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Internal analogies between isomorphic geometric structures 
 
TUZSON ZOLTÁN 
 
Abstract. One of the most important aims of learning and teaching Mathematics is solving 
problems. This cannot be imagined without analogical thinking. The word analog has a 
Greek origin, meaning similar, the same as something else from certain points of view. In 
the case of systems A and B,  if the a, b, c and k  essential characteristics refer to A and a, 
b and c essential characteristics refer to B as well, then according to the analogy of the 
characteristics of A and B we can state that k characteristics can be expected to refer to B, 
but it does not certainly refer to it. So if we say that two things are similar if they are the 
same from one point of view, then we say that two things are analog if their corresponding 
parts are in equal relations. György Pólya dealt with the analogy deeply in [8]-[10], where 
he emphasizes the importance of analogy in education and teaching, in problem solving, in 
discovery and simply in everyday thinking. He also emphasizes that analogical conclusion 
is risky as the consequence made by analogy is only probable and not sure, it needs to be 
proved. In my paper I am writing about analogies which are clear analogies, which are sure, 
because they appear among isomorphic structures. Throwing light upon and analysing 
these analogies, we can reveal their importance in solving geometrical problems. 
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Introduction 
 

 In modern Mathematics teaching, using analogies has a much importance in every 
domain of Mathematics. But analogy has a different importance in solving geometric 
problems. There we need very much to make conclusions with analogy, as this provides the 
basis of our guesses which are important for the solution.  

In [3] the authors deal with interesting themes, with analogical conclusions and 
generalizations, they compare and contrast 2-D plane and 3-D space geometry and throw 
light upon the fact that if we replace given plane concepts with analog space concepts, with 
plane problems analog problems can be composed. These analogies are called external 
analogies and as we mentioned before, the conclusion is only probable, it still needs to be 
proved. 

In my paper I examine analogies, which are internal and clear analogies, as the 
analogy appears in the frame of the same system or structure. So these are a clear and 
sure analogies, as they appears in the isomorphic classes of the same structure. 

In the following we are trying to throw light upon why it is possible, when it is 
advantageous and how geometric problems can be solved with vectors, complex numbers 
(affixes), on the complex numerical plane of Gauss, or in R×R coordinate system, with 
analytic methods. 

For this, first of all we throw light on geometric problems solved using vectorial 
methods or, using the tools of analytic coordinate geometry, or in a compex numerical 
plane; we can only talk about the differences in the so called ”language” or ’’model” so we 
only analyse which model is more advantageous, easier, more spectacular, or which 
solution is more instructive. 

First of all we rewrite the more important parts of classical vector geometry theory 
into complex numerical plane, into affixes. We do the same with some parts of the results of 
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the R×R coordinate geometry. In both cases we compare some important concepts and 
results.  

After this in concrete cases we throw light upon the advantages of the one or the 
other method, its application fields, its limits or disadvantages.  

 
The Isomorphy of real plane of Euclid and complex plane of Gauss 

 
One important task of Algebra is examining the isomorph invariances. If we look at one 

set, (class) of algebraical stuctures, then in this set the isomorphism will probably make a 
relation which is: 
- Reflexive, as the identical mapping is isomorphism 
- Symmetrical as the isomorphic mappings have their inverses and that these are 

