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The study of sequences defined by a first degree recursive relation, 
with the help of pocket calculator 

Tuzson Zoltán 

 

Abstract. In this paper we will show, how we can use a simple pocket calculator, to teach 
mathematics. Namely, a pocket calculator can be very useful to study the properties of sequences 
defined by first degree recursive relations, for example monotonicity, boundedness, and 
convergency, and so gain a deeper understanding. 
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 Nowadays the calculator (or the calculators in mobile phones or in computers) can be 
used for other purposes than for ordinary arithmetic?  We will show that we can use it either for 
studying the convergence of sequences, or for guessing the limit of a sequence. Moreover in the 
second part it plays a unique role, since it can create predictions regarding the limit of a 
sequence. 
 The theme described below was successfully tested by me on my mathematics classes, 
and I recommend it for anybody, to try it out because it is worth it! 

 The purpose of my experiments, was to study with the students the convergence of 
certain sequences, defined by a recursive relation. The students have previously gained the more 
important, necessary concepts and knowledge, the information related to monotonicity and 
boundedness and we hade started to calculate the limits of sequences. But we can say that we are 
only beginners in this domain.  

In  my  opinion  the  whole  mathematical  analysis  of  High  School  especially  the  
convergency of sequences and the calculate of their limits is hard to understand because a proper 
concrete illustrative model is missing. More exactly the phenomena related to infinite cannot 
really be modeled. We do not have any intuitive basis or support for this, only definitions, 
concepts, predefined rules and theorems. That’s why I wondered how we can present this topic 
in such a way that the students can experience it actively. Then it came into my mind that with a 
manual calculator we can experience quickly and easily such concepts as monotonicity, 
boundedness and at last the concept of convergency. For this I decided, that I will try all that, 
which I’m going to share below. And I must admit that I did not regret it because according to 
feedback the students understood this topic better than if I had just written the lesson on the 
blackboard with chalk. But of course we presented and analyzed in details on the blackboard the 
following proofs, but only after we have tried the following experiments, and after that we 
discussed and proved our results. 
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Experiment 1: Let’s type 2 into a pocket calculator and calculate its square root. Then calculate 
the square root of the result. We do this until we see the same number on the display. What can 
we say about the monotonicity, boundedness and limit of the sequence? How can we explain 
what we have seen? 
Solution: On the display of a pocket calculator which can display only 8 characters, respectively 
we can see the following: 1.4141356; 1.1892071; 1.0905076; 1.0442737; 1.0218971; 1.0108892; 
1.0054298; 1.0027112; 1.0013546; 1.0006770; 1.0003384; 1.0001691; 1.0000845; 1.0000422; 
1.0000210; 1.0000104; 1.0000051;   1.0000025;   1.0000012;   1.0000005;   1.0000002;   
1.0000001;   1.;   1.;   1.; …. 
The following properties can be read: 
1) The resulting sequence is strictly decreasing. This we are going to prove. The members of the 

sequence in question are: 
1
2

1 2 2a ,   2
1
2

2 1 2 2a a , 3
1
2

3 2 2 2a a  ,  and  

usually  1

( 1)  1
2

1 ... 2 2 n

n root sign

n na a  for 0n . It is easy to see that 1 1 2a a a , 

hence if we use the method of mathematical induction and we assume that 1n na a , then after 

the 1
1 1

1

n n
n n n n

n n

a aa a a a
a a

formula immediately follows that 1n na a , namely the 

sequence is indeed strictly decreasing.  Another way to prove the monotonicity of the sequence, 

is if we write 
1

1
12

01 2
1
2

2 2 2 1
2

n
n

n

n

n

a
a

. This is shorter than the previous demonstration, which 

we presented to help to acquiring the proof technique. 
2) Because the sequence is strictly decreasing it has a best upper bound.  This way 

1= 2,  1na a n . 
 After what we can see on the calculator we can have a presumption that the best lower bound is 

1, namely 1 ,  1na n . This we can prove because 
1

022 2 1n

na  it is obvious in the case of 

1n . Accordingly 1, 2na  in the case of 1n . 

