. Then 0 < ∣x∣ < δ is true, but ∣L∣ = ∣0 − L∣ = ∣f(x) − L∣ < ∣L∣/2 is not
true. We have a contradiction.

On the other hand, if L = 0, let ε = 1/2. Then there is a δ > 0 such that

0 < ∣x∣ < δÔ⇒ ∣f(x)∣ < 1/2 .

If n is a positive integer satisfying n > 1/δ, take x = 1/n. Then 0 < ∣x∣ < δ is true,
but 1 = ∣1∣ = ∣f(x)∣ < 1/2 is not true. Again we have a contradiction.

Hence lim
x→0

f(x) cannot exist.

11. Show that the equation x2 − 10 = x sinx has a real solution.

Solution: Consider the function f(x) = x2 − 10 − x sinx. Then f(0) = −10 < 0 and
f(10) = 102 − 10 − 10 sin(10) = 90 − 10 sin(10) ≥ 90 − 10 = 80 > 0. Note that f is
continuous on [0,10]. Therefore we can apply the Intermediate Value Theorem to
the function f on the interval [0,10] for the value 0 to conclude that there is a point
c in (0,10) such that f(c) = 0. This c is also a solution of the given equation.
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12. Consider the equation 1 − x2

4
= cosx .

a. Show that this equation has at least one real solution.

b. Show that this equation has at least two real solutions.

c. Show that this equation has at least three real solutions.

Solution: Let f(x) = 1 − x2

4
− cosx. The solutions of the equation 1 − x2

4
= cosx

correspond to the zeros of f .

As f(0) = 0, x = 0 is one zero.

Now observe that f(π/2) = 1 − π2/16 > 0 and f(π) = 2 − π2/4 < 0 as 4 > π > 3. As f
is continuous on the entire real line, applying the Intermediate Value Theorem to
the function f on the interval [π/2, π] we conclude that there is a point c in this
interval such that f(c) = 0. This is our second zero.

Finally, as the function f is even, we have f(−c) = f(c) = 0, and x = −c is our third
zero.

13. Show that at any moment there are two antipodal points on the equator of the Earth with
the same temperature.

Solution: First we will make a mathematical model of the problem. We will
consider the equator as a circle, and use the longitude as our coordinate θ. We
choose the positive direction for θ to correspond to the East, measure θ in radians,
and let it take any real value. So 45○W corresponds to θ = −π/4, θ = 7π/4, and
θ = 15π/4, among other values. Note that θ + π corresponds to the antipode of
the point corresponding to θ. We let T (θ) denote the temperature at θ. We have
T (θ + 2π) = T (θ) for all θ. We will assume that T is a continuous function. We
want to show that there is a c such that T (c + π) = T (c).

Consider the function f(θ) = T (θ + π)− T (θ). Note that since T is continuous, f is
continuous. Our quest to �nd a c such that T (c + π) = T (c) is equivalent to �nd a
c such that f(c) = 0. If f(0) = 0, then we let c = 0 and we are done. Suppose that
f(0) /= 0. Observe that f(0) = T (π)−T (0) = T (π)−T (2π) = −f(π). In other words,
f(0) and f(π) have opposite signs. Now we apply the Intermediate Value Theorem
to f on the interval [0, π] for the value 0, and conclude that there is a point c in
[0, π] such that f(c) = 0. We are done.

Remark: It is possible to show that at any moment there are two antipodal points on Earth
with the same temperature and the same pressure.
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14. Find all tangent lines to the graph of y = x3 that pass through the point (2,4).

Solution: As dy/dx = d(x3)/dx = 3x2, the equation of the tangent line through
a point (x0, x3

0) on the graph is y − x3
0 = 3x2

0(x − x0). This line passes through
(2,4) exactly when 4 − x3

0 = 3x2
0(2 − x0), or in other words, x3

0 − 3x2
0 + 2 = 0. We

observe that x0 = 1 is a root of this polynomial. Therefore we have the factorization
x3
0−3x2

0+2 = (x0−1)(x2
0−2x0−2). The roots of the quadratic factor are x0 = 1±

√
3.

Therefore the tangent lines to y = x3 at the points (1,1), (1 +
√
3,10 + 6

√
3), and

(1 −
√
3,10 − 6

√
3) pass through (2,4). The equations of these lines are y = 3x − 2,

y = (12+ 6
√
3)x− (20+ 12

√
3), and y = (12− 6

√
3)x− (20− 12

√
3), respectively.

15. Evaluate the limit lim
x→0

√
1 + sin2 x2 − cos3 x2

x3 tanx
.

Solution:

lim
x→0

√
1 + sin2 x2 − cos3 x2

x3 tanx
= lim

x→0

⎛
⎝
⎛
⎝

√
1 + sin2 x2 − 1

x4
+ 1 − cos3 x2

x4

⎞
⎠
⋅ x

tanx

⎞
⎠

= lim
x→0
(((sinx

2

x2
)
2

⋅ 1√
1 + sin2 x2 + 1

+ 1 − cos3 x2

x4
) ⋅ x

tanx
)

Now we observe that:

lim
x→0

sinx2

x2
= 1

lim
x→0

1√
1 + sin2 x2 + 1

= 1√
1 + sin2 02 + 1

= 1

2

lim
x→0

x

tanx
= 1

11



and

lim
x→0

1 − cos3 x2

x4
= lim

x→0
(1 − cosx

2

x4
⋅ (1 + cosx2 + cos2 x2))

= lim
x→0
(2 sin

2(x2/2)
x4

⋅ (1 + cosx2 + cos2 x2))

= 1

2
⋅ (lim

x→0

sin(x2/2)
x2/2

)
2

⋅ lim
x→0
(1 + cosx2 + cos2 x2)

= 1

2
⋅ 12 ⋅ 3

= 3

2
.

Therefore:

lim
x→0

√
1 + sin2 x2 − cos3 x2

x3 tanx
= (1 ⋅ 1

2
+ 3

2
) ⋅ 1 = 2 .

16. Find the equation of the tangent line to the graph of y = sin2(πx3/6) at the point with
x = 1.

Solution: y = sin2(πx3/6) ⇒ dy

dx
= 2 sin(πx3/6) ⋅ cos(πx3/6) ⋅ 3πx2/6 . Therefore,

dy

dx
∣
x=1
= 2 sin(π/6) ⋅ cos(π/6) ⋅ π/2 =

√
3π

4
.

Since y∣x=1 = 1/4, using the point-slope formula we �nd the equation of the tangent
line as

y − 1

4
=
√
3π

4
(x − 1)

or, after some reorganization,

y =
√
3π

4
x + 1 −

√
3π

4
.

17. Let

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2x + x2 sin(1
x
) if x /= 0,

0 if x = 0.

a. Find f ′(x) for all x.

b. Show that f ′ is not continuous at 0.
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Solution: a. For x /= 0 we compute the derivative using the rules of di�erentiation:

f ′(x) = d

dx
(2x + x2 sin(1/x)) = 2 + 2x sin(1/x) + x2 cos(1/x) ⋅ (−1/x2)

for x /= 0.

For x = 0 we must use the de�nition of the derivative:

f ′(0) = lim
h→0

f(0 + h) − f(0)
h

= lim
h→0

2h + h2 sin(1/h)
h

= lim
h→0

2 + lim
h→0

h sin(1
h
) = 2 + 0 = 2

Here we used the fact that lim
h→0

h sin(1/h) = 0 whose proof uses the Sandwich (or

Squeeze) Theorem. Here is a recap of the proof: Since ∣ sin(1/h)∣ ≤ 1 for all h /= 0
we have ∣h sin(1/h)∣ = ∣h∣ ⋅ ∣ sin(1/h)∣ ≤ ∣h∣ for all h /= 0. Therefore

−∣h∣ ≤ h sin(1
h
) ≤ ∣h∣ for all h /= 0 .

As lim
h→0
∣h∣ = 0 = lim

h→0
(−∣h∣), it follows by the Sandwich Theorem that

lim
h→0

h sin(1/h) = 0.

To summarize:

f ′(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2 + 2x sin(1
x
) − cos(1

x
) if x /= 0,

2 if x = 0.

b. Consider lim
x→0

f ′(x). We have lim
x→0

2 = 2 and lim
x→0

2x sin(1/x) = 0 as in part (a).

However lim
x→0

cos(1/x) does not exist. It follows that lim
x→0

f ′(x) does not exist and
hence f ′ is not continuous at 0.
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18. Find
d2y

dx2
∣
(x,y)=(2,1)

if y is a di�erentiable function of x satisfying the equation x3+2y3 = 5xy.

Solution:

x3 + 2y3 = 5xy

Ô
⇒ d/dx

3x2 + 6y2 dy
dx
= 5y + 5x dy

dx
(⋆)

Ô
⇒ x = 2, y = 1

12 + 6 dy

dx
= 5 + 10 dy

dxÔ
⇒

4
dy

dx
= 7

Ô
⇒

dy

dx
= 7

4
at (x, y) = (2,1)

Now we di�erentiate the equation marked (⋆) with respect to x to �nd the second

14



derivative.

3x2 + 6y2 dy
dx
= 5y + 5x dy

dxÔ
⇒ d/dx

6x + 12y (dy
dx
)
2

+ 6y2 d
2y

dx2
= 5 dy

dx
+ 5 dy

dx
+ 5x d2y

dx2

Ô
⇒ x = 2, y = 1,

dy

dx
=
7

4

12 + 12(7
4
)
2

+ 6 d2y

dx2
= 10 ⋅ 7

4
+ 10 d2y

dx2

Ô
⇒

d2y

dx2
= 125

16
at (x, y) = (2,1)

Remark: An alternative approach is to solve y′ from (⋆), viz. y′ = 5y − 3x2

6y2 − 5x
, and then

di�erentiate this with respect to x to �nd y′′.

19. A piston is connected by a rod of length 14 cm to a crankshaft at a point 5 cm away from
the axis of rotation of the crankshaft. Determine how fast the crankshaft is rotating when the
piston is 11 cm away from the axis of rotation and is moving toward it at a speed of 1200
cm/sec.

Solution: Let P (x, y) and Q(a,0) be the ends of the connecting rod as shown in
the picture. The axis of rotation of the crankshaft passes through the origin of the
xy-plane and is perpendicular to it. The point P where the rod is connected to
crankshaft moves on a circle with radius 5 cm and center at the origin. The point
Q where the rod is connected to the piston moves along the positive x-axis. θ is the
angle between the ray OP and the positive x-axis.

P (x, y)

Q(a,0)θ

x

y

x2 + y2 = 25

14 cm

5−5

The question is:

a = 11 cm and
da

dt
= −1200 cm/sec Ô⇒ dθ

dt
=?

15



We have
x2 + y2 = 52 (I)

and
(x − a)2 + y2 = 142 . (II)

At the moment in question a = 11 cm. Substituting this in (I) and (II) we obtain
x2 + y2 = 52 and (x − 11)2 + y2 = 142. Subtracting the second equation from the �rst
gives 22x−112 = 52−142, and solving for x we get x = −25/11 cm. Then y = 20

√
6/11

cm.

Di�erentiating (I) and (II) with respect to time t we obtain

x
dx

dt
+ y dy

dt
= 0 (III)

and

(x − a) ⋅ (dx
dt
− da

dt
) + y dy

dt
= 0 . (IV)

At the moment in question a = 11 cm,
da

dt
= v = −1200 cm/sec, x = −25/11 cm and

y = 20
√
6/11 cm. Substituting these in (III) and (IV) we get

−5 dx
dt
+ 4
√
6
dy

dt
= 0 (V)

and

−146 dx
dt
+ 20
√
6
dy

dt
= −146v . (VI)

Subtracting 5 times (V) from (VI) we �nd −121dx
dt
= −146 v, and hence

dx

dt
= 146

121
v.

Substituting this back in (V) gives
dy

dt
= 365

242
√
6
v.

Now we are ready to compute
dθ

dt
. Since tan θ = y/x, di�erentiation gives

sec2 θ
dθ

dt
=
x
dy

dt
− ydx

dt
x2

and using sec2 θ = 1 + tan2 θ = 1 + (y/x)2 we obtain

dθ

dt
=
x
dy

dt
− ydx

dt
x2 + y2

.

Plugging x = −25
11

cm, y = 20
√
6

11
cm,

dx

dt
= 146

121
v, and

dy

dt
= 365

242
√
6
v in this formula

gives
dθ

dt
= − 73

110
√
6
v = 1460

√
6

11
radian/sec.

16



Remark:
1460
√
6

11
radian/sec is

1460
√
6

11
⋅ 60
2π

rpm or approximately 3105 rpm.

Remark: This problem has a shorter solution if we use the law of cosines. Start with x2 +52 −
2 ⋅ 5x cos θ = 142 and di�erentiate with respect to t to obtain

dθ

dt
= 5 cos θ − 11

5 sin θ
v .

Put x = 11 cm in the �rst equation to �nd cos θ = −5/11 and then sin θ = 4
√
6/11. Now

substituting these in the second equation gives the answer.

20. Determine how fast the length of an edge of a cube is changing at the moment when the
length of the edge is 5 cm and the volume of the cube is decreasing at a rate of 100 cm3/sec.

Solution: Let a denote the length of an edge of the cube, and V denote the volume
of the cube. Then we have V = a3. Di�erentiating with respect to time t gives
dV

dt
= 3a2 da

dt
. Substituting

dV

dt
= −100 cm3/sec and a = 5 cm for the moment in

question, we obtain
da

dt
= −4

3
cm/sec. Therefore the length of the edge is decreasing

at a rate of
4

3
cm/sec at that moment.

21. We measure the radius and the height of a cone with 1% and 2% errors, respectively. We
use these data to compute the volume of the cone. Estimate the percentage error in volume.

Solution: Let r, h, and V be the radius, the height and the volume of the cone,
respectively.

V = π

3
r2hÔ⇒ dV = 2π

3
rhdr + π

3
r2dhÔ⇒ dV

V
= 2 dr

r
+ dh

h
.

Since the error in r is 1% we have ∣dr
r
∣ ≤ 1% . Similarly ∣dh

h
∣ ≤ 2% . Now using the

triangle inequality we obtain

∣dV
V
∣ = ∣2 dr

r
+ dh

h
∣ ≤ 2 ∣dr

r
∣ + ∣dh

h
∣ ≤ 2 ⋅ 1% + 2% = 4% .

The error in volume is 4% .
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22. A cone of radius 2 cm and height 5 cm is lowered point �rst into a tall cylinder of radius
7 cm that is partially �lled with water. Determine how fast the depth of the water is changing
at the moment when the cone is completely submerged if the cone is moving with a speed of 3
cm/s at that moment.

Solution: Let r and h be the radius and the height of the part of the cone that is
under the water level, respectively. Let L be the depth of the water in the cylinder
and let y be the vertical distance from the tip of the cone to the bottom of the
cylinder. Let V0 be the volume of the water.

Then

V0 = π ⋅ 72 ⋅L −
π

3
r2h = π ⋅ 72 ⋅L − π

3
(2
5
h)

2

h = 49πL − 4π

75
h3

where we used the fact that r/h = 2/5.

Now di�erentiating this with respect to time t gives

0 = d

dt
V0 = 49π

dL

dt
− 4π

25
h2dh

dt
.

In particular at the moment when the cone is completely submerged we have h = 5
cm and

49
dL

dt
= 4dh

dt
.

On the other hand, at the same moment

h = L − yÔ⇒ dh

dt
= dL

dt
− dy

dt
Ô⇒ dh

dt
= dL

dt
+ 3

because dy/dt = −3 cm/s as the cone is being lowered at a speed of 3 cm/s.

From these two equations we obtain dL/dt = 4/15 cm/s. In other words, the depth
of the water is increasing at a rate of 4/15 cm/s at that moment.
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23. A water tank has the shape of an upside-down cone with radius 2 m and height 5 m. The
water is running out of the tank through a small hole at the bottom. Assume that the speed of
the water �owing through the hole is proportional to the square root of the depth of the water
in the tank.

a. In this part, suppose that the water is running out at a rate of 3m3/min when the depth
of the water in the tank is 4 m. Find the rate at which the water level is changing at this
moment.

b. In this part, suppose that the water level is falling at a rate of 1/3m/min when the tank
is full. Find the rate at which the water level is changing when the depth of the water in the
tank is 4 m.

c. In this part, suppose that it takes 3 minutes for the depth of the water to decrease from
5 m to 4 m. Find how long it takes for the full tank to completely drain.

Solution: Let r and h denote the radius and the height of the cone formed by the
water, and let V denote the volume of the water. Using the fact that r/h = 2/5, we
obtain

V = π

3
r2h = π

3
(2
5
h)

2

h = 4π

75
h3

and hence:
dV

dt
= 4π

25
h2 dh

dt

In part (a), we are given that dV /dt = −3 m3/min when h = 4 m. Substituting these
in the equation above and solving for dh/dt we obtain dh/dt = −75/(64π) m/min.
Hence the water level is falling at a rate of 75/(64π) m/min in part (a).

Now we will use the condition that the speed of the water �owing through the hole
is proportional to the square root of the depth of the water in the tank. This means

dV

dt
= −k
√
h

for some positive constant k. Substituting this in the previous equation we obtain:

−k
√
h = 4π

25
h2 dh

dt
(⊛)
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In part (b), we are given that dh/dt = −1/3 m/min when h = 5 m. Substituting
these in (⊛) we obtain:

−k
√
5 = 4π

25
52 (− 1

3
)

On the other hand, (⊛) gives

−k
√
4 = 4π

25
42

dh

dt

when h = 4 m. Now solving for dh/dt from these two equations gives dh/dt =
−5
√
5/24 m/min. Hence the water level is falling at a rate of 5

√
5/24 m/min in part

(b).

For part (c), we rewrite (⊛) in the form

4π

25
h3/2 dh = −k dt

and integrate to obtain
8π

125
h5/2 = −kt +C

for some constant C. In other words, h5/2 = −at + b for some constants a and b. As
h = 5 m when t = 0 min, we have b = 55/2. Using the condition in part (c) that h = 4
m when t = 3 min we obtain 45/2 = −a ⋅ 3 + 55/2, so a = (55/2 − 45/2)/3. Finally, the
tank is empty when h = 0 and this happens when t = b/a = 3 ⋅ 55/2/(55/2 − 45/2) min.
Hence the tank drains in 3/(1 − (4/5)5/2) minutes in part (c).
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24. Find the absolute maximum value and the absolute minimum value of f(x) = x4/3−x−x1/3

on the interval [−1,6].

Remark: How to �nd the absolute maximum and the absolute minimum values of a
continuous function f on a closed interval [a, b] of �nite length:

i. Compute f ′.

ii. Find the critical points of f in (a, b).

iii. Add the endpoints a and b to this list.

iv. Compute the value of f at each point in the list.

v. The largest value is the the absolute maximum and the smallest value is the absolute
minimum of f on [a, b].

Solution: f ′(x) = 4

3
x1/3−1− 1

3
x−2/3. The derivative is not de�ned at x = 0, therefore

x = 0 is a critical point. Next we solve f ′(x) = 0.

In the equation
4

3
x1/3−1− 1

3
x−2/3 = 0 we let z = x1/3 to obtain the equation 4z3−3z2−

1 = 0. Since z = 1 is a root, we have the factorization 4z3−3z2−1 = (z−1)(4z2+z+1).
As the quadratic factor has no real roots, z = 1 is the only solution. Therefore
x = z3 = 13 = 1, which belongs to the interval [−1,6], is the only other critical point.

We have f(0) = 0, f(1) = −1, f(−1) = 3, and f(6) = 5 ⋅ 61/3 − 6. Observe that
5 ⋅ 61/3 − 6 > 3⇐⇒ 5 ⋅ 61/3 > 9⇐⇒ 53 ⋅ 6 > 93⇐⇒ 725 > 721.

We conclude that the absolute maximum and minimum values of f(x) = x4/3−x−x1/3

on the interval [−1,6] are 5 ⋅ 61/3 − 6 and −1, respectively.

25. Find the absolute maximum and the absolute minimum values of f(x) = x + 1
x2 + x + 9

on the

interval [0,∞).

Remark: When looking for the absolute maximum and the absolute minimum values of a
continuous function on an interval that is not necessarily closed or of �nite length, a modi�ed
version of the algorithm above can be used.

� In Step iv , if an endpoint does not belong to the interval, then we compute the appropriate
one-sided limit of the function at that point instead of the value of the function.

� In Step v , if the largest value (which can be ∞) occurs only as a limit, then we conclude
that there is no absolute maximum. Similarly for the smallest value.

Solution: We compute f ′(x) = − x2 + 2x − 8
(x2 + x + 9)2

. The roots of f ′(x) = 0 are x = −4

and x = 2. Only x = 2 is in the interval [0,∞). So our list is 0, 2, and ∞.

f(0) = 1

9
, f(2) = 1

5
, and lim

x→∞
f(x) = 0. Since 1

5
> 1

9
> 0, the absolute maximum is

1

5
and there is no absolute minimum.
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26. Suppose that a function f satis�es f ′(x) = f(x/2) for all x and f(0) = 1. Show that if
f(x0) = 0 for some x0 > 0, then there is x1 such that 0 < x1 < x0 and f(x1) = 0.

Solution: Since f is di�erentiable, f is continuous. Suppose that f(x0) = 0 for some
x0 > 0. We apply the Mean Value Theorem to f on [0, x0] to conclude that there

is c such that 0 < c < x0 and f ′(c) = f(x0) − f(0)
x0 − 0

= − 1

x0

< 0. Then f ′(x) = f(x/2)
gives f(c/2) = f ′(c) < 0. We also have f(0) = 1 > 0. We apply the Intermediate
Value Theorem to f on [0, c/2] to conclude that there is x1 such that 0 < x1 < c/2
and f(x1) = 0. As 0 < x1 < c/2 < c < x0 we are done.

Remark: With a little bit more work it can be shown that f(x) > 1 for all x > 0.

27. Show that if f is a twice-di�erentiable function such that f(0) = 1, f ′(0) = −1, f(1) = 2,
f ′(1) = 5, and f ′′(x) ≥ 0 for all x, then f(x) ≥ 1/3 for all 0 ≤ x ≤ 1.

Solution: Let x1 < x2 be in [0,1]. The Mean Value Theorem applied to the
function f ′ on the interval [x1, x2] says that there is a point c in (x1, x2) such that
f ′(x2) − f ′(x1)

x2 − x1

= f ′′(c). As f ′′(c) ≥ 0 we have f ′(x1) ≤ f ′(x2). In particular, we

have −1 = f ′(0) ≤ f ′(x) ≤ f ′(1) = 5 for all x in (0,1).

Let 0 < x < 1. By the Mean Value Theorem applied to the function f on the

interval [0, x], there exists a point c1 in (0, x) such that
f(x) − f(0)

x − 0
= f ′(c1). Since

f ′(c1) ≥ −1, it follows that
f(x) ≥ −x + 1 (Q)

for 0 < x < 1. Similarly, applying the Mean Value Theorem to the function
f on the interval [x,1], we see that there exists a point c2 in (x,1) such that
f(1) − f(x)

1 − x
= f ′(c2). Now using the fact that f ′(c2) ≤ 5 we conclude that

f(x) ≥ 5x − 3 (QQ)

for 0 < x < 1.

Adding 5 times the inequality (Q) to the inequality (QQ) we get f(x) ≥ 1/3 for all x
in [0,1].

Remark: In fact, it can be shown that f(x) > 1/3 for all x in [0,1].
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28. Sketch the graph of y = 5x2/3 − 2x5/3.

Solution: y′ = 10

3
x−1/3 − 10

3
x2/3 = 10

3
x−1/3(1 − x). Therefore y′ > 0 on (0,1), and

y′ < 0 on (−∞,0) and (1,∞).

y′′ = −10
9
x−4/3 − 20

9
x−1/3 = −20

9
x−4/3(x + 1/2). Therefore y′′ > 0 on (−∞,−1/2), and

y′′ < 0 on (−1/2,0) and (0,∞).

These give us the following table of signs and shapes.

x ∣ −1/2 0 1
y′ ∣ − ∣ − ^̂ + ∣0 −
y′′ ∣ + ∣0 − ^̂ − ∣ −

" ↑  ↑ " ↑  

inf.pt. loc.min. loc.max.

We compute the y-coordinates of the important points to get (0,0) for the local
minimum, (1,3) for the local maximum, and (−1/2,3 3

√
2) for the in�ection point.

Note that since 3
√
2 > 1, we have 3 3

√
2 > 3. Also note that the function is continuous

at x = 0, but
lim
x→0+

y′ = lim
x→0+
(10
3
x−1/3(1 − x)) =∞

and

lim
x→0−

y′ = lim
x→0−
(10
3
x−1/3(1 − x)) = −∞ .

Therefore (0,0) is a cusp.

Finally we �nd the x-intercepts: y = 0⇒ 5x2/3 − 2x5/3 = 0⇒ 2x2/3(5 − 2x) = 0⇒ x =
0 or x = 5/2.

(The graph is on the next page.)
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Now we use these data to draw the graph:

Remark: Here is the same graph drawn by Maple:
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29. Two corridors meet at a corner. One of the corridors is 2 m wide and the other one is 3
m wide. What is the length of the longest ladder that can be carried horizontally around this
corner?

Solution: Length of the longest ladder will be equal to the absolute minimum value
of L in the picture.

x

y

L

3m

2m

Using the relation 3/x = y/2 we obtain

L = (x2 + 9)1/2 + (4 + y2)1/2 = (x2 + 9)1/2 + (4 + (6/x)2)1/2 .

Therefore we have to minimize

L = (x2 + 9)1/2 ⋅ (1 + 2

x
) for 0 < x <∞ .

We �rst look at the critical points:

dL

dx
= (x2 + 9)−1/2 ⋅ x ⋅ (1 + 2

x
) + (x2 + 9)1/2 ⋅ (− 2

x2
) = 0

Ô⇒ x + 2 − (2 + 18

x2
) = 0Ô⇒ x = 181/3 mÔ⇒ L = (22/3 + 32/3)3/2 m

Since lim
x→0+

L =∞ and lim
x→∞

L =∞, the value at the critical point is indeed the absolute

minimum.

Hence the length of the longest ladder that can be carried around this corner is
(22/3 + 32/3)3/2 m.

Remark: (22/3 + 32/3)3/2 m is approximately 7.02 m.
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30. Find the maximum possible total surface area of a cylinder inscribed in a hemisphere of
radius 1.

Solution: Let S be the total surface area of the cylinder, S = 2πr2+2πrh. We have
h = (1 − r2)1/2. Hence we want to maximize

S = 2πr2 + 2πr(1 − r2)1/2 for 0 ≤ r ≤ 1 .

r

h1

First we �nd the critical points:
1

2π

dS

dr
= 2r + (1 − r2)1/2 − r2(1 − r2)−1/2 = 0 Ô⇒

2r(1 − r2)1/2 = 2r2 − 1 Ô⇒ 4r2(1 − r2) = (2r2 − 1)2 Ô⇒ 8r4 − 8r2 + 1 = 0 Ô⇒

r2 = 8 ±
√
32

16
. Note that 2r(1 − r2)1/2 = 2r2 − 1 implies r2 ≥ 1

2
, and therefore

r2 = 2 +
√
2

4
and r =

√
2 +
√
2

2
.

We get S = (1+
√
2)π at the critical point r =

√
2 +
√
2

2
, S = 0 at the endpoint r = 0,

and S = 2π at the endpoint r = 1. As
√
2 > 1 we have 1 +

√
2 > 2, and the absolute

maximum value occurs at the critical point.

The maximum possible surface area of the cylinder is (1 +
√
2)π.
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31. A fold is formed on a 20 cm × 30 cm rectangular sheet of paper running from the short
side to the long side by placing a corner over the long side. Find the minimum possible length
of the fold.

Solution: Let ABCD be the sheet of paper and let P be the point on the edge
AB where the corner C is folded over. The fold runs from Q on the edge BC to R
on the edge CD. Let S be the projection of R on to the edge AB. Let L be the
length of the fold QR and let x = CQ.

x

x

L

A B

CD

S P

Q

R

Then PQ/PB = RP /RS by the similarity of the triangles PBQ and RSP . Hence

RP = 20x/
√
x2 − (20 − x)2 = 20x/

√
40x − 400 and L2 = RQ2 = RP 2 + PQ2 =

400x2/(40x − 400) + x2 = x3/(x − 10). The largest possible value of x is 20
cm. The smallest possible value of x occurs when RP = 30 cm; that is when
20x/
√
40x − 400 = 30 or x = 45 − 15

√
5 cm.