isomorphism as well. 
- Transitive as the product of isomorphisms is an isomorphism as well 
According to these, on the examined set of structures the isomorphism defines one 
eqivalence relation and that is called isomorphia.  
The isomporhia -as an equivalence relation – defines one class of the set of structures. 
An equivalence class contains those structures which are isomorphic with one another. 
These are the so called isomorphia classes. 
 From the point of view of abstract algebra the structures belonging to one isomorphia 
class cannot be considered different. This is the PRINCIPLE OF ISOMORPHIA, which was 
first composed by E. Seintz during his examinations on theory test in 1912. An isomorphia 
class is named as abstract algebraical structure. The concrete algebraical structure is one 
representative of one isomorphia class. In this case two representatives of the same class 
mean the same only a ’’language adaptation”, a rewriting is necessary.  
We emphasize the importance of these things for High School Mathematics with three 
representatives of one important and representative isomorphia class.  
 Interpreting on the (x, y) elements of R2=R×R the so called Euclid numerical plane, 
the addition ”as component” and scalar multiplication, keeping the common characteristics 
we get such a vector space with two dimensions which has one of its standard basis  
e1 = (1, 0) and e2 = (0, 1). 
 Looking at the algebraical form of z a i b ( 2, , -1a b R i )  C complex numbers we 
can interpret additon of ”real part with real part” and ”imaginary part with imaginary part” 
and the multiplication with scalar. According to the fulfilment of the axioms we also get a 
vector space with two dimensions and one of its basis is for example 1 and i. We most 
often call this numerical plane the complex numerical plane of Gauss, using the name of its 
creator, which became popular in specialised bibliography as well. 
Let us note with V2 the set of free vectors of the plane.  Using knowledge of the triangle or 
parallelogram we can interpret the additon of two vectors, as well as the multiplicative 
operation with a scalar which fulfills the axioms. In this case we also interpret a vector 
space with two dimensions, and one of its basis is i  and j   
For simplicity we only mark these three vector spaces with R2, C, V2. It is known that each 
vector space with n dimensions is isomorphic with Rn vector space. So in our cases 
the three vector spaces with 2 dimensions make an isomorphia class, which have the three 
previous representatives. 
 (1) V2 C (2) R2 C (3) V2  R2     isomorphism. 
What is more, these isomorphisms are distant preserving, so called isometries, as the 
following results are true: 

If  P1(x1,  y1) and  P2(x2,  y2) are  any two points of R2, then according to the 
interpretation the distance between the two points is: 
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dR
2 (P1, P2) = 21PP = 2
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2

21 )()( yyxx  
 If P(z1), P(z2), z1 = x1 + i  y1, and z2 = x2 + i  y2  are any two points of C complex 
numerical plane, then the distance between the two points is: 

dC (P1, P2) = )()( 2121 yyixx = 2
21

2
21 )()( yyxx  

 If P1, P2 are any two points in O, i, j  vector space, as  
1221 OPOPPP = (x2 - x1) i+(y2 - y1) j, because of this the distance between the two points is: 

dV 2 (P1, P2) = PP1 = 2
21

2
21 )()( yyxx . 

The isomorphism (1) makes possible the ”translation” of the vectorial description of 
plane geometry into the language of complex numerical plane and vice versa. 

The isomorphism (2) makes possible the ”translation” of the description of coordinate 
geometry into the language of complex numerical plane and vice versa. 

The isomorphism (3) makes possible the “translation” of the vectorial description of  
plane geometry into the  algebraical language of the coordinate geometry and vice versa. In 
the following we are going to discuss the application possibilities and areas of the results 
provided by these isomorphisms. 
 

The internal analogy of V2 vector plane and C complex numerical plane 
 
 In the next steps, following only practical points of view, we compare the more 
important classical vector geometrical concepts and results with its corresponding analog 
concepts and results in the complex numerical plane.  

According to the isomorphism (1) described above we correspond evidently one and 
only one complex number to each point of the plane. In the following we mark these with 
the corresponding lower case letters (ex. a, b, c, m, n, …) of the capitals (ex. A, B, C, M, 
N,…) which name the certain points. In any other cases we mark the exceptions in 
advance. These corresponding complex numbers are called the affixes of the given points. 

More exactly if we call the ( , )M x y  point the geometrical image of the z x i y  
complex number, we call the complex number z x i y  the affixum of ( , )M x y .  Let us 
mark with P the set of of the points of  plane, on which we have fixed  xOy rectangular 
coordinate system. 

We can easily see that in the case of every complex number z x i y  the function 
interpreted as : ,  ( ) ( , )C R z M x y is a bijective mapping between C and R sets, 
because of this we call the   plane (the elements of which we identified with the complex 
numbers by the  function) complex numerical plane. In this way the Ox axis of the 
coordinate system is a real axis and the Oy axis is the imaginary axis. 

In the xOy rectangular coordinate system with O origin we take a point M. Each point 
M corresponds to one and only one m complex number, so the  vector OM  corresponds to 
the  complex number m which can be written : OM m . Then if A and B are two points of 
the previously mentioned plane, then as AB OB OA , so the vector AB  corresponds the 

complex number  (b- a) ,  so we can identify  it  with that  and write that:  AB b a , where 
Cba, . That is why the length of  AB section is : AB b a . 

With the help of this connection we can rewrite the important vectorial results into 
complex numbers. In this way we get the important analog connections of V2 and C. 