3) Since the  sequence 
1n na  is strictly decreasing and bounded, hence from the theorem of 

Weierstrasse the sequence is convergent, so has a limit. On the display of the pocket calculator 
we sense this, as after executing a certain number of operations the display we shows 1. This, 

therefore means that lim 1nn
a , which is indeed true, because 

1
2lim 2 1n

n
   obviously. At the 

same time we have illustrated the theorem which says that the best lower bound of a monotonic 
decreasing sequence is its limit, in our case 1. 
4) Furthermore it has to be explained that after executing a certain number of operations why 
there always appears 1 on the display of the calculator. We can find out the reason for this when 
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we are doing these calculations on a calculator that has more than 8 digits on its display. Where 
after 1,0000000 there can appear digits which are not a 0. Therefore with an 8 digit calculator we 
could only approximate the limit of the sequence which was 1 with seven decimals. 
Experiment 2: The task is the same as in Experiment 1, but with the difference that in the place 
of 2 we can pick an arbitrary number a> 0. 
Solution: Executing the calculations in specific cases and observing the shown values, we can 
see that after a number of steps the number 1 is shown again. 1 can be reached faster or slower 
that is to say even the “speed of convergence” changes. Every other result and the proof are the 
same as shown before. Summing up we proved that in the case of every a> 0 

 

lim ... 1
n root sign

n
a i.e. ... a =1, where the number of the root signs is infinitely big. 

 
Experiment 3: Let’s type 2 into a pocket calculator and calculate its square root. Multiply the 
result by two and calculate its square root again. We shall repeat this operation until we get the 
same number on the display.  What can we say about the monotonicity, boundedness and limit of 
the sequence? How can we explain what we have seen? 
Solution:  On the display of a pocket calculator which can only display 8 characters, respectively 
we can see the following: 1.4141356; 1.6817928; 1.8340080; 1,9152065; 1.9571441; 1.9784560; 
1.9891988; 1.9945921; 1.9972942; 1.9986466; 1.9993232; 1.9996615; 1.9998307; 1.9999153; 
1.9999576; 1.9999758; 1.9999884; 1.9999947; 1.9999973; 1.9999986; 1.9999993; 1.9999996; 
1.9999998; 1.9999999; 2; 2; 2;…. The following properties can be read: 
1) The resulting sequence is strictly increasing. We are going to prove this! The members of the 

sequence in question are: 
1
2

1 2 2a , 
1 1
2 4

2 12 2 2 2a a , 
1 1 1
2 4 8

3 22 2 2 2 2a a , and usually 

1 1

( 1)  1 1 1 1 1... 1
2 4 8 2 2

1 2 2 2 2... 2 2 2n n

n root sign

n na a  for 0n .. 

It  is  easy  to  see  that  on  the  basis  of  the  relations 1 1 22 2 2 2a a a , and 

1
1 1

1

2( )2 2
2 2

n n
n n n n

n n

a aa a a a
a a

 we can prove by mathematical induction that the 

sequence is indeed strictly increasing. 
2)  Since  the  sequence  is  strictly  increasing  it  has  a  lower  best  bound,  and  thus  in  the  case  of  

1= 2, fo r 1na a n . On the basis of the calculator’s display we have a suspicion that the best 

upper bound is 2, that is in the case of <2, for 1na n  This can be proved with the help of 

mathematical induction, as 1= 2 2a ,   and  if  we  suppose  that  <2na , then 

1 2 2 2 2n na a . So 2,2na for 1n . 
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3) Since the sequence 
1n n

a  is strictly increasing and limited, on the basis of Weierstrasse 

theorem the sequence is convergent, that it has a limit. This can be seen on the calculator getting 
the number 2 on its display after a number of operations have been done. This means that the 

lim 2nn
a , because 

11
2lim 2 2n

n
 is clear. At the same time the theorem is illustrated, according 

to which the best upper bound of a monotonous increasing sequence is the limit of the sequence, 
in our case this is 2.  
 