Therefore we want to minimize L where L2 = x3/(x − 10) for 45 − 15
√
5 ≤ x ≤ 20.

Di�erentiating 2LdL/dx = 3x2/(x − 10) − x3/(x − 10)2 and setting dL/dx = 0 we
obtain x = 15 cm as the only critical point in the domain. For x = 15 cm we have
L = 15

√
3 cm.

At the endpoint x = 20 cm we have L = 20
√
2 cm and at the endpoint x = 45−15

√
5

cm we have L = 15
√
18 − 6

√
5 cm.

Since 15
√
3 cm is the smallest of these values, we conclude that this is the smallest

possible value for the length of the fold.

Remark: If the question is posed for a w × ℓ sheet of paper with w ≤ 2
√
2ℓ/3, then the length

of the shortest possible fold is 3
√
3w/4. Therefore, for a A4 size paper with w = 210 mm and

ℓ = 297 mm, the shortest fold is approximately 273 mm; and for a letter size paper with w = 8.5
in and ℓ = 11 in, the shortest fold is approximately 11.04 in.
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32. The Rubber Duck is a sculpture designed by Florentijn Hofman and constructed from
PVC. For the purposes of this question, we consider the Rubber Duck to consist of a spherical
head of radius a and a spherical body of radius b. The research shows that the cuteness K of
the Rubber Duck is given by

K =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a

b
(1 − a

b
)(a + b) if 0 ≤ a < b,

0 if 0 < b ≤ a.

Find the dimensions of the cutest Rubber Duck with a total surface area of 400πm2.

Solution: The total surface area of the Rubber Duck is 4πa2 + 4πb2. Hence 4πa2 +
4πb2 = 400π m2, giving b2 = 100 − a2. Therefore,

K =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a(100 − 2a2)
100 − a2

if 0 ≤ a ≤ 5
√
2 ,

0 otherwise,

and we have to �nd where the absolute maximum value of

K = 100a − 2a3
100 − a2

on the interval 0 ≤ a ≤ 5
√
2 occurs.

We �rst �nd the critical points. As

dK

da
= (100 − 6a

2)(100 − a2) − (100a − 2a3)(−2a)
(100 − a2)2

,

dK /da = 0 gives a4 − 250a2 + 5000 = 0. Now using the quadratic formula we obtain

a2 = 250 ±
√
2502 − 4 ⋅ 5000

2
= 125 ± 25

√
17 ,
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which gives us four solutions

a = 5
√
5 +
√
17, 5

√
5 −
√
17, −5

√
5 +
√
17, −5

√
5 −
√
17 .

Only the �rst two of these are positive and the �rst one is greater than 5
√
2. On the

other hand, 0 < 5
√
5 −
√
17 < 5

√
2 as 3 <

√
17 < 5. We conclude that a = 5

√
5 −
√
17

is the only critical point.

We have

K = 10
√
5 −
√
17 ⋅
√
17 − 3√
17 − 1

> 0

for a = 5
√
5 −
√
17. As K = 0 at the endpoints a = 0 and a = 5

√
2 of the interval,

this is the absolute maximum value.

Therefore the cutest Rubber Duck has a = 5
√
5 −
√
17 m and b = 5

√√
17 − 1 m.

33. A snowman is an anthropomorphic sculpture made from snow as well as some pieces of
coal, a carrot, a hat and a scarf. For the purposes of this question, we consider a snowman to
consist of a spherical head of radius a and a spherical body of radius b, and we also assume
that the snow does not melt and its density does not change while it is being sculpted.

The research shows that the cuteness K of a snowman is given by

K =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a
b
)
2

(1 − a

b
)(a2 + ab + b2) if 0 ≤ a < b,

0 if 0 < b ≤ a.

Find the dimensions of the cutest snowman that can be built with 4π/3m3 of snow.

Solution: The total volume of the snowman is
4π

3
a3+ 4π

3
b3. Hence

4π

3
a3+ 4π

3
b3 =
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4π

3
m3, giving b3 = 1 − a3. Therefore,

K =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a2(1 − 2a3)
1 − a3

if 0 ≤ a ≤ 1
3
√
2
,

0 otherwise,

and we have to �nd where the absolute maximum value of

K = a2 − 2a5
1 − a3

on the interval 0 ≤ a ≤ 1
3
√
2
occurs.

We �rst �nd the critical points. As

dK

da
= (2a − 10a

4)(1 − a3) − (a2 − 2a5)(−3a2)
(1 − a3)2

,

dK /da = 0 gives 4a7 − 9a4 + 2a = 0. As we have 4a7 − 9a4 + 2a = a(a3 − 2)(4a3 − 1),
the critical points are a = 0, a = 3

√
2 and a = 1/ 3

√
4. Hence the only critical point in

the interval we are interested in is a = 1/ 3
√
4.

We have K = 1/(3 3
√
2) > 0 for a = 1/ 3

√
4. As K = 0 at the endpoints a = 0 and

a = 1
3
√
2
of the interval, this is the absolute maximum value.

Therefore the cutest snowman has a = 1/ 3
√
4 m and b = 3

√
3/4 m.

34. A dessert in the shape of a hemisphere with radius 1 dm is made by baking a cylindrical
cake of height h , and topping it with a spherical cap of ice cream and surrounding it with a
hemispherical ring of chocolate mousse as shown in the �gure. If the cake costs 8/π /dm3, the
ice cream costs 9/π /dm3 and the chocolate mousse costs 12/π /dm3, determine the value of
h for (a) the least expensive and (b) the most expensive dessert that can be made.

You may use the fact that the volume of a hemispherical ring of height h is 2πh3/3.

Ice cream
(9/π /dm3)

Chocolate
mousse

(12/π /dm3)

Cake
(8/π /dm3)

h1
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Solution: We have

Cost = 12

π
⋅ (Volume of the ring) + 8

π
⋅ (Volume of the cylinder)

+ 9

π
⋅ (Volume of the cap)

= 12

π
⋅ 2π
3
h3 + 8

π
⋅ π(1 − h2)h + 9

π
⋅ (2π

3
⋅ 13 − 2π

3
h3 − π(1 − h2)h)

= 6 − h + 3h3

and hence we want to �nd the absolute maximum and the absolute minimum values
of

Cost = 6 − h + 3h3 for 0 ≤ h ≤ 1 .

We �rst �nd the critical points. As d(Cost)/dh = −1+9h2, setting this equal to zero
gives h = 1/3 dm and h = −1/3 dm. Only the �rst of these are in the interval [0,1],
and at that point the cost is 52/9 .

Next we look at the endpoints of the interval. h = 0 dm gives Cost = 6 , and h = 1
dm gives Cost = 8 .

Therefore the least expensive dessert has h = 1/3 dm, and the most expensive dessert
has h = 1 dm.

35. We want to build a greenhouse that has a half cylinder roof of radius r and height r
mounted horizontally on top of four rectangular walls of height h as shown in the �gure. We
have 200πm2 of plastic sheet to be used in the construction of this structure. Find the value
of r for the greenhouse with the largest possible volume we can build.

Solution: We have

200πm2 = Total Surface Area = 2 ⋅ (r + 2r)h
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

walls

+2 ⋅ 1
2
πr2

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
half-disks

+ 1
2
⋅ 2πr ⋅ r
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

top

= 6rh + 2πr2
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and hence h = π

3
(100

r
− r). In particular, 0 < r ≤ 10.

Let V denote the volume of the greenhouse. Then

V = r ⋅ 2r ⋅ h
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
bottom

+ 1
2
⋅ πr2 ⋅ r
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

top

= 2r2h + π

2
r3

and substituting h in terms of r, the problem becomes:

Maximize V = 200π

3
r − π

6
r3 for 0 < r ≤ 10 .

We �rst �nd the critical points in the interval (0,10]:

dV

dr
= 200π

3
− π

2
r2 = 0Ô⇒ r = ± 20√

3
m

As
√
3 < 2, neither of these satis�es 0 < r ≤ 10, and there are no critical points in

the interval.

Next we look at the endpoints of the interval (0,10]: At r = 0m we have
lim
r→0+

V = 0m3, and at r = 10m we have V = 500πm3.

Therefore the maximum possible volume is 500π m3 and occurs when r = 10 m (and
h = 0 m).

36. A pool, like the one in front of the Faculty of Science Building A, loses water from its sides
and its bottom due to seepage, and from its top due to evaporation. For a pool with radius R
and depth H in meters, the rate of this loss in m3/hour is given by an expression of the form

aR2 + bR2h + cRh2

where h is the depth of the water in meters, and a, b, c are constants independent of R, H and
h. Due to this loss, water must be pumped into the pool to keep it at the same level even when
the drains are closed.

Suppose that a = 1/300 m/hour and b = c = 1/150 1/hour. Find the dimensions of the pool with
a volume of 45πm3 which will require the water to be pumped at the slowest rate to keep it
completely full.

H
h

R
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Solution: From πR2H = 45π we have H = 45/R2 . When the pool is full, the water
is lost at the rate

L = aR2 + bR2H + cRH2 = 1

300
R2 + 1

150
R2 ⋅ 45

R2
+ 1

150
R ⋅ ( 45

R2
)
2

.

Hence we want to

Minimize L = 1

300
R2 + 3

10
+ 27

2
⋅ 1
R3

for 0 < R <∞ .

We �rst �nd the critical points:

dL

dR
= 1

150
R − 81

2

1

R4
= 0Ô⇒ R = 3 ⋅ 52/5m

As lim
R→0+

L =∞ and lim
R→∞

L =∞ at the endpoints of the interval, the absolute

minimum value of L occurs at R = 3 ⋅ 52/5 m, and the corresponding depth is
H = 45/(3 ⋅ 52/5)2 = 51/5 m.

Hence the pool that requires the water to be pumped at the slowest rate has radius
R = 3 ⋅ 52/5 m and depth H = 45/(3 ⋅ 52/5)2 = 51/5 m.

37. Let f be a continuous function.

a. Find f(4) if ∫
x2

0
f(t)dt = x sinπx for all x.

b. Find f(4) if ∫
f(x)

0
t2 dt = x sinπx for all x.

Solution: a. ∫
x2

0
f(t)dt = x sinπxÔ⇒ d

dx ∫
x2

0
f(t)dt = d

dx
(x sinπx)

FTC1

↓Ô⇒
f(x2) ⋅ 2x = sinπx + x ⋅ π cosπx. Now letting x = 2 we get f(4) = π/2.

b. ∫
f(x)

0
t2 dt = x sinπxÔ⇒ t3

3
]
f(x)

0

= x sinπxÔ⇒ f(x)3
3
= x sinπx. Hence x = 4

gives f(4) = 0.

Remark: One might ask if such functions exist. In part (b), f(x) = 3
√
3x sinπx is the unique

function satisfying the given condition.

In part (a), f(x) = sinπ
√
x

2
√
x
+ π

2
cosπ

√
x for x > 0, and f(0) = π by continuity; but it can be

anything for x < 0 so long as it is continuous.
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38. Compute
d2y

dx2
∣
(x,y)=(0,0)

if y is a di�erentiable function of x satisfying the equation:

∫
x+y

0
e−t

2

dt = xy

Solution: Di�erentiating the equation with respect to x we obtain:

∫
x+y

0
e−t

2

dt = xy

Ô
⇒ d/dx

d

dx ∫
x+y

0
e−t

2

dt = d

dx
(xy)

Ô
⇒ FTC1

e−(x+y)
2 ⋅ d

dx
(x + y) = d

dx
(xy)

Ô
⇒

e−(x+y)
2(1 + dy

dx
) = y + xdy

dx
(e)

Ô
⇒ x = 0, y = 0

dy

dx
= −1 at (x, y) = (0,0)

Now di�erentiating (e) with respect to x again we get:

e−(x+y)
2(1 + dy

dx
) = y + xdy

dxÔ
⇒ d/dx

d

dx
(e−(x+y)2(1 + dy

dx
)) = d

dx
(y + xdy

dx
)

Ô
⇒

e−(x+y)
2(−2(x + y))(1 + dy

dx
)
2

+ e−(x+y)2 d
2y

dx2
= dy

dx
+ dy

dx
+ xd

2y

dx2

Ô
⇒ x = 0, y = 0, dy/dx = −1

d2y

dx2
= −2 at (x, y) = (0,0)
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39. Suppose that f is a continuous function satisfying

f(x) = x∫
x

0
f(t)dt + x3

for all x, and c is a real number such that f(c) = 1. Express f ′(c) in terms of c only.

Solution: We have:

d

dx
f(x) = ∫

x

0
f(t)dt + x d

dx ∫
x

0
f(t)dt + 3x3

FTC1

↓= ∫
x

0
f(t)dt + xf(x) + 3x2

Now substituting x = c and using the facts that f(c) = c∫
c

0
f(t)dt + c3 and f(c) = 1

we obtain:

f ′(c) = ∫
c

0
f(t)dt + cf(c) + 3c2 = f(c) − c3

c
+ c + 3c2 = 1

c
+ c + 2c2

Remark: It can be shown that f(x) = 2x(ex2/2 − 1) is the only function that satis�es the given
condition.

40. Evaluate the limit lim
x→0

∫
x

0 sin(xt3)dt
x5

.

Solution: We �rst make the change of variable t = x−1/3u, dt = x−1/3du, to obtain:

∫
x

0
sin(xt3)dt = x−1/3∫

x4/3

0
sin(u3)du

Now we have:

lim
x→0

∫
x

0 sin(xt3)dt
x5

= lim
x→0

x−1/3 ∫
x4/3

0 sin(u3)du
x5

= lim
x→0

∫
x4/3

0 sin(u3)du
x16/3

L'H

↓= lim
x→0

d

dx ∫
x4/3

0 sin(u3)du

16/3x13/3

FTC1

↓= lim
x→0

sin(x4) ⋅ 4/3x1/3

16/3x13/3

= lim
x→0

sin(x4) ⋅ 4/3x1/3

16/3x13/3

= 1

4
lim
x→0

sin(x4)
x4

= 1

4
⋅ 1 = 1

4
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41. Suppose that f is a twice-di�erentiable function satisfying f(0) = −2, f ′(0) = 11, f ′′(0) =
−8, f(2) = 5, f ′(2) = −3, f ′′(2) = 7 ; and also suppose that the function

g(x) = 1

x ∫
x

0
f(t)dt

has a critical point at x = 2 . Determine whether the critical point of g at x = 2 is a local
minimum, a local maximum or neither.

Solution: We �rst observe that

d

dx
g(x) = d

dx
(1
x ∫

x

0
f(t)dt)

FTC1

↓= − 1

x2 ∫
x

0
f(t)dt + 1

x

d

dx ∫
x

0
f(t)dt

= − 1

x2 ∫
x

0
f(t)dt + 1

x
f(x)

and as g′(2) = 0 we must have −1/4∫
2

0
f(t)dt + 1/2 f(2) = 0, and hence

∫
2

0
f(t)dt = 2f(2) = 10.

Now di�erentiating a second time we obtain that:

d2

dx2
g(x) = d

dx
( − 1

x2 ∫
x

0
f(t)dt + 1

x
f(x))

FTC1

↓= 2

x3 ∫
x

0
f(t)dt − 1

x2

d

dx ∫
x

0
f(t)dt − 1

x2
f(x) + 1

x
f ′(x)

= 2

x3 ∫
x

0
f(t)dt − 1

x2
f(x) − 1

x2
f(x) + 1

x
f ′(x)

Substituting x = 2 in this we get

g′′(2) = 1

4 ∫
2

0
f(t)dt − 1

2
f(2) + 1

2
f ′(2) = −3

2
< 0

and conclude that g has a local maximum at x = 2.

42. Suppose that f is a continuous and positive function on [0,5], and the area between the
graph of y = f(x) and the x-axis for 0 ≤ x ≤ 5 is 8. Let A(c) denote the area between the graph
of y = f(x) and the x-axis for 0 ≤ x ≤ c, and let B(c) denote the area between the graph of

y = f(x) and the x-axis for c ≤ x ≤ 5. Let R(c) = A(c)/B(c). If R(3) = 1 and
dR

dc
∣
c=3
= 7, �nd

f(3).

Solution: We have A(3) + B(3) = 8 and R(3) = 1 Ô⇒ A(3) = B(3), implying
A(3) = B(3) = 4.
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As

A(c) = ∫
c

0
f(t)dt and B(c) = ∫

5

c
f(t)dt ,

di�erentiating these with respect to c and using the Fundamental Theorem of
Calculus Part 1 we obtain A′(c) = f(c) and B′(c) = −f(c). In particular,
A′(3) = f(3) and B′(3) = −f(3).

On the other hand,

d

dc
R(c) = d

dc

A(c)
B(c)

= A′(c)B(c) −A(c)B′(c)
B(c)2

and letting c = 3 gives

7 = d

dc
R(c)∣

c=3
= A′(3)B(3) −A(3)B′(3)

B(3)2
= f(3)B(3) +A(3)f(3)

B(3)2
= f(3)

2

and hence f(3) = 14.

43. Let f be a continuous function and let

g(x) = ∫
1

−1
f(t) ∣x − t∣dt .

Express g′′(x) in terms of f(x) for −1 < x < 1.

Solution: For −1 < x < 1 we rewrite the de�nition of g(x) as follows:

g(x) = ∫
x

−1
f(t) (x − t)dt + ∫

1

x
f(t) (t − x)dt

= x∫
x

−1
f(t)dt − ∫

x

−1
f(t)t dt + ∫

1

x
f(t)t dt − x∫

1

x
f(t)dt

Now we di�erentiate using the FTC1 to obtain:

g′(x) = ∫
x

−1
f(t)dt + x d

dx ∫
x

−1
f(t)dt − d

dx ∫
x

−1
f(t)t dt

+ d

dx ∫
1

x
f(t)t dt − ∫

1

x
f(t)dt − x d

dx ∫
1

x
f(t)dt

= ∫
x

−1
f(t)dt + xf(x) − f(x)x − f(x)x − ∫

1

x
f(t)dt + xf(x)

= ∫
x

−1
f(t)dt − ∫

1

x
f(t)dt

Using FTC1 again we compute g′′(x) to �nd

g′′(x) = d

dx ∫
x

−1
f(t)dt − d

dx ∫
1

x
f(t)dt

= f(x) + f(x)
= 2f(x)

for −1 < x < 1.
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44. Suppose that a continuous function f satis�es the equation

f(x) = x2 − x + (1 − x)∫
x

0
t2f(t)dt + x∫

1

x
(t − t2)f(t)dt

for all x. Express f ′′(1/2) in terms of A = f(1/2).

Solution: We have

f ′(x) = 2x − 1 − ∫
x

0
t2f(t)dt + (1 − x)x2f(x) + ∫

1

x
(t − t2)f(t)dt − x(x − x2)f(x)

= 2x − 1 − ∫
x

0
t2f(t)dt + ∫

1

x
(t − t2)f(t)dt

for all x, where we used the Fundamental Theorem of Calculus Part 1 twice:

d

dx ∫
x

0
t2f(t)dt

FTC1

↓= x2f(x)

d

dx ∫
1

x
(t − t2)f(t)dt

FTC1

↓= −(x − x2)f(x)

Di�erentiating again and using FTC1 similarly we obtain:

f ′′(x) = 2 − x2f(x) − (x − x2)f(x) = 2 − xf(x)

for all x . This gives f ′′(1/2) = 2 − 1/2 ⋅ f(1/2) = 2 −A/2 .

45. Evaluate the limit lim
n→∞
(n( 1

(2n + 1)2
+ 1

(2n + 3)2
+⋯ + 1

(4n − 1)2
)) .

Solution: Consider the function f(x) = 1

x2
on the interval [2,4]. If we divide this

interval into n subintervals of equal length
2

n
using the points xk = 2 +

2k

n
, 0 ≤ k ≤ n,

and choose our sample points to be the midpoints ck = 2 +
2k − 1
n

, 1 ≤ k ≤ n, of these
subintervals, the Riemann sum for these data becomes

n

∑
k=1

f(ck)∆xk =
n

∑
k=1

f(2 + 2k − 1
n
) ⋅ 2

n
=

n

∑
k=1

2n

(2n + 2k − 1)2

and the de�nition of the de�nite integral gives

lim
n→∞

n

∑
k=1

2n

(2n + 2k − 1)2
= ∫

4

2

dx

x2
= − 1

x
]
4

2

= −1
4
+ 1

2
= 1

4
.

Therefore

lim
n→∞
(n( 1

(2n + 1)2
+ 1

(2n + 3)2
+⋯ + 1

(4n − 1)2
)) = 1

8
.
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46. When pirates retire, they live on the Square Island which has the shape of a square with
10 hectometer (=hm) long sides. Having lived all their lives on it, the retired pirates want to
be as far away from the sea as possible. As a result, the pirate population density p(x) at a
point on the Square Island is proportional to the distance x of the point from the shore and
reaches its largest value of 15 pirate/hm2 at the center of the island. Find the total number N
of the pirates on the island.

Solution: Firstly, we have p(x) = 3x. Then we observe that the points on the
island whose distance to the shore are x hm lie on a square whose sides are parallel
to the sides of the island and 10 − 2x hm long.

Now consider another square which consists of points whose distances to the shore
are x+∆x hm for some small positive ∆x, and choose a x∗ which lies between x and
x+∆x. Then the number of pirates living in the strip between these two squares is
approximately 4 ⋅ (10 − 2x) ⋅ p(x∗) ⋅∆x.
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Hence N can be approximated by the Riemann sum

N ≈
n

∑
i=1

4 ⋅ (10 − 2xi) ⋅ p(x∗i ) ⋅∆xi

for a partition 0 = x0 < x1 < ⋯ < xn−1 < xn = 5 of the interval [0,5] and sample points
x∗i in [xi−1, xi] for 1 ≤ i ≤ n, and in the limit we obtain:

N = ∫
5

0
4(10 − 2x)p(x)dx

This gives:

N = ∫
5

0
4(10 − 2x)(3x)dx = 24∫

5

0
(5x − x2)dx = 24 [5

2
x2 − 1

3
x3]

5

0

= 500

There are 500 pirates living on the island.

Remark: Imagine that the entire landscape of the Square Island consists of just a mountain
and the altitude of a point that is horizontally x hm away from the shore is p(x) hm. Then
the island has the shape of a square pyramid with a 10 hm by 10 hm base and 15 hm height,
and N is now the volume of the island. Hence we have:

N = 1

3
(height)(area of the base) = 1

3
⋅ 15 ⋅ 102 = 500

Remark: Compare this example with Example 30 in Part 2.
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47. An island has the shape of a 10 hm×10 hm square and its landscape consists of a mountain
whose height h at a horizontal distance x from the shore is given by h = x2 where both h and
x are measured in hectometers (=hm). Let V be the volume of the mountain.

a. Express V as an integral with respect to h by considering cutting the mountain into slices
as shown in Figure a.

b. Express V as an integral with respect to x by considering cutting the mountain into
shells as shown in Figure b.

Figure a: Figure b:

c. Compute V .

Solution: a. A horizontal slice at a height h is approximately a prism with a
square base of side length 10 − 2x = 10 − 2

√
h and height ∆h , and therefore its

volume is approximately (10− 2x)2∆h = (10− 2
√
h)2∆h . Hence the volume V can

be approximated by the Riemann sum

V ≈
n

∑
i=1
(10 − 2

√
h∗i )2∆hi

for a partition 0 = h0 < h1 < ⋯ < hn−1 < hn = 25 of the interval [0,25] and sample
points h∗i in [hi−1, hi] for 1 ≤ i ≤ n , and in the limit we obtain:

V = ∫
25

0
(10 − 2

√
h)2 dh
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b. A shell at a horizontal distance x from the shore consists of four pieces each of
which is approximately a rectangular prism of dimensions x2 × (10−2x)×∆x where
∆x is the thickness of the shell. Therefore its volume is approximately 4 (10 −
2x)x2∆x . Hence the volume V can be approximated by the Riemann sum

V ≈
n

∑
i=1

4 (10 − 2x∗i ) (x∗i )2∆xi

for a partition 0 = x0 < x1 < ⋯ < xn−1 < xn = 5 of the interval [0,5] and sample points
x∗i in [xi−1, xi] for 1 ≤ i ≤ n , and in the limit we obtain:

V = ∫
5

0
4 (10 − 2x)x2 dx

c. We use the integral in Part c to compute the volume:

V = ∫
5

0
4 (10 − 2x)x2 dx = 8∫

5

0
(5x2 − x3)dx = 8 [5

3
x3 − 1

4
x4]

5

0

= 1250

3
hm3

48. Evaluate the following integrals.

a. ∫ x sin(x2) cos(x2)dx

b. ∫
1

0
x
√
1 − xdx

Solution: a. Let u = sin(x2). Then du = 2x cos(x2)dx, and

∫ x sin(x2) cos(x2)dx = 1

2 ∫
udu = 1

2
⋅ u

2

2
+C = 1

4
sin2(x2) +C .

b. Let u = 1 − x. Then du = −dx, and x = 0⇒ u = 1, x = 1⇒ u = 0. Therefore:

∫
1

0
x
√
1 − xdx = ∫

0

1
(1 − u)u1/2 (−du) = ∫

1

0
(u1/2 − u3/2)du

= [u
3/2

3/2
− u5/2

5/2
]
1

0

= 2

3
− 2

5
= 4

15
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Remark: In part (a), if we let u = cos(x2), then we obtain the answer

∫ x sin(x2) cos(x2)dx = −1
4
cos2(x2) +C ;

and if we �rst observe that sin(x2) cos(x2) = 1

2
sin(2x2), and then let u = sin(2x2), then we

obtain the answer

∫ x sin(x2) cos(x2)dx = −1
8
cos(2x2) +C .

These are all correct answers. If we write

∫ x sin(x2) cos(x2)dx = 1

4
sin2(x2) +C1

∫ x sin(x2) cos(x2)dx = −1
4
cos2(x2) +C2

∫ x sin(x2) cos(x2)dx = −1
8
cos(2x2) +C3

then C2 = C1 +
1

4
and C3 = C1 +

1

8
.

49. Show that ∫
a

0

f(x)
f(x) + f(a − x)

dx = a

2
for any positive continuous function on [0, a] .

Solution: Let I = ∫
a

0

f(x)
f(x) + f(a − x)

dx .

Let u = a − x. Then du = −dx, x = 0⇒ u = a, x = a⇒ u = 0, and

I = ∫
a

0

f(x)
f(x) + f(a − x)

dx = ∫
0

a

f(a − u)
f(a − u) + f(u)

(−du) = ∫
a

0

f(a − x)
f(x) + f(a − x)

dx .

Therefore

2I = ∫
a

0

f(x)
f(x) + f(a − x)

dx + ∫
a

0

f(a − x)
f(x) + f(a − x)

dx

= ∫
a

0

f(x) + f(a − x)
f(x) + f(a − x)

dx

= ∫
a

0
dx = a

and I = a

2
.

(See the remark on the next page.)
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Remark: Here is an explanation of what is going on with no integral signs: Consider the
rectangle with a vertex at the origin, and sides along the positive x- and the y-axes with
lengths a and 1, respectively. The graph of y = f(x)/(f(x) + f(a − x)) is symmetric with
respect to the center (a/2,1/2) of this rectangle, and therefore divides it into two regions of
equal area. Since the area of the rectangle is a and I is the area of the lower half, we have

I = a

2
.

50. Let R be the region bounded by the parabola y = x − x2 and the x-axis, and let V be the
volume of the solid generated by revolving R about the x-axis.

a. Express V as an integral using the disk method. (Do not compute! )

b. Express V as an integral using the cylindrical shell method. (Do not compute! )

Solution: The parabola intersects the x-axis at x = 0 and x = 1. Therefore we have

V = π∫
1

0
R(x)2 dx = ∫

1

0
(x − x2)2 dx

for part (a).

