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2.16  From k-Angle Numbers To Pell Type
Equations

Zoltdn Tuzson
Str. Alea Tellor 3/1V/27, 4150 Odorhelu-Secuiesc,
jud. Harghita, Romania.

This paper is continuation of [1), here we use some of those notations
and result,

I. The generalization of the figured numbers. In [1] we could read
about the so called figured numbers, studied by pitagorens, for example
Triangle Numbers, Rectangle Numbers, Square Numbers, Gnom
Numbers, Tetrahedron Numbers and Cube Numbers. In this paper I
will write about the generalization of this types of numbers and about
it's applications. In [2] we can read about the introduction of k-angle

numbers. Draw regular k-angles, such that their side lenght be by
turns 1,2,3 unit. In each polygon we note the vertexes and one side

those point which divide the sides in unit segments. The first four
6-angle number is shown in figure 1.
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v

By definition, the first k-angle number is 1, the second is k, the third
k-angle numbers is the number of the marked points on the boundary
and interior of the second k-angle. The n-th k-angle number is the
number of the marked points on the boundary and interior of (n - 1)-th
regular k-angle. If we denote with Sy, (k) the n-th k-angle number then
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i)

Su(k) = (k = 2)H, = (k = 3)n, or Su(k) = §[(k - 2)n? — (k — 4)n]
Vk,n € N*.

If k > 3, then H,, is the n-th triangle number. We show a different
proof from that in [2], a genuine, elementary one. During the proof, »
follow the last draw of figure 1. but instead of the 6-angle, we think ¢
A As ... Ay, regular k-angle, which we divide to

OA, Ay, 0AgAs,...,0A_9 A1 disjoint triangels and those number
exactly k — 2. In this way we drop Sy, (k) in k — 2 pieces of H,, we ha
to substract only the number of points situated on
OAg,OAs...0Ax-1 segments, because we count them twice. Thus
Sn(k) = (n=2)Hy = (k - 3)n, where H, = 1("2—“2 (see[1]) (The
number of points situated on OAy, 0As,...,0A)_; segments is

(k = 3)n). It is obvious that for k = 3 and k = 4 from (i) we reobtain
the n-th triangle number, respectivelly, the n-th square number. The
are many posibilities for the special generalization of the k angle
number. We can introduce for example the n-th k pyramide number.

Note this with G, (k), for any k,n € N*. The first three 4-pyramide
numbers are represented in figure 2.

LN B gl
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6,04 G,(4) G,¢4)

Fig. 2

It can be observed that G, (k) = S1(k) + Sa(k) + ++ + Sn(k), for any
k,n € N*,k 2 3. The n-th k pyramide number is given by the
following equations:

ii.)

G(k) = (k = 2)tn = (k = 3)Hy, or Gy (k) = 2 [(k - 2)n - k + 5]

—

102



Vol.6,No.2,1998

Vk,n € N*,k > 3 (t is the n-th tetrahedron number). (see[1]). Based
on (i), using the notations and results from [1]:
n n n
Gn(k) = .ZlSi(k)=(k-2)Z‘Hi—(k-3)E s
i= = i=1

(k= 2) 32 S0 — - 20t (g gy let)ts) _ (g gyl

from where (ii) immediately result. It is obvious that for k = 3 from
(if) we reobtain the formula of the n-th tetrahedron number,
respectively G,(3) = hy, = w. In our following generalizations
it also can be introduced the n-th k prism number, such that m
number (m € N* — {1})n — th k angle number matching together and
covering each other in space by the following application:

Hp(k,m) := mSy(k) = mE=20=C=0n yp o e N*k > 3. 1t is
obvious that for k = 4 and m = n H,(4;n) = n? give the n-th cube
number (the k;,). (see[1]). Following the principle of the regularity, it
can be also defined the n-th with octahedron number. The first three

octahedron is represented in figure 3.

e e -
0,=2¢1 +2 >+3

Fig. 3
It‘'s obvious that we "faced" two 4-pyramide number, only that the
contact balls would be count, only once. Thus the n-th octahedron

number
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iv.)
(1)

()“ - 2(‘1"_‘(4) + W = 2§n-l!u§2u—32 +n? = "(7":4"2
Surrely we can construct much more (perhaps multiple dimension)
types of figural numbers. We entrust this creation to the interested
reader.
IT. About Pell-types equations
Next we examime shortly (mainly with practical character) the
following diophantine equations very ramifying theory.

o (A) 2? = kp* =1 (Pell-equation)

o (B) 2? = ky* = -1 (conjugate Pell-equation)
¢ (02— ky=c

o (D) az® =ty =1

¢ (B)ax’ -dy’=c

where in all cases a, b,k € N*,C € Z* and k is not complet square.
The solutions of the above equations we study only on N* « N*.

(A) In [1] we noted that the all solutlons of Pell equation are given %
(al).

o = (@0 + voVE)" + (20 - voVk)"] and

Un = 5ox((@0 + vaVR)" - (20 = yoVK')

for any y,n € N*, where (2o, Vo) is the least, so called minimal or has
solution. This allways exist (see[3],|5],(6]), and it‘s mean such that

yo € N* is the least of the solutions. The (al) solution is equivalent
with the

(a2).