1)  If on the (AB) section M is a point to which 0
AM

k
MB

, then: 
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1
OA kOBOM

k
   respectively 

1
a kbm

k
  

2) In the particular cases of M being exactly the midpoint, then: 

2
OA OBOM    respectively 

2
a bm   

3) The M point is on AB if and only if there exist a k R   so that: 

1
OA kOBOM

k
  respectively 

1
a kbm

k
 

4) The  ABCD quadrilateral is a parallelogram exactly if: 

 OA OC OB OD   respectively         a c b d   

5) If the centre of gravity of ABC triangle is G, then: 

3
OA OB OCOG   respectively   

3
a b cg   

(We can observe that the position of the centre of the gravity does not depend on the 

position of O). 

6) If the centre of the gravity of 1 2... nA A A  n-angle is G, then: 

1 2 ... nOA OA OAOG
n

  respectively   1 2 ... na a ag
n

 

7) If H is the orthocentre of ABC triangle then: 

OCOBOAOH  respectively    2h a b c o   

(We can notice that the position of the orthocentre depends on the position of O) 

8) If the central point of the Euler-circle (the nine-point circle) is E, then:  

 
2

OA OB OCOE  respectively ocbae
2

 

(We can notice that the position of E point also depends on the affixum of O too!) 

9) If I is the incentre of ABC triangle then: 

BC OA CA OB AB OCOI
AB BC CA

respecively BC a CA b AB ci
AB BC CA

 

(We can notice that the position of I point does not depend on the position of O). 

10) If E, F, K  are in order the internal points of AB, BC, CA sides for which: 

AF BK CE M  ands AE
EB

; BF
FC

; CK
KA

, then: 

OA OB OCOM  respectively  a b cm  

(We can notice that the position of M does not depend on the position of O). 
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11) If E, F, K are in order internal points of AB, BC, CA sides, then the AF, BK, CE line 

segments are concurent if: 

 1AE BF CK
EB FC KA

  respectively  1e a f b k c
b e c f a k

 

12)If  A1B1C1 and A2B2C2 which the same orientation triangles are similar if and only if : 

1 1 1 1 1 1

2 2 2 2 2 2

A B B C C A
A B B C C A

  respectively  1 2 2 1 2 2 1 2 2  0a b c b c a c a b   

 Here we stop with the enumeration, but we emphasize the following: each vectorial 
connection can be rewritten into complex numbers using the connections of type 
AB b a . With this  many other important theoremas and results referring to many 

important points can be written. Many vectorial tasks and theoremas can be found for 
example in [4], [6] and [7]. 
 Of course questions can arise that apart from the fact that between V2 and C there is 
a considerable internal analogy what is the use of pointing this out? The answer is that 
when: we are solving plane geometry problems we can choose which method is the most 
suitable. In many cases the vectorial solution is more suitable, but in many other cases the 
solution with the complex numbers is more advantageous. Why are the methods with 
complex numbers more suitable in some cases? We can realise it very easily if we read the 
followings.  
 

Particular plane geometry characteristics on C set 
 

 We should notice that on the set of V2 vectors the operations which can be 
interpretted with vectors are: the addition and subtraction of vectors, the multiplication of the 
vectors with scalar, the scalar multiplication of the vectors, the vectorial multiplication of 
vectors, the mixed multiplication of vectors. The operations interpretted with the complex 
numbers are the following: addition, subtraction, multiplication, division, exponentiation, 
extraction of root. 
In addition complex numbers written in algebraical form  
z a i b  can also be written in trigonometrical form: 

(cos sin )z r t i t . With the complex numbers written in this way 
we can also do the previous operations. Among these operations 
the multiplication of complex numbers has a special importance. If 

(cos sin )z r t i t  and cos sinz i , then  
'(cos sin ) (cos sin ) (cos( ) sin( ))z z r t i t i r t i t z . 