For part (b), the cylindrical shell method gives a y-integral,

V = 2π∫
d

c
(radius of the shell)(height of the shell)dy
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as the region is revolved about the x-axis. We have c = 0 and d = 1/4 , the y-
coordinate of the highest point of the parabola. The radius of the shell is the vertical
distance from the red rectangle in the �gure to the x-axis, which is y. The height
of the shell is the horizontal length of the rectangle; that is, the di�erence between
the x-coordinates of the right and the left sides of the rectangle. By solving the

equation y = x−x2 for x, we �nd these values as x = 1 +
√
1 − 4y
2

and x = 1 −
√
1 − 4y
2

,

respectively. Hence

V = 2π∫
1/4

0
y (1 +

√
1 − 4y
2

− 1 −
√
1 − 4y
2

) dy .
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51. Let R be the region bounded by the curve y2 = x2 − x4. Let V be the volume obtained by
rotating R about the x-axis. Let W be the volume obtained by rotating R about the y-axis.

a. Express V using both the disk method and the cylindrical shells method.

b. Express W using both the disk method and the cylindrical shells method.

c. Compute V and W .

Solution: By symmetry, V is 2 times the volume obtained by revolving the portion
of R lying in the �rst quadrant about the x-axis. In the disk method, the red
vertical rectangles, when revolved about the x-axis, form the disks that are used in
the computation of V , and therefore the radii of the disks are given by

√
x2 − x4.

Hence:

V = 2 ⋅ π∫
1

0
(radius of disk)2 dx = 2 ⋅ π∫

1

0
(
√
x2 − x4)2 dx

Again by symmetry, W is 2 times the volume generated by revolving the portion
of R lying in the �rst quadrant about the y-axis. This time in the washer method,
the green horizontal rectangles, when revolved about the y-axis, form the washers
that are used in the computation of W .

To �nd the outer and the inner radii of the washers we have to solve y2 = x2−x4 for x.
Applying the quadratic formula to (x2)2−x2+y2 = 0 we obtain x2 = (1±

√
1 − 4y2)/2,
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and this gives us

x =
√
(1 +
√
1 − 4y2)/2 and x =

√
(1 −
√
1 − 4y2)/2

as the two nonnegative solutions. Hence:

W = 2 ⋅ π∫
1/2

0
((outer radius of washer)2 − (inner radius of washer)2)dy

= 2 ⋅ π∫
1/2

0
((

¿
ÁÁÀ1 +

√
1 − 4y2
2

)
2

− (

¿
ÁÁÀ1 −

√
1 − 4y2
2

)
2

)dy

Now we consider the cylindrical shells method for both volumes. When revolved
about the y-axis the red vertical rectangles generate the cylindrical shells that are
used in the computation of W , and therefore the heights of these shells are given
by
√
x2 − x4. Hence:

W = 2 ⋅ 2π∫
1

0
(radius of shell)(height of shell)dx = 2 ⋅ 2π∫

1

0
x
√
x2 − x4 dx

When revolved about the x-axis the green horizontal rectangles generate the
cylindrical shells that are used in the computation of V . Therefore the heights

of these shells are given by
√
(1 +
√
1 − 4y2)/2 −

√
(1 −
√
1 − 4y2)/2. Hence:

V = 2 ⋅ 2π∫
1/2

0
(radius of shell)(height of shell)dy

= 2 ⋅ 2π∫
1/2

0
y (

¿
ÁÁÀ1 +

√
1 − 4y2
2

−

¿
ÁÁÀ1 −

√
1 − 4y2
2

)dy

Finally we compute the volumes. To compute V we use the integral we obtained
with the disk method,

V = 2 ⋅ π∫
1

0
(x2 − x4)dx = 2π [x

3

3
− x5

5
]
1

0

= 4π

15

47



and to compute W we use the integral we obtained with the washer method

W = 2 ⋅ π∫
1/2

0
(
1 +
√
1 − 4y2
2

−
1 −
√
1 − 4y2
2

)dy

= 2π∫
1/2

0

√
1 − 4y2 dy

= 2π∫
π/2

0
cos θ ⋅ 1

2
cos θ dθ

= π∫
π/2

0
cos2 θ dθ

= π∫
π/2

0

1 + cos 2θ
2

dθ

= π [θ
2
+ sin 2θ

4
]
π/2

0

= π2

4

where we made the change of variable y = 1

2
sin θ, dy = 1

2
cos θ dθ.

Remark: Compare this example with Example 36 in Part 2.

52. A water tank has a bottom consisting of a disk of radius a with 0 ≤ a < 3, and a side surface
having the shape generated by revolving the graph of a continuous nonnegative function x = g(y)
for 0 ≤ y ≤ 5 with g(0) = a and g(5) = 3 about the y-axis where all units are in meters. Assume
that:

1O As water runs out of a small hole at the bottom of tank, the speed of the water �owing
through the hole at any moment is proportional to the square root of the depth of the water
in the tank at that moment.

2O The function g and the constant a are chosen in such a way that the depth of the water
changes at a constant rate at all times.

Find the volume of the tank.
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Solution: Let V (h) denote the volume of the water when the depth is h. Then:

V (h) = π∫
h

0
g(y)2 dy

Di�erentiating this with respect to time t and using the Fundamental Theorem of
Calculus, Part 1 we obtain:

dV

dt
= πg(h)2 dh

dt

Using the condition 1O which says that dV /dt = −k1
√
h for some positive constant

k1 and the condition 2O which says that dh/dt = −k2 for some positive constant
k2, we conclude that g(h) = k ⋅ h1/4 for some positive constant k. In particular,
a = g(0) = 0, and g(5) = 3 gives k = 3/51/4. Therefore g(h) = 3h1/4/51/4.

Hence the volume of the tank is:

V (5) = π∫
5

0
( 3

51/4
y1/4)

2

dy = 9π

51/2
⋅ y

3/2

3/2
]
5

0

= 30π m3
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53. Let V be the volume of the water-dropper shown in the �gure on the next page which has
the shape obtained by revolving the curve x4 + y4 = 1 about the line x = −5/2 where all units
are in centimeters.

a. Express V as an integral using the cylindrical shells method.

b. Express V as an integral using the washer method.

c. Show that the improper integral ∫
1

0
u−3/4(1 − u)1/4 du converges.

d. Express V in terms of A = ∫
1

0
u−3/4(1 − u)1/4 du .

Solution: a. The radius and height of the cylindrical shells are x − (−5/2) and
(1 − x4)1/4 − (−(1 − x4)1/4), respectively. Hence:

V = 2π∫
1

−1
(radius) ⋅ (height)dx = 2π∫

1

−1
(x + 5

2
) ⋅ ((1 − x4)1/4 − (−(1 − x4)1/4)dx

b. The outer and inner radii of the washers are 5/2+(1−y4)1/4 and 5/2−(1−y4)1/4,
respectively. Hence:

V = π∫
1

−1
((outer radius)2 − (inner radius)2)dy

= π∫
1

−1
((5

2
+ (1 − y4)1/4)

2

− (5
2
− (1 − y4)1/4)

2

)dy

c. We have 0 < u ≤ 1Ô⇒ 0 ≤ 1−u < 1Ô⇒ 0 ≤ (1−u)1/4 < 1Ô⇒ 0 ≤ u−3/4(1−u)1/4 <
u−3/4 for all 0 < u ≤ 1. Since ∫

1

0
u−3/4 du is convergent (because p = 3/4 < 1), so is

∫
1

0
u−3/4(1 − u)1/4 du by the Comparison Test.

d. We use the integral in part (b) and symmetry

V = 10π∫
1

−1
(1 − y4)1/4 dy

= 20π∫
1

0
(1 − y4)1/4 dy

= 20π∫
1

0
(1 − u)1/4 ⋅ 1

4
u−3/4 du

= 5π∫
1

0
u−3/4(1 − u)1/4 du

= 5πA

as well as the change of variable y = u1/4, dy = 1/4 ⋅ u−3/4 du.
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54. Find the absolute maximum and the absolute minimum values of f(x) = (x2 − 3)ex on the
interval [−2,2].

Solution: f ′(x) = 2xex + (x2 − 3)ex = (x2 + 2x − 3)ex . We want to solve f ′(x) = 0.

(x2 + 2x − 3)ex = 0Ô⇒ x2 + 2x − 3 = 0Ô⇒ x = 1,−3 .

Since −3 does not belong to the interval [−2,2], the only critical point is x = 1.
Hence we are going to compute f at the points x = 1,−2, 2.

f(1) = −2e, f(−2) = e−2, and f(2) = e2. Since e > 1 we have e2 > e−2 > −2e. Therefore
the absolute maximum is e2 and the absolute minimum is −2e.

55. Find the absolute maximum and the absolute minimum values of x1/x.

Solution: Let y = x1/x. Then ln y = lnx

x
. Di�erentiating this with respect to x we

obtain

1

y

dy

dx
= d

dx
ln y = d

dx

lnx

x
=

1

x
⋅ x − lnx ⋅ 1

x2
= 1 − lnx

x2
Ô⇒ d

dx
x1/x = x1/x 1 − lnx

x2
.

Since 1− lnx > 0 for 0 < x < e and 1− lnx < 0 for x > e, the absolute maximum value
of x1/x occurs at x = e and is e1/e. x1/x has no absolute minimum value.

Remark: Although the reasoning above does not require it, let us also look at what happens
at the endpoints of the domain. Since

lim
x→∞

ln y = lim
x→∞

lnx

x

L'H

↓= lim
x→∞

1/x
1
= 0 ,

we have lim
x→∞

x1/x = lim
x→∞

y = lim
x→∞

elny = e0 = 1. On the other hand, lim
x→0+

x1/x = 0 as 0∞ = 0.

56. Evaluate the limit lim
n→∞
( 1
n

n

∑
k=1

2k/n) .

Solution:
n

∑
k=1

2k/n
1

n
is a Riemann sum

n

∑
k=1

f(ck)∆xk for f(x) = 2x on [0,1] for the

partition xk =
k

n
, 0 ≤ k ≤ n, and the sample points ck =

k

n
, 1 ≤ k ≤ n. Therefore,

lim
n→∞
( 1
n

n

∑
k=1

2k/n) = ∫
1

0
2x dx = 2x

ln 2
]
1

0

= 1

ln 2
.
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Remark: Alternatively, we can use the formula for the sum of a �nite geometric series

n

∑
k=1

2k/n = 2(n+1)/n − 21/n
21/n − 1

= 21/n

21/n − 1
,

and then

lim
n→∞
( 1
n

n

∑
k=1

2k/n) = lim
n→∞

21/n

n(21/n − 1)
= lim

t→0+

t2t

2t − 1

L'H

↓= lim
t→0+

2t + t ⋅ ln 2 ⋅ 2t
ln 2 ⋅ 2t

= 1

ln 2
.

57. Evaluate the limit lim
x→0
(sinx

x
)
1/x2

.

Solution: Since lim
x→0

sinx

x
= 1 and lim

x→0

1

x2
=∞, this is limit has the indeterminate

form 1∞.

Let y = (sinx
x
)
1/x2

. Then ln y =
ln(sinx

x
)

x2
. As x→ 0, this will have the indeterminate

form
0

0
and we can use L'Hôpital's Rule.

lim
x→0

ln y = lim
x→0

ln(sinx) − lnx
x2

L'H

↓= lim
x→0

cosx

sinx
− 1

x
2x

= lim
x→0

x cosx − sinx
2x2 sinx

L'H

↓= lim
x→0

cosx − x sinx − cosx
4x sinx + 2x2 cosx

= lim
x→0

− sinx
4 sinx + 2x cosx

= lim
x→0

−sinx
x

4
sinx

x
+ 2 cosx

= −1
4 + 2

= −1
6

Here applications of L'Hôpital's Rule are indicated with L'H. Then

lim
x→0
(sinx

x
)
1/x2

= lim
x→0

y = lim
x→0

elny = e−1/6

using the continuity of the exponential function.
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Remark: The �rst example of an application of L'Hôpital's Rule in Guillaume François
Antoine Marquis de L'Hôpital's book Analyse des In�niment Petits pour l'Intelligence des

Lignes Courbes of 1696:

There is a typo. Can you �nd it?

58. Evaluate lim
x→0

cos(2x) − e−2x2

sin4 x
.

Solution:

lim
x→0

cos(2x) − e−2x2

sin4 x
= lim

x→0
(cos(2x) − e

−2x2

x4
⋅ x4

sin4 x
)

= lim
x→0

cos(2x) − e−2x2

x4
⋅ (lim

x→0

x

sinx
)
4

= lim
x→0

cos(2x) − e−2x2

x4

L'H

↓= lim
x→0

−2 sin(2x) + 4xe−2x2

4x3

L'H

↓= lim
x→0

−4 cos(2x) + 4e−2x2 − 16x2e−2x
2

12x2

L'H

↓= lim
x→0

8 sin(2x) − 48xe−2x2 + 64x3e−2x
2

24x

= lim
x→0
(sin(2x)

3x
− 2e−2x2 + 8

3
x2e−2x

2)

= 2

3
− 2 + 0 = −4

3

Remark: It is easier to solve this problem using the Taylor series, which will be seen in Calculus
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II:

lim
x→0

cos(2x) − e−2x2

sin4 x

= lim
x→0

(1 − (2x)
2

2!
+ (2x)

4

4!
− (2x)

6

6!
+⋯) − (1 + (−2x2) + (−2x

2)2
2!

+ (−2x
2)3

3!
+⋯)

(x − x3

3!
+⋯)

4

= lim
x→0

−4
3
x4 + 56

45
x6 +⋯

x4 − 2

3
x6 +⋯

= lim
x→0

−4
3
+ 56

45
x2 +⋯

1 − 2

3
x2 +⋯

= −4
3

59. Find the value of the constant a for which the limit lim
x→0

sin(x + ax3) − x
x5

exists and compute

the limit for this value of a.

Solution: We have

lim
x→0

sin(x + ax3) − x
x5

L'H

↓= lim
x→0

cos(x + ax3)(1 + 3ax2) − 1
5x4

L'H

↓= lim
x→0

− sin(x + ax3)(1 + 3ax2)2 + cos(x + ax3)(6ax)
20x3

L'H

↓= lim
x→0

− cos(x + ax3)(1 + 3ax2)3 − sin(x + ax3) ⋅ 3(1 + 3ax2)(6ax) + cos(x + ax3)(6a)
60x2

.

The numerator of the fraction inside this last limit goes to −1+6a as x→ 0. Therefore
the limit does not exist unless a = 1/6. If a = 1/6 then

lim
x→0

sin(x + x3/6) − x
x5

= lim
x→0

− cos(x + x3/6)(1 + x2/2)3 − sin(x + x3/6) ⋅ 3(1 + x2/2)x + cos(x + x3/6)
60x2

is the sum of

lim
x→0

cos(x + x3/6)(1 − (1 + x2/2)3)
60x2

= − lim
x→0

cos(x + x3/6)(3/2 + 3x2/4 + x4/8)
60

= − 1

40

and

lim
x→0

− sin(x + x3/6) ⋅ 3(1 + x2/2)x
60x2

= − lim
x→0

sin(x + x3/6)
x + x3/6

⋅ lim
x→0

(1 + x2/2)(1 + x2/6)
20

= − 1

20
.
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Hence

lim
x→0

sin(x + x3/6) − x
x5

= − 3

40
.

Remark: Once again there are shorter ways of doing this. If we use the Taylor series then

sin(x + ax3) = (x + ax3) − (x + ax
3)3

3!
+ (x + ax

3)5
5!

−⋯

= x + (a − 1

6
) x3 + ( 1

120
− 1

2
a) x5 +⋯

and it is immediate that the limit exists exactly when a = 1/6 and then its value is −3/40.

60. Let b > a > 0 be constants. Find the area of the surface generated by revolving the circle
(x − b)2 + y2 = a2 about the y-axis.

Solution: We have

Surface Area = 2π∫
d

c
x

¿
ÁÁÀ1 + (dx

dy
)
2

dy

for a surface generated by revolving a curve about the y-axis. We have x = b +√
a2 − y2 and x = b−

√
a2 − y2 for the right and left halves of the circle, respectively.

Then

dx

dy
= ∓ y√

a2 − y2
Ô⇒

¿
ÁÁÀ1 + (dx

dy
)
2

= a√
a2 − y2

.

Hence

Surface Area = 2π∫
a

−a
(b +
√
a2 − y2) a√

a2 − y2
dy

+ 2π∫
a

−a
(b −
√
a2 − y2) a√

a2 − y2
dy

= 4πab∫
a

−a

1√
a2 − y2

dy

= 4πabarcsin(y
a
)]

a

−a

= 4πab (arcsin 1 − arcsin(−1)) = 4πab(π
2
− ( − π

2
)) = 4π2ab
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Remark: The surface generated by revolving a circle about a line (in the same plane) that
does not intersect it is called a torus.

61. Find y(1) if dy
dx
= xy2 and y(0) = 1.

Solution: We have

dy

dx
= xy2Ô⇒ dy

y2
= xdxÔ⇒ ∫

dy

y2
= ∫ xdxÔ⇒ −1

y
= 1

2
x2 +C .

Then y(0) = 1Ô⇒ −1 = C. Hence y = 2

2 − x2
. This in turn gives y(1) = 2.

Remark: What would your answer be if the question asked y(2)?

62. Nitrogen dioxide is a reddish-brown gas that contributes to air pollution, and also gives the
smog its color. Under sunlight it decomposes producing other pollutants, one of which is ozone.
As nitrogen dioxide decomposes, its density decreases at a rate proportional to the square of
the density. Suppose that the density of nitrogen dioxide Q is 1/2 grams per liter at time t = 0
minutes and 6/25 grams per liter at time t = 3 minutes. Find Q when t = 15 minutes. (Assume
that no new nitrogen dioxide is added to the environment.)

Solution: We have dQ/dt = −kQ2 where k is a positive constant. Then dQ/Q2 =
−k dt and integrating we obtain −1/Q = −kt +C where C is a constant.

Letting t = 0 minutes we �nd −1/(1/2) = −1/Q(0) = C, hence C = −2 liters per gram.
Now letting t = 3 min gives −1/(6/25) = −1/Q(3) = −k ⋅ 3 − 2 and hence k = 13/18
liters per gram per minute. Finally we obtain Q = 18/(13t + 36).

Using this we compute the density of nitrogen dioxide as Q(15) = 6/77 grams per
liter after 15 minutes.

63. A pool, like the one in front of the Faculty of Science Building A, loses water from its sides
and its bottom due to seepage. For a pool with radius R and depth H in meters, the rate of
this loss in m3/hour is given by

dV

dt
= −aR2h − bRh2

where V is the volume of the water in cubic meters, t is the time in hours, h is the depth of
the water in meters, and a and b are constants independent of R, H and h.

Consider a pool with H = 1 m, R = 6 m and a = b = π/500 1/hour.

H
h

R
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a. Find the depth of the water h as a function of time t if h = 1 m when t = 0 hour.

b. The term aR2h on the right side of the equation represents the rate of loss due to seepage
through the bottom of the pool. Find the total volume of the water that seeps through the
bottom while the initially full pool completely empties.

Solution: a. We have:

V = πR2hÔ⇒ πR2h = − π

500
R2h − π

500
Rh2

Ô⇒ 62 ⋅ h = − 1

500
62 ⋅ h − 1

500
6 ⋅ h2

Ô⇒ 6dh

h(h + 6)
= − dt

500

Ô⇒ (1
h
− 1

h + 6
)dh = − dt

500

Ô⇒ lnh − ln(h + 6) = − t

500
+C

Ô⇒ h

h + 6
= Ae−t/500

Substituting h = 1 m when t = 0 hours in this last equation we �nd A = 1/7 . Hence
h = 6/(7et/500 − 1) for t ≥ 0 .

b. The volume of the water lost through the bottom of the pool is

Volume = ∫
t=∞

t=0
aR2 hdh = π

500
62 ∫

∞

0

6

7et/500 − 1
dt

= 216π∫
∞

0

e−t/500 dt/500
7 − e−t/500

= 216π∫
7

6

du

u
= 216π ln(7/6)m3

where we used the substitution u = 7 − e−t/500 , du = e−t/500 dt/500 .

64. Some students believe that Bilkent Math 101 exams get more di�cult as time passes. This
is in fact true. The di�culty level H(t) of these exams satis�es the di�erential equation

dH

dt
=Ha

with the initial condition H(0) = 1, where t is time measured from Fall 1986 in academic years
and a is a constant whose value is a secret.

There is a quatrain in Nostradamus's Les Propheties which can be interpreted to be about
Bilkent Math 101 exams.

a. According to one interpretation, the exams will become in�nitely di�cult in Fall 2021.
Accepting this interpretation, �nd the di�culty level of the exams in Fall 2016.

b. According to another interpretation, the exams will be twice as di�cult in Fall 2021 as
they were in Fall 1986. Show that a must satisfy −8 < a < −7 if this is the case.
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Solution: a. We have H−a dH = dt. If a = 1, then integration gives ln ∣H ∣ = t + C
for some constant C, and the initial condition H(0) = 1 implies that C = 0. Hence
∣H ∣ = et, and by continuity we have H = et. On the other hand, if a /= 1, then
by integration we obtain H−a+1/(−a + 1) = t + C for some constant C. Using the
condition that H(0) = 1 we get C = 1/(−a + 1) and hence H = ((1 − a)t + 1)1/(1−a).

We want lim
t→35−

H =∞. Among these solutions this is possible only if (1−a) ⋅35+1 = 0
and 1/(1 − a) < 0. So we must have a = 36/35. Therefore H = (1 − t/35)−35. In
particular, H(30) = 735, and the exams of Fall 2016 are 735 times as di�cult as
those of Fall 1986.

b. This time we want H(35) = 2. Since e35 > e > 2, this is not possible if a = 1.
ThereforeH = ((1−a)t+1)1/(1−a) for some constant a /= 1 and ((1−a)⋅35+1)1/(1−a) = 2.
In other words, 36 − 35a = 21−a and a /= 1.

Consider the function g(a) = 36− 35a− 21−a. We have f ′(a) = −35+ ln 2 ⋅ 21−a, which
is 0 only when a = log2(2(ln 2)/35). Therefore, by Rolle's Theorem, f can have
at most one more zero beside a = 1. On the other hand, f(−8) = −196 < 0 and
f(−7) = 25 > 0, and f must have a zero between −8 and −7 by the Intermediate
Value Theorem. We conclude that H(35) = 2 is possible for exactly one value of a
and this value lies in the interval (−8,−7).

65. Suppose that f is a function that has a continuous second derivative and that satis�es
f(0) = 4 , f(1) = 3 , f ′(0) = 5 , f ′(1) = 7, f ′′(0) = 8 and f ′′(1) = 11 . Show that:

∫
1

0
f(x)f ′′(x)dx ≤ 1

Solution: We �rst do an integration by parts with u = f(x), dv = f ′′(x)dx, hence
du = f ′(x)dx, v = f ′(x), to obtain:

∫
1

0
f(x)f ′′(x)dx = [f(x)f ′(x)]

1

0

− ∫
1

0
(f ′(x))2 dx

The �rst term on the right is equal to f(1)f ′(1) − f(0)f ′(0) = 3 ⋅ 7 − 4 ⋅ 5 = 1, and
the second term is nonnegative as (f ′(x))2 ≥ 0. The result follows.

Remark: It can be shown that:

∫
1

0
f(x)f ′′(x)dx < 0

66. Evaluate the following integrals.

a. ∫ sin3 x sin 2xdx

b. ∫
e

1

lnx√
x
dx
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Solution: a. We use the identity sin 2x = 2 sin cosx to obtain

∫ sin3 x sin 2xdx = ∫ sin3 x2 sinx cosxdx

= 2∫ sin4 x cosxdx

= 2∫ u4 du

= 2

5
u5 +C

= 2

5
sin5 x +C

after the substitution u = sinx, du = cosxdx.

b. The substitution u =
√
x, du = dx/(2

√
x) gives:

∫
e

1

lnx√
x
dx = 4∫

√
e

1
lnudu

= 4 [u lnu − u]

√
e

1

= 4 (
√
e ln
√
e −
√
e + 1)

= 4 − 2
√
e

Remark: There are other ways of doing these. Here are some:

Solution: a. Use the double-angle formula sin2 x = (1 − cos 2x)/2 and then the
substitution u = 1 − cos 2x, du = 2 sin 2xdx :

∫ sin3 x sin 2xdx = ∫ (
1 − cos 2x

2
)
3

sin 2xdx

= 1

4
√
2
∫ u3/2 du

= 1

10
√
2
u5/2 +C

= 1

10
√
2
(1 − cos 2x)5/2 +C

Or you can run this by simply saying u = sin2 x, du = 2 sinx cosxdx = sin 2xdx and:

∫ sin3 x sin 2xdx = ∫ u3/2 du

= 2

5
u5/2 +C

= 2

5
sin5 x +C
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Or use the identity sin3 x = (3 sinx−sin 3x)/4 and the trigonometric product to sum
formulas:

∫ sin3 x sin 2xdx = ∫
1

4
(3 sinx − sin 3x) sin 2xdx

= 1

4 ∫
(3 sinx sin 2x − sin 3x sin 2x)dx

= 1

8 ∫
(3(cosx − cos 3x) − (cosx − cos 5x))dx

= 1

8 ∫
(cos 5x − 3 cos 3x + 2 cosx)dx

= 1

40
sin 5x − 1

8
sin 3x + 1

4
sinx +C

Or, if you are willing to go complex, use the identity sin θ = (eiθ − e−iθ)/(2i) :

∫ sin3 x sin 2xdx = ∫ (
eix − e−ix

2i
)
3
e2ix − e−2ix

2i
dx

= 1

16 ∫
(e5ix + e−5ix − 3e3ix − 3e−3ix + 2eix + 2e−ix)dx

= 1

16
(e

5ix − e−5ix
5i

− e3ix − e−3ix
i

+ 2 e
ix − e−ix

i
) +C

= 1

40
sin 5x − 1

8
sin 3x + 1

4
sinx +C

b. Do integration by parts:

∫
e

1

lnx√
x
dx = ∫

e

1
lnxd(2

√
x)

= [2
√
x lnx]e

1
− ∫

e

1
2
√
x
dx

x

= 2
√
e − 2∫

e

1

dx√
x

= 2
√
e − 4 [

√
x]e

1

= 2
√
e − 4
√
e + 4

= 4 − 2
√
e

Or do the other integration by parts �rst,

∫
e

1

lnx√
x
dx = ∫

e

1

1√
x
d(x lnx − x)

= [x lnx − x√
x
]
e

1

+ 1

2 ∫
e

1

x lnx − x
x3/2 dx

= 1 + 1

2 ∫
e

1

lnx√
x
dx − [

√
x]e

1

= 2 −
√
e + 1

2 ∫
e

1

lnx√
x
dx

and then from
1

2 ∫
e

1

lnx√
x
dx = 2 −

√
e
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solve for

∫
e

1

lnx√
x
dx = 4 − 2

√
e .

Or �rst do the substitution x = eu, dx = eu du, and then do an integration by parts:

∫
e

1

lnx√
x
dx = ∫

1

0

u√
eu

eu du

= ∫
1

0
ueu/2 du

= ∫
1

0
ud(2eu/2)

= [2ueu/2]1
0
− 2∫

1

0
eu/2 du

= 2e1/2 − 4[eu/2]1
0

= 2e1/2 − 4e1/2 + 4
= 4 − 2

√
e

67. Evaluate the following integrals:

a. ∫ e
√
x dx

b. ∫
√
1 − x2 dx

c. ∫
dx

(x2 + 1)2

Solution: a. We �rst do a change of variable x = t2, dx = 2tdt,

∫ e
√
x dx = 2∫ tet dt

and then do an integration by parts, u = t, dv = et dtÔ⇒ du = dt, v = et :

= 2tet − 2∫ et dt

= 2tet − 2et +C
= 2
√
xe
√
x − 2e

√
x +C

b. We use the trigonometric substitution x = sin θ, −π
2
≤ θ ≤ π

2
. Then dx = cos θ dθ
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and
√
1 − x2 =

√
1 − sin2 θ =

√
cos2 θ = ∣ cos θ∣ = cos θ as cos θ ≥ 0 for −π

2
≤ θ ≤ π

2
.