Tus1 = Ty + kYoYn aNd Yng1 = YoZn + ToYn

recurrent system of equations for Vn € N* (see[1]). If we express
from the first equation and afterward we also write for g, 41, basad &
the second equation of (a2), (a2) is equivalent with the

(n3).

Tayr = 2002y = 2y, and Undl = 2WoYn = Yn-1,

x= a0+ kg = 220w

recurent system of equations,
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Practicaly is very Important to find the (@0, %0) busle solutlon, In the
best case we find It by qessing, but for example, for (2* - 13,2 - 1)
equation isn‘t probable, that we guess tho @y == 040 and yg = 180 basic
solution,

It's interesting even today that Waclaw Slerpinskl, pole mathematician
(1882-1969) concluded that the @? ~ 901y? = 1 equation has no basic
solution. But finally the basic solution turned out:

ro = 37951640090681103063801489G080)

vo == 120667357003313560447442638707

To find the basic solution J. Lagrange applied vk the continous
fraction method for V& (see[6],16),|7)). From practical viewpoint we can
read about this in [3],|7),8].

(B) The all solutions of the conjugate Pell equation, are given by
(b1).

2o = 5[(@o + ypVE)" + (2o + poVE)1),

v = gopl(@y +vpvVE! = (20 = v VY]

formula, for any n € N* (80015]alﬁls[1])-

But here the essential difference is that the (zy,y,) basic solution
exists, only if in the continous fraction extraction of the V% the period

is odd number. It's worth remarking (with practically is important)
that between the solution of the Pell equation and the solution of the

conjugate Pell equation exists the
20 + yovk = (2 + ypvk)?

relation (see|6)).

Otherwise even in case of the conjugate Pell equation it can be deduced
analogous (b2) and (b3) relations, is similar to (a2) and (a3),

(C) The 2* - ky? = ¢ type equation, for ale| < Vk,e # 0 belong to the
"clarified" Pell type equations, in regarding to its solvability, In 5] we
can read about its solution,

(D) Based on [4] and [10] about the az? ~ by* = 1 equation, we
ermphasize the following:

1. If ab = k*(k € N* = 1), then a = k{ and b= k3 (ky,k; € N*) and
thus

k{a* - kjy* =16 (ke - kay)(kie + kay) = 1,

b0 1 < kyz 4 kay = kyz = kay =1

that is contradiction, namely this equation has no solution.

[ —
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2. In so far as ab # k?(k € N* — {1}) execute the linear transformatio
for = xou + kyov and y = you + azgv. From here
1 = az? - by? = a(zou + byov)? = b(you + azgv)? =
= (ax? - byd)(u? - abv?) = u? - abv?
In so far as for the az? — by? = 1 equation exists (zo,%o) basic solution
so the entire solution can be reduced to the solution of the
u? — abv? = 1 Pell equation.
The hardest practical problem is that it doesn‘t exists yet a theory to
decide which (D) type equation has basic solution, only particulary
cases are studied (see[9],[10],[11]).
(E) To solve the discused equation we attempt the methode Lagrange
(see[4],185pg) The essence of the methode is that we execute the
z = ay + cz linear transformation, and we determine the a € Z
number, such that the free number is +1. After that we use the
y = Bz + t linear transformation in order to determine the 8 € Z
number, such that the coefficient of the z-t number is zero.
In so far as exists such a, 8 € Z numbers, we obtain one of the (A),
(B), or (C) equation. To avoid the abstractization we present this
method in three Application .

Applications b
Next we present some from the wide ranged applications of the k-angle
numbers.
Application 1. Prove that ti find tha p-angle numbers which are in
the same time g-angle numbers lead to the resolvation of the
az’ - by’ =c, a,b€E N*, c€ 2
equation (p,q € N,p > 3,q > 3)
Proof. The n-th p-angle number: S, (p) = .;.[(p & 2)n2 — (p—4)n] The
m-th g-angle number: Sy, (q) = 3[(¢ - 2)m? = (¢ — 4)m] While

—-2)212 _4(p— —4\n . _
Sn(p) = £ 8(;5';) e=tln o [Hexa)n 8((:;:42))]’—(;:—4) > therefore the
Sn(p) = 8,(q) become ZE=2n=(p=0P~(p-1)* _ [2(¢-2m—(g—0)]* (4=

B(p—2 =
from where after the operations vge o)btain the i

(1.) az® - by? = ¢ equation, wherea =g - 2,b=p —2,¢ =
(9 ~p)(2p + 29~ pg), & =2p = 2n ~ (p-4),y = 2(¢ = 2)m — (g — 4)

Application 2. Prove that, all six angle number is also three angle
number.