Experiment 4: The problem is the same as in the first two experiments, only instead of 2 we 
take another number a> 0. 
Solution: Executing the calculations in specific cases and observing the shown values, we can 
see that after a number of steps the number a is shown again. Every other result and the proof is 
the same as it was shown before only lim nn

a a  changes according to 1=a a . Summing up we 

proved that in the case of every a> 0 , 
 

lim ...
n root sign

n
a a a a a  namely ...a a a a a , where 

the number of the root signs is infinitely large. 
 
Experiment 5: Let’s type 2 into a pocket calculator and calculate its square root. Add 2 to the 
result and calculate its square root again. We shall repeat this operation until we get the same 
number on the display.  What can we say about the monotonicity, boundedness and limit of the 
sequence? How can we explain what we have seen? 
Solution: On the display of a pocket calculator which can only display 8 characters, in turns, we 
can see the following: 1.414135; 1.8477590; 1.9615705; 1.9903694; 1.9975909; 1.9993976; 
1.9998494; 1.9999623; 1.9999905; 1.9999976; 1.9999994; 1.9999998; 1.9999999; 2; 2;2;…. 

1) The resulting sequence is strictly increasing, which we shall prove. The members of the 

sequence in question are: 1 2a , 2 12 2 2a a , 3 22 2 2 2a a , and 

usually 
( 1)  

1 2 2 2 2 ... 2
n root sign

n na a  for 0n .  We  can  see  that  in  this  

case we get only a recursive relationship, we cannot write algebraically the general member, as 

in the previous cases. It is easy to see that on the basis of the relations 1 22 2 2a a , 

and 1
1 1

1

2 2
2 2

n n
n n n n

n n

a aa a a a
a a

 we can prove by mathematical 

induction that the sequence is strictly increasing. 
2) Since the sequence is strictly increasing it has a best lower bound, and 
thus 1= 2, for 1na a n . On the basis of the calculator’s display we believe that the best 

lower bound is 2, namely < 2 , fo r 1na n . This can easily be proved by mathematical 
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induction, because 1= 2 2a , and if we suppose that  <2na , then 1 2 2 2 2n na a . 

So, 2, 2na  for 1n . 

3) Because the sequence 
1n na  is strictly increasing and bounded, on the basis of 

Weierstrasse’s theorem the sequence is convergent, i.e. it has a limit. This can be seen on the 
calculator getting the number 2 on its display after a number of operations have been completed. 
This means that the lim 2nn

a , which is true, because if lim nn
a x , then 1lim nn

a x  is also true. 

The limit satisfied 1 2n na a  so 22 2 0x x x x  giving x= 2, because 

x=-1 2,2 . Therefore lim 2nn
a  which means, that 

 

lim 2 2 2 ... 2 2
n root sign

n
  or 

otherwise 2 2 2 ... 2 ... 2  where the number of root-signs is infinitely large. 

Experiment 6:  
If we take the number 6 instead of 2 in the exercise before, what can we say about the 
monotonicity, boundedness and limit of the sequence? How can we explain what we have seen? 
 

Solution: The resulting sequence is 1 6a ,   2 16 6 6a a , 

3 26 6 6 6a a ,  and  in  general  
( 1)  

1 6 6 6 6 ... 6
n root sign

n na a  

for 0n . We are going to prove the same way as before that the sequence is strictly increasing. 
Therefore the best lower bound is the first member, namely 1= 6, for 1na a n . This time we 
can see the best upper bound on the display is 3. This we can easily prove by mathematical 
induction, namely 1= 6 3a , and if we suppose, that <3na , then 1 6 6 3 3n na a . 

Therefore 6,3na  for 1n . Since the 
1n n

a sequence is strictly increasing and bounded, 

on the basis of Weierstrasse theorem the sequence is convergent, that is it has a limit. This can be 
seen on the display of the calculator getting the number 3 after a number of operations. This 
means that lim 3nn

a ,  in  the  same  way  as  before   26 6 0x x x x  which has a 

positive root of  x= 3. 
 