∫
√
1 − x2 dx = ∫ cos θ ⋅ cos θ dθ

= ∫ cos2 θ dθ

= 1

2 ∫
(1 + cos 2θ)dθ

= 1

2
θ + 1

4
sin 2θ +C

= 1

2
θ + 1

2
sin θ cos θ +C

= 1

2
arcsinx + 1

2
x
√
1 − x2 +C

√
1 − x2

x
1

c. We use the trigonometric substitution x = tan θ, −π
2
< θ < π

2
. Then dx = sec2 θ dθ

and x2 + 1 = tan2 θ + 1 = sec2 θ .

∫
dx

(x2 + 1)2
= ∫

sec2 θ

(sec2 θ)2
dθ

= ∫ cos2 θ dθ

= 1

2 ∫
(1 + cos 2θ)dθ

= 1

2
θ + 1

4
sin 2θ +C

= 1

2
θ + 1

2
sin θ cos θ +C

= 1

2
arctanx + 1

2
⋅ x√

x2 + 1
⋅ 1√

x2 + 1
+C

= 1

2
arctanx + 1

2
⋅ x

x2 + 1
+C

1

x

√
x2 + 1
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Remark: Other methods can also be used. For instance, the integral in part (b) can be done
using integration by parts.

68. Evaluate the following integrals:

a. ∫
1/2

−1/2

√
1 − x
1 + x

arcsinxdx

b. ∫
1/2

−1/2

dx

x +
√
1 − x2

c. ∫
∞

0

dx

1 + ex

Solution: a. We �rst re-write the integral as follows:

∫
1/2

−1/2

√
1 − x
1 + x

arcsinxdx = ∫
1/2

−1/2

1√
1 − x2

arcsinxdx + ∫
1/2

−1/2

−x√
1 − x2

arcsinx dx

The �rst integral on the right vanishes as the integrand is odd and the integration
interval is symmetric about the origin. We do integration by parts for the second

integral with u = arcsinx and dv = −x√
1 − x2

dx, and hence du = 1√
1 − x2

and v =
√
1 − x2:

∫
1/2

−1/2
arcsinx

−x√
1 − x2

dx = [arcsinx
√
1 − x2]

1/2

−1/2
− ∫

1/2

−1/2
dx = π

2
√
3
− 1

Therefore:

∫
1/2

−1/2

√
1 − x
1 + x

arcsinxdx = π

2
√
3
− 1

b. We start by changing variables t = sin θ, dt = cos θ dθ.

∫
1/2

−1/2

dx

x +
√
1 − x2

= ∫
π/6

−π/6

cos θ dθ

sin θ + cos θ

= ∫
π/6

−π/6

cos θ(cos θ − sin θ)
cos2 θ − sin2 θ

dθ

= 1

2 ∫
π/6

−π/6

1 + cos 2θ − sin 2θ
cos 2θ

dθ

= 1

2 ∫
π/6

−π/6
(sec 2θ + 1 − tan2θ)dθ

= 1

2
[1
2
ln ∣ tan2θ + sec 2θ∣ + θ − 1

2
ln ∣ sec 2θ∣]

π/6

−π/6

= 1

2
ln(
√
3 + 2) + π

6

c. Let u = e−x + 1, du = −e−x dx. Then

∫
dx

1 + ex
= ∫

e−x dx

e−x + 1
= −∫

du

u
= − ln ∣u∣ +C = − ln(1 + e−x) +C
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and from this

∫
∞

0

dx

1 + ex
= lim

c→∞∫
c

0

dx

1 + ex
= − lim

c→∞
[ln(1 + e−x)]c0 = − limc→∞

(ln(1 + e−c) − ln 2) = ln 2

follows.

Remark: Here is another way of doing part (c). Let u = ex, du = ex dx. Then

∫
dx

1 + ex
= ∫

ex dx

ex + (ex)2

= ∫
du

u + u2

= ∫ (
1

u
− 1

1 + u
) du

= ln ∣u∣ − ln ∣1 + u∣ +C
= x − ln(1 + ex) +C

and from this

∫
∞

0

dx

1 + ex
= lim

c→∞∫
c

0

dx

1 + ex
= lim

c→∞
[x − ln(1 + ex)]c0

= lim
c→∞
(c − ln(1 + ec) + ln 2)

= lim
c→∞
(− ln(e−c) − ln(1 + ec) + ln 2)

= lim
c→∞
(− ln(e−c + 1) + ln 2)

= ln 2

follows.

69. Evaluate the improper integral

∫
∞

0

dx

(ax + 1)(x2 + 1)

where a is a positive constant.

Solution: We have the partial fraction decomposition

1

(ax + 1)(x2 + 1)
= 1

a2 + 1
( a2

ax + 1
− ax − 1
x2 + 1

) .

Hence:

∫
dx

(ax + 1)(x2 + 1)
= 1

a2 + 1
(∫

a2

ax + 1
dx − ∫

ax − 1
x2 + 1

dx)

= 1

a2 + 1
(a ln ∣ax + 1∣ − a

2
ln(x2 + 1) + arctan(x)) +C .
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Therefore:

∫
∞

0

dx

(ax + 1)(x2 + 1)
= lim

c→∞∫
c

0

dx

(ax + 1)(x2 + 1)

= 1

a2 + 1
lim
c→∞
[a ln ∣ax + 1∣ − a

2
ln(x2 + 1) + arctan(x)]

c

0

= 1

a2 + 1
lim
c→∞
(a ln(ac + 1) − a

2
ln(c2 + 1) + arctan c

− a ln 1 + a

2
ln 1 − arctan0)

= a

a2 + 1
lim
c→∞

ln( ac + 1√
c2 + 1

) + 1

a2 + 1
lim
c→∞

arctan c

= 1

a2 + 1
(a lna + π

2
)

as lim
c→∞

ac + 1√
c2 + 1

= a and lim
c→∞

arctan c = π

2
.

70. The curve y = 1/x, x ≥ 1, is revolved about the x-axis to generate a surface S and the
region between the curve and the x-axis for x ≥ 1 is revolved about the x-axis to generate a
solid D.

a. Show that D has �nite volume.

b. Show that S has in�nite area.

Solution: a. Using the disk method we obtain

Volume = π∫
∞

1
R(x)2 dx = π∫

∞

1

dx

x2
.

Since p = 2 > 1, this integral converges.

b. The surface area formula gives

Surface Area = 2π∫
∞

1
y
√
1 + (y′)2 dx = 2π∫

∞

1

1

x

√
1 + 1

x4
dx .

We have
1

x

√
1 + 1

x4
≥ 1

x
≥ 0 for x ≥ 1, and ∫

∞

1

dx

x
=∞. The surface area is in�nite

by the Direct Comparison Test.

Remark: We want to get the surface S painted for a reasonable, �nite price. We o�er the job
to Painter1 and Painter2.

Painter1 says: �It cannot be done. S has in�nite area, it cannot be painted with
�nite amount of paint.�

Painter2 says: �It can be done. D has �nite volume. We can �ll the inside of S
with volume(D) cubic units of paint and let the excess paint run out.�
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Whom should we believe?

71. Let n be a nonnegative integer. Show that ∫
∞

0
tne−t dt = n! .

Solution: We use induction on n.

� Let n = 0. Then ∫
∞

0
e−t dt = 1 = 0! .

� Let n > 0 and assume that ∫
∞

0
tn−1e−t dt = (n − 1)! . Integration by parts gives

∫
∞

0
tne−t dt = lim

c→∞∫
c

0
tne−t dt

= lim
c→∞
([−tne−t]c0 + n∫

c

0
tn−1e−t dt)

= lim
c→∞
[−tne−t]c0 + n∫

∞

0
tn−1e−t dt

= n∫
∞

0
tn−1e−t dt

= n ⋅ (n − 1)!
= n!

where lim
c→∞

cne−c = 0 can be seen after n applications of L'Hôpital's Rule.

Remark: The Gamma function is de�ned by

Γ(x) = ∫
∞

0
tx−1e−t dt

for x > 0. It can be shown that the improper integral on the right converges if and only if x > 0.
Note that 0 is also a �bad point� besides ∞ for 0 < x < 1.

A calculation similar to the one in the solution above shows that Γ(x + 1) = xΓ(x) for x > 0.
This relation Γ(x) = Γ(x + 1)/x can be used repeatedly to de�ne the Gamma function for all
real numbers which are not nonpositive integers.

Since Γ(n+1) = n! for all nonnegative integers n, we can use the Gamma function to de�ne the
factorials of all real numbers which are not negative integers by x! = Γ(x + 1). In particular,

(− 1

2
)! = Γ(1/2) = ∫

∞

0
t−1/2e−t dt = 2∫

∞

0
e−u

2

du = 2 ⋅
√
π

2
=
√
π .

The volume of an n-dimensional ball with radius r is πn/2rn/(n/2)! . Check this formula for
n = 1 (the interval [−r, r]), n = 2 (the disk with radius r), and n = 3 (the sphere with radius r).
The case n = 4 will be seen in Calculus II.

72. Show that ∫
∞

0

lnx

x2 + 1
dx = 0 .
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Solution: First of all, by de�nition,

∫
∞

0

lnx

x2 + 1
dx = ∫

1

0

lnx

x2 + 1
dx + ∫

∞

1

lnx

x2 + 1
dx

and the improper integral on the left converges if and only if both basic improper
integrals on the right converge.

Consider ∫
∞

1

lnx

x2 + 1
dx . Note that 0 ≤ lnx

x2 + 1
≤ lnx

x2
for x ≥ 1. On the other hand,

∫
∞

1

lnx

x2
dx = ∫

∞

0
te−t dt

= lim
c→∞∫

c

0
te−t dt

= lim
c→∞∫

c

0
t d(−e−t)

= lim
c→∞
([ − te−t]c

0
+ ∫

c

0
e−t dt)

= lim
c→∞
(−ce−c − [e−t]c

0
)

= lim
c→∞
(−ce−c − e−c + 1)

= 1

where we used the substitution x = et, dx = et dt, followed by the de�nition of the
improper integral, then an integration by parts and �nally the limit

lim
c→∞

ce−c = lim
c→∞

c

ec

L'H

↓= lim
c→∞

1

ec
= 0 .

Therefore by the Direct Comparison Test the improper integral ∫
∞

1

lnx

x2 + 1
dx

converges.

Now the convergence of ∫
1

0

lnx

x2 + 1
dx follows as

∫
1

0

lnx

x2 + 1
dx = ∫

1

∞

ln(1/u)
(1/u)2 + 1

⋅ −du
u2
= −∫

∞

1

lnu

1 + u2
du

where we used the change of variable x = 1/u, dx = −du/u2, and this also gives:

∫
∞

0

lnx

x2 + 1
dx = ∫

1

0

lnx

x2 + 1
dx + ∫

∞

1

lnx

x2 + 1
dx

= −∫
∞

1

lnx

x2 + 1
dx + ∫

∞

1

lnx

x2 + 1
dx = 0

Remark: Instead of computing ∫
∞

1

lnx

x2
dx, one can show its convergence using the

comparison 0 ≤ lnx

x2
≤ 1

x3/2 for x ≥ 1 and the fact that ∫
∞

1

dx

x3/2 is convergent as p = 3/2 > 1.
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Here the fact that
lnx

x2
≤ 1

x3/2 for x ≥ 1 can be seen as follows: Consider f(x) =
√
x − lnx on

[1,∞). Then f ′(x) = 1/(2
√
x) − 1/x = (

√
x − 2)/(2x) and x = 4 is the only critical point. Since

f ′(x) < 0 for x < 4 and f ′(x) > 0 for x > 4, f(4) =
√
4 − ln 4 = 2 − 2 ln 2 = 2(1 − ln 2) > 0 must be

the absolute minimum value of f on [1,∞), and we are done.

73.* Determine whether the improper integral ∫
∞

0

dx

ex − e−x
converges or diverges.

Solution: By de�nition,

∫
∞

0

dx

ex − e−x
= ∫

1

0

1

ex − e−x
+ ∫

∞

1

dx

ex − e−x

and the given integral converges if and only if both of the integrals on the right
hand side converge.

Let us consider ∫
1

0

dx

ex − e−x
�rst. Since we have the linearization

ex − e−x ≈ (1 + x) − (1 − x) = 2x ,

centered at x = 0, we expect 1/(ex − e−x) to behave like 1/(2x) near the �bad point�
0, and therefore this integral to diverge.

In fact, we have

L = lim
x→0+

1/(ex − e−x)
1/x

= lim
x→0+

x

ex − e−x
L'H

↓= lim
x→0+

1

ex + e−x
= 1

2
.

Since 0 < L < ∞ and ∫
1

0

dx

x
is divergent (because p = 1 ≥ 1), we conclude

that ∫
1

0

dx

ex − e−x
diverges by the Limit Comparison Test. Therefore ∫

∞

0

dx

ex − e−x
diverges too.

Remark: The other improper integral on the right hand side converges. We have

L = lim
x→∞

1/(ex − e−x)
e−x

= lim
x→∞

1

1 − e−2x
= 1 .

Since 0 < L <∞ and

∫
∞

1
e−x dx = lim

c→∞∫
c

1
e−x dx = lim

c→∞
[−e−x]c1 = lim

c→∞
(−e−c + e−1) = e−1 <∞ ,

we conclude that ∫
∞

1

dx

ex − e−x
converges by the Limit Comparison Test.

74.* Determine whether the improper integral ∫
∞

0

1 − e−1/x√
x

dx converges or diverges.

*Examples marked red are not part of the Fall 2016 Syllabus.
*Examples marked red are not part of the Fall 2016 Syllabus.
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Solution: By de�nition,

∫
∞

0

1 − e−1/x√
x

dx = ∫
1

0

1 − e−1/x√
x

dx + ∫
∞

1

1 − e−1/x√
x

dx

and the given integral converges if and only if both integrals on the right hand side
converge.

On one hand, since

L = lim
x→0+

1 − e−1/x√
x
1√
x

= lim
x→0+
(1 − e−1/x) = 1

is a positive real number, and ∫
1

0

dx√
x
converges as p = 1/2 < 1; we conclude that

∫
1

0

1 − e−1/x√
x

dx converges by the Limit Comparison Test.

On the other hand, since

L = lim
x→∞

1 − e−1/x√
x
1

x3/2

= lim
x→∞

1 − e−1/x
1/x

= lim
t→0+

1 − e−t
t

L'H

↓= lim
t→0+

e−t

1
= 1

is a positive real number, and ∫
∞

1

dx

x3/2 converges as p = 3/2 > 1; we conclude that

∫
∞

1

1 − e−1/x√
x

dx also converges by the Limit Comparison Test.

Hence ∫
∞

0

1 − e−1/x√
x

dx converges.
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Part 2: Multi-variable Functions

1. Consider the point P (3,−5,1) and the line L ∶ x = 2t − 1 , y = −t + 2 , z = −2t ; −∞ < t <∞ .

a. Find the equation of the plane passing through P perpendicular to L.

b. Find the equation of the plane passing through P and containing L.

Solution: a. The line L is parallel to the vector v = 2i− j− 2k . Therefore we can
take the normal vector of the plane to be n = 2i − j − 2k . Then the equation of the
plane is 2 ⋅ (x − 3) + (−1) ⋅ (y − (−5)) + (−2) ⋅ (z − 1) = 0 , or 2x − y − 2z = 9 .

b. A normal n to the plane containing the line L and the point P will be
perpendicular to v, and it will also be perpendicular to

#    »

PQ where Q is any point
on the line. We can take Q(−1,2,0), the point corresponding to t = 0 , and then
#    »

PQ = −4i + 7j − k . Now we can take the normal vector v to be

n = v × #    »

PQ =
RRRRRRRRRRRRRR

i j k
2 −1 −2
−4 7 −1

RRRRRRRRRRRRRR
= 15i + 10j + 10k ,

or in fact n = 3i + 2j + 2k . Then the equation of the plane is

3 ⋅ (x − 3) + 2 ⋅ (y − (−5)) + 2 ⋅ (z − 1) = 0 ,

or 3x + 2y + 2z = 1 .

2. Consider the plane P ∶ 3x − 4y + z = 10 , and the points P (2,3,−1) and Q(1,2,2) .

a. Find the equation of the line passing through P perpendicular to P.

b. Find the equation of the plane passing through P and Q perpendicular to P.

Solution: a. Since n = 3i− 4j+k is normal to the plane, it will be parallel to any
line perpendicular to the plane. Hence we can take v = 3i−4j+k , and the equation
of the line is x = 3t + 2, y = −4t + 3, z = t − 1; −∞ < t <∞ .

b. A plane perpendicular to P will have a normal n′ perpendicular to the normal
n = 3i−4j+k of P. Also a plane containing the points P and Q will have a normal
n′ perpendicular to

#    »

PQ = −i − j + 3k . Therefore we can take n′ to be

n′ = n × #    »

PQ =
RRRRRRRRRRRRRR

i j k
3 −4 1
−1 −1 3

RRRRRRRRRRRRRR
= −11i − 10j − 7k ,
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or rather n′ = 11i + 10j + 7k . This gives the equation of the plane as

11 ⋅ (x − 2) + 10 ⋅ (y − 3) + 7 ⋅ (z − (−1)) = 0 ,
or 11x + 10y + 7z = 45 .

3. Find a parametric equation of the line L that intersects both of the lines

L1 ∶ x = 2t − 1, y = −t + 2, z = 3t + 1

and

L2 ∶ x = s + 5, y = 2s + 3, z = −s
perpendicularly.

Solution: v1 = 2i − j + 3k and v2 = i + 2j − k are the velocity vectors of the lines L1

and L2, respectively. Hence,

v =
RRRRRRRRRRRRRR

i j k
2 −1 3
1 2 −1

RRRRRRRRRRRRRR
= −5i + 5j + 5k

is a velocity vector for L. So we may take v = i − j − k.

Then

n = v×v1 =
RRRRRRRRRRRRRR

i j k
1 −1 −1
2 −1 3

RRRRRRRRRRRRRR
= −4i − 5j + k

is normal to the plane P containing the lines L and L1. As P1(−1,2,1) is in P,
an equation of P is

−4 ⋅ (x − (−1)) + (−5) ⋅ (y − 2) + 1 ⋅ (z − 1) = 0 ,
or 4x + 5y − z = 5. At the point P0 of intersection of P and L2, s satis�es:

4 ⋅ (s + 5) + 5 ⋅ (2s + 3) − (−s) = 5
Hence s = −2. Substituting this back in the equations of L2 gives P0(3,−1,2).
Therefore an equation of L is:

x = t + 3 , y = −t − 1 , z = −t + 2 ; (−∞ < t <∞) .
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4. Let c be a constant. Show the angle between the position and the velocity vectors along the
curve r = ect cos t i + ect sin t j , −∞ < t <∞ , is constant.

Solution: We have

r = ect cos t i + ect sin t j

and

v = dr

dt
= (c ect cos t − ect sin t)i + (c ect sin t + ect cos t)j .

Then

∣r∣ = ((ect cos t)2 + (ect sin t)2)1/2 = ect ,
∣v∣ = ((c ect cos t − ect sin t)2 + (c ect sin t + ect cos t)2)1/2 =

√
c2 + 1 ect ,

r ⋅ v = ect cos t ⋅ (c ect cos t − ect sin t) + ect sin t ⋅ (c ect sin t + ect cos t) = c e2t .

Therefore, if θ is the angle between r and v, we have

cos θ = r ⋅ v
∣r∣ ∣v∣

= c e2t

ect ⋅
√
c2 + 1 ect

= c√
c2 + 1

,

and we conclude that θ is constant.
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5. In the xyz-space where a �yscreen lies along the plane with the equation

2x + y − 2z = 1 ,

the trajectory of a bee as a function of time t is given by

r = t i + t2 j + t3 k

for −∞ < t <∞.

a. Find all times t when the bee is �ying parallel to the screen.

b. Find all times t when the bee is �ying perpendicular to the screen.

c. There are holes in the screen through which the bee passes. Find the coordinates of all
of these holes.

Solution: a. The normal vector of the plane along which the screen lies is n =
2i + j − 2k, and the velocity vector of the bee is v = i + 2tj + 3t2k. The bee is �ying
parallel to the screen whenever these two vectors are perpendicular to each other;
in other words, whenever n ⋅ v = 0. As n ⋅ v = 2 + 2t − 6t2, we want 3t2 − t − 1 = 0.
Hence t = (1 ±

√
13)/6 are the times when the bee is �ying parallel to the screen.

b. The bee is �ying perpendicular to the screen whenever n and v are parallel
to each other; in other words, whenever 1/2 = 2t/1 = 3t2/(−2). This implies t2 =
−1/3 which is not possible. Therefore there is no moment when the bee is �ying
perpendicular to the screen.

c. Substituting the coordinates x = t, y = t2, z = t3 of the position of the bee
into the equation 2x + y − 2z = 1 of the plane we obtain 2t3 − t2 − 2t + 1 = 0. As
2t3 − t2 − 2t + 1 = (2t − 1)(t − 1)(t + 1), the �y is in the plane of the screen when
t = 1/2, t = 1, t = −1. These times correspond to the points (x, y, z) = (1/2,1/4,1/8),
(1,1,1) and (−1,1,−1).
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6. a. Show that lim
(x,y)→(0,0)

xy2

x6 + y2
= 0 .

b. Show that lim
(x,y)→(0,0)

xy

x6 + y2
does not exist.

Solution: a. We have 0 ≤ y2 ≤ x6 + y2 for all (x, y). Hence

0 ≤ ∣ xy2

x6 + y2
∣ = ∣x∣ ⋅ y2

x6 + y2
≤ ∣x∣ ⋅ 1 = ∣x∣

for all (x, y) /= (0,0) . Since lim
(x,y)→(0,0)

∣x∣ = 0 , the Sandwich Theorem gives

lim
(x,y)→(0,0)

xy2

x6 + y2
= 0 .

b. The limit along the x-axis is

lim
(x,y)→(0,0)

along the x-axis

xy

x6 + y2
= lim

x→0

x ⋅ 0
x6 + 02

= lim
x→0

0 = 0 ,

whereas the limit along the y = x line is

lim
(x,y)→(0,0)

along the line y = x

xy

x6 + y2
= lim

x→0

x ⋅ x
x6 + x2

= lim
x→0

1

x4 + 1
= 1 .

Since these two limits are di�erent, the two-variable limit lim
(x,y)→(0,0)

xy

x6 + y2
does not

exist by the Two-Path Test.

Remark: Sertöz Theorem tells exactly when such limits exist:

Let a and b be nonnegative real numbers, and c and d be positive real numbers.

� If
a

c
+ b

d
> 1 , then lim

(x,y)→(0,0)

∣x∣a∣y∣b
∣x∣c + ∣y∣d

= 0 .

� If
a

c
+ b

d
≤ 1 , then lim

(x,y)→(0,0)

∣x∣a∣y∣b
∣x∣c + ∣y∣d

does not exist.

Let a and b be nonnegative integers, and c and d be positive even integers.

� If
a

c
+ b

d
> 1 , then lim

(x,y)→(0,0)

xayb

xc + yd
= 0 .

� If
a

c
+ b

d
≤ 1 , then lim

(x,y)→(0,0)

xayb

xc + yd
does not exist.
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A proof of the �rst version can be found in http://www.fen.bilkent.edu.tr/�otekman/calc2
/sertoztheorem.pdf. A proof of the n-variable case of the second version can be found in
http://sertoz.bilkent.edu.tr/depo/limit.pdf.

7. Determine all values of the constant α > 0 for which the limit

lim
(x,y)→(0,0)

x2y3

∣x∣3 + ∣y∣α

exists.

Solution: We observe that

lim
(x,y)→(0,0)

along the curve x = y3

x2y3

∣x∣3 + ∣y∣α
= lim

y→0

(y3)2y3
∣y3∣3 + ∣y∣α

= lim
y→0

y

∣y∣
⋅ lim
y→0

1

1 + ∣y∣α−9
.

lim
y→0

1

1 + ∣y∣α−9
is 1 if α > 9 and 1/2 if α = 9. On the other hand lim

y→0

y

∣y∣
does not

exist. Therefore the limit of
x2y3

∣x∣3 + ∣y∣α
along the curve x = y3 does not exist, and

consequently the two-variable limit lim
(x,y)→(0,0)

x2y3

∣x∣3 + ∣y∣α
does not exist either for α ≥ 9.

Now we will show that the limit is 0 if α < 9. We have

0 ≤ ∣ x2y3

∣x∣3 + ∣y∣α
∣ = (∣x∣/∣y∣α/3)2
(∣x∣/∣y∣α/3)3 + 1

⋅ ∣y∣3−α/3 ≤ ∣y∣3−α/3

for all (x, y) /= (0,0). Here we used the fact that if t ≥ 1, then t2 ≤ t3 and hence
t2

t3 + 1
≤ 1, and if 0 < t < 1, then t2 < 1 gives

t2

t3 + 1
≤ 1. Since lim

(x,y)→(0,0)
∣y∣3−α/3 = 0 for

α < 9, lim
(x,y)→(0,0)

x2y3

∣x∣3 + ∣y∣α
= 0 follows by the Sandwich Theorem.

8. Determine all values of the positive constant k for which the limit

lim
(x,y)→(0,0)

∣x∣
(x2 + y2)k

exists.

Solution: The limit exists for k < 1

2
, and does not exist for k ≥ 1

2
.

Suppose k < 1

2
. We have 0 ≤ x2 ≤ x2 + y2 for all (x, y), and hence

0 ≤ ∣x∣
(x2 + y2)k

≤ ∣x∣1−2k ( x2

x2 + y2
)
k

≤ ∣x∣1−2k
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for all (x, y) /= (0,0) . Since 1 − 2k > 0, we have ∣x∣1−2k → 0 as (x, y) → (0,0).
Therefore

lim
(x,y)→(0,0)

∣x∣
(x2 + y2)k

= 0

by the Sandwich Theorem.

Suppose k = 1

2
. Then

lim
(x,y)→(0,0)

along the x-axis

∣x∣
(x2 + y2)1/2

= lim
x→0

∣x∣
(x2 + 02)1/2

= lim
x→0

1 = 1 ,

and

lim
(x,y)→(0,0)

along the y-axis

∣x∣
(x2 + y2)1/2

= lim
y→0

∣0∣
(02 + y2)1/2

= lim
x→0

0 = 0 .

Since these limits are di�erent, the two-variable limit lim
(x,y)→(0,0)

∣x∣
(x2 + y2)1/2

does not

exist by the Two-Path Test.

Suppose k > 1/2 . Then

lim
(x,y)→(0,0)

along the x-axis

∣x∣
(x2 + y2)k

= lim
x→0

∣x∣
(x2 + 02)k

= lim
x→0
∣x∣1−2k =∞

does not exist. Therefore the two-variable limit lim
(x,y)→(0,0)

∣x∣
(x2 + y2)k

does not exist

either.

9. Let

f(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xayb

x4 + y6
if (x, y) /= (0,0)

0 if (x, y) = (0,0)

where a and b are nonnegative integers. In each of (a-e), determine whether there exist values
of a and b for which f satis�es the given condition.

a. f(x, y) is continuous at (0,0).

b. f(x, y) goes to 1 as (x, y) approaches (0,0) along the line y = x, and f(x, y) goes to −1
as (x, y) approaches (0,0) along the line y = −x.

c. f(x, y) goes to 0 as (x, y) approaches (0,0) along any line through the origin, and the
limit lim

(x,y)→(0,0)
f(x, y) does not exist.

d. f(x, y) goes to 0 as (x, y) approaches (0,0) along any line through the origin except the
y-axis, and f(x, y) goes to 1 as (x, y) approaches (0,0) along the y-axis.

e. fx(0,0) and fy(0,0) exist, and f(x, y) is not di�erentiable at (0,0).
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Solution: a. If a = 4 and b = 1, then f is continuous at (0,0). This follows from
the Sandwich Theorem as

0 ≤ ∣f(x, y)∣ = ∣ x4y

x4 + y6
∣ ≤ x4

x4 + y6
⋅ ∣y∣ ≤ 1 ⋅ ∣y∣ ≤ ∣y∣

for (x, y) /= 0 implies that the limit of f(x, y) at (0,0) is 0 = f(0,0).

b. Let a = 3 and b = 1. Then

lim
(x,y)→(0,0)

along the line y=x

f(x, y) = lim
x→0

f(x,x) = lim
x→0

x4

x4 + x6
= lim

x→0

1

1 + x2
= 1

and

lim
(x,y)→(0,0)

along the line y=−x

f(x, y) = lim
x→0

f(x,−x) = lim
x→0

−x4

x4 + x6
= lim

x→0

−1
1 + x2

= −1 .

c. Let a = 2 and b = 3. Then we have

lim
(x,y)→(0,0)

along the line y=mx

f(x, y) = lim
x→0

f(x,mx) = lim
x→0

m3x5

x4 +m6x6
= lim

x→0

m3x

1 +m6x2
= 0

as well as
lim

(x,y)→(0,0)
along the y-axis

f(x, y) = lim
y→0

f(0, y) = lim
y→0

0 = 0 .