This has a very important geometrical meaning.  If we rotate the line OM around O  through 
an angle of  , then we get the line OM’, which can be written with the complex numbers as 

'z z z . So a rotation around O means a multiplication with complex number with  
argument . If the central point of the rotation is not the origin O, but a point 0z  affixum  
point, then 0 0' ( )z z z z z .  
 In geometrical problems in many cases are about the measurement of angles, so 
this result has great importance, and this result does not have a corresponding on in V2  
plane. 
           The intoduced rotation has many other important consequences, let’s see some of 
them: 
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1) The ABC triangle is equilateral if and only if, one of the 
following is true: 
(a) ( )a b c b or  ( )b c a c or ( )c a b a   
where cos 60 sin 60i   
(b) 2 0a c b  or 2 0b a c  or 2 0c b a   
where cos 60 sin 60i   
(c) a+   b + 2  c =  b +  c + 2  a = c +  a + 2  b = 0  
where  = cos 120  + isin 120  
(d) cabcabcba 222  
2) The ABCD is a square if and only if  

 a c b d  and one of the following affirmations is true:  
(a) a = (1-i )  b +  i  c or b = (1-i )  c +  i  d  or c = (1-i )  d +  i  a or d = (1-i )  a +  i  b 
where 2 1i  . 
(b) x +  i y +  i2  z +  i3  t =  0 where x, y, z, t is the permutation of the comlplex numbers a, b, 
c, d  
3) The  A1 A2…An  is a regular polygon with  n sides  (n > 3) if and only if  
a1 + a2  + a3

2 + … + an
1n  = 0, where n  = 1 one of the so called unit roots with n order 

and 1. 
4) ABCD is a symmetrical trapezoid if and only if:   a b c d   

5) ABCD is a quadrilateral with perpendicular diagonals if and only if: 
d
c

b
a  

6) ABCD is a cyclic quadrilateral, if and only if :a c b c R
a d b d

 

 Apart from rotation the examination of the arguments of the complex numbers makes 
possible the statement of many other important special characteristics.  
1) If  M1(z1) and  M2(z2) are two points of the complex numbers and  O is the origin, then  

21OMM  = 
1

2arg
z
z  

2) If  M1(z1), M2(z2) and  M3(z3)are three points of the complex numerical plane and  O is the 
origin, then: 

M2M1M3  = 
12

13arg
zz
zz

   

3) If  M1 (z1),  M2 (z2), M3 (z3) are different points in pairs, they are collinear if and only if  

12

13

z-z
z-z R*  

4) If M1(z1), M2(z2), M3(z3) and  M4(z4) are different points from the origin and from one 

another, then (M1M3,M2M4)  = arg
24

13

z-z
z-z     

The proof of the previous statements can be found in [1], [11] and [12] where many other 
important results can be found. 
From the statements presented above we can realise that the solution with affixes has 
many advantages compared with vectorial solutions, especially if in our task we have a 
equilateral triangle, square, polygon, cyclic quadrilateral, parallelogram, or just the 
measurement of angles.  
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The internal analogy of R2 real plane 
 and C complex numerical plane  

 
  
 In the following we are going to compare the more important results of R2   and  C 
coordinate geometry related to straightlines which  emphasize the internal analogy between 
the two structures. 
The analogy between the two structures comes from the fact that from the relations  

z x iy  and z x iy ,  x and y can be expressed, as  
2

zzx  and
i
zzy

2
. In this way 

an equation of the  R2 plane, with the form  f (x , y) = 0  becomes an equation with the form 
, 0z z . 

In the following we are going to examine how the most important classical results can be 
written in complex numbers.  
  

In the following we use  1 2 3( ), ( ), ( )M z M z M z and 1 1 1z x iy , 2 2 2z x iy ¸ 3 3 3z x iy   
1) The distance between M1 , M2  points is: 

d (M1, M2)=
2 2

1 2 1 2x x y y respectively 1 2 2 12 1( , ) ( )z zd M M z z   
2) The general form of the straight line is : 
 0ax by c  respectively 0z z , where  2:)( iba  and  Rc . 
3) The slope of the straight is : 

 tan bm
a

  respectively   im tan  or ln
2
i  

4) The equation of a straight line which goes across a certain point and has a certain slope 
is: 
 0 0( )y y m x x   respectively 00  ( )z z m z z   
5) The equation of the straight which goes between two points is : 

1 1

2 2

1
1
1

x y
x y
y y

= 0   respectively  
1
1
1

22

11

zz
zz
zz

= 0              

6) The points 1 2,  M M  and 3M  are collinear if: 

 
1 1

2 2

3 3

1
1 0
1

x y
x y
x y

  respectively  
11

22

33

1

1 0

1

z z

z z

z z

 