Experiment 7:  
If we take the number 12 instead of 6 in the previous example, what can we say about the 
monotonicity, boundedness and limit of the sequence? How can we explain what we have seen? 
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Solution: The resulting sequence is 1 12a , 2 112 12 12a a , 

3 212 12 12 12a a ,and usually 
( 1)  

1 12 12 12 12 ... 12
n root sign

n na a  for 1n . We are going prove in the 

same way as before that the sequence is strictly increasing. Therefore the best lower bound is the 
first member, namely 1= 12, for 1na a n . This time we can see the best upper bound on the 

display is 4. This can be easily proved by mathematical induction, namely 1= 12 4a  and if we 

suppose that <4na then 1 12 12 4 4n na a . Thus 12, 4na  for 1n . Because 

the sequence 
1n na  is strictly increasing and bounded, the theorem of Weierstrasse says the 

sequence is convergent, so has a limit.  On the display of the pocket calculator we see this, after 
executing a certain number of operations on the display we can see 4. This therefore means that 
lim 4nn

a ,  in  the  same  way  as  it  was  shown  before   212 12 0x x x x  it  has  a  

positive root and that is x= 4. 
 
Remark 1: 
The reader probably ask himself what kind of number should we choose besides 2, 6 and 12 so 
that lim nn

a k  is a natural number. The answer to this question is not that difficult, because the 

preceding sequences the 1a a , 1n na a a , a> 0 were defined recursively, and if we 

consider the limit here, then we can see that 2 ( 1)k a k a k k k k   result. Thus, if 

1a a  and * \ 11 2; 2 3; 3 4;...; ( 1) ;... k Na k k  then the limits of the sequence in question 

are going to be 2, 3, 4, …, k, … . Similar experiments like the previous ones can be done. 
 
Experiment 8: Let’s type 1 into a pocket calculator and calculate its square root. Add 1 to the 
result and calculate its square root again. We shall repeat this operation until we get the same 
number on the display.  What can we say about the monotonicity, boundedness and limit of the 
sequence? How can we explain what we have seen? 
Solution: On the display of a pocket calculator which can only display 8 characters, we see the 
following: 1; 1.414135; 1.5537739, 1.5980531; 1.6118477; 1.6161212; 1.6174427; 1.6178512; 
1.6179775; 1.6180165; 1.61802859; 1.6180323; 1.6180334; 1.6180338; 1.6180339; 1.6180339; 
1.6180339; …. This time for a “constant” number we didn’t get an integer value, but the number 
1.6180339, which is of course only a seven decimal approximation. 

Our sequence this time is 1 1a , 2 11 1 1 2a a , 3 21 1 1 1a a , and 

usually 
( 1) sign

1 1 1 1 1 ... 1
n root

n na a  for 0n . According to the computed 
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values the sequence is strictly increasing, which we can prove by mathematical induction 

similarly to previous cases with 1
1 1

1

1 1
1 1

n n
n n n n

n n

a a
a a a a

a a
relation. Since the 

sequence  is  strictly  increasing,  the  best  lower  bound  is  the  first  member,  namely  

1=1, for 1na a n . Our guess regarding the upper bound is that the an approximate value of 
the upper bound is 1.6180339…  If this proves correct, then the sequence would be monotonic 
and bounded, thus there would exist lim nn

a x , which on the basis of 1 1n na a  gives 

21 1 0x x x x  which has a positive root of 1 5 . ...
2

x 1 6180339  agreeing with the 

calculator. Thus, the best upper bound of the sequence is the number 1 5 . ...
2

1 6180339  (this is 

also called the golden ratio), and this we can prove by induction, if we assume, that 1 5
2na , 

then 1
1 5 1 51 1

2 2n na a . 

 
Remark 2: 
The preceding sequences 1a a , 1n na a a , a> 0  were defined by a recursive relation. It 

can  be  easily  proved,  that  this  sequence  is  strictly  increasing  and  bounded,  more  

precisely 1 4 1,
2n

aa a .  This is why  it is convergent and if lim nn
a x , then this gives 

2 0x a x x x a , which has a positive root 1 4 1
2

ax . Based on Remark 1, this 

limit will only be an integer number for *a N  if ( 1)a k k  and * \ 1k N , in every other 

case it will be an irrational number. 
 