However,

lim
(x,y)→(0,0)

along the curve y=x2/3

f(x, y) = lim
x→0

f(x,x2/3) = lim
x→0

x4

x4 + x4
= lim

x→0

1

2
= 1

2
/= 0

and hence the limit of f(x, y) at (0,0) does not exist by the 2-Path Test.

d. Let a = 0 and b = 6. Then we have

lim
(x,y)→(0,0)

along the line y=mx

f(x, y) = lim
x→0

f(x,mx) = lim
x→0

m6x6

x4 +m6x6
= lim

x→0

m6x2

1 +m6x2
= 0

and

lim
(x,y)→(0,0)

along the y-axis

f(x, y) = lim
y→0

f(0, y) = lim
y→0

y6

y6
= lim

y→0
1 = 1 .

e. If a = 1 and b = 1, then f(x, y) is not di�erentiable at (0,0) as it is not even
continuous there. This can be seen by considering its limit along the line y = x
which does not exist. On the other hand, fx(0,0) and fy(0,0) are both 0 as f is
identically zero on both axes.

Remark: The complete lists of ordered pairs (a, b) of nonnegative integers that satisfy the
given conditions are as follows:
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a. all (a, b) with 3a + 2b > 12

b. (3,1), (1,3)

c. (1,4), (2,3)

d. (0,6)

e. (0,7), (1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (4,1)

10. In Genetics, Fisher's Equation,

∂p

∂t
= p (1 − p) + ∂2p

∂x2

describes the spread of an advantageous allele in a population with uniform density along a
1-dimensional habitat, like a shoreline, as a result of both reproduction and dispersion of the
o�spring. Here p(x, t) is the frequency of the allele as a function of the position x and the time
t.

Find all possible values of the pair of constants (a, b) for which the function

p(x, t) = 1

(1 + eax+bt)2

satis�es the Fisher's Equation.

Solution: We have

pt = −2(1 + eax+bt)−3 ⋅ eax+bt ⋅ b
px = −2(1 + eax+bt)−3 ⋅ eax+bt ⋅ a
pxx = 6(1 + eax+bt)−4 ⋅ (eax+bt ⋅ a)2 − 2(1 + eax+bt)−3 ⋅ eax+bt ⋅ a2

p(1 − p) = (1 + eax+bt)−4 ⋅ (2eax+bt + (eax+bt)2)

and substitution these in the Fisher's Equation gives

−2b(1 + eax+bt) = 2 + eax+bt + 6a2eax+bt − 2a2(1 + eax+bt)

or:
2a2 − 2b − 2 = (4a2 + 2b + 1)eax+bt

As the left hand side if this equality is constant, so must be the right hand side. This
is possible only if eax+bt is constant or 4a2 +2b+1 = 0. eax+bt is constant only if a = 0
and b = 0, and for these values the equation becomes −2 = 1 which is not possible.
In the second case, the equation becomes 2a2−2b−2 = 0. Adding 4a2+2b+1 = 0 and
2a2 − 2b − 2 = 0 we �nd 6a2 = 1 and hence b = −5/6. Therefore (a, b) = (1/

√
6,−5/6)

and (−1/
√
6,−5/6) are the only values for which the given function satis�es the

Fisher's Equation.
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11. Assume that z and w are di�erentiable functions of x and y satisfying the equations xw3 +
yz2 + z3 = −1 and zw3 − xz3 + y2w = 1 . Find ∂z

∂x
at (x, y, z,w) = (1,−1,−1,1) .

Solution: Di�erentiating the equations with respect to x and keeping in mind that
z and w depend on x, but y does not; we obtain

w3 + x ⋅ 3w2wx + y ⋅ 2zzx + 3z2zx = 0 ,

and
zxw

3 + z ⋅ 3w2wx − z3 − x ⋅ 3z2zx + y2wx = 0 .
Substituting x = 1, y = −1, z = −1, w = 1, we get 5zx + 3wx = −1 and 2zx + 2wx = 1 .
Solving for zx we �nd

∂z

∂x
= −5

4
at (x, y, z,w) = (1,−1,−1,1) .

12. Once upon a time there was an xy-plane. The temperature at each point of this xy-plane
changed as time passed. Bugs roamed this xy-plane. Each bug had a device that measured the
temperature in real time, and showed the rate of change of temperature with respect to time
on its screen.

One day four of these bugs met at a point P0. At the moment they met:

� The �rst bug was moving with velocity v1 = 2i+ j m/s and its device was showing 1○C/s.

� The second bug was moving with velocity v2 = i − 5j m/s and its device was showing
−1○C/s.

� The third bug was moving with velocity v3 = i+ j m/s and its device was showing 2○C/s.

� The fourth bug was sitting still.

What was the device of the fourth bug showing?
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Solution:

13. Let z = f(x, y) be a di�erentiable function such that

f(3,3) = 1, fx(3,3) = −2, fy(3,3) = 11,

f(2,5) = 1, fx(2,5) = 7, fy(2,5) = −3.

Suppose w is a di�erentiable function of u and v satisfying the equation

f(w,w) = f(uv, u2 + v2)

for all (u, v). Find ∂w

∂u
at (u, v,w) = (1,2,3).

Solution: Di�erentiating the identity

f(w,w) = f(uv, u2 + v2)

with respect to u gives

fx(w,w)
∂w

∂u
+ fy(w,w)

∂w

∂u
= fx(uv, u2 + v2) ∂(uv)

∂u
+ fy(uv, u2 + v2) ∂(u

2 + v2)
∂u
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by the Chain Rule. Hence

(fx(w,w) + fy(w,w))
∂w

∂u
= fx(uv, u2 + v2) v + fy(uv, u2 + v2)2u

which leads to

(fx(3,3) + fy(3,3))
∂w

∂u
= 2fx(2,5) + 2fy(2,5)

after substituting (u, v,w) = (1,2,3). Now using fx(3,3) = −2, fy(3,3) = 11,
fx(2,5) = 7, and fy(2,5) = −3, we conclude that

∂w

∂u
= 8

9
at (u, v,w) = (1,2,3) .

14. Let u = x + y + z, v = xy + yz + zx, w = xyz, and suppose that f(u, v,w) is a di�erentiable
function satisfying f(u, v,w) = x4 + y4 + z4 for all (x, y, z). Find fu(2,−1,−2).

Solution: We can take (x, y, z) = (1,−1,2) as this gives (u, v,w) = (2,−1,−2).

Di�erentiating f(u, v,w) = x4+y4+z4 with respect to x, y, z, respectively, we obtain:

fu ⋅ ux + fv ⋅ vx + fw ⋅wx = 4x3

fu ⋅ uy + fv ⋅ vy + fw ⋅wy = 4y3

fu ⋅ uz + fv ⋅ vz + fw ⋅wz = 4z3

Now using u = x + y + z, v = xy + yz + zx, w = xyz, these give:

fu ⋅ 1 + fv ⋅ (y + z) + fw ⋅ yz = 4x3

fu ⋅ 1 + fv ⋅ (x + z) + fw ⋅ xz = 4y3

fu ⋅ 1 + fv ⋅ (x + y) + fw ⋅ xy = 4z3

Substituting (x, y, z) = (1,−1,2) we get:

fu + fv − 2fw = 4
fu + 3fv + 2fw = −4

fu − fw = 32

Subtracting 3 times the �rst equation from the second gives −2fu + 8fw = −16, and
adding 8 times the third equation to this gives 6fu = 240. So fu(2,−1,−2) = 40.

Remark: There are such f . In fact, f(u, v,w) = u4 − 4u2 + 2v2 + 4uw is one. Also note that
for a given (u, v,w), the corresponding (x, y, z) must be the roots of T 3 − uT 2 + vT −w = 0 and
hence is determined up to a permutation of its entries, making the answer independent of the
choice.

15. Let z = f(x, y) be a twice-di�erentiable function and x = r cos θ, y = r sin θ . Show that

∂2f

∂x2
+ ∂2f

∂y2
= ∂2z

∂r2
+ 1

r

∂z

∂r
+ 1

r2
∂2z

∂θ2
.
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Solution: If z = F (x, y) is a di�erentiable function of x and y, then by the chain
rule we have

∂z

∂r
= ∂F

∂x
⋅ ∂x
∂r
+ ∂F

∂y
⋅ ∂y
∂r
= Fx ⋅ cos θ + Fy ⋅ sin θ , (i)

and similarly,

∂z

∂θ
= ∂F

∂x
⋅ ∂x
∂θ
+ ∂F

∂y
⋅ ∂y
∂θ
= Fx ⋅ (−r sin θ) + Fy ⋅ (r cos θ) . (ii)

We use (i) with F = f to obtain

∂z

∂r
= fx ⋅ cos θ + fy ⋅ sin θ . (A)

Then
∂2z

∂r2
= ∂

∂r
(fx) ⋅ cos θ +

∂

∂r
(fy) ⋅ sin θ .

To compute
∂

∂r
(fx) and

∂

∂r
(fy) we use (i) with F = fx and F = fy , respectively:

∂2z

∂r2
= (fxx cos θ + fxy sin θ) cos θ + (fyx cos θ + fyy sin θ) sin θ

= fxx cos2 θ + 2fxy cos θ sin θ + fyy sin2 θ (B)

Similarly, using (ii) with F = f gives

∂z

∂θ
= fx ⋅ (−r sin θ) + fy ⋅ (r cos θ) ,

and di�erentiating this with respect to θ again gives

∂2z

∂θ2
= ∂

∂θ
(fx) ⋅ (−r sin θ) + fx ⋅

∂

∂θ
(−r sin θ)

+ ∂

∂θ
(fy) ⋅ (r cos θ) + fy ⋅

∂

∂θ
(r cos θ)

= (fxx(−r sin θ) + fxyr cos θ)(−r sin θ) + fx(−r cos θ)
+ (fyx(−r sin θ) + fyyr cos θ)(r cos θ) + fy(−r sin θ)

= fxxr2 sin2 θ − 2fxyr2 cos θ sin θ + fyyr2 cos2 θ
− r(fx cos θ + fy sin θ) (C)

where we used (ii) with F = fx and F = fy .

Now if we add (B), 1/r times (A), and 1/r2 times (C), we obtain fxx + fyy .

16. Suppose that f(x, y) is a twice-di�erentiable function with continuous derivatives satisfying

f( x

x2 + y2
,

y

x2 + y2
) = f(x, y)

for all (x, y) /= (0,0). Find fxx(3/10,1/10) if fx(3,1) = −8, fy(3,1) = 7, fxx(3,1) = 2, fxy(3,1) =
5, fyy(3,1) = −4.
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Solution: We have:

fx(x, y) =
∂

∂x
f( x

x2 + y2
,

y

x2 + y2
)

= fx(
x

x2 + y2
,

y

x2 + y2
) ⋅ ∂

∂x
( x

x2 + y2
)

+ fy(
x

x2 + y2
,

y

x2 + y2
) ⋅ ∂

∂x
( y

x2 + y2
)

= fx(
x

x2 + y2
,

y

x2 + y2
) ⋅ 1 ⋅ (x

2 + y2) − x ⋅ 2x
(x2 + y2)2

+ fy(
x

x2 + y2
,

y

x2 + y2
) ⋅ −2xy
(x2 + y2)2

Di�erentiating this a second time we obtain:

fxx(x, y) =
∂

∂x
(fx(

x

x2 + y2
,

y

x2 + y2
) ⋅ y2 − x2

(x2 + y2)2

+ fy(
x

x2 + y2
,

y

x2 + y2
) ⋅ −2xy
(x2 + y2)2

)

= fxx(
x

x2 + y2
,

y

x2 + y2
) ⋅ ( y2 − x2

(x2 + y2)2
)
2

+ fxy(
x

x2 + y2
,

y

x2 + y2
) ⋅ −2xy
(x2 + y2)2

⋅ y2 − x2

(x2 + y2)2

+ fx(
x

x2 + y2
,

y

x2 + y2
) ⋅ ∂

∂x
( y2 − x2

(x2 + y2)2
)

+ fyx(
x

x2 + y2
,

y

x2 + y2
) ⋅ y2 − x2

(x2 + y2)2
⋅ −2xy
(x2 + y2)2

+ fyy(
x

x2 + y2
,

y

x2 + y2
) ⋅ ( −2xy
(x2 + y2)2

)
2

+ fy(
x

x2 + y2
,

y

x2 + y2
) ⋅ ∂

∂x
( −2xy
(x2 + y2)2

)

= fxx(
x

x2 + y2
,

y

x2 + y2
) ⋅ ( y2 − x2

(x2 + y2)2
)
2

+ 2fxy(
x

x2 + y2
,

y

x2 + y2
) ⋅ y2 − x2

(x2 + y2)2
⋅ −2xy
(x2 + y2)2

+ fyy(
x

x2 + y2
,

y

x2 + y2
) ⋅ ( −2xy
(x2 + y2)2

)
2

+ fx(
x

x2 + y2
,

y

x2 + y2
) ⋅ 2x(x

2 − 3y2)
(x2 + y2)3

+ fy(
x

x2 + y2
,

y

x2 + y2
) ⋅ 2y(3x

2 − y2)
(x2 + y2)3
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Now letting (x, y) = (3/10,1/10) gives:

fxx(3/10,1/10) = fxx(3,10) ⋅ (−8)2 + 2fxy(3,10) ⋅ (−8) ⋅ (−6) + fyy(3,10) ⋅ (−6)2

+ fx(3,10) ⋅ 36 + fy(3,10) ⋅ 52
= 2 ⋅ 64 + 2 ⋅ 5 ⋅ 48 + (−4) ⋅ 36 + (−8) ⋅ 36 + 7 ⋅ 52
= 540

17. Consider the following conditions for a di�erentiable function f(x, y) :

Ê f(2,1) = 8

Ë An equation for the tangent line to the level curve f(x, y) = 8 in the xy-plane at the point
(2,1) is 3x − 5y = 1

Let P be the tangent plane to the graph of z = f(x, y) at the point (2,1,8) .

In each of the parts (a-e) below a Ìrd condition is given. Determine whether

� there is no function satisfying the conditions Ê-Ì ,

� there are functions satisfying the conditions Ê-Ì , but they do not all have the same
tangent plane P, or

� there are functions satisfying the conditions Ê-Ì and all of these functions have the same
tangent plane P. (In this case �nd an equation of P too.)

a. Ì f(3,2) = 11

b. Ì fx(2,1) = −1

c. Ì
d

dt
f(t2 + 1, t3)∣

t=1
= 6

d. Ì The line with parametric equations x = 4t+2 , y = 2t+1 , z = t+8 , (−∞ < t <∞) , lies
in P

e. Ì The line with parametric equations x = −t + 2 , y = 2t + 1 , z = t + 8 , (−∞ < t <∞) , is
perpendicular to P

Solution: The condition Ë implies that fx(2,1) = 3c and fy(2,1) = −5c for some
constant c. c is uniquely determined by the condition Ì in parts (b-d) and there
is no such c in part (e):

b. If fx(2,1) = −1 gives c = −1/3. Hence fy(2,1) = 5/3. Therefore all functions
satisfying the conditions Ê-Ì have the same tangent plane P. An equation
for this common tangent plane P is 3x − 5y + 3z = 25, and an example of a
function satisfying the given conditions is f(x, y) = −x + 5/3 y + 25/3.
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c. As we have

d

dt
f(t2 + 1, t3) = fx(t2 + 1, t3) ⋅ 2t + fy(t2 + 1, t3) ⋅ 3t2

by the Chain Rule, substituting t = 1 we obtain 3c ⋅2+(−5c) ⋅3 = 6 and c = −2/3.
Hence fx(2,1) = −2 and fy(2,1) = 10/3. Therefore all functions satisfying the
conditions Ê-Ì have the same tangent plane P. An equation for this common
tangent plane P is 6x− 10y + 3z = 26, and an example of a function satisfying
the given conditions is f(x, y) = −2x + 10/3 y + 26/3.

d. As the tangent plane P will have an equation of the form z = 3c ⋅(x−2)+(−5c) ⋅
(y − 1) + 8, for the line with parametric equations x = 4t + 2 , y = 2t + 1 , z =
t+8 , (−∞ < t <∞) , to lie in P we must have 1 = (3c) ⋅4+(−5c) ⋅2 and c = 1/2.
Hence fx(2,1) = 3/2 and fy(2,1) = −5/2. Therefore all functions satisfying
the conditions Ê-Ì have the same tangent plane P. An equation for this
common tangent plane P is 3x − 5y − 2z = −15, and an example of a function
satisfying the given conditions is f(x, y) = 3/2x − 5/2 y + 15/2.

e. As the tangent plane P will have an equation of the form 3c ⋅ (x − 2) + (−5c) ⋅
(y − 1) − (z − 8) = 0, for the line with parametric equations x = −t + 2 , y =
2t+1 , z = t+8 , (−∞ < t <∞) , to be perpendicular to P we must have the the
normal vector n = 3ci−5cj−k of the plane and the velocity vector v = −i+2j+k
of the line to be parallel. This requires 3c/(−1) = (−5c)/2 = −1/1, which is not
possible. Therefore there is no function f satisfying the conditions Ê-Ì .

Finally, in part (a), both of the functions f(x, y) = 3(x− 2)− 5(y − 1)+ 8+ 5(x− 2)2
and f(x, y) = −3(x − 2) + 5(y − 1) + 8 + (x − 2)2 satisfy the conditions Ê-Ì , but
equations of their graphs' tangent planes P at (2,1,8) are z = 3x − 5y + 7 and
z = −3x + 5y + 9, respectively. Therefore, in this case there are functions satisfying
the conditions Ê-Ì , but they do not all have the same tangent plane P.

18. Let f(x, y) = x3y−xy2+ cx2 where c is a constant. Find c if f increases fastest at the point
P0(3,2) in the direction of the vector A = 2i + 5j.

Solution: ∇f = (3x2y−y2+2cx)i+(x3−2xy)jÔ⇒ (∇f)P0 = (50+6c)i+15j . Since f
increases the fastest at P0 in the direction of (∇f)P0 , A = 2i+5j must be a positive
multiple of (∇f)P0 . Hence (50 + 6c)/2 = 15/5Ô⇒ c = −22/3 . Finally we check that
c = −22/3 gives (∇f)P0 = 6i + 15j = 3A which is indeed a positive multiple of A.

19. Find a vector that is tangent to the intersection curve of the surfaces x2 + y2 + z2 = 9 and
z = xy at the point P0(1,2,2).

Solution: Let f(x, y, z) = x2+y2+z2 and g(x, y, z) = xy−z. Then the given surfaces
are level surfaces of f and g.

We have ∇f = 2xi + 2yj + 2zk Ô⇒ (∇f)P0 = 2i + 4j + 4k and ∇g = yi + xj − k Ô⇒
(∇g)P0 = 2i + j − k . (∇f)P0 is normal to the surface de�ned by x2 + y2 + z2 = 9 and
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(∇g)P0 is normal to the surface de�ned by z = xy. Therefore,

(∇f)P0 × (∇g)P0 =
RRRRRRRRRRRRRR

i j k
2 4 4
2 1 −1

RRRRRRRRRRRRRR
= −8i + 10j − 6k ,

or any multiple of it, is tangent to both of these surfaces, and hence, to their curve
of intersection at P0.

20. In the �gure below some of the level curves and the corresponding values of a nice function
f(x, y) are shown.

a. Draw ∇f(0,0) as best you can on the �gure.

b. Determine the signs of the derivatives fx, fy, fxx, fyy, fxy at the origin.

Remark: This is an approximation problem and it should be solved under the assumption
that we are dealing with a function for which good approximations can be made using only the
given data.
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Solution: a. We know that ∇f(0,0) is perpendicular to the level curve of f
passing through (0,0) and points in the direction f increases, hence lies along the
pink vector in the �gure.

We also know that the length of ∇f(0,0) is the rate of change of f with respect to
distance in this direction. On the �gure using the teal circle we measure that the
pink vector crosses the level curve f = 1 at a distance of approximately 0.44 units
from the origin. Hence along this direction f increases at an rate of 1/0.44 ≈ 2.27
in this direction. So now we draw a vector of this length in this direction as shown
in the next �gure and this is our approximate ∇f(0,0).

(The �gure is on the next page.)
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b. Considering the components of ∇f(0,0) in part (a) it can be seen that fx(0,0) >
0 and fy(0,0) < 0. This can also be done in the following way: As we move along the
x-axis (the lime line in the �gure on the next page) to the right, we meet level curves
belonging to higher values of f; hence fx(0,0) > 0. Similarly, as we move along the
y-axis (the orange line) upwards, we meet level curves belonging to smaller values
of f values; hence fy(0,0) < 0.

Moreover, note that as we move in the positive direction along both axes, the points
where we meet the level curves of f belonging to values with the same di�erence
become farther apart. This means that the absolute value of the rate of change of f
is getting smaller. This in turn means fxx(0,0) < 0 as fx(0,0) > 0, and fyy(0,0) > 0
as fy(0,0) < 0.

(Part (b) is continued on the next page.)
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Finally, we compare the rate of changes along the lime and turquoise lines. The
level curves intersect the turquoise line at points farther apart than the points they
intersect the lime line. Hence fx, which is positive, is getting smaller as we move
upwards along y-axis. In other words, fxy(0,0) < 0.

Remark: It is also possible to �nd approximate values of these derivatives using the �gure. In
fact, those of fx(0,0) and fy(0,0) can already be read o� as the components of ∇f(0,0).
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21. Let a be a constant. Find and classify all critical points of f(x, y) = x3 − 3axy + y3.

Solution: At a critical point fx = 3x2 − 3ay = 0 and fy = −3ax + 3y2 = 0. If a = 0,
then 3x2 = 0 ⇒ x = 0 and 3y2 = 0 ⇒ y = 0, and (0,0) is the only critical point.
If a /= 0, then the �rst equation gives y = x2/a, and substituting this in the second
equation we get x4−a3x = 0 whose solutions are x = 0 and x = a. Now using y = x2/a,
we get (0,0) and (a, a) as the critical points.

We compute the discriminant:

∆ = ∣fxx fxy
fyz fyy

∣ = ∣ 6x −3a
−3a 6y

∣

As ∆(a, a) = 27a2 and fxx(a, a) = 6a, (a, a) is a local minimum for a > 0 and a
local maximum for a < 0. On the other hand, ∆(0,0) = −9a2 implies that (0,0) is a
saddle point for a /= 0.

Now we look at the sole critical point (0,0) in the case a = 0. As ∆(0,0) = 0,
the second derivative test fails in this case. If we restrict f(x, y) = x3 + y3 to the
x-axis we get f(x,0) = x3. Since this single variable function does not have a local
maximum or minimum at x = 0, f(x, y) cannot have a local maximum or minimum
at (0,0) either. We conclude that (0,0) is a saddle point when a = 0.

22. Find the absolute maximum and minimum values of the function f(x, y) = 2x3+2xy2−x−y2
on the unit disk D = {(x, y) ∶ x2 + y2 ≤ 1}.

Solution: We �rst �nd the critical points of f(x, y) in the interior of D. At a
critical point we have fx = 6x2 + 2y2 − 1 = 0 and fy = 4xy − 2y = 0. The second
equation implies that y = 0 or x = 1/2. Substituting these into the �rst equation we
obtain y = ±1/

√
6 in the �rst case, and no solution in the second case. Therefore

the critical points are (x, y) = (1/
√
6,0) and (−1/

√
6,0). Note that both of these

points lie in the interior of D.

Now we look at the boundary of D, that is, the unit circle x2 + y2 = 1. We can
solve y as y = ±

√
1 − x2, −1 ≤ x ≤ 1. These solutions correspond to the upper

and lower semicircles. Then f(x,±
√
1 − x2) = x2 + x − 1 for −1 ≤ x ≤ 1, and

d

dx
f(x,±

√
1 − x2) = 2x + 1 = 0⇒ x = −1

2
. This gives the critical points (x, y) =

(−1/2,
√
3/2) and (−1/2,−

√
3/2) of the restriction of f to the boundary of D. We

must also include the endpoints x = −1 and x = 1, in other words, the points
(x, y) = (1,0) and (−1,0) in our list.

Hence the absolute maximum and the absolute minimum of f on D occur at some
of the points

(1/
√
6,0), (−1/

√
6,0), (−1/2,

√
3/2), (−1/2,−

√
3/2), (1,0), (−1,0) .

The values of f at these points are

−1
3

√
2

3
,
1

3

√
2

3
, −5

4
, −5

4
, 1 ,−1 ,
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respectively. Therefore the absolute maximum value is 1 and the absolute minimum
value is −5/4.

Remark: Here are two more ways of dealing with the critical points of the restriction of f to
the boundary of D.

In the �rst one we parametrize the boundary, which is the unit circle, by x = cos t, y = sin t,
−∞ < t <∞. Then

d

dt
f(cos t, sin t) = d

dt
(cos2 t + cos t − 1) = −2 cos t sin t − sin t = 0⇒ cos t = −1

2
or sin t = 0 ,

and these give us (x, y) = (−1/2,
√
3/2), (−1/2,−

√
3/2), (1,0), (−1,0).

In the second we use the Lagrange Multipliers Method for the boundary

g(x,y)
³¹¹¹¹¹¹·¹¹¹¹¹¹µ
x2 + y2 = 1.

∇f = λ∇g
g = 1

}Ô⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

fx = λgx
fy = λgy
g = 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Ô⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

6x2 + 2y2 − 1 = λ2x 1O
4xy − 2y = λ2y 2O
x2 + y2 = 1 3O

2O gives y = 0 or x = (1+λ)/2. If y = 0, then 3O gives x = ±1 (and λ = ±5/2). On the other hand,
if x = (1 + λ)/2, then from 1O and 3O, 4x2 − 2λx + 1 = 0⇒ x = −1/2 and y = ±

√
3/2. Therefore

the points (x, y) = (−1/2,
√
3/2), (−1/2,−

√
3/2), (1,0), (−1,0) are added to the list.
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23. Find the absolute maximum and minimum values of the function

f(x, y) = 2(x2 + y2 − 1)2 + x2 − y2

on the unit disk D = {(x, y) ∶ x2 + y2 ≤ 1} .

Solution: We �rst �nd the critical points of f in the interior of D. We want:

fx = 4(x2 + y2 − 1) ⋅ 2x + 2x = 0 and fy = 4(x2 + y2 − 1) ⋅ 2y − 2y = 0 .

The �rst equation gives x = 0 or 4x2 + 4y2 − 3 = 0, and the second one gives y = 0
or 4x2 + 4y2 − 5 = 0. Therefore x = 0 and y = 0, or 4x2 + 4y2 − 3 = 0 and y = 0, or
x = 0 and 4x2 + 4y2 − 5 = 0, or 4x2 + 4y2 − 3 = 0 and 4x2 + 4y2 − 5 = 0. In the last case
there is no solution, and the �rst three cases leads to the points (0,0), (±

√
3/2,0)

and (0,±
√
5/2). Only the �rst three of these critical points lie in the interior of D

as for the last two x2 + y2 = 5/4 > 1.

Next we consider the restriction of f to the boundary of D which is the unit circle.
As on the boundary y = ±

√
1 − x2, we consider the functions f(x,±

√
1 − x2) = 2x2−1

on the interval −1 ≤ x ≤ 1. As (d/dx)f(x,±
√
1 − x2) = 4x, the only critical point of

both of these restrictions occur when x = 0. This leads the points (x, y) = (0,1) and
(0,−1). On the other hand, for both functions the endpoints x = 1 and x = −1 of
the interval −1 ≤ x ≤ 1 give the points (x, y) = (1,0) and (−1,0).