7) The distance of a point 0 0( , )M x y , 0 0 0z x iy  from a straight line is : 

d = 0 0

2 2

a x b y c

a b
 respectively d = 

00

2

z z
 

8) The area of the triangle made by 1 2,  M M  and 3M points is : 

1 | |
2

T  where   
1 1

2 2

3 3

1
1
1

x y
x y
x y

  respectively T=    where   
11

22

33

1

1
4

1

z z
i z z

z z

 

 
9) The measure of an angle between two straightslines is : 
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 2 1

1 2

tan
1
m m

m m
  respectively  1 2

1 2
1 2

ln  

10) The mutual relation of two straightlines is : 

  a) parallel, if 1 1 1

2 2 2

a b c
a b c

  respectively  
2

2

1

1              

b) perpendicular if   1 2 1 2 0a a b b   respectively  0
2

2

1

1   

   

c) concurrent, if   1 1 1

2 2 2

a b c
a b c

  respectively  
2

2

1

1  

Many other coordinate geometrical results can be written in complex numbers, also 
the majority of the geometry of curved lines, as well as the transformations. But besides the 
analogy coming from the rewritings we still have the question, how much more 
advantageous is one method than the other while solving geometrical problems? The 
answer to this is the following: in the coordinate sysytem with (x, y) coordinates we have to 
to make twice as many operations than with only one affix, but on the other hand the 
analytical geometry solved with complex numbers can seem difficult. We can read about 
the application of the method for example in [5]. 
 

The illustration of the internal analogy of V2 ,  C, and  R2  

 
We illustrate the analogy of 2V , C  and R R  geometry with the help of a sample, 

according to which it will be seen how a considerable and perfect internal analogy there is 
among the three geometrical solutions.  Of course we have to realise the analogical 
relations and results in order to be able to use them.  
 

Sample problem: In the ABCD parallelogram AB=4, BC=2, BD=3. The G point is 
the centre of gravity of the  ABD triangle, I  the central point of the circle written in the 
triangle BCD  and M  that point of trisection of  side (BC)   which is the nearer to  point C. 
We have to prove that G, I and M points are collinear. 
 The drawing of the problem is the following: 
 
 

 
 
 
 
 
 
 

 
Vectorial Solution 

 
We mark the arbitrary point O on the plane. We can write the following known 

vectorial relations: 
 

(1) ABCD is a parallelogram, because of this OA OC OB OD  from where 
OA OB OD OC  
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(2) In ABD triangle G is centre of gravity, that’s why 
3

OA OB ODOG  

(3) The central point of the circle written in triangle BCD (the point of intersection of 
bisections) and BC=2, CD=4, DB=3, that so 

2 4 3
2 4 3

OD BC OB CD OC BD OD OB OCOI
BC CD BD

 

2 4 3 4 3 2
9 9 9 9

OD OB OC OB OC OD  

(4) The point M on the line BC is the trisect point which is nearer to C so  
2 1 2

1 2 3 3
OB OCOM OB OC  

(5) So for points G, I, M  to be collinear it is enough if there exist a real number  for 

which 1
1 1 1

OG OMOI OG OM  

(6) According to (1) and (2) if we put our expression for OA  into OG  we get the  

following  2 2 1
3 3 3

OG OB OD OC   

(7) If now in  (5) in the place of  OI , OG , OM  we write the vectors expressed by the 
results of  (3), (4), (6)  we get that  ( 2)( 3 2 ) 0OB OC OD  from which gives 2 . 
So the wanted  real number  exists. So this also shows that beside the fact that G, I, 
M  are collinear we also have the ratio  GI: IM=2: 1. 

 
Solution with complex numbers 

 
We choose a, b, c, d, g, i, m complex numbers, affixes corresponding to points A, B, 

C, D, G, I, M . 
(1) ABCD is parallelogram, then  a c b d  giving    a b d c   

(2) In ABD triangle G is centre of gravity, so  
3

a b cg  

(3) The central point of the circle written into BCD triangle (the point of intersection of 

bisections) is BC=2, CD=4, DB=3, that’s why  4 3 2 4 3 2
4 3 2 9

b c d b c di  

(4) The M point on the line BC section is the point of trisection which is nearer to C, so   
2 2