Exercise 9: Let’s type the reciprocal of 1 into a pocket calculator and add 1 to it. To the 
reciprocal of the result let’s add again 1, and to the reciprocal of this result let’s add again 1. We 
shall repeat this operation until the number on the display dues not change. What can we say 
about the monotonicity, boundedness and limit of the sequence? How can we explain what we 
have seen? 
 
Solution: On the display of a pocket calculator which can display only 8 characters, in turns, we 
can see the following: 2; 1.5000000; 1.6666666; 1.6000000; 1.6250000; 1.6153846; 1.6190476; 
1.6176470; 1.6181818; 1.6179775; 1.6180555; 1.6180257; 1.6180371; 1.6180328; 1.6180344; 
1.6180338; 1.6180340; 1.6180339; 1.6180339; 1.6180339; …  
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We defined the sequence as: 1 1a , 2
1

1 1a
a

, 3
2

1 1a
a

, and in general 1
1 1n

n

a
a

, for  

1n . If we follow the numbers on the display we can see, that the sequence is neither 
increasing nor decreasing, but 1 3 5 2 1... ...ka a a a  and 2 4 6 2... ...ka a a a i.e. the 
odd members of the sequence form a subsequence which is strictly increasing, and the other 
subsequence formed by the even members is strictly decreasing.  We are going to prove this 

result. By the recursion 2 2
1 1 1 1 2

1 1 11 1 ( )n n n n
n n n n n n

a a a a
a a a a a a

 using 

mathematical induction. Regarding boundedness we can prove that 2 1 2
1 51 2

2k ka a . 

Therefore the sequence is bounded, thus under Weierstrasse’s theorem it is convergent, and so 

has a limit. Let be lim nn
a x , so based on the  1

1 1n
n

a
a

 recursion 21 1 1 0x x x
x

, 

which has a positive root 1 5 1.6180339
2

x thr so-called “golden ratio”. Which we got, 

on the display of the calculator, with a 7 decimal precession as a limit.  

Remark 3:  
As in the previous experiment, in the place of the 1 1a  we would put any arbitrary number. The 

sequence will still be defined by 1
1

n
n

a a
a

 recursion, and  according to what we have proved 

before, the same results can be derived with 1 5
2

  replaced by 
2 4

2
a a . 

 
Remark 4: 
It is well known that we define the Fibonacci sequence as: 1 2 1f f  and 2 1n n nf f f  for 

1n .  We can produce a sequence of the ratios of two successive members from the 

Fibonacci sequence, namely 1k
k

k

f a
f

 for 1k . Then 2 1 1
1 1n n n n

n

f f f a
a

 that is to 

say, that we have generated the sequence from the previous experiment. Based on that 
experiment, the sequence produced of the ratios of two successive members from the Fibonacci 

sequence is convergent and its limit is 1 5
2

. 

 
Finally we notice, that the convergence of numerous other sequences defined by first degree 
recursive relation can be studied with a pocket calculator. For the interested reader we 
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recommend, a study of the convergence of the sequences defined by first degree recursive 
relation below with the help of the model shown before: 

1) 1
3
4

a a  and 1 4 3n na a  for 1n .  

2) 1 0a a , k> 0, 1n na a k  for 1n . 

3) 1 0a , k> 0, 1
1
2n n

n

ka a
a

 for 1n . 

References 

[1] Miguel do Guzmán, The role of visualization in the teaching and learning of mathematical 
analysis 
[2] Nagy Örs, Gondolatok a sorozatok tanításának a szerepér l (in Hungarian), BBTE 2009 
[3] V. A. Ilyin and E. G. Poznyak, Fundamentals of Mathematical Analysis, Mir Publishers, 
Moscow, 1982, pp. 71-72 
[4] Vigné Dr. Lencsés Ágnes, Induktív fogalomalkotás, tételek megsejtése, szintézissel való 
bizonyítás a valós számsorozatok témában (in Hungarian) 
[5] Vigné Dr. Lencsés Ágnes, Néhány gondolat a valós számsorozatok tanításáról (in Hungarian) 

 

TUZSON ZOLTÁN 
REFORMED HIGH SCHOOL 
535600 SZÉKELYUDVARHELY 
Aleea Teilor 3/27 
ROMANIA 
E-mail: tuzo@extra.ro 