Now we �nd the values of f at these seven points:

f(0,0) = 2
f(
√
3/2,0) = f(−

√
3/2) = 7/8

f(0,1) = f(0,−1) = −1
f(1,0) = f(−1,0) = 1

Therefore the absolute maximum and minimum values of f on D are 2 and −1,
respectively.
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Remark: The boundary can also be dealt with using the parametrization x = cos t, y = sin t,
(−∞ < t <∞), of the unit circle. Then the restriction of f to the unit circle gives the function
f(cos t, sin t) = cos 2t on the interval −∞ < t <∞. (d/dt)f(cos t, sin t) = −2 sin 2t = 0 means that
t is an integer multiple of π/2 and this gives the critical points (x, y) = (±1,0) and (0,±1) for
the restriction of f to the boundary.

Remark: Consider the function g(x, y) = 2(x2 + y2 − 1)2 + 2xy on the unit disk D. This is the
same function as f rotated 45○ counterclockwise. Hence the absolute maximum value of g on
D will be 2 assumed at the point (x, y) = (0,0), and the absolute minimum value −1 at the
points (x, y) = (1/

√
2,1/
√
2) and (x, y) = (−1/

√
2,−1/

√
2). It is a good exercise to solve this

problem directly.

24. Three hemispheres with radiuses 1, x and y, where 1 ≥ x ≥ y ≥ 0, are stacked on top of each
other as shown in the �gure. Find the largest possible value of the total height h.
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Solution: We want to maximize

h(x, y) =
√
1 − x2 +

√
x2 − y2 + y

on the closed and bounded region D = {(x, y) ∶ 0 ≤ y ≤ x ≤ 1}.

We �rst �nd the critical points of h in the interior of D. We want

hx = −
x√

1 − x2
+ x√

x2 − y2
= 0 and hy = −

y√
x2 − y2

+ 1 = 0 .

From the second equation we obtain y2 = x2−y2Ô⇒ x2 = 2y2Ô⇒ x =
√
2y where we

used the fact that x > 0 and y > 0. Now substituting this in the �rst equation gives
1−2y2 = 2y2−y2Ô⇒ 3y2 = 1Ô⇒ y = 1/

√
3 as y > 0 and hence x =

√
2/3. So the only

critical point of h is (x, y) = (
√
2/3,1/

√
3) and it lies in D as 0 ≤ 1/

√
3 ≤
√
2/3 ≤ 1.

Now we consider the restriction of h to the boundary of D.

Side 1 : On the bottom edge of the triangle, we have y = 0 and 0 ≤ x ≤ 1, and
therefore we are considering the function h(x,0) =

√
1 − x2 + x for 0 ≤ x ≤ 1.

d

dx
h(x,0) = − x√

1 − x2
+ 1 = 0Ô⇒ x2 = 1 − x2Ô⇒ 2x2 = 1Ô⇒ x = 1√

2

as x > 0. Taking the endpoints x = 0 and x = 1 into account, Side 1 gives us the
points (x, y) = (1/

√
2,0), (0,0), (1,0).

Side 2 : On the right edge of the triangle, we have x = 1 and 0 ≤ y ≤ 1, and therefore
we are considering the function h(1, y) =

√
1 − y2 + y for 0 ≤ y ≤ 1. As in the case of

Side 1 this leads to the points (x, y) = (1,1/
√
2), (1,0), (1,1).

Side 3 : On the top edge of the triangle, we have y = x and 0 ≤ x ≤ 1, and therefore
we are considering the function h(x,x) =

√
1 − x2 +x for 0 ≤ x ≤ 1. Once again as in

the case of Side 1 we obtain the points (x, y) = (1/
√
2,1/
√
2), (0,0), (1,1).
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Now we �nd the values of h at these seven points:

h(0,0) = h(1,0) = h(1,1) = 1
h(1/
√
2,0) = h(1,1/

√
2) = f(1/

√
2,1/
√
2) =
√
2

h(
√
2/3,1/

√
3) =
√
3

Therefore the maximum possible total height of the three hemispheres is
√
3.

Remark: Here is a single variable argument which solves the problem for any number
hemispheres: Suppose the maximum possible height for k hemispheres is

√
k for some k ≥ 1.

Then for k + 1 hemispheres, where the second one from the bottom has radius r, the maximum
possible height will be H(r) =

√
kr +

√
1 − r2 for 0 ≤ r ≤ 1. The value of H(r) is 1 and

√
k at

the endpoints r = 0 and r = 1, respectively; and its value is
√
k + 1 at its only critical point

r =
√
k/(k + 1). Therefore we conclude inductively that the maximum possible height for n

hemispheres is
√
n for n ≥ 1.

25. Find the absolute maximum and the absolute minimum of f(x, y, z) = x3 + yz on the unit
sphere x2 + y2 + z2 = 1.

Solution: We will use the Lagrange Multipliers Method. Let g(x, y, z) = x2 + y2 +
z2 − 1. Then

∇f = λ∇g
g = 0

}Ô⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

fx = λgx
fy = λgy
fz = λgz
g = 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Ô⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3x2 = λ2x 1O
z = λ2y 2O
y = λ2z 3O

x2 + y2 + z2 = 1 4O

From 2O and 3O we obtain z = 4λ2z, and hence z = 0 or λ = 1/2 or λ = −1/2.

� If z = 0, then 3O gives y = 0, and then 4O gives x = ±1. In this case we have
the points (±1,0,0).

� If λ = 1/2, then from 1O and 3O, 3x2 = x and y = z. Therefore we either
have x = 0 in which case y = z = ±1/

√
2 by 4O, or we have x = 1/3 and then

y = z = ±2/3 again by 4O. In this case the critical points are (0,±1/
√
2,±1/

√
2)

and (1/3,±2/3,±2/3).
� If λ = −1/2, then from 1O and 3O, 3x2 = −x and y = −z. A reasoning similar to
the previous case gives the points (0,±1/

√
2,∓1/

√
2) and (−1/3,±2/3,∓2/3).

Hence the critical points are (±1,0,0), (0,±1/
√
2,±1/

√
2), (1/3,±2/3,±2/3),

(0,±1/
√
2,∓1/

√
2), (−1/3,±2/3,∓2/3) , and the values of f at these points are

±1,1/2,−1/2,13/27,−13/27 , respectively. Therefore the absolute maximum is 1 and
the absolute minimum is −1.
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26. Evaluate the following integrals:

a. ∫
1

0
∫

1

√
y
sin(πx3)dxdy

b. ∬
R
y2e−x

2

dA where R = {(x, y) ∶ 0 ≤ y ≤ x}

c. ∫
2

0
∫

√
2y−y2

0

xy

x2 + y2
dxdy

d. ∫
∞

0
∫
∞

0

dy dx

(x2 + y2)2 + 1

Solution: a. We will �rst express the iterated integral as a double integral and
then reverse the order of integration. The x-integral goes from x = √y to x = 1 as
shown by the red line segments in the �gure in the xy-plane. Then the y-integral
goes from y = 0 to y = 1.

Therefore the intervals of the x-integral trace out the region R bounded by the
parabola y = x2, the line x = 1, and the x-axis. Note that the x-integrals are always
from left to right in the interval 0 ≤ y ≤ 1. Hence we have

∫
1

0
∫

1

√
y
sin(πx3)dxdy =∬

R
sin(πx3)dA .

Now we express this double integral as an iterated integral with the y-integral �rst.
The green line segment in the �gure shows the interval of integration for the y-
integral which goes from y = 0 to y = x2. Then:
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∫
1

0
∫

1

√
y
sin(πx3)dxdy =∬

R
sin(πx3)dA

= ∫
1

0
∫

x2

0
sin(πx3)dy dx

= ∫
1

0
sin(πx3) y]y=x

2

y=0 dx

= ∫
1

0
sin(πx3)x2 dx

= − 1

3π
cos(πx3)]1

0

= 2

3π

b. We integrate with respect to y �rst to obtain

∬
R
y2e−x

2

dA = ∫
∞

0
∫

x

0
y2e−x

2

dy dx

= 1

3 ∫
∞

0
x3e−x

2

dx

= 1

6 ∫
∞

0
te−t dt

= 1

6

where we used the integration by parts

∫
∞

0
te−t dt = ∫

∞

0
t d(−e−t)

= lim
c→∞
([−te−t]c0 + ∫

c

0
e−t dt)

= − lim
c→∞

c

ec
− lim

c→∞
[e−t]c0

L'H

↓= − lim
c→∞

1

ec
− lim

c→∞
(e−c − 1)

= 1

in the last step.

c. This time we will use the polar coordinates. To do so we �rst determine the
region of integration R.

In the iterated integral the x-integral goes from x = 0 to x =
√
2y − y2 as shown

by the red line segment in the �gure. Since x =
√
2y − y2 Ô⇒ x2 = 2y − y2 Ô⇒

x2+(y−1)2 = 12, x =
√
2y − y2 gives the right semicircle of the circle x2+(y−1)2 = 1.

On the other hand, the y-integral goes from y = 0 to y = 2. Therefore R is right half
of the disk x2+(y−1)2 ≤ 1. Note that the polar equation of the circle x2+(y−1)2 = 1
is r = 2 sin θ, and to obtain the right semicircle we vary θ from θ = 0 to θ = π/2.
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Hence:

∫
2

0
∫

√
2y−y2

0

xy

x2 + y2
dxdy =∬

R

xy

x2 + y2
dA

= ∫
π/2

0
∫

2 sin θ

0

r cos θ ⋅ r sin θ
r2

r dr dθ

= ∫
π/2

0
∫

2 sin θ

0
sin θ cos θ r dr dθ

= ∫
π/2

0
sin θ cos θ [r

2

2
]
r=2 sin θ

r=0
dr dθ

= ∫
π/2

0
2 sin3 θ cos θ dθ

= sin4 θ

2
]
π/2

0

= 1

2

d. Again we use the polar coordinates. This time the integration region is R =
{(x, y) ∶ x ≥ 0 and y ≥ 0}, that is, the �rst quadrant.

∫
∞

0
∫
∞

0

dy dx

(x2 + y2)2 + 1
=∬

R

1

(x2 + y2)2 + 1
dA

= ∫
π/2

0
∫
∞

0

r dr dθ

r4 + 1
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= ∫
π/2

0

1

2
lim
c→∞
[arctan(r2)]r=c

r=0 dθ

= ∫
π/2

0

π

4
dθ

= π2

8

27. Evaluate the double integral ∬
R

1

(x2 + y2)2
dA where R is the region shown in the �gure.

Solution: Let R′ be the portion of the region lying in the �rst quadrant between
the line y = x and the x-axis. By symmetry we have:

∬
R

1

(x2 + y2)2
dA = 8∬

R′

1

(x2 + y2)2
dA

= 8∫
π/4

0
∫

2 sec θ

sec θ

1

(r2)2
r dr dθ

= 8∫
π/4

0
[− 1

2r2
]
r=2 sec θ

r=sec θ
dθ

= 3∫
π/4

0
cos2 θ dθ

= 3∫
π/4

0

1 + cos 2θ
2

dθ

= 3

2
[θ + sin 2θ

2
]
π/4

0

= 3π

8
+ 3

4
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28. Evaluate the following integrals.

a. ∬
R1

x2y cos(πy5/2)dA where R1 is the region shown in the �gure.

b. ∬
R2

x2y cos(πy5/2)dA where R2 is the region shown in the �gure.

x

y

R1

x = 1 y = −x

y = x

y

x

R2

y = 1

y = −xy = x

Solution: a. Note that the region R1 is symmetric with respect to the x-axis, but
the function f(x, y) = x2y cos(πy5/2) changes sign under re�ection with respect to

the x-axis: f(x,−y) = −f(x, y). Therefore∬
R1

x2y cos(πy5/2)dA = 0.

b. We integrate with respect to x, then y:

∬
R2

x2y cos(πy5/2)dA = ∫
1

0
∫

y

−y
x2y cos(πy5/2)dxdy = ∫

1

0
[1
3
x3y cos(πy5/2)]

x=y

x=−y
dy

= 2

3 ∫
1

0
y4 cos(πy5/2)dy = 2

3
[ 2
5π

sin(πy5/2)]
1

0

= 4

15π
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29. Evaluate the following integral ∬
R
(1 + x − y)dA where R = {(x, y) ∶ ∣x − y∣ ≤ 2/3 and 0 ≤

x ≤ 1 and 0 ≤ y ≤ 1}.

Solution: We �rst observe that

∬
R
(1 + x − y)dA =∬

R
dA +∬

R
(x − y)dA

and then note that the second integral on the right is zero because the region R is
symmetric with respect to the line y = x whereas the function f(x, y) = x−y changes
sign under the re�ection with respect to this line: f(y, x) = −f(x, y).

On the other hand the �rst on the right is just the area of R, that is 12−(1/3)2 = 8/9.
Hence:

∬
R
(1 + x − y)dA =∬

R
dA +∬

R
(x − y)dA = 8

9
+ 0 = 8

9
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30. When pirates retire, they live on the Square Island

S = {(x, y) ∶ ∣x∣ ≤ 5 and ∣y∣ ≤ 5}

in the Sea of xy-plane where all distances are measured in hectometers (=hm). Having lived all
their lives on it, the retired pirates want to be as far away from the sea as possible. As a result,
the pirate population density p(x, y) at a point (x, y) on the Square Island is proportional to
the distance of the point from the shore and reaches its largest value of 15 pirate/hm2 at the
center of the island. Find the total number N of pirates living on the Square Island.

Solution:

Remark: Compare this example with Example 46 in Part 1.
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31. The region enclosed by the lemniscate r2 = 2 cos(2θ) in the plane is the base of a solid right
cylinder whose top is bounded by the sphere z =

√
2 − r2. Find the cylinder's volume.

Solution: Let R be the the region enclosed by the lemniscate in the �rst quadrant.
By symmetry the volume is

4∬
R

√
2 − r2 dA = 4∫

π/4

0
∫

√
2 cos 2θ

0

√
2 − r2 r dr dθ

= 4∫
π/4

0
[−1

3
(2 − r2)3/2]

r=
√
2 cos 2θ

r=0
dθ = 4

3 ∫
π/4

0
(23/2 − (2 − 2 cos 2θ)3/2)dθ

= 8
√
2

3 ∫
π/4

0
(1 − (2 sin2 θ)3/2) dθ = 2

√
2π

3
− 32

3 ∫
π/4

0
sin3 θ dθ

= 2
√
2π

3
− 32

3 ∫
π/4

0
(1 − cos2 θ) sin θ dθ = 2

√
2π

3
− 32

3 ∫
1

1/
√
2
(1 − u2)du

= 2
√
2π

3
− 32

3
[u − u3

3
]
1

1/
√
2

= 2
√
2π

3
− 32

3
(2
3
− 5

6
√
2
)

= 2
√
2π

3
− 64

9
+ 40
√
2

9
.
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32. Let D be the region in space bounded by the plane y + z = 1 on the top, the parabolic
cylinder y = x2 on the sides, and the xy-plane at the bottom. Express the volume V of the
region D in terms of iterated integrals with orders of integration (a) dz dy dx and (b) dxdy dz.

Solution:
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33. Consider the triple integral∭
D

1

(x2 + y2 + z2)2
dV where D is the region bounded by the

cylinder x2+y2 = 1 on the sides and by the hemisphere z =
√
4 − x2 − y2 at the bottom. Express

this integral in terms of iterated integrals in

a. Cartesian coordinates,

b. cylindrical coordinates,

c. spherical coordinates, and

d. evaluate the integral in the coordinate system of your choice.

Solution: We observe that the projection of D to the xy-plane is the unit disk
x2+y2 ≤ 1. A vertical line passing through a point of the unit disk enters the region
at a point on the hemisphere and remains in the region from there on. The equations
of the hemisphere z =

√
4 − x2 − y2 and the cylinder x2+y2 = 1 are z =

√
4 − r2 and

r = 1, respectively, in cylindrical coordinates. The answers to parts (a),

∭
D

1

(x2 + y2 + z2)2
dV = ∫

1

−1
∫

√
1−x2

−
√
1−x2
∫
∞
√
4−x2−y2

1

(x2 + y2 + z2)2
dz dy dx ,

and (b),

∭
D

1

(x2 + y2 + z2)2
dV = ∫

2π

0
∫

1

0
∫
∞
√
4−r2

1

(r2 + z2)2
r dz dr dθ ,

immediately follow from these observations.

To do part (c) we further observe that

� the equations of the hemisphere and the cylinder are ρ = 2 and ρ sinϕ = 1 ,
respectively,

� a ray starting at the origin enters the region at a point on the hemisphere and
leaves the region at a point on the cylinder, and

� such a ray intersects the region exactly when 0 ≤ ϕ ≤ π/6. (The ray passes
through a point on the intersection circle when ϕ = π/6.)

Therefore,

∭
D

1

(x2 + y2 + z2)2
dV = ∫

2π

0
∫

π/6

0
∫

cscϕ

2

1

ρ4
ρ2 sinϕdρdϕdθ .
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We use this last iterated integral for the computation (d):

∭
D

1

(x2 + y2 + z2)2
dV = ∫

2π

0
∫

π/6

0
∫

cscϕ

2

1

ρ2
sinϕdρdϕdθ

= ∫
2π

0
∫

π/6

0
[−1

ρ
]
ρ=cscϕ

ρ=2
sinϕdϕdθ

= ∫
2π

0
∫

π/6

0
(− sinϕ + 1

2
) sinϕdϕdθ

= ∫
2π

0
∫

π/6

0
(−1 − cos 2ϕ

2
+ sinϕ

2
) dϕdθ

= ∫
2π

0
[−ϕ

2
+ sin 2ϕ

4
− cosϕ

2
]
ϕ=π/6

ϕ=0
dθ

= ∫
2π

0
(− π

12
+
√
3

8
−
√
3

4
+ 1

2
)dθ

= π (1 − π

6
−
√
3

4
)
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34. Let D be the region in space bounded on the top by the sphere x2 + y2 + z2 = 2 and on the
bottom by the paraboloid z = x2 + y2. Express the volume V of D in terms of iterated integrals
in the (a) Cartesian, (b) cylindrical, and (c) spherical coordinates.

Solution: Note that the projection of the curve of intersection of the sphere and
the paraboloid is the unit circle x2 + y2 = 1 in the xy-plane. This curve also bounds
the projection of the solid D to the xy-plane. Hence we have

V = ∫
1

−1
∫

√
1−x2

−
√
1−x2
∫

√
2−x2−y2

x2+y2
dz dy dx

and

V = ∫
2π

0
∫

1

0
∫

√
2−r2

r2
r dz dr dθ .

Now observe that a ray starting at the origin leaves D through the sphere if the
angle it makes with the positive z-axis is less than π/4, whereas it does so through
the paraboloid if this angle is between π/4 and π/2. Hence:

V = ∫
2π

0
∫

π/4

0
∫
√
2

0
ρ2 sinϕ dρdϕdθ

+ ∫
2π

0
∫

π/2

π/4
∫

cosϕ/ sin2 ϕ

0
ρ2 sinϕ dρdϕdθ
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35. Consider the iterated integral

∫
π/2

0
∫

1

0
∫

2−r2

r
dz dr dθ

in cylindrical coordinates.

a. Change the order of integration into dr dz dθ.

b. Express the integral in spherical coordinates with order of integration dϕdρdθ .

Solution: a. z = r is the cone z2 = x2 + y2, and z = 2 − r2 is the paraboloid
z = 2 − x2 − y2. These surfaces intersect along a circle that is also the curve of
intersection of the cylinder r = 1 and the horizontal plane z = 1. Since 0 ≤ r ≤ 1 and
0 ≤ θ ≤ π/2, the integration region D is the region in the �rst octant bounded by
the paraboloid on the top and the cone at the bottom.

When we integrate with respect to r �rst, we will be moving along a curve on
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which z and θ are constant. These two conditions describe a horizontal plane and a
plane containing the z-axis, respectively. Therefore the r-integration is along a ray
perpendicular to the z-axis like the blue ones in the �gure. Such a ray starts on the
z-axis in D, and leaves D through the cone if 0 ≤ z ≤ 1, and through the paraboloid
if 1 ≤ z ≤ 2. Therefore,

∫
π/2

0
∫

1

0
∫

2−r2

r
dz dr dθ = ∫

π/2

0
∫

1

0
∫

z

0
dr dz dθ

+ ∫
π/2

0
∫

2

1
∫
√
2−z

0
dr dz dθ

where we used the fact that z = 2 − r2 and r ≥ 0Ô⇒ r =
√
2 − z .

b. We have

∫
π/2

0
∫

1

0
∫

2−r2

r
dz dr dθ =∭

D

1

r
dV

as dV = r dz dr dθ in cylindrical coordinates where D is the region described in part
(a).

Since we want to integrate with respect to ϕ �rst, we will be moving along the curves
on which ρ and θ are constant. These two conditions describe a sphere with center
at the origin and a half-plane whose spine is the z-axis, respectively. Therefore the
ϕ-integration takes place along a vertical semicircle subtended by a diameter along
the z-axis and with center at the origin like the green ones in the �gure. Such a
semicircle starts on the positive z-axis in D, and leave the region of integration
intersecting the cone for 0 ≤ ρ ≤

√
2 and the paraboloid for

√
2 ≤ ρ ≤ 2. The upper

half of the cone z = r has the equation ϕ = π/4 in spherical coordinates. On the

other hand, z = 2 − r2Ô⇒ ρ cosϕ = 2 − (ρ sinϕ)2Ô⇒ cosϕ = (1 +
√
4ρ2 − 7)/(2ρ) for

a point on the paraboloid as ϕ ≤ π/4 . Therefore,

∭
D

1

r
dV =∭

D

1

ρ sinϕ
dV

= ∫
π/2

0
∫
√
2

0
∫

π/4

0
ρ dϕdρdθ

+ ∫
π/2

0
∫

2

√
2
∫

arccos((1+
√
4ρ2−7)/(2ρ))

0
ρ dϕdρdθ

where we substituted dV = ρ2 sinϕ dϕdρdθ for the volume element in spherical
coordinates.
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36. The region R bounded by the curve z2 = y2 − y4 in the right half of the yz-plane is rotated
about the z-axis to obtain a solid D in the xyz-space. Express the volume V of D in terms of
iterated integrals in (a) the Cartesian, (b) the cylindrical and (c) the spherical coordinates.

Solution: Since the surface bounding the the solid D is obtained by revolving a
curve about the z-axis, its equation in the cylindrical coordinates will not depend
on θ. Since r = y in the yz-plane and the curve has the equation z2 = y2 − y4, we
conclude that z2 = r2−r4 is the equation of the surface in the cylindrical coordinates.
From this

V = ∫
2π

0
∫

1

0
∫

√
r2−r4

−
√
r2−r4

r dz dr dθ

follows as the projection of D to the xy-plane is the unit disk.

The equation z2 = r2 − r4 in the cylindrical coordinates transforms to z2 = (x2 +
y2)− (x2 + y2)2 in the Cartesian coordinates, and once again using the fact that the
projection of D to the xy-plane is the unit disk, one now obtains:

V = ∫
1

−1
∫

√
1−x2

−
√
1−x2
∫

√
(x2+y2)−(x2+y2)2

−
√
(x2+y2)−(x2+y2)2

dz dy dx

The spherical coordinates require a little bit more work. First note that the equation
z2 = r2−r4 in the cylindrical coordinates now gives (ρ cosϕ)2 = (ρ sinϕ)2−(ρ sinϕ)4,
or ρ =

√
sin2 ϕ − cos2 ϕ/ sin2 ϕ, in the spherical coordinates. Next note that for

sin2 ϕ − cos2 ϕ = − cos 2ϕ to be nonnegative, ϕ must be between π/4 and 3π/4 in the
interval [0, π]. Therefore:

V = ∫
2π

0
∫

3π/4

π/4
∫

√
sin2 ϕ−cos2 ϕ/ sin2 ϕ

0
ρ2 sinϕ dρdϕdθ

Remark: Compare this example with Example 51 in Part 1.
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37. Evaluate the iterated integral ∫
0

−1
∫

2y+3

−y

x + y
(x − 2y)2

ex−2y dxdy .

Solution:

38. Let (u, v) and (x, y) be two coordinate systems. Show that
∂(x, y)
∂(u, v)

⋅ ∂(u, v)
∂(x, y)

= 1 .

Solution: By de�nition,

∂(x, y)
∂(u, v)

= ∣xu xv

yu yv
∣ = xu yv − xv yu

and
∂(u, v)
∂(x, y)

= ∣ux uy

vx vy
∣ = ux vy − uy vx .
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Therefore,

∂(x, y)
∂(u, v)

⋅ ∂(u, v)
∂(x, y)

= (xu yv − xv yu)(ux vy − uy vx)

= xu ux yv vy + xv vx yu uy − xu uy yv vx − xv ux yu vy

= xu ux yv vy + xv vx yu uy − xu uy yv vx − xv ux yu vy

+ xv vx yv vy + xu ux yu uy − xv vx yv vy − xu ux yu uy

= (xu ux + xv vx) (yu uy + yv vy)
− (xu uy + xv vy) (yu ux + yv vx)

= xx yy − xy yx

= 1 ⋅ 1 − 0 ⋅ 0
= 1

39. Evaluate the double integral∬
R
ex

2/y dA where R = {(x, y) ∶ x2 ≤ y ≤
√
x}.

Solution: We change the coordinates to u = y2/x, v = x2/y. In this coordinate
system the region of integration becomes G = {(u, v) ∶ 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1} .

We have

∂(u, v)
∂(x, y)

= ∣ux uy

vx vy
∣ = ∣−y

2/x2 2y/x
2x/y −x2/y2∣ = −3Ô⇒

∂(x, y)
∂(u, v)

= 1

∂(u, v)
∂(x, y)

= −1
3
,

and the change of variables formula gives

∬
R
ex

2/y dxdy =∬
G
ev ∣∂(x, y)

∂(u, v)
∣ dudv = ∫

1

0
∫

1

0
ev ∣−1

3
∣ dv du = e − 1

3
.
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Remark: We can multiply di�erentials. The rules are dudu = 0 = dv dv and dv du = −dudv in
any uv-coordinate system. For instance, when changing from Cartesian to polar coordinates,
we have

dxdy = d(r cos θ)d(r sin θ)
= (cos θ dr − r sin θ dθ)(sin θ dr + r cos θ dθ)
= −r sin2 θ dθ dr + r cos2 θ dr dθ

= r(sin2 θ + cos2 θ)dr dθ
= r dr dθ

and in Example 39 we have

dudv = d(y2/x)d(x2/y)
= (2y/xdy − y2/x2 dx)(2x/y dx − x2/y2 dy)
= 4dy dx + dxdy
= −4dxdy + dxdy
= −3dxdy ,

hence dxdy = −1
3
dudv . This can be used to keep track of how the area element changes under

a coordinate change, but note that the sign of the factor in front must be corrected by hand so
that it is positive on the region of integration.

40. Consider the transformation T ∶ x = u

u + v + 1
, y = v

u + v + 1
. Show that there is a constant

C such that the inequality

∬
G
∣∂(x, y)
∂(u, v)

∣ dudv ≤ C

holds for all regions G contained in the �rst quadrant of the uv-plane.

Solution: Observe that x = u

u + v + 1
≥ 0, y = v

u + v + 1
≥ 0 and x + y = u + v

u + v + 1
≤ 1

for u ≥ 0 and v ≥ 0. We also have u = x

1 − x − y
and v = y

1 − x − y
. Therefore T maps

the �rst quadrant of the uv-plane into the triangle R = {(x, y) ∶ x+y ≤ 1, x ≥ 0, y ≥ 0}
in a one-to-one manner.
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Hence:

∬
G
∣∂(x, y)
∂(u, v)

∣ dudv =∬
T (G)

dxdy = (Area of T (G)) ≤ (Area of R) = 1

2

Remark: One can also do a straightforward computation.

∂(x, y)
∂(u, v)

= ∣xu xv

yu yv
∣ = ∣(v + 1)/(u + v + 1)

2 −u/(u + v + 1)2
−v/(u + v + 1)2 (u + 1)/(u + v + 1)2∣ =

1

(u + v + 1)3

and hence

∬
G
∣∂(x, y)
∂(u, v)

∣ dudv ≤ ∫
∞

0
∫
∞

0

dudv

(u + v + 1)3
= 1

2 ∫
∞

0

dv

(v + 1)2
= 1

2
.