1 2 3
b c b cm  

(5) So for points G, I, M to be collinear it is enough if there exist a real number  for 

which  1
1 1 1

g mi g m  

 
(6) If according to  (1) and  (2) we write the expression for a into  g  we get  

2 2 1
3 3 3

g b d c   

(7) Now if in (5) in place of the  i, g, m  we write the expressions from the results of (3), 
(4), (6) we get that ( 2)( 3 2 ) 0b c d , from which gives 2 . So the real number  
exists. This also shows that besides the fact that G, I, M collinear we also have the ratio 
GI: IM =2: 1. 
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 Coordinate geometrical solution  

  
  ( , )A AA x y , ( , )B BB x y , ( , )C CA x y , ( , )D DD x y , ( , )G GG x y , ( , )I II x y , ( , )M MM x y are in 

order  the coordinates of the points mentioned above. We can write the following known 
relation: 

(1)  The diagonals of ABCD parallelogram halve each other: 
2 2

A C B Dx x x x  and 

2 2
A C B Dy y y y  , from which A B D Cx x x x  and A B D Cy y y y  

(2) In  triangle ABD, ( , )G GG x y  is centre of gravity, so 
3

A B D
G

x x xx  and 

3
A B D

G
y y yy  

(3) The I is the central point of the circle written in  BCD triangle  (the point of 
intersection of the bisections) and BC=2, CD=4, DB=3, so 

2 4 3
2 4 3

D B C D B C
I

BC x CD x BD x x x xx
BC CD BD

 

2 4 3 4 3 2
2 4 3 9 9 9

D B C
B C D

x x x x x x . Similarly 4 3 2
9 9 9I B C Dy y y y . 

(4) The point M on the  line BC is the point of trisection which is nearer to C, so 
2 1 2

1 2 3 3
B C

M B C
x xx x x  and  1 2

3 3M B Cy y y  

(5) So for points G, I, M to be collinear it is enough if there exist a real number  for 

which 1
1 1 1

G M
I G M

x xx x x  respectively 1
1 1I G My y y  

(6) From (1) and (2) we write the  ( , )A AA x y  coordinates into  ( , )G GG x y  we get that  
2 2 1
3 3 3G B D Cx x x x  respectively 2 2 1

3 3 3G B D Cy y y y . 

(7) Now if in (6) in the places of ( , )G GG x y , ( , )I II x y , ( , )M MM x y  we write the coordinates 
expressed according to the results of  (3), (4), (6) we can find that 
( 2)( 3 2 ) 0B C Dx x x  respectively ( 2)( 3 2 ) 0B C Dy y y  from which gives 2 . 
So the real number  exists. This also shows that besides the fact that G, I, M  are 
collinear we again have the ratio GI: IM=2: 1. 
 

Conclusion 
 

  In the previous descriptions we demonstrated why there is such a perfect analogy in  
V2 , C and  R2 geometry. We could see that it is not enough just taking into consideration 
that the three structures are isomorphic, but it is important to find the analogical concepts 
and relations among them. It is possible only if we rewrite the concepts and results of one 
geometry into the language of the other geometry. In this way we get the analogical 
relations, characteristics and results which can help us prove. If we discover these 
analogies, we have the possibility to choose which method is the most suitable, easiest, 
shorteset and the most instructive to solve a given task. We could also see that the 
vectorial results can very easily be written into the complex plane in this way we shortened 
them, and we can say that we turned the vectorial geometry into algebraical geometry. We 
could also see that in the complex numerical plane there are many results (especially those 
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related to angles), which do not have their analogs in the vectorial or analytical results. This 
means that in such kinds of problems it is more advantageous to work in the complex 
plane, as this models more easily that particular problem. We could also see that classical 
coordinate geometry can be written into complex analytical geometry and the analogy is 
considerable here as well. While solving problems among the two models we should 
choose the one which stands closer to the characteristics of the problem. We could also 
see that the solving on complex numerical plane is shorter than solving in R×R, because in 
the complex plane a point can be characterized with a complex number, while in the case of 
geometry R×R a point is characterized with a number pair (x,  y), so in this case we have 
more variables. 

In conclusion we can point out that becuse of the intrernal analogy of the three 
stuctures we have the possibility of finding more solutions, we can choose the shortest, the 
most instructive and the easiest method to prove. Among the three structures there is 
internal analogy and this is a clear, proved analogy (as an isomorphism proves this) so we 
can be sure that in our case that the analogy does not lead us to only a probable result, but 
to a  result which is absolutely sure. 
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