Proof 1. The m-th three angle number respectively the m-th six angle

number formula is 5,,(8) = !'-('L;—'l respretively Sy, (6) = ﬂm?z;zﬂ o
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the equality on the basis of S,,(3) = S,,(6) reaction of the application
1.(1.) (forp=3, ¢=6or p=6, and g = 3 values), follow the
4r? —y? =0 equation, where z = 2n + 1 and y = 8m — 2. Thus based
on (2z - y)(2z +y) =0, y = 2z, namely
8m —-2=4n+2 & n = 2m - 1. Thus the m-th six angle number
corespond with the (2m - 1)-th three angle number.
Proof 2. This last result we can immediately obtain if we observe that
5 (6) 4m? —2m - (2m-— l)’+(2m—l) (2"1—1)(2"‘ 1+1) _ m—l(s)
Remark. It can be observed that in the (1.) equatlon from the
application 1. ¢ = 0 is true only in the previous case, namely if
p=3,g=06or p=6,9g=23 (obviosly p = g is excluded). That is trully
right, since ¢ =0 and p # g, 2p+2q—pq=0§p=2+af—2 € N, from
where g — 2 € {1,2,4}, thuse ¢ € {3,4,6}. f =3 =2 p=6, if
g=4=>p=4=>p=gq,absurd,if g=6=p=3.
A pplication 3. Determine those five angle numbers, which are also
three angle numbers.
Solution The m-th five angle number: S,,(5) = 3”‘2“'",m € N* The
n-th three angle number: S,(3) = 5("—+1)- ,n € N* The S,»(5) = Sn(3),
according to the transformation of (1. ) (for p=>5and ¢g=3)and a =1,
b=3,c=-2,z=6n-1and y = 2m + 1 equation (1) result the
(1)
2 -3 =-2
To solve this equation we use the Lagrange method. Execute the
r = ay — 2z (2) linear transformation such that the free number of the
equation (i) is +1 or —1. After computing result
(ii)
a?y? — dayz + 422 - 3y* = -2 “22'3 2 - 20yz 42 = -

‘e determine the a € Z value such that 9:‘r3 € Z. It can be observe
that the a = 3 value correspond thus (ii) become
(lii)
3y —6yz +24° =
Now we execute the y Bz + t (3) linear transformation such that the
coefficient of the yz form member is zero, After the transformation (iv)
become
(iv)
(362 — 60)2” + (66 - 6)at +3t* = -1
In so far as § =1, so the (iv) equation become

Pr—
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(:') .
-3 =1
Meqnmm The basic solution zp = 2 aad §p = 1. therefore based m
(21). the solution ars
41). z=3]@+V3) +(2-V3)]
[42). t. =2+ V3 - (2-v3)7]
for zmy r € N*. Accordimg 10 (2) and (3) transhrmations
5. =3y -2z
and
6. yr=z+1i
Srom whers
(71). zr =2 +3%
72). =2z 1% )
foramyr € N. I&ﬁaﬁnem&ebaxﬁ(u)and(u)mmt 1

mm
8.1). (3—1’-)(2—-1’3) —(3VE) 22"

'8.2) ¥ = (15+-/E) (23] —'(14)(1—‘\?55’

foremyr€ N. Thﬁnalzzwmmthpﬁmwobminﬁmﬂ:e
9.1). n—-1==z,

92). 2m+1=y,

equation. That's solvy we write for the (v) eguation the (3) Gpe
recourent’s that:

(10.1). z, =42, 3 — 2,2

(102). t, =4, ; — 1,3

fofm)' reN* - {l}, and 2y =2, 1, =TtHh=1 =4 {ﬂ. from (4.1
and (4.2)). From (7.1), (10.1) and (10.2)

z, =2, + 3, =42, — Tr-2 +3(u -1 -‘r-i) =

=4z, + Uy )= (20243, 3) =42, y = 7,2

and we compute in the same way for (7.2). Thas

(ll-l}- Z, =4z,  —Z,_3

(11.2). yr = 491 = Yr-2

as well as (7.1), (7.2) and from (8.1), (8.2),

Tp=5,5=19p=3,n =11

It's obvious that the members of the (y, )r sequence are all odd
numbers, this for example from (11.2) can be proved by induction.
Thus the (9.2) condition is fulfilled for every r € N. Now write in onder
some member of the (r,)r seguence:
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(12). 5,19,71,265,989,...
It can be obsreved that 29, = MG = 1, till

(13). IQ]H.] = MG + 1

for any k € N. Thus using the mathematical induction from (11.1)
Tok42 = 4ZTopq1 — Tak, for any k € N, and considering the statements
from (13). as true, we can write in order that:

rok42 = 4(M6 + 1) - (M6-1)= M6+5M6 -1

Thus the solution of (9.1) and (9.2) are:

(14.1). n) = 2t

(14.2). my = L=

Vk € N , and so, those numbers that are also five angle numbers and
also three angle numbers are:

(15). Sx(5,3) = Dulmutl) _ Smj—ms

vk € N.

We obtain the values of x5 and yo; immediately from (11.1) and
(11.2), the values of ny and m;, from (14.1) and (14.2), but the (8.1)
and (8.2) for r = 2k give the result in closed form.

Some example for k € 0,1,2

1(1+1) _ 1 _ 312-1, 2021 _ _ 312212,
= =]l = T =210 = =57

285-286 — 4()755 = 3-165;—165

namely, 1,210,40755 are also three angle and five angle numbers.
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