41. Compute the Jacobian
∂(x, y, z)
∂(ρ,ϕ, θ)

where (ρ,ϕ, θ) are the spherical coordinates and (x, y, z)

are the Cartesian coordinates.

Solution: We have x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ. Therefore

∂(x, y, z)
∂(ρ,ϕ, θ)

=
RRRRRRRRRRRRRR

xρ xϕ xθ

yρ yϕ yθ
zρ zϕ zθ

RRRRRRRRRRRRRR

=
RRRRRRRRRRRRRR

sinϕ cos θ ρ cosϕ cos θ −ρ sinϕ sin θ
sinϕ sin θ ρ cosϕ sin θ ρ sinϕ cos θ

cosϕ −ρ sinϕ 0

RRRRRRRRRRRRRR

= (−ρ sinϕ sin θ) ∣sinϕ sin θ ρ cosϕ sin θ
cosϕ −ρ sinϕ ∣

− (ρ sinϕ cos θ) ∣sinϕ cos θ ρ cosϕ cos θ
cosϕ −ρ sinϕ ∣

+ 0 ⋅ ∣sinϕ cos θ ρ cosϕ cos θ
sinϕ sin θ ρ cosϕ sin θ

∣

= (−ρ sinϕ sin θ)(−ρ sin θ)(sin2 ϕ + cos2 ϕ)
− (ρ sinϕ cos θ)(−ρ cos θ)(sin2 ϕ + cos2 ϕ)

+ 0
= ρ2 sinϕ (sin2 θ + cos2 θ)
= ρ2 sinϕ

where we used the cofactor expansion with respect to the third column.
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Part 3: Sequences and Series

1. Let a1 = 1, a2 = a3 = 2, a4 = a5 = a6 = 3, a7 = a8 = a9 = a10 = 4, and so on. That is,
an ∶ 1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6, . . . . What is a2017?

Solution: an = k if 1 + 2 +⋯ + (k − 1) < n ≤ 1 + 2 +⋯ + k. In other words, an = k if
k(k−1)/2 < n ≤ k(k+1)/2. Since for k = 64, k(k−1)/2 = 2016 and k(k+1)/2 = 2080,
we have a2017 = 64.

Remark: A more explicit formula an = ⌈
√
8n + 1 − 1

2
⌉ can be obtained.

2. Curve1 is an equilateral triangle with unit sides. For n ≥ 2, Curven is obtained from Curven−1
by replacing the middle third of every edge with the other two sides of the outward pointing
equilateral triangle sitting on it. Let Ln be the length of Curven and An be the area of the
region enclosed by Curven. Find Ln, An, lim

n→∞
Ln and lim

n→∞
An.

Solution: Let en and dn denote the number of edges and the length of each edge
of Curven, respectively. Since en = 4en−1 and dn = dn−1/3 for n ≥ 2, and e1 = 3
and d1 = 1, we �nd that en = 3 ⋅ 4n−1 and dn = 1/3n−1 for n ≥ 1. It follows that
Ln = endn = 3 ⋅ (4/3)n−1 for n ≥ 1, and lim

n→∞
Ln = lim

n→∞
3 ⋅ (4/3)n−1 =∞.

On the other hand, the nth region is obtained by adjoining en−1 equilateral triangles
of side length dn−1/3 to the (n − 1)st region. Therefore,

An = An−1 + en−1 ⋅
√
3 (dn−1/3)2

4
= An−1 + 3 ⋅ 4n−2 ⋅

√
3

4
( 1

3n−1
)
2

and then

An =
1

4
√
3
((4

9
)
n−2
+ (4

9
)
n−3
+⋯ + 1) +A1

for n ≥ 2. Since A1 =
√
3

4
, this gives

An =
3
√
3

20
(1 − (4

9
)
n−1
) +
√
3

4

for n ≥ 1. We obtain

lim
n→∞

An =
3
√
3

20
+
√
3

4
= 2
√
3

5
.
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Curve1 : Curve2 :

Curve3 : Curve4 :

Remark: A magician puts 1 ball into an empty box at t = 0 sec, takes out 1 ball at t = 1/2 sec,
puts 2 balls at t = 3/4 sec, takes out 1 ball at t = 7/8 sec, puts 3 balls at t = 15/16 sec, takes out
1 ball at t = 31/32 sec, and so on. Then she challenges you to guess how many balls there are
in the box at t = 1 sec.

You ask for the advice of your friends.

Friend1 says: �The net result of 2k + 1st and 2k + 2nd steps for k ≥ 1 is to put at
least one more ball into the box. There are in�nitely many balls in the box at t = 1
sec.�

Friend2 says: �Imagine that the balls are labeled as ball1, ball2, ball3, and so on
with invisible ink which only the magician can see. Then she puts ball1 at t = 0
sec, takes out ball1 at t = 1/2 sec, puts ball2 and ball3 at t = 3/4 sec, takes out
ball2 at t = 7/8 sec, puts ball4, ball5, and ball6 at t = 15/16 sec, takes out ball3
at t = 31/32 sec, and so on. For any given k, ballk is not in the box at time t = 1
sec, because it was taken out at time t = 1 − 1/22k−1 sec. There are no balls in the
box at time t = 1 sec.�

What do you think?
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3. Let the sequence {an} be de�ned by a1 = 1 and an =
1

1 + an−1
for n ≥ 1 . Show that the

sequence converges and �nd its limit.

Solution: Observe that if 0 < an < an+1, then 0 < 1 + an < 1 + an+1 and an+1 =
1/(1 + an) > 1/(1 + an+1) = an+2 . Similarly, if an > an+1 > 0, then 1 + an > 1 + an+1 > 0
and an+1 = 1/(1 + an) < 1/(1 + an+1) = an+2 . Since a1 = 1 > 1/2 = a2, it follows that

1 = a1 > a3 > a5 > ⋯ > a6 > a4 > a2 =
1

2
.

Therefore, the sequence {a2n}∞n=1 is increasing and bounded from above by 1, and
the sequence {a2n−1}∞n=1 is decreasing and bounded from below by 1/2. By the
Monotonic Sequence Theorem, then both of these sequences are convergent.

Let lim
n→∞

a2n−1 = L and lim
n→∞

a2n =M . Taking the limit of a2n+1 = 1/(1+a2n) as n→∞
we obtain L = 1/(1 +M), and taking the limit of a2n = 1/(1 + a2n−1) as n → ∞ we
obtain M = 1/(1 + L). From M +ML = 1 and LM + L = 1 it follows that M = L.
Therefore the sequence {an}∞n=1 converges to L =M .

Finally, L2 +L − 1 = 0 gives L = (
√
5 − 1)/2 or L = −(

√
5 + 1)/2. Since 0 < an for all

n ≥ 1, we must have 0 ≤ L . Hence L = (
√
5 − 1)/2 is the limit and

lim
n→∞

an =
√
5 − 1
2

.

Remark: This result is sometimes expressed symbolically in the form:

√
5 − 1
2
=

1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +⋯

Remark: Note that xn = Fn/Fn+1 for n ≥ 1 where Fn ∶ 1,1,2,3,5,8, . . . is the Fibonacci

sequence. So we showed that lim
n→∞

Fn/Fn+1 = (
√
5 − 1)/2 .

Remark: It can be showed with a little bit more work that any sequence satisfying the given
recursion relation converges to (

√
5− 1)/2 if a1 /= −(1+

√
5)/2 and a1 /= −Fn+1/Fn for any n ≥ 1 .

On the other hand, if a1 = −(1+
√
5)/2 , then the sequence is constant; and if a1 = −Fn+1/Fn for

some n ≥ 1, then an = −1 and an+1 is unde�ned.
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4. Let the sequence {xn} be de�ned by x0 = 2 and xn =
xn−1

2
+ 1

xn−1
for n ≥ 1 .

a. Find the limit of this sequence assuming it exists.

b. Show that the limit exists.

Solution: a. We assume that the limit L = limxn exists. Then

xn =
xn−1

2
+ 1

xn−1
for n ≥ 1Ô⇒ xnxn−1 =

x2
n−1
2
+ 1 for n ≥ 1

Ô⇒ lim(xnxn−1) = lim
x2
n−1
2
+ 1Ô⇒ L2 = L2

2
+ 1Ô⇒ L2 = 2

as limxn−1 = limxn = L . Therefore L =
√
2 or L = −

√
2.

x0 = 2 > 0 and if xn > 0 then xn+1 = xn/2+1/xn > 0+0 = 0. Hence by induction xn > 0
for all n ≥ 0. It follows that L = limxn ≥ 0. We conclude that the limit is

√
2 .

b. In part (a) we proved that xn > 0 for all n ≥ 0. Therefore {xn} is bounded from
below.

Now we will show by induction on n that
√
2 < xn+1 < xn for all n ≥ 0.

� Let n = 0. Since x0 = 2, x1 = 3/2, and x2
1 = 9/4 > 2, we have

√
2 < x1 < x0 .

� Let n > 0 and assume that
√
2 < xn+1 < xn . Then

xn+1 − xn+2 =
xn+1

2
− 1

xn+1
= x2

n+1 − 2
2xn+1

> 0

and hence xn+2 < xn+1. On the other hand,

x2
n+2 − 2 = (

xn+1

2
+ 1

xn+1
)
2

− 2 = (x
2
n+1 − 2
2xn+1

)
2

> 0

and since xn+2 > 0, we have xn+2 >
√
2 .

Therefore the sequence is decreasing.

Since the sequence is bounded from below and decreasing, we conclude that it
converges by the Monotonic Sequence Theorem.
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5. We have a 1/n×1/n square for each positive integer n. For each of (a-c), determine whether
it is possible or not to place these squares in the xy-plane in such a way that they completely
cover the given set.

1

1

1/2

1/2

1/3

1/3

1/4
1/4 . . .

a. The entire xy-plane

b. The line de�ned by the equation y = x

c. The region between the graph of y = e−x and the x-axis for x ≥ 0

Solution: a. The sum of the areas of the squares is
∞
∑
n=1

1

n2
. This series is convergent

as it is the p-series with p = 2 > 1. (In fact, its sum is π2/6.) On the other hand,
the entire plane has in�nite area. Hence it is not possible to cover the entire plane
using these squares.

b. We place the odd-numbered squares along the half of the line lying in the �rst
quadrant and the even-numbered ones along the half lying in the third quadrant

as shown in the �gure. As
∞
∑
k=1

√
2

2k
= 1√

2

∞
∑
k=1

1

k
=∞ and

∞
∑
k=1

√
2

2k − 1
>
∞
∑
k=1

√
2

2k
=∞, the

entire line is covered by the squares.

c. We place the squares along the positive x-axis as shown in the �gure. Then the

squares extend along the entire positive axis as
∞
∑
n=1

1

n
=∞. On the other hand, by
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the Integral Test Inequality we have

1 + 1

2
+ 1

3
+⋯ + 1

n
> ∫

n+1

1

dx

x
= ln(n + 1)

for all n ≥ 1. (This inequality can be obtained by comparing the area covered by
rectangles erected on the unit intervals along the interval [1, n + 1] with upper left
corners on the graph of y = 1/x and the area under the graph on this interval.)
Hence

e−x ≤ e−(1+1/2+1/3+⋯+1/n) ≤ 1

n + 1

for
n

∑
k=1

1

k
≤ x ≤

n+1
∑
k=1

1

k
for all n ≥ 0. In other words, the top side of the nth rectangle

never lies lower than the graph of y = e−x. Therefore we can cover the region between
the graph of y = e−x and the positive x-axis with the squares.

6. For each of the series in (a-d), determine whether there exists a positive integer n such that
the nth partial sum sn of the series satis�es the condition 2014 ≤ sn ≤ 2015.

a.
∞
∑
n=1

1

2n
b.

∞
∑
n=1

5n c.
∞
∑
n=1
(2999
3000
)
n

d.
∞
∑
n=1

1

n

Solution: Note that all terms of these series are positive, and therefore, their partial
sums form increasing sequences. This will be used repeatedly in the following.

a. We have

sn =
n

∑
k=1

1

2k
<
∞
∑
n=1

1

2n
= 1/2
1 − 1/2

= 1 < 2014

for all n ≥ 1, where we used the geometric series sum formula, and hence there are
no partial sums lying between 2014 and 2015.

b. This time we have

sn =
n

∑
k=1

5k ≤
4

∑
k=1

5k = 5 + 25 + 125 + 625 = 780 < 2014
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for n ≤ 4, and

sn =
n

∑
k=1

5k ≥
5

∑
k=1

5k = 5 + 25 + 125 + 625 + 3125 = 3905 > 2015

for n ≥ 5. Therefore no sn lies between 2014 and 2015.

c. Every term of this series is between 0 and 1, hence its partial sums increase in
steps smaller than 1 starting with s1 = 2999/3000 < 2014. Moreover,

∞
∑
n=1
(2999
3000
)
n

= 2999/3000
1 − 2999/3000

= 2999 > 2015

by the geometric series sum formula. Hence there is at least one partial sum sn
satisfying the condition 2014 ≤ sn ≤ 2015.

d. The same reasoning as in part (c) works, this time with the observation that

∞
∑
n=1

1

n
=∞ > 2015 ,

to give the existence of at least one partial sum sn satisfying the condition 2014 ≤
sn ≤ 2015.

7. Determine whether each of the following series converges or diverges.

a.
∞
∑
n=1
(21/n − 21/(n+1)) b.

∞
∑
n=2

n lnn

3n
c.

∞
∑
n=1
(−1)n+1 cos (π

n
)

d.
∞
∑
n=1

nn

n!
e.

∞
∑
n=1

1

n +
√
n sinn

f.
∞
∑
n=1

5n − 2n
7n − 6n

g.
∞
∑
n=3

1

n lnn ln(lnn)
h.

∞
∑
n=1

sinn

n2

Solution: a. We have sn =
n

∑
k=1
(21/k − 21/(k+1)) =

n

∑
k=1

21/k −
n

∑
k=1

21/(k+1) = 2 − 21/(n+1) .

Hence lim
n→∞

sn = 1 . Therefore the series converges and
∞
∑
n=1
(21/n − 21/(n+1)) = 1 .

b. We have an = n lnn/3n and

ρ = lim
n→∞

∣an+1∣
∣an∣

= lim
n→∞

(n + 1) ln(n + 1)/3n+1
n lnn/3n

= 1

3
⋅ lim
n→∞

n + 1
n
⋅ lim
n→∞

ln(n + 1)
lnn

= 1

3
⋅ 1 ⋅ lim

x→∞

ln(x + 1)
lnx

L'H

↓= 1

3
⋅ lim
x→∞

1/(x + 1)
1/x

= 1

3
⋅ 1 = 1

3
.

Since ρ = 1/3 < 1 , the series
∞
∑
n=2

n lnn

3n
converges by the Ratio Test.
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c. Since an = (−1)n+1 cos(π/n), we have ∣an∣ = cos(π/n) for n ≥ 2, and
lim
n→∞
∣an∣ = lim

n→∞
cos(π/n) = cos 0 = 1 . Therefore lim

n→∞
an /= 0 , and the series diverges

by the nth Term Test.

d. We have an = nn/n! and

ρ = lim
n→∞

∣an+1∣
∣an∣

= lim
n→∞

(n + 1)n+1/(n + 1)!
nn/n!

= lim
n→∞
(1 + 1

n
)
n

= e .

Since ρ = e > 1 , the series
∞
∑
n=1

nn

n!
diverges by the Ratio Test.

e. We observe that

L = lim
n→∞

1/(n +
√
n sinn)

1/n
= lim

n→∞

1

1 + sinn√
n

= 1

1 + 0
= 1 .

Since 0 < L <∞ and the harmonic series
∞
∑
n=1

1

n
diverges, we conclude that the series

∞
∑
n=1

1

n +
√
n sinn

diverges by the Limit Comparison Test.

f. The geometric series
∞
∑
n=1
(5/7)n converges as r = 5/7 Ô⇒ ∣r∣ = 5/7 < 1. We also

have L = lim
n→∞

(5n − 2n)/(7n − 6n)
5n/7n

= lim
n→∞

1 − (2/5)n
1 − (6/7)n

= 1 − 0
1 − 0

= 1 . Since 0 < L <∞ , the

series
∞
∑
n=1

5n − 2n
7n − 6n

converges by the Limit Comparison Test.

g. Since lnx is an increasing function on (0,∞) , ln(lnx) is an increasing function
on (1,∞). Both lnx and ln(lnx) are positive on [3,∞) . Therefore x lnx ln(lnx) is
positive and increasing on [3,∞) as it is the product of three positive and increasing
functions. This in turn implies that 1/(x lnx ln(lnx)) is a positive and decreasing
function on [3,∞) . Since it is also continuous, we can apply the Integral Test. The
improper integral

∫
∞

3

dx

x lnx ln(lnx)
= ∫

∞

ln(ln 3)

du

u

diverges, where we used the change of variable u = ln(lnx), du = dx/(x lnx) . Hence

the series
∞
∑
n=3

1

n lnn ln(lnn)
diverges.

h. Consider the series
∞
∑
n=1

1 + sinn
n2

. Since 0 ≤ 1 + sinn ≤ 2 for n ≥ 1 , we have

0 ≤ 1 + sinn
n2

≤ 2

n2
for n ≥ 1 . The p-series

∞
∑
n=1

1

n2
converges as p = 2 > 1 . Therefore
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the series
∞
∑
n=1

2

n2
= 2

∞
∑
n=1

1

n2
converges. Then the series

∞
∑
n=1

1 + sinn
n2

converges by the

Direct Comparison Test. Since both
∞
∑
n=1

1 + sinn
n2

and
∞
∑
n=1

1

n2
converge, the series

∞
∑
n=1

sinn

n2
, which is their di�erence, also converges.

Remark: Other tests can be used too. Here are some examples:

In part (a), the Limit Comparison Test with the series
∞
∑
n=1

1

n2
also works.

In part (b), the Limit Comparison Test with the geometric series
∞
∑
n=1

1

2n
also works.

In part (d), the Root Test also works where we use the fact that lim
n→∞

(n!)
n

1/n

= 1

e
.
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Remark: The following was a bonus problem on Moodle in Spring 2010 Math 102 course.

Problem K: In class we showed that 0.12 = 0.121212. . . = 12/99 as an application
of the geometric series.

We learn the following trick in elementary school: If x = 0.121212 . . . , then 100x =
12.121212 . . . ; their di�erence gives 99x = 12 and therefore x = 12/99 . Of course
when we see this in elementary school, no one talks about convergence.

That is what we are going to do in this problem. We will forget about convergence
as we know it, and take a trip to Tersonia.

In Tersonia after they teach the students about integers and rational numbers,
they come to the decimal representations of numbers. As you know our decimal
expansions have the form

±dndn−1 . . . d2d1d0.d−1d−2 . . .

where each di is in {0,1, . . . ,9}. We can have in�nitely many nonzero digits after
the decimal point, but we must have only �nitely many nonzero digits before the
decimal point. In Tersonia they do just the opposite. Their decimal expansions
have the form

. . . t3t2t1t0.t−1t−2 . . . t−n

where each ti is in {0,1, . . . ,9}. Note that there is no minus sign. They can have
in�nitely many nonzero digits before the decimal point, but they can only have
�nitely many digits after the decimal point.

Take a few minutes to convince yourself that Tersonians can add and multiply
their decimal expansions just like we do.

Why no minus sign? Well, because Tersonians don't need it. �Negative� numbers
are already there. For instance, consider the number y = 12.0 = . . .121212.0 .
Then 100y = . . .121200.0 and −99y = 12 . Therefore y = −12/99 . So in fact 12.0
is a �negative� number.

Here are some problems from Tersonian Elementary School Mathematics Book :

a.
1

2
= ? b.

1

3
= ? c.

1

7
= ? d. −1 = ?

e. Find two nonzero numbers A and B such that AB = 0.

Part (e) was later turned into a programming challenge. A Java applet that computes
the last n digits of A and B when their last digits are given can be found at
http://www.fen.bilkent.edu.tr/�otekman/calc2/ters.html .

125



8. Determine the smallest of the real numbers A, B, C, D, E where :

A =
∞
∑
n=0

(−1)n
2n

B =
∞
∑
n=1

1

n2n
C =

∞
∑
n=1

(−1)n+1
n!

D =
∞
∑
n=1

n

3n
E =

∞
∑
n=0

(−1)n
3n(2n + 1)

Solution: Firstly we have

A =
∞
∑
n=0

(−1)n
2n

=
∞
∑
n=0
(−1
2
)
n

= 1

1 − (−1/2)
= 2

3

by the geometric series sum formula. Next we observe that

B =
∞
∑
n=1

1

n2n
> 1

2
+ 1

2 ⋅ 22
+ 1

3 ⋅ 23
= 2

3
and D =

∞
∑
n=1

n

3n
> 1

3
+ 2

32
+ 3

33
= 2

3

as all the remaining terms of these series are positive. Finally,

E =
∞
∑
n=0

(−1)n
3n(2n + 1)

> 1 − 1

3 ⋅ 3
= 8

9
> 2

3
and C =

∞
∑
n=1

(−1)n+1
n!

< 1 − 1

2!
+ 1

3!
= 2

3

by the Alternating Series Estimate, which can be applied to these series as {1/(3n ⋅
(2n + 1))}∞n=0 and {1/n!}∞n=1 are decreasing sequences with limit 0 .

Hence C is the smallest.

Remark: One can also observe that B = ln 2, C = 1 − 1/e, D = 3/4, and E = π/(2
√
3) as

ln(1 + x) =
∞
∑
n=1
(−1)n+1x

n

n
for − 1 < x ≤ 1 ,

ex =
∞
∑
n=0

xn

n!
for all x ,

x

(1 − x)2
= x d

dx

1

1 − x
= x d

dx

∞
∑
n=0

xn =
∞
∑
n=1

nxn for ∣x∣ < 1 , and

arctanx =
∞
∑
n=0
(−1)n x2n+1

2n + 1
for ∣x∣ ≤ 1 .

Therefore, C < A < B <D < E.
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9. Consider f(x) =
∞
∑
n=0

xn

5n(n2 + 1)
.

a. Show that
4

3
< f(3) < 3

2
.

b. Show that
3

4
< f(−3) < 4

5
.

Solution: a. We have:

f(3) =
∞
∑
n=0

3n

5n(n2 + 1)
> 1 + 3

5 ⋅ 2
+ 32

52 ⋅ 5
= 343

250
> 4

3

and:

f(3) =
∞
∑
n=0

3n

5n(n2 + 1)
= 1 + 3

5 ⋅ 2
+
∞
∑
n=2

3n

5n(n2 + 1)

< 13

10
+ 1

5

∞
∑
n=2

3n

5n
= 13

10
+ 1

5
⋅ (3/5)

2

1 − 3/5
= 37

25
< 3

2

b. We have

f(−3) =
∞
∑
n=0
(−1)n 3n

5n(n2 + 1)
< 1 − 3

5 ⋅ 2
+ 32

52 ⋅ 5
= 193

250
< 4

5

and

f(−3) =
∞
∑
n=0
(−1)n 3n

5n(n2 + 1)
> 1 − 3

5 ⋅ 2
+ 32

52 ⋅ 5
− 33

53 ⋅ 10
= 469

625
> 3

4

by the Alternate Series Estimate as {(3
5
)
n

⋅ 1

n2 + 1
}
∞

n=0
is a decreasing sequence and

lim
n→∞
(3
5
)
n

⋅ 1

n2 + 1
= 0.

10. Determine whether the sum of the series
∞
∑
n=0

(−4)n
n!(n + 1)!

is positive or negative.

Solution: Let bn =
4n

n!(n + 1)!
for n ≥ 0. Then:

� bn > 0 for all n ≥ 0.

� lim
n→∞

bn = lim
n→∞

4n

n!(n + 1)!
= lim

n→∞

4n

n!
⋅ lim
n→∞

1

(n + 1)!
= 0 as both limits are 0, the �rst

one being one of the �Useful Limits�.

� bn ≥ bn+1⇐⇒
4n

n!(n + 1)!
≥ 4n+1

(n + 1)!(n + 2)!
⇐⇒ (n + 2)(n + 1) ≥ 4⇐⇒ n ≥ 1.
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Therefore the series satis�es the conditions of the Alternating Series Test. In
particular, it converges. Moreover,

S =
∞
∑
n=0

(−4)n
n!(n + 1)!

= 1 − 4

1!2!
+ 42

2!3!
− 43

3!4!
+ 44

4!5!
−⋯ = 1 − 2 + 4

3
− 4

9
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s3=−1/9

+ 4

45

b̄4

−⋯

and, by the Alternating Series Estimate, ∣S − s3∣ < b4. In other words, ∣S − (−1/9)∣ <
1/45, and S is negative.

Remark:
∞
∑
n=0

(−4)n
n!(n + 1)!

is
1

2
J1(4), where J1(x) =

∞
∑
n=0

(−1)n(x/2)2n+1
n!(n + 1)!

is the Bessel function of

the �rst kind of order 1, and its value is approximately −0.03302166401.
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11. Find the radius of convergence of the power series
∞
∑
n=0
(−1)n xn

(2n + 1)(n2 + 1)
.

Solution: We will give two di�erent solutions.

Solution 1 : Here we will use the Ratio Test.

We have an = (−1)n
xn

(2n + 1)(n2 + 1)
and

ρ = lim
n→∞

∣an+1∣
∣an∣

= lim
n→∞

∣(−1)n+1 xn+1

(2n+1 + 1)((n + 1)2 + 1)
∣

∣(−1)n xn

(2n + 1)(n2 + 1)
∣

= lim
n→∞

∣x∣n+1
(2n+1 + 1)((n + 1)2 + 1)

∣x∣n
(2n + 1)(n2 + 1)

= lim
n→∞
(1 + 2

−n

2 + 2−n
⋅ n2 + 1
(n + 1)2 + 1

)∣x∣

= ∣x∣
2

.

If ∣x∣ < 2 , then ρ = ∣x∣/2 < 1 and the power series converges absolutely by the Ratio
Test. On the other hand, if ∣x∣ > 2 , then ρ = ∣x∣/2 > 1 and the power series diverges
by the Ratio Test.

It follows by the de�nition of the radius of convergence that R = 2 .

Solution 3 : Here we will use the radius of convergence formulas.

We have cn =
(−1)n

(2n + 1)(n2 + 1)
, and the radius of convergence formula gives

1

R
= lim

n→∞

∣cn+1∣
∣cn∣

= lim
n→∞

1/((2n+1 + 1)((n + 1)2 + 1))
1/((2n + 1)(n2 + 1))

= lim
n→∞
(1 + 2

−n

2 + 2−n
⋅ n2 + 1
(n + 1)2 + 1

) = 1

2
.

Therefore R = 2.
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12. Consider the power series
∞
∑
n=0
(−1)n x2n+1

(2n + 1)(n2 + 1)
.

a. Find the radius of convergence of the power series.

b. Determine whether the power series converges or diverges at the right endpoint of its
interval of convergence.

c. Determine whether the power series converges or diverges at the left endpoint of its
interval of convergence.

Solution: a. We have an = (−1)n
x2n+1

(2n + 1)(n2 + 1)
and

ρ = lim
n→∞
∣an∣1/n

= lim
n→∞
( ∣x∣2n+1
(2n + 1)(n2 + 1)

)
1/n

= lim
n→∞

∣x∣2 ⋅ ∣x∣1/n
2 ⋅ (1 + 2−n)1/n ⋅ n1/n ⋅ (1 + n−2)1/n

= ∣x∣
2

2

.

If ∣x∣ <
√
2 , then ρ = ∣x∣2/2 < 1 and the power series converges absolutely by the

Root Test; and if ∣x∣ >
√
2 , then ρ = ∣x∣2/2 > 1 and the power series diverges by the

Root Test. Therefore R =
√
2 .

b. At x =
√
2 we have

∞
∑
n=0
(−1)n x2n+1

(2n + 1)(n2 + 1)
=
∞
∑
n=0
(−1)n (

√
2)2n+1

(2n + 1)(n2 + 1)

=
√
2
∞
∑
n=0
(−1)n 2n

(2n + 1)(n2 + 1)
.

Consider the corresponding absolute value series
∞
∑
n=0

2n

(2n + 1)(n2 + 1)
. Since

0 < 2n

(2n + 1)(n2 + 1)
< 1

n2
for all n ≥ 1 and the p-series

∞
∑
n=1

1

n2
with p = 2 > 1

converges,
∞
∑
n=0

2n

(2n + 1)(n2 + 1)
converges by the Direct Comparison Test; and then

the power series at x =
√
2 converges absolutely by the Absolute Convergence Test.

c. At x = −
√
2 we have

∞
∑
n=0
(−1)n x2n+1

(2n + 1)(n2 + 1)
=
∞
∑
n=0
(−1)n (−

√
2)2n+1

(2n + 1)(n2 + 1)

=
√
2
∞
∑
n=0
(−1)n+1 2n

(2n + 1)(n2 + 1)
.
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This is just −1 times the series we considered in part (b), and therefore it converges
absolutely.

13. Determine the radius of convergence and the interval of convergence of the power series

∞
∑
n=0

xn

3n + (−1)n+1
.

Also determine the type of convergence at each point of the interval of convergence.

Solution: As cn =
1

3n + (−1)n+1
, the formulas for the radius of convergence gives

1

R
= lim ∣cn+1∣

∣cn∣
= lim ∣1/(3(n + 1) + (−1)

n+2)∣
∣1/(3n + (−1)n+1)∣

= lim 3 + (−1)n+1/n
3 + 3/n + (−1)n+2/n

= 1 .

Therefore R = 1 . Hence we have absolute convergence for ∣x∣ < 1 and divergence for
∣x∣ > 1.

At x = 1 we have
∞
∑
n=0

xn

3n + (−1)n+1
=
∞
∑
n=0

1

3n + (−1)n+1
.

Since

L = lim
n→∞

1/(3n + (−1)n+1)
1/n

= lim
n→∞

1

3 + (−1)n+1/n
= 1

3

is a positive real number and the harmonic series
∞
∑
n=1

1

n
diverges, the power series

diverges by the Limit Comparison Test at x = 1 .

At x = −1 we have
∞
∑
n=0

xn

3n + (−1)n+1
=
∞
∑
n=0

(−1)n
3n + (−1)n+1

.

Let un =
1

3n + (−1)n+1
.

i. un =
1

3n + (−1)n+1
> 0 for all n ≥ 1 .

ii. 0 < 3n + (−1)n+1 ≤ 3n + 1 < 3n + 2 ≤ 3(n + 1) + (−1)n+2 for all n ≥ 1. Hence
un > un+1 for n ≥ 1 .

iii. lim
n→∞

un = lim
n→∞

1

3n + (−1)n+1
= 0 .

It follows that the series
∞
∑
n=0

(−1)n
3n + (−1)n+1

converges by the Alternating Series Test.

Its absolute value series is the same as the series 1+
∞
∑
n=1

1

3n + (−1)n+1
and we showed

that this series diverges. Hence the power series converges conditionally at x = −1 .
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To summarize, the radius of convergence is R = 1, the interval of convergence
is [−1,1), the power series converges absolutely at every point of (−1,1), and it
converges conditionally at x = −1 .

14. Consider the power series f(x) = 1 +
∞
∑
n=1

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)

xn .

a. Show that the radius of convergence of the power series is R = 1.

b. Determine the behavior of this power series at the endpoints of its interval of
convergence.

c. Show that 2(1 − x)f ′(x) = f(x) for ∣x∣ < 1.

d. Solve this di�erential equation to show that f(x) = 1√
1 − x

for ∣x∣ < 1.

e. Show that

arcsinx = x +
∞
∑
n=1

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)

⋅ x
2n+1

2n + 1
for ∣x∣ < 1.

Solution: a. We have cn =
1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)

for n ≥ 1 . We use the radius of

convergence formula

1

R
= lim

n→∞

∣cn+1∣
∣cn∣

= lim
n→∞

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)(2n + 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)(2n + 2)
1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)

= lim
n→∞

2n + 1
2n + 2

= 1

to obtain R = 1 .

b. At x = 1 we have the series 1 +
∞
∑
n=1

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)

. Since

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)

= 3

2
⋅ 5
4
⋅ ⋯ ⋅ 2n − 1

2n − 2
⋅ 1
2n
> 1

2n

for n > 1 and the harmonic series
∞
∑
n=1

1

n
diverges, we conclude that the series at x = 1

diverges by the Direct Comparison Test.

At x = −1 we obtain the alternating series 1 +
∞
∑
n=1
(−1)n 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)

2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)
with

un =
1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)

. We have (i) un > 0 for all n ≥ 0, and we also have (ii)
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un > un+1 for all n ≥ 0 as un/un+1 = (2n + 2)/(2n + 1) > 1 for n ≥ 0. On the other
hand,

u2
n =

12 ⋅ 32 ⋅ 52 ⋅ ⋯ ⋅ (2n − 1)2
22 ⋅ 42 ⋅ 62 ⋅ ⋯ ⋅ (2n)2

= 1 ⋅ 3
22
⋅ 3 ⋅ 5
42
⋅ ⋯ ⋅ (2n − 3)(2n − 1)

(2n − 2)2
⋅ 2n − 1

2n
⋅ 1
2n
< 1

2n

for n > 1. Therefore 0 < un < 1/
√
2n for n > 1, and the Sandwich Theorem gives

(iii) lim
n→∞

un = 0 . We conclude that the series at x = −1 converges by the Alternating
Series Test. The convergence is conditional as we have already seen that the absolute
value series diverges.

c. For ∣x∣ < 1 we have

f(x) = 1 +
∞
∑
n=1

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)

xn.

Di�erentiating this we get

f ′(x) = 1

2
+
∞
∑
n=2

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n − 2) ⋅ 2

xn−1

for ∣x∣ < 1 . Therefore

2xf ′(x) = x +
∞
∑
n=2

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n − 2)

xn

and

2f ′(x) = 1 + 3

2
x +

∞
∑
n=2

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n + 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)

xn

for ∣x∣ < 1 . Taking the di�erence of these two, we obtain

2(1 − x)f ′(x) = 1 + 1

2
x +

∞
∑
n=2

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n − 2)

⋅ (2n + 1
2n

− 1) xn

= 1 + 1

2
x +

∞
∑
n=2

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n − 2)

⋅ 1
2n

xn

= 1 + 1

2
x +

∞
∑
n=2

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)

xn

= 1 +
∞
∑
n=1

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)

xn

= f(x)

for ∣x∣ < 1.
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d. For ∣x∣ < 1,

2(1 − x)f ′(x) = f(x)Ô⇒ f ′(x)
f(x)

= 1

2(1 − x)

Ô⇒ ln ∣f(x)∣ = −1
2
ln ∣1 − x∣ +C for some constant C

Ô⇒ f(x) = A√
1 − x

for some constant A .

Now substituting x = 0 gives 1 = f(0) = A. Therefore, f(x) = 1√
1 − x

for ∣x∣ < 1.

e. We have
1√
1 − x

= 1 +
∞
∑
n=1

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)

xn

for ∣x∣ < 1 . Substituting x2 for x gives

1√
1 − x2

= 1 +
∞
∑
n=1

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)

x2n

for ∣x2∣ < 1 . Integrating this we obtain

arcsinx = x +
∞
∑
n=1

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)

⋅ x
2n+1

2n + 1
+C

for ∣x∣ < 1 . Substituting x = 0 gives 0 = arcsin 0 = C, and hence C = 0. Thus

arcsinx = x +
∞
∑
n=1

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)

⋅ x
2n+1

2n + 1

for ∣x∣ < 1 .

Remark: It can be shown that

1√
1 − x

= 1 +
∞
∑
n=1

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)

xn

for −1 ≤ x < 1 , and
arcsinx = x +

∞
∑
n=1

1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2n − 1)
2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2n)

⋅ x
2n+1

2n + 1
for ∣x∣ ≤ 1 .
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15. Consider the power series
∞
∑
n=1

n(2x − 1)3n+1
5n

.

a. Find the radius of convergence of the power series.

b. Find the sum of the power series explicitly.

Solution: a. an =
n(2x − 1)3n+1

5n
gives

ρ = lim
n→∞

∣an+1∣
∣an∣

= lim
n→∞

∣(n + 1)(2x − 1)3(n+1)+1/5n+1∣
∣n(2x − 1)3n+1/5n∣

= lim
n→∞

n + 1
n
⋅ ∣2x − 1∣

3

5

= ∣2x − 1∣
3

5
.

If ∣2x − 1∣3/5 < 1 , then ρ < 1 and the series converges by the Ratio Test; and
if ∣2x − 1∣3/5 > 1 , then ρ > 1 and the series diverges by the Ratio Test. Since

∣2x − 1∣3/5 < 1 ⇐⇒ ∣x − 1

2
∣ <

3
√
5

2
, it follows that the radius of convergence of the

power series is R = 3
√
5/2 .

b. We know that
∞
∑
n=0

xn = 1

1 − x
for ∣x∣ < 1 . Di�erentiating this we obtain

∞
∑
n=1

nxn−1 = 1

(1 − x)2

for ∣x∣ < 1 . Now we replace x with (2x − 1)3/5 to get

∞
∑
n=1

n(2x − 1)3(n−1)
5n−1

= 1

(1 − (2x − 1)
3

5
)
2

for ∣(2x − 1)3/5∣ < 1 . Finally we multiply by (2x − 1)4/5 to obtain

∞
∑
n=1

n(2x − 1)3n+1
5n

= (2x − 1)4/5

(1 − (2x − 1)
3

5
)
2 =

5

4
⋅ (2x − 1)4
(4x3 − 6x2 + 3x − 3)2

for ∣x − 1/2∣ < 3
√
5/2 .
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16. Consider the function de�ned by:

f(x) =
∞
∑
n=0

xn

n! 2n(n−1)/2

a. Find the domain of f .

b. Evaluate the limit lim
x→0

f(x) − ex
1 − cosx

.

c. Show that f(2) < e + 3

2
.

d. Show that f(−2) < 0 .

Solution: a. Since cn =
1

n! 2n(n−1)/2
, the radius of convergence formula gives

1

R
= lim

n→∞

∣cn+1∣
∣cn∣

= lim
n→∞

1/((n + 1)! 2(n+1)n/2)
1/(n! 2n(n−1)/2)

= lim
n→∞

1

(n + 1)2n
= 0 .

Therefore R =∞ . This means that the domain of f is (−∞,∞) .

b. Using

f(x) =
∞
∑
n=0

xn

n! 2n(n−1)/2
= 1 + x + x2

2 ⋅ 2!
+ x3

23 ⋅ 3!
+⋯

we obtain

lim
x→0

f(x) − ex
1 − cosx

= lim
x→0

(1 + x + x2

2 ⋅ 2!
+ x3

23 ⋅ 3!
+⋯) − (1 + x + x2

2!
+ x3

3!
+⋯)

1 − (1 − x2

2!
+ x4

4!
−⋯)

= lim
x→0

−1
4
x2 − 7

48
x3 −⋯

1

2
x2 − 1

24
x4 +⋯

= lim
x→0

−1
4
− 7

48
x −⋯

1

2
− 1

24
x2 +⋯

=
−1
4
1

2

= −1
2
.

c. We have

f(2) =
∞
∑
n=0

2n

n! 2n(n−1)/2
=
∞
∑
n=0

1

n! 2n(n−3)/2
= 1 + 2 + 2

2!
+ 1

3!
+
∞
∑
n=4

1

n! 2n(n−3)/2
.

On the other hand,

e =
∞
∑
n=0

1

n!
= 1 + 1 + 1

2!
+ 1

3!
+
∞
∑
n=4

1

n!
.
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Since n(n − 3) > 0 for n ≥ 4, we have
1

n! 2n(n−3)/2
< 1

n!
for n ≥ 4 . Hence

∞
∑
n=4

1

n! 2n(n−3)/2
<
∞
∑
n=4

1

n!
. Therefore, f(2) − e < 3

2
.

d. This time we have

f(−2) =
∞
∑
n=0

(−2)n
n! 2n(n−1)/2

=
∞
∑
n=0

(−1)n
n! 2n(n−3)/2

= 1 − 2 + 2

2!
+
∞
∑
n=3

(−1)n
n! 2n(n−3)/2

=
∞
∑
n=3

(−1)n
n! 2n(n−3)/2

= − 1
3!
+ 1

22 ⋅ 4!
− 1

25 ⋅ 5!
+ 1

29 ⋅ 6!
−⋯ .

As (n + 1)2n−1 > 1 for n ≥ 3 , we have − 1

n! 2n(n−3)/2
+ 1

(n + 1)! 2(n+1)(n−2)/2
< 0 for n ≥ 3

too. Therefore, f(−2) < − 1
3!
+ 1

22 ⋅ 4!
= − 5

32
< 0 .

17. Estimate ∫
2

0
e−x

2

dx with error less than 0.01.

Solution: We have

ex = 1 + x + x2

2!
+⋯ + xn

n!
+⋯

for all x. Therefore,

e−x
2 = 1 − x2 + x4

2!
+⋯ + (−1)nx

2n

n!
+⋯

for all x, and integration gives

∫
2

0
e−x

2

dx = 2 − 23

3
+ 25

2! 5
+⋯ + (−1)n 22n+1

n! (2n + 1)
+⋯ .

Let un =
22n+1

n! (2n + 1)
. Then:

i. un =
22n+1

n! (2n + 1)
> 0 for all n ≥ 0 .

ii. 2n2 − 3n − 1 > 0 for n ≥ 2 Ô⇒ (n + 1)(2n + 1) > 22(2n + 1) for n ≥ 2. Hence
un > un+1 for n ≥ 2 .

iii. lim
n→∞

un = lim
n→∞
(4

n

n!
⋅ 2

2n + 1
) = 0 .
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The series satis�es the conditions of Alternating Series Test for n ≥ 2. Since 223/(23 ⋅
11!) = 32768/3586275 ≈ 0.009 < 0.01, it follows by the Alternating Series Estimate
that the sum

∫
2

0
e−x

2

dx ≈ 2 − 23

3
+ 25

2! 5
+⋯ − 219

9! 19
+ 221

10! 21
= 12223758182

13749310575
≈ 0.89

approximates ∫
2

0
e−x

2

dx with error less than 0.01.

18. Find the exact value of
∞
∑
n=0

1

4n(2n + 1)
.

Solution: On one hand we have

∞
∑
n=0

1

4n(2n + 1)
=
∞
∑
n=0

(1/4)n
2n + 1

=
∞
∑
n=0

(1/2)2n
2n + 1

= 2
∞
∑
n=0

(1/2)2n+1
2n + 1

= 2 (1/2 + (1/2)
3

3
+ (1/2)

5

5
+⋯) .

On the other hand we have

ln(1 + x) =
∞
∑
n=1
(−1)n+1x

n

n
= x − x2

2
+ x3

3
− x4

4
+ x5

5
−⋯

for −1 < x ≤ 1 . In particular, x = 1/2 gives

ln(3
2
) = ln(1 + 1

2
) = 1/2 − (1/2)

2

2
+ (1/2)

3

3
− (1/2)

4

4
+ (1/2)

5

5
−⋯ ,

and x = −1/2 gives

ln(1
2
) = ln(1 − 1

2
) = −1/2 − (1/2)

2

2
− (1/2)

3

3
− (1/2)

4

4
− (1/2)

5

5
−⋯ .

Therefore
∞
∑
n=0

1

4n(2n + 1)
= ln(3

2
) − ln(1

2
) = ln 3 .

138



Part 4: Vector Analysis

1. Find the value of the line integral
‰
C

(3x2y2 + y)dx + 2x3y dy

where C is the cardioid r = 1 + cos θ parameterized counterclockwise.

Solution: We use the Green's Theorem
‰
C

M dx +N dy =∬
R
(∂N
∂x
− ∂M

∂y
) dA

where R is the region enclosed by the simple closed curve C. Therefore

‰
C

M
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(3x2y2 + y) dx +

N
¬
2x3y dy =∬

R
( ∂

∂x
(

N
¬
2x3y) − ∂

∂y
(

M
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
3x2y2 + y)) dA

=∬
R
(6x2y − (6x2y + 1)) dA

= −∬
R
dA

= −∫
2π

0
∫

1+cos θ

0
r dr dθ

= −∫
2π

0
[r

2

2
]
r=1+cos θ

r=0
dθ

= −1
2 ∫

2π

0
(1 + 2 cos θ + cos2 θ)dθ

= −1
2 ∫

2π

0
(1 + 2 cos θ + 1 + cos 2θ

2
)dθ

= −1
2
⋅ 3
2
⋅ 2π

= −3π
2

.

Remark We used the Circulation-Curl Form of the Green's Theorem, but the computation is
exactly the same with the Flux-Divergence Form:

‰
C

M dy −N dx =∬
R
(∂M
∂x
+ ∂N

∂y
) dA
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In fact, when expressed in terms of components and coordinates, both forms of the Green's
Theorem can be summarized and most easily remembered as‰

C

ω =∬
R
dω

where ω = Adx + B dy is a di�erential form and dω = dAdx + dB dy . The multiplication of
di�erentials here is as described in the Remark following Example 39 in Part 2. Indeed, if
ω =M dx +N dy, then

dω = dM dx + dN dy = (∂M
∂x

dx + ∂M

∂y
dy)dx + (∂N

∂x
dx + ∂N

∂y
dy)dy

= ∂M

∂y
dy dx + ∂N

∂x
dxdy = −∂M

∂y
dxdy + ∂N

∂x
dxdy = (∂N

∂x
− ∂M

∂y
)dxdy ,

and if ω =M dy −N dx, then

dω = dM dy − dN dx = (∂M
∂x

dx + ∂M

∂y
dy)dy − (∂N

∂x
dx + ∂N

∂y
dy)dx

= ∂M

∂x
dxdy − ∂N

∂y
dy dx = ∂M

∂x
dxdy + ∂N

∂y
dxdy = (∂M

∂x
+ ∂N

∂y
)dxdy

where we used dxdx = 0 = dy dy and dy dx = −dxdy. Unlike in the case of change of variables,
now we must always get a dxdy under the double integral and we must not get rid of the sign.

2. Evaluate

‰
C

F ⋅ dr where

F = −y
4x2 + 9y2

i + x

4x2 + 9y2
j

and C is the unit circle parametrized in the counterclockwise direction.

Solution: Observe that

curl F = ∂

∂x
( x

4x2 + 9y2
) − ∂

∂y
( −y
4x2 + 9y2

)

= 1

4x2 + 9y2
− 8x2

(4x2 + 9y2)2
+ 1

4x2 + 9y2
− 18y2

4x2 + 9y2
= 0

at all points (x, y) /= (0,0).

Consider C0 ∶ r = (cos t)/2 i + (sin t)/3 j, 0 ≤ t ≤ 2π, the counterclockwise
parametrization of the ellipse 4x2 + 9y2 = 1. Let R be the region lying inside the
unit circle and outside this ellipse.

Since curl F = 0 at all points of R,∬
R
curl F dA = 0 . Therefore by the generalized

Green's Theorem,‰
C

F ⋅ dr =
‰
C0

F ⋅ dr =
‰
C0

−y dx + xdy
4x2 + 9y2

= ∫
t=2π

t=0

−(sin t)/3 d((cos t)/2) + (cos t)/2 d((sin t)/3)
cos2 t + sin2 t

= 1

6 ∫
2π

0
dt = 1

6
⋅ 2π = π

3
.
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3. Find the surface area of the parameterized torus

r = (a + b cosu) cos v i + (a + b cosu) sin v j + b sinuk ,

0 ≤ u ≤ 2π, 0 ≤ v ≤ 2π, where 0 < b < a are constants.

Solution: We have:

ru = −b sinu cos v i − b sinu sin v j + b cosuk
rv = −(a + b cosu) sin v i + (a + b cosu) cos v j

ru × rv = −b(a + b cosu) cos v cosu i − b(a + b cosu) sin v cosu j − b(a + b cosu) sinuk
∣ru × rv ∣ = b(a + b cosu)(cos2 v cos2 u + sin2 v cos2 u + sin2 u)1/2 = b(a + b cosu)

Therefore

Surface Area =∬
R
∣ru × rv ∣ dA =∬

R
b(a + b cosu)dA

= ∫
2π

0
∫

2π

0
b(a + b cosu)dudv = ab ⋅ 2π ⋅ 2π = 4π2ab

where R = {(u, v) ∶ 0 ≤ u ≤ 2π and 0 ≤ v ≤ 2π}.
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4. Find the area of the portion S of the cylinder x2 + y2 = 2y that lies inside the sphere
x2 + y2 + z2 = 4.

Solution: Let F (x, y, z) = x2 + y2 −2y. Then the cylinder is given by F (x, y, z) = 0.
We will use the projection to the yz-plane. This projection is 2-1 from the portion of
the cylinder inside the sphere to the region R given by the inequalities 0 ≤ 2y ≤ 4−z2
in the yz-plane, and by symmetry

Surface Area of S = 2∬
R

∣∇F ∣
∣∇F ⋅ p∣

dA

where p = i. We have

∇F = 2xi + (2y − 2)j
∣∇F ∣ = (4x2 + (2y − 2)2)1/2 = (4x2 + 4y2 − 8y + 4)1/2 = 2 on S

∇F ⋅ p = ∇F ⋅ i = 2x

and therefore

Surface Area = 2∬
R

∣∇F ∣
∣∇F ⋅ p∣

dA = 2∬
R

2

∣2x∣
dA = 2∬

R

1

∣x∣
dA

= 2∬
R

1√
2y − y2

dA as ∣x∣ =
√
2y − y2 on S

= 2∫
2

0
∫
√
4−2y

−
√
4−2y

1√
2y − y2

dz dy = 2 ⋅ 2∫
2

0

√
4 − 2y√
2y − y2

dy

= 4 ⋅
√
2∫

2

0

1
√
y
dy = 4

√
2 ⋅ 2
√
2 = 16 .
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5. Consider the parametrized surface S ∶ r = u2i +
√
2uvj + v2k,−∞ < u < ∞ ,0 ≤ v < ∞ . Find

the area of the portion of the surface S that lies inside the unit ball x2 + y2 + z2 ≤ 1.

Solution: We have x = u2, y =
√
2uv and z = v2 on the surface. Therefore,

x2 + y2 + z2 ≤ 1 means (u2)2 + (
√
2uv)2 + (v2)2 ≤ 1. In other words, (u2 + v2)2 ≤ 1, or

u2 + v2 ≤ 1. Hence the part of the surface lying inside the sphere is the image of the
region R, the upper half of the unit disk, in the uv-plane.

To compute the surface area we �rst compute:

ru = 2ui +
√
2vj

rv =
√
2uj + 2vk

ru×ru = 2
√
2v2i − 4uvj + 2

√
2u2k

∣ru×ru∣ = ((2
√
2v2)2 + (4uv)2 + (2

√
2u2)2)1/2 = 2

√
2(u2 + v2)

Therefore,

Surface Area =∬
R
∣ru×ru∣ dudv

= 2
√
2∬

R
(u2 + v2) dudv

= 2
√
2∫

π

0
∫

1

0
r2 ⋅ r dr dθ

= 1√
2
∫

π

0
dθ

= π√
2

where we used the polar coordinates in the uv-plane.

Remark: There is a shorter way of solving this problem which does not use Calculus. The
given parametrization maps the upper half-uv-plane onto the half-cone given by the equation
y2 = 2xz, and the conditions x ≥ 0 and z ≥ 0 in a one-to-one manner (except on the u-axis).
This half-cone has its vertex at the origin, its axis lies along the bisector of the positive x- and
z-axes, and it has an opening angle of 45○. The portion of this half-cone cut o� by the unit
sphere is the lateral surface of a right cone with slant height ℓ = 1 and radius r = 1/

√
2, hence

with area πrℓ = π/
√
2.
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6. Verify Stokes's Theorem for the vector �eld F = y i + z k and the surface S, where S is the
portion of the paraboloid z = x2+y2 satisfying z ≤ 3, with the unit normal vector �eld n pointing
away from the z-axis.

Solution: S is bounded by the curve C ∶ r =
√
3 cos t i −

√
3 sin t j + 3k, 0 ≤ t ≤ 2π.

Note that this parametrization is consistent with the direction of n. The circulation
of F around C is‰

C

F ⋅dr =
‰
C

(y i + z k) ⋅ (dx i + dy j + dz k)

= ∫
t=2π

t=0
(−
√
3 sin t i + 3k) ⋅ (d(

√
3 cos t) i + d(−

√
3 sin t) j + d(3)k)

= ∫
2π

0
(−
√
3 sin t)(−

√
3 sin t)dt = 3∫

2π

0
sin2 t dt = 3π

On the other hand, the paraboloid is a level surface of f(x, y, z) = z − x2 − y2, and
∇f = −2x i − 2y j + k points in the opposite direction to n, so we will choose the
minus sign from ± in the �ux integral. The projection of S into the xy-plane is the
disk R = {(x, y) ∶ x2 + y2 ≤ 3}. Finally,

∇×F =

RRRRRRRRRRRRRRRRRRRRRRRRRRR

i j k

∂

∂x

∂

∂y

∂

∂z

y 0 z

RRRRRRRRRRRRRRRRRRRRRRRRRRR

= −k .

The �ux of ∇×F across S is

∬
S
(∇×F) ⋅n dσ =∬

R
F ⋅ ±∇f
∣k ⋅ ∇f ∣

dA

=∬
R
(−k) ⋅ (2x i + 2y j − k) dA

=∬
R
dA = Area of R = π(

√
3)2 = 3π .

Hence∬
S
(∇×F) ⋅n dσ =

‰
C

F ⋅dr.

7. Verify Divergence Theorem for the vector �eld F = xz i + yz j + z3 k and the region D =
{(x, y, z) ∶ x2 + y2 + z2 ≤ 4} .

Solution: ∇ ⋅F = ∂(xz)/∂x + ∂(yz)/∂y + ∂(z3)/∂z = z + z + 3z2 = 2z + 3z2 , and

∭
D
∇ ⋅FdV =∭

D
(2z + 3z2)dV

= ∫
2π

0
∫

π

0
∫

2

0
(2ρ cosϕ + 3ρ2 cos2 ϕ)ρ2 sinϕdρdϕdθ

= ∫
2π

0
∫

π

0
(8 cosϕ + 96

5
cos2 ϕ) sinϕdϕdθ

= 64

5 ∫
2π

0
dθ = 128π

5
.
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To compute the outward �ux through the sphere S = {(x, y, z) ∶ x2 + y2 + z2 = 4}, we
divide it as the upper hemisphere S1 = {(x, y, z) ∶ x2 + y2 + z2 = 4 and x ≥ 0} and the
lower hemisphere S2 = {(x, y, z) ∶ x2 + y2 + z2 = 4 and x ≤ 0}, and project both onto
the disk R = {(x, y) ∶ x2 + y2 ≤ 4} in the xy-plane.

The sphere is a level surface of f(x, y, z) = x2 + y2 + z2. ∇f = 2x i+ 2y j+ 2z k points
in the same direction as n, the outward pointing unit normal vector �eld on S, so
we will choose the plus sign from ± in the �ux integral.

For the upper hemisphere we have

∬
S1

F ⋅ndσ =∬
R
F ⋅ ±∇f
∣k ⋅ ∇f ∣

dA

=∬
R
(xz i + yz j + z3 k) ⋅ 2x i + 2y j + 2z k

2z
dA

=∬
R
(x2 + y2 + z3)dA

=∬
R
(x2 + y2 + (4 − x2 − y2)3/2)dA

= ∫
2π

0
∫

2

0
(r2 + (4 − r2)3/2) r dr dθ

= ∫
2π

0
(4 + 32

5
)dθ = 8π + 64π

5
.

A similar computation for the lower hemisphere gives

∬
S2

F ⋅ndσ = −8π + 64π

5
.

Therefore

∬
S
F ⋅ndσ =∬

S1

F ⋅ndσ +∬
S2

F ⋅ndσ

= (8π + 64π

5
) + (−8π + 64π

5
) = 128π

5
,

and∬
S
F ⋅ndσ =∭

D
∇ ⋅FdV .
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